code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Dict = logging.get_logger(__name__) def lowerCamelCase ( lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : List[Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: __magic_name__ : Dict = 1024 __magic_name__ : str = 4096 __magic_name__ : Optional[int] = 24 __magic_name__ : str = 16 __magic_name__ : str = [5, 11, 17, 23] __magic_name__ : Optional[Any] = [256, 512, 1024, 1024] __magic_name__ : Optional[Any] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __magic_name__ : List[Any] = 768 __magic_name__ : List[str] = [1, 1, 1, 0.5] __magic_name__ : List[str] = [256, 512, 768, 768] __magic_name__ : Any = 150 __magic_name__ : Union[str, Any] = 16 __magic_name__ : List[Any] = (1, 384, 384) __magic_name__ : Dict = False __magic_name__ : Dict = 'project' if "ade" in checkpoint_url: __magic_name__ : int = True __magic_name__ : List[str] = 768 __magic_name__ : Dict = [1, 1, 1, 0.5] __magic_name__ : Tuple = 150 __magic_name__ : str = 16 __magic_name__ : Union[str, Any] = 'huggingface/label-files' __magic_name__ : Union[str, Any] = 'ade20k-id2label.json' __magic_name__ : str = json.load(open(cached_download(hf_hub_url(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) ) , 'r' ) ) __magic_name__ : List[Any] = {int(lowerCAmelCase ): v for k, v in idalabel.items()} __magic_name__ : List[str] = idalabel __magic_name__ : List[Any] = {v: k for k, v in idalabel.items()} __magic_name__ : Optional[int] = [1, 150, 480, 480] return config, expected_shape def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : str = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __magic_name__ : Optional[Any] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: __magic_name__ : List[Any] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: __magic_name__ : Any = name.replace('patch_embed' , '' ) if "pos_embed" in name: __magic_name__ : Optional[int] = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: __magic_name__ : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: __magic_name__ : Union[str, Any] = name.replace('proj' , 'projection' ) if "blocks" in name: __magic_name__ : List[str] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: __magic_name__ : Any = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __magic_name__ : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: __magic_name__ : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: __magic_name__ : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: __magic_name__ : List[str] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: __magic_name__ : Union[str, Any] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: __magic_name__ : Dict = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: __magic_name__ : Optional[int] = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: __magic_name__ : List[str] = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: __magic_name__ : Union[str, Any] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: __magic_name__ : Tuple = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __magic_name__ : str = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __magic_name__ : int = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: __magic_name__ : List[str] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: __magic_name__ : Dict = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: __magic_name__ : Any = name.replace('conv1' , 'convolution1' ) if "conv2" in name: __magic_name__ : Union[str, Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __magic_name__ : Optional[int] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __magic_name__ : List[Any] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __magic_name__ : Union[str, Any] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __magic_name__ : Dict = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __magic_name__ : int = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __magic_name__ : str = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __magic_name__ : str = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __magic_name__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __magic_name__ : Optional[int] = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __magic_name__ : Union[str, Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __magic_name__ : str = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __magic_name__ : Union[str, Any] = name.replace('pretrained' , 'dpt' ) if "bn" in name: __magic_name__ : Dict = name.replace('bn' , 'batch_norm' ) if "head" in name: __magic_name__ : Optional[Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: __magic_name__ : Dict = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: __magic_name__ : int = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: __magic_name__ : Tuple = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: __magic_name__ : Optional[int] = name.replace('..' , '.' ) if "stem.conv" in name: __magic_name__ : Dict = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __magic_name__ : Tuple = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: __magic_name__ : Optional[int] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: __magic_name__ : List[str] = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: __magic_name__ : Optional[int] = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: __magic_name__ : int = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: __magic_name__ : Optional[int] = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : int ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : int = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) __magic_name__ : str = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Optional[Any] = in_proj_weight[: config.hidden_size, :] __magic_name__ : Any = in_proj_bias[: config.hidden_size] __magic_name__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : List[str] = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __magic_name__ : str = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ , __magic_name__ : Tuple = get_dpt_config(lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __magic_name__ : int = torch.load(lowerCAmelCase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): __magic_name__ : Union[str, Any] = state_dict.pop(lowerCAmelCase ) __magic_name__ : Tuple = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model __magic_name__ : str = DPTForSemanticSegmentation(lowerCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() # Check outputs on an image __magic_name__ : Tuple = 480 if 'ade' in checkpoint_url else 384 __magic_name__ : Union[str, Any] = DPTImageProcessor(size=lowerCAmelCase ) __magic_name__ : int = prepare_img() __magic_name__ : Optional[Any] = image_processor(lowerCAmelCase , return_tensors='pt' ) # forward pass __magic_name__ : Optional[Any] = model(**lowerCAmelCase ).logits if 'ade' in checkpoint_url else model(**lowerCAmelCase ).predicted_depth if show_prediction: __magic_name__ : str = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": lowerCAmelCase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) lowerCAmelCase :Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
331
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = ['''CLIPFeatureExtractor'''] lowerCAmelCase :int = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def lowerCamelCase ( lowerCAmelCase : int = 100_0000 , lowerCAmelCase : int = 10 ): """simple docstring""" __magic_name__ : defaultdict = defaultdict(lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __magic_name__ : Dict = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __magic_name__ : Union[str, Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
331
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCAmelCase :Tuple = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Union[str, Any]: super().__init__() __magic_name__ : int = nn.ModuleList(_A ) def __lowerCAmelCase ( self : Tuple , _A : torch.FloatTensor , _A : Union[torch.Tensor, float, int] , _A : torch.Tensor , _A : List[torch.tensor] , _A : List[float] , _A : Optional[torch.Tensor] = None , _A : Optional[torch.Tensor] = None , _A : Optional[torch.Tensor] = None , _A : Optional[Dict[str, Any]] = None , _A : bool = False , _A : bool = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(_A , _A , self.nets ) ): __magic_name__ , __magic_name__ : Optional[Any] = controlnet( _A , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A , ) # merge samples if i == 0: __magic_name__ , __magic_name__ : Optional[Any] = down_samples, mid_sample else: __magic_name__ : Union[str, Any] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_A , _A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self : Any , _A : Union[str, os.PathLike] , _A : bool = True , _A : Callable = None , _A : bool = False , _A : Optional[str] = None , ) -> List[Any]: __magic_name__ : Dict = 0 __magic_name__ : Dict = save_directory for controlnet in self.nets: controlnet.save_pretrained( _A , is_main_process=_A , save_function=_A , safe_serialization=_A , variant=_A , ) idx += 1 __magic_name__ : Optional[int] = model_path_to_save + F'_{idx}' @classmethod def __lowerCAmelCase ( cls : int , _A : Optional[Union[str, os.PathLike]] , **_A : Tuple ) -> int: __magic_name__ : Union[str, Any] = 0 __magic_name__ : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __magic_name__ : List[str] = pretrained_model_path while os.path.isdir(_A ): __magic_name__ : Optional[Any] = ControlNetModel.from_pretrained(_A , **_A ) controlnets.append(_A ) idx += 1 __magic_name__ : int = pretrained_model_path + F'_{idx}' logger.info(F'{len(_A )} controlnets loaded from {pretrained_model_path}.' ) if len(_A ) == 0: raise ValueError( F'No ControlNets found under {os.path.dirname(_A )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(_A )
331
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
1
'''simple docstring''' import functools def lowerCamelCase ( lowerCAmelCase : list[int] , lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ) or not all(isinstance(lowerCAmelCase , lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(lowerCAmelCase ) != 3 or not all(isinstance(lowerCAmelCase , lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(lowerCAmelCase ) == 0: return 0 if min(lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(lowerCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) __magic_name__ : Any = set(lowerCAmelCase ) @functools.cache def dynamic_programming(lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : int = len(lowerCAmelCase ) while cur > 1: # Find the maximum number in arr __magic_name__ : int = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __magic_name__ : Union[str, Any] = arr[mi::-1] + arr[mi + 1 : len(lowerCAmelCase )] # Reverse whole list __magic_name__ : List[str] = arr[cur - 1 :: -1] + arr[cur : len(lowerCAmelCase )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase :List[str] = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase :List[Any] = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[Any] = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys lowerCAmelCase :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCAmelCase :Dict = logging.get_logger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: __magic_name__ : List[Any] = os.path.abspath(lowerCAmelCase ) logger.info(f'Loading PyTorch weights from {pt_path}' ) __magic_name__ : Dict = torch.load(lowerCAmelCase , map_location='cpu' ) logger.info(f'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __magic_name__ : List[str] = convert_pytorch_state_dict_to_flax(lowerCAmelCase , lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __magic_name__ : List[Any] = convert_pytorch_sharded_state_dict_to_flax(lowerCAmelCase , lowerCAmelCase ) return flax_state_dict def lowerCamelCase ( lowerCAmelCase : Tuple[str] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, jnp.ndarray] , lowerCAmelCase : str , ): """simple docstring""" def is_key_or_prefix_key_in_dict(lowerCAmelCase : Tuple[str] ) -> bool: return len(set(lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __magic_name__ : List[str] = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __magic_name__ : List[str] = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __magic_name__ : List[str] = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __magic_name__ : Optional[int] = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __magic_name__ : int = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): __magic_name__ : Optional[int] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __magic_name__ : List[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): __magic_name__ : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __magic_name__ : Any = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __magic_name__ : Union[str, Any] = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __magic_name__ : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __magic_name__ : str = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __magic_name__ : int = pt_tuple_key[-2] + '_v' if name is not None: __magic_name__ : str = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} __magic_name__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __magic_name__ : Union[str, Any] = flax_model.params['params'] else: __magic_name__ : Optional[int] = flax_model.params __magic_name__ : Union[str, Any] = flatten_dict(lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __magic_name__ : Dict = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(lowerCAmelCase ) __magic_name__ : str = {} __magic_name__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __magic_name__ : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __magic_name__ : Any = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __magic_name__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __magic_name__ : Dict = pt_tuple_key[1:] # Correctly rename weight parameters __magic_name__ , __magic_name__ : List[str] = rename_key_and_reshape_tensor( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # add model prefix if necessary __magic_name__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __magic_name__ : Any = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __magic_name__ : int = jnp.asarray(lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCAmelCase , lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __magic_name__ : str = jnp.asarray(lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __magic_name__ : Optional[Any] = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] ): """simple docstring""" import torch # Load the index __magic_name__ : Tuple = {} for shard_file in shard_filenames: # load using msgpack utils __magic_name__ : str = torch.load(lowerCAmelCase ) __magic_name__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} __magic_name__ : Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __magic_name__ : int = flax_model.params['params'] __magic_name__ : Union[str, Any] = flatten_dict(lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: __magic_name__ : int = flax_model.params __magic_name__ : List[Any] = flatten_dict(lowerCAmelCase ) __magic_name__ : Dict = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __magic_name__ : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __magic_name__ : List[Any] = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __magic_name__ : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __magic_name__ : Dict = pt_tuple_key[1:] # Correctly rename weight parameters __magic_name__ , __magic_name__ : Tuple = rename_key_and_reshape_tensor( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # add model prefix if necessary __magic_name__ : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __magic_name__ : Union[str, Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __magic_name__ : int = jnp.asarray(lowerCAmelCase ) continue if "var" in flax_key[-1]: __magic_name__ : Optional[Any] = jnp.asarray(lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCAmelCase , lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __magic_name__ : Optional[Any] = jnp.asarray(lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __magic_name__ : List[str] = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : Union[str, Any] = os.path.abspath(lowerCAmelCase ) logger.info(f'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __magic_name__ : str = getattr(lowerCAmelCase , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(lowerCAmelCase , 'rb' ) as state_f: try: __magic_name__ : Tuple = from_bytes(lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __magic_name__ : Tuple = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase : x.dtype == jnp.bfloataa , lowerCAmelCase ) ).values() if any(lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __magic_name__ : Dict = jax.tree_util.tree_map( lambda lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase ) __magic_name__ : Union[str, Any] = flatten_dict(lowerCAmelCase ) __magic_name__ : int = pt_model.state_dict() __magic_name__ : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) __magic_name__ : Dict = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __magic_name__ : str = [] __magic_name__ : Optional[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __magic_name__ : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix __magic_name__ : Optional[Any] = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __magic_name__ : Union[str, Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __magic_name__ : Any = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(lowerCAmelCase ) not in pt_model_dict: # conv layer __magic_name__ : str = flax_key_tuple[:-1] + ('weight',) __magic_name__ : List[str] = jnp.transpose(lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase ) not in pt_model_dict: # linear layer __magic_name__ : List[str] = flax_key_tuple[:-1] + ('weight',) __magic_name__ : Dict = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __magic_name__ : Optional[Any] = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __magic_name__ : List[str] = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: __magic_name__ : Union[str, Any] = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: __magic_name__ : Optional[int] = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __magic_name__ : Optional[int] = '.'.join(lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __magic_name__ : Dict = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __magic_name__ : Tuple = key.split('.' ) __magic_name__ : List[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: __magic_name__ : Dict = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: __magic_name__ : List[Any] = key_components[-2] + '_v' if name is not None: __magic_name__ : Dict = key_components[:-3] + [name] __magic_name__ : Optional[Any] = '.'.join(lowerCAmelCase ) __magic_name__ : Dict = key if flax_key in special_pt_names: __magic_name__ : Tuple = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __magic_name__ : int = np.asarray(lowerCAmelCase ) if not isinstance(lowerCAmelCase , np.ndarray ) else flax_tensor __magic_name__ : str = torch.from_numpy(lowerCAmelCase ) # remove from missing keys missing_keys.remove(lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase ) pt_model.load_state_dict(lowerCAmelCase ) # re-transform missing_keys to list __magic_name__ : Optional[Any] = list(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(f'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(lowerCAmelCase ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( f'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' f'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
331
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
1
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def lowerCamelCase ( lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : Tuple = 1 __magic_name__ : Any = 2 while i * i <= n: __magic_name__ : str = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(lowerCAmelCase ) > 500 ) if __name__ == "__main__": print(solution())
331
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" if index == r: for j in range(lowerCAmelCase ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __magic_name__ : int = arr[i] combination_util(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , index + 1 , lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Optional[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , 0 , lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above lowerCAmelCase :List[Any] = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase :Optional[Any] = logging.get_logger(__name__) lowerCAmelCase :Dict = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = """blenderbot-small""" A_ : int = ["""past_key_values"""] A_ : int = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , _A : Optional[Any]=50265 , _A : str=512 , _A : Optional[Any]=8 , _A : List[str]=2048 , _A : str=16 , _A : Tuple=8 , _A : str=2048 , _A : List[Any]=16 , _A : List[str]=0.0 , _A : Union[str, Any]=0.0 , _A : Union[str, Any]=True , _A : Tuple=True , _A : int="gelu" , _A : str=512 , _A : str=0.1 , _A : int=0.0 , _A : Dict=0.0 , _A : Union[str, Any]=0.02 , _A : Any=1 , _A : Dict=False , _A : List[Any]=0 , _A : Optional[int]=1 , _A : Tuple=2 , _A : int=2 , **_A : Dict , ) -> Dict: __magic_name__ : List[Any] = vocab_size __magic_name__ : Union[str, Any] = max_position_embeddings __magic_name__ : Any = d_model __magic_name__ : int = encoder_ffn_dim __magic_name__ : str = encoder_layers __magic_name__ : str = encoder_attention_heads __magic_name__ : Any = decoder_ffn_dim __magic_name__ : Optional[int] = decoder_layers __magic_name__ : Dict = decoder_attention_heads __magic_name__ : List[str] = dropout __magic_name__ : List[Any] = attention_dropout __magic_name__ : Any = activation_dropout __magic_name__ : Union[str, Any] = activation_function __magic_name__ : int = init_std __magic_name__ : Any = encoder_layerdrop __magic_name__ : Tuple = decoder_layerdrop __magic_name__ : Dict = use_cache __magic_name__ : Any = encoder_layers __magic_name__ : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def __lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __magic_name__ : int = {0: 'batch'} __magic_name__ : Union[str, Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __magic_name__ : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} __magic_name__ : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_A , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __magic_name__ : int = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __magic_name__ , __magic_name__ : Any = self.num_layers for i in range(_A ): __magic_name__ : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'} __magic_name__ : Dict = {0: 'batch', 2: 'past_sequence + sequence'} else: __magic_name__ : Tuple = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def __lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Dict = super().outputs else: __magic_name__ : int = super(_A , self ).outputs if self.use_past: __magic_name__ , __magic_name__ : str = self.num_layers for i in range(_A ): __magic_name__ : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'} __magic_name__ : Any = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCAmelCase ( self : str , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: __magic_name__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) # Generate decoder inputs __magic_name__ : Any = seq_length if not self.use_past else 1 __magic_name__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) __magic_name__ : List[str] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __magic_name__ : Optional[Any] = dict(**_A , **_A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __magic_name__ , __magic_name__ : Tuple = common_inputs['input_ids'].shape __magic_name__ : List[Any] = common_inputs['decoder_input_ids'].shape[1] __magic_name__ , __magic_name__ : Any = self.num_attention_heads __magic_name__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : str = decoder_seq_length + 3 __magic_name__ : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __magic_name__ : Any = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_A , _A )] , dim=1 ) __magic_name__ : Dict = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __magic_name__ , __magic_name__ : int = self.num_layers __magic_name__ : Any = min(_A , _A ) __magic_name__ : List[str] = max(_A , _A ) - min_num_layers __magic_name__ : Union[str, Any] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. __magic_name__ : Dict = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_A , _A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def __lowerCAmelCase ( self : Optional[Any] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: __magic_name__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , _A , _A , _A , _A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __magic_name__ , __magic_name__ : Tuple = common_inputs['input_ids'].shape # Not using the same length for past_key_values __magic_name__ : Tuple = seqlen + 2 __magic_name__ , __magic_name__ : Optional[int] = self.num_layers __magic_name__ , __magic_name__ : Optional[int] = self.num_attention_heads __magic_name__ : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : str = common_inputs['attention_mask'].dtype __magic_name__ : Union[str, Any] = torch.cat( [common_inputs['attention_mask'], torch.ones(_A , _A , dtype=_A )] , dim=1 ) __magic_name__ : Optional[int] = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def __lowerCAmelCase ( self : Optional[int] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ : str = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ : str = tokenizer.num_special_tokens_to_add(_A ) __magic_name__ : str = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence __magic_name__ : int = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __magic_name__ : List[str] = dict(tokenizer(_A , return_tensors=_A ) ) return common_inputs def __lowerCAmelCase ( self : List[Any] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) elif self.task == "causal-lm": __magic_name__ : List[str] = self._generate_dummy_inputs_for_causal_lm( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) else: __magic_name__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) return common_inputs def __lowerCAmelCase ( self : Optional[int] , _A : List[str] , _A : List[str] , _A : Dict , _A : Tuple ) -> Optional[int]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[str] = super()._flatten_past_key_values_(_A , _A , _A , _A ) else: __magic_name__ : Dict = super(_A , self )._flatten_past_key_values_( _A , _A , _A , _A )
331
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase :Any = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""input_values""", """padding_mask"""] def __init__( self : int , _A : int = 1 , _A : int = 24000 , _A : float = 0.0 , _A : float = None , _A : float = None , **_A : Dict , ) -> Optional[int]: super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) __magic_name__ : Tuple = chunk_length_s __magic_name__ : List[Any] = overlap @property def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : str , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : Optional[Union[bool, str, PaddingStrategy]] = None , _A : Optional[bool] = False , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs __magic_name__ : Union[str, Any] = True __magic_name__ : Union[str, Any] = bool( isinstance(_A , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__ : Optional[int] = [np.asarray(_A , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_A , np.ndarray ): __magic_name__ : Optional[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __magic_name__ : Union[str, Any] = [np.asarray(_A ).T] # verify inputs are valid for idx, example in enumerate(_A ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) __magic_name__ : int = None __magic_name__ : int = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __magic_name__ : Dict = min(array.shape[0] for array in raw_audio ) __magic_name__ : List[str] = int(np.floor(max_length / self.chunk_stride ) ) __magic_name__ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __magic_name__ : Tuple = max(array.shape[0] for array in raw_audio ) __magic_name__ : Optional[Any] = int(np.ceil(max_length / self.chunk_stride ) ) __magic_name__ : Tuple = (nb_step - 1) * self.chunk_stride + self.chunk_length __magic_name__ : Dict = 'max_length' else: __magic_name__ : Union[str, Any] = input_values # normal padding on batch if padded_inputs is None: __magic_name__ : Optional[int] = self.pad( _A , max_length=_A , truncation=_A , padding=_A , return_attention_mask=_A , ) if padding: __magic_name__ : str = padded_inputs.pop('attention_mask' ) __magic_name__ : List[Any] = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: __magic_name__ : int = example[..., None] input_values.append(example.T ) __magic_name__ : Dict = input_values if return_tensors is not None: __magic_name__ : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs
331
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase :str = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase :str = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = """retribert""" def __init__( self : str , _A : List[str]=30522 , _A : Optional[Any]=768 , _A : List[Any]=8 , _A : Dict=12 , _A : Any=3072 , _A : Tuple="gelu" , _A : Optional[int]=0.1 , _A : List[str]=0.1 , _A : Union[str, Any]=512 , _A : int=2 , _A : Tuple=0.02 , _A : Optional[Any]=1E-12 , _A : Optional[Any]=True , _A : str=128 , _A : Union[str, Any]=0 , **_A : Tuple , ) -> List[str]: super().__init__(pad_token_id=_A , **_A ) __magic_name__ : str = vocab_size __magic_name__ : int = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : List[str] = num_attention_heads __magic_name__ : str = hidden_act __magic_name__ : Tuple = intermediate_size __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : Optional[int] = max_position_embeddings __magic_name__ : List[str] = type_vocab_size __magic_name__ : int = initializer_range __magic_name__ : str = layer_norm_eps __magic_name__ : Dict = share_encoders __magic_name__ : int = projection_dim
331
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
1
'''simple docstring''' from manim import * class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) __magic_name__ : int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __magic_name__ : Tuple = [mem.copy() for i in range(6 )] __magic_name__ : List[Any] = [mem.copy() for i in range(6 )] __magic_name__ : Optional[Any] = VGroup(*_A ).arrange(_A , buff=0 ) __magic_name__ : Union[str, Any] = VGroup(*_A ).arrange(_A , buff=0 ) __magic_name__ : List[str] = VGroup(_A , _A ).arrange(_A , buff=0 ) __magic_name__ : str = Text('CPU' , font_size=24 ) __magic_name__ : Dict = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_A ) __magic_name__ : List[Any] = [mem.copy() for i in range(4 )] __magic_name__ : Any = VGroup(*_A ).arrange(_A , buff=0 ) __magic_name__ : int = Text('GPU' , font_size=24 ) __magic_name__ : Union[str, Any] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) gpu.move_to([-1, -1, 0] ) self.add(_A ) __magic_name__ : int = [mem.copy() for i in range(6 )] __magic_name__ : Optional[int] = VGroup(*_A ).arrange(_A , buff=0 ) __magic_name__ : Optional[int] = Text('Model' , font_size=24 ) __magic_name__ : str = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) model.move_to([3, -1.0, 0] ) self.add(_A ) __magic_name__ : List[str] = [] for i, rect in enumerate(_A ): rect.set_stroke(_A ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __magic_name__ : List[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_A , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_A ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_A , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_A , buff=0.0 ) self.add(_A ) cpu_targs.append(_A ) __magic_name__ : Tuple = [mem.copy() for i in range(6 )] __magic_name__ : Union[str, Any] = VGroup(*_A ).arrange(_A , buff=0 ) __magic_name__ : List[Any] = Text('Loaded Checkpoint' , font_size=24 ) __magic_name__ : Tuple = Group(_A , _A ).arrange(_A , aligned_edge=_A , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __magic_name__ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __magic_name__ : Any = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_A , _A ) __magic_name__ : Optional[int] = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __magic_name__ : List[str] = MarkupText( F'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_A ) , Write(_A ) ) self.play(Write(_A , run_time=1 ) , Create(_A , run_time=1 ) ) __magic_name__ : int = [] __magic_name__ : Any = [] for i, rect in enumerate(_A ): __magic_name__ : List[Any] = fill.copy().set_fill(_A , opacity=0.7 ) target.move_to(_A ) first_animations.append(GrowFromCenter(_A , run_time=1 ) ) __magic_name__ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_A , run_time=1.5 ) ) self.play(*_A ) self.play(*_A ) self.wait()
331
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __magic_name__ : List[str] = str(bin(lowerCAmelCase ) )[2:] # remove the leading "0b" __magic_name__ : Dict = str(bin(lowerCAmelCase ) )[2:] # remove the leading "0b" __magic_name__ : Any = max(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase ) , b_binary.zfill(lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
1
'''simple docstring''' import os def lowerCamelCase ( ): """simple docstring""" with open(os.path.dirname(lowerCAmelCase ) + '/p022_names.txt' ) as file: __magic_name__ : Union[str, Any] = str(file.readlines()[0] ) __magic_name__ : Dict = names.replace('"' , '' ).split(',' ) names.sort() __magic_name__ : List[Any] = 0 __magic_name__ : Optional[Any] = 0 for i, name in enumerate(lowerCAmelCase ): for letter in name: name_score += ord(lowerCAmelCase ) - 64 total_score += (i + 1) * name_score __magic_name__ : int = 0 return total_score if __name__ == "__main__": print(solution())
331
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : str ) -> Dict: # test for the above condition self.test() def __lowerCAmelCase ( self : List[Any] ) -> Any: __magic_name__ : Any = 0 __magic_name__ : List[Any] = False while not completed: if counter == 1: self.reset() __magic_name__ : int = self.advance() if not self.does_advance(_A ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = self.update(_A ) counter += 1 if counter > 10000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def __lowerCAmelCase ( self : Any , _A : int ) -> List[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def __lowerCAmelCase ( self : Dict , _A : int ) -> Optional[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def __lowerCAmelCase ( self : List[str] ) -> int: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def __lowerCAmelCase ( self : Union[str, Any] , _A : str=False ) -> Union[str, Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : str , _A : List[int] ) -> Optional[Any]: super(_A , self ).__init__() if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError(F'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(_A , _A ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) __magic_name__ : Optional[int] = token_ids __magic_name__ : Dict = len(self.token_ids ) __magic_name__ : Dict = -1 # the index of the currently fulfilled step __magic_name__ : Optional[Any] = False def __lowerCAmelCase ( self : str ) -> List[str]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self : Optional[int] , _A : int ) -> List[str]: if not isinstance(_A , _A ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(_A )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self : Union[str, Any] , _A : int ) -> Dict: if not isinstance(_A , _A ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(_A )}' ) __magic_name__ : Tuple = False __magic_name__ : Optional[Any] = False __magic_name__ : str = False if self.does_advance(_A ): self.fulfilled_idx += 1 __magic_name__ : Union[str, Any] = True if self.fulfilled_idx == (self.seqlen - 1): __magic_name__ : List[Any] = True __magic_name__ : Union[str, Any] = completed else: # failed to make progress. __magic_name__ : Optional[int] = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ : Optional[int] = False __magic_name__ : int = 0 def __lowerCAmelCase ( self : str ) -> str: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any]=False ) -> Tuple: __magic_name__ : Dict = PhrasalConstraint(self.token_ids ) if stateful: __magic_name__ : Dict = self.seqlen __magic_name__ : Union[str, Any] = self.fulfilled_idx __magic_name__ : str = self.completed return new_constraint class _lowerCamelCase : '''simple docstring''' def __init__( self : Dict , _A : List[List[int]] , _A : Tuple=True ) -> List[str]: __magic_name__ : Any = max([len(_A ) for one in nested_token_ids] ) __magic_name__ : Tuple = {} for token_ids in nested_token_ids: __magic_name__ : List[Any] = root for tidx, token_id in enumerate(_A ): if token_id not in level: __magic_name__ : str = {} __magic_name__ : Any = level[token_id] if no_subsets and self.has_subsets(_A , _A ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F' {nested_token_ids}.' ) __magic_name__ : List[Any] = root def __lowerCAmelCase ( self : Optional[int] , _A : int ) -> Union[str, Any]: __magic_name__ : List[str] = self.trie for current_token in current_seq: __magic_name__ : Optional[int] = start[current_token] __magic_name__ : Any = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self : str , _A : List[Any] ) -> Tuple: __magic_name__ : List[Any] = self.next_tokens(_A ) return len(_A ) == 0 def __lowerCAmelCase ( self : List[Any] , _A : int ) -> List[Any]: __magic_name__ : str = list(root.values() ) if len(_A ) == 0: return 1 else: return sum([self.count_leaves(_A ) for nn in next_nodes] ) def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : List[Any] ) -> str: __magic_name__ : int = self.count_leaves(_A ) return len(_A ) != leaf_count class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Tuple , _A : List[List[int]] ) -> int: super(_A , self ).__init__() if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError(F'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(_A , _A ) for token_ids in nested_token_ids ): raise ValueError(F'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(_A , _A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) __magic_name__ : Optional[int] = DisjunctiveTrie(_A ) __magic_name__ : Tuple = nested_token_ids __magic_name__ : List[Any] = self.trie.max_height __magic_name__ : List[Any] = [] __magic_name__ : str = False def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: __magic_name__ : Dict = self.trie.next_tokens(self.current_seq ) if len(_A ) == 0: return None else: return token_list def __lowerCAmelCase ( self : Union[str, Any] , _A : int ) -> List[str]: if not isinstance(_A , _A ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(_A )}' ) __magic_name__ : Union[str, Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self : Optional[Any] , _A : int ) -> Dict: if not isinstance(_A , _A ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(_A )}' ) __magic_name__ : List[Any] = False __magic_name__ : List[str] = False __magic_name__ : Optional[Any] = False if self.does_advance(_A ): self.current_seq.append(_A ) __magic_name__ : Dict = True else: __magic_name__ : Dict = True self.reset() __magic_name__ : Optional[int] = self.trie.reached_leaf(self.current_seq ) __magic_name__ : int = completed return stepped, completed, reset def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: __magic_name__ : List[Any] = False __magic_name__ : Tuple = [] def __lowerCAmelCase ( self : Tuple ) -> Tuple: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self : Tuple , _A : Any=False ) -> List[str]: __magic_name__ : str = DisjunctiveConstraint(self.token_ids ) if stateful: __magic_name__ : List[Any] = self.seqlen __magic_name__ : Any = self.current_seq __magic_name__ : List[Any] = self.completed return new_constraint class _lowerCamelCase : '''simple docstring''' def __init__( self : Any , _A : List[Constraint] ) -> int: __magic_name__ : Optional[Any] = constraints # max # of steps required to fulfill a given constraint __magic_name__ : int = max([c.seqlen for c in constraints] ) __magic_name__ : int = len(_A ) __magic_name__ : Optional[int] = False self.init_state() def __lowerCAmelCase ( self : Optional[int] ) -> str: __magic_name__ : Tuple = [] __magic_name__ : Union[str, Any] = None __magic_name__ : Tuple = [constraint.copy(stateful=_A ) for constraint in self.constraints] def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ : List[str] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : int = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __magic_name__ : Union[str, Any] = constraint.advance() if isinstance(_A , _A ): token_list.append(_A ) elif isinstance(_A , _A ): token_list.extend(_A ) else: __magic_name__ : str = self.inprogress_constraint.advance() if isinstance(_A , _A ): token_list.append(_A ) elif isinstance(_A , _A ): token_list.extend(_A ) if len(_A ) == 0: return None else: return token_list def __lowerCAmelCase ( self : int , _A : Optional[List[int]] ) -> str: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __magic_name__ , __magic_name__ : Optional[Any] = self.add(_A ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self : Optional[Any] , _A : int ) -> Tuple: if not isinstance(_A , _A ): raise ValueError(F'`token_id` should be an `int`, but is `{token_id}`.' ) __magic_name__ , __magic_name__ : str = False, False if self.completed: __magic_name__ : List[Any] = True __magic_name__ : str = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = self.inprogress_constraint.update(_A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_A ) ) __magic_name__ : int = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __magic_name__ : Dict = None if len(self.pending_constraints ) == 0: # we're done! __magic_name__ : str = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_A ): __magic_name__ , __magic_name__ , __magic_name__ : Tuple = pending_constraint.update(_A ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(_A ) __magic_name__ : Optional[int] = None if not complete and stepped: __magic_name__ : Any = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __magic_name__ : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __magic_name__ : List[Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self : Union[str, Any] , _A : str=True ) -> str: __magic_name__ : Union[str, Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __magic_name__ : List[str] = [ constraint.copy(stateful=_A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __magic_name__ : Dict = self.inprogress_constraint.copy(stateful=_A ) __magic_name__ : Optional[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
331
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class _lowerCamelCase ( unittest.TestCase , lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : Optional[int] = load_tool('text-to-speech' ) self.tool.setup() def __lowerCAmelCase ( self : int ) -> List[str]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __magic_name__ : Tuple = self.tool('hey' ) __magic_name__ : List[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __lowerCAmelCase ( self : Dict ) -> int: # SpeechT5 isn't deterministic torch.manual_seed(0 ) __magic_name__ : Optional[Any] = self.tool('hey' ) __magic_name__ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
331
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = VideoToVideoSDPipeline A_ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} A_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} A_ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} A_ : List[Any] = False # No `output_type`. A_ : str = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: torch.manual_seed(0 ) __magic_name__ : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) __magic_name__ : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __magic_name__ : List[str] = CLIPTextModel(_A ) __magic_name__ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __magic_name__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] , _A : Optional[int]=0 ) -> List[str]: # 3 frames __magic_name__ : List[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __lowerCAmelCase ( self : Any ) -> List[Any]: __magic_name__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator __magic_name__ : Any = self.get_dummy_components() __magic_name__ : Optional[Any] = VideoToVideoSDPipeline(**_A ) __magic_name__ : Optional[Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) __magic_name__ : List[str] = self.get_dummy_inputs(_A ) __magic_name__ : List[str] = 'np' __magic_name__ : List[Any] = sd_pipe(**_A ).frames __magic_name__ : Optional[int] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __magic_name__ : Union[str, Any] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : str ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __lowerCAmelCase ( self : Any ) -> List[str]: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __lowerCAmelCase ( self : str ) -> Tuple: pass def __lowerCAmelCase ( self : str ) -> int: return super().test_progress_bar() @slow @skip_mps class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) -> List[Any]: __magic_name__ : int = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __magic_name__ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) __magic_name__ : List[str] = torch.randn((1, 10, 3, 1024, 576) , generator=_A ) __magic_name__ : List[str] = video.to('cuda' ) __magic_name__ : Union[str, Any] = 'Spiderman is surfing' __magic_name__ : Optional[int] = pipe(_A , video=_A , generator=_A , num_inference_steps=3 , output_type='pt' ).frames __magic_name__ : Optional[int] = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
331
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
1
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Optional[Any] = logging.get_logger(__name__) lowerCAmelCase :Any = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = """align_text_model""" def __init__( self : Union[str, Any] , _A : Optional[Any]=30522 , _A : List[str]=768 , _A : Optional[int]=12 , _A : Optional[int]=12 , _A : Optional[int]=3072 , _A : Dict="gelu" , _A : List[str]=0.1 , _A : Optional[Any]=0.1 , _A : int=512 , _A : Optional[Any]=2 , _A : Optional[int]=0.02 , _A : Optional[int]=1E-12 , _A : Optional[Any]=0 , _A : Optional[int]="absolute" , _A : Tuple=True , **_A : List[Any] , ) -> List[Any]: super().__init__(**_A ) __magic_name__ : List[Any] = vocab_size __magic_name__ : Optional[Any] = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : int = hidden_act __magic_name__ : List[Any] = intermediate_size __magic_name__ : List[str] = hidden_dropout_prob __magic_name__ : int = attention_probs_dropout_prob __magic_name__ : List[str] = max_position_embeddings __magic_name__ : str = type_vocab_size __magic_name__ : Optional[Any] = initializer_range __magic_name__ : str = layer_norm_eps __magic_name__ : List[str] = position_embedding_type __magic_name__ : List[Any] = use_cache __magic_name__ : Union[str, Any] = pad_token_id @classmethod def __lowerCAmelCase ( cls : str , _A : Union[str, os.PathLike] , **_A : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(_A ) __magic_name__ , __magic_name__ : str = cls.get_config_dict(_A , **_A ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __magic_name__ : Union[str, Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[Any] = """align_vision_model""" def __init__( self : List[str] , _A : int = 3 , _A : int = 600 , _A : float = 2.0 , _A : float = 3.1 , _A : int = 8 , _A : List[int] = [3, 3, 5, 3, 5, 5, 3] , _A : List[int] = [32, 16, 24, 40, 80, 112, 192] , _A : List[int] = [16, 24, 40, 80, 112, 192, 320] , _A : List[int] = [] , _A : List[int] = [1, 2, 2, 2, 1, 2, 1] , _A : List[int] = [1, 2, 2, 3, 3, 4, 1] , _A : List[int] = [1, 6, 6, 6, 6, 6, 6] , _A : float = 0.25 , _A : str = "swish" , _A : int = 2560 , _A : str = "mean" , _A : float = 0.02 , _A : float = 0.001 , _A : float = 0.99 , _A : float = 0.2 , **_A : str , ) -> str: super().__init__(**_A ) __magic_name__ : Optional[Any] = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Any = width_coefficient __magic_name__ : Optional[Any] = depth_coefficient __magic_name__ : Optional[Any] = depth_divisor __magic_name__ : List[Any] = kernel_sizes __magic_name__ : Optional[int] = in_channels __magic_name__ : str = out_channels __magic_name__ : List[Any] = depthwise_padding __magic_name__ : Any = strides __magic_name__ : Optional[int] = num_block_repeats __magic_name__ : Tuple = expand_ratios __magic_name__ : int = squeeze_expansion_ratio __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dim __magic_name__ : Optional[int] = pooling_type __magic_name__ : Tuple = initializer_range __magic_name__ : List[Any] = batch_norm_eps __magic_name__ : List[str] = batch_norm_momentum __magic_name__ : Optional[int] = drop_connect_rate __magic_name__ : int = sum(_A ) * 4 @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , _A : Union[str, os.PathLike] , **_A : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(_A ) __magic_name__ , __magic_name__ : List[Any] = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __magic_name__ : Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = """align""" A_ : int = True def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : Union[str, Any]=640 , _A : Tuple=1.0 , _A : Any=0.02 , **_A : Dict , ) -> str: super().__init__(**_A ) if text_config is None: __magic_name__ : Optional[int] = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: __magic_name__ : int = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) __magic_name__ : int = AlignTextConfig(**_A ) __magic_name__ : Optional[int] = AlignVisionConfig(**_A ) __magic_name__ : Any = projection_dim __magic_name__ : int = temperature_init_value __magic_name__ : Tuple = initializer_range @classmethod def __lowerCAmelCase ( cls : Optional[int] , _A : AlignTextConfig , _A : AlignVisionConfig , **_A : Dict ) -> Tuple: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_A ) def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Optional[int] = copy.deepcopy(self.__dict__ ) __magic_name__ : Union[str, Any] = self.text_config.to_dict() __magic_name__ : Any = self.vision_config.to_dict() __magic_name__ : List[Any] = self.__class__.model_type return output
331
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
1
'''simple docstring''' from itertools import product def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Tuple = sides_number __magic_name__ : List[Any] = max_face_number * dice_number __magic_name__ : Any = [0] * (max_total + 1) __magic_name__ : int = 1 __magic_name__ : Optional[int] = range(lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase , repeat=lowerCAmelCase ): __magic_name__ : int = sum(lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Union[str, Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) __magic_name__ : Dict = total_frequency_distribution( sides_number=6 , dice_number=6 ) __magic_name__ : List[str] = 0 __magic_name__ : str = 9 __magic_name__ : Optional[int] = 4 * 9 __magic_name__ : Union[str, Any] = 6 for peter_total in range(lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __magic_name__ : Any = (4**9) * (6**6) __magic_name__ : Optional[Any] = peter_wins_count / total_games_number __magic_name__ : str = round(lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
331
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase :Tuple = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCAmelCase :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int , _A : List[Any] ) -> Any: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __magic_name__ : Union[str, Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : Tuple ) -> List[Any]: __magic_name__ : Tuple = 'sshleifer/tiny-gpt2' __magic_name__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : Tuple = PyTorchBenchmark(_A ) __magic_name__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : List[Any] ) -> str: __magic_name__ : List[str] = 'sgugger/tiny-distilbert-classification' __magic_name__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , only_pretrain_model=_A , ) __magic_name__ : List[Any] = PyTorchBenchmark(_A ) __magic_name__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: __magic_name__ : List[Any] = 'sshleifer/tiny-gpt2' __magic_name__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , torchscript=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : int = PyTorchBenchmark(_A ) __magic_name__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__ : Optional[int] = 'sshleifer/tiny-gpt2' __magic_name__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , fpaa=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : Any = PyTorchBenchmark(_A ) __magic_name__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : List[str] = 'sshleifer/tiny-gpt2' __magic_name__ : Optional[int] = AutoConfig.from_pretrained(_A ) # set architectures equal to `None` __magic_name__ : List[Any] = None __magic_name__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : List[Any] = PyTorchBenchmark(_A , configs=[config] ) __magic_name__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ : Any = 'sshleifer/tiny-gpt2' __magic_name__ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : Optional[int] = PyTorchBenchmark(_A ) __magic_name__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def __lowerCAmelCase ( self : str ) -> Dict: __magic_name__ : Dict = 'sshleifer/tiny-gpt2' __magic_name__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_A , multi_process=_A , ) __magic_name__ : Any = PyTorchBenchmark(_A ) __magic_name__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self : Tuple ) -> Dict: __magic_name__ : Optional[int] = 'sshleifer/tiny-gpt2' __magic_name__ : List[Any] = AutoConfig.from_pretrained(_A ) __magic_name__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : str = PyTorchBenchmark(_A , configs=[config] ) __magic_name__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Dict = 'sshleifer/tinier_bart' __magic_name__ : int = AutoConfig.from_pretrained(_A ) __magic_name__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : Optional[Any] = PyTorchBenchmark(_A , configs=[config] ) __magic_name__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: __magic_name__ : Tuple = 'sshleifer/tiny-gpt2' __magic_name__ : Optional[int] = AutoConfig.from_pretrained(_A ) __magic_name__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : Tuple = PyTorchBenchmark(_A , configs=[config] ) __magic_name__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dict = 'sshleifer/tinier_bart' __magic_name__ : Optional[int] = AutoConfig.from_pretrained(_A ) __magic_name__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_A , ) __magic_name__ : int = PyTorchBenchmark(_A , configs=[config] ) __magic_name__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : Optional[int] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , save_to_csv=_A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_A , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(_A , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(_A , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(_A , 'train_time.csv' ) , env_info_csv_file=os.path.join(_A , 'env.csv' ) , multi_process=_A , ) __magic_name__ : int = PyTorchBenchmark(_A ) benchmark.run() self.assertTrue(Path(os.path.join(_A , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_A , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_A , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_A , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_A , 'env.csv' ) ).exists() ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: __magic_name__ : Union[str, Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_A : Dict ): self.assertTrue(hasattr(_A , 'sequential' ) ) self.assertTrue(hasattr(_A , 'cumulative' ) ) self.assertTrue(hasattr(_A , 'current' ) ) self.assertTrue(hasattr(_A , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_A , inference=_A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_A , 'log.txt' ) , log_print=_A , trace_memory_line_by_line=_A , multi_process=_A , ) __magic_name__ : List[str] = PyTorchBenchmark(_A ) __magic_name__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_A , 'log.txt' ) ).exists() )
331
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCAmelCase :int = logging.get_logger(__name__) lowerCAmelCase :Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED lowerCAmelCase :List[str] = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowerCAmelCase :Optional[int] = { '''allenai/led-base-16384''': 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __magic_name__ : Union[str, Any] = bs[:] __magic_name__ : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 __magic_name__ : int = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : Union[str, Any] = set() __magic_name__ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : int = char return pairs class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = VOCAB_FILES_NAMES A_ : Dict = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : str , _A : Optional[Any] , _A : int , _A : int="replace" , _A : Union[str, Any]="<s>" , _A : Union[str, Any]="</s>" , _A : Any="</s>" , _A : Optional[Any]="<s>" , _A : List[Any]="<unk>" , _A : List[Any]="<pad>" , _A : Union[str, Any]="<mask>" , _A : str=False , **_A : Optional[int] , ) -> Optional[Any]: __magic_name__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token __magic_name__ : Union[str, Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token __magic_name__ : Tuple = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token __magic_name__ : str = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token __magic_name__ : Optional[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token __magic_name__ : Dict = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding='utf-8' ) as vocab_handle: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : str = {v: k for k, v in self.encoder.items()} __magic_name__ : int = errors # how to handle errors in decoding __magic_name__ : List[Any] = bytes_to_unicode() __magic_name__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding='utf-8' ) as merges_handle: __magic_name__ : List[Any] = merges_handle.read().split('\n' )[1:-1] __magic_name__ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : str = dict(zip(_A , range(len(_A ) ) ) ) __magic_name__ : List[Any] = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : str = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __lowerCAmelCase ( self : Any ) -> Any: return len(self.encoder ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : Optional[int] , _A : List[str] ) -> Dict: if token in self.cache: return self.cache[token] __magic_name__ : List[Any] = tuple(_A ) __magic_name__ : List[str] = get_pairs(_A ) if not pairs: return token while True: __magic_name__ : Optional[Any] = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ , __magic_name__ : Optional[Any] = bigram __magic_name__ : Union[str, Any] = [] __magic_name__ : Union[str, Any] = 0 while i < len(_A ): try: __magic_name__ : Dict = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Union[str, Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(_A ) __magic_name__ : List[str] = new_word if len(_A ) == 1: break else: __magic_name__ : int = get_pairs(_A ) __magic_name__ : Tuple = ' '.join(_A ) __magic_name__ : Union[str, Any] = word return word def __lowerCAmelCase ( self : Union[str, Any] , _A : List[str] ) -> str: __magic_name__ : List[str] = [] for token in re.findall(self.pat , _A ): __magic_name__ : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(' ' ) ) return bpe_tokens def __lowerCAmelCase ( self : Optional[int] , _A : Dict ) -> List[Any]: return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self : Dict , _A : Dict ) -> Any: return self.decoder.get(_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[Any] ) -> Tuple: __magic_name__ : Dict = ''.join(_A ) __magic_name__ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __lowerCAmelCase ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Any = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __magic_name__ : Dict = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '\n' ) __magic_name__ : str = 0 with open(_A , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) __magic_name__ : Tuple = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : Any = [self.cls_token_id] __magic_name__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __lowerCAmelCase ( self : str , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: __magic_name__ : List[str] = [self.sep_token_id] __magic_name__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : int , _A : Any , _A : Any=False , **_A : List[str] ) -> List[str]: __magic_name__ : int = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): __magic_name__ : Union[str, Any] = ' ' + text return (text, kwargs) def __lowerCAmelCase ( self : Any , _A : Union[Dict[str, EncodedInput], BatchEncoding] , _A : Optional[int] = None , _A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _A : Optional[int] = None , _A : Optional[bool] = None , ) -> dict: __magic_name__ : int = super()._pad( encoded_inputs=_A , max_length=_A , padding_strategy=_A , pad_to_multiple_of=_A , return_attention_mask=_A , ) # Load from model defaults if return_attention_mask is None: __magic_name__ : Any = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __magic_name__ : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __magic_name__ : Optional[int] = len(encoded_inputs['global_attention_mask'] ) != len(_A ) if needs_to_be_padded: __magic_name__ : Optional[int] = len(_A ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __magic_name__ : Optional[Any] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": __magic_name__ : Any = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase :str = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""audio_values""", """audio_mask"""] def __init__( self : str , _A : Any=2048 , _A : List[str]=1 , _A : Optional[Any]=[16, 16] , _A : Tuple=128 , _A : Any=44100 , _A : List[Any]=86 , _A : Union[str, Any]=2048 , _A : int=0.0 , **_A : str , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , **_A , ) __magic_name__ : List[Any] = spectrogram_length __magic_name__ : Optional[int] = num_channels __magic_name__ : List[Any] = patch_size __magic_name__ : int = feature_size // self.patch_size[1] __magic_name__ : int = n_fft __magic_name__ : List[Any] = sampling_rate // hop_length_to_sampling_rate __magic_name__ : Optional[int] = sampling_rate __magic_name__ : List[Any] = padding_value __magic_name__ : List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=_A , norm='slaney' , mel_scale='slaney' , ).T def __lowerCAmelCase ( self : Union[str, Any] , _A : np.array ) -> np.ndarray: __magic_name__ : Optional[int] = spectrogram( _A , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __magic_name__ : Optional[Any] = log_spec[:, :-1] __magic_name__ : List[str] = log_spec - 20.0 __magic_name__ : Union[str, Any] = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = True , _A : Optional[int] = None , _A : bool = False , _A : bool = False , **_A : Union[str, Any] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __magic_name__ : Tuple = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __magic_name__ : Dict = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__ : Tuple = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): __magic_name__ : str = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __magic_name__ : Optional[Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __magic_name__ : str = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _A ): __magic_name__ : List[str] = [np.asarray(_A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __magic_name__ : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __magic_name__ : Union[str, Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __magic_name__ : Any = np.array(_A ).astype(np.floataa ) # convert into correct format for padding __magic_name__ : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __magic_name__ : Optional[Any] = np.ones([len(_A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __magic_name__ : List[str] = padded_audio_features * self.padding_value for i in range(len(_A ) ): __magic_name__ : Tuple = audio_features[i] __magic_name__ : List[str] = feature # return as BatchFeature if return_attention_mask: __magic_name__ : Optional[int] = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __magic_name__ : Union[str, Any] = {'audio_values': padded_audio_features} __magic_name__ : List[Any] = BatchFeature(data=_A , tensor_type=_A ) return encoded_inputs
331
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase :List[str] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[Any] = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : List[str]=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' __magic_name__ : int = nn.Parameter(lowerCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' __magic_name__ : Dict = nn.Parameter(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : Optional[int] = np.asarray(weights[0] ) __magic_name__ : Optional[Any] = np.asarray(weights[1] ) __magic_name__ : Optional[Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase ).view(-1 , lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : str = np.asarray(weights[0] ) __magic_name__ : Tuple = np.asarray(weights[1] ) __magic_name__ : Optional[int] = np.asarray(weights[2] ) __magic_name__ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase ).view(-1 , lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Optional[int] = weights[0][0][0] __magic_name__ : int = np.asarray(layer_norm_a[0] ) __magic_name__ : List[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCAmelCase ) , torch.tensor(lowerCAmelCase ) , ) # lsh weights + output __magic_name__ : int = weights[0][1] if len(lowerCAmelCase ) < 4: set_layer_weights_in_torch_lsh(lowerCAmelCase , torch_block.attention , lowerCAmelCase ) else: set_layer_weights_in_torch_local(lowerCAmelCase , torch_block.attention , lowerCAmelCase ) # intermediate weighs __magic_name__ : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCAmelCase ) == 4: __magic_name__ : str = intermediate_weights[2] # layernorm 2 __magic_name__ : Any = np.asarray(intermediate_weights[0][0] ) __magic_name__ : Dict = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCAmelCase ) , torch.tensor(lowerCAmelCase ) , ) # intermediate dense __magic_name__ : List[Any] = np.asarray(intermediate_weights[1][0] ) __magic_name__ : List[str] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase ) , ) # intermediate out __magic_name__ : int = np.asarray(intermediate_weights[4][0] ) __magic_name__ : List[str] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase ) , ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : Tuple = torch_model.reformer # word embeds __magic_name__ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCAmelCase ) , ) if isinstance(weights[3] , lowerCAmelCase ): __magic_name__ : Optional[int] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __magic_name__ : Any = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' __magic_name__ : List[str] = nn.Parameter(torch.tensor(lowerCAmelCase ) ) __magic_name__ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __magic_name__ : Optional[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # output layer norm __magic_name__ : str = np.asarray(weights[7][0] ) __magic_name__ : Optional[int] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCAmelCase ) , torch.tensor(lowerCAmelCase ) , ) # output embeddings __magic_name__ : Dict = np.asarray(weights[9][0] ) __magic_name__ : List[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase ) , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : Optional[int] = ReformerConfig.from_json_file(lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Optional[Any] = ReformerModelWithLMHead(lowerCAmelCase ) with open(lowerCAmelCase , 'rb' ) as f: __magic_name__ : str = pickle.load(lowerCAmelCase )['weights'] set_model_weights_in_torch(lowerCAmelCase , lowerCAmelCase , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase :str = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
331
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase :Optional[int] = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = """efficientformer""" def __init__( self : str , _A : List[int] = [3, 2, 6, 4] , _A : List[int] = [48, 96, 224, 448] , _A : List[bool] = [True, True, True, True] , _A : int = 448 , _A : int = 32 , _A : int = 4 , _A : int = 7 , _A : int = 5 , _A : int = 8 , _A : int = 4 , _A : float = 0.0 , _A : int = 16 , _A : int = 3 , _A : int = 3 , _A : int = 3 , _A : int = 2 , _A : int = 1 , _A : float = 0.0 , _A : int = 1 , _A : bool = True , _A : bool = True , _A : float = 1E-5 , _A : str = "gelu" , _A : float = 0.02 , _A : float = 1E-12 , _A : int = 224 , _A : float = 1E-05 , **_A : Any , ) -> None: super().__init__(**_A ) __magic_name__ : str = hidden_act __magic_name__ : Tuple = hidden_dropout_prob __magic_name__ : Any = hidden_sizes __magic_name__ : List[str] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[str] = initializer_range __magic_name__ : List[str] = layer_norm_eps __magic_name__ : Any = patch_size __magic_name__ : Optional[Any] = num_channels __magic_name__ : Optional[int] = depths __magic_name__ : int = mlp_expansion_ratio __magic_name__ : Any = downsamples __magic_name__ : Union[str, Any] = dim __magic_name__ : Optional[Any] = key_dim __magic_name__ : List[str] = attention_ratio __magic_name__ : int = resolution __magic_name__ : Optional[int] = pool_size __magic_name__ : Optional[int] = downsample_patch_size __magic_name__ : Tuple = downsample_stride __magic_name__ : Dict = downsample_pad __magic_name__ : Optional[int] = drop_path_rate __magic_name__ : str = num_metaad_blocks __magic_name__ : List[Any] = distillation __magic_name__ : Tuple = use_layer_scale __magic_name__ : Union[str, Any] = layer_scale_init_value __magic_name__ : Union[str, Any] = image_size __magic_name__ : Dict = batch_norm_eps
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" return [ord(lowerCAmelCase ) - 96 for elem in plain] def lowerCamelCase ( lowerCAmelCase : list[int] ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Any = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , lowerCAmelCase ) print('Decoded:' , decode(lowerCAmelCase ) ) if __name__ == "__main__": main()
331
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowerCAmelCase :int = int(input('''Enter number: ''').strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
331
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCamelCase : '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Any ) -> Any: pass def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: pass def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: pass def __lowerCAmelCase ( self : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : List[Any] , _A : List[Any] , _A : Tuple=None , **_A : str ) -> List[Any]: __magic_name__ : str = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) __magic_name__ : Union[str, Any] = TFVisionTextDualEncoderModel(_A ) __magic_name__ : Union[str, Any] = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowerCAmelCase ( self : Any , _A : Tuple , _A : Tuple , _A : str , _A : Optional[int] , _A : Any=None , **_A : int ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.get_vision_text_model(_A , _A ) __magic_name__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __magic_name__ : Dict = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self : Dict , _A : Any , _A : Dict , _A : List[Any] , _A : List[str] , _A : Optional[Any]=None , **_A : List[Any] ) -> Any: __magic_name__ , __magic_name__ : List[str] = self.get_vision_text_model(_A , _A ) __magic_name__ : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} __magic_name__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) __magic_name__ : Optional[int] = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self : int , _A : Union[str, Any] , _A : Optional[int] , _A : int , _A : Dict , _A : Union[str, Any]=None , **_A : int ) -> Optional[Any]: __magic_name__ , __magic_name__ : Any = self.get_vision_text_model(_A , _A ) __magic_name__ : int = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __magic_name__ : Union[str, Any] = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) __magic_name__ : str = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) __magic_name__ : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(_A ) __magic_name__ : Tuple = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) __magic_name__ : int = after_output[0].numpy() __magic_name__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Union[str, Any]=None , **_A : str ) -> Dict: __magic_name__ , __magic_name__ : Optional[int] = self.get_vision_text_model(_A , _A ) __magic_name__ : Any = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __magic_name__ : Any = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) __magic_name__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ : Tuple = to_atuple(vision_model.config.image_size ) __magic_name__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) __magic_name__ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ : Any = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self : Dict , _A : np.ndarray , _A : np.ndarray , _A : float ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = np.abs((a - b) ).max() self.assertLessEqual(_A , _A , F'Difference between torch and flax is {diff} (>= {tol}).' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: __magic_name__ : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_A ) def __lowerCAmelCase ( self : Any ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_A ) def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_A ) def __lowerCAmelCase ( self : str ) -> Tuple: __magic_name__ : str = self.prepare_config_and_inputs() self.check_save_load(**_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: __magic_name__ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_A ) @slow def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ , __magic_name__ : Tuple = self.get_pretrained_model_and_inputs() __magic_name__ : Tuple = model_a(**_A ) __magic_name__ : str = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_A ) __magic_name__ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(_A ) __magic_name__ : List[str] = model_a(**_A ) __magic_name__ : Any = after_outputs[0].numpy() __magic_name__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) @require_tf class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Dict ) -> str: __magic_name__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) __magic_name__ : List[str] = 13 __magic_name__ : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ : Tuple = random_attention_mask([batch_size, 4] ) __magic_name__ : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCAmelCase ( self : str , _A : int , _A : int ) -> str: __magic_name__ : Any = TFViTModel(_A , name='vision_model' ) __magic_name__ : int = TFBertModel(_A , name='text_model' ) return vision_model, text_model def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : Tuple = TFViTModelTester(self ) __magic_name__ : str = TFBertModelTester(self ) __magic_name__ : int = vit_model_tester.prepare_config_and_inputs() __magic_name__ : List[Any] = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ : str = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __magic_name__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) __magic_name__ : Any = 13 __magic_name__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ : Optional[Any] = random_attention_mask([batch_size, 4] ) __magic_name__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCAmelCase ( self : str , _A : int , _A : str , _A : Optional[Any] , _A : Optional[Any] , _A : str=None , **_A : List[Any] ) -> Dict: __magic_name__ , __magic_name__ : Any = self.get_vision_text_model(_A , _A ) __magic_name__ : Dict = TFVisionTextDualEncoderModel(vision_model=_A , text_model=_A ) __magic_name__ : List[str] = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) __magic_name__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __magic_name__ : str = to_atuple(vision_model.config.image_size ) __magic_name__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) __magic_name__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self : Tuple , _A : Union[str, Any] , _A : List[str] ) -> int: __magic_name__ : Dict = TFDeiTModel(_A , name='vision_model' ) __magic_name__ : str = TFRobertaModel(_A , name='text_model' ) return vision_model, text_model def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: __magic_name__ : Optional[Any] = TFDeiTModelTester(self ) __magic_name__ : List[Any] = TFRobertaModelTester(self ) __magic_name__ : Any = vit_model_tester.prepare_config_and_inputs() __magic_name__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ : Tuple = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) -> Union[str, Any]: __magic_name__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) __magic_name__ : Tuple = 13 __magic_name__ : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ : Optional[int] = random_attention_mask([batch_size, 4] ) __magic_name__ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCAmelCase ( self : List[str] , _A : List[str] , _A : Optional[int] ) -> int: __magic_name__ : Any = TFCLIPVisionModel(_A , name='vision_model' ) __magic_name__ : Dict = TFBertModel(_A , name='text_model' ) return vision_model, text_model def __lowerCAmelCase ( self : Any ) -> List[str]: __magic_name__ : int = TFCLIPVisionModelTester(self ) __magic_name__ : Dict = TFBertModelTester(self ) __magic_name__ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() __magic_name__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ : int = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : List[Any] ) -> str: __magic_name__ : Any = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=_A ) __magic_name__ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) __magic_name__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __magic_name__ : str = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_A , padding=_A , return_tensors='np' ) __magic_name__ : int = model(**_A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __magic_name__ : Optional[int] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _A , atol=1E-3 ) )
331
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :List[str] = logging.get_logger(__name__) lowerCAmelCase :List[Any] = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Any = """decision_transformer""" A_ : Optional[Any] = ["""past_key_values"""] A_ : List[str] = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , _A : List[str]=17 , _A : Optional[int]=4 , _A : int=128 , _A : Union[str, Any]=4096 , _A : int=True , _A : int=1 , _A : int=1024 , _A : List[str]=3 , _A : List[str]=1 , _A : Optional[int]=None , _A : Dict="relu" , _A : Dict=0.1 , _A : str=0.1 , _A : List[Any]=0.1 , _A : str=1E-5 , _A : int=0.02 , _A : Union[str, Any]=True , _A : List[Any]=True , _A : int=50256 , _A : Optional[int]=50256 , _A : Optional[Any]=False , _A : List[str]=False , **_A : Optional[Any] , ) -> Tuple: __magic_name__ : Union[str, Any] = state_dim __magic_name__ : List[Any] = act_dim __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Dict = max_ep_len __magic_name__ : str = action_tanh __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Union[str, Any] = n_positions __magic_name__ : Optional[Any] = n_layer __magic_name__ : Union[str, Any] = n_head __magic_name__ : List[Any] = n_inner __magic_name__ : Dict = activation_function __magic_name__ : Optional[Any] = resid_pdrop __magic_name__ : str = embd_pdrop __magic_name__ : Any = attn_pdrop __magic_name__ : Any = layer_norm_epsilon __magic_name__ : List[Any] = initializer_range __magic_name__ : Optional[Any] = scale_attn_weights __magic_name__ : Any = use_cache __magic_name__ : str = scale_attn_by_inverse_layer_idx __magic_name__ : Dict = reorder_and_upcast_attn __magic_name__ : Tuple = bos_token_id __magic_name__ : Any = eos_token_id super().__init__(bos_token_id=_A , eos_token_id=_A , **_A )
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase :List[Any] = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
1
'''simple docstring''' import os def lowerCamelCase ( ): """simple docstring""" __magic_name__ : int = os.path.join(os.path.dirname(lowerCAmelCase ) , 'num.txt' ) with open(lowerCAmelCase ) as file_hand: return str(sum(int(lowerCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
331
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase :Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = XLMProphetNetTokenizer A_ : List[Any] = False A_ : str = True def __lowerCAmelCase ( self : Dict ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __magic_name__ : Optional[Any] = XLMProphetNetTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: __magic_name__ : Optional[Any] = '[PAD]' __magic_name__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __lowerCAmelCase ( self : List[str] ) -> int: __magic_name__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_A ) , 1012 ) def __lowerCAmelCase ( self : Any ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self : List[Any] ) -> List[str]: __magic_name__ : Any = XLMProphetNetTokenizer(_A , keep_accents=_A ) __magic_name__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __magic_name__ : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __magic_name__ : int = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __magic_name__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def __lowerCAmelCase ( self : Any ) -> Optional[Any]: return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def __lowerCAmelCase ( self : Tuple ) -> Any: __magic_name__ : Optional[Any] = 'Hello World!' __magic_name__ : List[Any] = [35389, 6672, 49, 2] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def __lowerCAmelCase ( self : str ) -> Any: # fmt: off __magic_name__ : Dict = {'input_ids': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
331
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: __magic_name__ : Any = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __magic_name__ : Optional[int] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __magic_name__ : Dict = question_encoder_name_or_path __magic_name__ : Optional[int] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __magic_name__ : Optional[int] = RagConfig.from_pretrained(lowerCAmelCase ) __magic_name__ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) __magic_name__ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase ) __magic_name__ : List[str] = gen_config __magic_name__ : Optional[Any] = question_encoder_config __magic_name__ : Tuple = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. __magic_name__ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __magic_name__ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": lowerCAmelCase :Any = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowerCAmelCase :Any = parser.parse_args() lowerCAmelCase :Any = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
331
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _lowerCamelCase : '''simple docstring''' A_ : Dict = MBartConfig A_ : Any = {} A_ : str = """gelu""" def __init__( self : Optional[Any] , _A : int , _A : int=13 , _A : Optional[int]=7 , _A : Union[str, Any]=True , _A : Dict=False , _A : Optional[Any]=99 , _A : Dict=32 , _A : Any=2 , _A : Tuple=4 , _A : List[str]=37 , _A : List[str]=0.1 , _A : Union[str, Any]=0.1 , _A : List[Any]=20 , _A : str=2 , _A : int=1 , _A : int=0 , ) -> List[str]: __magic_name__ : List[Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : Union[str, Any] = is_training __magic_name__ : Optional[int] = use_labels __magic_name__ : int = vocab_size __magic_name__ : Tuple = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Tuple = num_attention_heads __magic_name__ : Optional[int] = intermediate_size __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Dict = attention_probs_dropout_prob __magic_name__ : Optional[Any] = max_position_embeddings __magic_name__ : str = eos_token_id __magic_name__ : str = pad_token_id __magic_name__ : Dict = bos_token_id def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __magic_name__ : Any = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def __lowerCAmelCase ( self : Optional[Any] , _A : List[Any] , _A : Tuple ) -> Dict: __magic_name__ : Optional[int] = TFMBartModel(config=_A ).get_decoder() __magic_name__ : Any = inputs_dict['input_ids'] __magic_name__ : int = input_ids[:1, :] __magic_name__ : Dict = inputs_dict['attention_mask'][:1, :] __magic_name__ : Union[str, Any] = inputs_dict['head_mask'] __magic_name__ : str = 1 # first forward pass __magic_name__ : Tuple = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) __magic_name__ , __magic_name__ : List[Any] = outputs.to_tuple() __magic_name__ : Tuple = past_key_values[1] def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Any=None , ): """simple docstring""" if attention_mask is None: __magic_name__ : int = tf.cast(tf.math.not_equal(lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ : List[str] = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ : Tuple = True A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : Tuple , _A : Union[str, Any] , _A : Tuple , _A : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[Any]: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : List[str] = TFMBartModelTester(self ) __magic_name__ : List[str] = ConfigTester(self , config_class=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ) -> List[str]: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ : List[str] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ : int = """facebook/mbart-large-en-ro""" @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> str: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: __magic_name__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCAmelCase ( self : Any , **_A : Union[str, Any] ) -> Dict: __magic_name__ : Optional[Any] = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> int: __magic_name__ : List[Any] = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) __magic_name__ : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __magic_name__ : Any = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: self._assert_generated_batch_equal_expected()
331
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase :str = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = """vision-encoder-decoder""" A_ : Any = True def __init__( self : int , **_A : Optional[int] ) -> Any: super().__init__(**_A ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) __magic_name__ : List[Any] = kwargs.pop('encoder' ) __magic_name__ : int = encoder_config.pop('model_type' ) __magic_name__ : Dict = kwargs.pop('decoder' ) __magic_name__ : Dict = decoder_config.pop('model_type' ) __magic_name__ : str = AutoConfig.for_model(_A , **_A ) __magic_name__ : str = AutoConfig.for_model(_A , **_A ) __magic_name__ : List[Any] = True @classmethod def __lowerCAmelCase ( cls : List[str] , _A : PretrainedConfig , _A : PretrainedConfig , **_A : str ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) __magic_name__ : Tuple = True __magic_name__ : Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: __magic_name__ : str = copy.deepcopy(self.__dict__ ) __magic_name__ : Dict = self.encoder.to_dict() __magic_name__ : Tuple = self.decoder.to_dict() __magic_name__ : str = self.__class__.model_type return output class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> float: return 1E-4 @property def __lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def __lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: __magic_name__ : Union[str, Any] = OrderedDict() __magic_name__ : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} __magic_name__ : List[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} __magic_name__ : List[str] = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def __lowerCAmelCase ( self : str , _A : "PreTrainedTokenizerBase" , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch __magic_name__ : Optional[int] = OrderedDict() __magic_name__ : List[Any] = super().generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) __magic_name__ , __magic_name__ : int = dummy_input['input_ids'].shape __magic_name__ : str = (batch, encoder_sequence, self._config.encoder_hidden_size) __magic_name__ : List[Any] = dummy_input.pop('input_ids' ) __magic_name__ : Optional[Any] = dummy_input.pop('attention_mask' ) __magic_name__ : Any = torch.zeros(_A ) return common_inputs class _lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def __lowerCAmelCase ( self : Optional[Any] ) -> None: pass def __lowerCAmelCase ( self : List[str] , _A : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : PretrainedConfig , _A : PretrainedConfig , _A : str = "default" ) -> OnnxConfig: __magic_name__ : Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_A , _A )
331
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : int = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase ) if number < 0: return False __magic_name__ : Any = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __get__( self : Tuple , _A : Optional[int] , _A : Any=None ) -> List[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) __magic_name__ : List[Any] = '__cached_' + self.fget.__name__ __magic_name__ : List[str] = getattr(_A , _A , _A ) if cached is None: __magic_name__ : Union[str, Any] = self.fget(_A ) setattr(_A , _A , _A ) return cached def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : Union[str, Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" if is_torch_fx_proxy(lowerCAmelCase ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase , np.ndarray ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" return isinstance(lowerCAmelCase , np.ndarray ) def lowerCamelCase ( lowerCAmelCase : Optional[int] ): """simple docstring""" return _is_numpy(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" import torch return isinstance(lowerCAmelCase , torch.Tensor ) def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" import torch return isinstance(lowerCAmelCase , torch.device ) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import torch if isinstance(lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Dict = getattr(lowerCAmelCase , lowerCAmelCase ) else: return False return isinstance(lowerCAmelCase , torch.dtype ) def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" import tensorflow as tf return isinstance(lowerCAmelCase , tf.Tensor ) def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(lowerCAmelCase ) return type(lowerCAmelCase ) == tf.Tensor def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase , jnp.ndarray ) def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" return False if not is_flax_available() else _is_jax(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(lowerCAmelCase , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase ) for k, v in obj.items()} elif isinstance(lowerCAmelCase , (list, tuple) ): return [to_py_obj(lowerCAmelCase ) for o in obj] elif is_tf_tensor(lowerCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase ): return np.asarray(lowerCAmelCase ).tolist() elif isinstance(lowerCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(lowerCAmelCase , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase ) for k, v in obj.items()} elif isinstance(lowerCAmelCase , (list, tuple) ): return np.array(lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase ): return np.asarray(lowerCAmelCase ) else: return obj class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) -> Dict: __magic_name__ : Optional[Any] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) __magic_name__ : List[Any] = getattr(self , class_fields[0].name ) __magic_name__ : Dict = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): __magic_name__ : Union[str, Any] = first_field.items() __magic_name__ : Tuple = True else: try: __magic_name__ : Optional[Any] = iter(_A ) __magic_name__ : List[str] = True except TypeError: __magic_name__ : str = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __magic_name__ : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __magic_name__ : Tuple = element[1] elif first_field is not None: __magic_name__ : Union[str, Any] = first_field else: for field in class_fields: __magic_name__ : Union[str, Any] = getattr(self , field.name ) if v is not None: __magic_name__ : int = v def __delitem__( self : Any , *_A : List[str] , **_A : Any ) -> Optional[Any]: raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def __lowerCAmelCase ( self : List[Any] , *_A : Dict , **_A : Optional[int] ) -> Optional[Any]: raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def __lowerCAmelCase ( self : Dict , *_A : Dict , **_A : List[str] ) -> Dict: raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def __lowerCAmelCase ( self : int , *_A : Any , **_A : List[str] ) -> Union[str, Any]: raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : List[str] , _A : Dict ) -> Dict: if isinstance(_A , _A ): __magic_name__ : str = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[int] , _A : Any , _A : Any ) -> List[Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : List[str] , _A : str , _A : Optional[Any] ) -> List[str]: # Will raise a KeyException if needed super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def __lowerCAmelCase ( self : List[str] ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class _lowerCamelCase ( lowercase__ , lowercase__ ): '''simple docstring''' @classmethod def __lowerCAmelCase ( cls : Dict , _A : int ) -> List[Any]: raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = """longest""" A_ : Tuple = """max_length""" A_ : Tuple = """do_not_pad""" class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : str = """pt""" A_ : Union[str, Any] = """tf""" A_ : Optional[int] = """np""" A_ : Optional[int] = """jax""" class _lowerCamelCase : '''simple docstring''' def __init__( self : str , _A : List[ContextManager] ) -> Any: __magic_name__ : Optional[int] = context_managers __magic_name__ : Any = ExitStack() def __enter__( self : Tuple ) -> List[str]: for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Any , *_A : Optional[int] , **_A : Optional[int] ) -> str: self.stack.__exit__(*_A , **_A ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : Dict = infer_framework(lowerCAmelCase ) if framework == "tf": __magic_name__ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __magic_name__ : int = inspect.signature(model_class.forward ) # PyTorch models else: __magic_name__ : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : Dict = model_class.__name__ __magic_name__ : List[str] = infer_framework(lowerCAmelCase ) if framework == "tf": __magic_name__ : Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __magic_name__ : Any = inspect.signature(model_class.forward ) # PyTorch models else: __magic_name__ : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase ( lowerCAmelCase : MutableMapping , lowerCAmelCase : str = "" , lowerCAmelCase : str = "." ): """simple docstring""" def _flatten_dict(lowerCAmelCase : int , lowerCAmelCase : Dict="" , lowerCAmelCase : Dict="." ): for k, v in d.items(): __magic_name__ : Optional[Any] = str(lowerCAmelCase ) + delimiter + str(lowerCAmelCase ) if parent_key else k if v and isinstance(lowerCAmelCase , lowerCAmelCase ): yield from flatten_dict(lowerCAmelCase , lowerCAmelCase , delimiter=lowerCAmelCase ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ) @contextmanager def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=None ): """simple docstring""" if is_numpy_array(lowerCAmelCase ): return np.transpose(lowerCAmelCase , axes=lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.T if axes is None else array.permute(*lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.transpose(lowerCAmelCase , perm=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.transpose(lowerCAmelCase , axes=lowerCAmelCase ) else: raise ValueError(f'Type not supported for transpose: {type(lowerCAmelCase )}.' ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : int ): """simple docstring""" if is_numpy_array(lowerCAmelCase ): return np.reshape(lowerCAmelCase , lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.reshape(*lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.reshape(lowerCAmelCase , lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.reshape(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'Type not supported for reshape: {type(lowerCAmelCase )}.' ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Any=None ): """simple docstring""" if is_numpy_array(lowerCAmelCase ): return np.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) else: raise ValueError(f'Type not supported for squeeze: {type(lowerCAmelCase )}.' ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : List[Any] ): """simple docstring""" if is_numpy_array(lowerCAmelCase ): return np.expand_dims(lowerCAmelCase , lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.unsqueeze(dim=lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase , axis=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.expand_dims(lowerCAmelCase , axis=lowerCAmelCase ) else: raise ValueError(f'Type not supported for expand_dims: {type(lowerCAmelCase )}.' ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" if is_numpy_array(lowerCAmelCase ): return np.size(lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.numel() elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.size(lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(lowerCAmelCase )}.' ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Any ): """simple docstring""" for key, value in auto_map.items(): if isinstance(lowerCAmelCase , (tuple, list) ): __magic_name__ : str = [f'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: __magic_name__ : List[Any] = f'{repo_id}--{value}' return auto_map def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" for base_class in inspect.getmro(lowerCAmelCase ): __magic_name__ : str = base_class.__module__ __magic_name__ : int = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
331
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : list[float] ): """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __magic_name__ : Optional[Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCAmelCase ) ) return round(lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
1
'''simple docstring''' import argparse import struct import unittest class _lowerCamelCase : '''simple docstring''' def __init__( self : int , _A : bytes ) -> None: __magic_name__ : Dict = data # Initialize hash values __magic_name__ : Optional[int] = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants __magic_name__ : Dict = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] __magic_name__ : str = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCAmelCase ( _A : bytes ) -> bytes: __magic_name__ : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) __magic_name__ : Optional[int] = struct.pack('>Q' , (len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCAmelCase ( self : Optional[int] ) -> None: # Convert into blocks of 64 bytes __magic_name__ : str = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __magic_name__ : Optional[int] = list(struct.unpack('>16L' , _A ) ) # add 48 0-ed integers words += [0] * 48 __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __magic_name__ : Optional[int] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __magic_name__ : Any = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __magic_name__ : List[Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression __magic_name__ : List[str] = self.ror(_A , 6 ) ^ self.ror(_A , 11 ) ^ self.ror(_A , 25 ) __magic_name__ : Tuple = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) __magic_name__ : Optional[int] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 __magic_name__ : Tuple = self.ror(_A , 2 ) ^ self.ror(_A , 13 ) ^ self.ror(_A , 22 ) __magic_name__ : Optional[Any] = (a & b) ^ (a & c) ^ (b & c) __magic_name__ : Optional[int] = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : str = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) __magic_name__ : Tuple = [a, b, c, d, e, f, g, h] # Modify final values __magic_name__ : List[str] = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __magic_name__ : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCAmelCase ( self : int , _A : int , _A : int ) -> int: return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> None: import hashlib __magic_name__ : int = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(_A ).hash , hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase ( ): """simple docstring""" import doctest doctest.testmod() __magic_name__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) __magic_name__ : Tuple = parser.parse_args() __magic_name__ : Optional[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: __magic_name__ : List[Any] = f.read() else: __magic_name__ : Dict = bytes(lowerCAmelCase , 'utf-8' ) print(SHAaaa(lowerCAmelCase ).hash ) if __name__ == "__main__": main()
331
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase :Tuple = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[Any] = ["""pixel_values"""] def __init__( self : int , _A : bool = True , _A : int = 32 , _A : List[Any]=PILImageResampling.BILINEAR , _A : bool = True , **_A : List[str] , ) -> None: __magic_name__ : int = do_resize __magic_name__ : List[str] = do_rescale __magic_name__ : str = size_divisor __magic_name__ : Optional[Any] = resample super().__init__(**_A ) def __lowerCAmelCase ( self : Any , _A : np.ndarray , _A : int , _A : Optional[int] , _A : Optional[ChannelDimension] = None , **_A : Union[str, Any] ) -> np.ndarray: __magic_name__ , __magic_name__ : str = get_image_size(_A ) # Rounds the height and width down to the closest multiple of size_divisor __magic_name__ : Optional[int] = height // size_divisor * size_divisor __magic_name__ : Union[str, Any] = width // size_divisor * size_divisor __magic_name__ : Union[str, Any] = resize(_A , (new_h, new_w) , resample=_A , data_format=_A , **_A ) return image def __lowerCAmelCase ( self : Tuple , _A : np.ndarray , _A : float , _A : Optional[ChannelDimension] = None , **_A : int ) -> np.ndarray: return rescale(image=_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _A : Optional[bool] = None , _A : Optional[int] = None , _A : Any=None , _A : Optional[bool] = None , _A : Optional[Union[TensorType, str]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> BatchFeature: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[Any] = size_divisor if size_divisor is not None else self.size_divisor __magic_name__ : List[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __magic_name__ : List[str] = [to_numpy_array(_A ) for img in images] if do_resize: __magic_name__ : Optional[int] = [self.resize(_A , size_divisor=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : List[Any] = [self.rescale(_A , scale=1 / 255 ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCAmelCase :Optional[Any] = re.compile(r'''\s+''') def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(lowerCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" __magic_name__ : Optional[int] = [len(lowerCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(lowerCAmelCase ), "line_max": max(lowerCAmelCase )} def lowerCamelCase ( lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : str = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=5 ): """simple docstring""" __magic_name__ : Dict = ['auto-generated', 'autogenerated', 'automatically generated'] __magic_name__ : Optional[Any] = example['content'].splitlines() for _, line in zip(range(lowerCAmelCase ) , lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Any=5 , lowerCAmelCase : Union[str, Any]=0.05 ): """simple docstring""" __magic_name__ : Dict = ['unit tests', 'test file', 'configuration file'] __magic_name__ : Union[str, Any] = example['content'].splitlines() __magic_name__ : List[Any] = 0 __magic_name__ : str = 0 # first test for _, line in zip(range(lowerCAmelCase ) , lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __magic_name__ : Tuple = example['content'].count('\n' ) __magic_name__ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = ['def ', 'class ', 'for ', 'while '] __magic_name__ : Dict = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : int=4 ): """simple docstring""" __magic_name__ : Any = example['content'].splitlines() __magic_name__ : List[str] = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : Tuple = tokenizer(example['content'] , truncation=lowerCAmelCase )['input_ids'] __magic_name__ : int = len(example['content'] ) / len(lowerCAmelCase ) return {"ratio": ratio} def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Union[str, Any] = {} results.update(get_hash(lowerCAmelCase ) ) results.update(line_stats(lowerCAmelCase ) ) results.update(alpha_stats(lowerCAmelCase ) ) results.update(char_token_ratio(lowerCAmelCase ) ) results.update(is_autogenerated(lowerCAmelCase ) ) results.update(is_config_or_test(lowerCAmelCase ) ) results.update(has_no_keywords(lowerCAmelCase ) ) results.update(has_few_assignments(lowerCAmelCase ) ) return results def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] ): """simple docstring""" if not check_uniques(lowerCAmelCase , lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" with open(lowerCAmelCase , 'rb' ) as f_in: with gzip.open(str(lowerCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCAmelCase , lowerCAmelCase ) os.unlink(lowerCAmelCase ) # Settings lowerCAmelCase :Any = HfArgumentParser(PreprocessingArguments) lowerCAmelCase :List[Any] = parser.parse_args() if args.num_workers is None: lowerCAmelCase :Union[str, Any] = multiprocessing.cpu_count() lowerCAmelCase :int = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCAmelCase :Any = time.time() lowerCAmelCase :Union[str, Any] = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing lowerCAmelCase :Dict = time.time() lowerCAmelCase :Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes lowerCAmelCase :Optional[int] = set(ds.unique('''hash''')) lowerCAmelCase :List[str] = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics lowerCAmelCase :Optional[Any] = time.time() lowerCAmelCase :Any = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCAmelCase :Any = time.time() lowerCAmelCase , lowerCAmelCase :Union[str, Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file lowerCAmelCase :Optional[int] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) lowerCAmelCase :Tuple = output_dir / '''data''' data_dir.mkdir(exist_ok=True) lowerCAmelCase :int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCAmelCase :List[Any] = str(data_dir / F'file-{file_number+1:012}.json') lowerCAmelCase :Optional[int] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
331
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Dict = logging.get_logger(__name__) lowerCAmelCase :Optional[int] = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[Any] = """wavlm""" def __init__( self : Optional[Any] , _A : Any=32 , _A : Dict=768 , _A : int=12 , _A : Union[str, Any]=12 , _A : Union[str, Any]=3072 , _A : List[str]="gelu" , _A : Optional[int]=0.1 , _A : Dict=0.1 , _A : Union[str, Any]=0.1 , _A : Any=0.0 , _A : Union[str, Any]=0.1 , _A : Optional[Any]=0.1 , _A : int=0.02 , _A : Optional[Any]=1E-5 , _A : Any="group" , _A : List[str]="gelu" , _A : int=(512, 512, 512, 512, 512, 512, 512) , _A : Any=(5, 2, 2, 2, 2, 2, 2) , _A : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , _A : Dict=False , _A : Any=128 , _A : Optional[Any]=16 , _A : int=320 , _A : List[Any]=800 , _A : str=False , _A : str=True , _A : Union[str, Any]=0.05 , _A : int=10 , _A : int=2 , _A : str=0.0 , _A : Tuple=10 , _A : Tuple=320 , _A : Union[str, Any]=2 , _A : List[str]=0.1 , _A : str=100 , _A : int=256 , _A : int=256 , _A : int=0.1 , _A : str="mean" , _A : List[Any]=False , _A : Any=False , _A : List[str]=256 , _A : Any=(512, 512, 512, 512, 1500) , _A : Optional[Any]=(5, 3, 3, 1, 1) , _A : Any=(1, 2, 3, 1, 1) , _A : str=512 , _A : List[str]=80 , _A : str=0 , _A : List[str]=1 , _A : Optional[Any]=2 , _A : str=False , _A : Dict=3 , _A : int=2 , _A : Union[str, Any]=3 , _A : Dict=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Any = feat_extract_norm __magic_name__ : Tuple = feat_extract_activation __magic_name__ : int = list(_A ) __magic_name__ : List[str] = list(_A ) __magic_name__ : Any = list(_A ) __magic_name__ : int = conv_bias __magic_name__ : int = num_buckets __magic_name__ : Tuple = max_bucket_distance __magic_name__ : str = num_conv_pos_embeddings __magic_name__ : Union[str, Any] = num_conv_pos_embedding_groups __magic_name__ : Dict = len(self.conv_dim ) __magic_name__ : Dict = num_hidden_layers __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Tuple = num_attention_heads __magic_name__ : str = hidden_dropout __magic_name__ : Union[str, Any] = attention_dropout __magic_name__ : int = activation_dropout __magic_name__ : str = feat_proj_dropout __magic_name__ : Union[str, Any] = final_dropout __magic_name__ : Union[str, Any] = layerdrop __magic_name__ : Dict = layer_norm_eps __magic_name__ : Optional[Any] = initializer_range __magic_name__ : str = num_ctc_classes __magic_name__ : str = vocab_size __magic_name__ : Dict = do_stable_layer_norm __magic_name__ : Optional[Any] = use_weighted_layer_sum __magic_name__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ : Optional[int] = apply_spec_augment __magic_name__ : Optional[Any] = mask_time_prob __magic_name__ : Optional[int] = mask_time_length __magic_name__ : int = mask_time_min_masks __magic_name__ : Optional[Any] = mask_feature_prob __magic_name__ : List[str] = mask_feature_length # parameters for pretraining with codevector quantized representations __magic_name__ : Union[str, Any] = num_codevectors_per_group __magic_name__ : Optional[int] = num_codevector_groups __magic_name__ : Dict = contrastive_logits_temperature __magic_name__ : List[Any] = num_negatives __magic_name__ : Any = codevector_dim __magic_name__ : Union[str, Any] = proj_codevector_dim __magic_name__ : str = diversity_loss_weight # ctc loss __magic_name__ : int = ctc_loss_reduction __magic_name__ : Union[str, Any] = ctc_zero_infinity # adapter __magic_name__ : Tuple = add_adapter __magic_name__ : Any = adapter_kernel_size __magic_name__ : List[str] = adapter_stride __magic_name__ : List[Any] = num_adapter_layers __magic_name__ : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __magic_name__ : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __magic_name__ : Any = list(_A ) __magic_name__ : Optional[Any] = list(_A ) __magic_name__ : Optional[int] = list(_A ) __magic_name__ : Union[str, Any] = xvector_output_dim @property def __lowerCAmelCase ( self : int ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase : '''simple docstring''' def __init__( self : Tuple , _A : Dict , _A : str=13 , _A : List[Any]=7 , _A : Dict=True , _A : Any=True , _A : int=True , _A : Any=True , _A : List[Any]=99 , _A : str=16 , _A : Optional[Any]=36 , _A : str=6 , _A : List[Any]=6 , _A : Tuple=6 , _A : Union[str, Any]=37 , _A : Optional[Any]="gelu" , _A : List[Any]=0.1 , _A : int=0.1 , _A : Optional[Any]=512 , _A : Optional[int]=16 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Dict=3 , _A : Optional[int]=4 , _A : Any=None , ) -> str: __magic_name__ : List[str] = parent __magic_name__ : List[Any] = batch_size __magic_name__ : Tuple = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Union[str, Any] = use_input_mask __magic_name__ : List[str] = use_token_type_ids __magic_name__ : List[str] = use_labels __magic_name__ : Tuple = vocab_size __magic_name__ : Union[str, Any] = embedding_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Any = num_hidden_layers __magic_name__ : Tuple = num_hidden_groups __magic_name__ : Any = num_attention_heads __magic_name__ : Optional[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[str] = hidden_dropout_prob __magic_name__ : List[Any] = attention_probs_dropout_prob __magic_name__ : int = max_position_embeddings __magic_name__ : Optional[Any] = type_vocab_size __magic_name__ : int = type_sequence_label_size __magic_name__ : str = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : List[Any] = scope def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Any = None if self.use_input_mask: __magic_name__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Optional[int] = None if self.use_token_type_ids: __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Optional[int] = None __magic_name__ : int = None __magic_name__ : int = None if self.use_labels: __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Optional[int] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: __magic_name__ : List[str] = AlbertModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Union[str, Any] = model(_A , attention_mask=_A , token_type_ids=_A ) __magic_name__ : str = model(_A , token_type_ids=_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : List[Any] , _A : Any , _A : List[Any] , _A : Optional[int] , _A : str , _A : Optional[int] , _A : Tuple , _A : Optional[Any] ) -> List[Any]: __magic_name__ : int = AlbertForPreTraining(config=_A ) model.to(_A ) model.eval() __magic_name__ : Tuple = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , sentence_order_label=_A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Dict , _A : Optional[Any] , _A : Dict , _A : List[str] ) -> Any: __magic_name__ : Optional[Any] = AlbertForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : Union[str, Any] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Union[str, Any] , _A : str , _A : List[str] , _A : List[Any] , _A : Optional[Any] , _A : int ) -> List[str]: __magic_name__ : Dict = AlbertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Dict , _A : Optional[int] , _A : str , _A : Optional[Any] , _A : Any , _A : Dict , _A : Tuple , _A : Optional[Any] ) -> int: __magic_name__ : Optional[Any] = self.num_labels __magic_name__ : Tuple = AlbertForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Dict , _A : Any , _A : int , _A : int , _A : Tuple , _A : str , _A : str ) -> int: __magic_name__ : Union[str, Any] = self.num_labels __magic_name__ : List[Any] = AlbertForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : Tuple = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : List[Any] , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : Tuple , _A : Tuple , _A : int ) -> List[str]: __magic_name__ : Dict = self.num_choices __magic_name__ : int = AlbertForMultipleChoice(config=_A ) model.to(_A ) model.eval() __magic_name__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : Tuple = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A_ : Union[str, Any] = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) A_ : List[str] = True def __lowerCAmelCase ( self : Dict , _A : Dict , _A : Union[str, Any] , _A : Optional[int]=False ) -> List[str]: __magic_name__ : Union[str, Any] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class in get_values(_A ): __magic_name__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_A ) __magic_name__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: __magic_name__ : str = AlbertModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def __lowerCAmelCase ( self : Any ) -> List[Any]: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ : Dict = type self.model_tester.create_and_check_model(*_A ) @slow def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : str = AlbertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Tuple ) -> Dict: __magic_name__ : Tuple = AlbertModel.from_pretrained('albert-base-v2' ) __magic_name__ : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __magic_name__ : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : str = model(_A , attention_mask=_A )[0] __magic_name__ : Optional[int] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _A ) __magic_name__ : str = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) )
331
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : List[str] = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __magic_name__ : int = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __magic_name__ : Dict = model(_A )['last_hidden_state'] __magic_name__ : Optional[Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. __magic_name__ : Optional[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
331
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCAmelCase :Dict = list[list[float | int]] def lowerCamelCase ( lowerCAmelCase : Matrix , lowerCAmelCase : Matrix ): """simple docstring""" __magic_name__ : int = len(lowerCAmelCase ) __magic_name__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase )] __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float for row in range(lowerCAmelCase ): for col in range(lowerCAmelCase ): __magic_name__ : Tuple = matrix[row][col] __magic_name__ : Tuple = vector[row][0] __magic_name__ : Union[str, Any] = 0 __magic_name__ : Union[str, Any] = 0 while row < size and col < size: # pivoting __magic_name__ : List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase , lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __magic_name__ , __magic_name__ : Optional[int] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase ): __magic_name__ : Dict = augmented[rowa][col] / augmented[row][col] __magic_name__ : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase ): for row in range(lowerCAmelCase ): __magic_name__ : Tuple = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowerCAmelCase ) ] def lowerCamelCase ( lowerCAmelCase : list[int] ): """simple docstring""" __magic_name__ : int = len(lowerCAmelCase ) __magic_name__ : Matrix = [[0 for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase )] __magic_name__ : Matrix = [[0] for _ in range(lowerCAmelCase )] __magic_name__ : Matrix __magic_name__ : int __magic_name__ : int __magic_name__ : int for x_val, y_val in enumerate(lowerCAmelCase ): for col in range(lowerCAmelCase ): __magic_name__ : Optional[Any] = (x_val + 1) ** (size - col - 1) __magic_name__ : Tuple = y_val __magic_name__ : Optional[Any] = solve(lowerCAmelCase , lowerCAmelCase ) def interpolated_func(lowerCAmelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase ) ) return interpolated_func def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase ( lowerCAmelCase : Callable[[int], int] = question_function , lowerCAmelCase : int = 10 ): """simple docstring""" __magic_name__ : list[int] = [func(lowerCAmelCase ) for x_val in range(1 , order + 1 )] __magic_name__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __magic_name__ : int = 0 __magic_name__ : Callable[[int], int] __magic_name__ : int for poly in polynomials: __magic_name__ : str = 1 while func(lowerCAmelCase ) == poly(lowerCAmelCase ): x_val += 1 ret += poly(lowerCAmelCase ) return ret if __name__ == "__main__": print(F'{solution() = }')
331
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
1
'''simple docstring''' import math lowerCAmelCase :int = 1_0 lowerCAmelCase :str = 7 lowerCAmelCase :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase ( lowerCAmelCase : int = 20 ): """simple docstring""" __magic_name__ : List[Any] = math.comb(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Any = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCAmelCase ) __magic_name__ : List[str] = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(2_0))
331
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
1
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase :Any = '''examples/''' lowerCAmelCase :List[str] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowerCAmelCase :Tuple = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } lowerCAmelCase :int = '''README.md''' def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with open(lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: __magic_name__ : str = f.read() __magic_name__ , __magic_name__ : int = REPLACE_PATTERNS[pattern] __magic_name__ : Union[str, Any] = replace.replace('VERSION' , lowerCAmelCase ) __magic_name__ : str = re_pattern.sub(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" for folder, directories, fnames in os.walk(lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase , pattern='examples' ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if not patch: update_version_in_examples(lowerCAmelCase ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = '🤗 Transformers currently provides the following architectures' __magic_name__ : Any = '1. Want to contribute a new model?' with open(lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: __magic_name__ : str = f.readlines() # Find the start of the list. __magic_name__ : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __magic_name__ : Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): __magic_name__ : Any = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCAmelCase ) def lowerCamelCase ( ): """simple docstring""" with open(REPLACE_FILES['init'] , 'r' ) as f: __magic_name__ : Any = f.read() __magic_name__ : str = REPLACE_PATTERNS['init'][0].search(lowerCAmelCase ).groups()[0] return packaging.version.parse(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple=False ): """simple docstring""" __magic_name__ : Dict = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: __magic_name__ : List[str] = default_version.base_version elif patch: __magic_name__ : Optional[Any] = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: __magic_name__ : Union[str, Any] = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. __magic_name__ : Optional[int] = input(f'Which version are you releasing? [{default_version}]' ) if len(lowerCAmelCase ) == 0: __magic_name__ : Union[str, Any] = default_version print(f'Updating version to {version}.' ) global_version_update(lowerCAmelCase , patch=lowerCAmelCase ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : int = get_version() __magic_name__ : Optional[Any] = f'{current_version.major}.{current_version.minor + 1}.0.dev0' __magic_name__ : str = current_version.base_version # Check with the user we got that right. __magic_name__ : int = input(f'Which version are we developing now? [{dev_version}]' ) if len(lowerCAmelCase ) == 0: __magic_name__ : Optional[Any] = dev_version print(f'Updating version to {version}.' ) global_version_update(lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase :Tuple = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowerCAmelCase :Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
331
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
1
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCAmelCase :Tuple = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' lowerCAmelCase :List[Any] = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' lowerCAmelCase :Tuple = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : Any , _A : Optional[Any]=4 , _A : str=False ) -> Union[str, Any]: __magic_name__ : int = compute_bleu( reference_corpus=_A , translation_corpus=_A , max_order=_A , smooth=_A ) ((__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
331
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
1
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowerCAmelCase :int = logging.get_logger(__name__) lowerCAmelCase :int = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" __magic_name__ : str = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __magic_name__ : Tuple = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __magic_name__ : Any = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCAmelCase , output_all_encodings=lowerCAmelCase , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCAmelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __magic_name__ : int = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __magic_name__ : str = os.path.join(get_home_dir() , 'models' ) __magic_name__ : int = _load_vocab(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , cls=lowerCAmelCase ) __magic_name__ : Dict = nlp.model.BERTModel( lowerCAmelCase , len(lowerCAmelCase ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCAmelCase , use_token_type_embed=lowerCAmelCase , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCAmelCase , use_decoder=lowerCAmelCase , ) original_bort.load_parameters(lowerCAmelCase , cast_dtype=lowerCAmelCase , ignore_extra=lowerCAmelCase ) __magic_name__ : List[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 __magic_name__ : List[Any] = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCAmelCase ), } __magic_name__ : List[str] = BertConfig.from_dict(lowerCAmelCase ) __magic_name__ : Optional[int] = BertForMaskedLM(lowerCAmelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCAmelCase : Optional[int] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] ): __magic_name__ : str = hf_param.shape __magic_name__ : Dict = to_torch(params[gluon_param] ) __magic_name__ : Any = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param __magic_name__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __magic_name__ : Any = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __magic_name__ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __magic_name__ : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __magic_name__ : List[str] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __magic_name__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __magic_name__ : BertSelfAttention = layer.attention.self __magic_name__ : Union[str, Any] = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) __magic_name__ : Dict = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) __magic_name__ : int = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) __magic_name__ : Dict = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) __magic_name__ : Optional[Any] = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) __magic_name__ : List[str] = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output __magic_name__ : BertSelfOutput = layer.attention.output __magic_name__ : str = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) __magic_name__ : List[Any] = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) __magic_name__ : str = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) __magic_name__ : Dict = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate __magic_name__ : BertIntermediate = layer.intermediate __magic_name__ : Any = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) __magic_name__ : List[str] = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output __magic_name__ : BertOutput = layer.output __magic_name__ : Optional[Any] = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) __magic_name__ : Tuple = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) __magic_name__ : Optional[int] = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) __magic_name__ : str = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __magic_name__ : Tuple = RobertaTokenizer.from_pretrained('roberta-base' ) __magic_name__ : Optional[int] = tokenizer.encode_plus(lowerCAmelCase )['input_ids'] # Get gluon output __magic_name__ : Optional[Any] = mx.nd.array([input_ids] ) __magic_name__ : List[Any] = original_bort(inputs=lowerCAmelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCAmelCase ) __magic_name__ : Dict = BertModel.from_pretrained(lowerCAmelCase ) hf_bort_model.eval() __magic_name__ : List[str] = tokenizer.encode_plus(lowerCAmelCase , return_tensors='pt' ) __magic_name__ : Optional[int] = hf_bort_model(**lowerCAmelCase )[0] __magic_name__ : int = output_gluon[0].asnumpy() __magic_name__ : Any = output_hf[0].detach().numpy() __magic_name__ : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() __magic_name__ : Union[str, Any] = np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase :Optional[Any] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
331
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Any = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=lowerCAmelCase ) __magic_name__ : Dict = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowerCAmelCase ) EnvironmentCommand.register_subcommand(lowerCAmelCase ) TestCommand.register_subcommand(lowerCAmelCase ) RunBeamCommand.register_subcommand(lowerCAmelCase ) DummyDataCommand.register_subcommand(lowerCAmelCase ) # Parse args __magic_name__ , __magic_name__ : List[Any] = parser.parse_known_args() if not hasattr(lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) __magic_name__ : Union[str, Any] = parse_unknown_args(lowerCAmelCase ) # Run __magic_name__ : Any = args.func(lowerCAmelCase , **lowerCAmelCase ) service.run() if __name__ == "__main__": main()
331
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCAmelCase :Union[str, Any] = None lowerCAmelCase :List[Any] = logging.get_logger(__name__) lowerCAmelCase :int = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase :str = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } lowerCAmelCase :str = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } lowerCAmelCase :List[Any] = '''▁''' # Segments (not really needed) lowerCAmelCase :Optional[Any] = 0 lowerCAmelCase :Any = 1 lowerCAmelCase :Optional[Any] = 2 lowerCAmelCase :Optional[Any] = 3 lowerCAmelCase :Optional[Any] = 4 class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Union[str, Any] = """left""" A_ : Union[str, Any] = XLNetTokenizer def __init__( self : Tuple , _A : Dict=None , _A : Optional[Any]=None , _A : Optional[Any]=False , _A : int=True , _A : Optional[Any]=False , _A : Dict="<s>" , _A : List[Any]="</s>" , _A : List[str]="<unk>" , _A : int="<sep>" , _A : Dict="<pad>" , _A : List[str]="<cls>" , _A : Tuple="<mask>" , _A : int=["<eop>", "<eod>"] , **_A : Optional[int] , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( vocab_file=_A , tokenizer_file=_A , do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , **_A , ) __magic_name__ : str = 3 __magic_name__ : Tuple = do_lower_case __magic_name__ : Union[str, Any] = remove_space __magic_name__ : List[Any] = keep_accents __magic_name__ : Union[str, Any] = vocab_file __magic_name__ : int = False if not self.vocab_file else True def __lowerCAmelCase ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: __magic_name__ : List[str] = [self.sep_token_id] __magic_name__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: __magic_name__ : int = [self.sep_token_id] __magic_name__ : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
331
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase :int = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase :int = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase :Any = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def __lowerCAmelCase ( self : str , _A : Dict , _A : List[str] , _A : str=None , _A : Optional[Any]="uniform_average" , _A : Optional[int]=True ) -> Optional[int]: __magic_name__ : Union[str, Any] = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
331
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Any = logging.get_logger(__name__) lowerCAmelCase :Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : int = """dpr""" def __init__( self : Dict , _A : Tuple=30522 , _A : Optional[int]=768 , _A : Any=12 , _A : Optional[Any]=12 , _A : Dict=3072 , _A : Optional[int]="gelu" , _A : Optional[Any]=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=512 , _A : Optional[int]=2 , _A : Optional[int]=0.02 , _A : Tuple=1E-12 , _A : List[str]=0 , _A : Optional[int]="absolute" , _A : int = 0 , **_A : Union[str, Any] , ) -> Optional[int]: super().__init__(pad_token_id=_A , **_A ) __magic_name__ : Any = vocab_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : Optional[Any] = hidden_act __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : List[Any] = attention_probs_dropout_prob __magic_name__ : Any = max_position_embeddings __magic_name__ : Optional[int] = type_vocab_size __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = layer_norm_eps __magic_name__ : Union[str, Any] = projection_dim __magic_name__ : int = position_embedding_type
331
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) A_ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) A_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) A_ : str = "text" A_ : str = "labels" def __lowerCAmelCase ( self : Dict , _A : int ) -> Tuple: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , _A ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) __magic_name__ : List[str] = copy.deepcopy(self ) __magic_name__ : Optional[int] = self.label_schema.copy() __magic_name__ : Union[str, Any] = features[self.label_column] __magic_name__ : Dict = label_schema return task_template @property def __lowerCAmelCase ( self : Any ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
331
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCAmelCase__ = TaTokenizerFast UpperCAmelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCAmelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE_: Union[str, Any] =get_tests_dir('fixtures') SCREAMING_SNAKE_CASE_: List[Any] =get_tests_dir('fixtures/dummy_feature_extractor_config.json') SCREAMING_SNAKE_CASE_: Union[str, Any] =get_tests_dir('fixtures/dummy-config.json') class __A ( unittest.TestCase ): def _lowercase (self : List[Any] ): UpperCAmelCase_ = 0 def _lowercase (self : Any ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def _lowercase (self : Any ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("feature_extractor_type" ) UpperCAmelCase_ = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved UpperCAmelCase_ = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("bert-base" ) def _lowercase (self : List[str] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" ) def _lowercase (self : List[str] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def _lowercase (self : int ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def _lowercase (self : Union[str, Any] ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : List[Any] ): class __A ( UpperCamelCase__ ): a__ : Optional[Any] = True try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
1
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ = [3, 3, 3, 3] lowercase__ = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ = [4, 4, 4, 4] lowercase__ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ = [3, 3, 3, 3] else: lowercase__ = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ = 96 elif "small" in model_name: lowercase__ = 96 elif "base" in model_name: lowercase__ = 128 elif "large" in model_name: lowercase__ = 192 elif "xlarge" in model_name: lowercase__ = 256 elif "huge" in model_name: lowercase__ = 352 # set label information lowercase__ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ = '''imagenet-22k-id2label.json''' else: lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(A ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = FocalNetConfig( embed_dim=A , depths=A , focal_levels=A , focal_windows=A , use_conv_embed=A , idalabel=A , labelaid=A , use_post_layernorm=A , use_layerscale=A , ) return config def _SCREAMING_SNAKE_CASE (A ) -> Dict: """simple docstring""" if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ = '''encoder.''' + name if "encoder.layers" in name: lowercase__ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ = '''layernorm.weight''' if name == "norm.bias": lowercase__ = '''layernorm.bias''' if "head" in name: lowercase__ = name.replace('''head''' , '''classifier''' ) else: lowercase__ = '''focalnet.''' + name return name def _SCREAMING_SNAKE_CASE (A , A , A=False ) -> Any: """simple docstring""" lowercase__ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , A ) lowercase__ = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(A ) lowercase__ = val lowercase__ = get_focalnet_config(A ) lowercase__ = FocalNetForImageClassification(A ) model.eval() # load state dict model.load_state_dict(A ) # verify conversion lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = BitImageProcessor( do_resize=A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=A , crop_size=224 , do_normalize=A , image_mean=A , image_std=A , ) lowercase__ = Image.open(requests.get(A , stream=A ).raw ) lowercase__ = processor(images=A , return_tensors='''pt''' ) lowercase__ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ = image_transforms(A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , A , atol=1E-4 ) lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowercase__ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowercase__ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowercase__ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowercase__ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowercase__ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
2
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=[] ): '''simple docstring''' A : Union[str, Any] = size[0] - overlap_pixels * 2 A : str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels A : str = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 A : Dict = np.pad(snake_case__ , mode='''linear_ramp''' , pad_width=snake_case__ , end_values=0 ) if "l" in remove_borders: A : Any = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: A : Any = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: A : Any = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: A : Union[str, Any] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return max(snake_case__ , min(snake_case__ , snake_case__ ) ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = list(snake_case__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap A : str = clamp_rect(snake_case__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : int = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(snake_case__ , (original_slice, 0) ) return result def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) A : Union[str, Any] = tile.crop(snake_case__ ) return tile def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Union[str, Any] = n % d return n - divisor class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 350 , ) -> List[Any]: """simple docstring""" super().__init__( vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , low_res_scheduler=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , max_noise_level=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) A : List[Any] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) A : List[Any] = add_overlap_rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , image.size ) A : Dict = image.crop(SCREAMING_SNAKE_CASE ) A : Tuple = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] A : Any = translated_slice_x - (original_image_slice / 2) A : Optional[Any] = max(0 , SCREAMING_SNAKE_CASE ) A : List[str] = squeeze_tile(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[str] = to_input.size A : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) A : str = super(SCREAMING_SNAKE_CASE , self ).__call__(image=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).images[0] A : str = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) A : int = unsqueeze_tile(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) A : Optional[int] = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) A : Optional[Any] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=SCREAMING_SNAKE_CASE ) , mode='''L''' , ) final_image.paste( SCREAMING_SNAKE_CASE , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 75 , SCREAMING_SNAKE_CASE = 9.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE = 32 , SCREAMING_SNAKE_CASE = 32 , ) -> Dict: """simple docstring""" A : str = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) A : Tuple = math.ceil(image.size[0] / tile_size ) A : List[Any] = math.ceil(image.size[1] / tile_size ) A : Optional[int] = tcx * tcy A : int = 0 for y in range(SCREAMING_SNAKE_CASE ): for x in range(SCREAMING_SNAKE_CASE ): self._process_tile( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prompt=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , noise_level=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = '''stabilityai/stable-diffusion-x4-upscaler''' A : int = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case__ , revision='''fp16''' , torch_dtype=torch.floataa ) A : Dict = pipe.to('''cuda''' ) A : Tuple = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(snake_case__ ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save('''diffusers_library_progress.jpg''' ) A : Optional[int] = pipe(image=snake_case__ , prompt='''Black font, white background, vector''' , noise_level=40 , callback=snake_case__ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
3
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
0
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Initialise PyTorch model lowerCAmelCase = AlbertConfig.from_json_file(lowerCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) lowerCAmelCase = AlbertForPreTraining(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
4
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
0
from __future__ import annotations UpperCAmelCase__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" _lowercase =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) ) ] # the reference grid _lowercase =1 _lowercase =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) ) ] # the action grid _lowercase =init[0] _lowercase =init[1] _lowercase =0 _lowercase =g + heuristic[x][y] # cost from starting cell to destination cell _lowercase =[[f, g, x, y]] _lowercase =False # flag that is set when search is complete _lowercase =False # flag set if we can't find expand while not found and not resign: if len(__snake_case ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _lowercase =cell.pop() _lowercase =next_cell[2] _lowercase =next_cell[3] _lowercase =next_cell[1] if x == goal[0] and y == goal[1]: _lowercase =True else: for i in range(len(__snake_case ) ): # to try out different valid actions _lowercase =x + DIRECTIONS[i][0] _lowercase =y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__snake_case ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _lowercase =g + cost _lowercase =ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _lowercase =1 _lowercase =i _lowercase =[] _lowercase =goal[0] _lowercase =goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _lowercase =x - DIRECTIONS[action[x][y]][0] _lowercase =y - DIRECTIONS[action[x][y]][1] _lowercase =xa _lowercase =ya invpath.append([x, y] ) _lowercase =[] for i in range(len(__snake_case ) ): path.append(invpath[len(__snake_case ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ = 99 UpperCAmelCase__ ,UpperCAmelCase__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
5
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
0
from sklearn.metrics import recall_score import datasets A : Optional[Any] = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' A : Optional[Any] = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' A : Tuple = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=1 , _snake_case="binary" , _snake_case=None , _snake_case="warn" , ) -> Any: '''simple docstring''' __a = recall_score( _snake_case , _snake_case , labels=_snake_case , pos_label=_snake_case , average=_snake_case , sample_weight=_snake_case , zero_division=_snake_case , ) return {"recall": float(_snake_case ) if score.size == 1 else score}
6
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if "img_encoder.pos_embed" in name: A__ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: A__ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: A__ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: A__ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: A__ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: A__ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: A__ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: A__ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: A__ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: A__ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: A__ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: A__ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: A__ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: A__ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: A__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: A__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: A__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: A__ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: A__ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: A__ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: A__ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: A__ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: A__ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: A__ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: '''simple docstring''' for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A__ = key.split('.' ) A__ , A__ = int(key_split[2] ), int(key_split[4] ) A__ = config.vision_config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A__ = key.split('.' ) A__ = int(key_split[3] ) A__ = config.text_config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = rename_key(SCREAMING_SNAKE_CASE__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): A__ = val.squeeze_() else: A__ = val return orig_state_dict def _snake_case( ) -> Optional[int]: '''simple docstring''' A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> Dict: '''simple docstring''' A__ = GroupViTConfig() A__ = GroupViTModel(SCREAMING_SNAKE_CASE__ ).eval() A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model'] A__ = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ , A__ = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE__ ) == 0) # verify result A__ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) A__ = prepare_img() A__ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) with torch.no_grad(): A__ = model(**SCREAMING_SNAKE_CASE__ ) if model_name == "groupvit-gcc-yfcc": A__ = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": A__ = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Successfully saved processor and model to' , SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='nielsr' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization='nielsr' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) lowercase_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
7
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
0
from sklearn.metrics import fa_score import datasets lowerCAmelCase_ = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' lowerCAmelCase_ = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' lowerCAmelCase_ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Tuple ) ->Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def snake_case__( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[int]=1 , _UpperCamelCase : List[str]="binary" , _UpperCamelCase : Tuple=None ) ->Optional[Any]: snake_case_ = fa_score( _UpperCamelCase , _UpperCamelCase , labels=_UpperCamelCase , pos_label=_UpperCamelCase , average=_UpperCamelCase , sample_weight=_UpperCamelCase ) return {"f1": float(_UpperCamelCase ) if score.size == 1 else score}
8
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
0
from abc import ABC, abstractmethod from typing import List, Optional class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Tuple ) -> Union[str, Any]: # test for the above condition self.test() def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Tuple = False while not completed: if counter == 1: self.reset() __SCREAMING_SNAKE_CASE : Optional[Any] = self.advance() if not self.does_advance(lowerCAmelCase__ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.update(lowerCAmelCase__ ) counter += 1 if counter > 10_000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __magic_name__( self :Optional[int] ) -> str: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :str , lowerCAmelCase__ :int ) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> int: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :List[str] ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :Tuple ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Dict=False ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :List[int] ) -> Optional[Any]: super(lowerCAmelCase__ , self ).__init__() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = token_ids __SCREAMING_SNAKE_CASE : Optional[Any] = len(self.token_ids ) __SCREAMING_SNAKE_CASE : Tuple = -1 # the index of the currently fulfilled step __SCREAMING_SNAKE_CASE : int = False def __magic_name__( self :List[str] ) -> List[str]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> List[str]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __magic_name__( self :int , lowerCAmelCase__ :int ) -> Tuple: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' ) __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False if self.does_advance(lowerCAmelCase__ ): self.fulfilled_idx += 1 __SCREAMING_SNAKE_CASE : Dict = True if self.fulfilled_idx == (self.seqlen - 1): __SCREAMING_SNAKE_CASE : Union[str, Any] = True __SCREAMING_SNAKE_CASE : int = completed else: # failed to make progress. __SCREAMING_SNAKE_CASE : List[str] = True self.reset() return stepped, completed, reset def __magic_name__( self :Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : str = 0 def __magic_name__( self :Any ) -> str: return self.seqlen - (self.fulfilled_idx + 1) def __magic_name__( self :str , lowerCAmelCase__ :Optional[Any]=False ) -> List[str]: __SCREAMING_SNAKE_CASE : int = PhrasalConstraint(self.token_ids ) if stateful: __SCREAMING_SNAKE_CASE : Any = self.seqlen __SCREAMING_SNAKE_CASE : Dict = self.fulfilled_idx __SCREAMING_SNAKE_CASE : List[str] = self.completed return new_constraint class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :List[List[int]] , lowerCAmelCase__ :List[Any]=True ) -> str: __SCREAMING_SNAKE_CASE : Any = max([len(lowerCAmelCase__ ) for one in nested_token_ids] ) __SCREAMING_SNAKE_CASE : int = {} for token_ids in nested_token_ids: __SCREAMING_SNAKE_CASE : int = root for tidx, token_id in enumerate(lowerCAmelCase__ ): if token_id not in level: __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : Dict = level[token_id] if no_subsets and self.has_subsets(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f''' {nested_token_ids}.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = root def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : int = self.trie for current_token in current_seq: __SCREAMING_SNAKE_CASE : List[Any] = start[current_token] __SCREAMING_SNAKE_CASE : Optional[Any] = list(start.keys() ) return next_tokens def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = self.next_tokens(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) == 0 def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = list(root.values() ) if len(lowerCAmelCase__ ) == 0: return 1 else: return sum([self.count_leaves(lowerCAmelCase__ ) for nn in next_nodes] ) def __magic_name__( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = self.count_leaves(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) != leaf_count class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :List[List[int]] ) -> int: super(lowerCAmelCase__ , self ).__init__() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __SCREAMING_SNAKE_CASE : str = DisjunctiveTrie(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nested_token_ids __SCREAMING_SNAKE_CASE : Optional[Any] = self.trie.max_height __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : Tuple = False def __magic_name__( self :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.trie.next_tokens(self.current_seq ) if len(lowerCAmelCase__ ) == 0: return None else: return token_list def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' ) __SCREAMING_SNAKE_CASE : Tuple = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __magic_name__( self :Any , lowerCAmelCase__ :int ) -> Union[str, Any]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(lowerCAmelCase__ ): self.current_seq.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = True else: __SCREAMING_SNAKE_CASE : List[str] = True self.reset() __SCREAMING_SNAKE_CASE : Optional[Any] = self.trie.reached_leaf(self.current_seq ) __SCREAMING_SNAKE_CASE : Any = completed return stepped, completed, reset def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = [] def __magic_name__( self :Optional[Any] ) -> Tuple: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __magic_name__( self :Any , lowerCAmelCase__ :Tuple=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = DisjunctiveConstraint(self.token_ids ) if stateful: __SCREAMING_SNAKE_CASE : int = self.seqlen __SCREAMING_SNAKE_CASE : List[Any] = self.current_seq __SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class _lowercase : '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :List[Constraint] ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = constraints # max # of steps required to fulfill a given constraint __SCREAMING_SNAKE_CASE : Optional[Any] = max([c.seqlen for c in constraints] ) __SCREAMING_SNAKE_CASE : Tuple = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = False self.init_state() def __magic_name__( self :int ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : List[str] = [constraint.copy(stateful=lowerCAmelCase__ ) for constraint in self.constraints] def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __SCREAMING_SNAKE_CASE : Union[str, Any] = constraint.advance() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): token_list.append(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): token_list.extend(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Tuple = self.inprogress_constraint.advance() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): token_list.append(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): token_list.extend(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 0: return None else: return token_list def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Optional[List[int]] ) -> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self.add(lowerCAmelCase__ ) # the entire list of constraints are fulfilled if self.completed: break def __magic_name__( self :str , lowerCAmelCase__ :int ) -> Any: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = False, False if self.completed: __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.update(lowerCAmelCase__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : int = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __SCREAMING_SNAKE_CASE : int = None if len(self.pending_constraints ) == 0: # we're done! __SCREAMING_SNAKE_CASE : List[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = pending_constraint.update(lowerCAmelCase__ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = None if not complete and stepped: __SCREAMING_SNAKE_CASE : Dict = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __SCREAMING_SNAKE_CASE : Tuple = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __SCREAMING_SNAKE_CASE : Dict = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __magic_name__( self :int , lowerCAmelCase__ :List[Any]=True ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __SCREAMING_SNAKE_CASE : Dict = [ constraint.copy(stateful=lowerCAmelCase__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.copy(stateful=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [constraint.copy() for constraint in self.pending_constraints] return new_state
9
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __A = Mapping[str, np.ndarray] __A = Mapping[str, Any] # Is a nested dict. __A = 0.0_1 @dataclasses.dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowercase_ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowercase_ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowercase_ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowercase_ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowercase_ = None # Optional remark about the protein. Included as a comment in output PDB # files lowercase_ = None # Templates used to generate this protein (prediction-only) lowercase_ = None # Chain corresponding to each parent lowercase_ = None def lowerCAmelCase_ ( __a ) -> Protein: """simple docstring""" lowerCamelCase__: Union[str, Any] =R"(\[[A-Z]+\]\n)" lowerCamelCase__: List[str] =[tag.strip() for tag in re.split(__a , __a ) if len(__a ) > 0] lowerCamelCase__: Iterator[Tuple[str, List[str]]] =zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) lowerCamelCase__: List[str] =["N", "CA", "C"] lowerCamelCase__: int =None lowerCamelCase__: str =None lowerCamelCase__: Dict =None for g in groups: if "[PRIMARY]" == g[0]: lowerCamelCase__: Optional[Any] =g[1][0].strip() for i in range(len(__a ) ): if seq[i] not in residue_constants.restypes: lowerCamelCase__: Optional[int] ="X" # FIXME: strings are immutable lowerCamelCase__: Optional[int] =np.array( [residue_constants.restype_order.get(__a , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowerCamelCase__: List[List[float]] =[] for axis in range(3 ): tertiary.append(list(map(__a , g[1][axis].split() ) ) ) lowerCamelCase__: List[str] =np.array(__a ) lowerCamelCase__: List[str] =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__a ): lowerCamelCase__: str =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowerCamelCase__: int =np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) lowerCamelCase__: Dict =np.zeros( ( len(__a ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__a ): lowerCamelCase__: int =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__a , atom_mask=__a , aatype=__a , residue_index=np.arange(len(__a ) ) , b_factors=__a , ) def lowerCAmelCase_ ( __a , __a = 0 ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =[] lowerCamelCase__: Optional[Any] =prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowerCamelCase__: List[str] =prot.parents lowerCamelCase__: Optional[int] =prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowerCamelCase__: int =[p for i, p in zip(__a , __a ) if i == chain_id] if parents is None or len(__a ) == 0: lowerCamelCase__: Optional[int] =["N/A"] pdb_headers.append(F"""PARENT {" ".join(__a )}""" ) return pdb_headers def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: List[str] =[] lowerCamelCase__: Any =pdb_str.split("\n" ) lowerCamelCase__: Optional[Any] =prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowerCamelCase__: List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: lowerCamelCase__: int =[] if prot.parents_chain_index is not None: lowerCamelCase__: Dict[str, List[str]] ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__a ) , [] ) parent_dict[str(__a )].append(__a ) lowerCamelCase__: List[Any] =max([int(__a ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowerCamelCase__: Optional[Any] =parent_dict.get(str(__a ) , ["N/A"] ) parents_per_chain.append(__a ) else: parents_per_chain.append(list(prot.parents ) ) else: lowerCamelCase__: Optional[Any] =[["N/A"]] def make_parent_line(__a ) -> str: return F"""PARENT {" ".join(__a )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowerCamelCase__: Optional[int] =0 for i, l in enumerate(__a ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__a ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__a ): lowerCamelCase__: Union[str, Any] =parents_per_chain[chain_counter] else: lowerCamelCase__: int =["N/A"] out_pdb_lines.append(make_parent_line(__a ) ) return "\n".join(__a ) def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" lowerCamelCase__: str =residue_constants.restypes + ["X"] def res_atoa(__a ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) lowerCamelCase__: List[str] =residue_constants.atom_types lowerCamelCase__: List[str] =[] lowerCamelCase__: Any =prot.atom_mask lowerCamelCase__: str =prot.aatype lowerCamelCase__: Optional[int] =prot.atom_positions lowerCamelCase__: List[str] =prot.residue_index.astype(np.intaa ) lowerCamelCase__: List[str] =prot.b_factors lowerCamelCase__: str =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) lowerCamelCase__: str =get_pdb_headers(__a ) if len(__a ) > 0: pdb_lines.extend(__a ) lowerCamelCase__: Dict =aatype.shape[0] lowerCamelCase__: Dict =1 lowerCamelCase__: List[Any] =0 lowerCamelCase__: Optional[Any] =string.ascii_uppercase lowerCamelCase__: List[str] =None # Add all atom sites. for i in range(__a ): lowerCamelCase__: Any =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__a , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowerCamelCase__: Union[str, Any] ="ATOM" lowerCamelCase__: Union[str, Any] =atom_name if len(__a ) == 4 else F""" {atom_name}""" lowerCamelCase__: int ="" lowerCamelCase__: List[str] ="" lowerCamelCase__: int =1.0_0 lowerCamelCase__: Optional[int] =atom_name[0] # Protein supports only C, N, O, S, this works. lowerCamelCase__: Dict ="" lowerCamelCase__: Union[str, Any] ="A" if chain_index is not None: lowerCamelCase__: Any =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowerCamelCase__: str =( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(__a ) atom_index += 1 lowerCamelCase__: Optional[Any] =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowerCamelCase__: List[str] =True lowerCamelCase__: Optional[int] =chain_index[i + 1] if should_terminate: # Close the chain. lowerCamelCase__: str ="TER" lowerCamelCase__: List[Any] =( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__a ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__a , __a ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__a ) def lowerCAmelCase_ ( __a ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCAmelCase_ ( __a , __a , __a = None , __a = None , __a = None , __a = None , __a = None , ) -> Protein: """simple docstring""" return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__a , remark=__a , parents=__a , parents_chain_index=__a , )
10
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0.0 , __lowerCamelCase = None , __lowerCamelCase = "geglu" , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = "layer_norm" , __lowerCamelCase = False , ) -> Optional[int]: super().__init__() _A : Optional[Any] = only_cross_attention _A : int = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _A : List[Any] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.") # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _A : Any = AdaLayerNorm(__lowerCamelCase , __lowerCamelCase) elif self.use_ada_layer_norm_zero: _A : Optional[int] = AdaLayerNormZero(__lowerCamelCase , __lowerCamelCase) else: _A : str = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) _A : int = Attention( query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowerCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _A : int = ( AdaLayerNorm(__lowerCamelCase , __lowerCamelCase) if self.use_ada_layer_norm else nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) ) _A : Optional[int] = Attention( query_dim=__lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , upcast_attention=__lowerCamelCase , ) # is self-attn if encoder_hidden_states is none else: _A : Tuple = None _A : List[Any] = None # 3. Feed-forward _A : Any = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) _A : Any = FeedForward(__lowerCamelCase , dropout=__lowerCamelCase , activation_fn=__lowerCamelCase , final_dropout=__lowerCamelCase) # let chunk size default to None _A : Optional[int] = None _A : List[Any] = 0 def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # Sets chunk feed-forward _A : Optional[int] = chunk_size _A : str = dim def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , ) -> int: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _A : Union[str, Any] = self.norma(__lowerCamelCase , __lowerCamelCase) elif self.use_ada_layer_norm_zero: _A , _A , _A , _A , _A : Tuple = self.norma( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hidden_dtype=hidden_states.dtype) else: _A : Tuple = self.norma(__lowerCamelCase) _A : Dict = cross_attention_kwargs if cross_attention_kwargs is not None else {} _A : Optional[Any] = self.attna( __lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowerCamelCase , **__lowerCamelCase , ) if self.use_ada_layer_norm_zero: _A : int = gate_msa.unsqueeze(1) * attn_output _A : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _A : Any = ( self.norma(__lowerCamelCase , __lowerCamelCase) if self.use_ada_layer_norm else self.norma(__lowerCamelCase) ) _A : Union[str, Any] = self.attna( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=__lowerCamelCase , **__lowerCamelCase , ) _A : Any = attn_output + hidden_states # 3. Feed-forward _A : str = self.norma(__lowerCamelCase) if self.use_ada_layer_norm_zero: _A : Optional[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.") _A : Optional[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _A : int = torch.cat( [self.ff(__lowerCamelCase) for hid_slice in norm_hidden_states.chunk(__lowerCamelCase , dim=self._chunk_dim)] , dim=self._chunk_dim , ) else: _A : List[str] = self.ff(__lowerCamelCase) if self.use_ada_layer_norm_zero: _A : Optional[int] = gate_mlp.unsqueeze(1) * ff_output _A : Optional[int] = ff_output + hidden_states return hidden_states class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = 4 , __lowerCamelCase = 0.0 , __lowerCamelCase = "geglu" , __lowerCamelCase = False , ) -> Tuple: super().__init__() _A : List[Any] = int(dim * mult) _A : Any = dim_out if dim_out is not None else dim if activation_fn == "gelu": _A : Tuple = GELU(__lowerCamelCase , __lowerCamelCase) if activation_fn == "gelu-approximate": _A : List[Any] = GELU(__lowerCamelCase , __lowerCamelCase , approximate="tanh") elif activation_fn == "geglu": _A : Optional[Any] = GEGLU(__lowerCamelCase , __lowerCamelCase) elif activation_fn == "geglu-approximate": _A : Any = ApproximateGELU(__lowerCamelCase , __lowerCamelCase) _A : List[str] = nn.ModuleList([]) # project in self.net.append(__lowerCamelCase) # project dropout self.net.append(nn.Dropout(__lowerCamelCase)) # project out self.net.append(nn.Linear(__lowerCamelCase , __lowerCamelCase)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowerCamelCase)) def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: for module in self.net: _A : List[Any] = module(__lowerCamelCase) return hidden_states class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = "none") -> Any: super().__init__() _A : str = nn.Linear(__lowerCamelCase , __lowerCamelCase) _A : int = approximate def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[int]: if gate.device.type != "mps": return F.gelu(__lowerCamelCase , approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) , approximate=self.approximate).to(dtype=gate.dtype) def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A : Dict = self.proj(__lowerCamelCase) _A : int = self.gelu(__lowerCamelCase) return hidden_states class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: super().__init__() _A : int = nn.Linear(__lowerCamelCase , dim_out * 2) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[int]: if gate.device.type != "mps": return F.gelu(__lowerCamelCase) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A , _A : List[Any] = self.proj(__lowerCamelCase).chunk(2 , dim=-1) return hidden_states * self.gelu(__lowerCamelCase) class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: super().__init__() _A : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: _A : Any = self.proj(__lowerCamelCase) return x * torch.sigmoid(1.7_0_2 * x) class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> List[str]: super().__init__() _A : Optional[int] = nn.Embedding(__lowerCamelCase , __lowerCamelCase) _A : Tuple = nn.SiLU() _A : Union[str, Any] = nn.Linear(__lowerCamelCase , embedding_dim * 2) _A : int = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = self.linear(self.silu(self.emb(__lowerCamelCase))) _A , _A : Optional[Any] = torch.chunk(__lowerCamelCase , 2) _A : Any = self.norm(__lowerCamelCase) * (1 + scale) + shift return x class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: super().__init__() _A : str = CombinedTimestepLabelEmbeddings(__lowerCamelCase , __lowerCamelCase) _A : Optional[int] = nn.SiLU() _A : Dict = nn.Linear(__lowerCamelCase , 6 * embedding_dim , bias=__lowerCamelCase) _A : int = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase , eps=1e-6) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None) -> Union[str, Any]: _A : List[Any] = self.linear(self.silu(self.emb(__lowerCamelCase , __lowerCamelCase , hidden_dtype=__lowerCamelCase))) _A , _A , _A , _A , _A , _A : Optional[int] = emb.chunk(6 , dim=1) _A : int = self.norm(__lowerCamelCase) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCAmelCase__ ( nn.Module): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = 1e-5) -> int: super().__init__() _A : Any = num_groups _A : Any = eps if act_fn is None: _A : Tuple = None else: _A : str = get_activation(__lowerCamelCase) _A : List[Any] = nn.Linear(__lowerCamelCase , out_dim * 2) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: if self.act: _A : Tuple = self.act(__lowerCamelCase) _A : Optional[Any] = self.linear(__lowerCamelCase) _A : Tuple = emb[:, :, None, None] _A , _A : Union[str, Any] = emb.chunk(2 , dim=1) _A : List[str] = F.group_norm(__lowerCamelCase , self.num_groups , eps=self.eps) _A : int = x * (1 + scale) + shift return x
11
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase__: def __init__( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Any=13 , UpperCamelCase_: Optional[int]=7 , UpperCamelCase_: Any=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[Any]=99 , UpperCamelCase_: Optional[int]=32 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: int=4 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Union[str, Any]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: str=True , UpperCamelCase_: Optional[Any]=5_12 , UpperCamelCase_: int=16 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: Optional[Any]=4 , UpperCamelCase_: Tuple=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_multiple_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = weight_tying __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase__ ( self: Any ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = True return config, input_ids, input_mask, token_labels def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] ): __lowerCamelCase = GPTNeoXJapaneseModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] ): __lowerCamelCase = True __lowerCamelCase = GPTNeoXJapaneseModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: str , UpperCamelCase_: int ): __lowerCamelCase = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = True __lowerCamelCase = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ ) __lowerCamelCase = output_from_no_past["""hidden_states"""][0] __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )["""hidden_states"""][0] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : List[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCAmelCase__ : Dict = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : Dict = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: int ): __lowerCamelCase = GPTNeoXJapaneseModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: int ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): # This regression test was failing with PyTorch < 1.3 __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = """abeja/gpt-neox-japanese-2.7b""" __lowerCamelCase = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] __lowerCamelCase = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] __lowerCamelCase = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = [] for prompt in prompts: __lowerCamelCase = tokenizer(UpperCamelCase_ , return_tensors="""pt""" ).input_ids __lowerCamelCase = model.generate(UpperCamelCase_ , max_length=50 ) __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
12
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase : str = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def A_ ( _UpperCAmelCase ): config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=_UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? SCREAMING_SNAKE_CASE_: List[Any] = tmp_path_factory.getbasetemp() / "cache" SCREAMING_SNAKE_CASE_: Union[str, Any] = test_hf_cache_home / "datasets" SCREAMING_SNAKE_CASE_: Tuple = test_hf_cache_home / "metrics" SCREAMING_SNAKE_CASE_: Union[str, Any] = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(_UpperCAmelCase ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(_UpperCAmelCase ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: int = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: Optional[int] = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_UpperCAmelCase ) ) @pytest.fixture(autouse=_UpperCAmelCase , scope="session" ) def A_ ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=_UpperCAmelCase ) def A_ ( _UpperCAmelCase ): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , _UpperCAmelCase ) @pytest.fixture def A_ ( _UpperCAmelCase ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , _UpperCAmelCase )
13
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowerCamelCase : List[str] = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" A__ = {} state_dict.pop('''pixel_mean''' , lowercase_ ) state_dict.pop('''pixel_std''' , lowercase_ ) A__ = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A__ = key.replace(lowercase_ , lowercase_ ) if re.match(lowercase_ , lowercase_ ): A__ = int(re.match(lowercase_ , lowercase_ ).group(2 ) ) if layer_nb == 0: A__ = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: A__ = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: A__ = key.replace('''layers.2''' , '''proj_out''' ) A__ = value A__ = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_="ybelkada/segment-anything" ) -> Union[str, Any]: """simple docstring""" A__ = hf_hub_download(lowercase_ , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: A__ = SamConfig() elif "sam_vit_l" in model_name: A__ = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) A__ = SamConfig( vision_config=lowercase_ , ) elif "sam_vit_h" in model_name: A__ = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) A__ = SamConfig( vision_config=lowercase_ , ) A__ = torch.load(lowercase_ , map_location='''cpu''' ) A__ = replace_keys(lowercase_ ) A__ = SamImageProcessor() A__ = SamProcessor(image_processor=lowercase_ ) A__ = SamModel(lowercase_ ) hf_model.load_state_dict(lowercase_ ) A__ = hf_model.to('''cuda''' ) A__ = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) A__ = [[[400, 650]]] A__ = [[1]] A__ = processor(images=np.array(lowercase_ ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): A__ = hf_model(**lowercase_ ) A__ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 A__ = processor( images=np.array(lowercase_ ) , input_points=lowercase_ , input_labels=lowercase_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): A__ = hf_model(**lowercase_ ) A__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 A__ = ((75, 275, 1_725, 850),) A__ = processor(images=np.array(lowercase_ ) , input_boxes=lowercase_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): A__ = hf_model(**lowercase_ ) A__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. A__ = [[[400, 650], [800, 650]]] A__ = [[1, 1]] A__ = processor( images=np.array(lowercase_ ) , input_points=lowercase_ , input_labels=lowercase_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): A__ = hf_model(**lowercase_ ) A__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() _lowerCamelCase : Union[str, Any] = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
14
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = UNetaDModel snake_case_ = "sample" @property def UpperCamelCase_ ( self : List[str] ): __A = 4 __A = 3 __A = (32, 32) __A = floats_tensor((batch_size, num_channels) + sizes ).to(A ) __A = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self : Any ): return (3, 32, 32) @property def UpperCamelCase_ ( self : Any ): return (3, 32, 32) def UpperCamelCase_ ( self : Dict ): __A = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } __A = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = UNetaDModel snake_case_ = "sample" @property def UpperCamelCase_ ( self : Tuple ): __A = 4 __A = 4 __A = (32, 32) __A = floats_tensor((batch_size, num_channels) + sizes ).to(A ) __A = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self : List[str] ): return (4, 32, 32) @property def UpperCamelCase_ ( self : int ): return (4, 32, 32) def UpperCamelCase_ ( self : Union[str, Any] ): __A = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } __A = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Dict ): __A , __A = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ,output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["missing_keys"] ) ,0 ) model.to(A ) __A = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" ,"This test is supposed to run on GPU" ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ,output_loading_info=A ) model.to(A ) __A = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" ,"This test is supposed to run on GPU" ) def UpperCamelCase_ ( self : Union[str, Any] ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` __A , __A = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ,output_loading_info=A ) model_accelerate.to(A ) model_accelerate.eval() __A = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) __A = noise.to(A ) __A = torch.tensor([10] * noise.shape[0] ).to(A ) __A = model_accelerate(A ,A )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __A , __A = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" ,output_loading_info=A ,low_cpu_mem_usage=A ) model_normal_load.to(A ) model_normal_load.eval() __A = model_normal_load(A ,A )["sample"] assert torch_all_close(A ,A ,rtol=1E-3 ) def UpperCamelCase_ ( self : Optional[int] ): __A = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(A ) __A = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) __A = noise.to(A ) __A = torch.tensor([10] * noise.shape[0] ).to(A ) with torch.no_grad(): __A = model(A ,A ).sample __A = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __A = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(A ,A ,rtol=1E-3 ) ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = UNetaDModel snake_case_ = "sample" @property def UpperCamelCase_ ( self : Optional[Any] ,A : List[str]=(32, 32) ): __A = 4 __A = 3 __A = floats_tensor((batch_size, num_channels) + sizes ).to(A ) __A = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=A ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase_ ( self : List[str] ): return (3, 32, 32) @property def UpperCamelCase_ ( self : List[Any] ): return (3, 32, 32) def UpperCamelCase_ ( self : int ): __A = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } __A = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase_ ( self : List[str] ): __A , __A = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ,output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["missing_keys"] ) ,0 ) model.to(A ) __A = self.dummy_input __A = floats_tensor((4, 3) + (2_56, 2_56) ).to(A ) __A = noise __A = model(**A ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase_ ( self : Tuple ): __A = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(A ) __A = 4 __A = 3 __A = (2_56, 2_56) __A = torch.ones((batch_size, num_channels) + sizes ).to(A ) __A = torch.tensor(batch_size * [1E-4] ).to(A ) with torch.no_grad(): __A = model(A ,A ).sample __A = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __A = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(A ,A ,rtol=1E-2 ) ) def UpperCamelCase_ ( self : str ): __A = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(A ) __A = 4 __A = 3 __A = (32, 32) __A = torch.ones((batch_size, num_channels) + sizes ).to(A ) __A = torch.tensor(batch_size * [1E-4] ).to(A ) with torch.no_grad(): __A = model(A ,A ).sample __A = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __A = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(A ,A ,rtol=1E-2 ) ) def UpperCamelCase_ ( self : Union[str, Any] ): # not required for this model pass
15
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowercase__ : int = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" with self.assertRaises(_snake_case ): lowercase__ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" with self.assertRaises(_snake_case ): lowercase__ : Dict = pa.array(TypedSequence([1, 2, 3] ,try_type=Value('''bool''' ) ,type=Value('''int64''' ) ) ) def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] ,type=Value('''int32''' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase__ : List[str] = pa.array(TypedSequence(['''foo''', '''bar'''] ,type=Value('''int64''' ) ) ) def UpperCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] ,try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = pa.array(TypedSequence(['''foo''', '''bar'''] ,try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type ,pa.string() ) def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : str = pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'''int64''' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'''int64''' ) ) def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase__ : List[str] = pa.array(TypedSequence(['''foo''', '''bar'''] ,type=ArrayaD((1, 3) ,'''int64''' ) ) ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'''int64''' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'''int64''' ) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : List[Any] = pa.array(TypedSequence(['''foo''', '''bar'''] ,try_type=ArrayaD((1, 3) ,'''int64''' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" import PIL.Image lowercase__ : List[Any] = PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' ,side_effect=_snake_case ) as mock_cast_to_python_objects: lowercase__ : int = pa.array(TypedSequence([{'''path''': None, '''bytes''': b'''image_bytes'''}, pil_image] ,type=Image() ) ) lowercase__ , lowercase__ : Tuple = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' ,_snake_case ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : Optional[int] = pa.BufferReader(__lowerCamelCase ) if isinstance(__lowerCamelCase , pa.Buffer ) else pa.memory_map(__lowerCamelCase ) lowercase__ : Dict = pa.ipc.open_stream(__lowerCamelCase ) lowercase__ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : List[Any] = pa.BufferOutputStream() lowercase__ : Dict = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase__ , lowercase__ : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase__ : Any = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __UpperCAmelCase ( ) -> List[str]: lowercase__ : List[Any] = pa.BufferOutputStream() lowercase__ : str = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=__lowerCamelCase , features=__lowerCamelCase ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) lowercase__ , lowercase__ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowercase__ : Optional[int] = pa.BufferReader(output.getvalue() ) lowercase__ : Tuple = pa.ipc.open_stream(__lowerCamelCase ) lowercase__ : pa.Table = f.read_all() lowercase__ : Dict = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__lowerCamelCase ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : Optional[int] = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt='''split_name''' , check_duplicates=__lowerCamelCase , ) as writer: with pytest.raises(__lowerCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) lowercase__ , lowercase__ : Dict = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : str = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt='''split_name''' , check_duplicates=__lowerCamelCase , ) as writer: with pytest.raises(__lowerCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10 ) lowercase__ , lowercase__ : str = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt='''split_name''' , check_duplicates=__lowerCamelCase , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) lowercase__ , lowercase__ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : int = pa.BufferOutputStream() lowercase__ : Tuple = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) lowercase__ , lowercase__ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase__ : Tuple = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Dict = pa.BufferOutputStream() lowercase__ : Tuple = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) lowercase__ , lowercase__ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase__ : Any = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = pa.BufferOutputStream() lowercase__ : Dict = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) lowercase__ , lowercase__ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase__ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __UpperCAmelCase ( ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} lowercase__ : Dict = os.path.join(__lowerCamelCase , '''test.arrow''' ) with ArrowWriter(path=__lowerCamelCase , schema=pa.schema(__lowerCamelCase ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) lowercase__ , lowercase__ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(__lowerCamelCase , 1 ) def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: if pa.types.is_list(__lowerCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: if isinstance(lst[0] , __lowerCamelCase ): change_first_primitive_element_in_list(lst[0] , __lowerCamelCase ) else: lowercase__ : Optional[Any] = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[int] = pa.array(TypedSequence(__lowerCamelCase , optimized_int_type=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: # in range lowercase__ : Optional[int] = pa.array(OptimizedTypedSequence(__lowerCamelCase , col=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowercase__ : Tuple = copy.deepcopy(__lowerCamelCase ) lowercase__ : Dict = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__lowerCamelCase , __lowerCamelCase ) lowercase__ : int = pa.array(OptimizedTypedSequence(__lowerCamelCase , col=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=__lowerCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ : int = '''mock://dataset-train.arrow''' with ArrowWriter(path=__lowerCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__lowerCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase__ , lowercase__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__lowerCamelCase ) def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[Any] = pa.BufferOutputStream() with ParquetWriter(stream=__lowerCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowercase__ , lowercase__ : List[str] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowercase__ : str = pa.BufferReader(output.getvalue() ) lowercase__ : pa.Table = pq.read_table(__lowerCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: import PIL.Image lowercase__ : Dict = str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__lowerCamelCase , format='''png''' ) lowercase__ : Tuple = pa.BufferOutputStream() with ParquetWriter( stream=__lowerCamelCase , features=Features({'''image''': Image()} ) , embed_local_files=__lowerCamelCase ) as writer: writer.write({'''image''': image_path} ) writer.finalize() lowercase__ : Any = pa.BufferReader(output.getvalue() ) lowercase__ : pa.Table = pq.read_table(__lowerCamelCase ) lowercase__ : Union[str, Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , __lowerCamelCase ) with open(__lowerCamelCase , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __UpperCAmelCase ( ) -> Union[str, Any]: lowercase__ : Optional[Any] = pa.schema([pa.field('''col_1''' , pa.string() , nullable=__lowerCamelCase )] ) lowercase__ : List[Any] = pa.BufferOutputStream() with ArrowWriter(stream=__lowerCamelCase ) as writer: writer._build_writer(inferred_schema=__lowerCamelCase ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
16
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
0
"""simple docstring""" import cmath import math def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> complex: '''simple docstring''' __lowercase = math.radians(UpperCamelCase_) __lowercase = math.radians(UpperCamelCase_) # Convert voltage and current to rectangular form __lowercase = cmath.rect(UpperCamelCase_, UpperCamelCase_) __lowercase = cmath.rect(UpperCamelCase_, UpperCamelCase_) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class a__ ( A__ ): A = 'realm' def __init__( self : Optional[Any],_A : int=3_0522,_A : Union[str, Any]=768,_A : Dict=128,_A : Optional[int]=12,_A : List[str]=12,_A : Optional[int]=8,_A : Tuple=3072,_A : Optional[int]="gelu_new",_A : Tuple=0.1,_A : Optional[int]=0.1,_A : Optional[int]=512,_A : Optional[int]=2,_A : Any=0.02,_A : Tuple=1E-12,_A : Union[str, Any]=256,_A : int=10,_A : Tuple=1E-3,_A : Tuple=5,_A : List[str]=320,_A : List[Any]=1335_3718,_A : Optional[Any]=5000,_A : List[Any]=1,_A : int=0,_A : str=2,**_A : Optional[Any],): """simple docstring""" super().__init__(pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,**_A ) # Common config SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Any = retriever_proj_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : str = num_candidates SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Dict = type_vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ : Optional[Any] = span_hidden_size SCREAMING_SNAKE_CASE_ : Any = max_span_width SCREAMING_SNAKE_CASE_ : int = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict = reader_beam_size SCREAMING_SNAKE_CASE_ : Any = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ : int = num_block_records SCREAMING_SNAKE_CASE_ : Tuple = searcher_beam_size
18
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
0
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
19
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase : Union[str, Any] = 50000 lowercase : Optional[int] = 5000 lowercase , lowercase : List[str] = os.path.split(__file__) lowercase : int = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = dataset[i] @get_duration def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): lowercase : str = dataset[i : i + batch_size] @get_duration def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ): for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Any = dataset[i] @get_duration def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ): for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = dataset[i : i + batch_size] def _snake_case( ) -> str: lowercase : Any = {"""num examples""": SPEED_TEST_N_EXAMPLES} lowercase : int = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] lowercase : List[Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) lowercase : int = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) lowercase : List[Any] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , """dataset.arrow""" ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) print("""shuffling dataset""" ) lowercase : Tuple = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) lowercase : Dict = func( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
20
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
0
def UpperCamelCase_( lowerCamelCase_ ) -> list: if len(lowerCamelCase_ ) < 2: return collection def circle_sort_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> bool: _lowercase : Any = False if low == high: return swapped _lowercase : Union[str, Any] = low _lowercase : List[Any] = high while left < right: if collection[left] > collection[right]: _lowercase , _lowercase : Optional[int] = ( collection[right], collection[left], ) _lowercase : int = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _lowercase , _lowercase : Optional[int] = ( collection[right + 1], collection[left], ) _lowercase : List[Any] = True _lowercase : Tuple = low + int((high - low) / 2 ) _lowercase : Tuple = circle_sort_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Any = circle_sort_util(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) return swapped or left_swap or right_swap _lowercase : Union[str, Any] = True while is_not_sorted is True: _lowercase : Union[str, Any] = circle_sort_util(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) - 1 ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE : int = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
21
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Any ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : List[Any] , **_A : Any ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : List[str] , *_A : Tuple , **_A : Optional[int] ) -> int: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self : Union[str, Any] , *_A : Any , **_A : int ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] , *_A : Optional[int] , **_A : Dict ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Tuple , *_A : Any , **_A : Union[str, Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Dict = ["""flax""", """transformers"""] def __init__( self : int , *_A : Optional[int] , **_A : Any ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : int , **_A : str ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] ) class _lowerCamelCase ( metaclass=lowercase__ ): '''simple docstring''' A_ : Optional[int] = ["""flax""", """transformers"""] def __init__( self : Tuple , *_A : Dict , **_A : str ) -> Optional[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : str , *_A : Dict , **_A : Optional[Any] ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls : Any , *_A : List[str] , **_A : str ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
331
0
'''simple docstring''' from itertools import permutations def UpperCAmelCase_ ( __lowercase : tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(__lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase_ ( __lowercase : int = 10 ) -> int: '''simple docstring''' return sum( int("".join(map(__lowercase , __lowercase ) ) ) for num in permutations(range(__lowercase ) ) if is_substring_divisible(__lowercase ) ) if __name__ == "__main__": print(F"{solution() = }")
22
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
0
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase :Dict = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') lowerCAmelCase :str = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase :Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase :Tuple = sorted(arg_to_scheduler.keys()) lowerCAmelCase :Any = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class _lowerCamelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : argparse.Namespace , _A : List[Any]=None , _A : Any="base" , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[Any]=None , **_A : Optional[Any] , ) -> Optional[int]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __magic_name__ : List[str] = 0 __magic_name__ : Union[str, Any] = Path(self.hparams.output_dir ) __magic_name__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: __magic_name__ : PretrainedConfig = config __magic_name__ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: __magic_name__ : PreTrainedTokenizer = tokenizer __magic_name__ : Optional[int] = MODEL_MODES[mode] if model is None: __magic_name__ : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: __magic_name__ : str = model def __lowerCAmelCase ( self : Optional[int] , *_A : Union[str, Any] , **_A : Union[str, Any] ) -> Tuple: __magic_name__ : Any = self.model_type.from_pretrained(*_A , **_A ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ : str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ : int = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : Optional[Any] = self.model __magic_name__ : int = ['bias', 'LayerNorm.weight'] __magic_name__ : Dict = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __magic_name__ : str = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: __magic_name__ : Tuple = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ : List[str] = optimizer __magic_name__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[int] , _A : Tuple ) -> Optional[Any]: return self.validation_step(_A , _A ) def __lowerCAmelCase ( self : Dict , _A : List[str] ) -> Any: return self.validation_end(_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowerCAmelCase ( self : str , _A : Optional[int] ) -> str: if stage == "test": __magic_name__ : Any = len(self.test_dataloader().dataset ) else: __magic_name__ : List[Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A ) __magic_name__ : int = len(self.train_dataloader().dataset ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> Optional[int]: raise NotImplementedError('You must implement this for your task' ) def __lowerCAmelCase ( self : int ) -> List[str]: return self.train_loader def __lowerCAmelCase ( self : Tuple ) -> int: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Any ) -> str: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Dict[str, Any] ) -> None: __magic_name__ : Dict = self.output_dir.joinpath('best_tfmr' ) __magic_name__ : List[Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __lowerCAmelCase ( _A : List[str] , _A : Optional[Any] ) -> Tuple: parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A ).parent / 'test_run' / 'cache' ) , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A ) parser.add_argument('--train_batch_size' , default=32 , type=_A ) parser.add_argument('--eval_batch_size' , default=32 , type=_A ) parser.add_argument('--adafactor' , action='store_true' ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : List[Any] , _A : List[Any] ) -> List[str]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Dict , _A : str ) -> List[str]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Dict = trainer.lr_schedulers[0]['scheduler'] __magic_name__ : int = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[int]: rank_zero_info('***** Validation results *****' ) __magic_name__ : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Optional[Any]: rank_zero_info('***** Test results *****' ) __magic_name__ : Optional[int] = trainer.callback_metrics # Log and save results to file __magic_name__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_A , 'w' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_A , str(metrics[key] ) ) ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase ( lowerCAmelCase : BaseTransformer , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=[] , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __magic_name__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase ) if logging_callback is None: __magic_name__ : Dict = LoggingCallback() __magic_name__ : List[str] = {} if args.fpaa: __magic_name__ : Dict = 16 if args.gpus > 1: __magic_name__ : Tuple = 'auto' __magic_name__ : int = 'ddp' __magic_name__ : str = args.accumulate_grad_batches __magic_name__ : str = None __magic_name__ : List[str] = 'auto' __magic_name__ : List[Any] = pl.Trainer.from_argparse_args( lowerCAmelCase , weights_summary=lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase , ) if args.do_train: trainer.fit(lowerCAmelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
331
0
import requests def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str ) -> None: __snake_case = {'''Content-Type''': '''application/json'''} __snake_case = requests.post(snake_case_ , json={'''text''': message_body} , headers=snake_case_ ) if response.status_code != 200: __snake_case = ( '''Request to slack returned an error ''' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
24
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = (DDPMScheduler,) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> str: __magic_name__ : str = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def __lowerCAmelCase ( self : str ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self : Tuple ) -> int: __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : str = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : Dict = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) __magic_name__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) __magic_name__ : Any = scheduler_class(**_A ) __magic_name__ : Any = len(_A ) __magic_name__ : Dict = self.dummy_model() __magic_name__ : str = self.dummy_sample_deter __magic_name__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __magic_name__ : List[Any] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_A ) ) __magic_name__ : Any = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCAmelCase ( self : List[str] ) -> str: __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**_A ) __magic_name__ : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) __magic_name__ : List[str] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: __magic_name__ : Optional[int] = -1 else: __magic_name__ : List[Any] = timesteps[i + 1] __magic_name__ : Union[str, Any] = scheduler.previous_timestep(_A ) __magic_name__ : Any = prev_t.item() self.assertEqual(_A , _A ) def __lowerCAmelCase ( self : Tuple ) -> str: __magic_name__ : str = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Optional[int] = [100, 87, 50, 1, 0] __magic_name__ : Tuple = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_A ) __magic_name__ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
331
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ : List[str] = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = IFInpaintingPipeline A_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} A_ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: return self._get_dummy_components() def __lowerCAmelCase ( self : Optional[int] , _A : Dict , _A : Optional[int]=0 ) -> List[Any]: if str(_A ).startswith('mps' ): __magic_name__ : Optional[Any] = torch.manual_seed(_A ) else: __magic_name__ : Tuple = torch.Generator(device=_A ).manual_seed(_A ) __magic_name__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __magic_name__ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : List[Any] ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Dict ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self : Tuple ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: self._test_save_load_local() def __lowerCAmelCase ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
331
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=1 / 255 , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , _a=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} _A : int = parent _A : Optional[Any] = batch_size _A : List[str] = num_channels _A : Dict = min_resolution _A : Union[str, Any] = max_resolution _A : Optional[Any] = do_resize _A : Optional[int] = size _A : Optional[Any] = do_rescale _A : Optional[Any] = rescale_factor _A : Optional[int] = do_normalize _A : List[str] = image_mean _A : Optional[Any] = image_std _A : Union[str, Any] = do_pad def a__ ( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a__ ( self , _a , _a=False ) -> str: if not batched: _A : Optional[Any] = image_inputs[0] if isinstance(_a , Image.Image ): _A , _A : Union[str, Any] = image.size else: _A , _A : int = image.shape[1], image.shape[2] if w < h: _A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) _A : Optional[Any] = self.size["""shortest_edge"""] elif w > h: _A : List[Any] = self.size["""shortest_edge"""] _A : List[str] = int(self.size["""shortest_edge"""] * w / h ) else: _A : List[Any] = self.size["""shortest_edge"""] _A : Any = self.size["""shortest_edge"""] else: _A : Optional[int] = [] for image in image_inputs: _A , _A : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A : List[Any] = max(_a , key=lambda _a : item[0] )[0] _A : Tuple = max(_a , key=lambda _a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DetrImageProcessor if is_vision_available() else None def a__ ( self ) -> List[str]: _A : List[str] = DetrImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[Any]: _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_rescale""" ) ) self.assertTrue(hasattr(_a , """rescale_factor""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_pad""" ) ) def a__ ( self ) -> str: _A : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , _a ) _A : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_a ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , _a ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> int: # Initialize image_processing _A : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _A , _A : int = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A : List[Any] = self.image_processor_tester.get_expected_values(_a , batched=_a ) _A : Dict = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _A , _A : Optional[int] = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A : Union[str, Any] = image_processing(_a , return_tensors="""pt""" ).pixel_values _A , _A : Dict = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self ) -> Optional[int]: # Initialize image_processing _A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _A , _A : str = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A : Tuple = image_processing(_a , return_tensors="""pt""" ).pixel_values _A , _A : List[str] = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a__ ( self ) -> Tuple: # prepare image and target _A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _A : Union[str, Any] = json.loads(f.read() ) _A : List[str] = {"""image_id""": 3_9769, """annotations""": target} # encode them _A : List[Any] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) _A : Any = image_processing(images=_a , annotations=_a , return_tensors="""pt""" ) # verify pixel values _A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _a ) _A : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area _A : Dict = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _a ) ) # verify boxes _A : str = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _a ) _A : List[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _a , atol=1e-3 ) ) # verify image_id _A : Tuple = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _a ) ) # verify is_crowd _A : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _a ) ) # verify class_labels _A : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _a ) ) # verify orig_size _A : List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _a ) ) # verify size _A : Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _a ) ) @slow def a__ ( self ) -> Optional[int]: # prepare image, target and masks_path _A : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _A : Any = json.loads(f.read() ) _A : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} _A : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _A : Optional[int] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) _A : Tuple = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors="""pt""" ) # verify pixel values _A : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _a ) _A : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area _A : List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _a ) ) # verify boxes _A : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _a ) _A : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _a , atol=1e-3 ) ) # verify image_id _A : Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _a ) ) # verify is_crowd _A : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _a ) ) # verify class_labels _A : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _a ) ) # verify masks _A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _a ) # verify orig_size _A : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _a ) ) # verify size _A : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _a ) )
26
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[Any] , _A : str , _A : str=13 , _A : Union[str, Any]=7 , _A : Tuple=True , _A : Dict=True , _A : List[str]=True , _A : Optional[int]=True , _A : Dict=99 , _A : Optional[Any]=32 , _A : Optional[int]=5 , _A : str=4 , _A : str=37 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : str=512 , _A : Tuple=16 , _A : str=2 , _A : int=0.02 , _A : int=False , _A : List[str]=True , _A : List[Any]="None" , _A : List[str]=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> Dict: __magic_name__ : Union[str, Any] = parent __magic_name__ : Any = batch_size __magic_name__ : Optional[int] = seq_length __magic_name__ : List[str] = is_training __magic_name__ : Optional[Any] = use_input_mask __magic_name__ : Dict = use_token_type_ids __magic_name__ : str = use_labels __magic_name__ : int = vocab_size __magic_name__ : List[Any] = hidden_size __magic_name__ : Dict = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Any = type_vocab_size __magic_name__ : Union[str, Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : str = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : Any = relative_attention __magic_name__ : str = position_biased_input __magic_name__ : str = pos_att_type __magic_name__ : Union[str, Any] = scope def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_input_mask: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __magic_name__ : int = None if self.use_token_type_ids: __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = None __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: __magic_name__ : List[Any] = self.get_config() __magic_name__ : Union[str, Any] = 300 return config def __lowerCAmelCase ( self : int , _A : Dict ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCAmelCase ( self : Any , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Any , _A : str , _A : List[Any] ) -> List[Any]: __magic_name__ : Dict = DebertaModel(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[Any] = model(_A , attention_mask=_A , token_type_ids=_A )[0] __magic_name__ : Optional[int] = model(_A , token_type_ids=_A )[0] __magic_name__ : List[str] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCAmelCase ( self : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Dict , _A : Optional[Any] , _A : Optional[int] ) -> Dict: __magic_name__ : List[str] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Optional[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() __magic_name__ : Any = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCAmelCase ( self : Tuple , _A : str , _A : str , _A : int , _A : str , _A : int , _A : Optional[int] , _A : List[str] ) -> Optional[int]: __magic_name__ : str = self.num_labels __magic_name__ : int = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() __magic_name__ : List[str] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] , _A : str , _A : Tuple , _A : Optional[int] , _A : Any , _A : Optional[int] , _A : Dict , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __magic_name__ : Optional[int] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Tuple = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True A_ : Any = False A_ : Dict = False A_ : str = False A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = DebertaModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: pass @slow def __lowerCAmelCase ( self : Dict ) -> Tuple: __magic_name__ : int = DebertaModel.from_pretrained('microsoft/deberta-base' ) __magic_name__ : List[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __magic_name__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ : Optional[int] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. __magic_name__ : Tuple = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
331
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = StableDiffusionDiffEditPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) __a : Tuple = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__a , set_alpha_to_one=__a , ) __a : Any = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__a , set_alpha_to_zero=__a , ) torch.manual_seed(0 ) __a : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a : List[Any] = CLIPTextModel(__a ) __a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : int = floats_tensor((1, 16, 16) , rng=random.Random(__a ) ).to(__a ) __a : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith('mps' ): __a : Any = torch.manual_seed(__a ) else: __a : Optional[int] = torch.Generator(device=__a ).manual_seed(__a ) __a : Any = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __a : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : List[str] = Image.fromarray(np.uinta(__a ) ).convert('RGB' ) if str(__a ).startswith('mps' ): __a : Optional[int] = torch.manual_seed(__a ) else: __a : Optional[int] = torch.Generator(device=__a ).manual_seed(__a ) __a : str = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __a : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : str = Image.fromarray(np.uinta(__a ) ).convert('RGB' ) if str(__a ).startswith('mps' ): __a : Optional[Any] = torch.manual_seed(__a ) else: __a : List[str] = torch.Generator(device=__a ).manual_seed(__a ) __a : str = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' if not hasattr(self.pipeline_class , '_optional_components' ): return __a : Tuple = self.get_dummy_components() __a : List[Any] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__a , __a , __a ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __a : Optional[Any] = self.get_dummy_inputs(__a ) __a : str = pipe(**__a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__a ) __a : Any = self.pipeline_class.from_pretrained(__a ) pipe_loaded.to(__a ) pipe_loaded.set_progress_bar_config(disable=__a ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__a , __a ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __a : str = self.get_dummy_inputs(__a ) __a : Tuple = pipe_loaded(**__a )[0] __a : str = np.abs(output - output_loaded ).max() self.assertLess(__a , 1E-4 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = 'cpu' __a : Union[str, Any] = self.get_dummy_components() __a : Optional[Any] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Any = self.get_dummy_mask_inputs(__a ) __a : Dict = pipe.generate_mask(**__a ) __a : Optional[int] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __a : int = np.array([0] * 9 ) __a : str = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = 'cpu' __a : List[Any] = self.get_dummy_components() __a : Optional[Any] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Dict = self.get_dummy_inversion_inputs(__a ) __a : Optional[int] = pipe.invert(**__a ).images __a : Optional[int] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __a : Optional[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __a : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = 'cpu' __a : str = self.get_dummy_components() __a : str = {'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} __a : Any = DPMSolverMultistepScheduler(**__a ) __a : Any = DPMSolverMultistepInverseScheduler(**__a ) __a : Tuple = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : str = self.get_dummy_inversion_inputs(__a ) __a : List[Any] = pipe.invert(**__a ).images __a : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __a : int = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __a : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __UpperCAmelCase ( cls ): '''simple docstring''' __a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) __a : str = raw_image.convert('RGB' ).resize((768, 768) ) __a : str = raw_image def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = torch.manual_seed(0 ) __a : Any = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__a , torch_dtype=torch.floataa ) __a : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) __a : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__a ) __a : int = 'a bowl of fruit' __a : Dict = 'a bowl of pears' __a : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=__a , target_prompt=__a , generator=__a , ) __a : str = pipe.invert( prompt=__a , image=self.raw_image , inpaint_strength=0.7 , generator=__a ).latents __a : Dict = pipe( prompt=__a , mask_image=__a , image_latents=__a , generator=__a , negative_prompt=__a , inpaint_strength=0.7 , output_type='numpy' , ).images[0] __a : str = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = torch.manual_seed(0 ) __a : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__a , torch_dtype=torch.floataa ) __a : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __a : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__a ) __a : Dict = 'a bowl of fruit' __a : Optional[Any] = 'a bowl of pears' __a : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=__a , target_prompt=__a , generator=__a , ) __a : Any = pipe.invert( prompt=__a , image=self.raw_image , inpaint_strength=0.7 , generator=__a , num_inference_steps=25 , ).latents __a : List[str] = pipe( prompt=__a , mask_image=__a , image_latents=__a , generator=__a , negative_prompt=__a , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] __a : int = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
27
'''simple docstring''' class _lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: __magic_name__ : Tuple = row __magic_name__ : str = col __magic_name__ : Optional[Any] = graph def __lowerCAmelCase ( self : Any , _A : int , _A : int , _A : list[list[bool]] ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: # Checking all 8 elements surrounding nth element __magic_name__ : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __lowerCAmelCase ( self : int ) -> int: # And finally, count all islands. __magic_name__ : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase ( lowerCAmelCase : int = 200_0000 ): """simple docstring""" __magic_name__ : list[int] = [0] __magic_name__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __magic_name__ : int = 0 # the area corresponding to the grid that gives the product closest to target __magic_name__ : int = 0 # an estimate of b, using the quadratic formula __magic_name__ : float # the largest integer less than b_estimate __magic_name__ : int # the largest integer less than b_estimate __magic_name__ : int # the triangle number corresponding to b_floor __magic_name__ : int # the triangle number corresponding to b_ceil __magic_name__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __magic_name__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __magic_name__ : List[Any] = floor(lowerCAmelCase ) __magic_name__ : Dict = ceil(lowerCAmelCase ) __magic_name__ : Any = triangle_numbers[b_floor] __magic_name__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : Any = triangle_b_first_guess * triangle_a __magic_name__ : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __magic_name__ : List[str] = triangle_b_second_guess * triangle_a __magic_name__ : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
331
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Dict = 'megatron-bert' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Dict=2_9_0_5_6 , SCREAMING_SNAKE_CASE_ : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE_ : Optional[int]=2_4 , SCREAMING_SNAKE_CASE_ : Tuple=1_6 , SCREAMING_SNAKE_CASE_ : Any=4_0_9_6 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : int=5_1_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : Any=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE_ : int="absolute" , SCREAMING_SNAKE_CASE_ : int=True , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache
30
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : List[Any] ): _UpperCAmelCase : List[Any] = logging.get_logger() # the current default level is logging.WARNING _UpperCAmelCase : int = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(A ) def _A ( self : int ): _UpperCAmelCase : int = logging.get_verbosity() _UpperCAmelCase : int = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : List[str] = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(A ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def _A ( self : Dict ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _UpperCAmelCase : str = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY" , A ) _UpperCAmelCase : Any = logging.log_levels[env_level_str] _UpperCAmelCase : Tuple = logging.get_verbosity() self.assertEqual( A , A , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _UpperCAmelCase : int = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def _A ( self : Union[str, Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _UpperCAmelCase : List[Any] = logging.logging.getLogger() with CaptureLogger(A ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def _A ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _UpperCAmelCase : Optional[Any] = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : List[Any] = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(A ) as cl: logger.warning_advice(A ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(A ) as cl: logger.warning_advice(A ) self.assertEqual(cl.out , msg + "\n" ) def UpperCamelCase_ ( ) -> List[Any]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
31
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , _A : bool = True , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : int , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 384} __magic_name__ : Dict = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[Any] = do_resize __magic_name__ : str = size # Default value set here for backwards compatibility where the value in config is None __magic_name__ : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 __magic_name__ : int = resample __magic_name__ : List[str] = do_rescale __magic_name__ : List[Any] = rescale_factor __magic_name__ : str = do_normalize __magic_name__ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : float , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: __magic_name__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) __magic_name__ : Dict = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __magic_name__ : Dict = int(shortest_edge / crop_pct ) __magic_name__ : str = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) __magic_name__ : Optional[int] = resize(image=_A , size=_A , resample=_A , data_format=_A , **_A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_A , size=(shortest_edge, shortest_edge) , data_format=_A , **_A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _A , size=(shortest_edge, shortest_edge) , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : int , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : float = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ) -> PIL.Image.Image: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ : Optional[Any] = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Dict = size if size is not None else self.size __magic_name__ : List[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : List[str] = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_rescale: __magic_name__ : Tuple = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : int = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
331
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'depth_multiplier' ) ) class SCREAMING_SNAKE_CASE__ : def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=1_3 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : str=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.25 , SCREAMING_SNAKE_CASE__ : Dict=8 , SCREAMING_SNAKE_CASE__ : str=8 , SCREAMING_SNAKE_CASE__ : int=6 , SCREAMING_SNAKE_CASE__ : int=3_2 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : List[str]="relu6" , SCREAMING_SNAKE_CASE__ : Tuple=1_2_8_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: a_ : Any = parent a_ : List[str] = batch_size a_ : Optional[int] = num_channels a_ : Optional[int] = image_size a_ : List[Any] = depth_multiplier a_ : List[Any] = depth_divisible_by a_ : Optional[Any] = min_depth a_ : Tuple = expand_ratio a_ : Tuple = tf_padding a_ : Dict = output_stride a_ : Optional[int] = first_layer_is_expansion a_ : int = finegrained_output a_ : Tuple = hidden_act a_ : Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) a_ : List[str] = classifier_dropout_prob a_ : Any = use_labels a_ : Dict = is_training a_ : Optional[Any] = num_labels a_ : str = initializer_range a_ : str = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: a_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Any = None a_ : Optional[int] = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) a_ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a_ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: a_ : Optional[int] = MobileNetVaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: a_ : str = self.num_labels a_ : Union[str, Any] = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: a_ : Any = self.num_labels a_ : str = MobileNetVaForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a_ : Any = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : List[Any] = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ : str = config_and_inputs a_ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Optional[int] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) snake_case__ : List[str] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case__ : int = False snake_case__ : str = False snake_case__ : str = False snake_case__ : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: a_ : Dict = MobileNetVaModelTester(self ) a_ : Union[str, Any] = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : str = model_class(SCREAMING_SNAKE_CASE__ ) a_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : List[str] = [*signature.parameters.keys()] a_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ): a_ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): a_ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[Any] = outputs.hidden_states a_ : Optional[int] = 1_6 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) a_ , a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Tuple = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Any = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Dict: """simple docstring""" a_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: a_ : Any = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(SCREAMING_SNAKE_CASE__ ) a_ : Any = self.default_image_processor a_ : int = prepare_img() a_ : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): a_ : Dict = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits a_ : Optional[int] = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) a_ : Tuple = torch.tensor([0.2445, -1.1993, 0.1905] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : Union[str, Any] = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) a_ : Optional[Any] = model.to(SCREAMING_SNAKE_CASE__ ) a_ : int = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) a_ : Dict = prepare_img() a_ : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): a_ : Dict = model(**SCREAMING_SNAKE_CASE__ ) a_ : str = outputs.logits # verify the logits a_ : str = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) a_ : Dict = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
32
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase :Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowerCAmelCase :Union[str, Any] = 3E8 # unit of c : m * s^-1 def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __magic_name__ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __magic_name__ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __magic_name__ : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
331
0
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) __A : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } __A : Tuple = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def lowercase ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : List[Any] ): for attribute in key.split('''.''' ): lowercase_ : Union[str, Any] = getattr(__snake_case , __snake_case ) if weight_type is not None: lowercase_ : List[str] = getattr(__snake_case , __snake_case ).shape else: lowercase_ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ : Union[str, Any] = value elif weight_type == "weight_g": lowercase_ : Union[str, Any] = value elif weight_type == "weight_v": lowercase_ : Optional[Any] = value elif weight_type == "bias": lowercase_ : Tuple = value else: lowercase_ : List[Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase ( __snake_case : Tuple , __snake_case : Dict ): lowercase_ : str = [] lowercase_ : int = fairseq_model.state_dict() lowercase_ : List[str] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase_ : List[Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) lowercase_ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): lowercase_ : Dict = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue lowercase_ : Optional[int] = True if "*" in mapped_key: lowercase_ : Optional[Any] = name.split(__snake_case )[0].split('''.''' )[-2] lowercase_ : Optional[Any] = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: lowercase_ : List[str] = '''weight_g''' elif "weight_v" in name: lowercase_ : str = '''weight_v''' elif "bias" in name: lowercase_ : Optional[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase_ : str = '''weight''' else: lowercase_ : Union[str, Any] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[Any] ): lowercase_ : Tuple = full_name.split('''conv_layers.''' )[-1] lowercase_ : Union[str, Any] = name.split('''.''' ) lowercase_ : str = int(items[0] ) lowercase_ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ : Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase_ : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowercase ( __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[Any]=None , __snake_case : Optional[Any]=None , __snake_case : List[Any]=True ): if config_path is not None: lowercase_ : List[Any] = UniSpeechSatConfig.from_pretrained(__snake_case ) else: lowercase_ : List[str] = UniSpeechSatConfig() lowercase_ : Union[str, Any] = '''''' if is_finetuned: lowercase_ : List[Any] = UniSpeechSatForCTC(__snake_case ) else: lowercase_ : Dict = UniSpeechSatForPreTraining(__snake_case ) lowercase_ , lowercase_ , lowercase_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowercase_ : Any = model[0].eval() recursively_load_weights(__snake_case , __snake_case ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __A : Optional[int] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case_ (_a : str ): UpperCAmelCase = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def snake_case_ (_a : Union[str, Any] , _a : str ): UpperCAmelCase = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def snake_case_ (_a : Union[str, Any] ): UpperCAmelCase = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def snake_case_ (): UpperCAmelCase = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def snake_case_ (_a : Optional[Any] , _a : str , _a : Dict , _a : Optional[Any] ): UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1_0_0_0 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = num_labels UpperCAmelCase = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = UpperCAmelCase = CvtConfig(num_labels=_a , idalabel=_a , labelaid=_a ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": UpperCAmelCase = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": UpperCAmelCase = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase = [2, 2, 2_0] UpperCAmelCase = [3, 1_2, 1_6] UpperCAmelCase = [1_9_2, 7_6_8, 1_0_2_4] UpperCAmelCase = CvtForImageClassification(_a ) UpperCAmelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) UpperCAmelCase = image_size UpperCAmelCase = torch.load(_a , map_location=torch.device('''cpu''' ) ) UpperCAmelCase = OrderedDict() UpperCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase = list_of_state_dict + cls_token(_a ) UpperCAmelCase = list_of_state_dict + embeddings(_a ) for cnt in range(config.depth[idx] ): UpperCAmelCase = list_of_state_dict + attention(_a , _a ) UpperCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(_a ) for i in range(len(_a ) ): UpperCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_a ) model.save_pretrained(_a ) image_processor.save_pretrained(_a ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_84, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A =parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
34
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __a = datasets.utils.logging.get_logger(__name__) class UpperCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" lowercase = None lowercase = None class UpperCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" lowercase = datasets.Audio() lowercase = "audio" lowercase = AudioFolderConfig lowercase = 42 # definition at the bottom of the script lowercase = AudioClassification(audio_column="audio" , label_column="label" ) __a = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __a = AUDIO_EXTENSIONS
35
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase :Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **_A : Union[str, Any] ) -> Tuple: super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] , _A : Union[str, List[str], "Image", List["Image"]] , **_A : Dict ) -> Dict: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : Any , **_A : Dict ) -> Optional[int]: __magic_name__ : str = {} if "candidate_labels" in kwargs: __magic_name__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __magic_name__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCAmelCase ( self : str , _A : Dict , _A : Optional[Any]=None , _A : int="This is a photo of {}." ) -> int: __magic_name__ : Dict = load_image(_A ) __magic_name__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) __magic_name__ : Optional[Any] = candidate_labels __magic_name__ : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] __magic_name__ : str = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __magic_name__ : Optional[Any] = [text_inputs] return inputs def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> str: __magic_name__ : str = model_inputs.pop('candidate_labels' ) __magic_name__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __magic_name__ : Dict = text_inputs[0] else: # Batching case. __magic_name__ : Optional[Any] = text_inputs[0][0] __magic_name__ : List[Any] = self.model(**_A , **_A ) __magic_name__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self : Optional[int] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : Tuple = model_outputs.pop('candidate_labels' ) __magic_name__ : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __magic_name__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) __magic_name__ : Tuple = probs.tolist() if not isinstance(_A , _A ): __magic_name__ : Any = [scores] elif self.framework == "tf": __magic_name__ : Any = stable_softmax(_A , axis=-1 ) __magic_name__ : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __magic_name__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
331
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def A ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : int = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = set() for token in tokens: _lowerCAmelCase : Optional[Any] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Any = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : Tuple = bert_tokens _lowerCAmelCase , _lowerCAmelCase : List[str] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : List[str] = True if is_chinese(bert_word[start] ): _lowerCAmelCase : Optional[Any] = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Optional[int] = "##" + bert_word[j] _lowerCAmelCase : Dict = start + i _lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : List[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : Tuple = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : str = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : List[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Any = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : Optional[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def A ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: _lowerCAmelCase : List[str] = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : int = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _lowerCAmelCase : Union[str, Any] = [json.dumps(_lowerCamelCase ) + "\n" for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") _snake_case = parser.parse_args() main(args)
36
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowerCAmelCase = 2 class lowerCAmelCase_: '''simple docstring''' def __init__( self ,*, # begin keyword-only arguments __UpperCAmelCase="<s>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase=None ,) -> int: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = bos, unk, pad, eos lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Dict = {} lowerCAmelCase__ : int = self.add_symbol(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = self.add_symbol(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = self.add_symbol(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self.add_symbol(__UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = len(self.symbols ) def __eq__( self ,__UpperCAmelCase ) -> Union[str, Any]: return self.indices == other.indices def __getitem__( self ,__UpperCAmelCase ) -> int: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> List[str]: return len(self.symbols ) def __contains__( self ,__UpperCAmelCase ) -> Optional[int]: return sym in self.indices @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : List[Any] = cls() d.add_from_file(__UpperCAmelCase ) return d def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=1 ,__UpperCAmelCase=False ) -> List[Any]: if word in self.indices and not overwrite: lowerCAmelCase__ : Tuple = self.indices[word] lowerCAmelCase__ : Optional[Any] = self.count[idx] + n return idx else: lowerCAmelCase__ : str = len(self.symbols ) lowerCAmelCase__ : Tuple = idx self.symbols.append(__UpperCAmelCase ) self.count.append(__UpperCAmelCase ) return idx def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[Any]: return 0 def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): try: with open(__UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ) as fd: self.add_from_file(__UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(__UpperCAmelCase ) ) return lowerCAmelCase__ : int = f.readlines() lowerCAmelCase__ : int = self._load_meta(__UpperCAmelCase ) for line in lines[indices_start_line:]: try: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = line.rstrip().rsplit(""" """ ,1 ) if field == "#fairseq:overwrite": lowerCAmelCase__ : List[str] = True lowerCAmelCase__ , lowerCAmelCase__ : str = line.rsplit(""" """ ,1 ) else: lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Any = int(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(__UpperCAmelCase ) ) self.add_symbol(__UpperCAmelCase ,n=__UpperCAmelCase ,overwrite=__UpperCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : int = dict((re.sub(R"""@@$""" , """""" , UpperCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCamelCase ), v) for k, v in d.items() ) lowerCAmelCase__ : Optional[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] lowerCAmelCase__ : List[Any] = d[k] # restore return da def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if not os.path.exists(UpperCamelCase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowerCAmelCase__ : int = os.path.join(UpperCamelCase , """checkpoint.pt""" ) if not os.path.isfile(UpperCamelCase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) lowerCAmelCase__ : Union[str, Any] = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCAmelCase__ : Optional[int] = chkpt["""cfg"""]["""model"""] # dicts lowerCAmelCase__ : str = os.path.join(UpperCamelCase , """dict.txt""" ) if not os.path.isfile(UpperCamelCase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) lowerCAmelCase__ : Any = Dictionary.load(UpperCamelCase ) lowerCAmelCase__ : Any = rewrite_dict_keys(src_dict.indices ) lowerCAmelCase__ : str = len(UpperCamelCase ) lowerCAmelCase__ : int = os.path.join(UpperCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # merges_file (bpecodes) lowerCAmelCase__ : Optional[Any] = os.path.join(UpperCamelCase , """bpecodes""" ) if not os.path.isfile(UpperCamelCase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(UpperCamelCase , UpperCamelCase ) # model config lowerCAmelCase__ : Optional[Any] = os.path.join(UpperCamelCase , """config.json""" ) lowerCAmelCase__ : Optional[int] = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # tokenizer config lowerCAmelCase__ : str = os.path.join(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Tuple = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # model lowerCAmelCase__ : Union[str, Any] = chkpt["""model"""] # remove unneeded keys lowerCAmelCase__ : Optional[Any] = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[str] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): lowerCAmelCase__ : Any = model_state_dict.pop(UpperCamelCase ) else: lowerCAmelCase__ : Any = model_state_dict.pop(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = BioGptConfig.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Dict = BioGptForCausalLM(UpperCamelCase ) # check that it loads ok model_new.load_state_dict(UpperCamelCase ) # save lowerCAmelCase__ : Any = os.path.join(UpperCamelCase , UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(UpperCamelCase , UpperCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCAmelCase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
37
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
from __future__ import annotations UpperCAmelCase_ : List[Any] = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Matrix , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__magic_name__ ): UpperCamelCase , UpperCamelCase :Tuple = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): UpperCamelCase :Dict = digit if sudoku(__magic_name__ ) is not None: return grid UpperCamelCase :List[str] = 0 return None def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__magic_name__ , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') UpperCAmelCase_ : Union[str, Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
38
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : Union[str, Any]=13 , _A : Optional[int]=7 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=True , _A : Dict=True , _A : int=99 , _A : str=32 , _A : List[Any]=2 , _A : Any=4 , _A : List[str]=37 , _A : List[str]="gelu" , _A : Any=0.1 , _A : List[str]=0.1 , _A : Optional[Any]=512 , _A : str=16 , _A : Union[str, Any]=2 , _A : List[Any]=0.02 , _A : Any=3 , _A : str=4 , _A : int=None , ) -> int: __magic_name__ : str = parent __magic_name__ : List[Any] = 13 __magic_name__ : Union[str, Any] = 7 __magic_name__ : Tuple = True __magic_name__ : Dict = True __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = True __magic_name__ : int = 99 __magic_name__ : List[str] = 384 __magic_name__ : Optional[int] = 2 __magic_name__ : List[Any] = 4 __magic_name__ : int = 37 __magic_name__ : Union[str, Any] = 'gelu' __magic_name__ : Optional[int] = 0.1 __magic_name__ : str = 0.1 __magic_name__ : Optional[Any] = 512 __magic_name__ : Any = 16 __magic_name__ : Union[str, Any] = 2 __magic_name__ : Any = 0.02 __magic_name__ : List[str] = 3 __magic_name__ : Tuple = 4 __magic_name__ : List[Any] = 128 __magic_name__ : Optional[Any] = 2 __magic_name__ : List[str] = 9 __magic_name__ : str = 1 __magic_name__ : List[str] = None def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_token_type_ids: __magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : int , _A : int , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Tuple , _A : int , _A : Union[str, Any] ) -> Any: __magic_name__ : Dict = TFConvBertModel(config=_A ) __magic_name__ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __magic_name__ : Any = [input_ids, input_mask] __magic_name__ : Tuple = model(_A ) __magic_name__ : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , _A : str , _A : Dict , _A : Dict , _A : Dict , _A : Any , _A : Optional[int] , _A : int ) -> Optional[Any]: __magic_name__ : Dict = TFConvBertForMaskedLM(config=_A ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[int] , _A : str , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> Tuple: __magic_name__ : Any = self.num_labels __magic_name__ : str = TFConvBertForSequenceClassification(config=_A ) __magic_name__ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : int , _A : Dict , _A : Tuple , _A : str , _A : str , _A : int , _A : List[Any] , _A : Optional[int] ) -> Union[str, Any]: __magic_name__ : Optional[Any] = self.num_choices __magic_name__ : Optional[int] = TFConvBertForMultipleChoice(config=_A ) __magic_name__ : Union[str, Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Tuple = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : Optional[int] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[Any] , _A : int , _A : List[str] , _A : int , _A : Tuple , _A : List[str] , _A : Any , _A : Optional[int] ) -> List[Any]: __magic_name__ : List[Any] = self.num_labels __magic_name__ : Union[str, Any] = TFConvBertForTokenClassification(config=_A ) __magic_name__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple , _A : str , _A : List[str] ) -> int: __magic_name__ : Dict = TFConvBertForQuestionAnswering(config=_A ) __magic_name__ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __magic_name__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : str = config_and_inputs __magic_name__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : Any = False A_ : List[Any] = False def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Optional[Any] = TFConvBertModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True __magic_name__ : Any = True if hasattr(_A , 'use_cache' ): __magic_name__ : List[Any] = True __magic_name__ : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : Optional[Any] = getattr(self.model_tester , 'key_length' , _A ) for model_class in self.all_model_classes: __magic_name__ : List[str] = self._prepare_for_class(_A , _A ) __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Tuple = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) __magic_name__ : Union[str, Any] = os.path.join(_A , 'saved_model' , '1' ) __magic_name__ : Optional[int] = tf.keras.models.load_model(_A ) __magic_name__ : Optional[Any] = model(_A ) if self.is_encoder_decoder: __magic_name__ : Optional[int] = outputs['encoder_hidden_states'] __magic_name__ : Tuple = outputs['encoder_attentions'] else: __magic_name__ : Union[str, Any] = outputs['hidden_states'] __magic_name__ : Optional[Any] = outputs['attentions'] self.assertEqual(len(_A ) , _A ) __magic_name__ : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: __magic_name__ : Optional[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_A ) def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str = True __magic_name__ : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __magic_name__ : List[Any] = getattr(self.model_tester , 'key_length' , _A ) __magic_name__ : Optional[int] = getattr(self.model_tester , 'key_length' , _A ) def check_decoder_attentions_output(_A : List[Any] ): __magic_name__ : Tuple = len(_A ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ : Any = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : int ): __magic_name__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = False __magic_name__ : List[str] = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) __magic_name__ : Tuple = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: __magic_name__ : Any = model_class(_A ) __magic_name__ : Any = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Optional[int] = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : Optional[int] = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : str = True __magic_name__ : Optional[int] = model_class(_A ) __magic_name__ : str = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __magic_name__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : Tuple = model(_A )[0] __magic_name__ : str = [1, 6, 768] self.assertEqual(output.shape , _A ) __magic_name__ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 )
331
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _A ( _a ): """simple docstring""" UpperCAmelCase : Tuple = """gpt_neo""" UpperCAmelCase : str = ["""past_key_values"""] UpperCAmelCase : Optional[Any] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=50257 , __UpperCAmelCase : int=2048 , __UpperCAmelCase : List[Any]=2048 , __UpperCAmelCase : int=24 , __UpperCAmelCase : Optional[Any]=[[["global", "local"], 12]] , __UpperCAmelCase : Optional[int]=16 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=256 , __UpperCAmelCase : Union[str, Any]="gelu_new" , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : str=1e-5 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[Any]=50256 , __UpperCAmelCase : Optional[Any]=50256 , **__UpperCAmelCase : List[str] , ): a : List[Any] = vocab_size a : Optional[int] = max_position_embeddings a : Tuple = hidden_size a : Optional[Any] = num_layers a : Optional[int] = num_heads a : Optional[int] = intermediate_size a : List[str] = window_size a : Union[str, Any] = activation_function a : Union[str, Any] = resid_dropout a : List[Any] = embed_dropout a : Any = attention_dropout a : List[str] = classifier_dropout a : Any = layer_norm_epsilon a : Union[str, Any] = initializer_range a : Dict = use_cache a : Any = bos_token_id a : List[str] = eos_token_id a : Any = attention_types a : Dict = self.expand_attention_types_params(__UpperCAmelCase) if len(self.attention_layers) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'''but is `len(config.attention_layers) = {len(self.attention_layers)}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument.") super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) @staticmethod def __snake_case ( __UpperCAmelCase : Tuple): a : List[str] = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def lowercase ( A_ , A_ , A_ , A_ )-> str: '''simple docstring''' import torch a : Dict = input.size() a : Any = len(A_ ) a : Optional[int] = shape[dimension] a : Optional[Any] = torch.arange(0 , A_ , A_ ) a : Tuple = torch.div(sizedim - size , A_ , rounding_mode="floor" ) + 1 a : Optional[Any] = torch.arange(A_ ) + low_indices[:min_length][:, None] a : List[str] = [slice(A_ )] * rank a : Union[str, Any] = indices a : str = input[s] a : int = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A_ ) def lowercase ( A_ , A_ )-> str: '''simple docstring''' import torch a : Tuple = torch.arange(1 , A_ ) a : str = torch.remainder(A_ , A_ ) a : Optional[Any] = remainders == 0 a : Tuple = candidates[divisor_indices] a : List[Any] = torch.max(A_ ) return largest_divisor, torch.div(A_ , A_ , rounding_mode="floor" ) class _A ( _a ): """simple docstring""" @property def __snake_case ( self : Tuple): a : str = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs") a : List[Any] = {0: "batch", 1: "past_sequence + sequence"} else: a : Union[str, Any] = {0: "batch", 1: "sequence"} return common_inputs @property def __snake_case ( self : Any): return self._config.num_heads def __snake_case ( self : Optional[Any] , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): a : Optional[int] = super(__UpperCAmelCase , self).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) # We need to order the input in the way they appears in the forward() a : Dict = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch a , a : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values a : Tuple = seqlen + 2 a : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) a : Union[str, Any] = [ (torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase)) for _ in range(self.num_layers) ] a : List[Any] = common_inputs["attention_mask"] if self.use_past: a : Optional[int] = ordered_inputs["attention_mask"].dtype a : Tuple = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase)] , dim=1) return ordered_inputs @property def __snake_case ( self : str): return 13
40
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
0