code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import _LazyModule A : List[str] = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
140
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A : Optional[int] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def a__ ( __UpperCamelCase , __UpperCamelCase ): return np.sqrt(np.sum((np.asarray(__UpperCamelCase ) - np.asarray(__UpperCamelCase )) ** 2 ) ) def a__ ( __UpperCamelCase , __UpperCamelCase ): return sum((va - va) ** 2 for va, va in zip(__UpperCamelCase , __UpperCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def a__ ( ): from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
140
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = BlenderbotSmallConfig __UpperCAmelCase : int = {} __UpperCAmelCase : List[str] = 'gelu' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a = tf.concat([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_blenderbot_small_inputs_dict(_a , _a , _a ) return config, inputs_dict def __UpperCAmelCase ( self , _a , _a ): __a = TFBlenderbotSmallModel(config=_a ).get_decoder() __a = inputs_dict['''input_ids'''] __a = input_ids[:1, :] __a = inputs_dict['''attention_mask'''][:1, :] __a = inputs_dict['''head_mask'''] __a = 1 # first forward pass __a = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) __a , __a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __a = tf.concat([input_ids, next_tokens] , axis=-1 ) __a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __a = model(_a , attention_mask=_a )[0] __a = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __a = output_from_no_past[:, -3:, random_slice_idx] __a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1E-3 ) def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : str=None , ) -> Dict: if attention_mask is None: __a = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __UpperCAmelCase : str = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __UpperCAmelCase : Optional[Any] = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __UpperCAmelCase : Any = True __UpperCAmelCase : Any = False __UpperCAmelCase : int = False def __UpperCAmelCase ( self ): __a = TFBlenderbotSmallModelTester(self ) __a = ConfigTester(self , config_class=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __UpperCAmelCase : int = 'facebook/blenderbot_small-90M' @cached_property def __UpperCAmelCase ( self ): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def __UpperCAmelCase ( self ): __a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __UpperCAmelCase ( self ): __a = self.tokenizer(self.src_text , return_tensors='''tf''' ) __a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_a , ) __a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
716
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowercase_ = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowercase_ = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowercase_ = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __UpperCAmelCase ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None ): __a = fa_score( _a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a ) return {"f1": float(_a ) if score.size == 1 else score}
65
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__UpperCAmelCase ): """simple docstring""" _a : Optional[int] = ['''note_seq'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: requires_backends(self , ["""note_seq"""] ) @classmethod def UpperCAmelCase__( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: requires_backends(cls , ["""note_seq"""] ) @classmethod def UpperCAmelCase__( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: requires_backends(cls , ["""note_seq"""] )
200
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '▁' __snake_case = {'vocab_file': 'sentencepiece.bpe.model'} __snake_case = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } __snake_case = { 'facebook/xglm-564M': 2048, } class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Optional[int] = VOCAB_FILES_NAMES _a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: lowercase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Dict = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowercase__ : Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) lowercase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) lowercase__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase__ : Optional[int] = len(self.sp_model ) lowercase__ : Union[str, Any] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowerCamelCase__ ) lowercase__ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: lowercase__ : Any = self.__dict__.copy() lowercase__ : List[str] = None lowercase__ : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase__ ) -> Optional[int]: lowercase__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ : Union[str, Any] = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: lowercase__ : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__( self ) -> Union[str, Any]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__( self ) -> int: lowercase__ : Optional[Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : List[Any] = self.sp_model.PieceToId(lowerCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: lowercase__ : Dict = """""".join(lowerCamelCase__ ).replace(lowerCamelCase__ , """ """ ).strip() return out_string def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : int = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , """wb""" ) as fi: lowercase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
200
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _A = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class _lowerCAmelCase ( __a ): _lowercase ='''ernie_m''' _lowercase ={"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , _UpperCamelCase = 250_002 , _UpperCamelCase = 768 , _UpperCamelCase = 12 , _UpperCamelCase = 12 , _UpperCamelCase = 3_072 , _UpperCamelCase = "gelu" , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 514 , _UpperCamelCase = 0.02 , _UpperCamelCase = 1 , _UpperCamelCase = 1e-0_5 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=0.0 , **_UpperCamelCase , ) -> Union[str, Any]: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = classifier_dropout lowerCAmelCase_ = is_decoder lowerCAmelCase_ = act_dropout
279
import math class _lowerCAmelCase : def __init__( self , _UpperCamelCase=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 lowerCAmelCase_ = n lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # adjacency matrix for weight lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = w def __a ( self ) -> List[str]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: return self.dp[u][v] if __name__ == "__main__": _A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
279
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = "distilbert" _SCREAMING_SNAKE_CASE : Optional[Any] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : int , snake_case_ : Optional[int]=3_0_5_2_2 , snake_case_ : Union[str, Any]=5_1_2 , snake_case_ : List[str]=False , snake_case_ : List[str]=6 , snake_case_ : Dict=1_2 , snake_case_ : Union[str, Any]=7_6_8 , snake_case_ : List[Any]=4 * 7_6_8 , snake_case_ : List[Any]=0.1 , snake_case_ : str=0.1 , snake_case_ : Optional[Any]="gelu" , snake_case_ : str=0.02 , snake_case_ : str=0.1 , snake_case_ : Tuple=0.2 , snake_case_ : Tuple=0 , **snake_case_ : Union[str, Any] , ): __a : List[str] = vocab_size __a : Tuple = max_position_embeddings __a : Optional[Any] = sinusoidal_pos_embds __a : str = n_layers __a : Tuple = n_heads __a : Tuple = dim __a : List[Any] = hidden_dim __a : Any = dropout __a : Optional[Any] = attention_dropout __a : Any = activation __a : int = initializer_range __a : Dict = qa_dropout __a : Dict = seq_classif_dropout super().__init__(**snake_case_ , pad_token_id=snake_case_ ) class UpperCamelCase__ ( __lowercase ): @property def lowerCAmelCase (self : Optional[Any] ): if self.task == "multiple-choice": __a : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
521
from maths.prime_check import is_prime def __UpperCamelCase ( lowerCAmelCase__ : int ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : str = f"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase__ ) if is_prime(lowerCAmelCase__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
521
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
214
def _A ( __snake_case :list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) __SCREAMING_SNAKE_CASE = sum(__snake_case ) / len(__snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
214
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : List[str] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
131
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Any, lowerCamelCase__ : Tuple=[] ): _a = size[0] - overlap_pixels * 2 _a = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _a = np.ones((size_y, size_x), dtype=np.uinta ) * 255 _a = np.pad(lowerCamelCase__, mode="linear_ramp", pad_width=lowerCamelCase__, end_values=0 ) if "l" in remove_borders: _a = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _a = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _a = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _a = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : Dict ): return max(lowerCamelCase__, min(lowerCamelCase__, lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ : [int], lowerCamelCase__ : [int], lowerCamelCase__ : [int] ): return ( clamp(rect[0], min[0], max[0] ), clamp(rect[1], min[1], max[1] ), clamp(rect[2], min[0], max[0] ), clamp(rect[3], min[1], max[1] ), ) def _lowercase ( lowerCamelCase__ : [int], lowerCamelCase__ : int, lowerCamelCase__ : [int] ): _a = list(lowerCamelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _a = clamp_rect(lowerCamelCase__, [0, 0], [image_size[0], image_size[1]] ) return rect def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = Image.new("RGB", (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]), Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ), (0, 0), ) result.paste(lowerCamelCase__, (original_slice, 0) ) return result def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int] ): _a = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _a = tile.crop(lowerCamelCase__ ) return tile def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Tuple ): _a = n % d return n - divisor class A ( a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 3_5_0 , ) -> int: super().__init__( vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , max_noise_level=snake_case_ , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[Any]: torch.manual_seed(0 ) _a = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _a = add_overlap_rect(snake_case_ , snake_case_ , image.size ) _a = image.crop(snake_case_ ) _a = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _a = translated_slice_x - (original_image_slice / 2) _a = max(0 , snake_case_ ) _a = squeeze_tile(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = to_input.size _a = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _a = super(snake_case_ , self ).__call__(image=snake_case_ , **snake_case_ ).images[0] _a = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _a = unsqueeze_tile(snake_case_ , snake_case_ ) _a = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _a = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) _a = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=snake_case_ ) , mode="L" , ) final_image.paste( snake_case_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , snake_case_ ) @torch.no_grad() def __call__( self , snake_case_ , snake_case_ , snake_case_ = 7_5 , snake_case_ = 9.0 , snake_case_ = 5_0 , snake_case_ = None , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = 1 , snake_case_ = 1_2_8 , snake_case_ = 3_2 , snake_case_ = 3_2 , ) -> List[str]: _a = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) _a = math.ceil(image.size[0] / tile_size ) _a = math.ceil(image.size[1] / tile_size ) _a = tcx * tcy _a = 0 for y in range(snake_case_ ): for x in range(snake_case_ ): self._process_tile( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , prompt=snake_case_ , num_inference_steps=snake_case_ , guidance_scale=snake_case_ , noise_level=snake_case_ , negative_prompt=snake_case_ , num_images_per_prompt=snake_case_ , eta=snake_case_ , generator=snake_case_ , latents=snake_case_ , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def _lowercase ( ): # Run a demo _a = "stabilityai/stable-diffusion-x4-upscaler" _a = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCamelCase__, revision="fp16", torch_dtype=torch.floataa ) _a = pipe.to("cuda" ) _a = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(lowerCamelCase__ : Dict ): print(F'''progress: {obj['progress']:.4f}''' ) obj["image"].save("diffusers_library_progress.jpg" ) _a = pipe(image=lowerCamelCase__, prompt="Black font, white background, vector", noise_level=40, callback=lowerCamelCase__ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
131
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ["image_processor", "tokenizer"] UpperCamelCase = "Pix2StructImageProcessor" UpperCamelCase = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : int , a_ : List[Any] , a_ : int ): '''simple docstring''' __UpperCAmelCase : Dict = False super().__init__(A_ , A_ ) def __call__( self : str , a_ : str=None , a_ : Tuple = None , a_ : Tuple = True , a_ : List[Any] = False , a_ : int = None , a_ : Optional[Any] = None , a_ : str = 20_48 , a_ : str = 0 , a_ : Any = None , a_ : Optional[int] = None , a_ : Any = False , a_ : Any = False , a_ : List[Any] = False , a_ : Optional[int] = False , a_ : Dict = False , a_ : int = True , a_ : str = None , **a_ : Optional[Any] , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: __UpperCAmelCase : List[str] = self.tokenizer __UpperCAmelCase : Optional[Any] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __UpperCAmelCase : Any = self.image_processor( A_ , return_tensors=A_ , max_patches=A_ , **A_ ) else: # add pixel_values and bbox __UpperCAmelCase : Optional[Any] = self.image_processor( A_ , return_tensors=A_ , max_patches=A_ , header_text=A_ , **A_ ) if text is not None and not self.image_processor.is_vqa: __UpperCAmelCase : List[str] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) if "attention_mask" in text_encoding: __UpperCAmelCase : Dict = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: __UpperCAmelCase : Optional[int] = text_encoding.pop('''input_ids''' ) else: __UpperCAmelCase : int = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def snake_case__ ( self : Any , *a_ : Any , **a_ : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def snake_case__ ( self : Optional[Any] , *a_ : Any , **a_ : str ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.tokenizer.model_input_names __UpperCAmelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
703
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __A ="%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") __A =f'''https://www.google.com/search?q={query}&num=100''' __A =requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: __A =( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: __A =parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
241
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A (unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , ) -> Any: '''simple docstring''' _snake_case : Tuple = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} _snake_case : Optional[int] = parent _snake_case : int = batch_size _snake_case : Dict = num_channels _snake_case : List[Any] = min_resolution _snake_case : Dict = max_resolution _snake_case : Any = do_resize _snake_case : Any = size _snake_case : List[Any] = do_rescale _snake_case : List[Any] = rescale_factor _snake_case : Any = do_normalize _snake_case : List[str] = image_mean _snake_case : List[str] = image_std _snake_case : Optional[Any] = do_pad def __a ( self ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __a ( self , lowercase_ , lowercase_=False ) -> Optional[Any]: '''simple docstring''' if not batched: _snake_case : Optional[Any] = image_inputs[0] if isinstance(A_ , Image.Image ): _snake_case : int = image.size else: _snake_case : Tuple = image.shape[1], image.shape[2] if w < h: _snake_case : Tuple = int(self.size['''shortest_edge'''] * h / w ) _snake_case : int = self.size["shortest_edge"] elif w > h: _snake_case : Optional[Any] = self.size["shortest_edge"] _snake_case : Optional[Any] = int(self.size['''shortest_edge'''] * w / h ) else: _snake_case : int = self.size["shortest_edge"] _snake_case : int = self.size["shortest_edge"] else: _snake_case : str = [] for image in image_inputs: _snake_case : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : str = max(A_ , key=lambda lowercase_ : item[0] )[0] _snake_case : List[str] = max(A_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A (__UpperCAmelCase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE = DetrImageProcessor if is_vision_available() else None def __a ( self ) -> int: '''simple docstring''' _snake_case : Any = DetrImageProcessingTester(self ) @property def __a ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> int: '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_rescale''' ) ) self.assertTrue(hasattr(A_ , '''rescale_factor''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) self.assertTrue(hasattr(A_ , '''do_pad''' ) ) def __a ( self ) -> Any: '''simple docstring''' _snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , A_ ) _snake_case : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def __a ( self ) -> Tuple: '''simple docstring''' pass def __a ( self ) -> int: '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input _snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _snake_case : Tuple = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case : Tuple = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) _snake_case : Optional[Any] = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input _snake_case : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _snake_case : Any = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case : str = image_processing(A_ , return_tensors='''pt''' ).pixel_values _snake_case : Optional[int] = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> Any: '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input _snake_case : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _snake_case : Dict = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case : Dict = image_processing(A_ , return_tensors='''pt''' ).pixel_values _snake_case : Any = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self ) -> Tuple: '''simple docstring''' _snake_case : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _snake_case : Optional[int] = json.loads(f.read() ) _snake_case : int = {"image_id": 3_9769, "annotations": target} # encode them _snake_case : int = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) _snake_case : str = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values _snake_case : int = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _snake_case : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _snake_case : Union[str, Any] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _snake_case : Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _snake_case : int = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _snake_case : Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _snake_case : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _snake_case : List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size _snake_case : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _snake_case : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def __a ( self ) -> Dict: '''simple docstring''' _snake_case : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _snake_case : str = json.loads(f.read() ) _snake_case : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} _snake_case : List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _snake_case : List[str] = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) _snake_case : Any = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values _snake_case : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) _snake_case : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area _snake_case : Optional[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes _snake_case : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) _snake_case : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id _snake_case : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd _snake_case : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels _snake_case : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks _snake_case : Any = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size _snake_case : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size _snake_case : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
326
from math import pi, sqrt def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: float ) -> float: if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert gamma(0.5 ) == sqrt(lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('Gamma of: ')) print(F'''gamma({num}) = {gamma(num)}''') print('\nEnter 0 to exit...')
300
0
SCREAMING_SNAKE_CASE = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def UpperCamelCase_( lowerCamelCase_ ) -> str: assert type(lowerCamelCase_ ) in (int, float) and decimal == int(lowerCamelCase_ ) _lowercase : int = int(lowerCamelCase_ ) _lowercase : Dict = '' _lowercase : List[str] = False if decimal < 0: _lowercase : int = True decimal *= -1 while decimal > 0: _lowercase : Any = divmod(lowerCamelCase_ , 16 ) _lowercase : int = values[remainder] + hexadecimal _lowercase : Dict = '0x' + hexadecimal if negative: _lowercase : Union[str, Any] = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
713
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class _lowerCamelCase( _a ): @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : Union[str, Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase) BertModel.from_pretrained(lowerCamelCase) BertTokenizer.from_pretrained(lowerCamelCase) pipeline(task='fill-mask', model=lowerCamelCase) # baseline - just load from_pretrained with normal network _lowercase : Any = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed _lowercase : List[str] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Any = '1' _lowercase : List[Any] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : List[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : Any = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase) BertModel.from_pretrained(lowerCamelCase) BertTokenizer.from_pretrained(lowerCamelCase) pipeline(task='fill-mask', model=lowerCamelCase) # baseline - just load from_pretrained with normal network _lowercase : List[str] = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed _lowercase : Any = self.get_env() _lowercase : str = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _lowercase : int = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _lowercase : List[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _lowercase : int = [sys.executable, '-c', '\n'.join([load, run])] # should succeed _lowercase : List[str] = self.get_env() _lowercase : Dict = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) # next emulate no network _lowercase : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Optional[Any] = '1' _lowercase : Optional[Any] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = '\nfrom transformers import pipeline\n ' _lowercase : Dict = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _lowercase : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _lowercase : Tuple = self.get_env() _lowercase : Tuple = '1' _lowercase : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] _lowercase : Tuple = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 1, result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode', result.stderr.decode().replace('\n', ''), ) @require_torch def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = '\nfrom transformers import AutoModel\n ' _lowercase : int = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _lowercase : Optional[int] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed _lowercase : int = self.get_env() _lowercase : List[str] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Tuple = '1' _lowercase : Dict = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode())
354
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__(self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : Dict=[30, 30] , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[str]=10 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : str=3 , _UpperCAmelCase : int=None , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Dict=10 , ) -> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope lowercase__ = n_targets lowercase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ = num_patches + 1 + self.num_detection_tokens def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ = [] for i in range(self.batch_size ): lowercase__ = {} lowercase__ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase ) lowercase__ = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase ) labels.append(_UpperCAmelCase ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : Tuple ) -> List[Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = YolosModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = YolosForObjectDetection(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(pixel_values=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () A__ = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int=False ) -> str: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ = [] for i in range(self.model_tester.batch_size ): lowercase__ = {} lowercase__ = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long ) lowercase__ = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float ) labels.append(_UpperCAmelCase ) lowercase__ = labels return inputs_dict def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = YolosModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" pass def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True # in YOLOS, the seq_len is different lowercase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ = len(_UpperCAmelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # YOLOS has a different seq_length lowercase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = YolosModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> List[str]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(inputs.pixel_values ) # verify outputs lowercase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=_UpperCAmelCase , ) lowercase__ = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify postprocessing lowercase__ = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(_UpperCAmelCase ) lowercase__ = [75, 75, 17, 63, 17] lowercase__ = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(_UpperCAmelCase ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , _UpperCAmelCase , atol=1E-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , _UpperCAmelCase ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , _UpperCAmelCase ) )
15
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __snake_case ( ) -> Any: _a , _a = 9, 14 # noqa: F841 _a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _a = defaultdict(_UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _a = mst(_UpperCamelCase ) _a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _a = tuple(answer[:2] ) _a = tuple(edge[::-1] ) assert edge in result or reverse in result
487
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCAmelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=100 , lowerCamelCase_=" ") -> List[str]: UpperCamelCase__ : Optional[int] = text.split(lowerCamelCase_) return [character.join(text[i : i + n]).strip() for i in range(0 , len(lowerCamelCase_) , lowerCamelCase_)] def __UpperCAmelCase ( lowerCamelCase_) -> dict: UpperCamelCase__ : Any = [], [] for title, text in zip(documents['title'] , documents['text']): if text is not None: for passage in split_text(lowerCamelCase_): titles.append(title if title is not None else '') texts.append(lowerCamelCase_) return {"title": titles, "text": texts} def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> dict: UpperCamelCase__ : str = ctx_tokenizer( documents['title'] , documents['text'] , truncation=lowerCamelCase_ , padding='longest' , return_tensors='pt')['input_ids'] UpperCamelCase__ : Dict = ctx_encoder(input_ids.to(device=lowerCamelCase_) , return_dict=lowerCamelCase_).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> int: ###################################### logger.info('Step 1 - Create the dataset') ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCamelCase__ : Union[str, Any] = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text']) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCamelCase__ : str = dataset.map(lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=processing_args.num_proc) # And compute the embeddings UpperCamelCase__ : Optional[int] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=lowerCamelCase_) UpperCamelCase__ : str = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) UpperCamelCase__ : str = Features( {'text': Value('string'), 'title': Value('string'), 'embeddings': Sequence(Value('float32'))}) # optional, save as float32 instead of float64 to save space UpperCamelCase__ : List[Any] = dataset.map( partial(lowerCamelCase_ , ctx_encoder=lowerCamelCase_ , ctx_tokenizer=lowerCamelCase_) , batched=lowerCamelCase_ , batch_size=processing_args.batch_size , features=lowerCamelCase_ , ) # And finally save your dataset UpperCamelCase__ : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset') dataset.save_to_disk(lowerCamelCase_) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset') ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCamelCase__ : List[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index('embeddings' , custom_index=lowerCamelCase_) # And save the index UpperCamelCase__ : int = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss') dataset.get_index('embeddings').save(lowerCamelCase_) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __lowercase : _lowerCamelCase = field( default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) _lowerCamelCase = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) _lowerCamelCase = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) _lowerCamelCase = field( default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class __lowercase : _lowerCamelCase = field( default=__lowerCamelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) _lowerCamelCase = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class __lowercase : _lowerCamelCase = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) _lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCAmelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
706
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" for attribute in key.split(""".""" ): _snake_case : Dict = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _snake_case : List[Any] = getattr(snake_case__ , snake_case__ ).shape else: _snake_case : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _snake_case : List[str] = value elif weight_type == "weight_g": _snake_case : Optional[int] = value elif weight_type == "weight_v": _snake_case : List[str] = value elif weight_type == "bias": _snake_case : Optional[int] = value else: _snake_case : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" _snake_case : Optional[int] = [] _snake_case : Optional[Any] = fairseq_model.state_dict() _snake_case : Optional[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Dict = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : str = True else: for key, mapped_key in MAPPING.items(): _snake_case : Any = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): _snake_case : Tuple = True if "*" in mapped_key: _snake_case : Dict = name.split(snake_case__ )[0].split(""".""" )[-2] _snake_case : Optional[int] = mapped_key.replace("""*""" , snake_case__ ) if "weight_g" in name: _snake_case : int = """weight_g""" elif "weight_v" in name: _snake_case : Tuple = """weight_v""" elif "weight" in name: _snake_case : Optional[int] = """weight""" elif "bias" in name: _snake_case : str = """bias""" else: _snake_case : Tuple = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : int ): """simple docstring""" _snake_case : Optional[int] = full_name.split("""conv_layers.""" )[-1] _snake_case : Tuple = name.split(""".""" ) _snake_case : Dict = int(items[0] ) _snake_case : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _snake_case : Dict = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _snake_case : Optional[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _snake_case : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _snake_case : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any]=None , snake_case__ : int=None , snake_case__ : Tuple=True ): """simple docstring""" if config_path is not None: _snake_case : Dict = HubertConfig.from_pretrained(snake_case__ ) else: _snake_case : List[str] = HubertConfig() if is_finetuned: if dict_path: _snake_case : Optional[int] = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : Optional[int] = target_dict.pad_index _snake_case : Union[str, Any] = target_dict.bos_index _snake_case : List[Any] = target_dict.eos_index _snake_case : List[str] = len(target_dict.symbols ) _snake_case : Any = os.path.join(snake_case__ , """vocab.json""" ) if not os.path.isdir(snake_case__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , snake_case__ ) _snake_case : Any = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=snake_case__ , ) _snake_case : List[str] = True if config.feat_extract_norm == """layer""" else False _snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) _snake_case : Optional[Any] = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) _snake_case : Tuple = HubertForCTC(snake_case__ ) else: _snake_case : Any = HubertModel(snake_case__ ) if is_finetuned: _snake_case , _snake_case , _snake_case : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _snake_case , _snake_case , _snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _snake_case : List[str] = model[0].eval() recursively_load_weights(snake_case__ , snake_case__ , snake_case__ ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) A_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
609
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "xlm-roberta" def __init__( self: Tuple, a_: Dict=30_522, a_: int=768, a_: int=12, a_: Any=12, a_: List[str]=3_072, a_: str="gelu", a_: Optional[int]=0.1, a_: str=0.1, a_: List[str]=512, a_: Optional[int]=2, a_: Optional[int]=0.02, a_: int=1E-12, a_: str=1, a_: List[str]=0, a_: Optional[int]=2, a_: List[Any]="absolute", a_: Optional[int]=True, a_: List[Any]=None, **a_: List[str], ): '''simple docstring''' super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ ) _snake_case : str = vocab_size _snake_case : int = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : int = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : Any = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : Optional[Any] = layer_norm_eps _snake_case : Any = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[int] = classifier_dropout class lowercase( __a ): '''simple docstring''' @property def UpperCamelCase_ ( self: str ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
609
1
'''simple docstring''' import math def _UpperCamelCase ( lowerCAmelCase__: int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowerCAmelCase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( lowerCAmelCase__: float = 0.1 ) -> int: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 ,(j + 2) * (j + 2) ,j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
238
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
238
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : int = '''xlm-roberta''' def __init__( self , a_=3_0522 , a_=768 , a_=12 , a_=12 , a_=3072 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=2 , a_=0.02 , a_=1E-12 , a_=1 , a_=0 , a_=2 , a_="absolute" , a_=True , a_=None , **a_ , ): super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) lowerCamelCase_ : Tuple = vocab_size lowerCamelCase_ : Dict = hidden_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : List[str] = num_attention_heads lowerCamelCase_ : str = hidden_act lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : Optional[int] = attention_probs_dropout_prob lowerCamelCase_ : str = max_position_embeddings lowerCamelCase_ : int = type_vocab_size lowerCamelCase_ : Optional[int] = initializer_range lowerCamelCase_ : Dict = layer_norm_eps lowerCamelCase_ : Any = position_embedding_type lowerCamelCase_ : Optional[int] = use_cache lowerCamelCase_ : Union[str, Any] = classifier_dropout class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" @property def _UpperCamelCase ( self ): if self.task == "multiple-choice": lowerCamelCase_ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase_ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
250
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=16 , a_=2 , a_=0.02 , a_=4 , ): lowerCamelCase_ : List[str] = parent lowerCamelCase_ : Any = batch_size lowerCamelCase_ : List[str] = seq_length lowerCamelCase_ : Dict = is_training lowerCamelCase_ : List[Any] = use_attention_mask lowerCamelCase_ : Tuple = use_token_type_ids lowerCamelCase_ : Dict = use_labels lowerCamelCase_ : Optional[Any] = vocab_size lowerCamelCase_ : List[Any] = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : Dict = intermediate_size lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : Optional[Any] = hidden_dropout_prob lowerCamelCase_ : Tuple = attention_probs_dropout_prob lowerCamelCase_ : str = max_position_embeddings lowerCamelCase_ : str = type_vocab_size lowerCamelCase_ : Tuple = type_sequence_label_size lowerCamelCase_ : str = initializer_range lowerCamelCase_ : Optional[Any] = num_choices def _UpperCamelCase ( self ): lowerCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Any = None if self.use_attention_mask: lowerCamelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Dict = None if self.use_token_type_ids: lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ): lowerCamelCase_ : str = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = config_and_inputs lowerCamelCase_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = True __UpperCAmelCase : Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ): lowerCamelCase_ : Any = FlaxRoFormerModelTester(self ) @slow def _UpperCamelCase ( self ): for model_class_name in self.all_model_classes: lowerCamelCase_ : List[str] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=a_ ) lowerCamelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) lowerCamelCase_ : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ : Any = model(a_ )[0] lowerCamelCase_ : List[str] = 5_0000 lowerCamelCase_ : List[Any] = (1, 6, vocab_size) self.assertEqual(output.shape , a_ ) lowerCamelCase_ : Tuple = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a_ , atol=1E-4 ) )
250
1
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowercase_ = _symbol_database.Default() lowercase_ = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) lowercase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowercase_ = None lowercase_ = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowercase_ = 45 lowercase_ = 15_81 lowercase_ = 15_17 lowercase_ = 15_70 lowercase_ = 15_84 lowercase_ = 17_93 lowercase_ = 17_95 lowercase_ = 19_16 lowercase_ = 18_64 lowercase_ = 19_05 lowercase_ = 19_19 lowercase_ = 24_29 lowercase_ = 22_08 lowercase_ = 24_18 lowercase_ = 23_23 lowercase_ = 24_07 # @@protoc_insertion_point(module_scope)
390
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __lt__( self : Tuple , _lowerCAmelCase : Optional[int] ): return self[-1] < other[-1] def __eq__( self : Tuple , _lowerCAmelCase : Tuple ): return self[-1] == other[-1] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ): '''simple docstring''' __snake_case : list[Stack] = [] # sort into stacks for element in collection: __snake_case : Dict = Stack([element] ) __snake_case : int = bisect_left(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if i != len(__SCREAMING_SNAKE_CASE ): stacks[i].append(__SCREAMING_SNAKE_CASE ) else: stacks.append(__SCREAMING_SNAKE_CASE ) # use a heap-based merge to merge stack efficiently __snake_case : int = merge(*(reversed(__SCREAMING_SNAKE_CASE ) for stack in stacks) ) return collection if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
390
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): _UpperCamelCase = torch.nn.Linear(10 , 10 ) _UpperCamelCase = torch.optim.SGD(model.parameters() , 0.1 ) _UpperCamelCase = Accelerator() _UpperCamelCase = accelerator.prepare(_A ) try: pickle.loads(pickle.dumps(_A ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path _A = 'src/transformers' # Matches is_xxx_available() _A = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _A = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _A = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _A = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _A = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _A = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _A = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _A = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _A = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _A = re.compile(R'^\s*try:') # Catches a line with else: _A = re.compile(R'^\s*else:') def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if _re_test_backend.search(SCREAMING_SNAKE_CASE_ ) is None: return None lowercase_ : Optional[int] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE_ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : List[str] = f.readlines() lowercase_ : List[str] = 0 while line_index < len(SCREAMING_SNAKE_CASE_ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE_ ): return None # First grab the objects without a specific backend in _import_structure lowercase_ : int = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowercase_ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ): lowercase_ : Union[str, Any] = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ).groups()[0] lowercase_ : List[str] = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowercase_ : int = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: lowercase_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 lowercase_ : List[Any] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase_ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowercase_ : Tuple = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ) is not None: lowercase_ : str = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(', ' ) lowercase_ : Optional[int] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ) is not None: lowercase_ : Tuple = _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(', ' ) lowercase_ : Any = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 lowercase_ : Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase_ : Optional[int] = [] while ( line_index < len(SCREAMING_SNAKE_CASE_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowercase_ : Dict = lines[line_index] lowercase_ : Dict = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase_ : Any = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE_ ): # If the line is an if is_backend_available, we grab all objects associated. lowercase_ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowercase_ : Tuple = lines[line_index] lowercase_ : Union[str, Any] = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase_ : List[str] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def find_duplicates(SCREAMING_SNAKE_CASE_ ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase_ : Any = [] for key in import_dict_objects.keys(): lowercase_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowercase_ : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase_ : Dict = 'base imports' if key == 'none' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _UpperCamelCase ( ): lowercase_ : List[Any] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ): if "__init__.py" in files: lowercase_ : int = os.path.join(SCREAMING_SNAKE_CASE_ , '__init__.py' ) lowercase_ : Union[str, Any] = parse_init(SCREAMING_SNAKE_CASE_ ) if objects is not None: lowercase_ : Dict = analyze_results(*SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase_ : Optional[Any] = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE_ ) ) def _UpperCamelCase ( ): lowercase_ : Optional[int] = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE_ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE_ ) / folder).glob('*.py' ) ) ) == 0: continue lowercase_ : Optional[Any] = str((Path(SCREAMING_SNAKE_CASE_ ) / folder).relative_to(SCREAMING_SNAKE_CASE_ ) ) lowercase_ : Tuple = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE_ ) for fname in files: if fname == "__init__.py": continue lowercase_ : Union[str, Any] = str((Path(SCREAMING_SNAKE_CASE_ ) / fname).relative_to(SCREAMING_SNAKE_CASE_ ) ) lowercase_ : List[str] = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE_ ) return submodules _A = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def _UpperCamelCase ( ): # This is to make sure the transformers module imported is the one in the repo. lowercase_ : str = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE_ , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase_ : Union[str, Any] = spec.loader.load_module() lowercase_ : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase_ : int = '\n'.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' f'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
438
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} _A = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } _A = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } _A = { 'ernie-m-base': 5_1_4, 'ernie-m-large': 5_1_4, } _A = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : List[str] = ["input_ids"] A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_INIT_CONFIGURATION A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : Any = RESOURCE_FILES_NAMES def __init__(self , _a , _a=None , _a=False , _a="utf8" , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , vocab_file=_a , encoding=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowercase_ : int = do_lower_case lowercase_ : str = sentencepiece_model_ckpt lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase_ : Union[str, Any] = self.load_vocab(filepath=_a ) else: lowercase_ : Any = {self.sp_model.id_to_piece(_a ): id for id in range(self.sp_model.get_piece_size() )} lowercase_ : Optional[int] = {v: k for k, v in self.vocab.items()} def _lowerCamelCase (self , _a ) -> Any: if text is None: return None lowercase_ : Dict = self.tokenize(_a ) lowercase_ ,lowercase_ : Dict = '', [] for i, ch in enumerate(_a ): if ch in self.SP_CHAR_MAPPING: lowercase_ : str = self.SP_CHAR_MAPPING.get(_a ) else: lowercase_ : List[str] = unicodedata.normalize('NFKC' , _a ) if self.is_whitespace(_a ): continue normalized_text += ch char_mapping.extend([i] * len(_a ) ) lowercase_ ,lowercase_ ,lowercase_ : int = normalized_text, [], 0 if self.do_lower_case: lowercase_ : Optional[Any] = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase_ : Tuple = token[1:] lowercase_ : List[str] = text[offset:].index(_a ) + offset lowercase_ : Any = start + len(_a ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase_ : Tuple = end return token_mapping @property def _lowerCamelCase (self ) -> List[Any]: return len(self.vocab ) def _lowerCamelCase (self ) -> int: return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__(self ) -> Optional[Any]: lowercase_ : Dict = self.__dict__.copy() lowercase_ : List[str] = None return state def __setstate__(self , _a ) -> Any: lowercase_ : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase_ : Tuple = {} lowercase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowerCamelCase (self , _a ) -> str: return "".join((self.SP_CHAR_MAPPING.get(_a , _a ) for c in text) ) def _lowerCamelCase (self , _a , _a=False , _a=64 , _a=0.1 ) -> Optional[int]: if self.sp_model_kwargs.get('enable_sampling' ) is True: lowercase_ : Optional[int] = True if self.sp_model_kwargs.get('alpha' ) is not None: lowercase_ : Union[str, Any] = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowercase_ : Optional[int] = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowercase_ : Optional[Any] = self.sp_model.EncodeAsPieces(_a ) else: lowercase_ : List[Any] = self.sp_model.SampleEncodeAsPieces(_a , _a , _a ) lowercase_ : int = [] for pi, piece in enumerate(_a ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_a ) and pi != 0: new_pieces.append(_a ) continue else: continue lowercase_ : Optional[Any] = 0 for i, chunk in enumerate(_a ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_a ) or self.is_punct(_a ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_a ) lowercase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase_ : Optional[Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase_ : int = i if len(_a ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowerCamelCase (self , _a ) -> Union[str, Any]: lowercase_ : Optional[Any] = ''.join(_a ).replace(_a , ' ' ).strip() return out_string def _lowerCamelCase (self , _a ) -> Optional[int]: lowercase_ : Optional[Any] = self.convert_ids_to_tokens(_a ) lowercase_ : Tuple = ''.join(_a ).replace(_a , ' ' ).strip() return out_string def _lowerCamelCase (self , _a ) -> Optional[int]: return self.vocab.get(_a , self.vocab.get(self.unk_token ) ) def _lowerCamelCase (self , _a ) -> int: return self.reverse_vocab.get(_a , self.unk_token ) def _lowerCamelCase (self , _a , _a=None ) -> Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : Tuple = [self.cls_token_id] lowercase_ : int = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowerCamelCase (self , _a , _a=None ) -> Optional[Any]: if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowerCamelCase (self , _a , _a=None , _a=False ) -> Union[str, Any]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def _lowerCamelCase (self , _a , _a = None ) -> List[int]: # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_a ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_a ) + 1) + [1] * (len(_a ) + 3) def _lowerCamelCase (self , _a ) -> int: if "\u4e00" <= char <= "\u9fff": return True return False def _lowerCamelCase (self , _a ) -> List[str]: if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowerCamelCase (self , _a ) -> int: if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowerCamelCase (self , _a ) -> List[Any]: if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_a ) == 1: lowercase_ : Optional[Any] = unicodedata.category(_a ) if cat == "Zs": return True return False def _lowerCamelCase (self , _a ) -> Tuple: lowercase_ : List[Any] = {} with io.open(_a , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_a ): lowercase_ : Dict = line.rstrip('\n' ) lowercase_ : Dict = int(_a ) return token_to_idx def _lowerCamelCase (self , _a , _a = None ) -> Tuple[str]: lowercase_ : Tuple = 0 if os.path.isdir(_a ): lowercase_ : Any = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowercase_ : Tuple = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_a , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _a : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) lowercase_ : Tuple = token_index writer.write(token + '\n' ) index += 1 lowercase_ : List[str] = os.path.join(_a , 'sentencepiece.bpe.model' ) with open(_a , 'wb' ) as fi: lowercase_ : Tuple = self.sp_model.serialized_model_proto() fi.write(_a ) return (vocab_file,)
438
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase : str = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Any , lowerCAmelCase__ : str=32 ) -> Optional[Any]: set_seed(0 ) snake_case__ = UNetaDModel(sample_size=lowerCAmelCase__ , in_channels=3 , out_channels=3 ) snake_case__ = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: snake_case__ = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable snake_case__ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=lowerCAmelCase__ , ) snake_case__ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=lowerCAmelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) snake_case__ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(lowerCAmelCase__ ) for _ in range(4 )] snake_case__ = [torch.randn((4, 3, 32, 32) ).to(lowerCAmelCase__ ) for _ in range(4 )] snake_case__ = [torch.randint(0 , 1000 , (4,) ).long().to(lowerCAmelCase__ ) for _ in range(4 )] # train with a DDPM scheduler snake_case__ , snake_case__ = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCAmelCase__ ) for i in range(4 ): optimizer.zero_grad() snake_case__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) snake_case__ = model(lowerCAmelCase__ , timesteps[i] ).sample snake_case__ = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM snake_case__ , snake_case__ = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCAmelCase__ ) for i in range(4 ): optimizer.zero_grad() snake_case__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) snake_case__ = model(lowerCAmelCase__ , timesteps[i] ).sample snake_case__ = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) )
214
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase : int = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase : int = BASE_URL + '''/user''' # https://github.com/settings/tokens lowerCAmelCase : List[Any] = os.environ.get('''USER_TOKEN''', '''''') def _lowercase ( __UpperCamelCase : str ): snake_case__ = { """Authorization""": F'''token {auth_token}''', """Accept""": """application/vnd.github.v3+json""", } return requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
214
1
from manim import * class A ( lowerCamelCase_ ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int]): _lowercase: Optional[int] = Rectangle(height=0.5 , width=0.5) _lowercase: Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0) _lowercase: Optional[Any] = [mem.copy() for i in range(6)] _lowercase: Union[str, Any] = [mem.copy() for i in range(6)] _lowercase: str = VGroup(*_UpperCamelCase).arrange(_UpperCamelCase , buff=0) _lowercase: Union[str, Any] = VGroup(*_UpperCamelCase).arrange(_UpperCamelCase , buff=0) _lowercase: Union[str, Any] = VGroup(_UpperCamelCase , _UpperCamelCase).arrange(_UpperCamelCase , buff=0) _lowercase: Any = Text("CPU" , font_size=24) _lowercase: List[Any] = Group(_UpperCamelCase , _UpperCamelCase).arrange(_UpperCamelCase , buff=0.5 , aligned_edge=_UpperCamelCase) cpu.move_to([-2.5, -0.5, 0]) self.add(_UpperCamelCase) _lowercase: List[Any] = [mem.copy() for i in range(4)] _lowercase: Tuple = VGroup(*_UpperCamelCase).arrange(_UpperCamelCase , buff=0) _lowercase: Optional[int] = Text("GPU" , font_size=24) _lowercase: Any = Group(_UpperCamelCase , _UpperCamelCase).arrange(_UpperCamelCase , buff=0.5 , aligned_edge=_UpperCamelCase) gpu.move_to([-1, -1, 0]) self.add(_UpperCamelCase) _lowercase: List[str] = [mem.copy() for i in range(6)] _lowercase: Optional[int] = VGroup(*_UpperCamelCase).arrange(_UpperCamelCase , buff=0) _lowercase: Any = Text("Model" , font_size=24) _lowercase: List[Any] = Group(_UpperCamelCase , _UpperCamelCase).arrange(_UpperCamelCase , buff=0.5 , aligned_edge=_UpperCamelCase) model.move_to([3, -1.0, 0]) self.add(_UpperCamelCase) _lowercase: Dict = [] for i, rect in enumerate(_UpperCamelCase): rect.set_stroke(_UpperCamelCase) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowercase: Any = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3).set_stroke(width=0.0).set_fill(_UpperCamelCase , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=_UpperCamelCase) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_UpperCamelCase , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_UpperCamelCase , buff=0.0) self.add(_UpperCamelCase) cpu_targs.append(_UpperCamelCase) _lowercase: Dict = [mem.copy() for i in range(6)] _lowercase: Tuple = VGroup(*_UpperCamelCase).arrange(_UpperCamelCase , buff=0) _lowercase: Tuple = Text("Loaded Checkpoint" , font_size=24) _lowercase: Union[str, Any] = Group(_UpperCamelCase , _UpperCamelCase).arrange(_UpperCamelCase , aligned_edge=_UpperCamelCase , buff=0.4) checkpoint.move_to([3, 0.5, 0]) _lowercase: Tuple = Square(side_length=2.2) key.move_to([-5, 2, 0]) _lowercase: Dict = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(_UpperCamelCase , _UpperCamelCase) _lowercase: Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left()) _lowercase: List[Any] = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_UpperCamelCase) , Write(_UpperCamelCase)) self.play(Write(_UpperCamelCase , run_time=1) , Create(_UpperCamelCase , run_time=1)) _lowercase: Any = [] _lowercase: Tuple = [] for i, rect in enumerate(_UpperCamelCase): _lowercase: Any = fill.copy().set_fill(_UpperCamelCase , opacity=0.7) target.move_to(_UpperCamelCase) first_animations.append(GrowFromCenter(_UpperCamelCase , run_time=1)) _lowercase: Tuple = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(_UpperCamelCase , run_time=1.5)) self.play(*_UpperCamelCase) self.play(*_UpperCamelCase) self.wait()
719
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _SCREAMING_SNAKE_CASE : int = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _SCREAMING_SNAKE_CASE : str = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _SCREAMING_SNAKE_CASE : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _SCREAMING_SNAKE_CASE : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _SCREAMING_SNAKE_CASE : int = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _SCREAMING_SNAKE_CASE : Any = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _SCREAMING_SNAKE_CASE : Optional[Any] = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _SCREAMING_SNAKE_CASE : str = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _SCREAMING_SNAKE_CASE : str = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _SCREAMING_SNAKE_CASE : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Dict = FLAX_MODEL_MAPPING _SCREAMING_SNAKE_CASE : Tuple = auto_class_update(FlaxAutoModel) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING _SCREAMING_SNAKE_CASE : int = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Dict = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE : List[str] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : List[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _SCREAMING_SNAKE_CASE : str = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Any = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _SCREAMING_SNAKE_CASE : List[str] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _SCREAMING_SNAKE_CASE : List[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
206
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase: List[str] = logging.get_logger(__name__) _lowercase: Any = '''▁''' _lowercase: List[str] = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowercase: List[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } _lowercase: Any = { '''facebook/xglm-564M''': 2_0_4_8, } class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ =["input_ids", "attention_mask"] def __init__( self : List[Any] , lowercase__ : Dict , lowercase__ : List[str]="<s>" , lowercase__ : Any="</s>" , lowercase__ : List[str]="</s>" , lowercase__ : List[Any]="<s>" , lowercase__ : Any="<unk>" , lowercase__ : List[Any]="<pad>" , lowercase__ : Optional[Dict[str, Any]] = None , **lowercase__ : List[Any] , ): _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _lowerCAmelCase = 7 _lowerCAmelCase = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] _lowerCAmelCase = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowercase__ ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[Any] ): _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[int] , lowercase__ : Optional[Any] ): _lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a _lowerCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None , lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ): _lowerCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self : int ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : str ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Any ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : List[Any] ): _lowerCAmelCase = ''.join(lowercase__ ).replace(lowercase__ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : str , lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , 'wb' ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
192
from math import ceil, sqrt def _lowerCamelCase ( snake_case = 1_000_000 ): _lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
192
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black __lowercase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowercase : int = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) lowerCamelCase_ = self.transformer_dir shutil.copy( os.path.join(_lowerCAmelCase , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> str: '''simple docstring''' lowerCamelCase_ = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase ) lowerCamelCase_ = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(_lowerCAmelCase , '''w''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCAmelCase ) with open(_lowerCAmelCase , '''r''' ) as f: self.assertTrue(f.read() , _lowerCAmelCase ) def _lowerCAmelCase ( self ) -> str: '''simple docstring''' lowerCamelCase_ = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _lowerCAmelCase ) , ) # Copy consistency with a really long name lowerCamelCase_ = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('''Bert''' , _lowerCAmelCase , _lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _lowerCAmelCase , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _lowerCAmelCase ) , ) def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] lowerCamelCase_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) lowerCamelCase_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCamelCase_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) lowerCamelCase_ , lowerCamelCase_ = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme['''format_model_list'''] ) self.assertFalse(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase_ , lowerCamelCase_ = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCAmelCase ) lowerCamelCase_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) lowerCamelCase_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCamelCase_ = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCamelCase_ , lowerCamelCase_ = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
709
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase : Optional[Any] = logging.get_logger(__name__) __lowercase : Optional[Any] = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Optional[Any] = "van" def __init__( self , UpperCamelCase__=224 , UpperCamelCase__=3 , UpperCamelCase__=[7, 3, 3, 3] , UpperCamelCase__=[4, 2, 2, 2] , UpperCamelCase__=[64, 128, 320, 512] , UpperCamelCase__=[3, 3, 12, 3] , UpperCamelCase__=[8, 8, 4, 4] , UpperCamelCase__="gelu" , UpperCamelCase__=0.02 , UpperCamelCase__=1e-6 , UpperCamelCase__=1e-2 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = patch_sizes lowerCamelCase_ = strides lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = mlp_ratios lowerCamelCase_ = hidden_act lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = drop_path_rate lowerCamelCase_ = dropout_rate
66
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
385
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED lowerCAmelCase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowerCAmelCase = { """allenai/led-base-16384""": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCAmelCase : Tuple = bs[:] __UpperCAmelCase : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase_ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Union[str, Any] = [chr(lowercase_ ) for n in cs] return dict(zip(lowercase_ , lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = set() __UpperCAmelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Tuple = char return pairs class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES _lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase__ , lowercase__ , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , **lowercase__ , ): __UpperCAmelCase : List[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else bos_token __UpperCAmelCase : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else eos_token __UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else sep_token __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else cls_token __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else unk_token __UpperCAmelCase : List[str] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token super().__init__( errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding='''utf-8''') as vocab_handle: __UpperCAmelCase : Optional[int] = json.load(lowercase__) __UpperCAmelCase : List[str] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Optional[Any] = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(lowercase__ , encoding='''utf-8''') as merges_handle: __UpperCAmelCase : Optional[int] = merges_handle.read().split('''\n''')[1:-1] __UpperCAmelCase : int = [tuple(merge.split()) for merge in bpe_merges] __UpperCAmelCase : str = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : List[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''') @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A( self): return len(self.encoder) def A( self): return dict(self.encoder , **self.added_tokens_encoder) def A( self , lowercase__): if token in self.cache: return self.cache[token] __UpperCAmelCase : int = tuple(lowercase__) __UpperCAmelCase : int = get_pairs(lowercase__) if not pairs: return token while True: __UpperCAmelCase : Union[str, Any] = min(lowercase__ , key=lambda lowercase__: self.bpe_ranks.get(lowercase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Tuple = bigram __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 0 while i < len(lowercase__): try: __UpperCAmelCase : List[Any] = word.index(lowercase__ , lowercase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __UpperCAmelCase : str = j if word[i] == first and i < len(lowercase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __UpperCAmelCase : Union[str, Any] = tuple(lowercase__) __UpperCAmelCase : Dict = new_word if len(lowercase__) == 1: break else: __UpperCAmelCase : Optional[int] = get_pairs(lowercase__) __UpperCAmelCase : List[Any] = ''' '''.join(lowercase__) __UpperCAmelCase : Tuple = word return word def A( self , lowercase__): __UpperCAmelCase : str = [] for token in re.findall(self.pat , lowercase__): __UpperCAmelCase : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__).split(''' ''')) return bpe_tokens def A( self , lowercase__): return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token)) def A( self , lowercase__): return self.decoder.get(lowercase__) def A( self , lowercase__): __UpperCAmelCase : str = ''''''.join(lowercase__) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text]).decode('''utf-8''' , errors=self.errors) return text def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : List[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Optional[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(lowercase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__) + '''\n''') __UpperCAmelCase : Tuple = 0 with open(lowercase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''') __UpperCAmelCase : Optional[int] = token_index writer.write(''' '''.join(lowercase__) + '''\n''') index += 1 return vocab_file, merge_file def A( self , lowercase__ , lowercase__ = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : Optional[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A( self , lowercase__ , lowercase__ = None , lowercase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__) if token_ids_a is None: return [1] + ([0] * len(lowercase__)) + [1] return [1] + ([0] * len(lowercase__)) + [1, 1] + ([0] * len(lowercase__)) + [1] def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def A( self , lowercase__ , lowercase__=False , **lowercase__): __UpperCAmelCase : List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowercase__) > 0 and not text[0].isspace()): __UpperCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def A( self , lowercase__ , lowercase__ = None , lowercase__ = PaddingStrategy.DO_NOT_PAD , lowercase__ = None , lowercase__ = None , ): __UpperCAmelCase : Optional[Any] = super()._pad( encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) # Load from model defaults if return_attention_mask is None: __UpperCAmelCase : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __UpperCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __UpperCAmelCase : int = len(encoded_inputs['''global_attention_mask''']) != len(lowercase__) if needs_to_be_padded: __UpperCAmelCase : Dict = len(lowercase__) - len(encoded_inputs['''global_attention_mask''']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __UpperCAmelCase : Optional[Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __UpperCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side)) return encoded_inputs
462
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __snake_case ( a ): def __init__( self : str , _snake_case : Union[str, "sqlalchemy.sql.Selectable"] , _snake_case : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , _snake_case : Optional[Features] = None , _snake_case : str = None , _snake_case : bool = False , **_snake_case : str , ): """simple docstring""" super().__init__(features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , **_snake_case) UpperCAmelCase_ = Sql( cache_dir=_snake_case , features=_snake_case , sql=_snake_case , con=_snake_case , **_snake_case , ) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None self.builder.download_and_prepare( download_config=_snake_case , download_mode=_snake_case , verification_mode=_snake_case , base_path=_snake_case , ) # Build dataset for splits UpperCAmelCase_ = self.builder.as_dataset( split='''train''' , verification_mode=_snake_case , in_memory=self.keep_in_memory) return dataset class __snake_case : def __init__( self : Any , _snake_case : Dataset , _snake_case : str , _snake_case : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , **_snake_case : int , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""") UpperCAmelCase_ = dataset UpperCAmelCase_ = name UpperCAmelCase_ = con UpperCAmelCase_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase_ = num_proc UpperCAmelCase_ = to_sql_kwargs def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.to_sql_kwargs.pop('''sql''' , _snake_case) UpperCAmelCase_ = self.to_sql_kwargs.pop('''con''' , _snake_case) UpperCAmelCase_ = self.to_sql_kwargs.pop('''index''' , _snake_case) UpperCAmelCase_ = self._write(index=_snake_case , **self.to_sql_kwargs) return written def lowerCamelCase ( self : Dict , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = args UpperCAmelCase_ = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs UpperCAmelCase_ = query_table( table=self.dataset.data , key=slice(_snake_case , offset + self.batch_size) , indices=self.dataset._indices , ) UpperCAmelCase_ = batch.to_pandas() UpperCAmelCase_ = df.to_sql(self.name , self.con , index=_snake_case , **_snake_case) return num_rows or len(_snake_case) def lowerCamelCase ( self : int , _snake_case : Optional[int] , **_snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs)) else: UpperCAmelCase_ , UpperCAmelCase_ = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _snake_case , _snake_case)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
169
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Dict = LxmertTokenizer UpperCAmelCase__ : Tuple = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def lowerCamelCase ( self : Tuple): """simple docstring""" super().setUp() UpperCAmelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def lowerCamelCase ( self : str , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = '''UNwant\u00E9d,running''' UpperCAmelCase_ = '''unwanted, running''' return input_text, output_text def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class(self.vocab_file) UpperCAmelCase_ = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(_snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [7, 4, 5, 10, 8, 9]) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) UpperCAmelCase_ = rust_tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case) self.assertListEqual(_snake_case , _snake_case)
169
1
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __lowercase : Any = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) __lowercase : int = [] __lowercase : Any = [] __lowercase : List[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} __lowercase : List[Any] = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', '''emoji''': True, }, } ] __lowercase : Tuple = 0 for log in Path().glob('''*.log'''): __lowercase : Any = 0 with open(log, '''r''') as f: for line in f: __lowercase : str = json.loads(line) if line.get('''nodeid''', '''''') != "": __lowercase : Optional[Any] = line['''nodeid'''] if line.get('''duration''', None) is not None: __lowercase : Optional[Any] = f'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __lowercase : Tuple = [] log.unlink() __lowercase : Tuple = '''''' __lowercase : str = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __lowercase : List[str] = [] __lowercase : int = {} for test in failed_tests: __lowercase : List[str] = test[0].split('''::''') __lowercase : int = data[0].split('''/''')[-1] if data[0] not in filesafailed: __lowercase : List[Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __lowercase : Dict = [test[0] for test in failed_table] __lowercase : Dict = list(set(files)) # Count number of instances in failed_tests __lowercase : Tuple = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __lowercase : Optional[int] = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __lowercase : Dict = '''Too many failed tests, please see the full report in the Action results.''' __lowercase : Dict = len(err) + 10 __lowercase : str = message[: 3000 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: __lowercase : str = '''No failed tests! 🤗''' print(f'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient __lowercase : Dict = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": __lowercase : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) __lowercase : int = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) __lowercase : int = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) __lowercase : Dict = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) __lowercase : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __lowercase : Optional[int] = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: __lowercase : List[str] = row[0] else: __lowercase : str = '''''' __lowercase : Any = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
422
"""simple docstring""" A = 8.31_4462 # Unit - J mol-1 K-1 def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: float , lowerCamelCase_: float , lowerCamelCase_: float ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: float , lowerCamelCase_: float , lowerCamelCase_: float ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
449
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __lowercase ( ): """simple docstring""" __magic_name__ :Union[str, Any] = ArgumentParser('''Transformers CLI tool''', usage='''transformers-cli <command> [<args>]''' ) __magic_name__ :Union[str, Any] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(snake_case ) DownloadCommand.register_subcommand(snake_case ) EnvironmentCommand.register_subcommand(snake_case ) RunCommand.register_subcommand(snake_case ) ServeCommand.register_subcommand(snake_case ) UserCommands.register_subcommand(snake_case ) AddNewModelCommand.register_subcommand(snake_case ) AddNewModelLikeCommand.register_subcommand(snake_case ) LfsCommands.register_subcommand(snake_case ) PTtoTFCommand.register_subcommand(snake_case ) # Let's go __magic_name__ :str = parser.parse_args() if not hasattr(snake_case, '''func''' ): parser.print_help() exit(1 ) # Run __magic_name__ :Optional[int] = args.func(snake_case ) service.run() if __name__ == "__main__": main()
180
from __future__ import annotations def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = 0 __magic_name__ :Tuple = len(snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __magic_name__ :str = i + 1 else: __magic_name__ :List[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
180
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _lowerCAmelCase = 4 _lowerCAmelCase = 3 class UpperCamelCase (__snake_case ): pass def UpperCamelCase ( _A ) -> Optional[int]: for shard in shards: for i in range(_A ): yield {"i": i, "shard": shard} def UpperCamelCase ( ) -> List[Any]: lowercase : List[str] = int(os.environ["""RANK"""] ) lowercase : str = int(os.environ["""WORLD_SIZE"""] ) lowercase : List[Any] = ArgumentParser() parser.add_argument("""--streaming""" , type=_A ) parser.add_argument("""--local_rank""" , type=_A ) parser.add_argument("""--num_workers""" , type=_A , default=0 ) lowercase : Union[str, Any] = parser.parse_args() lowercase : Any = args.streaming lowercase : Tuple = args.num_workers lowercase : List[Any] = {"""shards""": [F"""shard_{shard_idx}""" for shard_idx in range(_A )]} lowercase : Tuple = IterableDataset.from_generator(_A , gen_kwargs=_A ) if not streaming: lowercase : Any = Dataset.from_list(list(_A ) ) lowercase : Any = split_dataset_by_node(_A , rank=_A , world_size=_A ) lowercase : Dict = torch.utils.data.DataLoader(_A , num_workers=_A ) lowercase : Tuple = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase : Optional[Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
264
"""simple docstring""" import requests from bsa import BeautifulSoup def UpperCamelCase ( _A = "AAPL" ) -> str: lowercase : Optional[Any] = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" lowercase : str = BeautifulSoup(requests.get(_A ).text , """html.parser""" ) lowercase : int = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
264
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): UpperCamelCase_ :List[Any] = StableDiffusionDiffEditPipeline UpperCamelCase_ :List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} UpperCamelCase_ :List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} UpperCamelCase_ :List[str] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ :List[str] = frozenset([] ) def __snake_case ( self : str ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_zero=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) lowerCAmelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCAmelCase__ = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=0 ): lowerCAmelCase__ = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): lowerCAmelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=0 ): lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('''RGB''' ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): lowerCAmelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str=0 ): lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('''RGB''' ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): lowerCAmelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : int ): if not hasattr(self.pipeline_class , '''_optional_components''' ): return lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = pipe(**SCREAMING_SNAKE_CASE_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) pipe_loaded.to(SCREAMING_SNAKE_CASE_ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) lowerCAmelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = pipe_loaded(**SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase__ = np.abs(output - output_loaded ).max() self.assertLess(SCREAMING_SNAKE_CASE_ , 1e-4 ) def __snake_case ( self : int ): lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = pipe.generate_mask(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase__ = np.array([0] * 9 ) lowerCAmelCase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __snake_case ( self : str ): lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = pipe.invert(**SCREAMING_SNAKE_CASE_ ).images lowerCAmelCase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowerCAmelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 ) def __snake_case ( self : Union[str, Any] ): super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} lowerCAmelCase__ = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = pipe.invert(**SCREAMING_SNAKE_CASE_ ).images lowerCAmelCase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase__ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowerCAmelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __snake_case ( cls : int ): lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) lowerCAmelCase__ = raw_image.convert('''RGB''' ).resize((768, 768) ) lowerCAmelCase__ = raw_image def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) lowerCAmelCase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = '''a bowl of fruit''' lowerCAmelCase__ = '''a bowl of pears''' lowerCAmelCase__ = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ = pipe.invert( prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ ).latents lowerCAmelCase__ = pipe( prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] lowerCAmelCase__ = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = '''a bowl of fruit''' lowerCAmelCase__ = '''a bowl of pears''' lowerCAmelCase__ = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ = pipe.invert( prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , ).latents lowerCAmelCase__ = pipe( prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] lowerCAmelCase__ = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : List[str] = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
288
0
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __UpperCAmelCase : Optional[Any] = TapasConfig.from_json_file(UpperCamelCase ) # set absolute/relative position embeddings parameter __UpperCAmelCase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCAmelCase : List[str] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "WTQ": # run_task_main.py hparams __UpperCAmelCase : Tuple = 4 __UpperCAmelCase : Any = True # hparam_utils.py hparams __UpperCAmelCase : Union[str, Any] = 0.664694 __UpperCAmelCase : Union[str, Any] = 0.207951 __UpperCAmelCase : int = 0.121194 __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[str] = 0.0352513 __UpperCAmelCase : Optional[int] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCAmelCase : int = 4 __UpperCAmelCase : Optional[int] = False # hparam_utils.py hparams __UpperCAmelCase : int = 36.4519 __UpperCAmelCase : str = 0.903421 __UpperCAmelCase : Dict = 222.088 __UpperCAmelCase : Dict = True __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = 0.763141 __UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "TABFACT": __UpperCAmelCase : Union[str, Any] = TapasForSequenceClassification(config=UpperCamelCase ) elif task == "MLM": __UpperCAmelCase : Tuple = TapasForMaskedLM(config=UpperCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCAmelCase : List[str] = TapasModel(config=UpperCamelCase ) else: raise ValueError(f"Task {task} not supported." ) print(f"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCamelCase ) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}" ) __UpperCAmelCase : str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(UpperCamelCase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
77
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Dict = position _UpperCamelCase : Any = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _UpperCamelCase : Optional[Any] = [] for position in positions: _UpperCamelCase , _UpperCamelCase : Any = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCAmelCase_ ) return permissible_positions def A__ ( UpperCAmelCase_ ): return not any(elem == 0 for row in board for elem in row ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if is_complete(UpperCAmelCase_ ): return True for position in get_valid_pos(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase , _UpperCamelCase : Any = position if board[y][x] == 0: _UpperCamelCase : int = curr + 1 if open_knight_tour_helper(UpperCAmelCase_ , UpperCAmelCase_ , curr + 1 ): return True _UpperCamelCase : Union[str, Any] = 0 return False def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Dict = [[0 for i in range(UpperCAmelCase_ )] for j in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): _UpperCamelCase : Tuple = 1 if open_knight_tour_helper(UpperCAmelCase_ , (i, j) , 1 ): return board _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : int = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
195
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a :int = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: a :Optional[int] = None a :Optional[Any] = logging.get_logger(__name__) a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} a :Union[str, Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } a :Any = { "facebook/nllb-large-en-ro": 1_024, "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off a :Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :int = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE :Tuple = NllbTokenizer _SCREAMING_SNAKE_CASE :List[int] = [] _SCREAMING_SNAKE_CASE :List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token SCREAMING_SNAKE_CASE__ : Optional[int] = legacy_behaviour super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , ) SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[str] = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE__ : Dict = src_lang if src_lang is not None else """eng_Latn""" SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE__ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _a ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , _a , _a , _a , _a , **_a ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ : Dict = src_lang SCREAMING_SNAKE_CASE__ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_tokens_to_ids(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang_id return inputs def _a ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = src_lang SCREAMING_SNAKE_CASE__ : Dict = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Dict = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return SCREAMING_SNAKE_CASE__ : Dict = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
12
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _UpperCamelCase (_lowerCamelCase : float , _lowerCamelCase : float )-> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
24
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
0
import itertools import math def lowercase_ (A : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ (): snake_case__ : int = 2 while True: if is_prime(A ): yield num num += 1 def lowercase_ (A : int = 1_0_0_0_1 ): return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F"""{solution() = }""")
243
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a_ :Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class snake_case__ ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def lowercase_ ( self : Any ) ->List[str]: snake_case__ : Optional[Any] = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='pt' ) snake_case__ : Optional[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) snake_case__ : Any = text_classifier('This is great !', top_k=2 ) self.assertEqual( nested_simplify(_snake_case ), [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}] ) snake_case__ : Any = text_classifier(['This is great !', 'This is bad'], top_k=2 ) self.assertEqual( nested_simplify(_snake_case ), [ [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], ], ) snake_case__ : Union[str, Any] = text_classifier('This is great !', top_k=1 ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) # Legacy behavior snake_case__ : List[str] = text_classifier('This is great !', return_all_scores=_snake_case ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) snake_case__ : List[Any] = text_classifier('This is great !', return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ), [[{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}]] ) snake_case__ : Optional[Any] = text_classifier(['This is great !', 'Something else'], return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ), [ [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], ], ) snake_case__ : Optional[Any] = text_classifier(['This is great !', 'Something else'], return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ), [ {'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_0', 'score': 0.5_0_4}, ], ) @require_torch def lowercase_ ( self : Optional[Any] ) ->int: import torch snake_case__ : Dict = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='pt', device=torch.device('cpu' ), ) snake_case__ : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) @require_tf def lowercase_ ( self : Union[str, Any] ) ->int: snake_case__ : List[Any] = pipeline( task='text-classification', model='hf-internal-testing/tiny-random-distilbert', framework='tf' ) snake_case__ : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) @slow @require_torch def lowercase_ ( self : Optional[Any] ) ->int: snake_case__ : Optional[int] = pipeline('text-classification' ) snake_case__ : Tuple = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'POSITIVE', 'score': 1.0}] ) snake_case__ : str = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'NEGATIVE', 'score': 1.0}] ) snake_case__ : Optional[Any] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'POSITIVE', 'score': 0.9_8_8}] ) @slow @require_tf def lowercase_ ( self : Dict ) ->Dict: snake_case__ : Tuple = pipeline('text-classification', framework='tf' ) snake_case__ : Tuple = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'POSITIVE', 'score': 1.0}] ) snake_case__ : int = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'NEGATIVE', 'score': 1.0}] ) snake_case__ : Optional[Any] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(_snake_case ), [{'label': 'POSITIVE', 'score': 0.9_8_8}] ) def lowercase_ ( self : List[str], _snake_case : List[str], _snake_case : List[str], _snake_case : Dict ) ->int: snake_case__ : List[Any] = TextClassificationPipeline(model=_snake_case, tokenizer=_snake_case ) return text_classifier, ["HuggingFace is in", "This is another test"] def lowercase_ ( self : Dict, _snake_case : List[str], _snake_case : str ) ->List[str]: snake_case__ : Dict = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 snake_case__ : int = 'HuggingFace is in' snake_case__ : Union[str, Any] = text_classifier(_snake_case ) self.assertEqual(nested_simplify(_snake_case ), [{'label': ANY(_snake_case ), 'score': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) snake_case__ : Optional[Any] = ['HuggingFace is in ', 'Paris is in France'] snake_case__ : Optional[Any] = text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ), [{'label': ANY(_snake_case ), 'score': ANY(_snake_case )}, {'label': ANY(_snake_case ), 'score': ANY(_snake_case )}], ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format snake_case__ : Any = text_classifier(_snake_case, top_k=_snake_case ) snake_case__ : str = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_snake_case ), [[{'label': ANY(_snake_case ), 'score': ANY(_snake_case )}] * N, [{'label': ANY(_snake_case ), 'score': ANY(_snake_case )}] * N], ) snake_case__ : List[Any] = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} snake_case__ : Any = text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ), {'label': ANY(_snake_case ), 'score': ANY(_snake_case )}, ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. snake_case__ : Optional[Any] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(_snake_case ): text_classifier(_snake_case ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility snake_case__ : str = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(_snake_case ), [{'label': ANY(_snake_case ), 'score': ANY(_snake_case )}], ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
243
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase__ = logging.get_logger(__name__) class snake_case : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = question_encoder __lowercase = generator __lowercase = self.question_encoder def snake_case__ ( self , lowerCAmelCase_ ): if os.path.isfile(lowerCAmelCase_ ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase = os.path.join(lowerCAmelCase_ , "question_encoder_tokenizer" ) __lowercase = os.path.join(lowerCAmelCase_ , "generator_tokenizer" ) self.question_encoder.save_pretrained(lowerCAmelCase_ ) self.generator.save_pretrained(lowerCAmelCase_ ) @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __lowercase = kwargs.pop("config" , lowerCAmelCase_ ) if config is None: __lowercase = RagConfig.from_pretrained(lowerCAmelCase_ ) __lowercase = AutoTokenizer.from_pretrained( lowerCAmelCase_ , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) __lowercase = AutoTokenizer.from_pretrained( lowerCAmelCase_ , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=lowerCAmelCase_ , generator=lowerCAmelCase_ ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.current_tokenizer(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.generator.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.generator.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.question_encoder def snake_case__ ( self ): __lowercase = self.generator def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "longest" , lowerCAmelCase_ = None , lowerCAmelCase_ = True , **lowerCAmelCase_ , ): warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , lowerCAmelCase_ , ) if max_length is None: __lowercase = self.current_tokenizer.model_max_length __lowercase = self( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , **lowerCAmelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowercase = self.current_tokenizer.model_max_length __lowercase = self( text_target=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowercase = labels["input_ids"] return model_inputs
321
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower_vision_model""" def __init__( self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=288 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = stop_gradient __lowercase = share_layernorm __lowercase = remove_last_layer @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("model_type" ) == "bridgetower": __lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower_text_model""" def __init__( self , lowerCAmelCase_=5_0265 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=1 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=514 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_factor __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("model_type" ) == "bridgetower": __lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower""" def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=768 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=False , lowerCAmelCase_="add" , lowerCAmelCase_=12 , lowerCAmelCase_=6 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): # TODO: remove this once the Hub files are updated. __lowercase = kwargs.pop("text_config_dict" , lowerCAmelCase_ ) __lowercase = kwargs.pop("vision_config_dict" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) __lowercase = share_cross_modal_transformer_layers __lowercase = hidden_act __lowercase = hidden_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = share_link_tower_layers __lowercase = link_tower_type __lowercase = num_attention_heads __lowercase = num_hidden_layers __lowercase = tie_word_embeddings __lowercase = init_layernorm_from_vision_encoder if text_config is None: __lowercase = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: __lowercase = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) __lowercase = BridgeTowerTextConfig(**lowerCAmelCase_ ) __lowercase = BridgeTowerVisionConfig(**lowerCAmelCase_ ) @classmethod def snake_case__ ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
321
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def lowerCamelCase(self ): A_ : Any = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) A_ : Dict = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above A_ : Any = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above A_ : Dict = tf_top_k_top_p_filtering(_snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) A_ : List[Any] = output[output != -float("""inf""" )] A_ : int = tf.cast( tf.where(tf.not_equal(_snake_case , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_snake_case , _snake_case , rtol=1e-1_2 ) tf.debugging.assert_equal(_snake_case , _snake_case ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" if is_tf_available(): _A : List[Any] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def lowerCamelCase(self ): A_ : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ : Tuple = 2 A_ : Union[str, Any] = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__(self , lowerCAmelCase_ ): super(_snake_case , self ).__init__() A_ : int = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_snake_case , ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : Optional[Any] = self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} A_ : Dict = [[2, 0], [102, 103]] A_ : Any = [[1, 0], [1, 1]] A_ : Dict = DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={"""serving_default""": dummy_model.serving} ) A_ : Optional[Any] = tf.saved_model.load(_snake_case ).signatures["""serving_default"""] for batch_size in range(1 , len(_snake_case ) + 1 ): A_ : str = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } A_ : Dict = serving_func(**_snake_case )["""sequences"""] A_ : Tuple = test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow def lowerCamelCase(self ): A_ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ : int = 1 A_ : Dict = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__(self , lowerCAmelCase_ ): super(_snake_case , self ).__init__() A_ : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_snake_case , ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : Any = self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} A_ : Tuple = [[2], [102, 103]] A_ : List[Any] = [[1], [1, 1]] A_ : List[Any] = DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={"""serving_default""": dummy_model.serving} ) A_ : Optional[Any] = tf.saved_model.load(_snake_case ).signatures["""serving_default"""] for input_row in range(len(_snake_case ) ): A_ : Any = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } A_ : Union[str, Any] = serving_func(**_snake_case )["""sequences"""] A_ : List[Any] = test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow @require_tensorflow_text def lowerCamelCase(self ): with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=_snake_case ) class SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): """simple docstring""" def __init__(self ): super().__init__() A_ : Union[str, Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_snake_case , """spiece.model""" ) , """rb""" ).read() ) A_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowerCamelCase(self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): A_ : Union[str, Any] = self.tokenizer.tokenize(_snake_case ) A_ , A_ : str = text.pad_model_inputs( _snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) A_ : Any = self.model.generate(input_ids=_snake_case , attention_mask=_snake_case ) return self.tokenizer.detokenize(_snake_case ) A_ : Union[str, Any] = CompleteSentenceTransformer() A_ : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) A_ : Optional[Any] = complete_model(_snake_case ) A_ : Dict = tf.keras.Model(_snake_case , _snake_case ) keras_model.save(_snake_case ) def lowerCamelCase(self ): A_ : Union[str, Any] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } A_ : str = 14 A_ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ : List[Any] = """Hello, my dog is cute and""" A_ : List[str] = tokenizer(_snake_case , return_tensors="""tf""" ) A_ : Tuple = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ : int = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) A_ : Any = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) A_ : Tuple = [638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) A_ : Any = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCamelCase(self ): A_ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ : Tuple = """Hugging Face is a technology company based in New York and Paris.""" A_ : str = bart_tokenizer(_snake_case , return_tensors="""tf""" ).input_ids A_ : Any = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ : Dict = bart_model.generate(_snake_case ).numpy() class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ): return super().call(_snake_case , **_snake_case ) A_ : Tuple = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ : Union[str, Any] = bart_model.generate(_snake_case , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(_snake_case , _snake_case ) ) class SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): """simple docstring""" def lowerCamelCase(self , lowerCAmelCase_ , **lowerCAmelCase_ ): return super().call(_snake_case , **_snake_case ) A_ : Union[str, Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) A_ : Optional[Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) A_ : Union[str, Any] = bart_model.generate(_snake_case ).numpy() with self.assertRaises(_snake_case ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_snake_case , foo="""bar""" )
708
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): A_ : str = OmegaConf.load(snake_case__ ) A_ : List[str] = torch.load(snake_case__ , map_location="""cpu""" )["""model"""] A_ : Any = list(state_dict.keys() ) # extract state_dict for VQVAE A_ : Any = {} A_ : Union[str, Any] = """first_stage_model.""" for key in keys: if key.startswith(snake_case__ ): A_ : List[Any] = state_dict[key] # extract state_dict for UNetLDM A_ : Tuple = {} A_ : Dict = """model.diffusion_model.""" for key in keys: if key.startswith(snake_case__ ): A_ : Optional[Any] = state_dict[key] A_ : List[Any] = config.model.params.first_stage_config.params A_ : Tuple = config.model.params.unet_config.params A_ : Any = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) A_ : Optional[int] = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) A_ : List[str] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) A_ : str = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) _lowerCAmelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
480
0
from typing import Any import numpy as np def a__ ( A__ ): return np.array_equal(__UpperCamelCase, matrix.conjugate().T ) def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = v.conjugate().T SCREAMING_SNAKE_CASE_ : Union[str, Any] = v_star.dot(__UpperCamelCase ) assert isinstance(__UpperCamelCase, np.ndarray ) return (v_star_dot.dot(__UpperCamelCase )) / (v_star.dot(__UpperCamelCase )) def a__ ( ): SCREAMING_SNAKE_CASE_ : int = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE_ : Tuple = np.array([[1], [2], [3]] ) assert is_hermitian(__UpperCamelCase ), F'''{a} is not hermitian.''' print(rayleigh_quotient(__UpperCamelCase, __UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ : Any = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__UpperCamelCase ), F'''{a} is not hermitian.''' assert rayleigh_quotient(__UpperCamelCase, __UpperCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
101
class __a : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ ={} def __A ( self : Tuple ,_UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' if vertex not in self.adjacency: SCREAMING_SNAKE_CASE__ ={} self.num_vertices += 1 def __A ( self : str ,_UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Any ) -> Any: '''simple docstring''' self.add_vertex(_UpperCamelCase ) self.add_vertex(_UpperCamelCase ) if head == tail: return SCREAMING_SNAKE_CASE__ =weight SCREAMING_SNAKE_CASE__ =weight def __A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE__ =list(edges[i] ) edges.sort(key=lambda _UpperCamelCase : e[2] ) for i in range(len(_UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE__ =edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge SCREAMING_SNAKE_CASE__ =weight SCREAMING_SNAKE_CASE__ =weight def __str__( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""""" for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE__ =self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip("""\n""" ) def __A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.adjacency.keys() @staticmethod def __A ( _UpperCamelCase : Union[str, Any]=None ,_UpperCamelCase : List[Any]=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ =Graph() if vertices is None: SCREAMING_SNAKE_CASE__ =[] if edges is None: SCREAMING_SNAKE_CASE__ =[] for vertex in vertices: g.add_vertex(_UpperCamelCase ) for edge in edges: g.add_edge(*_UpperCamelCase ) return g class __a : """simple docstring""" def __init__( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ={} SCREAMING_SNAKE_CASE__ ={} def __len__( self : int ) -> Optional[int]: '''simple docstring''' return len(self.parent ) def __A ( self : Any ,_UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' if item in self.parent: return self.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =item SCREAMING_SNAKE_CASE__ =0 return item def __A ( self : Union[str, Any] ,_UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' if item not in self.parent: return self.make_set(_UpperCamelCase ) if item != self.parent[item]: SCREAMING_SNAKE_CASE__ =self.find(self.parent[item] ) return self.parent[item] def __A ( self : Any ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.find(_UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE__ =roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE__ =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE__ =roota return roota return None @staticmethod def __A ( _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =graph.num_vertices SCREAMING_SNAKE_CASE__ =Graph.UnionFind() SCREAMING_SNAKE_CASE__ =[] while num_components > 1: SCREAMING_SNAKE_CASE__ ={} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE__ =-1 SCREAMING_SNAKE_CASE__ =graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge SCREAMING_SNAKE_CASE__ =union_find.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =union_find.find(_UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE__ =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE__ =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =cheap_edge[vertex] if union_find.find(_UpperCamelCase ) != union_find.find(_UpperCamelCase ): union_find.union(_UpperCamelCase ,_UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE__ =num_components - 1 SCREAMING_SNAKE_CASE__ =Graph.build(edges=_UpperCamelCase ) return mst
151
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if isinstance(snake_case__ ,collections.abc.Iterable ): return x return (x, x) @require_flax class __UpperCAmelCase : def UpperCamelCase ( self: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Tuple ): '''simple docstring''' pass def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: float ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.abs((a - b) ).max() self.assertLessEqual(UpperCAmelCase_ , UpperCAmelCase_ , F'Difference between torch and flax is {diff} (>= {tol}).' ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[Any]=None , **UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""vision_model""": vision_model, """text_model""": text_model} _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Union[str, Any]=None , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""vision_model""": vision_model, """text_model""": text_model} _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = after_output[0] _SCREAMING_SNAKE_CASE = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1E-3 ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: int=None , **UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""vision_model""": vision_model, """text_model""": text_model} _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model( input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , output_attentions=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output.vision_model_output.attentions self.assertEqual(len(UpperCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE = to_atuple(vision_model.config.image_size ) _SCREAMING_SNAKE_CASE = to_atuple(vision_model.config.patch_size ) _SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _SCREAMING_SNAKE_CASE = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _SCREAMING_SNAKE_CASE = output.text_model_output.attentions self.assertEqual(len(UpperCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase ( self: Any , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' pt_model.to(UpperCAmelCase_ ) pt_model.eval() # prepare inputs _SCREAMING_SNAKE_CASE = inputs_dict _SCREAMING_SNAKE_CASE = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _SCREAMING_SNAKE_CASE = pt_model(**UpperCAmelCase_ ).to_tuple() _SCREAMING_SNAKE_CASE = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = VisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) pt_model_loaded.to(UpperCAmelCase_ ) pt_model_loaded.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output_loaded.numpy() , 4E-2 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = VisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = fx_state self.check_pt_flax_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = VisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) self.check_pt_flax_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() self.check_save_load(**UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCAmelCase_ ) @is_pt_flax_cross_test def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = config_inputs_dict.pop("""vision_config""" ) _SCREAMING_SNAKE_CASE = config_inputs_dict.pop("""text_config""" ) _SCREAMING_SNAKE_CASE = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.check_equivalence_flax_to_pt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_pretrained_model_and_inputs() _SCREAMING_SNAKE_CASE = model_a(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_a(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = after_outputs[0] _SCREAMING_SNAKE_CASE = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1E-5 ) @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCAmelCase_ , text_from_pt=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _SCREAMING_SNAKE_CASE = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _SCREAMING_SNAKE_CASE = random_attention_mask([batch_size, 4] ) _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase ( self: str , UpperCAmelCase_: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxViTModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) return vision_model, text_model def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) _SCREAMING_SNAKE_CASE = FlaxBertModelTester(self ) _SCREAMING_SNAKE_CASE = vit_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = bert_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = vision_config_and_inputs _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCAmelCase_ , text_from_pt=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _SCREAMING_SNAKE_CASE = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _SCREAMING_SNAKE_CASE = random_attention_mask([batch_size, 4] ) _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxCLIPVisionModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) return vision_model, text_model def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxCLIPVisionModelTester(self ) _SCREAMING_SNAKE_CASE = FlaxBertModelTester(self ) _SCREAMING_SNAKE_CASE = clip_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = bert_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = vision_config_and_inputs _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) _SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _SCREAMING_SNAKE_CASE = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _SCREAMING_SNAKE_CASE = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , UpperCAmelCase_ , atol=1E-3 ) )
569
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''ResNetConfig''' # Base docstring UpperCamelCase = '''microsoft/resnet-50''' UpperCamelCase = [1, 2_048, 7, 7] # Image classification docstring UpperCamelCase = '''microsoft/resnet-50''' UpperCamelCase = '''tiger cat''' UpperCamelCase = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int = 3 , UpperCAmelCase_: int = 1 , UpperCAmelCase_: str = "relu" ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = nn.Convad( UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=kernel_size // 2 , bias=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.BatchNormad(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return hidden_state class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[int] , UpperCAmelCase_: ResNetConfig ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _SCREAMING_SNAKE_CASE = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _SCREAMING_SNAKE_CASE = config.num_channels def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) _SCREAMING_SNAKE_CASE = self.embedder(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.pooler(UpperCAmelCase_ ) return embedding class __UpperCAmelCase (nn.Module ): def __init__( self: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int = 2 ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , stride=UpperCAmelCase_ , bias=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.BatchNormad(UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) return hidden_state class __UpperCAmelCase (nn.Module ): def __init__( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int = 1 , UpperCAmelCase_: str = "relu" ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 _SCREAMING_SNAKE_CASE = ( ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _SCREAMING_SNAKE_CASE = nn.Sequential( ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , activation=UpperCAmelCase_ ) , ) _SCREAMING_SNAKE_CASE = ACTaFN[activation] def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = hidden_state _SCREAMING_SNAKE_CASE = self.layer(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.shortcut(UpperCAmelCase_ ) hidden_state += residual _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return hidden_state class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int = 1 , UpperCAmelCase_: str = "relu" , UpperCAmelCase_: int = 4 ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 _SCREAMING_SNAKE_CASE = out_channels // reduction _SCREAMING_SNAKE_CASE = ( ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _SCREAMING_SNAKE_CASE = nn.Sequential( ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=UpperCAmelCase_ ) , ) _SCREAMING_SNAKE_CASE = ACTaFN[activation] def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = hidden_state _SCREAMING_SNAKE_CASE = self.layer(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.shortcut(UpperCAmelCase_ ) hidden_state += residual _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return hidden_state class __UpperCAmelCase (nn.Module ): def __init__( self: List[Any] , UpperCAmelCase_: ResNetConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int = 2 , UpperCAmelCase_: int = 2 , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer _SCREAMING_SNAKE_CASE = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , activation=config.hidden_act ) , *[layer(UpperCAmelCase_ , UpperCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE = input for layer in self.layers: _SCREAMING_SNAKE_CASE = layer(UpperCAmelCase_ ) return hidden_state class __UpperCAmelCase (nn.Module ): def __init__( self: int , UpperCAmelCase_: ResNetConfig ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _SCREAMING_SNAKE_CASE = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , depth=UpperCAmelCase_ ) ) def UpperCamelCase ( self: str , UpperCAmelCase_: Tensor , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = True ): '''simple docstring''' _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) _SCREAMING_SNAKE_CASE = stage_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = ResNetConfig __snake_case : Tuple = "resnet" __snake_case : str = "pixel_values" __snake_case : str = True def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: str ): '''simple docstring''' if isinstance(UpperCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(UpperCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Dict=False ): '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = value UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: int , UpperCAmelCase_: List[str] ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = ResNetEmbeddings(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ResNetEncoder(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tensor , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.embedder(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.encoder( UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = encoder_outputs[0] _SCREAMING_SNAKE_CASE = self.pooler(UpperCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: int , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = ResNetModel(UpperCAmelCase_ ) # classification head _SCREAMING_SNAKE_CASE = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.FloatTensor] = None , UpperCAmelCase_: Optional[torch.LongTensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.resnet(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ): def __init__( self: int , UpperCAmelCase_: Any ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) super()._init_backbone(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [config.embedding_size] + config.hidden_sizes _SCREAMING_SNAKE_CASE = ResNetEmbeddings(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ResNetEncoder(UpperCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @replace_return_docstrings(output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Tensor , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = self.embedder(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.encoder(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.hidden_states _SCREAMING_SNAKE_CASE = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _SCREAMING_SNAKE_CASE = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase_ , )
569
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
72
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , "env" ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple=1 ) -> Any: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-single''' , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: List[Any] ) -> Dict: """simple docstring""" TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCamelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _SCREAMING_SNAKE_CASE )
371
_UpperCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } _UpperCAmelCase = {value: key for key, value in encode_dict.items()} def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: UpperCamelCase_ = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: if set(UpperCamelCase_ ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) UpperCamelCase_ = "" for word in coded.split(): while len(UpperCamelCase_ ) != 0: decoded += decode_dict[word[:5]] UpperCamelCase_ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
371
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = original_name.split(""".""" )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = key.split(""".""" ) SCREAMING_SNAKE_CASE : List[Any] = int(key_list[key_list.index(lowerCamelCase_ ) - 2] ) SCREAMING_SNAKE_CASE : str = int(key_list[key_list.index(lowerCamelCase_ ) - 1] ) SCREAMING_SNAKE_CASE : Optional[Any] = orig_block_num - offset SCREAMING_SNAKE_CASE : List[Any] = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = OrderedDict() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = key[: key.find("""proj""" )] SCREAMING_SNAKE_CASE : str = key.replace(lowerCamelCase_ , f'''patch_embeddings.{total_embed_found}.''' ) SCREAMING_SNAKE_CASE : Dict = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: SCREAMING_SNAKE_CASE : str = """poolformer.encoder.""" + key if "mlp.fc1" in key: SCREAMING_SNAKE_CASE : int = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: SCREAMING_SNAKE_CASE : List[str] = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: SCREAMING_SNAKE_CASE : str = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , """norm1""" , """before_norm""" ) if "norm2" in key: SCREAMING_SNAKE_CASE : Optional[int] = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: SCREAMING_SNAKE_CASE : Tuple = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: SCREAMING_SNAKE_CASE : Optional[int] = replace_key_with_offset(lowerCamelCase_ , lowerCamelCase_ , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace("""head""" , """classifier""" ) SCREAMING_SNAKE_CASE : Dict = value return new_state_dict def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE : Optional[int] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return image @torch.no_grad() def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = PoolFormerConfig() # set attributes based on model_name SCREAMING_SNAKE_CASE : int = """huggingface/label-files""" SCREAMING_SNAKE_CASE : Optional[Any] = model_name[-3:] SCREAMING_SNAKE_CASE : Optional[int] = 10_00 SCREAMING_SNAKE_CASE : Tuple = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE : Union[str, Any] = (1, 10_00) # set config attributes SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} if size == "s12": SCREAMING_SNAKE_CASE : List[str] = [2, 2, 6, 2] SCREAMING_SNAKE_CASE : str = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE : List[str] = 4.0 SCREAMING_SNAKE_CASE : Tuple = 0.9 elif size == "s24": SCREAMING_SNAKE_CASE : List[str] = [4, 4, 12, 4] SCREAMING_SNAKE_CASE : int = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE : str = 4.0 SCREAMING_SNAKE_CASE : Optional[Any] = 0.9 elif size == "s36": SCREAMING_SNAKE_CASE : int = [6, 6, 18, 6] SCREAMING_SNAKE_CASE : Tuple = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE : List[str] = 4.0 SCREAMING_SNAKE_CASE : Optional[Any] = 1E-6 SCREAMING_SNAKE_CASE : Dict = 0.9 elif size == "m36": SCREAMING_SNAKE_CASE : Optional[int] = [6, 6, 18, 6] SCREAMING_SNAKE_CASE : Union[str, Any] = [96, 1_92, 3_84, 7_68] SCREAMING_SNAKE_CASE : Optional[Any] = 4.0 SCREAMING_SNAKE_CASE : int = 1E-6 SCREAMING_SNAKE_CASE : Dict = 0.95 elif size == "m48": SCREAMING_SNAKE_CASE : List[str] = [8, 8, 24, 8] SCREAMING_SNAKE_CASE : Optional[int] = [96, 1_92, 3_84, 7_68] SCREAMING_SNAKE_CASE : List[Any] = 4.0 SCREAMING_SNAKE_CASE : Optional[int] = 1E-6 SCREAMING_SNAKE_CASE : List[str] = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor SCREAMING_SNAKE_CASE : List[str] = PoolFormerImageProcessor(crop_pct=lowerCamelCase_ ) # Prepare image SCREAMING_SNAKE_CASE : int = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict SCREAMING_SNAKE_CASE : Any = torch.load(lowerCamelCase_ , map_location=torch.device("""cpu""" ) ) # rename keys SCREAMING_SNAKE_CASE : List[Any] = rename_keys(lowerCamelCase_ ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE : Any = PoolFormerForImageClassification(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() # Define image processor SCREAMING_SNAKE_CASE : int = PoolFormerImageProcessor(crop_pct=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits # define expected logit slices for different models if size == "s12": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": SCREAMING_SNAKE_CASE : int = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , lowerCamelCase_ , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
379
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, """src""", """transformers""") __UpperCAmelCase = """ {0} = None """ __UpperCAmelCase = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ __UpperCAmelCase = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(lowerCamelCase_ , """tokenizers""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(lowerCamelCase_ , """tensorflow_text""" ) SCREAMING_SNAKE_CASE : List[str] = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(lowerCamelCase_ , """sentencepiece_and_tokenizers""" ) SCREAMING_SNAKE_CASE : Tuple = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(lowerCamelCase_ , """sentencepiece_and_tensorflow_text""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(lowerCamelCase_ , """sentencepiece_and_tokenizers_and_vision""" ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , lowerCamelCase_ ) self.assertIn("""tensorflow_text""" , lowerCamelCase_ ) self.assertIn("""sentencepiece_and_tokenizers""" , lowerCamelCase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(lowerCamelCase_ , """\nCONSTANT = None\n""" ) SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( lowerCamelCase_ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) SCREAMING_SNAKE_CASE : str = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ SCREAMING_SNAKE_CASE : Union[str, Any] = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , lowerCamelCase_ )
379
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : Union[str, Any] ={ """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =["""OwlViTFeatureExtractor"""] A_ : Dict =["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] =[ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ : Any =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
222
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A_ : Optional[int] =[ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] A_ : List[Any] =[ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] A_ : Union[str, Any] =( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) A_ : int =( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) A_ : Dict =[ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE_ ( snake_case : Any , snake_case : Dict )-> Optional[int]: for tf_name, hf_name in patterns: _lowerCamelCase = k.replace(snake_case , snake_case ) return k def SCREAMING_SNAKE_CASE_ ( snake_case : dict , snake_case : dict )-> BigBirdPegasusForConditionalGeneration: _lowerCamelCase = BigBirdPegasusConfig(**snake_case ) _lowerCamelCase = BigBirdPegasusForConditionalGeneration(snake_case ) _lowerCamelCase = torch_model.state_dict() _lowerCamelCase = {} # separating decoder weights _lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} _lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): _lowerCamelCase = [k.endswith(snake_case ) for ending in KEYS_TO_IGNORE] if any(snake_case ): continue _lowerCamelCase = DECODER_PATTERNS _lowerCamelCase = rename_state_dict_key(snake_case , snake_case ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowerCamelCase = v.T _lowerCamelCase = torch.from_numpy(snake_case ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): _lowerCamelCase = [k.endswith(snake_case ) for ending in KEYS_TO_IGNORE] if any(snake_case ): continue _lowerCamelCase = REMAINING_PATTERNS _lowerCamelCase = rename_state_dict_key(snake_case , snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowerCamelCase = v.T _lowerCamelCase = torch.from_numpy(snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _lowerCamelCase = mapping['model.embed_positions.weight'] _lowerCamelCase = mapping.pop('model.embed_positions.weight' ) _lowerCamelCase , _lowerCamelCase = torch_model.load_state_dict(snake_case , strict=snake_case ) _lowerCamelCase = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] )-> Dict: _lowerCamelCase = tf.train.list_variables(snake_case ) _lowerCamelCase = {} _lowerCamelCase = ['global_step'] for name, shape in tqdm(snake_case , desc='converting tf checkpoint to dict' ): _lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCamelCase = tf.train.load_variable(snake_case , snake_case ) _lowerCamelCase = array return tf_weights def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str , snake_case : dict )-> List[str]: _lowerCamelCase = get_tf_weights_as_numpy(snake_case ) _lowerCamelCase = convert_bigbird_pegasus(snake_case , snake_case ) torch_model.save_pretrained(snake_case ) if __name__ == "__main__": A_ : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") A_ : Union[str, Any] =parser.parse_args() A_ : List[str] ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
222
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = VQModel snake_case__ = "sample" @property def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any=(32, 32) ) -> List[Any]: lowerCAmelCase__ = 4 lowerCAmelCase__ = 3 lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": image} @property def a ( self : Tuple ) -> Dict: return (3, 32, 32) @property def a ( self : Optional[Any] ) -> List[Any]: return (3, 32, 32) def a ( self : Dict ) -> Union[str, Any]: lowerCAmelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } lowerCAmelCase__ = self.dummy_input return init_dict, inputs_dict def a ( self : Union[str, Any] ) -> List[str]: pass def a ( self : List[Any] ) -> Dict: pass def a ( self : Union[str, Any] ) -> int: lowerCAmelCase__ , lowerCAmelCase__ = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : List[Any] ) -> str: lowerCAmelCase__ = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(SCREAMING_SNAKE_CASE__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase__ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCAmelCase__ = image.to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ).sample lowerCAmelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
61
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : int ): """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 __lowercase , __lowercase = 1, 1 for _ in range(number_of_steps - 1 ): __lowercase , __lowercase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
616
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
import math _A = 10 _A = 7 _A = BALLS_PER_COLOUR * NUM_COLOURS def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int = 20 ) -> str: """simple docstring""" a_ = math.comb(UpperCamelCase , UpperCamelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCamelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
403
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["pixel_values"] def __init__( self : int , a__ : bool = True , a__ : Dict[str, int] = None , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : bool = True , a__ : Dict[str, int] = None , a__ : bool = True , a__ : Union[int, float] = 1 / 255 , a__ : bool = True , a__ : bool = True , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , **a__ : Union[str, Any] , ): super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self : Dict , a__ : np.ndarray , a__ : Dict[str, int] , a__ : PILImageResampling = PILImageResampling.BILINEAR , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Optional[int] , ): UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(a__ , size['''shortest_edge'''] , default_to_square=a__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : np.ndarray , a__ : Dict[str, int] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a__ , size=(size['''height'''], size['''width''']) , data_format=a__ , **a__ ) def __snake_case ( self : List[str] , a__ : np.ndarray , a__ : Union[int, float] , a__ : bool = True , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Dict , ): UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __snake_case ( self : int , a__ : np.ndarray , a__ : Union[float, List[float]] , a__ : Union[float, List[float]] , a__ : Optional[Union[str, ChannelDimension]] = None , **a__ : Any , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __snake_case ( self : Any , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(a__ ) if do_resize: UpperCAmelCase = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: UpperCAmelCase = self.center_crop(a__ , size=a__ ) if do_rescale: UpperCAmelCase = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: UpperCAmelCase = self.normalize(image=a__ , mean=a__ , std=a__ ) UpperCAmelCase = to_channel_dimension_format(a__ , a__ ) return image def __snake_case ( self : List[Any] , a__ : ImageInput , a__ : bool = None , a__ : Dict[str, int] = None , a__ : PILImageResampling = None , a__ : bool = None , a__ : Dict[str, int] = None , a__ : bool = None , a__ : float = None , a__ : bool = None , a__ : bool = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[float, List[float]]] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : ChannelDimension = ChannelDimension.FIRST , **a__ : Any , ): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ , default_to_square=a__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(a__ , param_name='''crop_size''' ) if not valid_images(a__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(a__ ) UpperCAmelCase = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=a__ , tensor_type=a__ )
51
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase ( __a , __a , unittest.TestCase ): __A : Tuple = StableDiffusionPanoramaPipeline __A : Dict = TEXT_TO_IMAGE_PARAMS __A : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowerCAmelCase_ = DDIMScheduler() torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ = CLIPTextModel(_lowerCamelCase ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=0 ): lowerCAmelCase_ = torch.manual_seed(_lowerCamelCase ) lowerCAmelCase_ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) lowerCAmelCase_ = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase ) lowerCAmelCase_ = sd_pipe(**_lowerCamelCase ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) lowerCAmelCase_ = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase ) lowerCAmelCase_ = '''french fries''' lowerCAmelCase_ = sd_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) lowerCAmelCase_ = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase ) lowerCAmelCase_ = sd_pipe(**_lowerCamelCase , view_batch_size=2 ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' ) lowerCAmelCase_ = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) lowerCAmelCase_ = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase ) lowerCAmelCase_ = sd_pipe(**_lowerCamelCase ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , skip_prk_steps=_lowerCamelCase ) lowerCAmelCase_ = StableDiffusionPanoramaPipeline(**_lowerCamelCase ) lowerCAmelCase_ = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_lowerCamelCase ) lowerCAmelCase_ = sd_pipe(**_lowerCamelCase ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self , _lowerCamelCase=0 ): lowerCAmelCase_ = torch.manual_seed(_lowerCamelCase ) lowerCAmelCase_ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''stabilityai/stable-diffusion-2-base''' lowerCAmelCase_ = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) lowerCAmelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase_ = self.get_inputs() lowerCAmelCase_ = pipe(**_lowerCamelCase ).images lowerCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowerCAmelCase_ = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ): lowerCAmelCase_ = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_lowerCamelCase ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase_ = self.get_inputs() lowerCAmelCase_ = pipe(**_lowerCamelCase ).images lowerCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowerCAmelCase_ = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def UpperCAmelCase_ ( self ): lowerCAmelCase_ = 0 def callback_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> None: lowerCAmelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCAmelCase_ = latents[0, -3:, -3:, -1] lowerCAmelCase_ = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowerCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCAmelCase_ = latents[0, -3:, -3:, -1] lowerCAmelCase_ = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowerCAmelCase_ = False lowerCAmelCase_ = '''stabilityai/stable-diffusion-2-base''' lowerCAmelCase_ = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) lowerCAmelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) lowerCAmelCase_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase_ = self.get_inputs() pipe(**_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase_ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = '''stabilityai/stable-diffusion-2-base''' lowerCAmelCase_ = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) lowerCAmelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) lowerCAmelCase_ = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = self.get_inputs() lowerCAmelCase_ = pipe(**_lowerCamelCase ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
606
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def snake_case_ ( __snake_case : str = "laptop") -> DataFrame: lowerCAmelCase_ = F'''https://www.amazon.in/laptop/s?k={product}''' lowerCAmelCase_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } lowerCAmelCase_ = BeautifulSoup(requests.get(__snake_case , headers=__snake_case).text) # Initialize a Pandas dataframe with the column titles lowerCAmelCase_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: lowerCAmelCase_ = item.ha.text lowerCAmelCase_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] lowerCAmelCase_ = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: lowerCAmelCase_ = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: lowerCAmelCase_ = '''Not available''' try: lowerCAmelCase_ = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: lowerCAmelCase_ = '''''' try: lowerCAmelCase_ = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: lowerCAmelCase_ = float('''nan''') except AttributeError: pass lowerCAmelCase_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCAmelCase_ = ''' ''' lowerCAmelCase_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": A_ : Optional[int] ='''headphones''' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
606
1
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __SCREAMING_SNAKE_CASE : List[str] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] ='T5Config' class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : Union[str, Any] = '''mt5''' A__ : List[Any] = MTaConfig class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : Optional[int] = '''mt5''' A__ : Optional[Any] = MTaConfig class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : Dict = '''mt5''' A__ : List[Any] = MTaConfig
135
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __SCREAMING_SNAKE_CASE : Dict =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __SCREAMING_SNAKE_CASE : Any ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE : int ={ 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' A: List[str] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 A: List[str] = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] ): '''simple docstring''' A: List[str] = set() A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: Union[str, Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : Tuple = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> Optional[int]: A: Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token A: Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token A: List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token A: Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token A: Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token A: List[str] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="""utf-8""" ) as vocab_handle: A: Union[str, Any] = json.load(A ) A: Tuple = {v: k for k, v in self.encoder.items()} A: Optional[Any] = errors # how to handle errors in decoding A: str = bytes_to_unicode() A: Dict = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: A: List[str] = merges_handle.read().split("""\n""" )[1:-1] A: Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] A: Optional[Any] = dict(zip(A , range(len(A ) ) ) ) A: List[Any] = {} A: str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a__ ( self ) -> Optional[int]: return len(self.encoder ) def a__ ( self ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , A ) -> Optional[int]: if token in self.cache: return self.cache[token] A: Tuple = tuple(A ) A: Optional[int] = get_pairs(A ) if not pairs: return token while True: A: Optional[Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A: Tuple = bigram A: Any = [] A: Union[str, Any] = 0 while i < len(A ): try: A: Dict = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: Tuple = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: str = tuple(A ) A: List[Any] = new_word if len(A ) == 1: break else: A: Optional[int] = get_pairs(A ) A: List[str] = """ """.join(A ) A: Dict = word return word def a__ ( self , A ) -> List[str]: A: Dict = [] for token in re.findall(self.pat , A ): A: Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def a__ ( self , A ) -> int: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def a__ ( self , A ) -> int: return self.decoder.get(A ) def a__ ( self , A ) -> int: A: Tuple = """""".join(A ) A: List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def a__ ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A: str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A: Optional[int] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) A: Optional[Any] = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) A: Union[str, Any] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def a__ ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def a__ ( self , A , A = None ) -> List[int]: A: Optional[Any] = [self.sep_token_id] A: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , A , A=False , **A ) -> Dict: A: Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): A: Optional[int] = """ """ + text return (text, kwargs) def a__ ( self , A , A = None , A = PaddingStrategy.DO_NOT_PAD , A = None , A = None , ) -> dict: A: Any = super()._pad( encoded_inputs=A , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) # Load from model defaults if return_attention_mask is None: A: str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A: List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A: Optional[int] = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: A: Union[str, Any] = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A: List[Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": A: List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
135
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict ): super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : int = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self : int , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : float = 0.0 , _lowerCamelCase : int = 50 , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowerCamelCase ): _UpperCAmelCase : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _UpperCAmelCase : Tuple = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : Optional[int] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : Any = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : Union[str, Any] = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , eta=_lowerCamelCase , use_clipped_model_output=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample _UpperCAmelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : Optional[int] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
704
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict ): super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : int = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self : int , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : float = 0.0 , _lowerCamelCase : int = 50 , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowerCamelCase ): _UpperCAmelCase : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _UpperCAmelCase : Tuple = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : Optional[int] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : Any = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : Union[str, Any] = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , eta=_lowerCamelCase , use_clipped_model_output=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample _UpperCAmelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : Optional[int] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
328
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() _SCREAMING_SNAKE_CASE : Any = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
400
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = mock.Mock() snake_case_ = 500 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head: snake_case_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = mock.Mock() snake_case_ = 500 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a__ ) as mock_head: snake_case_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' try: snake_case_ = tempfile.mktemp() with open(a__ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , a__ ) snake_case_ = AlbertTokenizer.from_pretrained(a__ ) finally: os.remove(a__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , a__ ) snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase__ ( cls ) -> List[str]: '''simple docstring''' snake_case_ = TOKEN HfFolder.save_token(a__ ) @classmethod def lowerCAmelCase__ ( cls ) -> Any: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizer(a__ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a__ , repo_id="test-tokenizer" , push_to_hub=a__ , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizer(a__ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a__ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=a__ , use_auth_token=self._token ) snake_case_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = CustomTokenizer(a__ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case_ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(a__ , "vocab.txt" ) with open(a__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case_ = BertTokenizerFast.from_pretrained(a__ ) bert_tokenizer.save_pretrained(a__ ) snake_case_ = CustomTokenizerFast.from_pretrained(a__ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case_ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) snake_case_ = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=a__ , trust_remote_code=a__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = Trie() snake_case_ = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a__ , ["AB", "C"] )
400
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __magic_name__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=4 , _a="gelu" , _a=0.0 , _a=0.1 , _a=True , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , ) -> Dict: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_multiple_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = weight_tying lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope def __a ( self ) -> List[Any]: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self ) -> Dict: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ = True return config, input_ids, input_mask, token_labels def __a ( self , _a , _a , _a ) -> str: lowerCAmelCase_ = GPTNeoXJapaneseModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a ) lowerCAmelCase_ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a ) -> str: lowerCAmelCase_ = True lowerCAmelCase_ = GPTNeoXJapaneseModel(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a , _a ) -> List[Any]: lowerCAmelCase_ = GPTNeoXJapaneseForCausalLM(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _a , _a , _a ) -> Union[str, Any]: lowerCAmelCase_ = True lowerCAmelCase_ = GPTNeoXJapaneseForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass lowerCAmelCase_ = model(_a , attention_mask=_a , use_cache=_a ) lowerCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase_ = model(_a , attention_mask=_a , output_hidden_states=_a ) lowerCAmelCase_ = output_from_no_past["hidden_states"][0] lowerCAmelCase_ = model( _a , attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["hidden_states"][0] # select random slice lowerCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> int: lowerCAmelCase_ = GPTNeoXJapaneseModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , hidden_size=37 ) def __a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_a , _a , _a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_a , _a , _a ) def __a ( self ) -> int: # This regression test was failing with PyTorch < 1.3 lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase_ = None self.model_tester.create_and_check_model_as_decoder(_a , _a , _a ) def __a ( self ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_a , _a , _a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_a ) @slow def __a ( self ) -> Any: lowerCAmelCase_ = "abeja/gpt-neox-japanese-2.7b" lowerCAmelCase_ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] lowerCAmelCase_ = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] lowerCAmelCase_ = GPTNeoXJapaneseTokenizer.from_pretrained(_a ) lowerCAmelCase_ = GPTNeoXJapaneseForCausalLM.from_pretrained(_a ) lowerCAmelCase_ = [] for prompt in prompts: lowerCAmelCase_ = tokenizer(_a , return_tensors="pt" ).input_ids lowerCAmelCase_ = model.generate(_a , max_length=50 ) lowerCAmelCase_ = tokenizer.batch_decode(_a , skip_special_tokens=_a ) predicted_outputs += generated_string self.assertListEqual(_a , _a )
707
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase__ = '''Usage of script: script_name <size_of_canvas:int>''' lowerCamelCase__ = [0] * 1_00 + [1] * 10 random.shuffle(choice) def A(__a: int ): lowerCAmelCase_ = [[False for i in range(__a )] for j in range(__a )] return canvas def A(__a: list[list[bool]] ): for i, row in enumerate(__a ): for j, _ in enumerate(__a ): lowerCAmelCase_ = bool(random.getrandbits(1 ) ) def A(__a: list[list[bool]] ): lowerCAmelCase_ = np.array(__a ) lowerCAmelCase_ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__a ): for c, pt in enumerate(__a ): lowerCAmelCase_ = __judge_point( __a , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowerCAmelCase_ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowerCAmelCase_ = current_canvas.tolist() return return_canvas def A(__a: bool , __a: list[list[bool]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowerCAmelCase_ = pt if pt: if alive < 2: lowerCAmelCase_ = False elif alive == 2 or alive == 3: lowerCAmelCase_ = True elif alive > 3: lowerCAmelCase_ = False else: if alive == 3: lowerCAmelCase_ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase__ = int(sys.argv[1]) # main working structure of this module. lowerCamelCase__ = create_canvas(canvas_size) seed(c) lowerCamelCase__ , lowerCamelCase__ = plt.subplots() fig.show() lowerCamelCase__ = ListedColormap(['''w''', '''k''']) try: while True: lowerCamelCase__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
226
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor snake_case__ : Any = logging.get_logger(__name__) class snake_case ( _snake_case ): '''simple docstring''' def __init__( self : int , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[Any] ) ->None: '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
392
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case__ : Optional[int] = ['''text''', '''image''', '''audio'''] def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): inputs.append(create_inputs(_lowerCAmelCase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = [] for output in outputs: if isinstance(_lowerCAmelCase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class snake_case : '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) ->List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) UpperCAmelCase__ = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase ( self : List[Any] ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase__ = [outputs] self.assertListEqual(output_types(lowerCamelCase_ ) , self.tool.outputs ) def UpperCAmelCase ( self : Tuple ) ->Any: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def UpperCAmelCase ( self : List[Any] ) ->str: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ = [outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs ): UpperCAmelCase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase ( self : List[str] ) ->str: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = [] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ = [outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) )
392
1
def lowerCAmelCase__ ( lowerCamelCase_ : float): '''simple docstring''' return 10 - x * x def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if equation(lowerCamelCase_) * equation(lowerCamelCase_) >= 0: raise ValueError('''Wrong space!''') lowerCAmelCase__ : Optional[int] = a while (b - a) >= 0.01: # Find middle point lowerCAmelCase__ : Optional[Any] = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase_) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase_) * equation(lowerCamelCase_) < 0: lowerCAmelCase__ : List[Any] = c else: lowerCAmelCase__ : Dict = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
713
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case : Optional[int] =get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: __snake_case : Optional[Any] =json.load(f) @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" return FSMTTokenizer.from_pretrained(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = f"""facebook/wmt19-{pair}""" lowerCAmelCase__ : int = self.get_tokenizer(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.get_model(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = bleu_data[pair]['''src'''] lowerCAmelCase__ : List[Any] = bleu_data[pair]['''tgt'''] lowerCAmelCase__ : List[str] = tokenizer(__lowerCamelCase ,return_tensors='''pt''' ,truncation=__lowerCamelCase ,padding='''longest''' ).to(__lowerCamelCase ) lowerCAmelCase__ : List[str] = model.generate( input_ids=batch.input_ids ,num_beams=8 ,) lowerCAmelCase__ : Tuple = tokenizer.batch_decode( __lowerCamelCase ,skip_special_tokens=__lowerCamelCase ,clean_up_tokenization_spaces=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = calculate_bleu(__lowerCamelCase ,__lowerCamelCase ) print(__lowerCamelCase ) self.assertGreaterEqual(scores['''bleu'''] ,__lowerCamelCase )
90
0
def lowerCAmelCase_ ( _lowercase : Any) -> Tuple: """simple docstring""" a__ : List[str] = 1 a__ : str = 2 while i * i <= n: a__ : List[str] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" a__ : int = 1 a__ : Union[str, Any] = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase) > 500: break return t_num if __name__ == "__main__": print(solution())
136
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( __snake_case , unittest.TestCase ): a: Tuple = KandinskyInpaintPipeline a: Union[str, Any] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] a: Any = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] a: str = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a: Dict = False @property def _A ( self: Dict ): return 32 @property def _A ( self: Any ): return 32 @property def _A ( self: Optional[Any] ): return self.time_input_dim @property def _A ( self: Tuple ): return self.time_input_dim * 4 @property def _A ( self: Dict ): return 100 @property def _A ( self: Optional[int] ): _a = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _A ( self: str ): torch.manual_seed(0 ) _a = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _a = MultilingualCLIP(__UpperCamelCase ) _a = text_encoder.eval() return text_encoder @property def _A ( self: Tuple ): torch.manual_seed(0 ) _a = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a = UNetaDConditionModel(**__UpperCamelCase ) return model @property def _A ( self: str ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A ( self: Dict ): torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self: Dict ): _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_unet _a = self.dummy_movq _a = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCamelCase , ) _a = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _A ( self: Dict , __UpperCamelCase: List[Any] , __UpperCamelCase: List[Any]=0 ): _a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCamelCase ) # create init_image _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask _a = np.ones((64, 64) , dtype=np.floataa ) _a = 0 if str(__UpperCamelCase ).startswith('''mps''' ): _a = torch.manual_seed(__UpperCamelCase ) else: _a = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _a = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _A ( self: int ): _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**__UpperCamelCase ) _a = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) _a = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _A ( self: Tuple ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _A ( self: int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self: int ): _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a = np.ones((768, 768) , dtype=np.floataa ) _a = 0 _a = '''a hat''' _a = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) _a = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a = pipeline( __UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) _a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
487
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = original_name.split('''.''' )[0] __A = key.split('''.''' ) __A = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) __A = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) __A = orig_block_num - offset __A = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = OrderedDict() __A , __A = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): __A = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 __A = key[: key.find('''proj''' )] __A = key.replace(__UpperCamelCase , f'patch_embeddings.{total_embed_found}.' ) __A = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: __A = '''poolformer.encoder.''' + key if "mlp.fc1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: __A = key.replace('''head''' , '''classifier''' ) __A = value return new_state_dict def lowerCAmelCase ( ): """simple docstring""" __A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __A = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = PoolFormerConfig() # set attributes based on model_name __A = '''huggingface/label-files''' __A = model_name[-3:] __A = 1_0_0_0 __A = '''imagenet-1k-id2label.json''' __A = (1, 1_0_0_0) # set config attributes __A = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __A = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} if size == "s12": __A = [2, 2, 6, 2] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 0.9 elif size == "s24": __A = [4, 4, 1_2, 4] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 0.9 elif size == "s36": __A = [6, 6, 1_8, 6] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 1e-6 __A = 0.9 elif size == "m36": __A = [6, 6, 1_8, 6] __A = [9_6, 1_9_2, 3_8_4, 7_6_8] __A = 4.0 __A = 1e-6 __A = 0.95 elif size == "m48": __A = [8, 8, 2_4, 8] __A = [9_6, 1_9_2, 3_8_4, 7_6_8] __A = 4.0 __A = 1e-6 __A = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor __A = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image __A = prepare_img() __A = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict __A = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) # rename keys __A = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict __A = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor __A = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) __A = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass __A = model(__UpperCamelCase ) __A = outputs.logits # define expected logit slices for different models if size == "s12": __A = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __A = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __A = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __A = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __A = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowercase_ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
215
0
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowercase__ : str = datasets.logging.get_logger(__name__) lowercase__ : List[Any] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowercase__ : Optional[Any] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowercase__ : str = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __lowercase ( _a , _a , _a=False , _a=False , _a=True , _a=False , _a="dummy_doc" ): snake_case_ : Union[str, Any] = {doc: key_lines} snake_case_ : int = {doc: sys_lines} snake_case_ : Optional[Any] = {} snake_case_ : Dict = 0 snake_case_ : List[Any] = 0 snake_case_ : str = 0 snake_case_ : Dict = 0 snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 snake_case_, snake_case_ : Dict = reader.get_doc_mentions(_a , key_doc_lines[doc] , _a ) key_singletons_num += singletons_num if NP_only or min_span: snake_case_ : List[Any] = reader.set_annotated_parse_trees(_a , key_doc_lines[doc] , _a , _a ) snake_case_, snake_case_ : str = reader.get_doc_mentions(_a , sys_doc_lines[doc] , _a ) sys_singletons_num += singletons_num if NP_only or min_span: snake_case_ : Optional[Any] = reader.set_annotated_parse_trees(_a , key_doc_lines[doc] , _a , _a ) if remove_nested: snake_case_, snake_case_ : Union[str, Any] = reader.remove_nested_coref_mentions(_a , _a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters snake_case_, snake_case_ : Optional[int] = reader.remove_nested_coref_mentions(_a , _a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters snake_case_ : List[Any] = reader.get_mention_assignments(_a , _a ) snake_case_ : Optional[Any] = reader.get_mention_assignments(_a , _a ) snake_case_ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def __lowercase ( _a , _a , _a , _a , _a , _a , _a ): snake_case_ : str = get_coref_infos(_a , _a , _a , _a , _a , _a ) snake_case_ : Any = {} snake_case_ : List[str] = 0 snake_case_ : Any = 0 for name, metric in metrics: snake_case_, snake_case_, snake_case_ : Union[str, Any] = evaluator.evaluate_documents(_a , _a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) , f"Recall: {recall * 100:.2f}" , f" Precision: {precision * 100:.2f}" , f" F1: {fa * 100:.2f}" , ) if conll_subparts_num == 3: snake_case_ : Optional[Any] = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def __lowercase ( _a ): snake_case_ : Any = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: snake_case_ : List[str] = line.split()[5] if not parse_col == "-": snake_case_ : Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def _snake_case ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def _snake_case ( self : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[Any]=True , lowercase_ : Tuple=False , lowercase_ : Any=False , lowercase_ : List[Any]=False ): snake_case_ : Optional[int] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: snake_case_ : str = util.check_gold_parse_annotation(lowercase_ ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" snake_case_ : Optional[Any] = evaluate( key_lines=lowercase_ , sys_lines=lowercase_ , metrics=lowercase_ , NP_only=lowercase_ , remove_nested=lowercase_ , keep_singletons=lowercase_ , min_span=lowercase_ , ) return score
123
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase__ : str = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def __lowercase ( _a , _a ): inspect_dataset(_a , _a ) snake_case_ : Optional[int] = path + '''.py''' assert script_name in os.listdir(_a ) assert "__pycache__" not in os.listdir(_a ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def __lowercase ( _a , _a ): inspect_metric(_a , _a ) snake_case_ : List[Any] = path + '''.py''' assert script_name in os.listdir(_a ) assert "__pycache__" not in os.listdir(_a ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __lowercase ( _a , _a , _a ): snake_case_ : List[str] = get_dataset_config_info(_a , config_name=_a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __lowercase ( _a , _a , _a ): with pytest.raises(_a ): get_dataset_config_info(_a , config_name=_a ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def __lowercase ( _a , _a ): snake_case_ : str = get_dataset_config_names(_a ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def __lowercase ( _a , _a , _a ): snake_case_ : Any = get_dataset_infos(_a ) assert list(infos.keys() ) == expected_configs snake_case_ : Tuple = expected_configs[0] assert expected_config in infos snake_case_ : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __lowercase ( _a , _a , _a ): snake_case_ : Any = get_dataset_infos(_a ) assert expected_config in infos snake_case_ : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __lowercase ( _a , _a , _a ): with pytest.raises(_a ): get_dataset_split_names(_a , config_name=_a )
123
1
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _UpperCamelCase = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') _UpperCamelCase = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _UpperCamelCase = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _UpperCamelCase = sorted(arg_to_scheduler.keys()) _UpperCamelCase = '{' + ', '.join(arg_to_scheduler_choices) + '}' class SCREAMING_SNAKE_CASE_ ( pl.LightningModule ): """simple docstring""" def __init__( self :str , __lowercase :argparse.Namespace , __lowercase :Optional[int]=None , __lowercase :str="base" , __lowercase :Optional[int]=None , __lowercase :List[str]=None , __lowercase :Tuple=None , **__lowercase :Optional[int] , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__lowercase ) __lowerCamelCase : List[Any] =0 __lowerCamelCase : List[str] =Path(self.hparams.output_dir ) __lowerCamelCase : Optional[int] =self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __lowerCamelCase : str =AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__lowercase , **__lowercase , ) else: __lowerCamelCase : PretrainedConfig =config __lowerCamelCase : Union[str, Any] =('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , __lowercase , __lowercase ): assert hasattr(self.config , __lowercase ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __lowercase , getattr(self.hparams , __lowercase ) ) if tokenizer is None: __lowerCamelCase : List[str] =AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__lowercase , ) else: __lowerCamelCase : PreTrainedTokenizer =tokenizer __lowerCamelCase : str =MODEL_MODES[mode] if model is None: __lowerCamelCase : List[Any] =self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__lowercase , ) else: __lowerCamelCase : Union[str, Any] =model def __lowercase ( self :List[str] , *__lowercase :Optional[int] , **__lowercase :Optional[Any] ): __lowerCamelCase : str =self.model_type.from_pretrained(*__lowercase , **__lowercase ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : List[Any] =arg_to_scheduler[self.hparams.lr_scheduler] __lowerCamelCase : str =get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __lowerCamelCase : Union[str, Any] ={'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def __lowercase ( self :Any ): __lowerCamelCase : List[str] =self.model __lowerCamelCase : int =['''bias''', '''LayerNorm.weight'''] __lowerCamelCase : Optional[Any] =[ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: __lowerCamelCase : Optional[int] =Adafactor( __lowercase , lr=self.hparams.learning_rate , scale_parameter=__lowercase , relative_step=__lowercase ) else: __lowerCamelCase : int =AdamW( __lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __lowerCamelCase : int =optimizer __lowerCamelCase : str =self.get_lr_scheduler() return [optimizer], [scheduler] def __lowercase ( self :List[Any] , __lowercase :Any , __lowercase :Optional[int] ): return self.validation_step(__lowercase , __lowercase ) def __lowercase ( self :Optional[Any] , __lowercase :str ): return self.validation_end(__lowercase ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : str =max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __lowerCamelCase : Optional[int] =self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __lowercase ( self :Tuple , __lowercase :Dict ): if stage == "test": __lowerCamelCase : List[Any] =len(self.test_dataloader().dataset ) else: __lowerCamelCase : Optional[int] =self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__lowercase ) __lowerCamelCase : str =len(self.train_dataloader().dataset ) def __lowercase ( self :int , __lowercase :str , __lowercase :int , __lowercase :bool = False ): raise NotImplementedError('''You must implement this for your task''' ) def __lowercase ( self :Tuple ): return self.train_loader def __lowercase ( self :Tuple ): return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__lowercase ) def __lowercase ( self :List[Any] ): return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__lowercase ) def __lowercase ( self :List[str] , __lowercase :Union[str, Any] ): return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( __lowercase , list(filter(__lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __lowercase ( self :int , __lowercase :Dict[str, Any] ): __lowerCamelCase : int =self.output_dir.joinpath('''best_tfmr''' ) __lowerCamelCase : List[str] =self.step_count self.model.save_pretrained(__lowercase ) self.tokenizer.save_pretrained(__lowercase ) @staticmethod def __lowercase ( __lowercase :int , __lowercase :Optional[int] ): parser.add_argument( '''--model_name_or_path''' , default=__lowercase , type=__lowercase , required=__lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=__lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=__lowercase , type=__lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(__lowercase ).parent / '''test_run''' / '''cache''' ) , type=__lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=__lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=__lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=__lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=__lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5e-5 , type=__lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=__lowercase , metavar=__lowercase , type=__lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=__lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=__lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=__lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=__lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=__lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class SCREAMING_SNAKE_CASE_ ( pl.Callback ): """simple docstring""" def __lowercase ( self :Dict , __lowercase :Union[str, Any] , __lowercase :Union[str, Any] ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class SCREAMING_SNAKE_CASE_ ( pl.Callback ): """simple docstring""" def __lowercase ( self :Any , __lowercase :int , __lowercase :List[Any] ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__lowercase ) class SCREAMING_SNAKE_CASE_ ( pl.Callback ): """simple docstring""" def __lowercase ( self :Any , __lowercase :Any , __lowercase :Optional[int] ): __lowerCamelCase : Union[str, Any] =trainer.lr_schedulers[0]['''scheduler'''] __lowerCamelCase : List[str] ={f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__lowercase ) def __lowercase ( self :List[Any] , __lowercase :pl.Trainer , __lowercase :pl.LightningModule ): rank_zero_info('''***** Validation results *****''' ) __lowerCamelCase : int =trainer.callback_metrics # Log results for key in sorted(__lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__lowercase , str(metrics[key] ) ) ) def __lowercase ( self :Optional[int] , __lowercase :pl.Trainer , __lowercase :pl.LightningModule ): rank_zero_info('''***** Test results *****''' ) __lowerCamelCase : Dict =trainer.callback_metrics # Log and save results to file __lowerCamelCase : str =os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(__lowercase , '''w''' ) as writer: for key in sorted(__lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(__lowercase , str(metrics[key] ) ) ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' parser.add_argument( '''--output_dir''' , default=str(Path(SCREAMING_SNAKE_CASE ).parent / '''test_run''' / '''model_checkpoints''' ) , type=SCREAMING_SNAKE_CASE , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=SCREAMING_SNAKE_CASE , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=SCREAMING_SNAKE_CASE ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=SCREAMING_SNAKE_CASE , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=SCREAMING_SNAKE_CASE , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(SCREAMING_SNAKE_CASE ).parent / '''test_run''' / '''dummy-train-data''' ) , type=SCREAMING_SNAKE_CASE , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : BaseTransformer , SCREAMING_SNAKE_CASE : argparse.Namespace , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : int=[] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : str=None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' pl.seed_everything(args.seed ) # init model __lowerCamelCase : str =Path(model.hparams.output_dir ) odir.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) # add custom checkpoints if checkpoint_callback is None: __lowerCamelCase : Optional[Any] =pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(SCREAMING_SNAKE_CASE ) if logging_callback is None: __lowerCamelCase : int =LoggingCallback() __lowerCamelCase : Any ={} if args.fpaa: __lowerCamelCase : Any =16 if args.gpus > 1: __lowerCamelCase : Any ='''auto''' __lowerCamelCase : List[Any] ='''ddp''' __lowerCamelCase : int =args.accumulate_grad_batches __lowerCamelCase : List[Any] =None __lowerCamelCase : int ='''auto''' __lowerCamelCase : Optional[int] =pl.Trainer.from_argparse_args( SCREAMING_SNAKE_CASE , weights_summary=SCREAMING_SNAKE_CASE , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=SCREAMING_SNAKE_CASE , val_check_interval=1 , num_sanity_val_steps=2 , **SCREAMING_SNAKE_CASE , ) if args.do_train: trainer.fit(SCREAMING_SNAKE_CASE ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
363
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _UpperCamelCase = False try: _UpperCamelCase = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :str = None , __lowercase :list = [] ): __lowerCamelCase : Any =0 __lowerCamelCase : List[str] =choices __lowerCamelCase : int =prompt if sys.platform == "win32": __lowerCamelCase : Dict ='''*''' else: __lowerCamelCase : Union[str, Any] ='''➔ ''' def __lowercase ( self :Tuple , __lowercase :Any , __lowercase :str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , __lowercase ) else: forceWrite(self.choices[index] , __lowercase ) def __lowercase ( self :Tuple , __lowercase :int ): if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(__lowercase ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def __lowercase ( self :Tuple , __lowercase :Direction , __lowercase :int = 1 ): __lowerCamelCase : List[str] =self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__lowercase ) move_cursor(__lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def __lowercase ( self :Union[str, Any] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def __lowercase ( self :Union[str, Any] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def __lowercase ( self :Any ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def __lowercase ( self :Any ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__lowercase )] for number in range(10 )] ) def __lowercase ( self :Any ): __lowerCamelCase : Tuple =int(chr(self.current_selection ) ) __lowerCamelCase : Dict =index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __lowercase ) else: return else: return def __lowercase ( self :Optional[int] , __lowercase :int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) __lowerCamelCase : Union[str, Any] =default_choice for i in range(len(self.choices ) ): self.print_choice(__lowercase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: __lowerCamelCase : Union[str, Any] =int(builtins.input() ) except ValueError: __lowerCamelCase : Optional[Any] =default_choice else: __lowerCamelCase : Dict =self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(__lowercase , '''\n''' ) return choice
363
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __A ( a_ :List[str] , a_ :Union[str, Any] , a_ :List[Any]) -> Optional[int]: __a : List[Any] = 0 if start < end: __a : List[Any] = randint(a_ , a_) __a : Tuple = a[end] __a : Any = a[pivot] __a : Dict = temp __a , __a : List[str] = _in_place_partition(a_ , a_ , a_) count += _in_place_quick_sort(a_ , a_ , p - 1) count += _in_place_quick_sort(a_ , p + 1 , a_) return count def __A ( a_ :Any , a_ :str , a_ :Dict) -> Tuple: __a : str = 0 __a : int = randint(a_ , a_) __a : Optional[int] = a[end] __a : Any = a[pivot] __a : int = temp __a : Optional[Any] = start - 1 for index in range(a_ , a_): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __a : List[str] = new_pivot_index + 1 __a : Dict = a[new_pivot_index] __a : int = a[index] __a : List[Any] = temp __a : Optional[int] = a[new_pivot_index + 1] __a : str = a[end] __a : List[str] = temp return new_pivot_index + 1, count A = TemporaryFile() A = 100 # 1000 elements are to be sorted A , A = 0, 1 # mean and standard deviation A = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array A = np.load(outfile) A = len(M) - 1 A = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
52
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) # TODO Update this __snake_case : Union[str, Any] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'esm' def __init__( self : Tuple , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Dict=10_26 , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : int=1e-12 , lowerCAmelCase_ : List[Any]="absolute" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , mask_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Any =vocab_size A__ : Optional[Any] =hidden_size A__ : Tuple =num_hidden_layers A__ : List[str] =num_attention_heads A__ : Tuple =intermediate_size A__ : int =hidden_dropout_prob A__ : str =attention_probs_dropout_prob A__ : Tuple =max_position_embeddings A__ : List[Any] =initializer_range A__ : Optional[Any] =layer_norm_eps A__ : Union[str, Any] =position_embedding_type A__ : str =use_cache A__ : Optional[int] =emb_layer_norm_before A__ : Union[str, Any] =token_dropout A__ : Tuple =is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) A__ : Optional[int] =EsmFoldConfig() elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Dict =EsmFoldConfig(**lowerCAmelCase_ ) A__ : Union[str, Any] =esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) A__ : List[str] =get_default_vocab_list() else: A__ : List[str] =vocab_list else: A__ : Union[str, Any] =None A__ : List[Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowerCAmelCase_ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' A__ : Dict =super().to_dict() if isinstance(self.esmfold_config , lowerCAmelCase_ ): A__ : Union[str, Any] =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = None __snake_case = True __snake_case = False __snake_case = False __snake_case = False __snake_case = 0 __snake_case = True __snake_case = False __snake_case = 128 __snake_case = None def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' if self.trunk is None: A__ : int =TrunkConfig() elif isinstance(self.trunk , lowerCAmelCase_ ): A__ : str =TrunkConfig(**self.trunk ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : List[Any] =asdict(self ) A__ : Tuple =self.trunk.to_dict() return output @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = 48 __snake_case = 1024 __snake_case = 128 __snake_case = 32 __snake_case = 32 __snake_case = 32 __snake_case = 0 __snake_case = 0 __snake_case = False __snake_case = 4 __snake_case = 128 __snake_case = None def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' if self.structure_module is None: A__ : Dict =StructureModuleConfig() elif isinstance(self.structure_module , lowerCAmelCase_ ): A__ : Union[str, Any] =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : List[str] =self.sequence_state_dim // self.sequence_head_width A__ : Optional[int] =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' A__ : int =asdict(self ) A__ : Optional[Any] =self.structure_module.to_dict() return output @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = 384 __snake_case = 128 __snake_case = 16 __snake_case = 128 __snake_case = 12 __snake_case = 4 __snake_case = 8 __snake_case = 0.1 __snake_case = 8 __snake_case = 1 __snake_case = 2 __snake_case = 7 __snake_case = 10 __snake_case = 1E-8 __snake_case = 1E5 def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return asdict(self ) def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
215
0
from collections import deque def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = len(_a) SCREAMING_SNAKE_CASE : int = deque() SCREAMING_SNAKE_CASE : List[Any] = [False for _ in range(_a)] SCREAMING_SNAKE_CASE : List[str] = [-1 for _ in range(_a)] SCREAMING_SNAKE_CASE : str = index_of[:] def strong_connect(_a , _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = index # the number when this node is seen SCREAMING_SNAKE_CASE : List[str] = index # lowest rank node reachable from here index += 1 stack.append(_a) SCREAMING_SNAKE_CASE : List[Any] = True for w in g[v]: if index_of[w] == -1: SCREAMING_SNAKE_CASE : Union[str, Any] = strong_connect(_a , _a , _a) SCREAMING_SNAKE_CASE : Any = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: SCREAMING_SNAKE_CASE : List[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = stack.pop() SCREAMING_SNAKE_CASE : str = False component.append(_a) while w != v: SCREAMING_SNAKE_CASE : Dict = stack.pop() SCREAMING_SNAKE_CASE : Tuple = False component.append(_a) components.append(_a) return index SCREAMING_SNAKE_CASE : Any = [] for v in range(_a): if index_of[v] == -1: strong_connect(_a , 0 , _a) return components def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Tuple = [[] for _ in range(_a)] for u, v in edges: g[u].append(_a) return g if __name__ == "__main__": # Test a_ = 7 a_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] a_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] a_ = [(u, v) for u, v in zip(source, target)] a_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
193
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a_ = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def __UpperCamelCase ( self : str ) -> str: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self : Dict , a : List[Any] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a , (str, list, tuple) ): SCREAMING_SNAKE_CASE : Dict = data_files if isinstance(a , a ): SCREAMING_SNAKE_CASE : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE : Optional[Any] = [dl_manager.iter_files(a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE : str = [] for split_name, files in data_files.items(): if isinstance(a , a ): SCREAMING_SNAKE_CASE : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE : Tuple = [dl_manager.iter_files(a ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a ): with open(a , "rb" ) as f: SCREAMING_SNAKE_CASE : Dict = datasets.Features.from_arrow_schema(pq.read_schema(a ) ) break splits.append(datasets.SplitGenerator(name=a , gen_kwargs={"files": files} ) ) return splits def __UpperCamelCase ( self : Dict , a : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : str = table_cast(a , self.info.features.arrow_schema ) return pa_table def __UpperCamelCase ( self : List[str] , a : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a ) ): with open(a , "rb" ) as f: SCREAMING_SNAKE_CASE : Optional[int] = pq.ParquetFile(a ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): SCREAMING_SNAKE_CASE : int = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(a ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(a )}: {e}" ) raise
193
1
'''simple docstring''' import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : Dict = args.log_outputs UpperCAmelCase__ : int = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : int = load_metric('''wer''' ) UpperCAmelCase__ : Optional[int] = load_metric('''cer''' ) # compute metrics UpperCAmelCase__ : int = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) UpperCAmelCase__ : Any = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results UpperCAmelCase__ : int = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCAmelCase__ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCAmelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : Tuple = F"""log_{dataset_id}_predictions.txt""" UpperCAmelCase__ : Dict = F"""log_{dataset_id}_targets.txt""" with open(lowerCAmelCase__ , '''w''' ) as p, open(lowerCAmelCase__ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCAmelCase__ , lowerCAmelCase__ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCAmelCase__ , with_indices=lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[Any] = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : List[Any] = re.sub(lowerCAmelCase__ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Any = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: UpperCAmelCase__ : Optional[Any] = ''' '''.join(text.split(lowerCAmelCase__ ) ) return text def a__ ( lowerCAmelCase__ ) -> str: # load dataset UpperCAmelCase__ : Any = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCAmelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : Any = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : List[str] = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCAmelCase__ ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : Any = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : int = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction['''text'''] UpperCAmelCase__ : Union[str, Any] = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples UpperCAmelCase__ : Optional[int] = dataset.map(lowerCAmelCase__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) UpperCamelCase__ = parser.parse_args() main(args)
75
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def snake_case_ ( ) -> str: lowerCAmelCase_ = torch.nn.Linear(2 , 4) lowerCAmelCase_ = torch.optim.AdamW(model.parameters() , lr=1.0) lowerCAmelCase_ = torch.optim.lr_scheduler.OneCycleLR(__snake_case , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1) lowerCAmelCase_ = DataLoader(TensorDataset(torch.tensor([1, 2, 3]))) lowerCAmelCase_ = DataLoader(TensorDataset(torch.tensor([4, 5, 6]))) return model, optimizer, scheduler, train_dl, valid_dl def snake_case_ ( __snake_case : Any) -> List[Any]: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def snake_case_ ( __snake_case : Optional[int]) -> Any: lowerCAmelCase_ = torch.nn.Linear(*tuple(model.weight.T.shape)).state_dict() model.load_state_dict(__snake_case) class __UpperCAmelCase ( __a ): @require_cuda def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_lowerCamelCase ): lowerCAmelCase_ = Accelerator(cpu=_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ = GradientState() assert state.num_steps == 1 lowerCAmelCase_ = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCAmelCase_ = False assert state.sync_gradients is False GradientState._reset_state() def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCAmelCase_ ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_lowerCamelCase , **_lowerCamelCase ): pass with patch('''torch.cuda.set_device''' , _lowerCamelCase ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): lowerCAmelCase_ = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = get_signature(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCamelCase ) # make sure random weights don't match load_random_weights(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) < 1E-3 ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = get_signature(_lowerCamelCase ) # saving hook def save_config(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(_lowerCamelCase , '''data.json''' ) , '''w''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) # loading hook def load_config(_lowerCamelCase , _lowerCamelCase ): with open(os.path.join(_lowerCamelCase , '''data.json''' ) , '''r''' ) as f: lowerCAmelCase_ = json.load(_lowerCamelCase ) lowerCAmelCase_ = config['''class_name'''] lowerCAmelCase_ = accelerator.register_save_state_pre_hook(_lowerCamelCase ) lowerCAmelCase_ = accelerator.register_load_state_pre_hook(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCamelCase ) # make sure random weights don't match with hooks load_random_weights(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase_ = '''random''' # make sure loaded weights match with hooks accelerator.load_state(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCamelCase ) # make sure random weights don't match with hooks removed load_random_weights(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase_ = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(_lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCamelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() lowerCAmelCase_ = None # This should work lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertTrue(dummy_obj is None ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = Accelerator() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = create_components() lowerCAmelCase_ = [1, 2, 3] # This should work lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_lowerCamelCase , '''_is_accelerate_prepared''' , _lowerCamelCase ) , _lowerCamelCase , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def UpperCAmelCase_ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_lowerCamelCase , device_map={'''''': 0} , ) lowerCAmelCase_ = Accelerator() # This should work lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase ) @slow @require_bnb def UpperCAmelCase_ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ = Accelerator() with init_empty_weights(): lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() lowerCAmelCase_ = infer_auto_device_map(_lowerCamelCase ) lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=_lowerCamelCase , load_in_abit=_lowerCamelCase , llm_inta_enable_fpaa_cpu_offload=_lowerCamelCase ) # This should not work and get value error with self.assertRaises(_lowerCamelCase ): lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase ) @slow @require_bnb @require_multi_gpu def UpperCAmelCase_ ( self ): from transformers import AutoModelForCausalLM lowerCAmelCase_ = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() lowerCAmelCase_ = infer_auto_device_map(_lowerCamelCase ) lowerCAmelCase_ = 1 lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_lowerCamelCase , device_map=_lowerCamelCase , ) lowerCAmelCase_ = Accelerator() # This should not work and get value error with self.assertRaises(_lowerCamelCase ): lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCAmelCase_ ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) lowerCAmelCase_ = infer_auto_device_map(_lowerCamelCase ) lowerCAmelCase_ = 1 lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_lowerCamelCase , device_map=_lowerCamelCase , ) lowerCAmelCase_ = Accelerator() # This should work lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase ) @require_cuda def UpperCAmelCase_ ( self ): lowerCAmelCase_ = torch.nn.Linear(10 , 10 ) lowerCAmelCase_ = torch.optim.SGD(model.parameters() , lr=0.01 ) lowerCAmelCase_ = Accelerator(cpu=_lowerCamelCase ) lowerCAmelCase_ = accelerator.prepare(_lowerCamelCase )
274
0
def UpperCamelCase ( __lowercase : str ): '''simple docstring''' assert column_title.isupper() A_ : Union[str, Any] = 0 A_ : Optional[int] = len(__lowercase ) - 1 A_ : Optional[int] = 0 while index >= 0: A_ : Optional[Any] = (ord(column_title[index] ) - 64) * pow(26 ,__lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
70
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger() def UpperCamelCase ( __lowercase : int ,__lowercase : str ,__lowercase : LevitConfig ,__lowercase : Path ,__lowercase : bool = True ): '''simple docstring''' print(f'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": A_ : int = timm.create_model('levit_128s' ,pretrained=__lowercase ) else: A_ : str = timm.create_model('levit_128' ,pretrained=__lowercase ) if hidden_sizes == 1_92: A_ : List[str] = timm.create_model('levit_192' ,pretrained=__lowercase ) if hidden_sizes == 2_56: A_ : Optional[Any] = timm.create_model('levit_256' ,pretrained=__lowercase ) if hidden_sizes == 3_84: A_ : Tuple = timm.create_model('levit_384' ,pretrained=__lowercase ) from_model.eval() A_ : Dict = LevitForImageClassificationWithTeacher(__lowercase ).eval() A_ : Union[str, Any] = OrderedDict() A_ : Dict = from_model.state_dict() A_ : Tuple = list(from_model.state_dict().keys() ) A_ : str = list(our_model.state_dict().keys() ) print(len(__lowercase ) ,len(__lowercase ) ) for i in range(len(__lowercase ) ): A_ : str = weights[og_keys[i]] our_model.load_state_dict(__lowercase ) A_ : str = torch.randn((2, 3, 2_24, 2_24) ) A_ : str = from_model(__lowercase ) A_ : Optional[Any] = our_model(__lowercase ).logits assert torch.allclose(__lowercase ,__lowercase ), "The model logits don't match the original one." A_ : List[str] = name print(__lowercase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) A_ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'''Pushed {checkpoint_name}''' ) def UpperCamelCase ( __lowercase : Path ,__lowercase : str = None ,__lowercase : bool = True ): '''simple docstring''' A_ : Dict = 'imagenet-1k-id2label.json' A_ : Optional[int] = 10_00 A_ : Optional[int] = (1, num_labels) A_ : int = 'huggingface/label-files' A_ : int = num_labels A_ : Union[str, Any] = json.load(open(hf_hub_download(__lowercase ,__lowercase ,repo_type='dataset' ) ,'r' ) ) A_ : int = {int(__lowercase ): v for k, v in idalabel.items()} A_ : List[str] = idalabel A_ : str = {v: k for k, v in idalabel.items()} A_ : int = partial(__lowercase ,num_labels=__lowercase ,idalabel=__lowercase ,labelaid=__lowercase ) A_ : Any = { 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } A_ : Tuple = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] ,num_attention_heads=[4, 6, 8] ,depths=[2, 3, 4] ,key_dim=[16, 16, 16] ,drop_path_rate=0 ,), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] ,num_attention_heads=[4, 8, 12] ,depths=[4, 4, 4] ,key_dim=[16, 16, 16] ,drop_path_rate=0 ,), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] ,num_attention_heads=[3, 5, 6] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0 ,), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] ,num_attention_heads=[4, 6, 8] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0 ,), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] ,num_attention_heads=[6, 9, 12] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0.1 ,), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] ,__lowercase ,names_to_config[model_name] ,__lowercase ,__lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) return config, expected_shape if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
70
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[Any] = logging.get_logger(__name__) __A : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A : Tuple = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A : Dict = { "gpt-neox-20b": 2_048, } class A_ (a_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self , _A=None , _A=None , _A=None , _A="<|endoftext|>" , _A="<|endoftext|>" , _A="<|endoftext|>" , _A=False , **_A , ): '''simple docstring''' super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _A ) != add_prefix_space: UpperCAmelCase = getattr(_A , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**_A ) UpperCAmelCase = add_prefix_space def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
130
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaControlnetPipeline UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] UpperCAmelCase__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def _lowercase ( self ): '''simple docstring''' return 3_2 @property def _lowercase ( self ): '''simple docstring''' return 3_2 @property def _lowercase ( self ): '''simple docstring''' return self.time_input_dim @property def _lowercase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self ): '''simple docstring''' return 1_0_0 @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase = UNetaDConditionModel(**_A ) return model @property def _lowercase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_A , ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowercase ( self , _A , _A=0 ): '''simple docstring''' UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create hint UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(_A ) else: UpperCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) UpperCAmelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) UpperCAmelCase = torch.from_numpy(np.array(_A ) ).float() / 2_55.0 UpperCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase = '''A robot, 4k photo''' UpperCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase = pipeline( image_embeds=_A , negative_image_embeds=_A , hint=_A , generator=_A , num_inference_steps=1_0_0 , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_A , _A )
130
1
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ ) -> Dict: __lowercase = 0 if start < end: __lowercase = randint(lowercase__ , lowercase__ ) __lowercase = a[end] __lowercase = a[pivot] __lowercase = temp __lowercase , __lowercase = _in_place_partition(lowercase__ , lowercase__ , lowercase__ ) count += _in_place_quick_sort(lowercase__ , lowercase__ , p - 1 ) count += _in_place_quick_sort(lowercase__ , p + 1 , lowercase__ ) return count def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: __lowercase = 0 __lowercase = randint(lowercase__ , lowercase__ ) __lowercase = a[end] __lowercase = a[pivot] __lowercase = temp __lowercase = start - 1 for index in range(lowercase__ , lowercase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __lowercase = new_pivot_index + 1 __lowercase = a[new_pivot_index] __lowercase = a[index] __lowercase = temp __lowercase = a[new_pivot_index + 1] __lowercase = a[end] __lowercase = temp return new_pivot_index + 1, count UpperCamelCase__ = TemporaryFile() UpperCamelCase__ = 1_00 # 1000 elements are to be sorted UpperCamelCase__ , UpperCamelCase__ = 0, 1 # mean and standard deviation UpperCamelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCamelCase__ = np.load(outfile) UpperCamelCase__ = len(M) - 1 UpperCamelCase__ = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
634
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) # TODO Update this UpperCamelCase__ = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : Union[str, Any] = """esm""" def __init__( self : Any , lowercase : Optional[Any]=None , lowercase : Optional[int]=None , lowercase : List[Any]=None , lowercase : Optional[int]=768 , lowercase : str=12 , lowercase : Union[str, Any]=12 , lowercase : Dict=3_072 , lowercase : Optional[int]=0.1 , lowercase : str=0.1 , lowercase : Dict=1_026 , lowercase : Tuple=0.02 , lowercase : str=1E-1_2 , lowercase : Dict="absolute" , lowercase : Optional[Any]=True , lowercase : int=None , lowercase : int=False , lowercase : List[str]=False , lowercase : Tuple=None , lowercase : Tuple=None , **lowercase : Union[str, Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=lowercase , mask_token_id=lowercase , **lowercase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = emb_layer_norm_before __lowercase = token_dropout __lowercase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) __lowercase = EsmFoldConfig() elif isinstance(lowercase , lowercase ): __lowercase = EsmFoldConfig(**lowercase ) __lowercase = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) __lowercase = get_default_vocab_list() else: __lowercase = vocab_list else: __lowercase = None __lowercase = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowercase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def snake_case__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = super().to_dict() if isinstance(self.esmfold_config , lowercase ): __lowercase = self.esmfold_config.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" lowercase__ : str = None lowercase__ : bool = True lowercase__ : bool = False lowercase__ : bool = False lowercase__ : bool = False lowercase__ : float = 0 lowercase__ : bool = True lowercase__ : bool = False lowercase__ : int = 128 lowercase__ : "TrunkConfig" = None def snake_case__ ( self : List[str] ) -> Any: """simple docstring""" if self.trunk is None: __lowercase = TrunkConfig() elif isinstance(self.trunk , lowercase ): __lowercase = TrunkConfig(**self.trunk ) def snake_case__ ( self : Dict ) -> Any: """simple docstring""" __lowercase = asdict(self ) __lowercase = self.trunk.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" lowercase__ : int = 48 lowercase__ : int = 1_024 lowercase__ : int = 128 lowercase__ : int = 32 lowercase__ : int = 32 lowercase__ : int = 32 lowercase__ : float = 0 lowercase__ : float = 0 lowercase__ : bool = False lowercase__ : int = 4 lowercase__ : Optional[int] = 128 lowercase__ : "StructureModuleConfig" = None def snake_case__ ( self : Tuple ) -> str: """simple docstring""" if self.structure_module is None: __lowercase = StructureModuleConfig() elif isinstance(self.structure_module , lowercase ): __lowercase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) __lowercase = self.sequence_state_dim // self.sequence_head_width __lowercase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = asdict(self ) __lowercase = self.structure_module.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" lowercase__ : int = 384 lowercase__ : int = 128 lowercase__ : int = 16 lowercase__ : int = 128 lowercase__ : int = 12 lowercase__ : int = 4 lowercase__ : int = 8 lowercase__ : float = 0.1 lowercase__ : int = 8 lowercase__ : int = 1 lowercase__ : int = 2 lowercase__ : int = 7 lowercase__ : int = 10 lowercase__ : float = 1E-8 lowercase__ : float = 1E5 def snake_case__ ( self : Tuple ) -> List[str]: """simple docstring""" return asdict(self ) def UpperCAmelCase__ ( ) -> List[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
634
1
import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCAmelCase_ ) ) lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , "words.txt" ) lowerCAmelCase__ = "" with open(lowerCAmelCase_ ) as f: lowerCAmelCase__ = f.readline() lowerCAmelCase__ = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] lowerCAmelCase__ = [ word for word in [sum(ord(lowerCAmelCase_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCAmelCase_ ) if __name__ == "__main__": print(solution())
61
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case=True, snake_case="pt"): __snake_case = {'''add_prefix_space''': True} if isinstance(snake_case, snake_case) and not line.startswith(''' ''') else {} __snake_case = padding_side return tokenizer( [line], max_length=snake_case, padding='''max_length''' if pad_to_max_length else None, truncation=snake_case, return_tensors=snake_case, add_special_tokens=snake_case, **snake_case, ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case=None, ): __snake_case = input_ids.ne(snake_case).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str , A_ : Any , A_ : int , A_ : Dict , A_ : Union[str, Any] , A_ : List[Any]="train" , A_ : Dict=None , A_ : str=None , A_ : List[Any]=None , A_ : int="" , ) -> str: super().__init__() __snake_case = Path(A_ ).joinpath(type_path + '''.source''' ) __snake_case = Path(A_ ).joinpath(type_path + '''.target''' ) __snake_case = self.get_char_lens(self.src_file ) __snake_case = max_source_length __snake_case = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __snake_case = tokenizer __snake_case = prefix if n_obs is not None: __snake_case = self.src_lens[:n_obs] __snake_case = src_lang __snake_case = tgt_lang def __len__( self : Optional[int] ) -> Union[str, Any]: return len(self.src_lens ) def __getitem__( self : Any , A_ : Any ) -> Dict[str, torch.Tensor]: __snake_case = index + 1 # linecache starts at 1 __snake_case = self.prefix + linecache.getline(str(self.src_file ) , A_ ).rstrip('''\n''' ) __snake_case = linecache.getline(str(self.tgt_file ) , A_ ).rstrip('''\n''' ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , A_ ) else self.tokenizer ) __snake_case = self.tokenizer.generator if isinstance(self.tokenizer , A_ ) else self.tokenizer __snake_case = encode_line(A_ , A_ , self.max_source_length , '''right''' ) __snake_case = encode_line(A_ , A_ , self.max_target_length , '''right''' ) __snake_case = source_inputs['''input_ids'''].squeeze() __snake_case = target_inputs['''input_ids'''].squeeze() __snake_case = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase ( A_ : Optional[Any] ) -> Any: return [len(A_ ) for x in Path(A_ ).open().readlines()] def lowercase ( self : List[str] , A_ : Any ) -> Dict[str, torch.Tensor]: __snake_case = torch.stack([x['''input_ids'''] for x in batch] ) __snake_case = torch.stack([x['''attention_mask'''] for x in batch] ) __snake_case = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) __snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , A_ ) else self.tokenizer.pad_token_id ) __snake_case = trim_batch(A_ , A_ ) __snake_case , __snake_case = trim_batch(A_ , A_ , attention_mask=A_ ) __snake_case = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __lowercase : Optional[int] = getLogger(__name__) def SCREAMING_SNAKE_CASE ( snake_case): return list(itertools.chain.from_iterable(snake_case)) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = get_git_info() save_json(snake_case, os.path.join(snake_case, '''git_log.json''')) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case=4, **snake_case): with open(snake_case, '''w''') as f: json.dump(snake_case, snake_case, indent=snake_case, **snake_case) def SCREAMING_SNAKE_CASE ( snake_case): with open(snake_case) as f: return json.load(snake_case) def SCREAMING_SNAKE_CASE ( ): __snake_case = git.Repo(search_parent_directories=snake_case) __snake_case = { '''repo_id''': str(snake_case), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return list(map(snake_case, snake_case)) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): with open(snake_case, '''wb''') as f: return pickle.dump(snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case): def remove_articles(snake_case): return re.sub(R'''\b(a|an|the)\b''', ''' ''', snake_case) def white_space_fix(snake_case): return " ".join(text.split()) def remove_punc(snake_case): __snake_case = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case)))) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = normalize_answer(snake_case).split() __snake_case = normalize_answer(snake_case).split() __snake_case = Counter(snake_case) & Counter(snake_case) __snake_case = sum(common.values()) if num_same == 0: return 0 __snake_case = 1.0 * num_same / len(snake_case) __snake_case = 1.0 * num_same / len(snake_case) __snake_case = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return normalize_answer(snake_case) == normalize_answer(snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): assert len(snake_case) == len(snake_case) __snake_case = 0 for hypo, pred in zip(snake_case, snake_case): em += exact_match_score(snake_case, snake_case) if len(snake_case) > 0: em /= len(snake_case) return {"em": em} def SCREAMING_SNAKE_CASE ( snake_case): return model_prefix.startswith('''rag''') def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): __snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __snake_case = '''dropout_rate''' for p in extra_params: if getattr(snake_case, snake_case, snake_case): if not hasattr(snake_case, snake_case) and not hasattr(snake_case, equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(snake_case)) delattr(snake_case, snake_case) continue __snake_case = p if hasattr(snake_case, snake_case) else equivalent_param[p] setattr(snake_case, snake_case, getattr(snake_case, snake_case)) delattr(snake_case, snake_case) return hparams, config
564
0
# Lint as: python3 import itertools import os import re _UpperCamelCase = re.compile(r"([A-Z]+)([A-Z][a-z])") _UpperCamelCase = re.compile(r"([a-z\d])([A-Z])") _UpperCamelCase = re.compile(r"(?<!_)_(?!_)") _UpperCamelCase = re.compile(r"(_{2,})") _UpperCamelCase = r"^\w+(\.\w+)*$" _UpperCamelCase = r"<>:/\|?*" def _lowercase ( lowercase__ ): __lowerCAmelCase : int = _uppercase_uppercase_re.sub(r'''\1_\2''' , lowercase__ ) __lowerCAmelCase : List[Any] = _lowercase_uppercase_re.sub(r'''\1_\2''' , lowercase__ ) return name.lower() def _lowercase ( lowercase__ ): __lowerCAmelCase : str = _single_underscore_re.split(lowercase__ ) __lowerCAmelCase : str = [_multiple_underscores_re.split(lowercase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowercase__ ) if n != '''''' ) def _lowercase ( lowercase__ ): if os.path.basename(lowercase__ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(lowercase__ ) def _lowercase ( lowercase__ , lowercase__ ): if os.path.basename(lowercase__ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , lowercase__ ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(lowercase__ )}-{split}""" def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): __lowerCAmelCase : Tuple = filename_prefix_for_split(lowercase__ , lowercase__ ) if filetype_suffix: prefix += f""".{filetype_suffix}""" __lowerCAmelCase : Any = os.path.join(lowercase__ , lowercase__ ) return f"""{filepath}*""" def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): __lowerCAmelCase : int = filename_prefix_for_split(lowercase__ , lowercase__ ) __lowerCAmelCase : Union[str, Any] = os.path.join(lowercase__ , lowercase__ ) if shard_lengths: __lowerCAmelCase : List[Any] = len(lowercase__ ) __lowerCAmelCase : Dict = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(lowercase__ )] if filetype_suffix: __lowerCAmelCase : List[Any] = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: __lowerCAmelCase : Optional[int] = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
711
from __future__ import annotations from math import ceil, floor, sqrt def _lowercase ( lowercase__ = 2_0_0_0_0_0_0 ): __lowerCAmelCase : list[int] = [0] __lowerCAmelCase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCAmelCase : int = 0 # the area corresponding to the grid that gives the product closest to target __lowerCAmelCase : int = 0 # an estimate of b, using the quadratic formula __lowerCAmelCase : float # the largest integer less than b_estimate __lowerCAmelCase : int # the largest integer less than b_estimate __lowerCAmelCase : int # the triangle number corresponding to b_floor __lowerCAmelCase : int # the triangle number corresponding to b_ceil __lowerCAmelCase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowerCAmelCase : Any = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCAmelCase : List[str] = floor(lowercase__ ) __lowerCAmelCase : str = ceil(lowercase__ ) __lowerCAmelCase : Dict = triangle_numbers[b_floor] __lowerCAmelCase : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCAmelCase : Union[str, Any] = triangle_b_first_guess * triangle_a __lowerCAmelCase : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCAmelCase : Optional[Any] = triangle_b_second_guess * triangle_a __lowerCAmelCase : int = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
583
0
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase ( __A : str=None ) -> Tuple: '''simple docstring''' if subparsers is not None: snake_case : List[str] = subparsers.add_parser("""env""" ) else: snake_case : Tuple = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=A__ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def lowercase ( __A : Union[str, Any] ) -> str: '''simple docstring''' snake_case : Tuple = torch.__version__ snake_case : str = torch.cuda.is_available() snake_case : Optional[int] = is_xpu_available() snake_case : List[str] = is_npu_available() snake_case : Union[str, Any] = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(A__ ): snake_case : Optional[int] = load_config_from_file(args.config_file ).to_dict() snake_case : Any = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f"""{pt_version} ({pt_cuda_available})""", """PyTorch XPU available""": str(A__ ), """PyTorch NPU available""": str(A__ ), """System RAM""": f"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: snake_case : int = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) snake_case : str = ( """\n""".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(A__ , A__ ) else f"""\t{accelerate_config}""" ) print(A__ ) snake_case : int = accelerate_config return info def lowercase ( ) -> int: '''simple docstring''' snake_case : List[str] = env_command_parser() snake_case : List[str] = parser.parse_args() env_command(A__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
36
'''simple docstring''' from __future__ import annotations def __a ( A__ ) -> int: if not nums: return 0 lowerCAmelCase = nums[0] lowerCAmelCase = 0 for num in nums[1:]: lowerCAmelCase , lowerCAmelCase = ( max_excluding + num, max(A__ , A__ ), ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
649
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
108
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=1 / 255 , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_pad def a ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a ( self , snake_case , snake_case=False ): if not batched: snake_case_ = image_inputs[0] if isinstance(snake_case , Image.Image ): snake_case_ , snake_case_ = image.size else: snake_case_ , snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size['shortest_edge'] * h / w ) snake_case_ = self.size['shortest_edge'] elif w > h: snake_case_ = self.size['shortest_edge'] snake_case_ = int(self.size['shortest_edge'] * w / h ) else: snake_case_ = self.size['shortest_edge'] snake_case_ = self.size['shortest_edge'] else: snake_case_ = [] for image in image_inputs: snake_case_ , snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(snake_case , key=lambda snake_case : item[0] )[0] snake_case_ = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = DetrImageProcessor if is_vision_available() else None def a ( self ): snake_case_ = DetrImageProcessingTester(self ) @property def a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a ( self ): snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case , 'rescale_factor' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) def a ( self ): snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case ) snake_case_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case ) def a ( self ): pass def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a ( self ): # prepare image and target snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'image_id': 3_9769, 'annotations': target} # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) ) @slow def a ( self ): # prepare image, target and masks_path snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} snake_case_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , masks_path=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify masks snake_case_ = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) )
108
1
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase_ = 1.0_54_57_18_17e-34 # unit of ℏ : J * s lowercase_ = 3e8 # unit of c : m * s^-1 def lowerCAmelCase (__A , __A , __A): """simple docstring""" if (force, area, distance).count(0) != 1: raise ValueError('''One and only one argument must be 0''') if force < 0: raise ValueError('''Magnitude of force can not be negative''') if distance < 0: raise ValueError('''Distance can not be negative''') if area < 0: raise ValueError('''Area can not be negative''') if force == 0: _a = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _a = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _a = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''') # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' A__ = data A__ = previous A__ = next_node def __str__( self ): '''simple docstring''' return f"""{self.data}""" def lowercase_ ( self ): '''simple docstring''' return self.data def lowercase_ ( self ): '''simple docstring''' return self.next def lowercase_ ( self ): '''simple docstring''' return self.previous class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ ): '''simple docstring''' A__ = head def __iter__( self ): '''simple docstring''' return self def lowercase_ ( self ): '''simple docstring''' if not self.current: raise StopIteration else: A__ = self.current.get_data() A__ = self.current.get_next() return value class lowerCAmelCase__ : def __init__( self ): '''simple docstring''' A__ = None # First node in list A__ = None # Last node in list def __str__( self ): '''simple docstring''' A__ = self.head A__ = [] while current is not None: nodes.append(current.get_data() ) A__ = current.get_next() return " ".join(str(UpperCamelCase__ ) for node in nodes ) def __contains__( self , UpperCamelCase__ ): '''simple docstring''' A__ = self.head while current: if current.get_data() == value: return True A__ = current.get_next() return False def __iter__( self ): '''simple docstring''' return LinkedListIterator(self.head ) def lowercase_ ( self ): '''simple docstring''' if self.head: return self.head.get_data() return None def lowercase_ ( self ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if self.head is None: A__ = node A__ = node else: self.insert_before_node(self.head , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if self.head is None: self.set_head(UpperCamelCase__ ) else: self.insert_after_node(self.tail , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = Node(UpperCamelCase__ ) if self.head is None: self.set_head(UpperCamelCase__ ) else: self.set_tail(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = node A__ = node.previous if node.get_previous() is None: A__ = node_to_insert else: A__ = node_to_insert A__ = node_to_insert def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = node A__ = node.next if node.get_next() is None: A__ = node_to_insert else: A__ = node_to_insert A__ = node_to_insert def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = 1 A__ = Node(UpperCamelCase__ ) A__ = self.head while node: if current_position == position: self.insert_before_node(UpperCamelCase__ , UpperCamelCase__ ) return current_position += 1 A__ = node.next self.insert_after_node(self.tail , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = self.head while node: if node.get_data() == item: return node A__ = node.get_next() raise Exception("Node not found" ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if (node := self.get_node(UpperCamelCase__ )) is not None: if node == self.head: A__ = self.head.get_next() if node == self.tail: A__ = self.tail.get_previous() self.remove_node_pointers(UpperCamelCase__ ) @staticmethod def lowercase_ ( UpperCamelCase__ ): '''simple docstring''' if node.get_next(): A__ = node.previous if node.get_previous(): A__ = node.next A__ = None A__ = None def lowercase_ ( self ): '''simple docstring''' return self.head is None def __a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
337
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = """T5Config""" class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Any ="""mt5""" UpperCAmelCase__ : Any =MTaConfig class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : int ="""mt5""" UpperCAmelCase__ : Optional[Any] =MTaConfig class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Tuple ="""mt5""" UpperCAmelCase__ : str =MTaConfig
446
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =True UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : Tuple ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Any = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE : List[Any] = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxResnetBlockaD( in_channels=UpperCAmelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = resnets SCREAMING_SNAKE_CASE : Optional[int] = attentions if self.add_downsample: SCREAMING_SNAKE_CASE : Tuple = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=True ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE : List[str] = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = attn(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE : int = self.downsamplers_a(UpperCAmelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =True UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : Dict ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxResnetBlockaD( in_channels=UpperCAmelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = resnets if self.add_downsample: SCREAMING_SNAKE_CASE : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any=True ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = () for resnet in self.resnets: SCREAMING_SNAKE_CASE : List[str] = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE : Dict = self.downsamplers_a(UpperCAmelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =True UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : int ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE : Any = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE : Any = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = resnets SCREAMING_SNAKE_CASE : List[Any] = attentions if self.add_upsample: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=True ) ->Tuple: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE : str = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE : Dict = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = attn(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) if self.add_upsample: SCREAMING_SNAKE_CASE : Tuple = self.upsamplers_a(UpperCAmelCase__ ) return hidden_states class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =True UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE : str = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = resnets if self.add_upsample: SCREAMING_SNAKE_CASE : int = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=True ) ->Union[str, Any]: """simple docstring""" for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE : Dict = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE : Any = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE : Optional[int] = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) if self.add_upsample: SCREAMING_SNAKE_CASE : Optional[int] = self.upsamplers_a(UpperCAmelCase__ ) return hidden_states class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE : List[str] = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE : Tuple = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = resnets SCREAMING_SNAKE_CASE : Tuple = attentions def __call__( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str=True ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.resnets[0](UpperCAmelCase__ , UpperCAmelCase__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE : Optional[int] = attn(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) return hidden_states
446
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Dict = AudioLDMPipeline lowerCamelCase_ : List[Any] = TEXT_TO_AUDIO_PARAMS lowerCamelCase_ : Optional[int] = TEXT_TO_AUDIO_BATCH_PARAMS lowerCamelCase_ : Any = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__magic_name__ , ) snake_case_ : Any = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) snake_case_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : Any = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) snake_case_ : str = ClapTextModelWithProjection(__magic_name__ ) snake_case_ : Union[str, Any] = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) snake_case_ : Optional[int] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__magic_name__ , ) snake_case_ : List[str] = SpeechTaHifiGan(__magic_name__ ) snake_case_ : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def lowerCamelCase (self , __magic_name__ , __magic_name__=0 ) -> Optional[Any]: '''simple docstring''' if str(__magic_name__ ).startswith('''mps''' ): snake_case_ : Tuple = torch.manual_seed(__magic_name__ ) else: snake_case_ : Union[str, Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) snake_case_ : Optional[int] = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Dict = self.get_dummy_components() snake_case_ : List[str] = AudioLDMPipeline(**__magic_name__ ) snake_case_ : str = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : int = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Tuple = audioldm_pipe(**__magic_name__ ) snake_case_ : int = output.audios[0] assert audio.ndim == 1 assert len(__magic_name__ ) == 256 snake_case_ : Optional[Any] = audio[:10] snake_case_ : Tuple = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : List[Any] = AudioLDMPipeline(**__magic_name__ ) snake_case_ : int = audioldm_pipe.to(__magic_name__ ) snake_case_ : List[Any] = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : Any = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Optional[Any] = 3 * [inputs['''prompt''']] # forward snake_case_ : str = audioldm_pipe(**__magic_name__ ) snake_case_ : Optional[Any] = output.audios[0] snake_case_ : str = self.get_dummy_inputs(__magic_name__ ) snake_case_ : List[Any] = 3 * [inputs.pop('''prompt''' )] snake_case_ : int = audioldm_pipe.tokenizer( __magic_name__ , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors='''pt''' , ) snake_case_ : Tuple = text_inputs['''input_ids'''].to(__magic_name__ ) snake_case_ : str = audioldm_pipe.text_encoder( __magic_name__ , ) snake_case_ : List[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state snake_case_ : Tuple = F.normalize(__magic_name__ , dim=-1 ) snake_case_ : List[Any] = prompt_embeds # forward snake_case_ : Optional[Any] = audioldm_pipe(**__magic_name__ ) snake_case_ : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.get_dummy_components() snake_case_ : List[Any] = AudioLDMPipeline(**__magic_name__ ) snake_case_ : Union[str, Any] = audioldm_pipe.to(__magic_name__ ) snake_case_ : List[Any] = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Tuple = 3 * ['''this is a negative prompt'''] snake_case_ : Union[str, Any] = negative_prompt snake_case_ : Optional[int] = 3 * [inputs['''prompt''']] # forward snake_case_ : str = audioldm_pipe(**__magic_name__ ) snake_case_ : str = output.audios[0] snake_case_ : List[Any] = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Dict = 3 * [inputs.pop('''prompt''' )] snake_case_ : List[str] = [] for p in [prompt, negative_prompt]: snake_case_ : List[str] = audioldm_pipe.tokenizer( __magic_name__ , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors='''pt''' , ) snake_case_ : Optional[Any] = text_inputs['''input_ids'''].to(__magic_name__ ) snake_case_ : int = audioldm_pipe.text_encoder( __magic_name__ , ) snake_case_ : str = text_embeds.text_embeds # additional L_2 normalization over each hidden-state snake_case_ : List[Any] = F.normalize(__magic_name__ , dim=-1 ) embeds.append(__magic_name__ ) snake_case_ , snake_case_ : Optional[int] = embeds # forward snake_case_ : List[Any] = audioldm_pipe(**__magic_name__ ) snake_case_ : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : int = PNDMScheduler(skip_prk_steps=__magic_name__ ) snake_case_ : Optional[int] = AudioLDMPipeline(**__magic_name__ ) snake_case_ : List[str] = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : int = self.get_dummy_inputs(__magic_name__ ) snake_case_ : Union[str, Any] = '''egg cracking''' snake_case_ : Union[str, Any] = audioldm_pipe(**__magic_name__ , negative_prompt=__magic_name__ ) snake_case_ : Any = output.audios[0] assert audio.ndim == 1 assert len(__magic_name__ ) == 256 snake_case_ : int = audio[:10] snake_case_ : Any = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Dict = self.get_dummy_components() snake_case_ : int = PNDMScheduler(skip_prk_steps=__magic_name__ ) snake_case_ : Dict = AudioLDMPipeline(**__magic_name__ ) snake_case_ : Tuple = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : str = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) snake_case_ : int = audioldm_pipe(__magic_name__ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts snake_case_ : Optional[int] = 2 snake_case_ : Dict = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt snake_case_ : int = 2 snake_case_ : Optional[Any] = audioldm_pipe(__magic_name__ , num_inference_steps=2 , num_waveforms_per_prompt=__magic_name__ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts snake_case_ : Any = 2 snake_case_ : Tuple = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__magic_name__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Dict = AudioLDMPipeline(**__magic_name__ ) snake_case_ : Tuple = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : List[Any] = audioldm_pipe.vocoder.config.sampling_rate snake_case_ : int = self.get_dummy_inputs(__magic_name__ ) snake_case_ : str = audioldm_pipe(audio_length_in_s=0.016 , **__magic_name__ ) snake_case_ : List[str] = output.audios[0] assert audio.ndim == 1 assert len(__magic_name__ ) / vocoder_sampling_rate == 0.016 snake_case_ : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **__magic_name__ ) snake_case_ : Any = output.audios[0] assert audio.ndim == 1 assert len(__magic_name__ ) / vocoder_sampling_rate == 0.032 def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Union[str, Any] = AudioLDMPipeline(**__magic_name__ ) snake_case_ : Optional[Any] = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : int = ['''hey'''] snake_case_ : str = audioldm_pipe(__magic_name__ , num_inference_steps=1 ) snake_case_ : int = output.audios.shape assert audio_shape == (1, 256) snake_case_ : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 snake_case_ : str = SpeechTaHifiGan(__magic_name__ ).to(__magic_name__ ) snake_case_ : Union[str, Any] = audioldm_pipe(__magic_name__ , num_inference_steps=1 ) snake_case_ : Any = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowerCamelCase (self ) -> Dict: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__magic_name__ ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__magic_name__ ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__magic_name__ ) @slow class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase (self , __magic_name__ , __magic_name__="cpu" , __magic_name__=torch.floataa , __magic_name__=0 ) -> Dict: '''simple docstring''' snake_case_ : int = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) snake_case_ : Optional[int] = np.random.RandomState(__magic_name__ ).standard_normal((1, 8, 128, 16) ) snake_case_ : Optional[Any] = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ) snake_case_ : Dict = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) snake_case_ : str = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : Tuple = self.get_inputs(__magic_name__ ) snake_case_ : Optional[Any] = 25 snake_case_ : Any = audioldm_pipe(**__magic_name__ ).audios[0] assert audio.ndim == 1 assert len(__magic_name__ ) == 8_1920 snake_case_ : Union[str, Any] = audio[7_7230:7_7240] snake_case_ : str = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) snake_case_ : Union[str, Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Dict = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) snake_case_ : List[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) snake_case_ : Dict = audioldm_pipe.to(__magic_name__ ) audioldm_pipe.set_progress_bar_config(disable=__magic_name__ ) snake_case_ : List[Any] = self.get_inputs(__magic_name__ ) snake_case_ : List[Any] = audioldm_pipe(**__magic_name__ ).audios[0] assert audio.ndim == 1 assert len(__magic_name__ ) == 8_1920 snake_case_ : Any = audio[2_7780:2_7790] snake_case_ : List[str] = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) snake_case_ : List[str] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
60
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __lowerCAmelCase ( _a ): lowerCamelCase_ : List[Any] = '''efficientnet''' def __init__(self , __magic_name__ = 3 , __magic_name__ = 600 , __magic_name__ = 2.0 , __magic_name__ = 3.1 , __magic_name__ = 8 , __magic_name__ = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ = [] , __magic_name__ = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ = 0.25 , __magic_name__ = "swish" , __magic_name__ = 2560 , __magic_name__ = "mean" , __magic_name__ = 0.02 , __magic_name__ = 0.001 , __magic_name__ = 0.99 , __magic_name__ = 0.5 , __magic_name__ = 0.2 , **__magic_name__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : List[str] = num_channels snake_case_ : Tuple = image_size snake_case_ : Union[str, Any] = width_coefficient snake_case_ : Tuple = depth_coefficient snake_case_ : Optional[Any] = depth_divisor snake_case_ : Optional[int] = kernel_sizes snake_case_ : str = in_channels snake_case_ : Optional[Any] = out_channels snake_case_ : int = depthwise_padding snake_case_ : Optional[Any] = strides snake_case_ : Any = num_block_repeats snake_case_ : Optional[Any] = expand_ratios snake_case_ : Union[str, Any] = squeeze_expansion_ratio snake_case_ : Union[str, Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dim snake_case_ : Any = pooling_type snake_case_ : List[str] = initializer_range snake_case_ : str = batch_norm_eps snake_case_ : Optional[int] = batch_norm_momentum snake_case_ : Optional[Any] = dropout_rate snake_case_ : List[str] = drop_connect_rate snake_case_ : Union[str, Any] = sum(__magic_name__ ) * 4 class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = version.parse('''1.11''' ) @property def lowerCamelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase (self ) -> float: '''simple docstring''' return 1e-5
60
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING snake_case__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Tuple , *lowerCamelCase : Dict , **lowerCamelCase : Dict ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , "decord" ) self.check_model_type(lowerCamelCase ) def _snake_case ( self : int , lowerCamelCase : List[str]=None , lowerCamelCase : Any=None , lowerCamelCase : Any=None ): '''simple docstring''' __lowercase = {} if frame_sampling_rate is not None: __lowercase = frame_sampling_rate if num_frames is not None: __lowercase = num_frames __lowercase = {} if top_k is not None: __lowercase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , lowerCamelCase : Union[str, List[str]] , **lowerCamelCase : Any ): '''simple docstring''' return super().__call__(lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : Any=None , lowerCamelCase : Tuple=1 ): '''simple docstring''' if num_frames is None: __lowercase = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): __lowercase = BytesIO(requests.get(lowerCamelCase ).content ) __lowercase = VideoReader(lowerCamelCase ) videoreader.seek(0 ) __lowercase = 0 __lowercase = num_frames * frame_sampling_rate - 1 __lowercase = np.linspace(lowerCamelCase , lowerCamelCase , num=lowerCamelCase , dtype=np.intaa ) __lowercase = videoreader.get_batch(lowerCamelCase ).asnumpy() __lowercase = list(lowerCamelCase ) __lowercase = self.image_processor(lowerCamelCase , return_tensors=self.framework ) return model_inputs def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = self.model(**lowerCamelCase ) return model_outputs def _snake_case ( self : int , lowerCamelCase : Any , lowerCamelCase : Any=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.softmax(-1 )[0] __lowercase , __lowercase = probs.topk(lowerCamelCase ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ :str = logging.get_logger(__name__) UpperCAmelCase__ :List[str] = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class SCREAMING_SNAKE_CASE ( _lowerCamelCase ): snake_case__ : Any = 'glpn' def __init__( self : int , A__ : Optional[Any]=3 , A__ : Optional[int]=4 , A__ : Tuple=[2, 2, 2, 2] , A__ : Dict=[8, 4, 2, 1] , A__ : int=[32, 64, 160, 256] , A__ : Optional[int]=[7, 3, 3, 3] , A__ : Union[str, Any]=[4, 2, 2, 2] , A__ : Optional[int]=[1, 2, 5, 8] , A__ : List[Any]=[4, 4, 4, 4] , A__ : int="gelu" , A__ : Any=0.0 , A__ : Dict=0.0 , A__ : str=0.02 , A__ : Optional[int]=0.1 , A__ : Optional[int]=1e-6 , A__ : Optional[int]=64 , A__ : Optional[int]=10 , A__ : Dict=-1 , **A__ : Optional[int] , ): """simple docstring""" super().__init__(**a__ ) __lowerCamelCase : Any = num_channels __lowerCamelCase : Any = num_encoder_blocks __lowerCamelCase : Union[str, Any] = depths __lowerCamelCase : Tuple = sr_ratios __lowerCamelCase : Union[str, Any] = hidden_sizes __lowerCamelCase : Dict = patch_sizes __lowerCamelCase : Union[str, Any] = strides __lowerCamelCase : Optional[int] = mlp_ratios __lowerCamelCase : int = num_attention_heads __lowerCamelCase : Dict = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : Optional[Any] = attention_probs_dropout_prob __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Optional[Any] = drop_path_rate __lowerCamelCase : Dict = layer_norm_eps __lowerCamelCase : Optional[int] = decoder_hidden_size __lowerCamelCase : List[str] = max_depth __lowerCamelCase : Tuple = head_in_index
150
class _UpperCAmelCase : def __init__( self , a__ , a__ , a__ ): A_ : str = None A_ : Any = None A_ : Any = graph self._normalize_graph(a__ , a__ ) A_ : Tuple = len(a__ ) A_ : Union[str, Any] = None def _lowerCamelCase ( self , a__ , a__ ): if sources is int: A_ : str = [sources] if sinks is int: A_ : int = [sinks] if len(a__ ) == 0 or len(a__ ) == 0: return A_ : Optional[Any] = sources[0] A_ : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(a__ ) > 1 or len(a__ ) > 1: A_ : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A_ : Any = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A_ : Dict = max_input_flow A_ : List[Any] = 0 A_ : List[str] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A_ : Optional[int] = max_input_flow A_ : Any = size - 1 def _lowerCamelCase ( self ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _lowerCamelCase ( self , a__ ): A_ : Optional[Any] = algorithm(self ) class _UpperCAmelCase : def __init__( self , a__ ): A_ : Optional[Any] = flow_network A_ : Optional[Any] = flow_network.verticesCount A_ : int = flow_network.sourceIndex A_ : Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A_ : Dict = flow_network.graph A_ : List[str] = False def _lowerCamelCase ( self ): if not self.executed: self._algorithm() A_ : List[str] = True def _lowerCamelCase ( self ): pass class _UpperCAmelCase ( _lowerCamelCase ): def __init__( self , a__ ): super().__init__(a__ ) # use this to save your result A_ : Optional[Any] = -1 def _lowerCamelCase ( self ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _UpperCAmelCase ( _lowerCamelCase ): def __init__( self , a__ ): super().__init__(a__ ) A_ : str = [[0] * self.verticies_count for i in range(self.verticies_count )] A_ : Optional[int] = [0] * self.verticies_count A_ : Union[str, Any] = [0] * self.verticies_count def _lowerCamelCase ( self ): A_ : Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A_ : Optional[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A_ : str = 0 while i < len(a__ ): A_ : str = vertices_list[i] A_ : Optional[Any] = self.heights[vertex_index] self.process_vertex(a__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(a__ ) ) A_ : str = 0 else: i += 1 A_ : int = sum(self.preflow[self.source_index] ) def _lowerCamelCase ( self , a__ ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(a__ , a__ ) self.relabel(a__ ) def _lowerCamelCase ( self , a__ , a__ ): A_ : Dict = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _lowerCamelCase ( self , a__ ): A_ : Union[str, Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A_ : List[str] = self.heights[to_index] if min_height is not None: A_ : List[str] = min_height + 1 if __name__ == "__main__": _lowerCAmelCase = [0] _lowerCAmelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _lowerCAmelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _lowerCAmelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _lowerCAmelCase = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
569
0
'''simple docstring''' import unittest from knapsack import knapsack as k class snake_case__ ( unittest.TestCase): def A ( self : str ) -> Tuple: UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = [0] UpperCAmelCase_ : Optional[Any] = [0] UpperCAmelCase_ : List[Any] = len(_A ) self.assertEqual(k.knapsack(_A , _A , _A , _A ) , 0 ) UpperCAmelCase_ : Optional[int] = [60] UpperCAmelCase_ : List[str] = [10] UpperCAmelCase_ : Dict = len(_A ) self.assertEqual(k.knapsack(_A , _A , _A , _A ) , 0 ) def A ( self : int ) -> Dict: UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Tuple = [1, 2, 3] UpperCAmelCase_ : Dict = [3, 2, 1] UpperCAmelCase_ : Union[str, Any] = len(_A ) self.assertEqual(k.knapsack(_A , _A , _A , _A ) , 5 ) def A ( self : str ) -> int: UpperCAmelCase_ : int = 50 UpperCAmelCase_ : Optional[Any] = [60, 1_00, 1_20] UpperCAmelCase_ : int = [10, 20, 30] UpperCAmelCase_ : Optional[Any] = len(_A ) self.assertEqual(k.knapsack(_A , _A , _A , _A ) , 2_20 ) if __name__ == "__main__": unittest.main()
216
'''simple docstring''' def __UpperCAmelCase ( A : List[str] , A : Tuple , A : Union[str, Any]=False ) -> Tuple: if isinstance(A , A ) and isinstance(A , A ): UpperCAmelCase_ : Any = len(set_a.intersection(A ) ) if alternative_union: UpperCAmelCase_ : Optional[Any] = len(A ) + len(A ) else: UpperCAmelCase_ : Dict = len(set_a.union(A ) ) return intersection / union if isinstance(A , (list, tuple) ) and isinstance(A , (list, tuple) ): UpperCAmelCase_ : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase_ : Tuple = len(A ) + len(A ) return len(A ) / union else: UpperCAmelCase_ : Optional[Any] = set_a + [element for element in set_b if element not in set_a] return len(A ) / len(A ) return len(A ) / len(A ) return None if __name__ == "__main__": _UpperCamelCase : Any = {'a', 'b', 'c', 'd', 'e'} _UpperCamelCase : Optional[int] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
216
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __SCREAMING_SNAKE_CASE: _UpperCAmelCase = None def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: snake_case__ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] ) -> List[str]: snake_case__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = os.path.join(UpperCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase ) snake_case__ = self.feature_extraction_class.from_json_file(UpperCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: snake_case__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = feat_extract_first.save_pretrained(UpperCamelCase )[0] check_json_file_has_correct_format(UpperCamelCase ) snake_case__ = self.feature_extraction_class.from_pretrained(UpperCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase )
328
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = PhobertTokenizer _UpperCAmelCase = False def lowerCAmelCase_ ( self: Dict ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] snake_case__ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) snake_case__ = ['#version: 0.2', 'l à</w>'] snake_case__ = {'unk_token': '<unk>'} snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def lowerCAmelCase_ ( self: str , **UpperCamelCase: Dict ) -> int: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: Any ) -> Optional[int]: snake_case__ = 'Tôi là VinAI Research' snake_case__ = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def lowerCAmelCase_ ( self: Tuple ) -> Tuple: snake_case__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ = 'Tôi là VinAI Research' snake_case__ = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() snake_case__ = tokenizer.tokenize(UpperCamelCase ) print(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = tokens + [tokenizer.unk_token] snake_case__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase )
328
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any ): """simple docstring""" _snake_case : int = Mock() _snake_case : int = conn, Mock() _snake_case : Any = iter([1, None] ) _snake_case : Any = lambda snake_case__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
"""simple docstring""" import math def _UpperCamelCase ( UpperCamelCase = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Any = sum(i * i for i in range(1 , n + 1 ) ) __UpperCAmelCase : Union[str, Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
77
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _A ): """simple docstring""" A = '''EncodecFeatureExtractor''' A = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = self.feature_extractor lowerCAmelCase__ :Tuple = False def snake_case_ ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=_lowerCAmelCase , language=_lowerCAmelCase , no_timestamps=_lowerCAmelCase ) def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase__ :Optional[Any] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("sampling_rate" , _lowerCAmelCase ) lowerCAmelCase__ :Dict = kwargs.pop("text" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :Optional[int] = args[0] lowerCAmelCase__ :Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCAmelCase__ :Any = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if audio is not None: lowerCAmelCase__ :Tuple = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase__ :List[str] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCAmelCase__ :int = audio_inputs["padding_mask"] return inputs def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("padding_mask" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :int = args[0] lowerCAmelCase__ :List[str] = args[1:] if audio_values is not None: return self._decode_audio(_lowerCAmelCase , padding_mask=_lowerCAmelCase ) else: return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = to_numpy(_lowerCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :Optional[Any] = audio_values.shape if padding_mask is None: return list(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = to_numpy(_lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase__ :str = seq_len - padding_mask.shape[-1] lowerCAmelCase__ :Union[str, Any] = 1 - self.feature_extractor.padding_value lowerCAmelCase__ :Optional[Any] = np.pad(_lowerCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audio_values.tolist() for i in range(_lowerCAmelCase ): lowerCAmelCase__ :str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase__ :List[Any] = sliced_audio.reshape(_lowerCAmelCase , -1 ) return audio_values
145
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCamelCase__ : str = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCamelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
708
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase__ : int = Lock() def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE_ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr for i in range(1 , len(_SCREAMING_SNAKE_CASE ) - 1 ): SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=( len(_SCREAMING_SNAKE_CASE ) - 1, arr[len(_SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE_ = result_pipe[p][0].recv() process_array_[p].join() return arr def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = odd_even_transposition(_SCREAMING_SNAKE_CASE ) print('Sorted List\n' ) print(*_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
620
0
"""simple docstring""" def lowerCAmelCase__ ( __magic_name__ ) ->list: if n_term == "": return [] __lowercase = [] for temp in range(int(__magic_name__ ) ): series.append(F'''1/{temp + 1}''' if series else "1" ) return series if __name__ == "__main__": _lowercase = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
118
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _lowercase = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _lowercase = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def lowerCAmelCase__ ( __magic_name__ ) ->Optional[int]: __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char __lowercase = set(__magic_name__ ) return pairs class __a ( __a ): '''simple docstring''' _lowerCamelCase : int = VOCAB_FILES_NAMES _lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , **_lowerCamelCase , ) -> Tuple: '''simple docstring''' super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) __lowercase = vocab_file __lowercase = merges_file __lowercase = {} __lowercase = 0 __lowercase = 1 __lowercase = 2 __lowercase = 3 self.add_from_file(_lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} with open(_lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[:-1] __lowercase = [tuple(merge.split()[:-1] ) for merge in merges] __lowercase = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __lowercase = {} def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(_lowerCamelCase ) __lowercase = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __lowercase = get_pairs(_lowerCamelCase ) if not pairs: return token while True: __lowercase = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(_lowerCamelCase ): try: __lowercase = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(_lowerCamelCase ) __lowercase = new_word if len(_lowerCamelCase ) == 1: break else: __lowercase = get_pairs(_lowerCamelCase ) __lowercase = "@@ ".join(_lowerCamelCase ) __lowercase = word[:-4] __lowercase = word return word def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> str: '''simple docstring''' __lowercase = [] __lowercase = re.findall(R"\S+\n?" , _lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCamelCase ).split(" " ) ) ) return split_tokens def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' return self.decoder.get(_lowerCamelCase , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = " ".join(_lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowercase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.merges_file , _lowerCamelCase ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Dict: '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): try: with open(_lowerCamelCase , "r" , encoding="utf-8" ) as fd: self.add_from_file(_lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return __lowercase = f.readlines() for lineTmp in lines: __lowercase = lineTmp.strip() __lowercase = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) __lowercase = line[:idx] __lowercase = len(self.encoder )
118
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : str =params UpperCamelCase__ : Dict =np.array(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[int] =np.array([len(__SCREAMING_SNAKE_CASE) for t in data]) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self) -> Tuple: """simple docstring""" return len(self.lengths) def UpperCAmelCase ( self) -> Dict: """simple docstring""" assert len(self.token_ids) == len(self.lengths) assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths))) def UpperCAmelCase ( self) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] =self.params.max_model_input_size UpperCamelCase__ : List[Any] =self.lengths > max_len logger.info(F'''Splitting {sum(__SCREAMING_SNAKE_CASE)} too long sequences.''') def divide_chunks(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): return [l[i : i + n] for i in range(0 , len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE)] UpperCamelCase__ : str =[] UpperCamelCase__ : List[Any] =[] if self.params.mlm: UpperCamelCase__ , UpperCamelCase__ : int =self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: UpperCamelCase__ , UpperCamelCase__ : Optional[int] =self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_) new_lengths.append(len_) else: UpperCamelCase__ : List[Any] =[] for sub_s in divide_chunks(seq_ , max_len - 2): if sub_s[0] != cls_id: UpperCamelCase__ : List[str] =np.insert(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE) if sub_s[-1] != sep_id: UpperCamelCase__ : int =np.insert(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) assert len(__SCREAMING_SNAKE_CASE) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__SCREAMING_SNAKE_CASE) new_tok_ids.extend(__SCREAMING_SNAKE_CASE) new_lengths.extend([len(__SCREAMING_SNAKE_CASE) for l in sub_seqs]) UpperCamelCase__ : Optional[Any] =np.array(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =np.array(__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] =len(self) UpperCamelCase__ : List[Any] =self.lengths > 11 UpperCamelCase__ : int =self.token_ids[indices] UpperCamelCase__ : List[str] =self.lengths[indices] UpperCamelCase__ : Tuple =len(self) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''') def UpperCAmelCase ( self) -> List[str]: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: UpperCamelCase__ : Any =self.params.special_tok_ids["unk_token"] UpperCamelCase__ : Optional[Any] =len(self) UpperCamelCase__ : List[Any] =np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids]) UpperCamelCase__ : Optional[Any] =(unk_occs / self.lengths) < 0.5 UpperCamelCase__ : List[str] =self.token_ids[indices] UpperCamelCase__ : Optional[int] =self.lengths[indices] UpperCamelCase__ : int =len(self) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''') def UpperCAmelCase ( self) -> List[str]: """simple docstring""" if not self.params.is_master: return logger.info(F'''{len(self)} sequences''') # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] =[t[0] for t in batch] UpperCamelCase__ : Dict =[t[1] for t in batch] assert len(__SCREAMING_SNAKE_CASE) == len(__SCREAMING_SNAKE_CASE) # Max for paddings UpperCamelCase__ : int =max(__SCREAMING_SNAKE_CASE) # Pad token ids if self.params.mlm: UpperCamelCase__ : Dict =self.params.special_tok_ids["pad_token"] else: UpperCamelCase__ : int =self.params.special_tok_ids["unk_token"] UpperCamelCase__ : Any =[list(t.astype(__SCREAMING_SNAKE_CASE)) + [pad_idx] * (max_seq_len_ - len(__SCREAMING_SNAKE_CASE)) for t in token_ids] assert len(tk_) == len(__SCREAMING_SNAKE_CASE) assert all(len(__SCREAMING_SNAKE_CASE) == max_seq_len_ for t in tk_) UpperCamelCase__ : Any =torch.tensor(tk_) # (bs, max_seq_len_) UpperCamelCase__ : List[str] =torch.tensor(__SCREAMING_SNAKE_CASE) # (bs) return tk_t, lg_t
582
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__( snake_case__ , unittest.TestCase ): '''simple docstring''' snake_case__ = LEDTokenizer snake_case__ = LEDTokenizerFast snake_case__ = True def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" super().setUp() UpperCamelCase__ : Any =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ : int =dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) UpperCamelCase__ : Optional[int] =["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ : Optional[int] ={"unk_token": "<unk>"} UpperCamelCase__ : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) UpperCamelCase__ : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(__SCREAMING_SNAKE_CASE)) def UpperCAmelCase ( self , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" return "lower newer", "lower newer" @cached_property def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" return LEDTokenizer.from_pretrained("allenai/led-base-16384") @cached_property def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" return LEDTokenizerFast.from_pretrained("allenai/led-base-16384") @require_torch def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[Any] =["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase__ : Optional[int] =[0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : Any =tokenizer(__SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE) , padding=__SCREAMING_SNAKE_CASE , return_tensors="pt") self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) UpperCamelCase__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @require_torch def UpperCAmelCase ( self) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] =["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : int =tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="pt") self.assertIn("input_ids" , __SCREAMING_SNAKE_CASE) self.assertIn("attention_mask" , __SCREAMING_SNAKE_CASE) self.assertNotIn("labels" , __SCREAMING_SNAKE_CASE) self.assertNotIn("decoder_attention_mask" , __SCREAMING_SNAKE_CASE) @require_torch def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] =[ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : Tuple =tokenizer(text_target=__SCREAMING_SNAKE_CASE , max_length=32 , padding="max_length" , return_tensors="pt") self.assertEqual(32 , targets["input_ids"].shape[1]) @require_torch def UpperCAmelCase ( self) -> int: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : Optional[int] =tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors="pt") self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(batch.input_ids.shape , (2, 51_22)) @require_torch def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] =["A long paragraph for summarization."] UpperCamelCase__ : Any =[ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : str =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="pt") UpperCamelCase__ : str =tokenizer(text_target=__SCREAMING_SNAKE_CASE , return_tensors="pt") UpperCamelCase__ : int =inputs["input_ids"] UpperCamelCase__ : Tuple =targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def UpperCAmelCase ( self) -> List[str]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : Any =["Summary of the text.", "Another summary."] UpperCamelCase__ : List[str] =[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase__ : str =tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =[[0] * len(__SCREAMING_SNAKE_CASE) for x in encoded_output["input_ids"]] UpperCamelCase__ : Any =tokenizer.pad(__SCREAMING_SNAKE_CASE) self.assertSequenceEqual(outputs["global_attention_mask"] , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): UpperCamelCase__ : Dict =self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[str] ="A, <mask> AllenNLP sentence." UpperCamelCase__ : List[Any] =tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) self.assertEqual(sum(tokens_r["token_type_ids"]) , sum(tokens_p["token_type_ids"])) self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]) , sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]) , ) UpperCamelCase__ : List[str] =tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) UpperCamelCase__ : str =tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"])
582
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "ResNetConfig" # Base docstring __UpperCAmelCase = "microsoft/resnet-50" __UpperCAmelCase = [1, 2_048, 7, 7] # Image classification docstring __UpperCAmelCase = "microsoft/resnet-50" __UpperCAmelCase = "tiger cat" __UpperCAmelCase = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowercase_ ( nn.Module ): def __init__( self : List[str] , _lowercase : str , _lowercase : int , _lowercase : Dict = 3 , _lowercase : List[Any] = 1 , _lowercase : str = "relu" ): super().__init__() lowerCAmelCase__ : Optional[int] = nn.Convad( _lowercase , _lowercase , kernel_size=_lowercase , stride=_lowercase , padding=kernel_size // 2 , bias=_lowercase ) lowerCAmelCase__ : Any = nn.BatchNormad(_lowercase ) lowerCAmelCase__ : Union[str, Any] = ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCAmelCase ( self : Optional[Any] , _lowercase : Any ): lowerCAmelCase__ : Optional[int] = self.convolution(_lowercase ) lowerCAmelCase__ : Dict = self.normalization(_lowercase ) lowerCAmelCase__ : int = self.activation(_lowercase ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : Dict , _lowercase : Optional[Any] ): super().__init__() lowerCAmelCase__ : Tuple = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) lowerCAmelCase__ : Optional[Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) lowerCAmelCase__ : Union[str, Any] = config.num_channels def _lowerCAmelCase ( self : Dict , _lowercase : Any ): lowerCAmelCase__ : Optional[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) lowerCAmelCase__ : Any = self.embedder(_lowercase ) lowerCAmelCase__ : List[Any] = self.pooler(_lowercase ) return embedding class lowercase_ ( nn.Module ): def __init__( self : Any , _lowercase : Optional[int] , _lowercase : int , _lowercase : List[str] = 2 ): super().__init__() lowerCAmelCase__ : Optional[int] = nn.Convad(_lowercase , _lowercase , kernel_size=1 , stride=_lowercase , bias=_lowercase ) lowerCAmelCase__ : Optional[Any] = nn.BatchNormad(_lowercase ) def _lowerCAmelCase ( self : Dict , _lowercase : Tuple ): lowerCAmelCase__ : List[str] = self.convolution(_lowercase ) lowerCAmelCase__ : List[str] = self.normalization(_lowercase ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : Any , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : Dict = 1 , _lowercase : int = "relu" ): super().__init__() lowerCAmelCase__ : Optional[Any] = in_channels != out_channels or stride != 1 lowerCAmelCase__ : Tuple = ( ResNetShortCut(_lowercase , _lowercase , stride=_lowercase ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : Tuple = nn.Sequential( ResNetConvLayer(_lowercase , _lowercase , stride=_lowercase ) , ResNetConvLayer(_lowercase , _lowercase , activation=_lowercase ) , ) lowerCAmelCase__ : Optional[int] = ACTaFN[activation] def _lowerCAmelCase ( self : Tuple , _lowercase : List[str] ): lowerCAmelCase__ : int = hidden_state lowerCAmelCase__ : Union[str, Any] = self.layer(_lowercase ) lowerCAmelCase__ : Optional[Any] = self.shortcut(_lowercase ) hidden_state += residual lowerCAmelCase__ : Tuple = self.activation(_lowercase ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : str , _lowercase : List[Any] = 1 , _lowercase : Any = "relu" , _lowercase : List[Any] = 4 ): super().__init__() lowerCAmelCase__ : int = in_channels != out_channels or stride != 1 lowerCAmelCase__ : List[str] = out_channels // reduction lowerCAmelCase__ : Dict = ( ResNetShortCut(_lowercase , _lowercase , stride=_lowercase ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : List[Any] = nn.Sequential( ResNetConvLayer(_lowercase , _lowercase , kernel_size=1 ) , ResNetConvLayer(_lowercase , _lowercase , stride=_lowercase ) , ResNetConvLayer(_lowercase , _lowercase , kernel_size=1 , activation=_lowercase ) , ) lowerCAmelCase__ : Any = ACTaFN[activation] def _lowerCAmelCase ( self : int , _lowercase : Optional[int] ): lowerCAmelCase__ : Dict = hidden_state lowerCAmelCase__ : str = self.layer(_lowercase ) lowerCAmelCase__ : str = self.shortcut(_lowercase ) hidden_state += residual lowerCAmelCase__ : Union[str, Any] = self.activation(_lowercase ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : str , _lowercase : str , _lowercase : int , _lowercase : int , _lowercase : List[str] = 2 , _lowercase : List[Any] = 2 , ): super().__init__() lowerCAmelCase__ : Tuple = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer lowerCAmelCase__ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_lowercase , _lowercase , stride=_lowercase , activation=config.hidden_act ) , *[layer(_lowercase , _lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowerCAmelCase ( self : Union[str, Any] , _lowercase : Tuple ): lowerCAmelCase__ : int = input for layer in self.layers: lowerCAmelCase__ : str = layer(_lowercase ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : str , _lowercase : Union[str, Any] ): super().__init__() lowerCAmelCase__ : Union[str, Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCAmelCase__ : List[str] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowercase , config.depths[1:] ): self.stages.append(ResNetStage(_lowercase , _lowercase , _lowercase , depth=_lowercase ) ) def _lowerCAmelCase ( self : int , _lowercase : Tuple , _lowercase : Union[str, Any] = False , _lowercase : int = True ): lowerCAmelCase__ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ : List[Any] = hidden_states + (hidden_state,) lowerCAmelCase__ : List[Any] = stage_module(_lowercase ) if output_hidden_states: lowerCAmelCase__ : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_lowercase , hidden_states=_lowercase , ) class lowercase_ ( a_ ): __magic_name__ : Tuple = ResNetConfig __magic_name__ : Tuple = 'resnet' __magic_name__ : List[Any] = 'pixel_values' __magic_name__ : Union[str, Any] = True def _lowerCAmelCase ( self : Union[str, Any] , _lowercase : Optional[Any] ): if isinstance(_lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(_lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowerCAmelCase ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Tuple=False ): if isinstance(_lowercase , _lowercase ): lowerCAmelCase__ : Optional[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , a_ , ) class lowercase_ ( a_ ): def __init__( self : List[str] , _lowercase : List[str] ): super().__init__(_lowercase ) lowerCAmelCase__ : Optional[int] = config lowerCAmelCase__ : int = ResNetEmbeddings(_lowercase ) lowerCAmelCase__ : str = ResNetEncoder(_lowercase ) lowerCAmelCase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self : Tuple , _lowercase : int , _lowercase : Optional[int] = None , _lowercase : Dict = None ): lowerCAmelCase__ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : int = self.embedder(_lowercase ) lowerCAmelCase__ : Any = self.encoder( _lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) lowerCAmelCase__ : Dict = encoder_outputs[0] lowerCAmelCase__ : Optional[Any] = self.pooler(_lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowercase , pooler_output=_lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """ , a_ , ) class lowercase_ ( a_ ): def __init__( self : int , _lowercase : List[Any] ): super().__init__(_lowercase ) lowerCAmelCase__ : List[str] = config.num_labels lowerCAmelCase__ : Any = ResNetModel(_lowercase ) # classification head lowerCAmelCase__ : List[str] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self : str , _lowercase : Optional[Any] = None , _lowercase : Union[str, Any] = None , _lowercase : Dict = None , _lowercase : Optional[Any] = None , ): lowerCAmelCase__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Union[str, Any] = self.resnet(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) lowerCAmelCase__ : Optional[int] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : Tuple = self.classifier(_lowercase ) lowerCAmelCase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : Tuple = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : List[str] = "single_label_classification" else: lowerCAmelCase__ : List[Any] = "multi_label_classification" if self.config.problem_type == "regression": lowerCAmelCase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : Tuple = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ : str = loss_fct(_lowercase , _lowercase ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : List[str] = CrossEntropyLoss() lowerCAmelCase__ : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : Any = BCEWithLogitsLoss() lowerCAmelCase__ : Dict = loss_fct(_lowercase , _lowercase ) if not return_dict: lowerCAmelCase__ : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowercase , logits=_lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( """\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n """ , a_ , ) class lowercase_ ( a_ , a_ ): def __init__( self : str , _lowercase : int ): super().__init__(_lowercase ) super()._init_backbone(_lowercase ) lowerCAmelCase__ : str = [config.embedding_size] + config.hidden_sizes lowerCAmelCase__ : Any = ResNetEmbeddings(_lowercase ) lowerCAmelCase__ : Optional[Any] = ResNetEncoder(_lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @replace_return_docstrings(output_type=_lowercase , config_class=_CONFIG_FOR_DOC ) def _lowerCAmelCase ( self : Union[str, Any] , _lowercase : Dict , _lowercase : Optional[int] = None , _lowercase : int = None ): lowerCAmelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Union[str, Any] = self.embedder(_lowercase ) lowerCAmelCase__ : List[Any] = self.encoder(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) lowerCAmelCase__ : List[Any] = outputs.hidden_states lowerCAmelCase__ : Optional[int] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCAmelCase__ : Optional[Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_lowercase , )
308
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowercase__ : Optional[int] = """bart""" lowercase__ : Any = ["""past_key_values"""] lowercase__ : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : int , lowercase : Dict=50_265 , lowercase : Dict=1_024 , lowercase : Tuple=12 , lowercase : Union[str, Any]=4_096 , lowercase : Tuple=16 , lowercase : Tuple=12 , lowercase : str=4_096 , lowercase : Union[str, Any]=16 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=0.0 , lowercase : List[str]="gelu" , lowercase : Optional[Any]=1_024 , lowercase : Any=0.1 , lowercase : Optional[int]=0.0 , lowercase : int=0.0 , lowercase : Tuple=0.02 , lowercase : str=0.0 , lowercase : Optional[Any]=False , lowercase : Optional[int]=True , lowercase : List[Any]=3 , lowercase : Union[str, Any]=1 , lowercase : Dict=0 , lowercase : int=2 , lowercase : int=True , lowercase : Optional[Any]=2 , lowercase : Tuple=2 , **lowercase : Any , ) -> str: """simple docstring""" __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = classifier_dropout __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __A ): __lowercase = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " """The config can simply be saved and uploaded again to be fixed.""" ) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" @property def snake_case__ ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase = {0: "batch"} __lowercase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __lowercase = {0: "batch", 1: "decoder_sequence"} __lowercase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__A , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase = self.num_layers for i in range(__A ): __lowercase = {0: "batch", 2: "past_sequence + sequence"} __lowercase = {0: "batch", 2: "past_sequence + sequence"} else: __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def snake_case__ ( self : int ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(__A , self ).outputs if self.use_past: __lowercase = self.num_layers for i in range(__A ): __lowercase = {0: "batch", 2: "past_sequence + sequence"} __lowercase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def snake_case__ ( self : Any , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ) -> Optional[Any]: """simple docstring""" __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**__A , **__A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase = common_inputs["input_ids"].shape __lowercase = common_inputs["decoder_input_ids"].shape[1] __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__A , __A )] , dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase = self.num_layers __lowercase = min(__A , __A ) __lowercase = max(__A , __A ) - min_num_layers __lowercase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__A ): common_inputs["past_key_values"].append( ( torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__A , __A ): common_inputs["past_key_values"].append((torch.zeros(__A ), torch.zeros(__A )) ) return common_inputs def snake_case__ ( self : List[Any] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase = self.num_layers __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs["attention_mask"].dtype __lowercase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__A , __A , dtype=__A )] , dim=1 ) __lowercase = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(__A ) ] return common_inputs def snake_case__ ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ) -> str: """simple docstring""" __lowercase = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(__A ) __lowercase = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence __lowercase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(__A , return_tensors=__A ) ) return common_inputs def snake_case__ ( self : Tuple , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ) -> int: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) return common_inputs def snake_case__ ( self : int , lowercase : Dict , lowercase : Dict , lowercase : Any , lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(__A , __A , __A , __A ) else: __lowercase = super(__A , self )._flatten_past_key_values_( __A , __A , __A , __A )
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : Union[str, Any] = """yolos""" def __init__( self : Optional[int] , lowercase : Any=768 , lowercase : Tuple=12 , lowercase : Tuple=12 , lowercase : str=3_072 , lowercase : Optional[Any]="gelu" , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-1_2 , lowercase : Tuple=[512, 864] , lowercase : Optional[int]=16 , lowercase : Dict=3 , lowercase : Optional[Any]=True , lowercase : Optional[int]=100 , lowercase : Optional[int]=True , lowercase : Any=False , lowercase : Any=1 , lowercase : Any=5 , lowercase : List[str]=2 , lowercase : Union[str, Any]=5 , lowercase : str=2 , lowercase : Tuple=0.1 , **lowercase : str , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowercase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : Dict = version.parse("""1.11""" ) @property def snake_case__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case__ ( self : int ) -> float: """simple docstring""" return 1E-4 @property def snake_case__ ( self : Optional[Any] ) -> int: """simple docstring""" return 12
634
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy a_ : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( _lowercase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: a__ = feature_size a__ = sampling_rate a__ = padding_value a__ = kwargs.pop('''padding_side''' , '''right''' ) a__ = kwargs.pop('''return_attention_mask''' , SCREAMING_SNAKE_CASE ) super().__init__(**SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a__ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) a__ = processed_features[self.model_input_names[0]] a__ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE ) == 0: if return_attention_mask: a__ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a__ = required_input[0] if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a__ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE ): a__ = required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE ): a__ = '''tf''' elif is_torch_tensor(SCREAMING_SNAKE_CASE ): a__ = '''pt''' elif isinstance(SCREAMING_SNAKE_CASE , (int, float, list, tuple, np.ndarray) ): a__ = '''np''' else: raise ValueError( f"type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a__ = to_numpy(SCREAMING_SNAKE_CASE ) else: a__ = [to_numpy(SCREAMING_SNAKE_CASE ) for v in value] # Convert padding_strategy in PaddingStrategy a__ = self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) a__ = processed_features[self.model_input_names[0]] a__ = len(SCREAMING_SNAKE_CASE ) if not all(len(SCREAMING_SNAKE_CASE ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) a__ = [] for i in range(SCREAMING_SNAKE_CASE ): a__ = {k: v[i] for k, v in processed_features.items()} # truncation a__ = self._truncate( SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , ) truncated_inputs.append(SCREAMING_SNAKE_CASE ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a__ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a__ = PaddingStrategy.MAX_LENGTH a__ = {} for i in range(SCREAMING_SNAKE_CASE ): # padding a__ = self._pad( truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE , padding_strategy=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) for key, value in outputs.items(): if key not in batch_outputs: a__ = [] if value.dtype is np.dtype(np.floataa ): a__ = value.astype(np.floataa ) batch_outputs[key].append(SCREAMING_SNAKE_CASE ) return BatchFeature(SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> dict: a__ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a__ = len(SCREAMING_SNAKE_CASE ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a__ = np.ones(len(SCREAMING_SNAKE_CASE ) , dtype=np.intaa ) if needs_to_be_padded: a__ = max_length - len(SCREAMING_SNAKE_CASE ) if self.padding_side == "right": if return_attention_mask: a__ = np.pad( processed_features['''attention_mask'''] , (0, difference) ) a__ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a__ = np.pad( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a__ = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) a__ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a__ = np.pad( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> Optional[Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) a__ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ = len(SCREAMING_SNAKE_CASE ) > max_length if needs_to_be_truncated: a__ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a__ = processed_features['''attention_mask'''][:max_length] return processed_features def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: # Get padding strategy if padding is not False: if padding is True: a__ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ = PaddingStrategy(SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ = padding else: a__ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
194
a_ : str = 6_55_21 def __a ( __UpperCAmelCase ): a__ = 1 a__ = 0 for plain_chr in plain_text: a__ = (a + ord(__UpperCAmelCase )) % MOD_ADLER a__ = (b + a) % MOD_ADLER return (b << 16) | a
194
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __snake_case ( nn.Module ): def __init__( self : Union[str, Any]): """simple docstring""" super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str]): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(_snake_case))) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_snake_case , model.state_dict()) UpperCAmelCase_ = os.path.join(_snake_case , '''index.json''') self.assertTrue(os.path.isfile(_snake_case)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCAmelCase_ = os.path.join(_snake_case , F"""{key}.dat""") self.assertTrue(os.path.isfile(_snake_case)) # TODO: add tests on the fact weights are properly loaded def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCAmelCase_ = torch.randn(2 , 3 , dtype=_snake_case) with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = offload_weight(_snake_case , '''weight''' , _snake_case , {}) UpperCAmelCase_ = os.path.join(_snake_case , '''weight.dat''') self.assertTrue(os.path.isfile(_snake_case)) self.assertDictEqual(_snake_case , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(_snake_case).split('''.''')[1]}}) UpperCAmelCase_ = load_offloaded_weight(_snake_case , index['''weight''']) self.assertTrue(torch.equal(_snake_case , _snake_case)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = model.state_dict() UpperCAmelCase_ = {k: v for k, v in state_dict.items() if '''linear2''' not in k} UpperCAmelCase_ = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_snake_case , _snake_case) UpperCAmelCase_ = OffloadedWeightsLoader(state_dict=_snake_case , save_folder=_snake_case) # Every key is there with the right value self.assertEqual(sorted(_snake_case) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_snake_case , weight_map[key])) UpperCAmelCase_ = {k: v for k, v in state_dict.items() if '''weight''' in k} UpperCAmelCase_ = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_snake_case , _snake_case) UpperCAmelCase_ = OffloadedWeightsLoader(state_dict=_snake_case , save_folder=_snake_case) # Every key is there with the right value self.assertEqual(sorted(_snake_case) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_snake_case , weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(_snake_case , _snake_case) # Duplicates are removed UpperCAmelCase_ = OffloadedWeightsLoader(state_dict=_snake_case , save_folder=_snake_case) # Every key is there with the right value self.assertEqual(sorted(_snake_case) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_snake_case , weight_map[key])) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} UpperCAmelCase_ = extract_submodules_state_dict(_snake_case , ['''a.1''', '''a.2''']) self.assertDictEqual(_snake_case , {'''a.1''': 0, '''a.2''': 2}) UpperCAmelCase_ = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} UpperCAmelCase_ = extract_submodules_state_dict(_snake_case , ['''a.1''', '''a.2''']) self.assertDictEqual(_snake_case , {'''a.1.a''': 0, '''a.2.a''': 2})
169
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa snake_case_ : Optional[Any] = logging.getLogger(__name__) class __snake_case ( a ): UpperCAmelCase__ : Union[str, Any] = '''summarization''' UpperCAmelCase__ : str = ['''loss'''] UpperCAmelCase__ : Tuple = ROUGE_KEYS UpperCAmelCase__ : List[str] = '''rouge2''' def __init__( self : int , _snake_case : List[Any] , **_snake_case : Any): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''') if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''') super().__init__(_snake_case , num_labels=_snake_case , mode=self.mode , **_snake_case) use_task_specific_params(self.model , '''summarization''') save_git_info(self.hparams.output_dir) UpperCAmelCase_ = Path(self.output_dir) / '''metrics.json''' UpperCAmelCase_ = Path(self.output_dir) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path) UpperCAmelCase_ = 0 UpperCAmelCase_ = defaultdict(_snake_case) UpperCAmelCase_ = self.config.model_type UpperCAmelCase_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size UpperCAmelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } UpperCAmelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], F"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder()) assert_all_frozen(self.model.get_encoder()) UpperCAmelCase_ = get_git_info()['''repo_sha'''] UpperCAmelCase_ = hparams.num_workers UpperCAmelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _snake_case): UpperCAmelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase_ = self.decoder_start_token_id UpperCAmelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''') else LegacySeqaSeqDataset ) UpperCAmelCase_ = False UpperCAmelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase_ = self.hparams.eval_max_gen_length else: UpperCAmelCase_ = self.model.config.max_length UpperCAmelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowerCamelCase ( self : List[str] , _snake_case : Dict[str, torch.Tensor]): """simple docstring""" UpperCAmelCase_ = { k: self.tokenizer.batch_decode(v.tolist()) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_snake_case , Path(self.output_dir) / '''text_batch.json''') save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir) / '''tok_batch.json''') UpperCAmelCase_ = True return readable_batch def lowerCamelCase ( self : List[Any] , _snake_case : Any , **_snake_case : List[str]): """simple docstring""" return self.model(_snake_case , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[int]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case) return lmap(str.strip , _snake_case) def lowerCamelCase ( self : int , _snake_case : dict): """simple docstring""" UpperCAmelCase_ = self.tokenizer.pad_token_id UpperCAmelCase_ , UpperCAmelCase_ = batch['''input_ids'''], batch['''attention_mask'''] UpperCAmelCase_ = batch['''labels'''] if isinstance(self.model , _snake_case): UpperCAmelCase_ = self.model._shift_right(_snake_case) else: UpperCAmelCase_ = shift_tokens_right(_snake_case , _snake_case) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase_ = decoder_input_ids self.save_readable_batch(_snake_case) UpperCAmelCase_ = self(_snake_case , attention_mask=_snake_case , decoder_input_ids=_snake_case , use_cache=_snake_case) UpperCAmelCase_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase_ = nn.CrossEntropyLoss(ignore_index=_snake_case) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1]) , tgt_ids.view(-1)) else: UpperCAmelCase_ = nn.functional.log_softmax(_snake_case , dim=-1) UpperCAmelCase_ , UpperCAmelCase_ = label_smoothed_nll_loss( _snake_case , _snake_case , self.hparams.label_smoothing , ignore_index=_snake_case) return (loss,) @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return self.tokenizer.pad_token_id def lowerCamelCase ( self : Optional[Any] , _snake_case : Any , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = self._step(_snake_case) UpperCAmelCase_ = dict(zip(self.loss_names , _snake_case)) # tokens per batch UpperCAmelCase_ = batch['''input_ids'''].ne(self.pad).sum() + batch['''labels'''].ne(self.pad).sum() UpperCAmelCase_ = batch['''input_ids'''].shape[0] UpperCAmelCase_ = batch['''input_ids'''].eq(self.pad).sum() UpperCAmelCase_ = batch['''input_ids'''].eq(self.pad).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowerCamelCase ( self : Dict , _snake_case : int , _snake_case : Optional[Any]): """simple docstring""" return self._generative_step(_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : Any , _snake_case : Dict="val"): """simple docstring""" self.step_count += 1 UpperCAmelCase_ = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} UpperCAmelCase_ = losses['''loss'''] UpperCAmelCase_ = { k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } UpperCAmelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase_ = torch.tensor(_snake_case).type_as(_snake_case) generative_metrics.update({k: v.item() for k, v in losses.items()}) losses.update(_snake_case) UpperCAmelCase_ = {F"""{prefix}_avg_{k}""": x for k, x in losses.items()} UpperCAmelCase_ = self.step_count self.metrics[prefix].append(_snake_case) # callback writes this to self.metrics_save_path UpperCAmelCase_ = flatten_list([x['''preds'''] for x in outputs]) return { "log": all_metrics, "preds": preds, F"""{prefix}_loss""": loss, F"""{prefix}_{self.val_metric}""": metric_tensor, } def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[Any]): """simple docstring""" return calculate_rouge(_snake_case , _snake_case) def lowerCamelCase ( self : int , _snake_case : dict): """simple docstring""" UpperCAmelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_snake_case , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase_ = (time.time() - ta) / batch['''input_ids'''].shape[0] UpperCAmelCase_ = self.ids_to_clean_text(_snake_case) UpperCAmelCase_ = self.ids_to_clean_text(batch['''labels''']) UpperCAmelCase_ = self._step(_snake_case) UpperCAmelCase_ = dict(zip(self.loss_names , _snake_case)) UpperCAmelCase_ = self.calc_generative_metrics(_snake_case , _snake_case) UpperCAmelCase_ = np.mean(lmap(_snake_case , _snake_case)) base_metrics.update(gen_time=_snake_case , gen_len=_snake_case , preds=_snake_case , target=_snake_case , **_snake_case) return base_metrics def lowerCamelCase ( self : Optional[int] , _snake_case : Dict , _snake_case : List[Any]): """simple docstring""" return self._generative_step(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[Any]): """simple docstring""" return self.validation_epoch_end(_snake_case , prefix='''test''') def lowerCamelCase ( self : Tuple , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.n_obs[type_path] UpperCAmelCase_ = self.target_lens[type_path] UpperCAmelCase_ = self.dataset_class( self.tokenizer , type_path=_snake_case , n_obs=_snake_case , max_target_length=_snake_case , **self.dataset_kwargs , ) return dataset def lowerCamelCase ( self : List[str] , _snake_case : str , _snake_case : int , _snake_case : bool = False): """simple docstring""" UpperCAmelCase_ = self.get_dataset(_snake_case) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase_ = dataset.make_sortish_sampler(_snake_case , distributed=self.hparams.gpus > 1) return DataLoader( _snake_case , batch_size=_snake_case , collate_fn=dataset.collate_fn , shuffle=_snake_case , num_workers=self.num_workers , sampler=_snake_case , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1) return DataLoader( _snake_case , batch_sampler=_snake_case , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _snake_case , batch_size=_snake_case , collate_fn=dataset.collate_fn , shuffle=_snake_case , num_workers=self.num_workers , sampler=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_snake_case) return dataloader def lowerCamelCase ( self : List[str]): """simple docstring""" return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size) def lowerCamelCase ( self : Optional[int]): """simple docstring""" return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size) @staticmethod def lowerCamelCase ( _snake_case : Union[str, Any] , _snake_case : Optional[Any]): """simple docstring""" BaseTransformer.add_model_specific_args(_snake_case , _snake_case) add_generic_args(_snake_case , _snake_case) parser.add_argument( '''--max_source_length''' , default=1024 , type=_snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''') parser.add_argument('''--freeze_embeds''' , action='''store_true''') parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_snake_case) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_snake_case) parser.add_argument('''--max_tokens_per_batch''' , type=_snake_case , default=_snake_case) parser.add_argument('''--logger_name''' , type=_snake_case , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''') parser.add_argument('''--n_train''' , type=_snake_case , default=-1 , required=_snake_case , help='''# examples. -1 means use all.''') parser.add_argument('''--n_val''' , type=_snake_case , default=500 , required=_snake_case , help='''# examples. -1 means use all.''') parser.add_argument('''--n_test''' , type=_snake_case , default=-1 , required=_snake_case , help='''# examples. -1 means use all.''') parser.add_argument( '''--task''' , type=_snake_case , default='''summarization''' , required=_snake_case , help='''# examples. -1 means use all.''') parser.add_argument('''--label_smoothing''' , type=_snake_case , default=0.0 , required=_snake_case) parser.add_argument('''--src_lang''' , type=_snake_case , default='''''' , required=_snake_case) parser.add_argument('''--tgt_lang''' , type=_snake_case , default='''''' , required=_snake_case) parser.add_argument('''--eval_beams''' , type=_snake_case , default=_snake_case , required=_snake_case) parser.add_argument( '''--val_metric''' , type=_snake_case , default=_snake_case , required=_snake_case , choices=['''bleu''', '''rouge2''', '''loss''', None]) parser.add_argument('''--eval_max_gen_length''' , type=_snake_case , default=_snake_case , help='''never generate more than n tokens''') parser.add_argument('''--save_top_k''' , type=_snake_case , default=1 , required=_snake_case , help='''How many checkpoints to save''') parser.add_argument( '''--early_stopping_patience''' , type=_snake_case , default=-1 , required=_snake_case , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class __snake_case ( a ): UpperCAmelCase__ : Tuple = '''translation''' UpperCAmelCase__ : Union[str, Any] = ['''loss'''] UpperCAmelCase__ : List[str] = ['''bleu'''] UpperCAmelCase__ : Optional[Any] = '''bleu''' def __init__( self : Tuple , _snake_case : int , **_snake_case : Any): """simple docstring""" super().__init__(_snake_case , **_snake_case) UpperCAmelCase_ = hparams.src_lang UpperCAmelCase_ = hparams.tgt_lang def lowerCamelCase ( self : List[str] , _snake_case : Tuple , _snake_case : List[str]): """simple docstring""" return calculate_bleu(_snake_case , _snake_case) def A (__A : Tuple , __A : Optional[Any]=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=__A ) check_output_dir(__A , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase_ = SummarizationModule(__A ) else: UpperCAmelCase_ = TranslationModule(__A ) UpperCAmelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): UpperCAmelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ = os.environ.get('''WANDB_PROJECT''' , __A ) UpperCAmelCase_ = WandbLogger(name=model.output_dir.name , project=__A ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: UpperCAmelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase_ = False UpperCAmelCase_ = args.val_metric == '''loss''' UpperCAmelCase_ = generic_train( __A , __A , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __A ) , early_stopping_callback=__A , logger=__A , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model UpperCAmelCase_ = '''''' UpperCAmelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=__A ) ) if checkpoints: UpperCAmelCase_ = checkpoints[-1] UpperCAmelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": snake_case_ : Dict = argparse.ArgumentParser() snake_case_ : Optional[Any] = pl.Trainer.add_argparse_args(parser) snake_case_ : str = SummarizationModule.add_model_specific_args(parser, os.getcwd()) snake_case_ : Dict = parser.parse_args() main(args)
169
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowercase_ = logging.get_logger(__name__) class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , a_ : int , a_ : int , a_ : float , **a_ : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase_ : Tuple = feature_size UpperCAmelCase_ : List[Any] = sampling_rate UpperCAmelCase_ : Dict = padding_value UpperCAmelCase_ : List[Any] = kwargs.pop("""padding_side""" , """right""" ) UpperCAmelCase_ : str = kwargs.pop("""return_attention_mask""" , a_ ) super().__init__(**a_ ) def a ( self : Dict , a_ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , a_ : Union[bool, str, PaddingStrategy] = True , a_ : Optional[int] = None , a_ : bool = False , a_ : Optional[int] = None , a_ : Optional[bool] = None , a_ : Optional[Union[str, TensorType]] = None , )-> BatchFeature: """simple docstring""" if isinstance(a_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : str = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[Any] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(a_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Tuple = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : Union[str, Any] = required_input[0] if isinstance(a_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : int = 0 while len(required_input[index] ) == 0: index += 1 if index < len(a_ ): UpperCAmelCase_ : Union[str, Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(a_ ): UpperCAmelCase_ : Any = """tf""" elif is_torch_tensor(a_ ): UpperCAmelCase_ : Dict = """pt""" elif isinstance(a_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : List[str] = """np""" else: raise ValueError( f'''type of {first_element} unknown: {type(a_ )}. ''' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : int = to_numpy(a_ ) else: UpperCAmelCase_ : int = [to_numpy(a_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Tuple = self._get_padding_strategies(padding=a_ , max_length=a_ ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = len(a_ ) if not all(len(a_ ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) UpperCAmelCase_ : Union[str, Any] = [] for i in range(a_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : Optional[int] = self._truncate( a_ , max_length=a_ , pad_to_multiple_of=a_ , truncation=a_ , ) truncated_inputs.append(a_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : Any = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : int = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : str = {} for i in range(a_ ): # padding UpperCAmelCase_ : Any = self._pad( truncated_inputs[i] , max_length=a_ , padding_strategy=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Dict = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : Dict = value.astype(np.floataa ) batch_outputs[key].append(a_ ) return BatchFeature(a_ , tensor_type=a_ ) def a ( self : int , a_ : Union[Dict[str, np.ndarray], BatchFeature] , a_ : Optional[int] = None , a_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , a_ : Optional[int] = None , a_ : Optional[bool] = None , )-> dict: """simple docstring""" UpperCAmelCase_ : Optional[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : str = len(a_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Tuple = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(a_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[Any] = np.ones(len(a_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : int = max_length - len(a_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : Dict = np.pad( processed_features["""attention_mask"""] , (0, difference) ) UpperCAmelCase_ : str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Dict = np.pad( a_ , a_ , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) UpperCAmelCase_ : str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : Optional[Any] = np.pad( a_ , a_ , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def a ( self : int , a_ : Union[Dict[str, np.ndarray], BatchFeature] , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : Optional[bool] = None , )-> Dict: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Any = len(a_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Optional[Any] = processed_features["""attention_mask"""][:max_length] return processed_features def a ( self : Optional[int] , a_ : Union[str, Any]=False , a_ : str=None )-> Dict: """simple docstring""" if padding is not False: if padding is True: UpperCAmelCase_ : str = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(a_ , a_ ): UpperCAmelCase_ : Dict = PaddingStrategy(a_ ) elif isinstance(a_ , a_ ): UpperCAmelCase_ : Tuple = padding else: UpperCAmelCase_ : Any = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
470
"""simple docstring""" def A_ ( lowercase , lowercase ) -> int: """simple docstring""" return number | (1 << position) def A_ ( lowercase , lowercase ) -> int: """simple docstring""" return number & ~(1 << position) def A_ ( lowercase , lowercase ) -> int: """simple docstring""" return number ^ (1 << position) def A_ ( lowercase , lowercase ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def A_ ( lowercase , lowercase ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
470
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE__ : Dict = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A_ : """simple docstring""" lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_UpperCAmelCase )} , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A_ : """simple docstring""" lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "The input training data file (a text file)."} ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) lowercase : Optional[str] = field( default=_UpperCAmelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) lowercase : bool = field( default=_UpperCAmelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) lowercase : bool = field( default=_UpperCAmelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) lowercase : bool = field(default=_UpperCAmelCase , metadata={"help": "Whether ot not to use whole word mask."} ) lowercase : float = field( default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) lowercase : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) lowercase : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) lowercase : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) lowercase : bool = field( default=_UpperCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False , UpperCAmelCase__ = None , ) -> List[str]: def _dataset(UpperCAmelCase__ , UpperCAmelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size , ref_path=UpperCAmelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCAmelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCAmelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def A_ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: a : Dict = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: a : Tuple = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: a : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: a : Any = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: a : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: a : List[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) a : Union[str, Any] = AutoModelWithLMHead.from_config(UpperCAmelCase__ ) model.resize_token_embeddings(len(UpperCAmelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: a : Any = tokenizer.max_len # Our input block size will be the max possible for the model else: a : int = min(data_args.block_size , tokenizer.max_len ) # Get datasets a : Union[str, Any] = ( get_dataset(UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) a : List[Any] = ( get_dataset(UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , evaluate=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": a : str = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCAmelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: a : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=UpperCAmelCase__ , mlm_probability=data_args.mlm_probability ) else: a : int = DataCollatorForLanguageModeling( tokenizer=UpperCAmelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer a : List[str] = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , prediction_loss_only=UpperCAmelCase__ , ) # Training if training_args.do_train: a : Tuple = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCAmelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a : str = trainer.evaluate() a : Union[str, Any] = math.exp(eval_output['eval_loss'] ) a : Any = {'perplexity': perplexity} a : int = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , UpperCAmelCase__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(UpperCAmelCase__ ) return results def A_ ( UpperCAmelCase__ ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
707
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A_ ( _UpperCAmelCase ): """simple docstring""" def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=10_00 ) -> int: a : Dict = p_stop a : Tuple = max_length def __iter__( self ) -> str: a : Optional[Any] = 0 a : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 a : Optional[int] = random.random() < self.p_stop class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> List[str]: a : Optional[Any] = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] a : str = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: # Check the shards when the dataset is a round multiple of total batch size. a : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. a : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. a : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. a : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. a : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : List[str] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : int = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. a : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. a : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : int = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. a : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. a : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: # Check the shards when the dataset is a round multiple of batch size. a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. a : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Tuple = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[Any]: a : int = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] a : Dict = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ) -> Tuple: random.seed(__UpperCAmelCase ) a : Dict = list(__UpperCAmelCase ) a : Any = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] a : int = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) a : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size a : Optional[int] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) a : Optional[Any] = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowercase_ ( self ) -> int: a : Any = 42 a : Union[str, Any] = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset a : Dict = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[Any]: a : str = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Any = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> str: a : Optional[Any] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> int: a : List[str] = DataLoader(list(range(16 ) ) , batch_size=4 ) a : Dict = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> Any: a : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self ) -> List[Any]: Accelerator() a : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
509
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase ( lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) lowercase__ : Tuple = FileLock(str(tmpdir / """foo.lock""" ) ) lowercase__ : Optional[int] = 0.01 with locka.acquire(): with pytest.raises(lowercase_ ): lowercase__ : str = time.time() locka.acquire(lowercase_ ) assert time.time() - _start > timeout def UpperCamelCase ( lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : Optional[int] = """a""" * 10_00 + """.lock""" lowercase__ : Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowercase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 lowercase__ : str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase_ ): locka.acquire(0 )
12
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
from __future__ import annotations def A ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' if len(__UpperCAmelCase ) == 0: return array UpperCAmelCase_ , UpperCAmelCase_ = min(__UpperCAmelCase ), max(__UpperCAmelCase ) # Compute the variables UpperCAmelCase_ = _max - _min + 1 UpperCAmelCase_ , UpperCAmelCase_ = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCAmelCase_ = i - _min UpperCAmelCase_ = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCAmelCase_ = 0 for i in range(__UpperCAmelCase ): while holes_repeat[i] > 0: UpperCAmelCase_ = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = input("Enter numbers separated by comma:\n") UpperCamelCase_ = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
705
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] ="instructblip_vision_model" def __init__( self :int , _lowercase :List[str]=1408 , _lowercase :Dict=6144 , _lowercase :List[Any]=39 , _lowercase :List[Any]=16 , _lowercase :Union[str, Any]=224 , _lowercase :int=14 , _lowercase :Any="gelu" , _lowercase :Optional[Any]=1E-6 , _lowercase :List[Any]=0.0 , _lowercase :Union[str, Any]=1E-1_0 , _lowercase :List[Any]=True , **_lowercase :Optional[int] , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = patch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = hidden_act UpperCAmelCase_ = qkv_bias @classmethod def __a ( cls :Union[str, Any] , _lowercase :Union[str, os.PathLike] , **_lowercase :Tuple) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_lowercase , **_lowercase) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": UpperCAmelCase_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowercase , **_lowercase) class a_ ( _snake_case ): UpperCamelCase__ : str ="instructblip_qformer" def __init__( self :List[Any] , _lowercase :List[Any]=30522 , _lowercase :str=768 , _lowercase :str=12 , _lowercase :int=12 , _lowercase :str=3072 , _lowercase :Optional[Any]="gelu" , _lowercase :Optional[int]=0.1 , _lowercase :int=0.1 , _lowercase :List[Any]=512 , _lowercase :Any=0.02 , _lowercase :Dict=1E-1_2 , _lowercase :int=0 , _lowercase :Any="absolute" , _lowercase :Optional[int]=2 , _lowercase :Optional[int]=1408 , **_lowercase :List[Any] , ) -> str: super().__init__(pad_token_id=_lowercase , **_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = cross_attention_frequency UpperCAmelCase_ = encoder_hidden_size @classmethod def __a ( cls :Any , _lowercase :Union[str, os.PathLike] , **_lowercase :int) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_lowercase , **_lowercase) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": UpperCAmelCase_ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowercase , **_lowercase) class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] ="instructblip" UpperCamelCase__ : int =True def __init__( self :List[Any] , _lowercase :Tuple=None , _lowercase :Tuple=None , _lowercase :Any=None , _lowercase :Any=32 , **_lowercase :Union[str, Any]) -> List[str]: super().__init__(**_lowercase) if vision_config is None: UpperCAmelCase_ = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''') if qformer_config is None: UpperCAmelCase_ = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''') if text_config is None: UpperCAmelCase_ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') UpperCAmelCase_ = InstructBlipVisionConfig(**_lowercase) UpperCAmelCase_ = InstructBlipQFormerConfig(**_lowercase) UpperCAmelCase_ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' UpperCAmelCase_ = CONFIG_MAPPING[text_model_type](**_lowercase) UpperCAmelCase_ = self.text_config.tie_word_embeddings UpperCAmelCase_ = self.text_config.is_encoder_decoder UpperCAmelCase_ = num_query_tokens UpperCAmelCase_ = self.vision_config.hidden_size UpperCAmelCase_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.02 @classmethod def __a ( cls :Tuple , _lowercase :InstructBlipVisionConfig , _lowercase :InstructBlipQFormerConfig , _lowercase :PretrainedConfig , **_lowercase :str , ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowercase , ) def __a ( self :Any) -> Tuple: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.qformer_config.to_dict() UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
561
0
from ... import PretrainedConfig __a : Union[str, Any] = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Union[str, Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a : int = '''nezha''' def __init__( self , lowerCamelCase=21128 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=64 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-12 , lowerCamelCase=0.1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , **lowerCamelCase , ) -> int: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase__ : int = vocab_size lowercase__ : str = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : int = hidden_act lowercase__ : str = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : Tuple = max_relative_position lowercase__ : List[Any] = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = layer_norm_eps lowercase__ : Optional[int] = classifier_dropout lowercase__ : Optional[int] = use_cache
397
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : List[str] = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : int = '''decision_transformer''' __lowerCamelCase : Optional[Any] = ['''past_key_values'''] __lowerCamelCase : Tuple = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,SCREAMING_SNAKE_CASE_=17 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=128 ,SCREAMING_SNAKE_CASE_=4096 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=1024 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_="relu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=1E-5 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=50256 ,SCREAMING_SNAKE_CASE_=50256 ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Any = state_dim snake_case : Optional[Any] = act_dim snake_case : Union[str, Any] = hidden_size snake_case : Any = max_ep_len snake_case : int = action_tanh snake_case : Any = vocab_size snake_case : Any = n_positions snake_case : List[str] = n_layer snake_case : int = n_head snake_case : Optional[int] = n_inner snake_case : List[Any] = activation_function snake_case : Tuple = resid_pdrop snake_case : Optional[Any] = embd_pdrop snake_case : Dict = attn_pdrop snake_case : List[str] = layer_norm_epsilon snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = scale_attn_weights snake_case : str = use_cache snake_case : int = scale_attn_by_inverse_layer_idx snake_case : Tuple = reorder_and_upcast_attn snake_case : Tuple = bos_token_id snake_case : List[str] = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
36
0
def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: Tuple , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: str , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: int ) -> Optional[int]: if index == r: for j in range(__UpperCAmelCase ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCamelCase__ : Optional[Any] = arr[i] combination_util(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , index + 1 , __UpperCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: int ) -> str: # A temporary array to store all combination one by one UpperCamelCase__ : List[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 0 , __UpperCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase_ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
369
from __future__ import annotations from math import gcd def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int = 2 , __UpperCAmelCase: int = 1 , __UpperCAmelCase: int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: return (pow(__UpperCAmelCase , 2 ) + step) % modulus for _ in range(__UpperCAmelCase ): # These track the position within the cycle detection logic. UpperCamelCase__ : List[Any] = seed UpperCamelCase__ : List[str] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCamelCase__ : Optional[int] = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : List[str] = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Optional[int] = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCamelCase__ : Optional[int] = gcd(hare - tortoise , __UpperCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCamelCase__ : List[str] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: UpperCAmelCase_ = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
369
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _snake_case : str = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False , ): output_path.parent.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowerCamelCase , __lowerCamelCase , f=output_path.as_posix() , input_names=__lowerCamelCase , output_names=__lowerCamelCase , dynamic_axes=__lowerCamelCase , do_constant_folding=__lowerCamelCase , use_external_data_format=__lowerCamelCase , enable_onnx_checker=__lowerCamelCase , opset_version=__lowerCamelCase , ) else: export( __lowerCamelCase , __lowerCamelCase , f=output_path.as_posix() , input_names=__lowerCamelCase , output_names=__lowerCamelCase , dynamic_axes=__lowerCamelCase , do_constant_folding=__lowerCamelCase , opset_version=__lowerCamelCase , ) @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ): __snake_case : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __snake_case : Union[str, Any] = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: __snake_case : str = "cpu" __snake_case : List[Any] = Path(__lowerCamelCase ) # VAE DECODER __snake_case : Tuple = AutoencoderKL.from_pretrained(model_path + "/vae" ) __snake_case : str = vae_decoder.config.latent_channels # forward only through the decoder part __snake_case : Tuple = vae_decoder.decode onnx_export( __lowerCamelCase , model_args=( torch.randn(1 , __lowerCamelCase , 2_5 , 2_5 ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=__lowerCamelCase , ) del vae_decoder if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _snake_case : Optional[int] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
81
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = data def __iter__( self ) -> Tuple: """simple docstring""" for element in self.data: yield element def _lowercase ( __lowerCAmelCase=True ) -> str: SCREAMING_SNAKE_CASE__ : str = Accelerator(even_batches=__lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> Optional[int]: if iterable: SCREAMING_SNAKE_CASE__ : int = DummyIterableDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = TensorDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE__ : str = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = accelerator.prepare(__lowerCAmelCase ) return dl def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Tuple: SCREAMING_SNAKE_CASE__ : Tuple = create_dataloader(accelerator=__lowerCAmelCase , dataset_size=__lowerCAmelCase , batch_size=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _lowercase ( ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_accelerator(even_batches=__lowerCAmelCase ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _lowercase ( ) -> str: SCREAMING_SNAKE_CASE__ : List[str] = create_accelerator(even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE__ : int = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ddp_model(batch[0].float() ) SCREAMING_SNAKE_CASE__ : List[Any] = output.sum() loss.backward() batch_idxs.append(__lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def _lowercase ( ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Any = create_accelerator(even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerator.prepare(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE__ : List[Any] = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = train_dl.batch_sampler.even_batches SCREAMING_SNAKE_CASE__ : str = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : int = create_accelerator(even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ : str = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Any = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _lowercase ( ) -> List[str]: SCREAMING_SNAKE_CASE__ : str = create_accelerator() SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.state.distributed_type SCREAMING_SNAKE_CASE__ : Optional[int] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = original_state if __name__ == "__main__": main()
680
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase ( __a): '''simple docstring''' def __init__( self) -> List[Any]: """simple docstring""" a_ =[] def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> int: """simple docstring""" self.events.append("on_init_end") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> List[str]: """simple docstring""" self.events.append("on_train_begin") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> Dict: """simple docstring""" self.events.append("on_train_end") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> Tuple: """simple docstring""" self.events.append("on_epoch_begin") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> List[Any]: """simple docstring""" self.events.append("on_epoch_end") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> Optional[int]: """simple docstring""" self.events.append("on_step_begin") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> Any: """simple docstring""" self.events.append("on_step_end") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> List[Any]: """simple docstring""" self.events.append("on_evaluate") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> Tuple: """simple docstring""" self.events.append("on_predict") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> str: """simple docstring""" self.events.append("on_save") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> Optional[Any]: """simple docstring""" self.events.append("on_log") def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) -> List[Any]: """simple docstring""" self.events.append("on_prediction_step") @require_torch class UpperCAmelCase ( unittest.TestCase): '''simple docstring''' def lowercase_ ( self) -> Union[str, Any]: """simple docstring""" a_ =tempfile.mkdtemp() def lowercase_ ( self) -> Any: """simple docstring""" shutil.rmtree(self.output_dir) def lowercase_ ( self , lowerCAmelCase_=0 , lowerCAmelCase_=0 , lowerCAmelCase_=6_4 , lowerCAmelCase_=6_4 , lowerCAmelCase_=None , lowerCAmelCase_=False , **lowerCAmelCase_) -> Union[str, Any]: """simple docstring""" a_ =RegressionDataset(length=lowerCAmelCase_) a_ =RegressionDataset(length=lowerCAmelCase_) a_ =RegressionModelConfig(a=lowerCAmelCase_ , b=lowerCAmelCase_) a_ =RegressionPreTrainedModel(lowerCAmelCase_) a_ =TrainingArguments(self.output_dir , disable_tqdm=lowerCAmelCase_ , report_to=[] , **lowerCAmelCase_) return Trainer( lowerCAmelCase_ , lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , callbacks=lowerCAmelCase_ , ) def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_) -> Optional[Any]: """simple docstring""" self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) # Order doesn't matter a_ =sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_: cb.__name__ if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else cb.__class__.__name__) a_ =sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_: cb.__name__ if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else cb.__class__.__name__) for cba, cba in zip(lowerCAmelCase_ , lowerCAmelCase_): if isinstance(lowerCAmelCase_ , lowerCAmelCase_) and isinstance(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and not isinstance(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(lowerCAmelCase_ , cba.__class__) elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_) and isinstance(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(cba.__class__ , lowerCAmelCase_) else: self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_) def lowercase_ ( self , lowerCAmelCase_) -> Optional[Any]: """simple docstring""" a_ =["on_init_end", "on_train_begin"] a_ =0 a_ =len(trainer.get_eval_dataloader()) a_ =["on_prediction_step"] * len(trainer.get_eval_dataloader()) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs): expected_events.append("on_epoch_begin") for _ in range(lowerCAmelCase_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save") expected_events.append("on_epoch_end") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase_ ( self) -> List[str]: """simple docstring""" a_ =self.get_trainer() a_ =DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) # Callbacks passed at init are added to the default callbacks a_ =self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(lowerCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback a_ =self.get_trainer(disable_tqdm=lowerCAmelCase_) a_ =DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) def lowercase_ ( self) -> List[Any]: """simple docstring""" a_ =DEFAULT_CALLBACKS.copy() + [ProgressCallback] a_ =self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowerCAmelCase_) expected_callbacks.remove(lowerCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) a_ =self.get_trainer() a_ =trainer.pop_callback(lowerCAmelCase_) self.assertEqual(cb.__class__ , lowerCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) trainer.add_callback(lowerCAmelCase_) expected_callbacks.insert(0 , lowerCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) # We can also add, pop, or remove by instance a_ =self.get_trainer() a_ =trainer.callback_handler.callbacks[0] trainer.remove_callback(lowerCAmelCase_) expected_callbacks.remove(lowerCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) a_ =self.get_trainer() a_ =trainer.callback_handler.callbacks[0] a_ =trainer.pop_callback(lowerCAmelCase_) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) trainer.add_callback(lowerCAmelCase_) expected_callbacks.insert(0 , lowerCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCAmelCase_) def lowercase_ ( self) -> Optional[int]: """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=lowerCAmelCase_) a_ =self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() a_ =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_)) # Independent log/save/eval a_ =self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() a_ =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_)) a_ =self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() a_ =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_)) a_ =self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps") trainer.train() a_ =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_)) a_ =self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch") trainer.train() a_ =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_)) # A bit of everything a_ =self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() a_ =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCAmelCase_ , self.get_expected_events(lowerCAmelCase_)) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning") as warn_mock: a_ =self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowerCAmelCase_) in warn_mock.call_args[0][0]
41
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowercase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def UpperCAmelCase_ ( ): '''simple docstring''' a_ =os.path.dirname(os.path.realpath(lowercase__ ) ) a_ =os.path.join(lowercase__ , "words.txt" ) a_ ="" with open(lowercase__ ) as f: a_ =f.readline() a_ =[word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] a_ =[ word for word in [sum(ord(lowercase__ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowercase__ ) if __name__ == "__main__": print(solution())
41
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: # Initialise PyTorch model UpperCAmelCase_ = BigBirdConfig.from_json_file(__UpperCamelCase ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: UpperCAmelCase_ = BigBirdForQuestionAnswering(__UpperCamelCase ) else: UpperCAmelCase_ = BigBirdForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__UpperCamelCase , __UpperCamelCase , is_trivia_qa=__UpperCamelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) _lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
144
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ) -> Optional[Any]: if height >= 1: move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) move_disk(__UpperCamelCase , __UpperCamelCase ) move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ) -> List[str]: print('''moving disk from''' , __UpperCamelCase , '''to''' , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: UpperCAmelCase_ = int(input('''Height of hanoi: ''' ).strip() ) move_tower(__UpperCamelCase , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
144
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : List[str] = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''funnel''' UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self :Any , __UpperCamelCase :List[str]=3_05_22 , __UpperCamelCase :List[str]=[4, 4, 4] , __UpperCamelCase :Union[str, Any]=None , __UpperCamelCase :List[str]=2 , __UpperCamelCase :List[str]=7_68 , __UpperCamelCase :Any=12 , __UpperCamelCase :Optional[Any]=64 , __UpperCamelCase :Optional[Any]=30_72 , __UpperCamelCase :Any="gelu_new" , __UpperCamelCase :Tuple=0.1 , __UpperCamelCase :Any=0.1 , __UpperCamelCase :Optional[Any]=0.0 , __UpperCamelCase :Tuple=0.1 , __UpperCamelCase :List[str]=None , __UpperCamelCase :Optional[int]=1e-9 , __UpperCamelCase :List[Any]="mean" , __UpperCamelCase :List[Any]="relative_shift" , __UpperCamelCase :Tuple=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :int=True , **__UpperCamelCase :Any , ): A = vocab_size A = block_sizes A = [1] * len(__UpperCamelCase ) if block_repeats is None else block_repeats assert len(__UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." A = num_decoder_layers A = d_model A = n_head A = d_head A = d_inner A = hidden_act A = hidden_dropout A = attention_dropout A = activation_dropout A = initializer_range A = initializer_std A = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." A = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." A = attention_type A = separate_cls A = truncate_seq A = pool_q_only super().__init__(**__UpperCamelCase ) @property def lowerCamelCase ( self :List[Any] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :List[Any] ): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def lowerCamelCase ( self :str ): return len(self.block_sizes ) @num_blocks.setter def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Any ): raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
524
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = 42 class _UpperCAmelCase ( nn.Module ): def __init__( self :Tuple , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :int=("DownEncoderBlock2D",) , __UpperCamelCase :Dict=(64,) , __UpperCamelCase :str=2 , __UpperCamelCase :List[str]=32 , __UpperCamelCase :str="silu" , __UpperCamelCase :str=True , ): super().__init__() A = layers_per_block A = torch.nn.Convad( __UpperCamelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(__UpperCamelCase ): A = output_channel A = block_out_channels[i] A = i == len(__UpperCamelCase ) - 1 A = get_down_block( __UpperCamelCase , num_layers=self.layers_per_block , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__UpperCamelCase , resnet_groups=__UpperCamelCase , attention_head_dim=__UpperCamelCase , temb_channels=__UpperCamelCase , ) self.down_blocks.append(__UpperCamelCase ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__UpperCamelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCamelCase , temb_channels=__UpperCamelCase , ) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCamelCase , eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] , __UpperCamelCase , 3 , padding=1 ) A = False def lowerCamelCase ( self :Tuple , __UpperCamelCase :str ): A = x A = self.conv_in(__UpperCamelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCamelCase :List[str] ): def custom_forward(*__UpperCamelCase :Optional[Any] ): return module(*__UpperCamelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCamelCase ) , __UpperCamelCase , use_reentrant=__UpperCamelCase ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCamelCase , use_reentrant=__UpperCamelCase ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCamelCase ) , __UpperCamelCase ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCamelCase ) else: # down for down_block in self.down_blocks: A = down_block(__UpperCamelCase ) # middle A = self.mid_block(__UpperCamelCase ) # post-process A = self.conv_norm_out(__UpperCamelCase ) A = self.conv_act(__UpperCamelCase ) A = self.conv_out(__UpperCamelCase ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self :int , __UpperCamelCase :List[str]=3 , __UpperCamelCase :int=3 , __UpperCamelCase :str=("UpDecoderBlock2D",) , __UpperCamelCase :Tuple=(64,) , __UpperCamelCase :Union[str, Any]=2 , __UpperCamelCase :str=32 , __UpperCamelCase :Union[str, Any]="silu" , __UpperCamelCase :int="group" , ): super().__init__() A = layers_per_block A = nn.Convad( __UpperCamelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == "spatial" else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__UpperCamelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCamelCase , temb_channels=__UpperCamelCase , ) # up A = list(reversed(__UpperCamelCase ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCamelCase ): A = output_channel A = reversed_block_out_channels[i] A = i == len(__UpperCamelCase ) - 1 A = get_up_block( __UpperCamelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__UpperCamelCase , resnet_groups=__UpperCamelCase , attention_head_dim=__UpperCamelCase , temb_channels=__UpperCamelCase , resnet_time_scale_shift=__UpperCamelCase , ) self.up_blocks.append(__UpperCamelCase ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] , __UpperCamelCase ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCamelCase , eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] , __UpperCamelCase , 3 , padding=1 ) A = False def lowerCamelCase ( self :str , __UpperCamelCase :Dict , __UpperCamelCase :Union[str, Any]=None ): A = z A = self.conv_in(__UpperCamelCase ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCamelCase :Union[str, Any] ): def custom_forward(*__UpperCamelCase :Union[str, Any] ): return module(*__UpperCamelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCamelCase , __UpperCamelCase , use_reentrant=__UpperCamelCase ) A = sample.to(__UpperCamelCase ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , use_reentrant=__UpperCamelCase ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCamelCase , __UpperCamelCase ) A = sample.to(__UpperCamelCase ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase ) else: # middle A = self.mid_block(__UpperCamelCase , __UpperCamelCase ) A = sample.to(__UpperCamelCase ) # up for up_block in self.up_blocks: A = up_block(__UpperCamelCase , __UpperCamelCase ) # post-process if latent_embeds is None: A = self.conv_norm_out(__UpperCamelCase ) else: A = self.conv_norm_out(__UpperCamelCase , __UpperCamelCase ) A = self.conv_act(__UpperCamelCase ) A = self.conv_out(__UpperCamelCase ) return sample class _UpperCAmelCase ( nn.Module ): def __init__( self :int , __UpperCamelCase :List[str] , __UpperCamelCase :Tuple , __UpperCamelCase :List[Any] , __UpperCamelCase :List[str]=None , __UpperCamelCase :Union[str, Any]="random" , __UpperCamelCase :int=False , __UpperCamelCase :Dict=True ): super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: A = n_e A = sane_index_shape def lowerCamelCase ( self :Any , __UpperCamelCase :Union[str, Any] ): A = inds.shape assert len(__UpperCamelCase ) > 1 A = inds.reshape(ishape[0] , -1 ) A = self.used.to(__UpperCamelCase ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(__UpperCamelCase ) def lowerCamelCase ( self :List[str] , __UpperCamelCase :Union[str, Any] ): A = inds.shape assert len(__UpperCamelCase ) > 1 A = inds.reshape(ishape[0] , -1 ) A = self.used.to(__UpperCamelCase ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCamelCase ) return back.reshape(__UpperCamelCase ) def lowerCamelCase ( self :Dict , __UpperCamelCase :Optional[Any] ): # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 , 2 , 3 , 1 ).contiguous() A = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(__UpperCamelCase , self.embedding.weight ) , dim=1 ) A = self.embedding(__UpperCamelCase ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A = self.remap_to_used(__UpperCamelCase ) A = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase ( self :Dict , __UpperCamelCase :List[Any] , __UpperCamelCase :Union[str, Any] ): # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] , -1 ) # add batch axis A = self.unmap_to_all(__UpperCamelCase ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(__UpperCamelCase ) if shape is not None: A = z_q.view(__UpperCamelCase ) # reshape back to match original input shape A = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _UpperCAmelCase ( lowercase_ ): def __init__( self :int , __UpperCamelCase :int , __UpperCamelCase :Dict=False ): A = parameters A, A = torch.chunk(__UpperCamelCase , 2 , dim=1 ) A = torch.clamp(self.logvar , -30.0 , 20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase ( self :Dict , __UpperCamelCase :Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape , generator=__UpperCamelCase , device=self.parameters.device , dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def lowerCamelCase ( self :Tuple , __UpperCamelCase :Any=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Any , __UpperCamelCase :Tuple=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCamelCase ) def lowerCamelCase ( self :Dict ): return self.mean
524
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __a : List[Any] = get_tests_dir("fixtures") __a : List[Any] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __a : Dict = get_tests_dir("fixtures/dummy-config.json") class __lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = 0 def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __A = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __A = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __A = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __A = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __A = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __A = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __A = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase_ ( self : int ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __A = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(UpperCamelCase_ ): __A = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __A = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __A = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __A = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __A = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __A = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self : str ): """simple docstring""" class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __A = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __A = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __A = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
637
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __lowercase ( lowercase_ ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = tempfile.mkdtemp() __A = 5 # Realm tok __A = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __A = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __A = os.path.join(UpperCamelCase_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __A = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = RealmConfig(num_block_records=self.num_block_records ) return config def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = np.array( [ B"""This is the first record""", B"""This is the second record""", B"""This is the third record""", B"""This is the fourth record""", B"""This is the fifth record""", B"""This is a longer longer longer record""", ] , dtype=UpperCamelCase_ , ) return block_records def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = self.get_config() __A = self.get_dummy_retriever() __A = retriever.tokenizer __A = np.array([0, 3] , dtype="""long""" ) __A = tokenizer(["""Test question"""] ).input_ids __A = tokenizer( ["""the fourth"""] , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ).input_ids __A = config.reader_seq_len __A , __A , __A , __A = retriever( UpperCamelCase_ , UpperCamelCase_ , answer_ids=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors="""np""" ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.get_config() __A = self.get_dummy_retriever() __A = retriever.tokenizer __A = np.array([0, 3, 5] , dtype="""long""" ) __A = tokenizer(["""Test question"""] ).input_ids __A = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ).input_ids __A = config.reader_seq_len __A , __A , __A , __A = retriever( UpperCamelCase_ , UpperCamelCase_ , answer_ids=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , UpperCamelCase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , UpperCamelCase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , UpperCamelCase_ ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path __A = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __A = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) __A = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
637
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : str = CTRLTokenizer __lowercase : Any = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCamelCase = dict(zip(_a , range(len(_a ) ) ) ) UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __UpperCamelCase ( self , **A_ ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCamelCase = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
720
import os _UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowercase ) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowercase ) UpperCamelCase = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
3
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(_lowerCAmelCase , 2 ) - pow(_lowerCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowerCAmelCase , 2 ) - pow(_lowerCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowerCAmelCase , 2 ) + pow(_lowerCAmelCase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : pyspark.sql.DataFrame , UpperCAmelCase__ : Optional[NamedSplit] = None , UpperCAmelCase__ : Optional[Features] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : str = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : str = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : str = "arrow" , **UpperCAmelCase__ : str , ) ->Tuple: '''simple docstring''' super().__init__( split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = load_from_cache_file A__ = file_format A__ = Spark( df=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , working_dir=UpperCAmelCase__ , **UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split) A__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
177
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 0 while number > 0: A__ = number % 10 sum_of_digits += last_digit A__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int: """simple docstring""" A__ = factorial(lowercase_ ) A__ = split_and_add(lowercase_ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
177
1
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = cva.getAffineTransform(UpperCAmelCase__ ,UpperCAmelCase__ ) return cva.warpAffine(UpperCAmelCase__ ,UpperCAmelCase__ ,(rows, cols) ) if __name__ == "__main__": # read original image snake_case : int = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value snake_case : Dict = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case , snake_case : Tuple = gray_img.shape # set different points to rotate image snake_case : Any = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) snake_case : List[str] = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) snake_case : int = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) snake_case : int = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list snake_case : Optional[int] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case : List[str] = plt.figure(1) snake_case : int = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
605
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate _SCREAMING_SNAKE_CASE = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _SCREAMING_SNAKE_CASE = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
605
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
716
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class A_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self: Any ): __lowerCamelCase : Tuple = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowerCamelCase : Any = torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.7_5 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) __lowerCamelCase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Any = generator.manual_seed(0 ) __lowerCamelCase : Dict = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.7_5 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _snake_case ( self: int ): __lowerCamelCase : Tuple = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Any = 'cyberpunk 2077' __lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowerCamelCase : List[Any] = torch.manual_seed(0 ) __lowerCamelCase : Any = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.7_5 , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __lowerCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : List[str] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowerCamelCase : Optional[Any] = 'A painting of a squirrel eating a burger ' __lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCamelCase : Any = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images __lowerCamelCase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : List[Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowerCamelCase : List[str] = pipe.image_variation(a , generator=a , output_type='numpy' ).images __lowerCamelCase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : Dict = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
230
0
'''simple docstring''' import random def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[int] ) -> Any: __snake_case : Union[str, Any] = a[left_index] __snake_case : List[str] = left_index + 1 for j in range(left_index + 1 ,_UpperCAmelCase ): if a[j] < pivot: __snake_case , __snake_case : List[Any] = a[i], a[j] i += 1 __snake_case , __snake_case : Optional[int] = a[i - 1], a[left_index] return i - 1 def a_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: if left < right: __snake_case : List[str] = random.randint(_UpperCAmelCase ,right - 1 ) __snake_case , __snake_case : Dict = ( a[left], a[pivot], ) # switches the pivot with the left most bound __snake_case : List[Any] = partition(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) quick_sort_random( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _UpperCAmelCase ,pivot_index + 1 ,_UpperCAmelCase ) # recursive quicksort to the right of the pivot point def a_ ( ) -> Tuple: __snake_case : Optional[int] = input('Enter numbers separated by a comma:\n' ).strip() __snake_case : List[str] = [int(_UpperCAmelCase ) for item in user_input.split(',' )] quick_sort_random(_UpperCAmelCase ,0 ,len(_UpperCAmelCase ) ) print(_UpperCAmelCase ) if __name__ == "__main__": main()
286
'''simple docstring''' import functools def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : list[int] ) -> int: # Validation if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) or not all(isinstance(_UpperCAmelCase ,_UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_UpperCAmelCase ) != 3 or not all(isinstance(_UpperCAmelCase ,_UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_UpperCAmelCase ) == 0: return 0 if min(_UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_UpperCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) __snake_case : str = set(_UpperCAmelCase ) @functools.cache def dynamic_programming(_UpperCAmelCase : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 30 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
286
1
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch UpperCAmelCase : int = True except ImportError: UpperCAmelCase : Tuple = False try: from torch.hub import _get_torch_home UpperCAmelCase : int = _get_torch_home() except ImportError: UpperCAmelCase : Tuple = os.path.expanduser( os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch''')) ) UpperCAmelCase : Tuple = os.path.join(torch_cache_home, '''transformers''') UpperCAmelCase : Dict = '''https://cdn.huggingface.co''' UpperCAmelCase : Any = '''https://s3.amazonaws.com/models.huggingface.co/bert''' UpperCAmelCase : List[Any] = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1]) UpperCAmelCase : List[str] = os.path.join(PATH, '''config.yaml''') UpperCAmelCase : Optional[Any] = os.path.join(PATH, '''attributes.txt''') UpperCAmelCase : Union[str, Any] = os.path.join(PATH, '''objects.txt''') UpperCAmelCase : int = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path) UpperCAmelCase : int = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE) UpperCAmelCase : Union[str, Any] = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE) UpperCAmelCase : List[str] = '''pytorch_model.bin''' UpperCAmelCase : List[Any] = '''config.yaml''' def _SCREAMING_SNAKE_CASE ( a=OBJECTS , a=ATTRIBUTES ) -> List[str]: __A : Optional[int] = [] with open(a ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) __A : Union[str, Any] = [] with open(a ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def _SCREAMING_SNAKE_CASE ( a ) -> Optional[int]: __A : List[str] = OrderedDict() with open(a , 'rb' ) as f: __A : Dict = pkl.load(a )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): __A : Tuple = ckp.pop(a ) if isinstance(a , np.ndarray ): __A : Dict = torch.tensor(a ) else: assert isinstance(a , torch.tensor ), type(a ) __A : Dict = v return r class _A: """simple docstring""" UpperCamelCase : Dict = {} def __init__( self , _A , _A = "root" , _A=0 ): __A : Union[str, Any] = name __A : int = level __A : Optional[Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() __A : Union[str, Any] = copy.deepcopy(_A ) __A : int = copy.deepcopy(_A ) if isinstance(_A , _A ): __A : Optional[int] = Config(_A , name=_A , level=level + 1 ) __A : List[str] = v setattr(self , _A , _A ) __A : Optional[Any] = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , _A , _A ): __A : List[Any] = val __A : Any = val __A : Tuple = key.split('.' ) __A : List[Any] = len(_A ) - 1 __A : Dict = self._pointer if len(_A ) > 1: for i, l in enumerate(_A ): if hasattr(self , _A ) and isinstance(getattr(self , _A ) , _A ): setattr(getattr(self , _A ) , '.'.join(levels[i:] ) , _A ) if l == last_level: __A : Tuple = val else: __A : List[Any] = pointer[l] def UpperCAmelCase_ ( self ): return self._pointer def UpperCAmelCase_ ( self , _A , _A ): with open(F"""{file_name}""" , 'w' ) as stream: dump(_A , _A ) def UpperCAmelCase_ ( self , _A , _A ): with open(F"""{file_name}""" , 'w' ) as stream: json.dump(_A , _A ) @staticmethod def UpperCAmelCase_ ( _A ): with open(_A ) as stream: __A : str = load(_A , Loader=_A ) return data def __str__( self ): __A : int = ' ' if self._name != "root": __A : Any = F"""{t * (self._level-1)}{self._name}:\n""" else: __A : Any = '' __A : List[str] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_A , _A ): r += F"""{t * (self._level)}{v}\n""" self._level += 1 else: r += F"""{t * (self._level)}{k}: {v} ({type(_A ).__name__})\n""" __A : List[str] = level return r[:-1] @classmethod def UpperCAmelCase_ ( cls , _A , **_A ): __A : Union[str, Any] = cls.get_config_dict(_A , **_A ) return cls(_A ) @classmethod def UpperCAmelCase_ ( cls , _A , **_A ): __A : Dict = kwargs.pop('cache_dir' , _A ) __A : Tuple = kwargs.pop('force_download' , _A ) __A : str = kwargs.pop('resume_download' , _A ) __A : List[Any] = kwargs.pop('proxies' , _A ) __A : Dict = kwargs.pop('local_files_only' , _A ) if os.path.isdir(_A ): __A : int = os.path.join(_A , _A ) elif os.path.isfile(_A ) or is_remote_url(_A ): __A : int = pretrained_model_name_or_path else: __A : List[str] = hf_bucket_url(_A , filename=_A , use_cdn=_A ) try: # Load from URL or cache if already cached __A : Union[str, Any] = cached_path( _A , cache_dir=_A , force_download=_A , proxies=_A , resume_download=_A , local_files_only=_A , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __A : List[str] = Config.load_yaml(_A ) except EnvironmentError: __A : int = 'Can\'t load config for' raise EnvironmentError(_A ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(_A ), kwargs def _SCREAMING_SNAKE_CASE ( a ) -> Tuple: __A : List[Any] = torch.load('dump.pt' , map_location=in_tensor.device ) __A : Any = in_tensor.numpy() __A : Optional[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(a , a , rtol=0.01 , atol=0.1 ), ( F"""{sum([1 for x in np.isclose(a , a , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def _SCREAMING_SNAKE_CASE ( a ) -> str: __A : List[str] = urlparse(a ) return parsed.scheme in ("http", "https") def _SCREAMING_SNAKE_CASE ( a , a , a=True ) -> str: __A : Dict = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __A : List[Any] = '/' not in model_id if legacy_format: return F"""{endpoint}/{model_id}-{filename}""" else: return F"""{endpoint}/{model_id}/{filename}""" def _SCREAMING_SNAKE_CASE ( a , a , a=None , a=0 , a=None , ) -> str: __A : int = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(a , a ): ua += "; " + "; ".join('{}/{}'.format(a , a ) for k, v in user_agent.items() ) elif isinstance(a , a ): ua += "; " + user_agent __A : Tuple = {'user-agent': ua} if resume_size > 0: __A : str = 'bytes=%d-' % (resume_size,) __A : List[Any] = requests.get(a , stream=a , proxies=a , headers=a ) if response.status_code == 4_16: # Range not satisfiable return __A : List[str] = response.headers.get('Content-Length' ) __A : Optional[int] = resume_size + int(a ) if content_length is not None else None __A : int = tqdm( unit='B' , unit_scale=a , total=a , initial=a , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(a ) ) temp_file.write(a ) progress.close() def _SCREAMING_SNAKE_CASE ( a , a=None , a=False , a=None , a=10 , a=False , a=None , a=False , ) -> Optional[Any]: if cache_dir is None: __A : Tuple = TRANSFORMERS_CACHE if isinstance(a , a ): __A : Dict = str(a ) os.makedirs(a , exist_ok=a ) __A : int = None if not local_files_only: try: __A : Dict = requests.head(a , allow_redirects=a , proxies=a , timeout=a ) if response.status_code == 2_00: __A : List[Any] = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __A : Any = url_to_filename(a , a ) # get cache path to put the file __A : List[str] = os.path.join(a , a ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(a ): return cache_path else: __A : str = [ file for file in fnmatch.filter(os.listdir(a ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(a ) > 0: return os.path.join(a , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(a ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __A : List[Any] = cache_path + '.lock' with FileLock(a ): # If the download just completed while the lock was activated. if os.path.exists(a ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __A : Union[str, Any] = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(a , 'a+b' ) as f: yield f __A : str = _resumable_file_manager if os.path.exists(a ): __A : List[str] = os.stat(a ).st_size else: __A : str = 0 else: __A : List[Any] = partial(tempfile.NamedTemporaryFile , dir=a , delete=a ) __A : Union[str, Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , a , temp_file.name , ) http_get( a , a , proxies=a , resume_size=a , user_agent=a , ) os.replace(temp_file.name , a ) __A : Dict = {'url': url, 'etag': etag} __A : str = cache_path + '.json' with open(a , 'w' ) as meta_file: json.dump(a , a ) return cache_path def _SCREAMING_SNAKE_CASE ( a , a=None ) -> Optional[Any]: __A : str = url.encode('utf-8' ) __A : Union[str, Any] = shaaaa(a ) __A : Optional[int] = url_hash.hexdigest() if etag: __A : Tuple = etag.encode('utf-8' ) __A : List[Any] = shaaaa(a ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def _SCREAMING_SNAKE_CASE ( a , a=None , a=False , a=None , a=False , a=None , a=False , a=False , a=False , ) -> Optional[Any]: if cache_dir is None: __A : str = TRANSFORMERS_CACHE if isinstance(a , a ): __A : List[str] = str(a ) if isinstance(a , a ): __A : List[Any] = str(a ) if is_remote_url(a ): # URL, so get it from the cache (downloading if necessary) __A : Optional[Any] = get_from_cache( a , cache_dir=a , force_download=a , proxies=a , resume_download=a , user_agent=a , local_files_only=a , ) elif os.path.exists(a ): # File, and it exists. __A : List[str] = url_or_filename elif urlparse(a ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(a ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(a ) ) if extract_compressed_file: if not is_zipfile(a ) and not tarfile.is_tarfile(a ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __A : Optional[int] = os.path.split(a ) __A : Union[str, Any] = output_file.replace('.' , '-' ) + '-extracted' __A : Dict = os.path.join(a , a ) if os.path.isdir(a ) and os.listdir(a ) and not force_extract: return output_path_extracted # Prevent parallel extractions __A : List[Any] = output_path + '.lock' with FileLock(a ): shutil.rmtree(a , ignore_errors=a ) os.makedirs(a ) if is_zipfile(a ): with ZipFile(a , 'r' ) as zip_file: zip_file.extractall(a ) zip_file.close() elif tarfile.is_tarfile(a ): __A : int = tarfile.open(a ) tar_file.extractall(a ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(a ) ) return output_path_extracted return output_path def _SCREAMING_SNAKE_CASE ( a , a="," ) -> List[str]: assert isinstance(a , a ) if os.path.isfile(a ): with open(a ) as f: __A : Optional[int] = eval(f.read() ) else: __A : List[Any] = requests.get(a ) try: __A : Tuple = requests.json() except Exception: __A : str = req.content.decode() assert data is not None, "could not connect" try: __A : int = eval(a ) except Exception: __A : int = data.split('\n' ) req.close() return data def _SCREAMING_SNAKE_CASE ( a ) -> int: __A : List[str] = requests.get(a ) __A : Any = np.array(Image.open(BytesIO(response.content ) ) ) return img def _SCREAMING_SNAKE_CASE ( a ) -> Union[str, Any]: __A : Dict = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(a ) with open(a , 'rb' ) as stream: __A : Any = pkl.load(a ) __A : Dict = weights.pop('model' ) __A : Any = {} for k, v in model.items(): __A : int = torch.from_numpy(a ) if "running_var" in k: __A : Union[str, Any] = torch.tensor([0] ) __A : Optional[Any] = k.replace('running_var' , 'num_batches_tracked' ) __A : int = zero return new def _SCREAMING_SNAKE_CASE ( ) -> List[str]: print(F"""{os.path.abspath(os.path.join(a , os.pardir ) )}/demo.ipynb""" ) def _SCREAMING_SNAKE_CASE ( a , a="RGB" ) -> Tuple: assert isinstance(a , a ) if os.path.isfile(a ): __A : Any = cva.imread(a ) else: __A : List[str] = get_image_from_url(a ) assert img is not None, F"""could not connect to: {im}""" __A : Any = cva.cvtColor(a , cva.COLOR_BGR2RGB ) if input_format == "RGB": __A : Union[str, Any] = img[:, :, ::-1] return img def _SCREAMING_SNAKE_CASE ( a , a=1 ) -> Dict: return (images[i : i + batch] for i in range(0 , len(a ) , a ))
700
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _A( snake_case__ ): """simple docstring""" def __init__( self , _A ): __A : Any = data def __iter__( self ): for element in self.data: yield element def _SCREAMING_SNAKE_CASE ( a=True ) -> Any: __A : List[Any] = Accelerator(even_batches=a ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _SCREAMING_SNAKE_CASE ( a , a , a , a = False ) -> str: if iterable: __A : int = DummyIterableDataset(torch.as_tensor(range(a ) ) ) else: __A : Optional[Any] = TensorDataset(torch.as_tensor(range(a ) ) ) __A : Optional[Any] = DataLoader(a , batch_size=a ) __A : Optional[int] = accelerator.prepare(a ) return dl def _SCREAMING_SNAKE_CASE ( a , a , a , a , a , ) -> Union[str, Any]: __A : Optional[int] = create_dataloader(accelerator=a , dataset_size=a , batch_size=a ) __A : Tuple = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : int = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : str = create_accelerator(even_batches=a ) verify_dataloader_batch_sizes( a , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( a , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _SCREAMING_SNAKE_CASE ( ) -> str: __A : Optional[Any] = create_accelerator(even_batches=a ) __A : str = torch.nn.Linear(1 , 1 ) __A : Optional[int] = accelerator.prepare(a ) __A : Optional[int] = create_dataloader(a , dataset_size=3 , batch_size=1 ) __A : str = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(a ): __A : Dict = ddp_model(batch[0].float() ) __A : List[str] = output.sum() loss.backward() batch_idxs.append(a ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _SCREAMING_SNAKE_CASE ( a ) -> List[Any]: with warnings.catch_warnings(record=a ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , a ) assert "only supported for multi-GPU" in str(w[-1].message ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __A : int = True __A : Union[str, Any] = False __A : Optional[int] = create_accelerator(even_batches=a ) __A : int = torch.nn.Linear(1 , 1 ) __A : List[Any] = accelerator.prepare(a ) __A : int = create_dataloader(a , dataset_size=3 , batch_size=1 ) __A : Optional[int] = create_dataloader(a , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): __A : List[str] = train_dl.batch_sampler.even_batches __A : Dict = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : Any = True __A : List[Any] = False __A : Tuple = create_accelerator(even_batches=a ) __A : List[str] = torch.nn.Linear(1 , 1 ) __A : Optional[Any] = accelerator.prepare(a ) create_dataloader(a , dataset_size=3 , batch_size=1 , iterable=a ) __A : int = create_dataloader(a , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): __A : Tuple = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE ( ) -> Dict: __A : Any = create_accelerator() __A : Union[str, Any] = torch.nn.Linear(1 , 1 ) __A : str = accelerator.prepare(a ) create_dataloader(a , dataset_size=3 , batch_size=1 , iterable=a ) with warnings.catch_warnings(record=a ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=a ): pass assert issubclass(w[-1].category , a ) assert "only supported for map-style datasets" in str(w[-1].message ) def _SCREAMING_SNAKE_CASE ( ) -> List[str]: __A : str = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) __A : int = accelerator.state.distributed_type __A : Tuple = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(a ) __A : str = original_state if __name__ == "__main__": main()
77
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” __snake_case = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __snake_case = 0 __snake_case = 0XE000 __snake_case = 0XE001 __snake_case = 0XE002 __snake_case = 0XE003 __snake_case = 0XE004 # Maps special codepoints to human-readable names. __snake_case = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __snake_case = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowercase ( A__ ): """simple docstring""" _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase_=chr(UpperCamelCase_ ) , UpperCamelCase_=chr(UpperCamelCase_ ) , UpperCamelCase_=chr(UpperCamelCase_ ) , UpperCamelCase_=chr(UpperCamelCase_ ) , UpperCamelCase_=chr(UpperCamelCase_ ) , UpperCamelCase_=chr(UpperCamelCase_ ) , UpperCamelCase_=False , UpperCamelCase_=2048 , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token UpperCamelCase__ :Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token UpperCamelCase__ :List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token UpperCamelCase__ :Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token UpperCamelCase__ :Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ :List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , model_max_length=UpperCamelCase_ , **UpperCamelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. UpperCamelCase__ :Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCamelCase__ :Any = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCamelCase__ :Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCamelCase__ :Any = UNICODE_VOCAB_SIZE UpperCamelCase__ :Optional[Any] = len(self._special_codepoints ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self._unicode_vocab_size def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return list(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' try: return ord(UpperCamelCase_ ) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase_ ) except TypeError: raise ValueError(F'''invalid id: {index}''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :Any = [self.sep_token_id] UpperCamelCase__ :Tuple = [self.cls_token_id] UpperCamelCase__ :Any = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Any = [1] + ([0] * len(UpperCamelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase_ )) + [1] return result def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :int = [self.sep_token_id] UpperCamelCase__ :Any = [self.cls_token_id] UpperCamelCase__ :str = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' return ()
189
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 ) -> Dict: '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ :Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ :str = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ :Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ :str = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ :Tuple = 8 else: UpperCamelCase__ :int = None return tokenizer.pad( __a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCamelCase__ :Any = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a , drop_last=__a ) UpperCamelCase__ :Any = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def a ( __a , __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :List[Any] = config['''lr'''] UpperCamelCase__ :List[str] = int(config['''num_epochs'''] ) UpperCamelCase__ :int = int(config['''seed'''] ) UpperCamelCase__ :str = int(config['''batch_size'''] ) UpperCamelCase__ :List[str] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCamelCase__ :Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase__ :Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase__ :Dict = MAX_GPU_BATCH_SIZE set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Tuple = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :List[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ :Optional[int] = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ :Union[str, Any] = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler UpperCamelCase__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase__ :Dict = model(**__a ) UpperCamelCase__ :Union[str, Any] = outputs.loss UpperCamelCase__ :Tuple = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :Optional[int] = model(**__a ) UpperCamelCase__ :int = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ :List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __a ) def a ( ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCamelCase__ :int = parser.parse_args() UpperCamelCase__ :int = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
189
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class _lowerCAmelCase ( _lowercase ): A__ = 'rwkv' A__ = {'max_position_embeddings': 'context_length'} def __init__( self , __UpperCAmelCase=5_0277 , __UpperCAmelCase=1024 , __UpperCAmelCase=4096 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=6 , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ): lowerCAmelCase__ : Optional[int] = vocab_size lowerCAmelCase__ : Union[str, Any] = context_length lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCAmelCase__ : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCAmelCase__ : Dict = layer_norm_epsilon lowerCAmelCase__ : Union[str, Any] = rescale_every lowerCAmelCase__ : List[str] = use_cache lowerCAmelCase__ : Dict = bos_token_id lowerCAmelCase__ : List[Any] = eos_token_id super().__init__( tie_word_embeddings=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
712
import os from datetime import datetime as dt from github import Github lowerCAmelCase_ = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def __lowerCAmelCase ( ) -> List[Any]: lowerCAmelCase__ : str = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCAmelCase__ : str = g.get_repo('''huggingface/diffusers''' ) lowerCAmelCase__ : List[str] = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCAmelCase__ : Optional[Any] = sorted(issue.get_comments() , key=lambda UpperCamelCase : i.created_at , reverse=UpperCamelCase ) lowerCAmelCase__ : int = comments[0] if len(UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
470
0