code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = len(__lowerCamelCase ), len(grid[0] ) if ( min(__lowerCamelCase, __lowerCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCAmelCase_ : Dict = 0 count += depth_first_search(__lowerCamelCase, row + 1, __lowerCamelCase, __lowerCamelCase ) count += depth_first_search(__lowerCamelCase, row - 1, __lowerCamelCase, __lowerCamelCase ) count += depth_first_search(__lowerCamelCase, __lowerCamelCase, col + 1, __lowerCamelCase ) count += depth_first_search(__lowerCamelCase, __lowerCamelCase, col - 1, __lowerCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
61
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCAmelCase_ : List[str] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _lowerCamelCase ( lowercase : List[Any] ) -> str: if isinstance(lowercase , torch.Tensor ): return image elif isinstance(lowercase , PIL.Image.Image ): _a = [image] _a = [trans(img.convert("RGB" ) ) for img in image] _a = torch.stack(lowercase ) return image class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , __a : str , __a : Dict ): super().__init__() # make sure scheduler can always be converted to DDIM _a = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__a , scheduler=__a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}' ) def UpperCamelCase__ ( self : Dict , __a : Union[str, Any] , __a : int , __a : int ): # get the original timestep using init_timestep _a = min(int(num_inference_steps * strength ) , __a ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None ): if not isinstance(__a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__a )}' ) _a = image.to(device=__a , dtype=__a ) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__a )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _a = init_latents.shape _a = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) # get latents print("add noise to latents at timestep" , __a ) _a = self.scheduler.add_noise(__a , __a , __a ) _a = init_latents return latents @torch.no_grad() def __call__( self : List[str] , __a : Union[torch.FloatTensor, PIL.Image.Image] = None , __a : float = 0.8 , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : float = 0.0 , __a : int = 50 , __a : Optional[bool] = None , __a : Optional[str] = "pil" , __a : bool = True , ): self.check_inputs(__a ) # 2. Preprocess image _a = preprocess(__a ) # 3. set timesteps self.scheduler.set_timesteps(__a , device=self.device ) _a , _a = self.get_timesteps(__a , __a , self.device ) _a = timesteps[:1].repeat(__a ) # 4. Prepare latent variables _a = self.prepare_latents(__a , __a , __a , self.unet.dtype , self.device , __a ) _a = latents # 5. Denoising loop for t in self.progress_bar(__a ): # 1. predict noise model_output _a = self.unet(__a , __a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _a = self.scheduler.step( __a , __a , __a , eta=__a , use_clipped_model_output=__a , generator=__a , ).prev_sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(__a ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__a )
63
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase__ (): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = """mock-s3-bucket""" _snake_case : Any = F"s3://{mock_bucket}" _snake_case : List[str] = extract_path_from_uri(snake_case__ ) assert dataset_path.startswith("""s3://""" ) is False _snake_case : int = """./local/path""" _snake_case : List[Any] = extract_path_from_uri(snake_case__ ) assert dataset_path == new_dataset_path def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : Optional[int] = is_remote_filesystem(snake_case__ ) assert is_remote is True _snake_case : Any = fsspec.filesystem("""file""" ) _snake_case : Tuple = is_remote_filesystem(snake_case__ ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" _snake_case : Dict = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} _snake_case : int = input_paths[compression_fs_class.protocol] if input_path is None: _snake_case : List[Any] = F"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case__ ) _snake_case : Any = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case__ ) assert isinstance(snake_case__ , snake_case__ ) _snake_case : Optional[int] = os.path.basename(snake_case__ ) _snake_case : Dict = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(snake_case__ , """r""" , encoding="""utf-8""" ) as f, open(snake_case__ , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : Any = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} _snake_case : Union[str, Any] = compressed_file_paths[protocol] _snake_case : Union[str, Any] = """dataset.jsonl""" _snake_case : Union[str, Any] = F"{protocol}://{member_file_path}::{compressed_file_path}" _snake_case , *_snake_case : str = fsspec.get_fs_token_paths(snake_case__ ) assert fs.isfile(snake_case__ ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : Any , snake_case__ : Any ): """simple docstring""" _snake_case : Tuple = hf_api.dataset_info(snake_case__ , token=snake_case__ ) _snake_case : Optional[Any] = HfFileSystem(repo_info=snake_case__ , token=snake_case__ ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(snake_case__ ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case__ , snake_case__ , clobber=snake_case__ ) with pytest.warns(snake_case__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case__ ) == 1 assert ( str(warning_info[0].message ) == F"A filesystem protocol was already set for {protocol} and will be overwritten." )
64
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
0
from __future__ import annotations def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]: '''simple docstring''' if len(__A ) <= 1 or n <= 1: return insert_next(__A, n - 1 ) rec_insertion_sort(__A, n - 1 ) def lowerCAmelCase_ ( __A, __A ) -> int: '''simple docstring''' if index >= len(__A ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase__ , UpperCAmelCase__ = ( collection[index], collection[index - 1], ) insert_next(__A, index + 1 ) if __name__ == "__main__": UpperCamelCase__ = input('Enter integers separated by spaces: ') UpperCamelCase__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
65
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __a = TypeVar("T") class lowerCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self: Optional[int] , snake_case: list[T] , snake_case: Callable[[T, T], T] ) -> None: snake_case_ :Any | T = None snake_case_ :int = len(snake_case ) snake_case_ :list[T] = [any_type for _ in range(self.N )] + arr snake_case_ :Union[str, Any] = fnc self.build() def lowerCAmelCase_ ( self: Tuple ) -> None: for p in range(self.N - 1 , 0 , -1 ): snake_case_ :str = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: int , snake_case: T ) -> None: p += self.N snake_case_ :Tuple = v while p > 1: snake_case_ :Any = p // 2 snake_case_ :str = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase_ ( self: str , snake_case: int , snake_case: int ) -> T | None: # noqa: E741 snake_case_, snake_case_ :Tuple = l + self.N, r + self.N snake_case_ :T | None = None while l <= r: if l % 2 == 1: snake_case_ :Tuple = self.st[l] if res is None else self.fn(snake_case , self.st[l] ) if r % 2 == 0: snake_case_ :Optional[Any] = self.st[r] if res is None else self.fn(snake_case , self.st[r] ) snake_case_, snake_case_ :Dict = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __a = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __a = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __a = SegmentTree(test_array, min) __a = SegmentTree(test_array, max) __a = SegmentTree(test_array, lambda a, b: a + b) def A_ ( ): '''simple docstring''' for i in range(len(_lowercase ) ): for j in range(_lowercase, len(_lowercase ) ): snake_case_ :Tuple = reduce(_lowercase, test_array[i : j + 1] ) snake_case_ :Union[str, Any] = reduce(_lowercase, test_array[i : j + 1] ) snake_case_ :Optional[Any] = reduce(lambda _lowercase, _lowercase : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_lowercase, _lowercase ) assert max_range == max_segment_tree.query(_lowercase, _lowercase ) assert sum_range == sum_segment_tree.query(_lowercase, _lowercase ) test_all_segments() for index, value in test_updates.items(): __a = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
66
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
0
'''simple docstring''' import re def __lowerCAmelCase ( UpperCamelCase__ ) -> str: if len(re.findall('''[ATCG]''' , UpperCamelCase__ ) ) != len(UpperCamelCase__ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = ['pixel_values'] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , lowercase = True , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase ) A__ = size if size is not None else {"height": 384, "width": 384} A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = do_resize A__ = size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def UpperCamelCase ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(lowercase , default_to_square=lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) A__ = (size["height"], size["width"]) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Optional[Any]: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = size if size is not None else self.size A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(lowercase ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(lowercase ) for image in images] if do_resize: A__ = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_rescale: A__ = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: A__ = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] A__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A__ = BatchFeature(data={"pixel_values": images} , tensor_type=lowercase ) return encoded_outputs
68
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "pix2struct_text_model" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, lowerCAmelCase__=5_0244, lowerCAmelCase__=768, lowerCAmelCase__=64, lowerCAmelCase__=2048, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=32, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=1e-6, lowerCAmelCase__=1.0, lowerCAmelCase__="gelu_new", lowerCAmelCase__=0, lowerCAmelCase__=False, lowerCAmelCase__=0, lowerCAmelCase__=1, lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Optional[int]: snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = d_kv snake_case_ = d_ff snake_case_ = num_layers snake_case_ = num_heads snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = initializer_factor snake_case_ = use_cache snake_case_ = eos_token_id snake_case_ = decoder_start_token_id # for backwards compatibility snake_case_ = dense_act_fn super().__init__( pad_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, decoder_start_token_id=lowerCAmelCase__, tie_word_embeddings=lowerCAmelCase__, is_decoder=lowerCAmelCase__, **lowerCAmelCase__, ) @classmethod def a_ ( cls, lowerCAmelCase__, **lowerCAmelCase__) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase__) snake_case_ , snake_case_ = cls.get_config_dict(lowerCAmelCase__, **lowerCAmelCase__) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type') == "pix2struct": snake_case_ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls, 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowerCAmelCase__, **lowerCAmelCase__) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "pix2struct_vision_model" def __init__( self, lowerCAmelCase__=768, lowerCAmelCase__=768, lowerCAmelCase__=2048, lowerCAmelCase__=64, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__="gelu_new", lowerCAmelCase__=1e-6, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=1e-10, lowerCAmelCase__=1.0, lowerCAmelCase__=4096, lowerCAmelCase__=32, lowerCAmelCase__=128, **lowerCAmelCase__, ) -> List[Any]: super().__init__(**lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = patch_embed_hidden_size snake_case_ = d_ff snake_case_ = dropout_rate snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = initializer_range snake_case_ = initializer_factor snake_case_ = attention_dropout snake_case_ = layer_norm_eps snake_case_ = dense_act_fn snake_case_ = seq_len snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = d_kv @classmethod def a_ ( cls, lowerCAmelCase__, **lowerCAmelCase__) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase__) snake_case_ , snake_case_ = cls.get_config_dict(lowerCAmelCase__, **lowerCAmelCase__) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type') == "pix2struct": snake_case_ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls, 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowerCAmelCase__, **lowerCAmelCase__) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "pix2struct" SCREAMING_SNAKE_CASE_ = True def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=1.0, lowerCAmelCase__=0.02, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> List[str]: super().__init__(tie_word_embeddings=lowerCAmelCase__, is_encoder_decoder=lowerCAmelCase__, **lowerCAmelCase__) if text_config is None: snake_case_ = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.') if vision_config is None: snake_case_ = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.') snake_case_ = PixaStructTextConfig(**lowerCAmelCase__) snake_case_ = PixaStructVisionConfig(**lowerCAmelCase__) snake_case_ = self.text_config.decoder_start_token_id snake_case_ = self.text_config.pad_token_id snake_case_ = self.text_config.eos_token_id snake_case_ = initializer_factor snake_case_ = initializer_range snake_case_ = self.initializer_range snake_case_ = self.initializer_range snake_case_ = is_vqa @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> Optional[Any]: return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = copy.deepcopy(self.__dict__) snake_case_ = self.text_config.to_dict() snake_case_ = self.vision_config.to_dict() snake_case_ = self.__class__.model_type return output
69
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer A__ : Tuple =logging.get_logger(__name__) # pylint: disable=invalid-name A__ : Any =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class UpperCAmelCase ( snake_case_ ): _lowercase: Union[PIL.Image.Image, np.ndarray] class UpperCAmelCase ( snake_case_ ): def __init__( self : Union[str, Any] , __snake_case : PriorTransformer , __snake_case : CLIPVisionModel , __snake_case : CLIPImageProcessor , __snake_case : HeunDiscreteScheduler , __snake_case : ShapERenderer , ) -> Any: super().__init__() self.register_modules( prior=__snake_case , image_encoder=__snake_case , image_processor=__snake_case , scheduler=__snake_case , renderer=__snake_case , ) def lowercase__ ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : int , __snake_case : int , __snake_case : List[str] ) -> Optional[Any]: if latents is None: _lowerCAmelCase = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) _lowerCAmelCase = latents.to(__snake_case ) _lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : Optional[int] , __snake_case : Optional[int]=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase = torch.device(f"cuda:{gpu_id}" ) _lowerCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) @property def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase__ ( self : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Optional[Any] , ) -> Any: if isinstance(__snake_case , __snake_case ) and isinstance(image[0] , torch.Tensor ): _lowerCAmelCase = torch.cat(__snake_case , axis=0 ) if image[0].ndim == 4 else torch.stack(__snake_case , axis=0 ) if not isinstance(__snake_case , torch.Tensor ): _lowerCAmelCase = self.image_processor(__snake_case , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _lowerCAmelCase = image.to(dtype=self.image_encoder.dtype , device=__snake_case ) _lowerCAmelCase = self.image_encoder(__snake_case )["""last_hidden_state"""] _lowerCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCAmelCase = image_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase = torch.zeros_like(__snake_case ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self : Optional[Any] , __snake_case : Union[PIL.Image.Image, List[PIL.Image.Image]] , __snake_case : int = 1 , __snake_case : int = 25 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : float = 4.0 , __snake_case : int = 64 , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> int: if isinstance(__snake_case , PIL.Image.Image ): _lowerCAmelCase = 1 elif isinstance(__snake_case , torch.Tensor ): _lowerCAmelCase = image.shape[0] elif isinstance(__snake_case , __snake_case ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _lowerCAmelCase = len(__snake_case ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__snake_case )}" ) _lowerCAmelCase = self._execution_device _lowerCAmelCase = batch_size * num_images_per_prompt _lowerCAmelCase = guidance_scale > 1.0 _lowerCAmelCase = self._encode_image(__snake_case , __snake_case , __snake_case , __snake_case ) # prior self.scheduler.set_timesteps(__snake_case , device=__snake_case ) _lowerCAmelCase = self.scheduler.timesteps _lowerCAmelCase = self.prior.config.num_embeddings _lowerCAmelCase = self.prior.config.embedding_dim _lowerCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCAmelCase = latents.reshape(latents.shape[0] , __snake_case , __snake_case ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase = self.scheduler.scale_model_input(__snake_case , __snake_case ) _lowerCAmelCase = self.prior( __snake_case , timestep=__snake_case , proj_embedding=__snake_case , ).predicted_image_embedding # remove the variance _lowerCAmelCase , _lowerCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCAmelCase , _lowerCAmelCase = noise_pred.chunk(2 ) _lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCAmelCase = self.scheduler.step( __snake_case , timestep=__snake_case , sample=__snake_case , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__snake_case ) _lowerCAmelCase = [] for i, latent in enumerate(__snake_case ): print() _lowerCAmelCase = self.renderer.decode( latent[None, :] , __snake_case , size=__snake_case , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(__snake_case ) _lowerCAmelCase = torch.stack(__snake_case ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) _lowerCAmelCase = images.cpu().numpy() if output_type == "pil": _lowerCAmelCase = [self.numpy_to_pil(__snake_case ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__snake_case )
70
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
0
import math def A ( a_ ) -> list[int]: __UpperCamelCase : Any =[] __UpperCamelCase : Dict =2 __UpperCamelCase : int =int(math.sqrt(a_ ) ) # Size of every segment __UpperCamelCase : List[str] =[True] * (end + 1) __UpperCamelCase : int =[] while start <= end: if temp[start] is True: in_prime.append(a_ ) for i in range(start * start ,end + 1 ,a_ ): __UpperCamelCase : Union[str, Any] =False start += 1 prime += in_prime __UpperCamelCase : Union[str, Any] =end + 1 __UpperCamelCase : List[Any] =min(2 * end ,a_ ) while low <= n: __UpperCamelCase : Optional[int] =[True] * (high - low + 1) for each in in_prime: __UpperCamelCase : Optional[Any] =math.floor(low / each ) * each if t < low: t += each for j in range(a_ ,high + 1 ,a_ ): __UpperCamelCase : int =False for j in range(len(a_ ) ): if temp[j] is True: prime.append(j + low ) __UpperCamelCase : str =high + 1 __UpperCamelCase : Optional[Any] =min(high + end ,a_ ) return prime print(sieve(10**6))
71
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def snake_case_ ( A_ : Any, A_ : Union[str, Any], A_ : List[str], A_ : Optional[int], A_ : Dict ): '''simple docstring''' for attribute in key.split('''.''' ): _lowerCamelCase : List[Any] = getattr(A_, A_ ) if weight_type is not None: _lowerCamelCase : int = getattr(A_, A_ ).shape else: _lowerCamelCase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase : Optional[int] = value elif weight_type == "weight_g": _lowerCamelCase : Optional[int] = value elif weight_type == "weight_v": _lowerCamelCase : Union[str, Any] = value elif weight_type == "bias": _lowerCamelCase : List[Any] = value else: _lowerCamelCase : Dict = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def snake_case_ ( A_ : Optional[int], A_ : int, A_ : Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = fairseq_model.state_dict() _lowerCamelCase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( A_, A_, A_, A_, hf_model.config.feat_extract_norm == '''group''', ) _lowerCamelCase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : List[Any] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _lowerCamelCase : str = True if "*" in mapped_key: _lowerCamelCase : int = name.split(A_ )[0].split('''.''' )[-2] _lowerCamelCase : Tuple = mapped_key.replace('''*''', A_ ) if "weight_g" in name: _lowerCamelCase : List[Any] = '''weight_g''' elif "weight_v" in name: _lowerCamelCase : Tuple = '''weight_v''' elif "weight" in name: _lowerCamelCase : Optional[int] = '''weight''' elif "bias" in name: _lowerCamelCase : Union[str, Any] = '''bias''' else: _lowerCamelCase : Tuple = None set_recursively(A_, A_, A_, A_, A_ ) continue if not is_used: unused_weights.append(A_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case_ ( A_ : Any, A_ : int, A_ : List[Any], A_ : List[str], A_ : Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase : Optional[Any] = name.split('''.''' ) _lowerCamelCase : int = int(items[0] ) _lowerCamelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase : Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowerCamelCase : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A_ ) @torch.no_grad() def snake_case_ ( A_ : Tuple, A_ : str, A_ : Tuple=None, A_ : List[Any]=None, A_ : Optional[int]=True ): '''simple docstring''' if config_path is not None: _lowerCamelCase : Optional[Any] = HubertConfig.from_pretrained(A_ ) else: _lowerCamelCase : Union[str, Any] = HubertConfig() if is_finetuned: if dict_path: _lowerCamelCase : int = Dictionary.load(A_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : List[str] = target_dict.pad_index _lowerCamelCase : Optional[int] = target_dict.bos_index _lowerCamelCase : List[Any] = target_dict.eos_index _lowerCamelCase : Tuple = len(target_dict.symbols ) _lowerCamelCase : Optional[Any] = os.path.join(A_, '''vocab.json''' ) if not os.path.isdir(A_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A_ ) ) return os.makedirs(A_, exist_ok=A_ ) with open(A_, '''w''', encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices, A_ ) _lowerCamelCase : List[Any] = WavaVecaCTCTokenizer( A_, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token='''|''', do_lower_case=A_, ) _lowerCamelCase : Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_60_00, padding_value=0, do_normalize=A_, return_attention_mask=A_, ) _lowerCamelCase : Optional[Any] = WavaVecaProcessor(feature_extractor=A_, tokenizer=A_ ) processor.save_pretrained(A_ ) _lowerCamelCase : Dict = HubertForCTC(A_ ) else: _lowerCamelCase : Tuple = HubertModel(A_ ) if is_finetuned: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCamelCase : Any = model[0].eval() recursively_load_weights(A_, A_, A_ ) hf_wavavec.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
72
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase : Tuple = 1.5 __lowerCamelCase : List[Any] = int(factor * num_class_images ) __lowerCamelCase : Optional[int] = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowerCamelCase__ , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=lowerCamelCase__ ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: __lowerCamelCase : Optional[Any] = client.query(text=lowerCamelCase__ ) if len(lowerCamelCase__ ) >= factor * num_class_images or num_images > 1e4: break else: __lowerCamelCase : str = int(factor * num_images ) __lowerCamelCase : Tuple = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowerCamelCase__ , aesthetic_weight=0.1 , ) __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Any = tqdm(desc='downloading real regularization images' , total=lowerCamelCase__ ) with open(F"{class_data_dir}/caption.txt" , 'w' ) as fa, open(F"{class_data_dir}/urls.txt" , 'w' ) as fa, open( F"{class_data_dir}/images.txt" , 'w' ) as fa: while total < num_class_images: __lowerCamelCase : List[Any] = class_images[count] count += 1 try: __lowerCamelCase : Optional[Any] = requests.get(images['url'] ) if img.status_code == 2_0_0: __lowerCamelCase : Dict = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F"{class_data_dir}/images/{total}.jpg" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: __lowerCamelCase : Optional[int] = argparse.ArgumentParser('' , add_help=lowerCamelCase__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=lowerCamelCase__ , type=lowerCamelCase__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=lowerCamelCase__ , type=lowerCamelCase__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_0_0 , type=lowerCamelCase__ ) return parser.parse_args() if __name__ == "__main__": a =parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
73
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _lowercase = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' _lowerCamelCase: bool = None _lowerCamelCase: bool = None class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = datasets.Audio() _lowerCamelCase: List[Any] = '''audio''' _lowerCamelCase: Optional[Any] = AudioFolderConfig _lowerCamelCase: List[str] # definition at the bottom of the script _lowerCamelCase: Dict = AudioClassification(audio_column='''audio''' , label_column='''label''' ) _lowercase = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] _lowercase = AUDIO_EXTENSIONS
74
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCAmelCase, scheduler=lowerCAmelCase ) def __call__( self ): """simple docstring""" lowerCamelCase_ =torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), ) lowerCamelCase_ =1 lowerCamelCase_ =self.unet(lowerCAmelCase, lowerCAmelCase ).sample lowerCamelCase_ =self.scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample lowerCamelCase_ =scheduler_output - scheduler_output + torch.ones_like(lowerCAmelCase ) return result
75
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE : int = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(a ) , a ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : List[Any] = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Any = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Any = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : int = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : List[str] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : str = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
76
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(_a) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> Union[str, Any]: super().__init__(*a , **a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _UpperCAmelCase ( self , a=None ) -> Dict: lowercase__ : Any = {} if top_k is not None: lowercase__ : List[str] = top_k return {}, {}, postprocess_params def __call__( self , a , **a ) -> Tuple: return super().__call__(a , **a ) def _UpperCAmelCase ( self , a ) -> Dict: lowercase__ : List[Any] = load_image(a ) lowercase__ : Union[str, Any] = self.image_processor(images=a , return_tensors=self.framework ) return model_inputs def _UpperCAmelCase ( self , a ) -> List[str]: lowercase__ : Dict = self.model(**a ) return model_outputs def _UpperCAmelCase ( self , a , a=5 ) -> Dict: if top_k > self.model.config.num_labels: lowercase__ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase__ : Tuple = model_outputs.logits.softmax(-1 )[0] lowercase__ , lowercase__ : Optional[Any] = probs.topk(a ) elif self.framework == "tf": lowercase__ : Union[str, Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase__ : str = tf.math.top_k(a , k=a ) lowercase__ , lowercase__ : Dict = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowercase__ : Dict = scores.tolist() lowercase__ : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a , a )]
77
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
0
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) snake_case_ = logging.getLogger(__name__) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = git.Repo(search_parent_directories=lowercase_ ) UpperCAmelCase = { 'repo_id': str(lowercase_ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(lowercase_ , 'git_log.json' ) , 'w' ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def _lowerCAmelCase ( lowercase_ ): if params.n_gpu <= 0: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = True UpperCAmelCase = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase = int(os.environ['WORLD_SIZE'] ) UpperCAmelCase = int(os.environ['N_GPU_NODE'] ) UpperCAmelCase = int(os.environ['RANK'] ) # number of nodes / node ID UpperCAmelCase = params.world_size // params.n_gpu_per_node UpperCAmelCase = params.global_rank // params.n_gpu_per_node UpperCAmelCase = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase = 1 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase = params.node_id == 0 and params.local_rank == 0 UpperCAmelCase = params.n_nodes > 1 # summary UpperCAmelCase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _lowerCAmelCase ( lowercase_ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
78
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCamelCase_ = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCamelCase_ = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCamelCase_ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCamelCase_ = sorted(arg_to_scheduler.keys()) lowerCamelCase_ = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _UpperCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : str , __UpperCAmelCase : argparse.Namespace , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Dict="base" , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) _A = 0 _A = Path(self.hparams.output_dir ) _A = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _A = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: _A = config _A = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: _A = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: _A = tokenizer _A = MODEL_MODES[mode] if model is None: _A = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: _A = model def lowerCAmelCase ( self : Any , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = arg_to_scheduler[self.hparams.lr_scheduler] _A = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _A = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.model _A = ["bias", "LayerNorm.weight"] _A = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: _A = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: _A = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _A = optimizer _A = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Dict ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _A = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCAmelCase ( self : int , __UpperCAmelCase : Dict ): '''simple docstring''' if stage == "test": _A = len(self.test_dataloader().dataset ) else: _A = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) _A = len(self.train_dataloader().dataset ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : bool = False ): '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self.train_loader def lowerCAmelCase ( self : str ): '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Tuple ): '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCAmelCase ( self : int , __UpperCAmelCase : Dict[str, Any] ): '''simple docstring''' _A = self.output_dir.joinpath("best_tfmr" ) _A = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def lowerCAmelCase ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=__UpperCAmelCase , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=__UpperCAmelCase , type=__UpperCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(__UpperCAmelCase ).parent / "test_run" / "cache" ) , type=__UpperCAmelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=__UpperCAmelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=__UpperCAmelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=__UpperCAmelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=__UpperCAmelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=__UpperCAmelCase , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=__UpperCAmelCase , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=__UpperCAmelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=__UpperCAmelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=__UpperCAmelCase , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=__UpperCAmelCase ) parser.add_argument("--train_batch_size" , default=32 , type=__UpperCAmelCase ) parser.add_argument("--eval_batch_size" , default=32 , type=__UpperCAmelCase ) parser.add_argument("--adafactor" , action="store_true" ) class _UpperCAmelCase ( pl.Callback ): """simple docstring""" def lowerCAmelCase ( self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _UpperCAmelCase ( pl.Callback ): """simple docstring""" def lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class _UpperCAmelCase ( pl.Callback ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ): '''simple docstring''' _A = trainer.lr_schedulers[0]["scheduler"] _A = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info("***** Validation results *****" ) _A = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__UpperCAmelCase , str(metrics[key] ) ) ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info("***** Test results *****" ) _A = trainer.callback_metrics # Log and save results to file _A = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(__UpperCAmelCase , "w" ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(__UpperCAmelCase , str(metrics[key] ) ) ) def __lowercase ( __lowercase , __lowercase ) -> None: '''simple docstring''' parser.add_argument( "--output_dir" , default=str(Path(__lowercase ).parent / "test_run" / "model_checkpoints" ) , type=__lowercase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowercase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=__lowercase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=__lowercase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=__lowercase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=__lowercase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(__lowercase ).parent / "test_run" / "dummy-train-data" ) , type=__lowercase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def __lowercase ( __lowercase , __lowercase , __lowercase=None , __lowercase=True , __lowercase=[] , __lowercase=None , __lowercase=None , **__lowercase , ) -> Any: '''simple docstring''' pl.seed_everything(args.seed ) # init model _A = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__lowercase ) # add custom checkpoints if checkpoint_callback is None: _A = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__lowercase ) if logging_callback is None: _A = LoggingCallback() _A = {} if args.fpaa: _A = 16 if args.gpus > 1: _A = "auto" _A = "ddp" _A = args.accumulate_grad_batches _A = None _A = "auto" _A = pl.Trainer.from_argparse_args( __lowercase , weights_summary=__lowercase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowercase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowercase , ) if args.do_train: trainer.fit(__lowercase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
79
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) a__ : Dict = logging.getLogger(__name__) if __name__ == "__main__": a__ : str = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_0_5_2_2, type=int) a__ : Optional[Any] = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, 'rb') as fp: a__ : Union[str, Any] = pickle.load(fp) logger.info('Counting occurrences for MLM.') a__ : List[str] = Counter() for tk_ids in data: counter.update(tk_ids) a__ : str = [0] * args.vocab_size for k, v in counter.items(): a__ : Any = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
80
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : List[Any] = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""OwlViTFeatureExtractor"""] lowerCamelCase_ : List[Any] = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
0
from numpy import exp, pi, sqrt def _UpperCAmelCase ( snake_case , snake_case = 0.0 , snake_case = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
82
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase__ ( lowercase ): def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Tuple = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} return Dataset.from_dict(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self._create_example_records() _UpperCamelCase : Any = Dataset.from_list(lowerCamelCase__ ) self.assertListEqual(dset.column_names ,['col_1', 'col_2'] ) for i, r in enumerate(lowerCamelCase__ ): self.assertDictEqual(lowerCamelCase__ ,example_records[i] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = self._create_example_records() _UpperCamelCase : Any = Dataset.from_list(lowerCamelCase__ ) _UpperCamelCase : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info ,dset_from_dict.info ) def UpperCamelCase_ ( self : List[Any] ): # checks what happens with missing columns '''simple docstring''' _UpperCamelCase : str = [{'col_1': 1}, {'col_2': 'x'}] _UpperCamelCase : Tuple = Dataset.from_list(lowerCamelCase__ ) self.assertDictEqual(dset[0] ,{'col_1': 1} ) self.assertDictEqual(dset[1] ,{'col_1': None} ) # NB: first record is used for columns def UpperCamelCase_ ( self : Optional[int] ): # checks if the type can be inferred from the second record '''simple docstring''' _UpperCamelCase : Any = [{'col_1': []}, {'col_1': [1, 2]}] _UpperCamelCase : int = Dataset.from_list(lowerCamelCase__ ) self.assertEqual(dset.info.features['col_1'] ,Sequence(Value('int64' ) ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase__ ) ,0 ) self.assertListEqual(dset.column_names ,[] )
83
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = "poolformer" def __init__( self , __A=3 , __A=16 , __A=16 , __A=3 , __A=4.0 , __A=[2, 2, 6, 2] , __A=[64, 128, 320, 512] , __A=[7, 3, 3, 3] , __A=[4, 2, 2, 2] , __A=[2, 1, 1, 1] , __A=4 , __A=0.0 , __A="gelu" , __A=True , __A=1E-5 , __A=0.0_2 , **__A , ) -> Optional[Any]: lowerCAmelCase_ :Tuple = num_channels lowerCAmelCase_ :Tuple = patch_size lowerCAmelCase_ :Tuple = stride lowerCAmelCase_ :Optional[int] = padding lowerCAmelCase_ :int = pool_size lowerCAmelCase_ :List[str] = hidden_sizes lowerCAmelCase_ :str = mlp_ratio lowerCAmelCase_ :Optional[int] = depths lowerCAmelCase_ :str = patch_sizes lowerCAmelCase_ :Optional[int] = strides lowerCAmelCase_ :Optional[int] = num_encoder_blocks lowerCAmelCase_ :Dict = drop_path_rate lowerCAmelCase_ :int = hidden_act lowerCAmelCase_ :Optional[int] = use_layer_scale lowerCAmelCase_ :Tuple = layer_scale_init_value lowerCAmelCase_ :List[Any] = initializer_range super().__init__(**__A ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = version.parse("1.11" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 2E-3
84
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _SCREAMING_SNAKE_CASE : Tuple = random.Random() if is_torch_available(): import torch def UpperCamelCase_( snake_case : Dict , snake_case : str=1.0 , snake_case : List[Any]=None , snake_case : Dict=None ): '''simple docstring''' if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _snake_case ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=400 , a__=2_000 , a__=1 , a__=0.0 , a__=16_000 , a__=True , a__=True , ) -> Any: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = feature_size snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = return_attention_mask snake_case_ = do_normalize def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self , a__=False , a__=False ) -> str: '''simple docstring''' def _flatten(a__ ): return list(itertools.chain(*a__ ) ) if equal_length: snake_case_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(a__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Any = ASTFeatureExtractor def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = ASTFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] snake_case_ = [np.asarray(a__ ) for speech_input in speech_inputs] # Test not batched input snake_case_ = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values snake_case_ = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) # Test batched snake_case_ = feat_extract(a__ , padding=a__ , return_tensors="np" ).input_values snake_case_ = feat_extract(a__ , padding=a__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a__ , a__ ): self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case_ = np.asarray(a__ ) snake_case_ = feat_extract(a__ , return_tensors="np" ).input_values snake_case_ = feat_extract(a__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a__ , a__ ): self.assertTrue(np.allclose(a__ , a__ , atol=1e-3 ) ) @require_torch def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' import torch snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(100 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' from datasets import load_dataset snake_case_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech snake_case_ = ds.sort("id" ).select(range(a__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = ASTFeatureExtractor() snake_case_ = feature_extractor(a__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a__ , atol=1e-4 ) )
85
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
"""simple docstring""" print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
86
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''DPTFeatureExtractor'''] UpperCamelCase = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
0
from queue import PriorityQueue from typing import Any import numpy as np def a__ ( A_, A_, A_, A_, A_, A_, A_, A_, A_, ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue __magic_name__ = cst_fwd.get(A_, np.inf ) __magic_name__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __magic_name__ = new_cost_f __magic_name__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __magic_name__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = -1 __magic_name__ = set() __magic_name__ = set() __magic_name__ = {source: 0} __magic_name__ = {destination: 0} __magic_name__ = {source: None} __magic_name__ = {destination: None} __magic_name__ = PriorityQueue() __magic_name__ = PriorityQueue() __magic_name__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __magic_name__ , __magic_name__ = queue_forward.get() visited_forward.add(A_ ) __magic_name__ , __magic_name__ = queue_backward.get() visited_backward.add(A_ ) __magic_name__ = pass_and_relaxation( A_, A_, A_, A_, A_, A_, A_, A_, A_, ) __magic_name__ = pass_and_relaxation( A_, A_, A_, A_, A_, A_, A_, A_, A_, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __magic_name__ = shortest_distance return shortest_path_distance __lowerCAmelCase : Optional[Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __lowerCAmelCase : Optional[Any] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
88
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __lowerCAmelCase = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' __lowerCAmelCase = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' __lowerCAmelCase = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __lowercase ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] ,reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] ,) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[Any]=4 ,_UpperCAmelCase : Optional[Any]=False ): _a : Tuple = compute_bleu( reference_corpus=_UpperCAmelCase ,translation_corpus=_UpperCAmelCase ,max_order=_UpperCAmelCase ,smooth=_UpperCAmelCase ) ((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) : int = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
0
import baseaa def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase_ ( UpperCamelCase__ : bytes ) -> str: """simple docstring""" return baseaa.aaadecode(UpperCamelCase__ ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
90
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase_ : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "upernet" def __init__( self : Any , lowercase_ : int=None , lowercase_ : Any=512 , lowercase_ : List[Any]=0.02 , lowercase_ : int=[1, 2, 3, 6] , lowercase_ : Union[str, Any]=True , lowercase_ : Tuple=0.4 , lowercase_ : int=384 , lowercase_ : Optional[Any]=256 , lowercase_ : str=1 , lowercase_ : List[str]=False , lowercase_ : str=255 , **lowercase_ : str , ): '''simple docstring''' super().__init__(**lowercase_) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') SCREAMING_SNAKE_CASE_ : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4''']) elif isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : str = backbone_config.get('''model_type''') SCREAMING_SNAKE_CASE_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ : str = config_class.from_dict(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = backbone_config SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Any = pool_scales SCREAMING_SNAKE_CASE_ : int = use_auxiliary_head SCREAMING_SNAKE_CASE_ : str = auxiliary_loss_weight SCREAMING_SNAKE_CASE_ : Dict = auxiliary_in_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = auxiliary_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = auxiliary_num_convs SCREAMING_SNAKE_CASE_ : Any = auxiliary_concat_input SCREAMING_SNAKE_CASE_ : Tuple = loss_ignore_index def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = copy.deepcopy(self.__dict__) SCREAMING_SNAKE_CASE_ : Any = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ : str = self.__class__.model_type return output
91
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class a__ : def __init__( self , _A , _A=9_9 , _A=1_3 , _A=1_6 , _A=7 , _A=True , _A=True , _A=True , _A=False , _A=True , _A=2 , _A=3_2 , _A=4 , _A=4 , _A=3_0 , _A=0 , _A=1 , _A=2 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = decoder_seq_length # For common tests __lowerCAmelCase = self.decoder_seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = d_model __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = eos_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = decoder_start_token_id __lowerCAmelCase = use_cache __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = None __lowerCAmelCase = decoder_seq_length __lowerCAmelCase = 2 __lowerCAmelCase = 1 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , ): """simple docstring""" __lowerCAmelCase = True __lowerCAmelCase = TrOCRDecoder(config=_A ).to(_A ).eval() __lowerCAmelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowerCAmelCase = model(_A , use_cache=_A ) __lowerCAmelCase = model(_A ) __lowerCAmelCase = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) __lowerCAmelCase = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = model(_A )["last_hidden_state"] __lowerCAmelCase = model(_A , past_key_values=_A )["last_hidden_state"] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_A , _A , atol=1E-3 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class a__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _a : Dict = (TrOCRForCausalLM,) if is_torch_available() else () _a : Union[str, Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} _a : List[Any] = True _a : Dict = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TrOCRStandaloneDecoderModelTester(self , is_training=_A ) __lowerCAmelCase = ConfigTester(self , config_class=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass
92
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
0
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase__ : lowerCAmelCase_ = None def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Any = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : str = os.path.join(__SCREAMING_SNAKE_CASE , '''feat_extract.json''' ) feat_extract_first.to_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.feature_extraction_class.from_json_file(__SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = feat_extract_first.save_pretrained(__SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.feature_extraction_class.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.feature_extraction_class() self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
93
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ): a :Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} a :int = parent a :str = batch_size a :Optional[int] = num_channels a :int = image_size a :Tuple = min_resolution a :Dict = max_resolution a :Optional[Any] = do_resize a :Dict = size a :int = do_normalize a :Any = image_mean a :Optional[int] = image_std def SCREAMING_SNAKE_CASE__ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) a :Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a :Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input a :Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a :Union[str, Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input a :Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a :Any = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input a :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a :Dict = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
94
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
0
def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Any =0 a__ : List[Any] =number while duplicate > 0: a__ , a__ : Dict =divmod(SCREAMING_SNAKE_CASE , 10 ) fact_sum += factorial(SCREAMING_SNAKE_CASE ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") UpperCAmelCase : Optional[Any] = int(input("""Enter number: """).strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
95
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""PoolFormerFeatureExtractor"""] lowercase__ = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
96
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' super().setUp() # fmt: off UpperCamelCase__ :Any = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ :Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) UpperCamelCase__ :str = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] UpperCamelCase__ :Optional[Any] = {'''unk_token''': '''<unk>'''} UpperCamelCase__ :List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = '''lower newer''' UpperCamelCase__ :Union[str, Any] = '''lower newer''' return input_text, output_text def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ :Union[str, Any] = '''lower newer''' UpperCamelCase__ :str = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] UpperCamelCase__ :str = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Dict = tokens + [tokenizer.unk_token] UpperCamelCase__ :Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) @require_ftfy def lowerCAmelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ :int = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Any = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' UpperCamelCase__ :Union[str, Any] = tokenizer_s.tokenize(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ :Tuple = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' UpperCamelCase__ :Union[str, Any] = tokenizer_s.tokenize(UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ :List[str] = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ :Tuple = tokenizer_s.tokenize(UpperCamelCase_ ) UpperCamelCase__ :List[str] = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ :Optional[Any] = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ :Dict = tokenizer_s.tokenize(UpperCamelCase_ ) UpperCamelCase__ :List[str] = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ :str = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ :Tuple = F'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase__ :Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , ) UpperCamelCase__ :Tuple = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) UpperCamelCase__ :List[Any] = F''' {text}''' UpperCamelCase__ :List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , ) UpperCamelCase__ :List[Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ) + 1, 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' with self.assertRaises(UpperCamelCase_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def lowerCAmelCase__ ( self ): '''simple docstring''' super().test_tokenization_python_rust_equals() def lowerCAmelCase__ ( self ): '''simple docstring''' pass
97
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
0
"""simple docstring""" def a_ ( lowerCamelCase = 1_0_0_0 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
98
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) lowercase : str = """bert-base-cased""" lowercase : List[Any] = """fp16""" lowercase : List[str] = """bf16""" lowercase : List[str] = [FPaa, BFaa] @require_fsdp @require_cuda class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> Optional[int]: '''simple docstring''' super().setUp() a__ : Optional[int] = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def __lowercase ( self) -> str: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowercase): a__ : Dict = self.dist_env.copy() a__ : Any = F'{i + 1}' a__ : int = strategy with mockenv_context(**lowercase): a__ : Dict = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowercase): a__ : Optional[int] = self.dist_env.copy() a__ : List[Any] = prefetch_policy with mockenv_context(**lowercase): a__ : List[str] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def __lowercase ( self) -> int: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowercase): a__ : Optional[int] = self.dist_env.copy() a__ : List[Any] = state_dict_type with mockenv_context(**lowercase): a__ : List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : int = AutoModel.from_pretrained(lowercase) for policy in FSDP_AUTO_WRAP_POLICY: a__ : List[str] = self.dist_env.copy() a__ : Tuple = policy if policy == "TRANSFORMER_BASED_WRAP": a__ : Union[str, Any] = 'BertLayer' elif policy == "SIZE_BASED_WRAP": a__ : int = '2000' with mockenv_context(**lowercase): a__ : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) a__ : Tuple = self.dist_env.copy() a__ : Tuple = 'TRANSFORMER_BASED_WRAP' a__ : Union[str, Any] = 'T5Layer' with mockenv_context(**lowercase): a__ : Any = FullyShardedDataParallelPlugin() with self.assertRaises(lowercase) as cm: fsdp_plugin.set_auto_wrap_policy(lowercase) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception)) a__ : Dict = self.dist_env.copy() a__ : str = 'SIZE_BASED_WRAP' a__ : Tuple = '0' with mockenv_context(**lowercase): a__ : Union[str, Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def __lowercase ( self) -> Optional[int]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: a__ : Tuple = self.dist_env.copy() a__ : int = mp_dtype with mockenv_context(**lowercase): a__ : Tuple = Accelerator() if mp_dtype == "fp16": a__ : Any = torch.floataa elif mp_dtype == "bf16": a__ : Union[str, Any] = torch.bfloataa a__ : Union[str, Any] = MixedPrecision(param_dtype=lowercase , reduce_dtype=lowercase , buffer_dtype=lowercase) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowercase)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: a__ : Union[str, Any] = self.dist_env.copy() a__ : List[str] = str(lowercase).lower() with mockenv_context(**lowercase): a__ : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase)) @require_fsdp @require_multi_gpu @slow class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> int: '''simple docstring''' super().setUp() a__ : List[str] = 0.82 a__ : List[Any] = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] a__ : List[str] = { 'multi_gpu_fp16': 3200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } a__ : List[str] = 160 a__ : Union[str, Any] = 160 a__ : List[Any] = inspect.getfile(accelerate.test_utils) a__ : str = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'external_deps']) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Any = os.path.join(self.test_scripts_folder , 'test_performance.py') a__ : Any = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: a__ : Optional[int] = cmd.copy() for i, strategy in enumerate(lowercase): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "fp32" in config: cmd_config.append('--mixed_precision=no') else: cmd_config.append('--mixed_precision=fp16') if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer') elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase , env=os.environ.copy()) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = os.path.join(self.test_scripts_folder , 'test_checkpointing.py') a__ : Any = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(lowercase): a__ : Union[str, Any] = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}') if strategy != "FULL_SHARD": continue a__ : Union[str, Any] = len(lowercase) for state_dict_type in FSDP_STATE_DICT_TYPE: a__ : Optional[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', '--partial_train_epoch=1', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase , env=os.environ.copy()) a__ : List[Any] = cmd_config[:-1] a__ : str = os.path.join(self.tmpdir , 'epoch_0') cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase , env=os.environ.copy()) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py') a__ : List[str] = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): a__ : Union[str, Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16']) else: cmd_config.extend(['--mixed_precision=no']) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp']) for i, strategy in enumerate(lowercase): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer') elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase , env=os.environ.copy())
99
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["ChineseCLIPFeatureExtractor"] __magic_name__ = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
0
from __future__ import annotations from math import gcd def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 3 , ): '''simple docstring''' # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: return (pow(lowerCAmelCase__ , 2 ) + step) % modulus for _ in range(lowerCAmelCase__ ): # These track the position within the cycle detection logic. lowercase = seed lowercase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowercase = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowercase = gcd(hare - tortoise , lowerCAmelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowercase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowercase__ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) lowercase__ :Any = parser.parse_args() lowercase__ :str = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'{args.num} is probably prime') else: lowercase__ :Union[str, Any] = args.num // divisor print(F'{args.num} = {divisor} * {quotient}')
101
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='poolformer' def __init__(self , a_=3 , a_=16 , a_=16 , a_=3 , a_=4.0 , a_=[2, 2, 6, 2] , a_=[64, 1_28, 3_20, 5_12] , a_=[7, 3, 3, 3] , a_=[4, 2, 2, 2] , a_=[2, 1, 1, 1] , a_=4 , a_=0.0 , a_="gelu" , a_=True , a_=1E-5 , a_=0.02 , **a_ , ): '''simple docstring''' __snake_case : int = num_channels __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = stride __snake_case : List[Any] = padding __snake_case : Optional[Any] = pool_size __snake_case : List[Any] = hidden_sizes __snake_case : Union[str, Any] = mlp_ratio __snake_case : List[Any] = depths __snake_case : Dict = patch_sizes __snake_case : str = strides __snake_case : Dict = num_encoder_blocks __snake_case : List[str] = drop_path_rate __snake_case : int = hidden_act __snake_case : List[str] = use_layer_scale __snake_case : List[str] = layer_scale_init_value __snake_case : List[Any] = initializer_range super().__init__(**a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 2E-3
102
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging A__ : int = logging.get_logger(__name__) def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ : Any = nn.functional.normalize(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase ,normalized_text_embeds.t() ) class __snake_case ( UpperCamelCase_ ): _a = CLIPConfig _a = ['''CLIPEncoderLayer'''] def __init__( self : Dict , A_ : CLIPConfig): super().__init__(A_) lowerCAmelCase_ : Optional[Any] = CLIPVisionModel(config.vision_config) lowerCAmelCase_ : Dict = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=A_) lowerCAmelCase_ : List[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim) , requires_grad=A_) lowerCAmelCase_ : Tuple = nn.Parameter(torch.ones(3 , config.projection_dim) , requires_grad=A_) lowerCAmelCase_ : int = nn.Parameter(torch.ones(1_7) , requires_grad=A_) lowerCAmelCase_ : int = nn.Parameter(torch.ones(3) , requires_grad=A_) @torch.no_grad() def UpperCAmelCase__ ( self : int , A_ : int , A_ : int): lowerCAmelCase_ : int = self.vision_model(A_)[1] # pooled_output lowerCAmelCase_ : Optional[Any] = self.visual_projection(A_) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase_ : int = cosine_distance(A_ , self.special_care_embeds).cpu().float().numpy() lowerCAmelCase_ : Dict = cosine_distance(A_ , self.concept_embeds).cpu().float().numpy() lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Optional[Any] = image_embeds.shape[0] for i in range(A_): lowerCAmelCase_ : int = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ : Any = 0.0 for concept_idx in range(len(special_cos_dist[0])): lowerCAmelCase_ : Optional[int] = special_cos_dist[i][concept_idx] lowerCAmelCase_ : Optional[int] = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase_ : Dict = round(concept_cos - concept_threshold + adjustment , 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]}) lowerCAmelCase_ : str = 0.01 for concept_idx in range(len(cos_dist[0])): lowerCAmelCase_ : Optional[Any] = cos_dist[i][concept_idx] lowerCAmelCase_ : Dict = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase_ : Any = round(concept_cos - concept_threshold + adjustment , 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(A_) result.append(A_) lowerCAmelCase_ : str = [len(res['''bad_concepts''']) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self : str , A_ : torch.FloatTensor , A_ : torch.FloatTensor): lowerCAmelCase_ : str = self.vision_model(A_)[1] # pooled_output lowerCAmelCase_ : Optional[int] = self.visual_projection(A_) lowerCAmelCase_ : List[str] = cosine_distance(A_ , self.special_care_embeds) lowerCAmelCase_ : Union[str, Any] = cosine_distance(A_ , self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ : Any = 0.0 lowerCAmelCase_ : List[str] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase_ : List[str] = torch.any(special_scores > 0 , dim=1) lowerCAmelCase_ : Optional[int] = special_care * 0.01 lowerCAmelCase_ : Optional[Any] = special_adjustment.unsqueeze(1).expand(-1 , cos_dist.shape[1]) lowerCAmelCase_ : str = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase_ : Dict = torch.any(concept_scores > 0 , dim=1) return images, has_nsfw_concepts
103
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Any=1_3 ,lowercase__ : List[Any]=3_0 ,lowercase__ : int=2 ,lowercase__ : str=3 ,lowercase__ : Optional[Any]=True ,lowercase__ : str=True ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Optional[int]=5 ,lowercase__ : Any=4 ,lowercase__ : List[str]=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : Dict=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : List[str]=1_0 ,lowercase__ : Optional[int]=0.0_2 ,lowercase__ : int=None ,lowercase__ : Optional[Any]=2 ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = scope __lowercase = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = ViTModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Optional[int] ,lowercase__ : Any ,lowercase__ : Dict ): __lowercase = ViTForMaskedImageModeling(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowercase = 1 __lowercase = ViTForMaskedImageModeling(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[Any] ): __lowercase = self.type_sequence_label_size __lowercase = ViTForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = ViTForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Dict = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Dict = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ViTModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): pass def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ ,nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ViTModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) # verify the logits __lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. __lowercase = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(lowercase__ ) __lowercase = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' ,size=4_8_0 ) __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ) __lowercase = inputs.pixel_values.to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(lowercase__ ,interpolate_pos_encoding=lowercase__ ) # verify the logits __lowercase = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape ,lowercase__ ) __lowercase = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = ViTModel.from_pretrained('''facebook/dino-vits8''' ,torch_dtype=torch.floataa ,device_map='''auto''' ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ) __lowercase = inputs.pixel_values.to(lowercase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowercase = model(lowercase__ )
104
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Tuple = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() ,encoding='''utf-8''' ,check=lowercase_ ,) assert hasattr(self ,'''env''' ) def __lowerCAmelCase ( self : str ,lowercase_ : Dict=1 ): # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F'{self.env.base_job_name}-single' ,instance_count=lowercase_ ,instance_type=self.instance_type ,debugger_hook_config=lowercase_ ,hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version='''py36''' ,) def __lowerCAmelCase ( self : Dict ,lowercase_ : Optional[int] ): TrainingJobAnalytics(lowercase_ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def __lowerCAmelCase ( self : Optional[Any] ): # create estimator lowerCAmelCase__ : Any = self.create_estimator() # run training estimator.fit() # result dataframe lowerCAmelCase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowerCAmelCase__ : str = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ : int = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' ,9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' ,'''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} ,lowercase_ )
106
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
0
from __future__ import annotations def __magic_name__ ( A : list[list[int]] ): '''simple docstring''' a = len(A ) # We need to create solution object to save path. a = [[0 for _ in range(A )] for _ in range(A )] a = run_maze(A, 0, 0, A ) if solved: print("\n".join(str(A ) for row in solutions ) ) else: print("No solution exists!" ) return solved def __magic_name__ ( A : list[list[int]], A : int, A : int, A : list[list[int]] ): '''simple docstring''' a = len(A ) # Final check point. if i == j == (size - 1): a = 1 return True a = (not i < 0) and (not j < 0) # Check lower bounds a = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a = 1 # check for directions if ( run_maze(A, i + 1, A, A ) or run_maze(A, A, j + 1, A ) or run_maze(A, i - 1, A, A ) or run_maze(A, A, j - 1, A ) ): return True a = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
107
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE , "words.txt" ) lowerCAmelCase : Dict = "" with open(SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase : Tuple = f.readline() lowerCAmelCase : Union[str, Any] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] lowerCAmelCase : List[str] = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
108
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging A: Tuple = logging.get_logger(__name__) A: Tuple = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = 'efficientformer' def __init__( self , _SCREAMING_SNAKE_CASE = [3, 2, 6, 4] , _SCREAMING_SNAKE_CASE = [48, 96, 224, 448] , _SCREAMING_SNAKE_CASE = [True, True, True, True] , _SCREAMING_SNAKE_CASE = 448 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 7 , _SCREAMING_SNAKE_CASE = 5 , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1E-5 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = 1E-12 , _SCREAMING_SNAKE_CASE = 224 , _SCREAMING_SNAKE_CASE = 1E-05 , **_SCREAMING_SNAKE_CASE , ) -> None: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = hidden_sizes UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Optional[Any] = layer_norm_eps UpperCAmelCase : int = patch_size UpperCAmelCase : List[str] = num_channels UpperCAmelCase : str = depths UpperCAmelCase : Any = mlp_expansion_ratio UpperCAmelCase : List[Any] = downsamples UpperCAmelCase : str = dim UpperCAmelCase : List[Any] = key_dim UpperCAmelCase : Tuple = attention_ratio UpperCAmelCase : Optional[Any] = resolution UpperCAmelCase : List[Any] = pool_size UpperCAmelCase : Any = downsample_patch_size UpperCAmelCase : Tuple = downsample_stride UpperCAmelCase : Any = downsample_pad UpperCAmelCase : Dict = drop_path_rate UpperCAmelCase : Union[str, Any] = num_metaad_blocks UpperCAmelCase : List[str] = distillation UpperCAmelCase : Optional[int] = use_layer_scale UpperCAmelCase : Dict = layer_scale_init_value UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : Tuple = batch_norm_eps
109
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : int =logging.get_logger(__name__) lowerCAmelCase__ : Dict ={ 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class UpperCAmelCase_ ( _a ): '''simple docstring''' UpperCamelCase__ : Optional[int] = '''mvp''' UpperCamelCase__ : str = ['''past_key_values'''] UpperCamelCase__ : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _A=50_267 , _A=1_024 , _A=12 , _A=4_096 , _A=16 , _A=12 , _A=4_096 , _A=16 , _A=0.0 , _A=0.0 , _A="gelu" , _A=1_024 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.0_2 , _A=0.0 , _A=False , _A=True , _A=1 , _A=0 , _A=2 , _A=True , _A=2 , _A=2 , _A=False , _A=100 , _A=800 , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = classifier_dropout __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = use_prompt __SCREAMING_SNAKE_CASE = prompt_length __SCREAMING_SNAKE_CASE = prompt_mid_dim super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , lowercase__ ): __SCREAMING_SNAKE_CASE = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.' )
257
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase : Tuple = logging.get_logger(__name__) @add_end_docstrings(_a ) class __lowercase ( _a ): """simple docstring""" def __init__( self , **A ) -> List[str]: '''simple docstring''' super().__init__(**lowercase__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , A , **A ) -> Any: '''simple docstring''' return super().__call__(lowercase__ , **lowercase__ ) def __A ( self , **A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = {} if "candidate_labels" in kwargs: lowerCamelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowerCamelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def __A ( self , A , A=None , A="This is a photo of {}." ) -> List[str]: '''simple docstring''' lowerCamelCase = load_image(lowercase__ ) lowerCamelCase = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCamelCase = candidate_labels lowerCamelCase = [hypothesis_template.format(lowercase__ ) for x in candidate_labels] lowerCamelCase = self.tokenizer(lowercase__ , return_tensors=self.framework , padding=lowercase__ ) lowerCamelCase = [text_inputs] return inputs def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = model_inputs.pop("""candidate_labels""" ) lowerCamelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , lowercase__ ): lowerCamelCase = text_inputs[0] else: # Batching case. lowerCamelCase = text_inputs[0][0] lowerCamelCase = self.model(**lowercase__ , **lowercase__ ) lowerCamelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def __A ( self , A ) -> List[Any]: '''simple docstring''' lowerCamelCase = model_outputs.pop("""candidate_labels""" ) lowerCamelCase = model_outputs["""logits"""][0] if self.framework == "pt": lowerCamelCase = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCamelCase = probs.tolist() if not isinstance(lowercase__ , lowercase__ ): lowerCamelCase = [scores] elif self.framework == "tf": lowerCamelCase = stable_softmax(lowercase__ , axis=-1 ) lowerCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowerCamelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowercase__ , lowercase__ ) , key=lambda A : -x[0] ) ] return result
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
0
from collections.abc import Sequence def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] = False ): if not arr: return 0 __lowercase : Any = 0 if allow_empty_subarrays else float("""-inf""" ) __lowercase : int = 0.0 for num in arr: __lowercase : Dict = max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowercase : int = max(lowerCAmelCase_ , lowerCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : str = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
233
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
0
from typing import Dict, Optional import numpy as np import datasets _SCREAMING_SNAKE_CASE : Optional[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' _SCREAMING_SNAKE_CASE : str = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def UpperCAmelCase_ ( _A , _A , _A , _A , _A = None , _A = False , ): '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): SCREAMING_SNAKE_CASE__ = new_id # turn into Numpy arrays SCREAMING_SNAKE_CASE__ = np.array(_A ) SCREAMING_SNAKE_CASE__ = np.array(_A ) if reduce_labels: SCREAMING_SNAKE_CASE__ = 2_55 SCREAMING_SNAKE_CASE__ = label - 1 SCREAMING_SNAKE_CASE__ = 2_55 SCREAMING_SNAKE_CASE__ = label != ignore_index SCREAMING_SNAKE_CASE__ = np.not_equal(_A , _A ) SCREAMING_SNAKE_CASE__ = pred_label[mask] SCREAMING_SNAKE_CASE__ = np.array(_A )[mask] SCREAMING_SNAKE_CASE__ = pred_label[pred_label == label] SCREAMING_SNAKE_CASE__ = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase_ ( _A , _A , _A , _A , _A = None , _A = False , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_A , _A ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = intersect_and_union( _A , _A , _A , _A , _A , _A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase_ ( _A , _A , _A , _A , _A = None , _A = None , _A = False , ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = total_intersect_and_union( _A , _A , _A , _A , _A , _A ) # compute metrics SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = total_area_intersect.sum() / total_area_label.sum() SCREAMING_SNAKE_CASE__ = total_area_intersect / total_area_union SCREAMING_SNAKE_CASE__ = total_area_intersect / total_area_label SCREAMING_SNAKE_CASE__ = np.nanmean(_A ) SCREAMING_SNAKE_CASE__ = np.nanmean(_A ) SCREAMING_SNAKE_CASE__ = all_acc SCREAMING_SNAKE_CASE__ = iou SCREAMING_SNAKE_CASE__ = acc if nan_to_num is not None: SCREAMING_SNAKE_CASE__ = {metric: np.nan_to_num(_A , nan=_A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : Any ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Optional[Any] = False , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
314
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : List[Any] = 1_00 ): """simple docstring""" _snake_case : Dict = n * (n + 1) * (2 * n + 1) / 6 _snake_case : str = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
64
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class UpperCAmelCase_ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ) -> Tuple: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowercase__ ): __lowercase : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) __lowercase : Optional[int] = FlaxAutoModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def _lowerCamelCase ( self ) -> List[str]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowercase__ ): __lowercase : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) __lowercase : Tuple = FlaxAutoModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def _lowerCamelCase ( self ) -> Union[str, Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: __lowercase : Optional[int] = AutoTokenizer.from_pretrained(lowercase__ ) __lowercase : Union[str, Any] = FlaxBertModel.from_pretrained(lowercase__ ) __lowercase : Dict = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase_ ): return model(**lowercase__ ) eval(**lowercase__ ).block_until_ready() @slow def _lowerCamelCase ( self ) -> Dict: for model_name in ["roberta-base", "roberta-large"]: __lowercase : List[str] = AutoTokenizer.from_pretrained(lowercase__ ) __lowercase : Dict = FlaxRobertaModel.from_pretrained(lowercase__ ) __lowercase : Union[str, Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase_ ): return model(**lowercase__ ) eval(**lowercase__ ).block_until_ready() def _lowerCamelCase ( self ) -> List[Any]: with self.assertRaisesRegex( lowercase__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __lowercase : Tuple = FlaxAutoModel.from_pretrained('''bert-base''' ) def _lowerCamelCase ( self ) -> List[str]: with self.assertRaisesRegex( lowercase__ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowercase : List[str] = FlaxAutoModel.from_pretrained(lowercase__ , revision='''aaaaaa''' ) def _lowerCamelCase ( self ) -> Dict: with self.assertRaisesRegex( lowercase__ , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): __lowercase : int = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def _lowerCamelCase ( self ) -> Tuple: with self.assertRaisesRegex(lowercase__ , '''Use `from_pt=True` to load this model''' ): __lowercase : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
249
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_a ) class __A( _a ): """simple docstring""" SCREAMING_SNAKE_CASE__ = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) SCREAMING_SNAKE_CASE__ = Features({"""text""": Value("""string""" )} ) SCREAMING_SNAKE_CASE__ = Features({"""labels""": ClassLabel} ) SCREAMING_SNAKE_CASE__ = """text""" SCREAMING_SNAKE_CASE__ = """labels""" def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowercase__ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def UpperCAmelCase_ (self ): return { self.text_column: "text", self.label_column: "labels", }
244
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
0
__A : Dict = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' assert type(_UpperCAmelCase ) in (int, float) and decimal == int(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = int(_UpperCAmelCase ) lowerCAmelCase : List[str] = '' lowerCAmelCase : Optional[int] = False if decimal < 0: lowerCAmelCase : Optional[int] = True decimal *= -1 while decimal > 0: lowerCAmelCase , lowerCAmelCase : List[Any] = divmod(_UpperCAmelCase, 16 ) lowerCAmelCase : Optional[Any] = values[remainder] + hexadecimal lowerCAmelCase : Tuple = '0x' + hexadecimal if negative: lowerCAmelCase : List[Any] = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
138
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class lowerCamelCase__ ( _a ): """simple docstring""" __a = """distilbert""" __a = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self : Tuple , UpperCamelCase : str=30_522 , UpperCamelCase : List[str]=512 , UpperCamelCase : str=False , UpperCamelCase : Union[str, Any]=6 , UpperCamelCase : str=12 , UpperCamelCase : Union[str, Any]=768 , UpperCamelCase : Optional[int]=4 * 768 , UpperCamelCase : str=0.1 , UpperCamelCase : str=0.1 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Any=0.1 , UpperCamelCase : Dict=0.2 , UpperCamelCase : Dict=0 , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Tuple = sinusoidal_pos_embds __UpperCAmelCase : Tuple = n_layers __UpperCAmelCase : Tuple = n_heads __UpperCAmelCase : Optional[Any] = dim __UpperCAmelCase : int = hidden_dim __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : Optional[int] = activation __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Union[str, Any] = qa_dropout __UpperCAmelCase : Any = seq_classif_dropout super().__init__(**lowercase__ , pad_token_id=lowercase__ ) class lowerCamelCase__ ( _a ): """simple docstring""" @property def lowerCamelCase__ ( self : str ): '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCAmelCase : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
115
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Optional[Any] = 3_00 # TEMPERATURE (unit = K) def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: int , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
112
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCamelCase = False UpperCamelCase = True UpperCamelCase = False if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') UpperCamelCase = parser.parse_args() UpperCamelCase = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } UpperCamelCase = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } UpperCamelCase = '' if has_file(args.repo_path, '''config.json''') else 'unet' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: UpperCamelCase = reader.read() UpperCamelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): UpperCamelCase = UNetaDModel(**config) else: UpperCamelCase = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel UpperCamelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCamelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCamelCase = config[key] del config[key] UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['down_block_types']] UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['up_block_types']] if do_only_weights: UpperCamelCase = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) UpperCamelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue UpperCamelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: UpperCamelCase = param_value UpperCamelCase = True if not has_changed: UpperCamelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
87
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
0
def __lowercase ( a__ , a__ ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __SCREAMING_SNAKE_CASE = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(a__ ) ) return round(a__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
257
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : Dict = logging.get_logger(__name__) class __lowercase ( _a , _a ): """simple docstring""" UpperCamelCase : Dict = "maskformer-swin" UpperCamelCase : Any = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , A=2_24 , A=4 , A=3 , A=96 , A=[2, 2, 6, 2] , A=[3, 6, 12, 24] , A=7 , A=4.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.02 , A=1e-5 , A=None , A=None , **A , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowercase__ ) lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = embed_dim lowerCamelCase = depths lowerCamelCase = len(lowercase__ ) lowerCamelCase = num_heads lowerCamelCase = window_size lowerCamelCase = mlp_ratio lowerCamelCase = qkv_bias lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = drop_path_rate lowerCamelCase = hidden_act lowerCamelCase = use_absolute_embeddings lowerCamelCase = layer_norm_eps lowerCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase = int(embed_dim * 2 ** (len(lowercase__ ) - 1) ) lowerCamelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(lowercase__ ) + 1 )] lowerCamelCase , lowerCamelCase = get_aligned_output_features_output_indices( out_features=lowercase__ , out_indices=lowercase__ , stage_names=self.stage_names )
252
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : Any = tempfile.mkdtemp() __lowercase : List[str] = SamImageProcessor() __lowercase : Dict = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[str] , **__a : List[Any] ) -> Optional[int]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def lowerCAmelCase ( self : str ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : Optional[int] = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : List[str] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : Optional[int] = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) __lowercase : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.get_image_processor() __lowercase : Optional[int] = SamProcessor(image_processor=lowercase__ ) __lowercase : List[str] = self.prepare_image_inputs() __lowercase : int = image_processor(lowercase__ , return_tensors="""np""" ) __lowercase : Optional[Any] = processor(images=lowercase__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.get_image_processor() __lowercase : str = SamProcessor(image_processor=lowercase__ ) __lowercase : Any = [torch.ones((1, 3, 5, 5) )] __lowercase : List[Any] = [[1764, 2646]] __lowercase : List[Any] = [[683, 1024]] __lowercase : str = processor.post_process_masks(lowercase__ , lowercase__ , lowercase__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __lowercase : str = processor.post_process_masks( lowercase__ , torch.tensor(lowercase__ ) , torch.tensor(lowercase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __lowercase : str = [np.ones((1, 3, 5, 5) )] __lowercase : List[Any] = processor.post_process_masks(lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __lowercase : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(lowercase__ ): __lowercase : Dict = processor.post_process_masks(lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) ) @require_vision @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : str = tempfile.mkdtemp() __lowercase : Any = SamImageProcessor() __lowercase : Tuple = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Optional[int] ) -> Optional[int]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : int = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : str = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : List[Any] = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) __lowercase : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" __lowercase : List[str] = self.get_image_processor() __lowercase : Union[str, Any] = SamProcessor(image_processor=lowercase__ ) __lowercase : int = self.prepare_image_inputs() __lowercase : Union[str, Any] = image_processor(lowercase__ , return_tensors="""np""" ) __lowercase : List[str] = processor(images=lowercase__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : List[str] = self.get_image_processor() __lowercase : Tuple = SamProcessor(image_processor=lowercase__ ) __lowercase : List[str] = [tf.ones((1, 3, 5, 5) )] __lowercase : Tuple = [[1764, 2646]] __lowercase : int = [[683, 1024]] __lowercase : Union[str, Any] = processor.post_process_masks(lowercase__ , lowercase__ , lowercase__ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __lowercase : Dict = processor.post_process_masks( lowercase__ , tf.convert_to_tensor(lowercase__ ) , tf.convert_to_tensor(lowercase__ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __lowercase : List[Any] = [np.ones((1, 3, 5, 5) )] __lowercase : int = processor.post_process_masks( lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __lowercase : Tuple = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowercase : str = processor.post_process_masks( lowercase__ , np.array(lowercase__ ) , np.array(lowercase__ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : int = tempfile.mkdtemp() __lowercase : List[Any] = SamImageProcessor() __lowercase : str = SamProcessor(lowercase__ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Any , **__a : Dict ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase__ ).image_processor def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : Union[str, Any] = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" __lowercase : Any = self.get_image_processor() __lowercase : Union[str, Any] = SamProcessor(image_processor=lowercase__ ) __lowercase : Optional[int] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowercase : int = [tf.convert_to_tensor(lowercase__ )] __lowercase : Tuple = [torch.tensor(lowercase__ )] __lowercase : str = [[1764, 2646]] __lowercase : List[Any] = [[683, 1024]] __lowercase : Union[str, Any] = processor.post_process_masks( lowercase__ , lowercase__ , lowercase__ , return_tensors="""tf""" ) __lowercase : Optional[int] = processor.post_process_masks( lowercase__ , lowercase__ , lowercase__ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : str = self.get_image_processor() __lowercase : Optional[int] = SamProcessor(image_processor=lowercase__ ) __lowercase : str = self.prepare_image_inputs() __lowercase : List[Any] = image_processor(lowercase__ , return_tensors="""pt""" )["""pixel_values"""].numpy() __lowercase : Dict = processor(images=lowercase__ , return_tensors="""pt""" )["""pixel_values"""].numpy() __lowercase : Tuple = image_processor(lowercase__ , return_tensors="""tf""" )["""pixel_values"""].numpy() __lowercase : int = processor(images=lowercase__ , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(lowercase__ , lowercase__ ) ) self.assertTrue(np.allclose(lowercase__ , lowercase__ ) ) self.assertTrue(np.allclose(lowercase__ , lowercase__ ) )
233
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
0
_SCREAMING_SNAKE_CASE : Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [False] * len(_A ) SCREAMING_SNAKE_CASE__ = [s] SCREAMING_SNAKE_CASE__ = True while queue: SCREAMING_SNAKE_CASE__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_A ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = u return visited[t] def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [-1] * (len(_A )) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [i[:] for i in graph] # Record original cut, copy. while bfs(_A , _A , _A , _A ): SCREAMING_SNAKE_CASE__ = float('''Inf''' ) SCREAMING_SNAKE_CASE__ = sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE__ = min(_A , graph[parent[s]][s] ) SCREAMING_SNAKE_CASE__ = parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE__ = sink while v != source: SCREAMING_SNAKE_CASE__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE__ = parent[v] for i in range(len(_A ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
314
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Any = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) _snake_case : Optional[Any] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house _snake_case : str = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim _snake_case : Optional[int] = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _snake_case : Union[str, Any] = model(lowercase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape, lowercase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], lowercase__, atol=1E-3 ) ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) _snake_case : Any = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house _snake_case : Tuple = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim _snake_case : List[Any] = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _snake_case : List[Any] = model(lowercase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape, lowercase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], lowercase__, atol=1E-3 ) )
64
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
import math from numpy import inf from scipy.integrate import quad def __magic_name__ ( __a : List[str] ): '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) return quad(__a , 0 , __a , args=(__a) )[0] def __magic_name__ ( __a : Optional[int] , __a : Tuple ): '''simple docstring''' return math.pow(__a , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
244
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __A : List[Any] = logging.getLogger(__name__) class __A ( _a ): lowerCAmelCase_ : str = "token-classification" def __init__( self : List[str] , UpperCAmelCase_ : Union[str, Any] ): if type(lowercase__ ) == dict: lowerCAmelCase : Optional[int] = Namespace(**lowercase__ ) lowerCAmelCase : List[Any] = import_module('tasks' ) try: lowerCAmelCase : List[Any] = getattr(lowercase__ , hparams.task_type ) lowerCAmelCase : List[Any] = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) lowerCAmelCase : int = self.token_classification_task.get_labels(hparams.labels ) lowerCAmelCase : Union[str, Any] = CrossEntropyLoss().ignore_index super().__init__(lowercase__ , len(self.labels ) , self.mode ) def lowercase__ ( self : str , **UpperCAmelCase_ : str ): return self.model(**lowercase__ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase : List[Any] = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase : Union[str, Any] = self(**lowercase__ ) lowerCAmelCase : Optional[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.hparams for mode in ["train", "dev", "test"]: lowerCAmelCase : int = self._feature_file(lowercase__ ) if os.path.exists(lowercase__ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase__ ) lowerCAmelCase : Any = torch.load(lowercase__ ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) lowerCAmelCase : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase__ ) lowerCAmelCase : Tuple = self.token_classification_task.convert_examples_to_features( lowercase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet'] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase__ , pad_on_left=bool(self.config.model_type in ['xlnet'] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , lowercase__ ) torch.save(lowercase__ , lowercase__ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] = False ): lowerCAmelCase : List[str] = self._feature_file(lowercase__ ) logger.info('Loading features from cached file %s' , lowercase__ ) lowerCAmelCase : Optional[Any] = torch.load(lowercase__ ) lowerCAmelCase : Optional[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCAmelCase : Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCAmelCase : Tuple = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCAmelCase : Tuple = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , batch_size=lowercase__ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): """Compute validation""" "" lowerCAmelCase : List[Any] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase : Union[str, Any] = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase : str = self(**lowercase__ ) lowerCAmelCase , lowerCAmelCase : Optional[int] = outputs[:2] lowerCAmelCase : Optional[int] = logits.detach().cpu().numpy() lowerCAmelCase : Tuple = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[int] = torch.stack([x['val_loss'] for x in outputs] ).mean() lowerCAmelCase : int = np.concatenate([x['pred'] for x in outputs] , axis=0 ) lowerCAmelCase : Tuple = np.argmax(lowercase__ , axis=2 ) lowerCAmelCase : List[Any] = np.concatenate([x['target'] for x in outputs] , axis=0 ) lowerCAmelCase : Union[str, Any] = dict(enumerate(self.labels ) ) lowerCAmelCase : Any = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase : List[str] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCAmelCase : List[str] = { 'val_loss': val_loss_mean, 'accuracy_score': accuracy_score(lowercase__ , lowercase__ ), 'precision': precision_score(lowercase__ , lowercase__ ), 'recall': recall_score(lowercase__ , lowercase__ ), 'f1': fa_score(lowercase__ , lowercase__ ), } lowerCAmelCase : Union[str, Any] = dict(results.items() ) lowerCAmelCase : Tuple = results return ret, preds_list, out_label_list def lowercase__ ( self : Any , UpperCAmelCase_ : Union[str, Any] ): # when stable lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self._eval_end(lowercase__ ) lowerCAmelCase : Union[str, Any] = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ): # updating to test_epoch_end instead of deprecated test_end lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = self._eval_end(lowercase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCAmelCase : Tuple = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowercase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ): # Add NER specific options BaseTransformer.add_model_specific_args(lowercase__ , lowercase__ ) parser.add_argument( '--task_type' , default='NER' , type=lowercase__ , help='Task type to fine tune in training (e.g. NER, POS, etc)' ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=lowercase__ , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase__ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __A : Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd()) __A : Union[str, Any] = parser.parse_args() __A : Union[str, Any] = NERTransformer(args) __A : Dict = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __A : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __A : Dict = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
138
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
0
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self : int , UpperCamelCase : Dict , UpperCamelCase : Optional[int]=13 , UpperCamelCase : List[str]=3 , UpperCamelCase : Tuple=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Dict=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : List[str]=224 , UpperCamelCase : Optional[int]=1_000 , UpperCamelCase : Dict=[3, 3, 6, 4] , UpperCamelCase : int=[48, 56, 112, 220] , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : int = is_training __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = num_labels __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Any = layer_depths __UpperCAmelCase : int = embed_dims def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1e-5 , ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : List[Any] = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : int = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase : int = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' ((__UpperCAmelCase) ,(__UpperCAmelCase) ,(__UpperCAmelCase)) : Dict = self.prepare_config_and_inputs() __UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( _a , _a , unittest.TestCase ): """simple docstring""" __a = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __a = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = SwiftFormerModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : int ): '''simple docstring''' pass def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(lowercase__ ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(lowercase__ ) __UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[str] = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : Dict , UpperCamelCase : List[Any] , UpperCamelCase : int ): __UpperCAmelCase : Dict = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : str = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase : int = outputs.hidden_states __UpperCAmelCase : Any = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' def _config_zero_init(UpperCamelCase : Any ): __UpperCAmelCase : int = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1e-1_0 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase : Union[str, Any] = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase ,__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase ( ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowercase__ ) __UpperCAmelCase : Union[str, Any] = self.default_image_processor __UpperCAmelCase : Union[str, Any] = prepare_img() __UpperCAmelCase : Any = image_processor(images=lowercase__ , return_tensors="""pt""" ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**lowercase__ ) # verify the logits __UpperCAmelCase : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase : Tuple = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) )
115
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase__ : str = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase__ ( cls : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = TOKEN HfFolder.save_token(lowercase__ ) @classmethod def UpperCamelCase__ ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase__ , repo_id="""test-config""" , push_to_hub=lowercase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase__ , repo_id="""valid_org/test-config-org""" , push_to_hub=lowercase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Dict = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=4_2 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(F"{USER}/test-dynamic-config" , trust_remote_code=lowercase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 4_2 ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : str = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Tuple = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Union[str, Any] = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[Any] = c.summary_type + """foo""" # str c.update_from_string( F"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(lowercase__ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(lowercase__ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(lowercase__ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(lowercase__ , c.summary_type , """mismatch for key: summary_type""" ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = PretrainedConfig() __SCREAMING_SNAKE_CASE : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowercase__ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) __SCREAMING_SNAKE_CASE : Optional[int] = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase__ , lowercase__ )] if len(lowercase__ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F" {', '.join(lowercase__ )}." ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" with self.assertRaises(lowercase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(lowercase__ ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 5_0_0 __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Dict = HTTPError __SCREAMING_SNAKE_CASE : Optional[Any] = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=lowercase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained("""bert-base-cased""" ) __SCREAMING_SNAKE_CASE : List[str] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowercase__ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(lowercase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ["""config.42.0.0.json"""] __SCREAMING_SNAKE_CASE : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowercase__ ) shutil.move(os.path.join(lowercase__ , """config.4.0.0.json""" ) , os.path.join(lowercase__ , """config.42.0.0.json""" ) ) __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(lowercase__ ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = """hf-internal-testing/test-two-configs""" import transformers as new_transformers __SCREAMING_SNAKE_CASE : Dict = """v4.0.0""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = new_transformers.models.auto.AutoConfig.from_pretrained( lowercase__ , return_unused_kwargs=lowercase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowercase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : Any = """v3.0.0""" __SCREAMING_SNAKE_CASE : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase__ ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
112
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
0
from __future__ import annotations from collections.abc import Iterator class snake_case_ : def __init__( self : str , lowercase_ : Union[str, Any] ) -> None: lowercase__ : str = value lowercase__ : Dict = None lowercase__ : Optional[Any] = None class snake_case_ : def __init__( self : Tuple , lowercase_ : Union[str, Any] ) -> None: lowercase__ : Optional[int] = tree def __UpperCamelCase ( self : int , lowercase_ : Union[str, Any] ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
87
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowercase ( a__ ) -> Optional[Any]: for param in module.parameters(): __SCREAMING_SNAKE_CASE = False def __lowercase ( ) -> Tuple: __SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __SCREAMING_SNAKE_CASE = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __lowercase ( a__ ) -> Dict: __SCREAMING_SNAKE_CASE = plt.imshow(a__ ) fig.axes.get_xaxis().set_visible(a__ ) fig.axes.get_yaxis().set_visible(a__ ) plt.show() def __lowercase ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = datetime.now() __SCREAMING_SNAKE_CASE = current_time.strftime('%H:%M:%S' ) return timestamp
257
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __lowercase ( _a ): """simple docstring""" UpperCamelCase : List[Any] = 4_2 UpperCamelCase : Optional[int] = jnp.floataa UpperCamelCase : Any = True def __A ( self ) -> Optional[int]: '''simple docstring''' super().setup() lowerCamelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *A , **A ) -> Tuple: '''simple docstring''' lowerCamelCase = super().__call__(*lowercase__ , **lowercase__ ) lowerCamelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __lowercase ( _a ): """simple docstring""" UpperCamelCase : List[Any] = FlaxBigBirdForNaturalQuestionsModule def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] ): '''simple docstring''' def cross_entropy(lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any]=None ): lowerCamelCase = logits.shape[-1] lowerCamelCase = (labels[..., None] == jnp.arange(lowerCamelCase__ )[None]).astype("""f4""" ) lowerCamelCase = jax.nn.log_softmax(lowerCamelCase__ , axis=-1 ) lowerCamelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase = reduction(lowerCamelCase__ ) return loss lowerCamelCase = partial(lowerCamelCase__ , reduction=jnp.mean ) lowerCamelCase = cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __lowercase : """simple docstring""" UpperCamelCase : List[str] = "google/bigbird-roberta-base" UpperCamelCase : Dict = 3_0_0_0 UpperCamelCase : Tuple = 1_0_5_0_0 UpperCamelCase : Optional[Any] = 1_2_8 UpperCamelCase : str = 3 UpperCamelCase : str = 1 UpperCamelCase : Any = 5 # tx_args UpperCamelCase : Union[str, Any] = 3e-5 UpperCamelCase : Dict = 0.0 UpperCamelCase : List[str] = 2_0_0_0_0 UpperCamelCase : str = 0.0_0_9_5 UpperCamelCase : str = "bigbird-roberta-natural-questions" UpperCamelCase : Tuple = "training-expt" UpperCamelCase : Any = "data/nq-training.jsonl" UpperCamelCase : List[Any] = "data/nq-validation.jsonl" def __A ( self ) -> Optional[int]: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=lowercase__ ) lowerCamelCase = os.path.join(self.base_dir , self.save_dir ) lowerCamelCase = self.batch_size_per_device * jax.device_count() @dataclass class __lowercase : """simple docstring""" UpperCamelCase : Dict = 4_2 UpperCamelCase : int = 4_0_9_6 # no dynamic padding on TPUs def __call__( self , A ) -> int: '''simple docstring''' lowerCamelCase = self.collate_fn(lowercase__ ) lowerCamelCase = jax.tree_util.tree_map(lowercase__ , lowercase__ ) return batch def __A ( self , A ) -> int: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.fetch_inputs(features["""input_ids"""] ) lowerCamelCase = { """input_ids""": jnp.array(lowercase__ , dtype=jnp.intaa ), """attention_mask""": jnp.array(lowercase__ , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def __A ( self , A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = [self._fetch_inputs(lowercase__ ) for ids in input_ids] return zip(*lowercase__ ) def __A ( self , A ) -> Dict: '''simple docstring''' lowerCamelCase = [1 for _ in range(len(lowercase__ ) )] while len(lowercase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ): '''simple docstring''' if seed is not None: lowerCamelCase = dataset.shuffle(seed=lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) // batch_size ): lowerCamelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase__ ) @partial(jax.pmap , axis_name="""batch""" ) def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , **lowerCamelCase__ : int ): '''simple docstring''' def loss_fn(lowerCamelCase__ : str ): lowerCamelCase = model_inputs.pop("""start_labels""" ) lowerCamelCase = model_inputs.pop("""end_labels""" ) lowerCamelCase = model_inputs.pop("""pooled_labels""" ) lowerCamelCase = state.apply_fn(**lowerCamelCase__ , params=lowerCamelCase__ , dropout_rng=lowerCamelCase__ , train=lowerCamelCase__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = outputs return state.loss_fn( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) lowerCamelCase , lowerCamelCase = jax.random.split(lowerCamelCase__ ) lowerCamelCase = jax.value_and_grad(lowerCamelCase__ ) lowerCamelCase , lowerCamelCase = grad_fn(state.params ) lowerCamelCase = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowerCamelCase = jax.lax.pmean(lowerCamelCase__ , """batch""" ) lowerCamelCase = state.apply_gradients(grads=lowerCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def __lowerCamelCase ( lowerCamelCase__ : List[str] , **lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = model_inputs.pop("""start_labels""" ) lowerCamelCase = model_inputs.pop("""end_labels""" ) lowerCamelCase = model_inputs.pop("""pooled_labels""" ) lowerCamelCase = state.apply_fn(**lowerCamelCase__ , params=state.params , train=lowerCamelCase__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = outputs lowerCamelCase = state.loss_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __lowercase ( train_state.TrainState ): """simple docstring""" UpperCamelCase : Dict = struct.field(pytree_node=_a ) @dataclass class __lowercase : """simple docstring""" UpperCamelCase : str = 4_2 UpperCamelCase : str = 4_2 UpperCamelCase : Tuple = 4_2 UpperCamelCase : Dict = 4_2 UpperCamelCase : str = 4_2 UpperCamelCase : Any = 4_2 UpperCamelCase : Dict = None def __A ( self , A , A , A , A=None ) -> int: '''simple docstring''' lowerCamelCase = model.params lowerCamelCase = TrainState.create( apply_fn=model.__call__ , params=lowercase__ , tx=lowercase__ , loss_fn=lowercase__ , ) if ckpt_dir is not None: lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = restore_checkpoint(lowercase__ , lowercase__ ) lowerCamelCase = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowerCamelCase , lowerCamelCase = build_tx(**lowercase__ ) lowerCamelCase = train_state.TrainState( step=lowercase__ , apply_fn=model.__call__ , params=lowercase__ , tx=lowercase__ , opt_state=lowercase__ , ) lowerCamelCase = args lowerCamelCase = data_collator lowerCamelCase = lr lowerCamelCase = params lowerCamelCase = jax_utils.replicate(lowercase__ ) return state def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.args lowerCamelCase = len(lowercase__ ) // args.batch_size lowerCamelCase = jax.random.PRNGKey(0 ) lowerCamelCase = jax.random.split(lowercase__ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase = get_batched_dataset(lowercase__ , args.batch_size , seed=lowercase__ ) lowerCamelCase = 0 for batch in tqdm(lowercase__ , total=lowercase__ , desc=F'Running EPOCH-{epoch}' ): lowerCamelCase = self.data_collator(lowercase__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = self.train_step_fn(lowercase__ , lowercase__ , **lowercase__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowerCamelCase = jax_utils.unreplicate(state.step ) lowerCamelCase = running_loss.item() / i lowerCamelCase = self.scheduler_fn(state_step - 1 ) lowerCamelCase = self.evaluate(lowercase__ , lowercase__ ) lowerCamelCase = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(lowercase__ ) ) self.logger.log(lowercase__ , commit=lowercase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=lowercase__ ) def __A ( self , A , A ) -> Tuple: '''simple docstring''' lowerCamelCase = get_batched_dataset(lowercase__ , self.args.batch_size ) lowerCamelCase = len(lowercase__ ) // self.args.batch_size lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase = 0 for batch in tqdm(lowercase__ , total=lowercase__ , desc="""Evaluating ... """ ): lowerCamelCase = self.data_collator(lowercase__ ) lowerCamelCase = self.val_step_fn(lowercase__ , **lowercase__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def __A ( self , A , A ) -> Any: '''simple docstring''' lowerCamelCase = jax_utils.unreplicate(lowercase__ ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """ ) self.model_save_fn(lowercase__ , params=state.params ) with open(os.path.join(lowercase__ , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowercase__ , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(lowercase__ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase__ , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , lowercase__ ) print("""DONE""" ) def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ): '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowerCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowerCamelCase = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowerCamelCase = from_bytes(state.opt_state , f.read() ) lowerCamelCase = joblib.load(os.path.join(lowerCamelCase__ , """args.joblib""" ) ) lowerCamelCase = joblib.load(os.path.join(lowerCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(lowerCamelCase__ , """training_state.json""" ) , """r""" ) as f: lowerCamelCase = json.load(lowerCamelCase__ ) lowerCamelCase = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = num_train_steps - warmup_steps lowerCamelCase = optax.linear_schedule(init_value=lowerCamelCase__ , end_value=lowerCamelCase__ , transition_steps=lowerCamelCase__ ) lowerCamelCase = optax.linear_schedule(init_value=lowerCamelCase__ , end_value=1E-7 , transition_steps=lowerCamelCase__ ) lowerCamelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ): '''simple docstring''' def weight_decay_mask(lowerCamelCase__ : Union[str, Any] ): lowerCamelCase = traverse_util.flatten_dict(lowerCamelCase__ ) lowerCamelCase = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase__ ) lowerCamelCase = scheduler_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = optax.adamw(learning_rate=lowerCamelCase__ , weight_decay=lowerCamelCase__ , mask=lowerCamelCase__ ) return tx, lr
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
0
import argparse import datetime def snake_case_ ( lowerCAmelCase_ : Optional[int] ): __lowercase : Any = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } __lowercase : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCAmelCase_ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month __lowercase : Tuple = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) __lowercase : Any = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be \'-\' or \'/\'""" ) # Get day __lowercase : Union[str, Any] = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator __lowercase : List[Any] = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be \'-\' or \'/\'""" ) # Get year __lowercase : str = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation __lowercase : Optional[int] = datetime.date(int(lowerCAmelCase_ ) , int(lowerCAmelCase_ ) , int(lowerCAmelCase_ ) ) # Start math if m <= 2: __lowercase : Optional[Any] = y - 1 __lowercase : List[str] = m + 12 # maths var __lowercase : List[str] = int(str(lowerCAmelCase_ )[:2] ) __lowercase : Tuple = int(str(lowerCAmelCase_ )[2:] ) __lowercase : int = int(2.6 * m - 5.39 ) __lowercase : List[Any] = int(c / 4 ) __lowercase : Optional[Any] = int(k / 4 ) __lowercase : Union[str, Any] = int(d + k ) __lowercase : Any = int(t + u + v + x ) __lowercase : Optional[int] = int(z - (2 * c) ) __lowercase : Any = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response __lowercase : Optional[Any] = F"Your date {date_input}, is a {days[str(lowerCAmelCase_ )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) lowerCamelCase : Tuple = parser.parse_args() zeller(args.date_input)
233
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} SCREAMING_SNAKE_CASE__ = features.copy() SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if issubclass(_A , _A ): SCREAMING_SNAKE_CASE__ = jsonl_path elif issubclass(_A , _A ): SCREAMING_SNAKE_CASE__ = [jsonl_path] SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def UpperCAmelCase_ ( _A , _A , _A=("train",) ): '''simple docstring''' assert isinstance(_A , _A ) for split in splits: SCREAMING_SNAKE_CASE__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader({'''train''': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if split: SCREAMING_SNAKE_CASE__ = {split: jsonl_path} else: SCREAMING_SNAKE_CASE__ = '''train''' SCREAMING_SNAKE_CASE__ = {'''train''': jsonl_path, '''test''': jsonl_path} SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase_ ( _A ): '''simple docstring''' return json.load(_A ) def UpperCAmelCase_ ( _A ): '''simple docstring''' return [json.loads(_A ) for line in buffer] class UpperCAmelCase__ : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , lines=lowercase__ ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) assert isinstance(exported_content[0] , lowercase__ ) assert len(lowercase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowercase_ ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , lines=lowercase__ , orient=lowercase__ ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , lines=lowercase__ , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) assert isinstance(exported_content[0] , lowercase__ ) assert len(lowercase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowercase_ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , lines=lowercase__ , orient=lowercase__ , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase__ ) == 10 def lowercase_ ( self : Any , __lowerCamelCase : Dict ) -> Optional[int]: with pytest.raises(lowercase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowercase__ , lowercase__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp('''data''' ) / f'''test.json.{extension}''' SCREAMING_SNAKE_CASE__ = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(lowercase__ , lowercase__ , compression=lowercase__ ).write() with fsspec.open(lowercase__ , '''rb''' , compression='''infer''' ) as f: SCREAMING_SNAKE_CASE__ = f.read() with fsspec.open(lowercase__ , '''rb''' , compression='''infer''' ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert exported_content == original_content
314
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
0
"""simple docstring""" import math def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
64
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase=False ): __lowercase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowercase : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: __lowercase : Optional[Any] = '''''' else: __lowercase : List[Any] = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __lowercase : Union[str, Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase : str = in_proj_weight[ : config.hidden_size, : ] __lowercase : List[str] = in_proj_bias[: config.hidden_size] __lowercase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Tuple = dct.pop(__UpperCamelCase ) __lowercase : str = val def __UpperCAmelCase ( ): __lowercase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : Dict = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = DeiTConfig() # all deit models have fine-tuned heads __lowercase : Dict = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowercase : Dict = 10_00 __lowercase : Tuple = '''huggingface/label-files''' __lowercase : List[str] = '''imagenet-1k-id2label.json''' __lowercase : Dict = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : List[str] = {v: k for k, v in idalabel.items()} __lowercase : Union[str, Any] = int(deit_name[-6:-4] ) __lowercase : List[str] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): __lowercase : List[str] = 1_92 __lowercase : List[Any] = 7_68 __lowercase : Optional[int] = 12 __lowercase : str = 3 elif deit_name[9:].startswith('''small''' ): __lowercase : Any = 3_84 __lowercase : Union[str, Any] = 15_36 __lowercase : List[Any] = 12 __lowercase : List[str] = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): __lowercase : Dict = 10_24 __lowercase : Dict = 40_96 __lowercase : Union[str, Any] = 24 __lowercase : List[str] = 16 # load original model from timm __lowercase : List[Any] = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = timm_model.state_dict() __lowercase : Any = create_rename_keys(__UpperCamelCase , __UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model __lowercase : Tuple = DeiTForImageClassificationWithTeacher(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor __lowercase : Tuple = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowercase : List[str] = DeiTImageProcessor(size=__UpperCamelCase , crop_size=config.image_size ) __lowercase : int = image_processor(images=prepare_img() , return_tensors='''pt''' ) __lowercase : Optional[Any] = encoding['''pixel_values'''] __lowercase : Optional[int] = model(__UpperCamelCase ) __lowercase : Optional[int] = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1e-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) a_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
249
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
0
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase_ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) UpperCamelCase__ = self.diffusers_dir shutil.copy( os.path.join(lowercase__ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): UpperCamelCase__ = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: UpperCamelCase__ = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result UpperCamelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) UpperCamelCase__ = black.format_str(lowercase__ , mode=lowercase__ ) UpperCamelCase__ = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(lowercase__ , """w""" , newline="""\n""" ) as f: f.write(lowercase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase__ ) with open(lowercase__ , """r""" ) as f: self.assertTrue(f.read() , lowercase__ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(lowercase__ , lowercase__ ) def UpperCAmelCase_ (self ): # Base copy consistency self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , lowercase__ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , lowercase__ ) , ) # Copy consistency with a really long name UpperCamelCase__ = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , F"{long_class_name}SchedulerOutput" , re.sub("""Bert""" , lowercase__ , lowercase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , lowercase__ , overwrite_result=re.sub("""DDPM""" , """Test""" , lowercase__ ) , )
244
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __A : Optional[Any] = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') __A : Dict = ( subprocess.check_output(F'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode('''utf-8''').split() ) __A : Optional[Any] = '|'.join(sys.argv[1:]) __A : Optional[Any] = re.compile(RF'^({joined_dirs}).*?\.py$') __A : Any = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
138
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): '''simple docstring''' a__ = LongformerTokenizer a__ = True a__ = LongformerTokenizerFast a__ = True def lowerCAmelCase_ (self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def lowerCAmelCase_ (self , **lowercase__ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> Dict: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCAmelCase = tokenizer.tokenize(lowercase__ ) # , add_prefix_space=True) self.assertListEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowercase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = '''Encode this sequence.''' __UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase__ , lowercase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __UpperCAmelCase = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) # Testing spaces after special tokens __UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ )} ) # mask token has a left space __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ ) __UpperCAmelCase = '''Encode <mask> sequence''' __UpperCAmelCase = '''Encode <mask>sequence''' __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = tokenizer.encode(lowercase__ ) __UpperCAmelCase = encoded.index(lowercase__ ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: pass def lowerCAmelCase_ (self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) __UpperCAmelCase = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase_ (self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowercase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase = F'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ), len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ ) __UpperCAmelCase = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ), 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , )
333
0
"""simple docstring""" def lowerCamelCase ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] UpperCAmelCase : Union[str, Any] = generate_large_matrix() UpperCAmelCase : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase ( _UpperCamelCase : Dict ) -> None: '''simple docstring''' assert all(row == sorted(_UpperCamelCase , reverse=_UpperCamelCase ) for row in grid ) assert all(list(_UpperCamelCase ) == sorted(_UpperCamelCase , reverse=_UpperCamelCase ) for col in zip(*_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Any ) -> int: '''simple docstring''' __UpperCAmelCase : Any = 0 __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[str] = (left + right) // 2 __UpperCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : int = mid + 1 else: __UpperCAmelCase : str = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[int] = len(grid[0] ) for i in range(len(_UpperCamelCase ) ): __UpperCAmelCase : str = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCamelCase ) * len(grid[0] )) - total def lowerCamelCase ( _UpperCamelCase : List[str] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase ( _UpperCamelCase : Any ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = 0 for row in grid: for i, number in enumerate(_UpperCamelCase ): if number < 0: total += len(_UpperCamelCase ) - i break return total def lowerCamelCase ( ) -> None: '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) __UpperCAmelCase : Any = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : str = timeit(f'''{func}(grid=grid)''' , setup=_UpperCamelCase , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
115
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Tuple=7 ): __SCREAMING_SNAKE_CASE : Tuple = None if token is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} # The id of a workflow (not of a workflow run) __SCREAMING_SNAKE_CASE : Any = """636036""" __SCREAMING_SNAKE_CASE : List[str] = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" __SCREAMING_SNAKE_CASE : int = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() return result["workflow_runs"] def lowerCAmelCase_ ( _lowerCamelCase: List[str] ): __SCREAMING_SNAKE_CASE : Tuple = get_daily_ci_runs(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __SCREAMING_SNAKE_CASE : List[str] = workflow_run["""id"""] break return workflow_run_id def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: Dict , _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : int = get_last_daily_ci_runs(_lowerCamelCase ) if workflow_run_id is not None: __SCREAMING_SNAKE_CASE : List[str] = get_artifacts_links(worflow_run_id=_lowerCamelCase , token=_lowerCamelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __SCREAMING_SNAKE_CASE : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=_lowerCamelCase , artifact_url=_lowerCamelCase , output_dir=_lowerCamelCase , token=_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: Optional[Any] ): get_last_daily_ci_artifacts(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = {} for artifact_name in artifact_names: __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(_lowerCamelCase , F"{artifact_name}.zip" ) if os.path.isfile(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = {} with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file with z.open(_lowerCamelCase ) as f: __SCREAMING_SNAKE_CASE : Dict = f.read().decode("""UTF-8""" ) return results
112
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
0
def lowercase_ ( _lowerCamelCase : List[str]): lowercase__ : Dict = [] lowercase__ : Dict = set({"(", "[", "{"}) lowercase__ : Any = set({")", "]", "}"}) lowercase__ : Optional[int] = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowerCamelCase)): if s[i] in open_brackets: stack.append(s[i]) elif s[i] in closed_brackets and ( len(_lowerCamelCase) == 0 or (len(_lowerCamelCase) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCamelCase) == 0 def lowercase_ ( ): lowercase__ : Dict = input("Enter sequence of brackets: ") if is_balanced(_lowerCamelCase): print(_lowerCamelCase , "is balanced") else: print(_lowerCamelCase , "is not balanced") if __name__ == "__main__": main()
87
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase__ : List[str] =['gpt2'] lowerCAmelCase__ : Union[str, Any] ='gpt2' if is_tf_available(): class UpperCAmelCase_ ( tf.Module ): '''simple docstring''' def __init__( self , _A ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowercase__ ) __SCREAMING_SNAKE_CASE = TFGPTaLMHeadModel.from_config(lowercase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(lowercase__ ) __SCREAMING_SNAKE_CASE = tokenized['input_ids'].to_tensor() __SCREAMING_SNAKE_CASE = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __SCREAMING_SNAKE_CASE = self.model(input_ids=lowercase__ , attention_mask=lowercase__ )['logits'] return outputs @require_tf @require_keras_nlp class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [GPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __SCREAMING_SNAKE_CASE = [TFGPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __SCREAMING_SNAKE_CASE = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __SCREAMING_SNAKE_CASE = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _A ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __SCREAMING_SNAKE_CASE = tokenizer([test_inputs] , return_tensors='tf' ) __SCREAMING_SNAKE_CASE = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __SCREAMING_SNAKE_CASE = python_outputs[key].numpy() __SCREAMING_SNAKE_CASE = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase__ , tf.intaa ) == tf_outputs_values ) ) @slow def _A ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = tf.function(lowercase__ ) for test_inputs in self.test_sentences: __SCREAMING_SNAKE_CASE = tf.constant(lowercase__ ) __SCREAMING_SNAKE_CASE = compiled_tokenizer(lowercase__ ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowercase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _A ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = ModelToSave(tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE = model.serving(lowercase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __SCREAMING_SNAKE_CASE = Path(lowercase__ ) / 'saved.model' tf.saved_model.save(lowercase__ , lowercase__ , signatures={'serving_default': model.serving} ) __SCREAMING_SNAKE_CASE = tf.saved_model.load(lowercase__ ) __SCREAMING_SNAKE_CASE = loaded_model.signatures['serving_default'](lowercase__ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _A ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowercase__ ) # Build model with some sample inputs __SCREAMING_SNAKE_CASE = tf_tokenizer.get_config() __SCREAMING_SNAKE_CASE = TFGPTaTokenizer.from_config(lowercase__ ) __SCREAMING_SNAKE_CASE = model_from_config(lowercase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _A ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run __SCREAMING_SNAKE_CASE = 123_123 for max_length in [3, 5, 1_024]: __SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowercase__ , max_length=lowercase__ ) __SCREAMING_SNAKE_CASE = out['input_ids'].numpy().shape[1] assert out_length == max_length
257
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = [[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase = DisjunctiveConstraint(lowercase__ ) self.assertTrue(isinstance(dc.token_ids , lowercase__ ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase__ ): DisjunctiveConstraint(lowercase__ ) # fails here def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = [[1, 2, 3], [1, 2, 4]] lowerCamelCase = DisjunctiveConstraint(lowercase__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(1 ) lowerCamelCase = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(2 ) lowerCamelCase = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(3 ) lowerCamelCase = stepped is True and completed is True and reset is False self.assertTrue(lowercase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase = DisjunctiveConstraint(lowercase__ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase , lowerCamelCase , lowerCamelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
252
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
333
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase ( _a ): '''simple docstring''' _A : List[Any] = '''encoder-decoder''' _A : Any = True def __init__( self : Optional[int] , **__a : int ) -> List[str]: """simple docstring""" super().__init__(**lowercase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __lowercase : Optional[Any] = kwargs.pop("""encoder""" ) __lowercase : int = encoder_config.pop("""model_type""" ) __lowercase : int = kwargs.pop("""decoder""" ) __lowercase : str = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __lowercase : Any = AutoConfig.for_model(lowercase__ , **lowercase__ ) __lowercase : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) __lowercase : Optional[int] = True @classmethod def lowerCAmelCase ( cls : List[str] , __a : str , __a : Union[str, Any] , **__a : Optional[Any] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __lowercase : Optional[int] = True __lowercase : Tuple = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase__ ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = copy.deepcopy(self.__dict__ ) __lowercase : Dict = self.encoder.to_dict() __lowercase : Any = self.decoder.to_dict() __lowercase : Tuple = self.__class__.model_type return output
233
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( _a , _a , unittest.TestCase ): """simple docstring""" a = StableDiffusionSAGPipeline a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = False def lowercase_ ( self : str ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(lowercase__ ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=0 ) -> str: if str(lowercase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(lowercase__ ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Union[str, Any] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(lowercase__ ) sag_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE__ = '''.''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowercase_ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(lowercase__ ) sag_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE__ = '''.''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(lowercase__ ) sag_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE__ = '''.''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape == (1, 512, 768, 3)
314
A_ : List[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} A_ : int = ['a', 'b', 'c', 'd', 'e'] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": A_ : Tuple = topological_sort('a', [], []) print(sort)
333
0
"""simple docstring""" import requests from bsa import BeautifulSoup def UpperCAmelCase__ (snake_case__ : Any = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _snake_case : Optional[Any] = BeautifulSoup(requests.get(snake_case__ ).text , """html.parser""" ) _snake_case : List[Any] = soup.findAll("""h1""" ) _snake_case : int = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(snake_case__ , snake_case__ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
64
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
0
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a_ = NewType('DataClass', Any) a_ = NewType('DataClassType', Any) def __UpperCAmelCase ( __UpperCamelCase ): if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : int = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __lowercase : List[str] = {} if aliases is not None: __lowercase : Dict = aliases if help is not None: __lowercase : Tuple = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class UpperCAmelCase_ ( _a ): UpperCamelCase =42 def __init__( self , UpperCamelCase_ , **UpperCamelCase_ ) -> int: # To make the default appear when using --help if "formatter_class" not in kwargs: __lowercase : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**lowercase__ ) if dataclasses.is_dataclass(lowercase__ ): __lowercase : Union[str, Any] = [dataclass_types] __lowercase : List[Any] = list(lowercase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase__ ) @staticmethod def _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: __lowercase : Optional[Any] = F"""--{field.name}""" __lowercase : str = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowercase__ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __lowercase : Optional[int] = kwargs.pop('''aliases''' , [] ) if isinstance(lowercase__ , lowercase__ ): __lowercase : Optional[Any] = [aliases] __lowercase : Union[str, Any] = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowercase__ , '''UnionType''' ) and isinstance(lowercase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase__ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field \'{field.name}\'.""" ) if type(lowercase__ ) not in field.type.__args__: # filter `str` in Union __lowercase : Optional[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __lowercase : Any = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __lowercase : Dict = ( field.type.__args__[0] if isinstance(lowercase__ , field.type.__args__[1] ) else field.type.__args__[1] ) __lowercase : Union[str, Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __lowercase : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , lowercase__ ) and issubclass(field.type , lowercase__ )): if origin_type is Literal: __lowercase : List[str] = field.type.__args__ else: __lowercase : Optional[Any] = [x.value for x in field.type] __lowercase : Union[str, Any] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __lowercase : Optional[int] = field.default else: __lowercase : Optional[Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __lowercase : Any = copy(lowercase__ ) # Hack because type=bool in argparse does not behave as we want. __lowercase : Any = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __lowercase : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __lowercase : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name __lowercase : Dict = '''?''' # This is the value that will get picked if we do --field_name (without value) __lowercase : Dict = True elif isclass(lowercase__ ) and issubclass(lowercase__ , lowercase__ ): __lowercase : int = field.type.__args__[0] __lowercase : Dict = '''+''' if field.default_factory is not dataclasses.MISSING: __lowercase : List[str] = field.default_factory() elif field.default is dataclasses.MISSING: __lowercase : Tuple = True else: __lowercase : Any = field.type if field.default is not dataclasses.MISSING: __lowercase : int = field.default elif field.default_factory is not dataclasses.MISSING: __lowercase : Optional[int] = field.default_factory() else: __lowercase : List[Any] = True parser.add_argument(lowercase__ , *lowercase__ , **lowercase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __lowercase : str = False parser.add_argument(F"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **lowercase__ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: if hasattr(lowercase__ , '''_argument_group_name''' ): __lowercase : int = self.add_argument_group(dtype._argument_group_name ) else: __lowercase : Dict = self try: __lowercase : List[Any] = get_type_hints(lowercase__ ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowercase__ ): __lowercase : Any = '''.'''.join(map(lowercase__ , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowercase__ ): if not field.init: continue __lowercase : str = type_hints[field.name] self._parse_dataclass_field(lowercase__ , lowercase__ ) def _lowerCamelCase ( self , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __lowercase : List[Any] = [] if args_filename: args_files.append(Path(lowercase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __lowercase : Optional[Any] = ArgumentParser() args_file_parser.add_argument(lowercase__ , type=lowercase__ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __lowercase ,__lowercase : Any = args_file_parser.parse_known_args(args=lowercase__ ) __lowercase : Tuple = vars(lowercase__ ).get(args_file_flag.lstrip('''-''' ) , lowercase__ ) if cmd_args_file_paths: args_files.extend([Path(lowercase__ ) for p in cmd_args_file_paths] ) __lowercase : int = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __lowercase : int = file_args + args if args is not None else file_args + sys.argv[1:] __lowercase ,__lowercase : List[Any] = self.parse_known_args(args=lowercase__ ) __lowercase : Dict = [] for dtype in self.dataclass_types: __lowercase : Union[str, Any] = {f.name for f in dataclasses.fields(lowercase__ ) if f.init} __lowercase : int = {k: v for k, v in vars(lowercase__ ).items() if k in keys} for k in keys: delattr(lowercase__ , lowercase__ ) __lowercase : Dict = dtype(**lowercase__ ) outputs.append(lowercase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = False ) -> Tuple[DataClass, ...]: __lowercase : str = set(args.keys() ) __lowercase : Tuple = [] for dtype in self.dataclass_types: __lowercase : List[Any] = {f.name for f in dataclasses.fields(lowercase__ ) if f.init} __lowercase : Optional[Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __lowercase : Optional[Any] = dtype(**lowercase__ ) outputs.append(lowercase__ ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(lowercase__ )}""" ) return tuple(lowercase__ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = False ) -> Tuple[DataClass, ...]: with open(Path(lowercase__ ) , encoding='''utf-8''' ) as open_json_file: __lowercase : str = json.loads(open_json_file.read() ) __lowercase : Union[str, Any] = self.parse_dict(lowercase__ , allow_extra_keys=lowercase__ ) return tuple(lowercase__ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = False ) -> Tuple[DataClass, ...]: __lowercase : Any = self.parse_dict(yaml.safe_load(Path(lowercase__ ).read_text() ) , allow_extra_keys=lowercase__ ) return tuple(lowercase__ )
249
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' model.train() __UpperCAmelCase = model(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __UpperCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) __UpperCAmelCase = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __a ( SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __UpperCAmelCase = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def __a ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase , __UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' __UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = RegressionDataset(length=8_0 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase = RegressionDataset(length=9_6 ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=1_6 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __magic_name__ ( __a : str , __a : Optional[int] , __a : str , __a : Optional[int] ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def __magic_name__ ( __a : int , __a : List[str] , __a : Optional[Any] , __a : int , __a : List[Any]=True ): '''simple docstring''' model.train() UpperCamelCase__ = model(__a ) UpperCamelCase__ = F.mse_loss(__a , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__a ) def __magic_name__ ( __a : Union[str, Any] , __a : Optional[Any]=False ): '''simple docstring''' set_seed(42 ) UpperCamelCase__ = RegressionModel() UpperCamelCase__ = deepcopy(__a ) UpperCamelCase__ = RegressionDataset(length=80 ) UpperCamelCase__ = DataLoader(__a , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCamelCase__ = AdamW(params=model.parameters() , lr=1E-3 ) UpperCamelCase__ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCamelCase__ = LambdaLR(__a , lr_lambda=lambda __a : epoch**0.65 ) UpperCamelCase__ = LambdaLR(__a , lr_lambda=lambda __a : epoch**0.65 ) # Make a copy of `model` if sched: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare(__a , __a , __a , __a ) else: UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare(__a , __a ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = get_training_setup(__a ) # Use a single batch UpperCamelCase__ , UpperCamelCase__ = next(iter(__a ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase__ , UpperCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase__ , UpperCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__a , __a , __a , __a ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__a ): step_model(__a , __a , __a , __a ) else: # Sync grads step_model(__a , __a , __a , __a ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__a , __a , __a , __a ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) UpperCamelCase__ = ddp_input[torch.randperm(len(__a ) )] def __magic_name__ ( __a : Tuple ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = get_training_setup(__a ) # Use a single batch UpperCamelCase__ , UpperCamelCase__ = next(iter(__a ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase__ , UpperCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase__ , UpperCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__a , __a , __a , __a ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__a ): step_model(__a , __a , __a , __a ) else: # Sync grads step_model(__a , __a , __a , __a ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) UpperCamelCase__ = ddp_input[torch.randperm(len(__a ) )] def __magic_name__ ( __a : Dict=False , __a : Union[str, Any]=False ): '''simple docstring''' UpperCamelCase__ = Accelerator( split_batches=__a , dispatch_batches=__a , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = get_training_setup(__a ) for iteration, batch in enumerate(__a ): UpperCamelCase__ , UpperCamelCase__ = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase__ , UpperCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase__ , UpperCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__a , __a , __a , __a , __a ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__a ): step_model(__a , __a , __a , __a ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__a ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) UpperCamelCase__ = ddp_input[torch.randperm(len(__a ) )] GradientState._reset_state() def __magic_name__ ( __a : Optional[int]=False , __a : List[Any]=False ): '''simple docstring''' UpperCamelCase__ = Accelerator( split_batches=__a , dispatch_batches=__a , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = get_training_setup(__a , __a ) for iteration, batch in enumerate(__a ): UpperCamelCase__ , UpperCamelCase__ = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase__ , UpperCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase__ , UpperCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__a , __a , __a , __a , __a ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__a )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__a ): step_model(__a , __a , __a , __a ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" UpperCamelCase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__a )) if accelerator.num_processes > 1: check_model_parameters(__a , __a , __a , __a ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = Accelerator() UpperCamelCase__ = RegressionDataset(length=80 ) UpperCamelCase__ = DataLoader(__a , batch_size=16 ) UpperCamelCase__ = RegressionDataset(length=96 ) UpperCamelCase__ = DataLoader(__a , batch_size=16 ) UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare(__a , __a ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__a ): assert id(accelerator.gradient_state.active_dataloader ) == id(__a ) if iteration < len(__a ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__a ): assert id(accelerator.gradient_state.active_dataloader ) == id(__a ) if batch_num < len(__a ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = Accelerator() UpperCamelCase__ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(__a ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(__a ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(__a , __a ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(__a , __a ) def __magic_name__ ( __a : Any ): '''simple docstring''' main() if __name__ == "__main__": main()
244
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
0
class __A : def __init__( self : str , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = n lowerCAmelCase : str = [None] * self.n lowerCAmelCase : int = 0 # index of the first element lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : List[str] = 0 def __len__( self : Dict ): return self.size def lowercase__ ( self : List[Any] ): return self.size == 0 def lowercase__ ( self : Any ): return False if self.is_empty() else self.array[self.front] def lowercase__ ( self : Any , UpperCAmelCase_ : Any ): if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowerCAmelCase : List[str] = data lowerCAmelCase : int = (self.rear + 1) % self.n self.size += 1 return self def lowercase__ ( self : int ): if self.size == 0: raise Exception('UNDERFLOW' ) lowerCAmelCase : Optional[Any] = self.array[self.front] lowerCAmelCase : List[str] = None lowerCAmelCase : int = (self.front + 1) % self.n self.size -= 1 return temp
138
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [''''''.join(SCREAMING_SNAKE_CASE ) for row in temp_grid] __UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE ) return output_string def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE )] # generates template for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCAmelCase = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase = input_string[counter : counter + len(SCREAMING_SNAKE_CASE )] grid.append(list(SCREAMING_SNAKE_CASE ) ) counter += len(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = position % (lowest * 2) # puts it in bounds __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __a ( SCREAMING_SNAKE_CASE ) -> dict[int, str]: '''simple docstring''' __UpperCAmelCase = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE ) ): # tries every key __UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
333
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] = 1_0 , _UpperCamelCase : List[Any] = 1_0_0_0 , _UpperCamelCase : str = True ) -> int: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any ) -> None: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(_UpperCamelCase : Any ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) __UpperCAmelCase : Dict = lower __UpperCAmelCase : Dict = higher __UpperCAmelCase : Dict = [] while True: __UpperCAmelCase : Tuple = get_avg(_UpperCamelCase , _UpperCamelCase ) last_numbers.append(_UpperCamelCase ) if answer(_UpperCamelCase ) == "low": __UpperCAmelCase : List[Any] = number elif answer(_UpperCamelCase ) == "high": __UpperCAmelCase : Dict = number else: break print(f'''guess the number : {last_numbers[-1]}''' ) print(f'''details : {last_numbers!s}''' ) def lowerCamelCase ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(input("""Enter lower value : """ ).strip() ) __UpperCAmelCase : List[str] = int(input("""Enter high value : """ ).strip() ) __UpperCAmelCase : List[str] = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
115
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): '''simple docstring''' a__ = StableUnCLIPPipeline a__ = TEXT_TO_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_BATCH_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS a__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ = False def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowerCAmelCase_ (self , lowercase__ , lowercase__=0 ) -> List[Any]: if str(lowercase__ ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(lowercase__ ) else: __UpperCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowerCAmelCase_ (self ) -> int: __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Any = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _UpperCamelCase ( _a ): '''simple docstring''' _A : List[str] = '''vit_mae''' def __init__( self : Any , lowerCAmelCase__ : Any=7_6_8 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : Union[str, Any]=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Optional[int]=1E-12 , lowerCAmelCase__ : Any=2_2_4 , lowerCAmelCase__ : Dict=1_6 , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=1_6 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : Dict=8 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Optional[Any]=0.75 , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): """simple docstring""" super().__init__(**lowercase__ ) __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : List[str] = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : int = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = image_size __SCREAMING_SNAKE_CASE : Optional[int] = patch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Optional[int] = qkv_bias __SCREAMING_SNAKE_CASE : Tuple = decoder_num_attention_heads __SCREAMING_SNAKE_CASE : Dict = decoder_hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = decoder_num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[Any] = decoder_intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = mask_ratio __SCREAMING_SNAKE_CASE : List[str] = norm_pix_loss
112
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class snake_case_ ( _a ): __A : List[Any] = (DDIMParallelScheduler,) __A : Dict = (("eta", 0.0), ("num_inference_steps", 50)) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : Union[str, Any] ) -> Tuple: lowercase__ : str = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowercase__ ) return config def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : Any ) -> str: lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : Any = self.get_scheduler_config(**lowercase__ ) lowercase__ : Optional[int] = scheduler_class(**lowercase__ ) lowercase__ , lowercase__ : Dict = 10, 0.0 lowercase__ : Optional[Any] = self.dummy_model() lowercase__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for t in scheduler.timesteps: lowercase__ : List[Any] = model(lowercase__ , lowercase__ ) lowercase__ : str = scheduler.step(lowercase__ , lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def __UpperCamelCase ( self : str ) -> List[str]: for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase__ ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase__ ) lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config(steps_offset=1 ) lowercase__ : Optional[int] = scheduler_class(**lowercase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def __UpperCamelCase ( self : str ) -> str: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase__ ) def __UpperCamelCase ( self : str ) -> int: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase__ ) def __UpperCamelCase ( self : Tuple ) -> Any: self.check_over_configs(thresholding=lowercase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase__ ) def __UpperCamelCase ( self : Tuple ) -> Dict: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=lowercase__ , num_inference_steps=lowercase__ ) def __UpperCamelCase ( self : Tuple ) -> int: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase__ , eta=lowercase__ ) def __UpperCamelCase ( self : int ) -> Optional[Any]: lowercase__ : List[str] = self.scheduler_classes[0] lowercase__ : Optional[Any] = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5 def __UpperCamelCase ( self : Optional[int] ) -> Tuple: lowercase__ : str = self.scheduler_classes[0] lowercase__ : Optional[Any] = self.get_scheduler_config() lowercase__ : str = scheduler_class(**lowercase__ ) lowercase__ , lowercase__ : int = 10, 0.0 scheduler.set_timesteps(lowercase__ ) lowercase__ : Optional[int] = self.dummy_model() lowercase__ : int = self.dummy_sample_deter lowercase__ : List[str] = self.dummy_sample_deter + 0.1 lowercase__ : str = self.dummy_sample_deter - 0.1 lowercase__ : int = samplea.shape[0] lowercase__ : int = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase__ : Union[str, Any] = torch.arange(lowercase__ )[0:3, None].repeat(1 , lowercase__ ) lowercase__ : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase__ : Union[str, Any] = scheduler.batch_step_no_noise(lowercase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase__ ) lowercase__ : List[Any] = torch.sum(torch.abs(lowercase__ ) ) lowercase__ : Any = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: lowercase__ : Optional[int] = self.full_loop() lowercase__ : Union[str, Any] = torch.sum(torch.abs(lowercase__ ) ) lowercase__ : List[str] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: lowercase__ : List[str] = self.full_loop(prediction_type="v_prediction" ) lowercase__ : Optional[Any] = torch.sum(torch.abs(lowercase__ ) ) lowercase__ : List[Any] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __UpperCamelCase ( self : Dict ) -> int: # We specify different beta, so that the first alpha is 0.99 lowercase__ : Tuple = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) lowercase__ : Tuple = torch.sum(torch.abs(lowercase__ ) ) lowercase__ : List[str] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __UpperCamelCase ( self : Tuple ) -> Any: # We specify different beta, so that the first alpha is 0.99 lowercase__ : Optional[int] = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) lowercase__ : Optional[int] = torch.sum(torch.abs(lowercase__ ) ) lowercase__ : Tuple = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
87
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Optional[int] =logging.get_logger(__name__) lowerCAmelCase__ : int ={ 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class UpperCAmelCase_ ( _a ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = '''efficientnet''' def __init__( self , _A = 3 , _A = 600 , _A = 2.0 , _A = 3.1 , _A = 8 , _A = [3, 3, 5, 3, 5, 5, 3] , _A = [32, 16, 24, 40, 80, 112, 192] , _A = [16, 24, 40, 80, 112, 192, 320] , _A = [] , _A = [1, 2, 2, 2, 1, 2, 1] , _A = [1, 2, 2, 3, 3, 4, 1] , _A = [1, 6, 6, 6, 6, 6, 6] , _A = 0.2_5 , _A = "swish" , _A = 2_560 , _A = "mean" , _A = 0.0_2 , _A = 0.0_0_1 , _A = 0.9_9 , _A = 0.5 , _A = 0.2 , **_A , ): '''simple docstring''' super().__init__(**lowercase__ ) __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = width_coefficient __SCREAMING_SNAKE_CASE = depth_coefficient __SCREAMING_SNAKE_CASE = depth_divisor __SCREAMING_SNAKE_CASE = kernel_sizes __SCREAMING_SNAKE_CASE = in_channels __SCREAMING_SNAKE_CASE = out_channels __SCREAMING_SNAKE_CASE = depthwise_padding __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = num_block_repeats __SCREAMING_SNAKE_CASE = expand_ratios __SCREAMING_SNAKE_CASE = squeeze_expansion_ratio __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dim __SCREAMING_SNAKE_CASE = pooling_type __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = batch_norm_eps __SCREAMING_SNAKE_CASE = batch_norm_momentum __SCREAMING_SNAKE_CASE = dropout_rate __SCREAMING_SNAKE_CASE = drop_connect_rate __SCREAMING_SNAKE_CASE = sum(lowercase__ ) * 4 class UpperCAmelCase_ ( _a ): '''simple docstring''' UpperCamelCase__ : List[Any] = version.parse('''1.11''' ) @property def _A ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _A ( self ): '''simple docstring''' return 1e-5
257
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
0
from scipy.stats import pearsonr import datasets UpperCAmelCase : List[Any] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' UpperCAmelCase : str = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' UpperCAmelCase : List[Any] = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def __A ( self , A , A , A=False ) -> str: '''simple docstring''' if return_pvalue: lowerCamelCase = pearsonr(lowercase__ , lowercase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase__ , lowercase__ )[0] )}
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(_a ) class lowerCAmelCase ( _a ): '''simple docstring''' def __init__( self : List[str] , *__a : Dict , **__a : str ) -> int: """simple docstring""" super().__init__(*lowercase__ , **lowercase__ ) requires_backends(self , """vision""" ) self.check_model_type(lowercase__ ) def __call__( self : Union[str, Any] , __a : Any , **__a : List[str] ) -> Tuple: """simple docstring""" return super().__call__(lowercase__ , **lowercase__ ) def lowerCAmelCase ( self : List[Any] , **__a : Dict ) -> Tuple: """simple docstring""" return {}, {}, {} def lowerCAmelCase ( self : Optional[int] , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = load_image(lowercase__ ) __lowercase : Union[str, Any] = image.size __lowercase : Optional[int] = self.image_processor(images=lowercase__ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase ( self : Union[str, Any] , __a : List[Any] ) -> str: """simple docstring""" __lowercase : Dict = self.model(**lowercase__ ) return model_outputs def lowerCAmelCase ( self : Optional[int] , __a : int ) -> Any: """simple docstring""" __lowercase : Tuple = model_outputs.predicted_depth __lowercase : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=lowercase__ ) __lowercase : List[Any] = prediction.squeeze().cpu().numpy() __lowercase : Optional[int] = (output * 255 / np.max(lowercase__ )).astype("""uint8""" ) __lowercase : str = Image.fromarray(lowercase__ ) __lowercase : Tuple = {} __lowercase : str = predicted_depth __lowercase : str = depth return output_dict
233
import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if ( not isinstance(SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
333
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def UpperCAmelCase_ ( _A ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ = k.replace(_A , _A ) if k.startswith('''encoder''' ): SCREAMING_SNAKE_CASE__ = k.replace('''.attn''' , '''.self_attn''' ) SCREAMING_SNAKE_CASE__ = k.replace('''norm1''' , '''self_attn_layer_norm''' ) SCREAMING_SNAKE_CASE__ = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): SCREAMING_SNAKE_CASE__ = k.replace('''norm1''' , '''self_attn_layer_norm''' ) SCREAMING_SNAKE_CASE__ = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) SCREAMING_SNAKE_CASE__ = k.replace('''norm3''' , '''final_layer_norm''' ) return k def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: SCREAMING_SNAKE_CASE__ = sd.pop(_A ) SCREAMING_SNAKE_CASE__ = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd SCREAMING_SNAKE_CASE__ = v _SCREAMING_SNAKE_CASE : str = ['START'] @torch.no_grad() def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ = model['''model'''] SCREAMING_SNAKE_CASE__ = BlenderbotConfig.from_json_file(_A ) SCREAMING_SNAKE_CASE__ = BlenderbotForConditionalGeneration(_A ) SCREAMING_SNAKE_CASE__ = m.model.state_dict().keys() SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue SCREAMING_SNAKE_CASE__ = rename_state_dict_key(_A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: SCREAMING_SNAKE_CASE__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_A ) m.model.load_state_dict(_A , strict=_A ) m.half() m.save_pretrained(_A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
314
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } A_ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase__ (snake_case__ : int , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] ): """simple docstring""" for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _snake_case : List[Any] = """lm_head""" _snake_case : Dict = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _snake_case : str = getattr(snake_case__ , snake_case__ ).shape else: _snake_case : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _snake_case : Any = value elif weight_type == "weight_g": _snake_case : Any = value elif weight_type == "weight_v": _snake_case : Tuple = value elif weight_type == "bias": _snake_case : str = value else: _snake_case : Dict = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : List[str] ): """simple docstring""" _snake_case : Optional[int] = [] _snake_case : Optional[int] = fairseq_model.state_dict() _snake_case : Any = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Any = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : List[str] = True else: for key, mapped_key in MAPPING.items(): _snake_case : str = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _snake_case : Tuple = True if "*" in mapped_key: _snake_case : Any = name.split(snake_case__ )[0].split(""".""" )[-2] _snake_case : str = mapped_key.replace("""*""" , snake_case__ ) if "weight_g" in name: _snake_case : Optional[Any] = """weight_g""" elif "weight_v" in name: _snake_case : Union[str, Any] = """weight_v""" elif "bias" in name: _snake_case : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case : Dict = """weight""" else: _snake_case : Dict = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : Optional[int] = full_name.split("""conv_layers.""" )[-1] _snake_case : Tuple = name.split(""".""" ) _snake_case : Optional[Any] = int(items[0] ) _snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _snake_case : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _snake_case : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _snake_case : List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _snake_case : List[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Dict , snake_case__ : List[Any]=None , snake_case__ : Optional[int]=None , snake_case__ : Tuple=True ): """simple docstring""" if config_path is not None: _snake_case : Any = UniSpeechConfig.from_pretrained(snake_case__ ) else: _snake_case : Union[str, Any] = UniSpeechConfig() if is_finetuned: if dict_path: _snake_case : List[str] = Dictionary.load_from_json(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : List[str] = target_dict.pad_index _snake_case : Optional[int] = target_dict.bos_index _snake_case : int = target_dict.eos_index _snake_case : int = len(target_dict.symbols ) _snake_case : Any = os.path.join(snake_case__ , """vocab.json""" ) if not os.path.isdir(snake_case__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : int = target_dict.indices # fairseq has the <pad> and <s> switched _snake_case : List[Any] = 42 _snake_case : List[Any] = 43 with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(snake_case__ , snake_case__ ) _snake_case : Tuple = WavaVecaPhonemeCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=snake_case__ , ) _snake_case : List[Any] = True if config.feat_extract_norm == """layer""" else False _snake_case : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) _snake_case : int = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) _snake_case : List[Any] = UniSpeechForCTC(snake_case__ ) else: _snake_case : Tuple = UniSpeechForPreTraining(snake_case__ ) if is_finetuned: _snake_case , _snake_case , _snake_case : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: _snake_case , _snake_case , _snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _snake_case : Tuple = model[0].eval() recursively_load_weights(snake_case__ , snake_case__ , snake_case__ ) hf_unispeech.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) A_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
64
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ : List[str] = sys.version_info >= (3, 10) def __a ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = 42 a__ = 42 a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" class A_ ( _a ): '''simple docstring''' a__ = "titi" a__ = "toto" a__ = 42 @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = BasicEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = "toto" def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MixedTypeEnum(self.foo ) @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) @dataclass class A_ : '''simple docstring''' a__ = list_field(default=[] ) a__ = list_field(default=[1, 2, 3] ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) a__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_ : '''simple docstring''' a__ = field() a__ = field() a__ = field() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = BasicEnum(self.required_enum ) @dataclass class A_ : '''simple docstring''' a__ = 42 a__ = field() a__ = None a__ = field(default="toto" , metadata={"help": "help message"} ) a__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class A_ : '''simple docstring''' a__ = False a__ = True a__ = None @dataclass class A_ : '''simple docstring''' a__ = None a__ = field(default=_a , metadata={"help": "help message"} ) a__ = None a__ = list_field(default=[] ) a__ = list_field(default=[] ) class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} __UpperCAmelCase = {k: v for k, v in vars(lowercase__ ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowercase__ ) and yy.get('''choices''' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowercase__ ) , yy['''type'''](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--bar''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--baz''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--flag''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__UpperCAmelCase) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) expected.add_argument('''--baz''' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowercase__ , dest='''baz''' ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) __UpperCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ (self ) -> str: @dataclass class A_ : '''simple docstring''' a__ = "toto" __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) __UpperCAmelCase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--bar''' , default=lowercase__ , type=lowercase__ , help='''help message''' ) expected.add_argument('''--baz''' , default=lowercase__ , type=lowercase__ ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowercase__ ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowercase__ ) __UpperCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) __UpperCAmelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowercase__ , required=lowercase__ ) expected.add_argument('''--required_str''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=lowercase__ , ) expected.add_argument('''--opt''' , type=lowercase__ , default=lowercase__ ) expected.add_argument('''--baz''' , default='''toto''' , type=lowercase__ , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __UpperCAmelCase = parser.parse_dict(lowercase__ )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_json''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = HfArgumentParser(lowercase__ ) __UpperCAmelCase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = os.path.join(lowercase__ , '''temp_yaml''' ) os.mkdir(lowercase__ ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(lowercase__ , lowercase__ ) __UpperCAmelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __UpperCAmelCase = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
333
0
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') a_ = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') a_ = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') a_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') a_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
249
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCamelCase_ = 'tiny-wmt19-en-ru' # Build # borrowed from a test lowerCamelCase_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCamelCase_ = dict(zip(vocab, range(len(vocab)))) lowerCamelCase_ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = Path(tmpdirname) lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) lowerCamelCase_ = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCamelCase_ = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCamelCase_ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test lowerCamelCase_ = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowerCamelCase_ = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
244
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( _a ): '''simple docstring''' a__ = "pegasus" a__ = ["past_key_values"] a__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=0 , lowercase__=False , lowercase__=0 , lowercase__=1 , lowercase__=1 , **lowercase__ , ) -> str: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = d_model __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = decoder_layers __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = use_cache __UpperCAmelCase = encoder_layers __UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) @property def lowerCAmelCase_ (self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ (self ) -> int: return self.d_model
333
0