code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase : str = None try: import msvcrt except ImportError: lowerCAmelCase : Optional[int] = None try: import fcntl except ImportError: lowerCAmelCase : List[str] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ lowerCAmelCase : Union[str, Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] lowerCAmelCase : List[Any] = """3.0.12""" lowerCAmelCase : Union[str, Any] = None def A_ ( ): global _logger SCREAMING_SNAKE_CASE_: Any = _logger or logging.getLogger(__name__ ) return _logger class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: int = lock_file return None def __str__( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: str = F"The file lock '{self.lock_file}' could not be acquired." return temp class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Tuple = lock return None def __enter__( self : Dict): return self.lock def __exit__( self : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple): self.lock.release() return None class __lowercase : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]=-1 , lowerCAmelCase__ : Optional[Any]=None): SCREAMING_SNAKE_CASE_: Optional[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long SCREAMING_SNAKE_CASE_: List[Any] = self.hash_filename_if_too_long(lowerCAmelCase__ , lowerCAmelCase__) # The path to the lock file. SCREAMING_SNAKE_CASE_: List[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. SCREAMING_SNAKE_CASE_: Union[str, Any] = None # The default timeout value. SCREAMING_SNAKE_CASE_: List[str] = timeout # We use this lock primarily for the lock counter. SCREAMING_SNAKE_CASE_: Optional[int] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. SCREAMING_SNAKE_CASE_: int = 0 return None @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self._lock_file @property def _SCREAMING_SNAKE_CASE ( self : Tuple): return self._timeout @timeout.setter def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Tuple = float(lowerCAmelCase__) return None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): raise NotImplementedError() def _SCREAMING_SNAKE_CASE ( self : int): raise NotImplementedError() @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self._lock_file_fd is not None def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : int=0.05): # Use the default timeout, if no timeout is provided. if timeout is None: SCREAMING_SNAKE_CASE_: Dict = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 SCREAMING_SNAKE_CASE_: int = id(self) SCREAMING_SNAKE_CASE_: List[str] = self._lock_file SCREAMING_SNAKE_CASE_: str = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}") self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}") break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}") raise Timeout(self._lock_file) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...") time.sleep(lowerCAmelCase__) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: SCREAMING_SNAKE_CASE_: Optional[int] = max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int]=False): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: SCREAMING_SNAKE_CASE_: Optional[int] = id(self) SCREAMING_SNAKE_CASE_: Tuple = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}") self._release() SCREAMING_SNAKE_CASE_: int = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}") return None def __enter__( self : Tuple): self.acquire() return self def __exit__( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict): self.release() return None def __del__( self : List[Any]): self.release(force=lowerCAmelCase__) return None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[str] = os.path.basename(lowerCAmelCase__) if len(lowerCAmelCase__) > max_length and max_length > 0: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.dirname(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = str(hash(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Tuple = filename[: max_length - len(lowerCAmelCase__) - 8] + "..." + hashed_filename + ".lock" return os.path.join(lowerCAmelCase__ , lowerCAmelCase__) else: return path class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=-1 , lowerCAmelCase__ : Dict=None): from .file_utils import relative_to_absolute_path super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = "\\\\?\\" + relative_to_absolute_path(self.lock_file) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: SCREAMING_SNAKE_CASE_: Tuple = os.open(self._lock_file , lowerCAmelCase__) except OSError: pass else: try: msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_NBLCK , 1) except OSError: os.close(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = fd return None def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = self._lock_file_fd SCREAMING_SNAKE_CASE_: Dict = None msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_UNLCK , 1) os.close(lowerCAmelCase__) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict=-1 , lowerCAmelCase__ : int=None): SCREAMING_SNAKE_CASE_: List[str] = os.statvfs(os.path.dirname(lowerCAmelCase__)).f_namemax super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: str = os.O_RDWR | os.O_CREAT | os.O_TRUNC SCREAMING_SNAKE_CASE_: List[str] = os.open(self._lock_file , lowerCAmelCase__) try: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Union[str, Any] = fd return None def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition SCREAMING_SNAKE_CASE_: int = self._lock_file_fd SCREAMING_SNAKE_CASE_: str = None fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN) os.close(lowerCAmelCase__) return None class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: SCREAMING_SNAKE_CASE_: List[str] = os.open(self._lock_file , lowerCAmelCase__) except OSError: pass else: SCREAMING_SNAKE_CASE_: Optional[int] = fd return None def _SCREAMING_SNAKE_CASE ( self : Tuple): os.close(self._lock_file_fd) SCREAMING_SNAKE_CASE_: Optional[Any] = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase : List[str] = None if msvcrt: lowerCAmelCase : Optional[Any] = WindowsFileLock elif fcntl: lowerCAmelCase : List[str] = UnixFileLock else: lowerCAmelCase : Dict = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
671
from itertools import count def A_ ( _UpperCAmelCase = 50 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
671
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = '''xlm-roberta''' def __init__( self : Union[str, Any] ,__A : Dict=3_0522 ,__A : Union[str, Any]=768 ,__A : Dict=12 ,__A : Union[str, Any]=12 ,__A : List[str]=3072 ,__A : Dict="gelu" ,__A : List[Any]=0.1 ,__A : Optional[int]=0.1 ,__A : Any=512 ,__A : int=2 ,__A : str=0.02 ,__A : List[Any]=1e-12 ,__A : Optional[Any]=1 ,__A : List[Any]=0 ,__A : List[Any]=2 ,__A : Tuple="absolute" ,__A : str=True ,__A : Tuple=None ,**__A : int ,) -> List[str]: super().__init__(pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,**__A ) _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = hidden_act _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = initializer_range _lowercase = layer_norm_eps _lowercase = position_embedding_type _lowercase = use_cache _lowercase = classifier_dropout class A_ ( UpperCAmelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
535
from itertools import count def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 50 ) -> int: _lowercase = [1] * min_block_length for n in count(snake_case__ ): fill_count_functions.append(1 ) for block_length in range(snake_case__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
535
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """layoutlmv3""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=50_265 , SCREAMING_SNAKE_CASE : Dict=768 , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : List[str]=12 , SCREAMING_SNAKE_CASE : int=3_072 , SCREAMING_SNAKE_CASE : str="gelu" , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Tuple=512 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : Dict=1E-5 , SCREAMING_SNAKE_CASE : Any=1 , SCREAMING_SNAKE_CASE : Dict=0 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1_024 , SCREAMING_SNAKE_CASE : Dict=128 , SCREAMING_SNAKE_CASE : Optional[Any]=128 , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Optional[Any]=32 , SCREAMING_SNAKE_CASE : int=128 , SCREAMING_SNAKE_CASE : Any=64 , SCREAMING_SNAKE_CASE : Optional[int]=256 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Union[str, Any]=224 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : Any=16 , SCREAMING_SNAKE_CASE : Union[str, Any]=None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): super().__init__( vocab_size=SCREAMING_SNAKE_CASE , hidden_size=SCREAMING_SNAKE_CASE , num_hidden_layers=SCREAMING_SNAKE_CASE , num_attention_heads=SCREAMING_SNAKE_CASE , intermediate_size=SCREAMING_SNAKE_CASE , hidden_act=SCREAMING_SNAKE_CASE , hidden_dropout_prob=SCREAMING_SNAKE_CASE , attention_probs_dropout_prob=SCREAMING_SNAKE_CASE , max_position_embeddings=SCREAMING_SNAKE_CASE , type_vocab_size=SCREAMING_SNAKE_CASE , initializer_range=SCREAMING_SNAKE_CASE , layer_norm_eps=SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) lowercase__ : str = max_ad_position_embeddings lowercase__ : str = coordinate_size lowercase__ : int = shape_size lowercase__ : str = has_relative_attention_bias lowercase__ : Tuple = rel_pos_bins lowercase__ : Any = max_rel_pos lowercase__ : Optional[Any] = has_spatial_attention_bias lowercase__ : Union[str, Any] = rel_ad_pos_bins lowercase__ : List[str] = max_rel_ad_pos lowercase__ : int = text_embed lowercase__ : Optional[int] = visual_embed lowercase__ : Optional[Any] = input_size lowercase__ : Any = num_channels lowercase__ : List[str] = patch_size lowercase__ : Dict = classifier_dropout class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = version.parse("""1.12""" ) @property def snake_case ( self : str ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def snake_case ( self : int ): return 1E-5 @property def snake_case ( self : Union[str, Any] ): return 12 def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : "ProcessorMixin" , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 40 , SCREAMING_SNAKE_CASE : int = 40 , ): setattr(processor.image_processor , "apply_ocr" , SCREAMING_SNAKE_CASE ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : Union[str, Any] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ : str = processor.tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence lowercase__ : Any = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase__ : Optional[int] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase__ : Dict = self._generate_dummy_images(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = dict( processor( SCREAMING_SNAKE_CASE , text=SCREAMING_SNAKE_CASE , boxes=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , ) ) return inputs
496
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ , lowercase__ : str = emb.weight.shape lowercase__ : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) lowercase__ : List[Any] = emb.weight.data return lin_layer def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__="facebook/mbart-large-en-ro" , lowerCamelCase__=False , lowerCamelCase__=False ): """simple docstring""" lowercase__ : int = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] remove_ignore_keys_(lowerCamelCase__ ) lowercase__ : Tuple = state_dict["encoder.embed_tokens.weight"].shape[0] lowercase__ : Optional[Any] = MBartConfig.from_pretrained(lowerCamelCase__ , vocab_size=lowerCamelCase__ ) if mbart_aa and finetuned: lowercase__ : str = "relu" lowercase__ : Optional[int] = state_dict["decoder.embed_tokens.weight"] lowercase__ : Optional[Any] = MBartForConditionalGeneration(lowerCamelCase__ ) model.model.load_state_dict(lowerCamelCase__ ) if finetuned: lowercase__ : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
496
1
"""simple docstring""" def __A ( a_ :int , a_ :int) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''') __a : Any = str(bin(a_))[2:] # remove the leading "0b" __a : Optional[Any] = str(bin(a_))[2:] # remove the leading "0b" __a : int = max(len(a_) , len(a_)) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''')) for char_a, char_b in zip(a_binary.zfill(a_) , b_binary.zfill(a_))) if __name__ == "__main__": import doctest doctest.testmod()
101
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''autoformer''' __lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "student_t" , _UpperCAmelCase = "nll" , _UpperCAmelCase = 1 , _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7] , _UpperCAmelCase = True , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 64 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 32 , _UpperCAmelCase = 32 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 100 , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = True , _UpperCAmelCase=True , _UpperCAmelCase = 10 , _UpperCAmelCase = 25 , _UpperCAmelCase = 3 , **_UpperCAmelCase , ): # time series specific configuration __a : Optional[int] = prediction_length __a : Optional[int] = context_length if context_length is not None else prediction_length __a : Union[str, Any] = distribution_output __a : str = loss __a : Optional[Any] = input_size __a : str = num_time_features __a : Optional[Any] = lags_sequence __a : Any = scaling __a : Optional[Any] = num_dynamic_real_features __a : str = num_static_real_features __a : Any = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __a : List[str] = cardinality else: __a : Any = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __a : Any = embedding_dimension else: __a : Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a : Union[str, Any] = num_parallel_samples # Transformer architecture configuration __a : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features __a : List[Any] = d_model __a : List[str] = encoder_attention_heads __a : Union[str, Any] = decoder_attention_heads __a : Optional[int] = encoder_ffn_dim __a : List[str] = decoder_ffn_dim __a : List[str] = encoder_layers __a : Optional[int] = decoder_layers __a : Union[str, Any] = dropout __a : Union[str, Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : List[str] = encoder_layerdrop __a : Any = decoder_layerdrop __a : Union[str, Any] = activation_function __a : Union[str, Any] = init_std __a : List[str] = use_cache # Autoformer __a : int = label_length __a : List[Any] = moving_average __a : str = autocorrelation_factor super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
101
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = (DPMSolverSinglestepScheduler,) _UpperCAmelCase : Tuple = (('''num_inference_steps''', 25),) def _SCREAMING_SNAKE_CASE ( self : List[str] , **lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf"), "variance_type": None, } config.update(**lowerCAmelCase__) return config def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Union[str, Any]=0 , **lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_: Dict = kwargs.pop("num_inference_steps" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self.dummy_sample SCREAMING_SNAKE_CASE_: List[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_: Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_: Any = self.get_scheduler_config(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = scheduler_class(**lowerCAmelCase__) scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals SCREAMING_SNAKE_CASE_: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = scheduler_class.from_pretrained(lowerCAmelCase__) new_scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals SCREAMING_SNAKE_CASE_: Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = sample, sample for t in range(lowerCAmelCase__ , time_step + scheduler.config.solver_order + 1): SCREAMING_SNAKE_CASE_: Dict = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__).prev_sample SCREAMING_SNAKE_CASE_: Union[str, Any] = new_scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : int): pass def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[str, Any]=0 , **lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: int = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_: Dict = kwargs.pop("num_inference_steps" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_sample SCREAMING_SNAKE_CASE_: int = 0.1 * sample SCREAMING_SNAKE_CASE_: List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_: Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = scheduler_class(**lowerCAmelCase__) scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_: List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = scheduler_class.from_pretrained(lowerCAmelCase__) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_: int = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE_: int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__).prev_sample SCREAMING_SNAKE_CASE_: Optional[int] = new_scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : int): if scheduler is None: SCREAMING_SNAKE_CASE_: Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_: Optional[int] = self.get_scheduler_config(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scheduler_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_: Union[str, Any] = self.get_scheduler_config(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scheduler_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = self.dummy_model() SCREAMING_SNAKE_CASE_: Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__) for i, t in enumerate(scheduler.timesteps): SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) SCREAMING_SNAKE_CASE_: str = 50 SCREAMING_SNAKE_CASE_: Dict = self.dummy_model() SCREAMING_SNAKE_CASE_: int = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__).prev_sample SCREAMING_SNAKE_CASE_: Dict = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2574) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : str): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): # make sure that iterating over schedulers with same config names gives same results # for defaults SCREAMING_SNAKE_CASE_: str = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) SCREAMING_SNAKE_CASE_: List[Any] = self.full_loop(scheduler=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1E-3 SCREAMING_SNAKE_CASE_: Dict = DEISMultistepScheduler.from_config(scheduler.config) SCREAMING_SNAKE_CASE_: Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config) SCREAMING_SNAKE_CASE_: Tuple = UniPCMultistepScheduler.from_config(scheduler.config) SCREAMING_SNAKE_CASE_: List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config) SCREAMING_SNAKE_CASE_: Optional[int] = self.full_loop(scheduler=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): self.check_over_configs(thresholding=lowerCAmelCase__) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , algorithm_type="dpmsolver++" , solver_order=lowerCAmelCase__ , solver_type=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase__ , solver_type=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , algorithm_type=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Optional[Any] = self.full_loop( solver_order=lowerCAmelCase__ , solver_type=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , algorithm_type=lowerCAmelCase__ , ) assert not torch.isnan(lowerCAmelCase__).any(), "Samples have nan numbers" def _SCREAMING_SNAKE_CASE ( self : List[Any]): self.check_over_configs(lower_order_final=lowerCAmelCase__) self.check_over_configs(lower_order_final=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): self.check_over_configs(lambda_min_clipped=-float("inf")) self.check_over_configs(lambda_min_clipped=-5.1) def _SCREAMING_SNAKE_CASE ( self : Any): self.check_over_configs(variance_type=lowerCAmelCase__) self.check_over_configs(variance_type="learned_range") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCAmelCase__ , time_step=0) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = self.full_loop() SCREAMING_SNAKE_CASE_: List[Any] = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2791) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = self.full_loop(use_karras_sigmas=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.2248) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = self.full_loop(prediction_type="v_prediction") SCREAMING_SNAKE_CASE_: int = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.1453) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Dict = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = torch.mean(torch.abs(lowerCAmelCase__)) assert abs(result_mean.item() - 0.0649) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_: List[Any] = self.get_scheduler_config(thresholding=lowerCAmelCase__ , dynamic_thresholding_ratio=0) SCREAMING_SNAKE_CASE_: Tuple = scheduler_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE_: int = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase__) for i, t in enumerate(scheduler.timesteps): SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__).prev_sample assert sample.dtype == torch.floataa
671
import re def A_ ( _UpperCAmelCase ): return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: SCREAMING_SNAKE_CASE_: List[Any] = split_input(_UpperCAmelCase ) if upper: SCREAMING_SNAKE_CASE_: List[str] = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: SCREAMING_SNAKE_CASE_: Optional[int] = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def A_ ( _UpperCAmelCase ): return to_simple_case(_UpperCAmelCase ) def A_ ( _UpperCAmelCase ): try: SCREAMING_SNAKE_CASE_: Optional[int] = to_simple_case(_UpperCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return to_complex_case(_UpperCAmelCase , _UpperCAmelCase , "_" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return to_complex_case(_UpperCAmelCase , _UpperCAmelCase , "-" ) if __name__ == "__main__": __import__("""doctest""").testmod()
671
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
702
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
from __future__ import annotations import numpy as np def UpperCamelCase_ ( __a ) -> Any: return np.maximum(0 , __a ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
37
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = LEDTokenizer _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int="replace" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=True , **lowerCamelCase__ : Union[str, Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : List[str] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : Optional[Any] = add_prefix_space a__ : List[str] = pre_tok_class(**lowerCamelCase__ ) a__ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Any = "post_processor" a__ : str = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: a__ : Optional[Any] = tuple(state["cls"] ) a__ : Optional[int] = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Dict = add_prefix_space a__ : int = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : List[Any] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : int = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : int = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): a__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : Union[str, Any] = value def _UpperCamelCase( self : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ): a__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : List[str] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : str = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: a__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Dict = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: a__ : Union[str, Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : List[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": a__ : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
1
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = BioGptTokenizer __UpperCamelCase = False def lowerCamelCase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[str] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): lowerCAmelCase : List[str] = '''lower newer''' lowerCAmelCase : List[str] = '''lower newer''' return input_text, output_text def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase : List[str] = '''lower''' lowerCAmelCase : Tuple = ['''low''', '''er</w>'''] lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = tokens + ['''<unk>'''] lowerCAmelCase : Tuple = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) lowerCAmelCase : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
700
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example snake_case__ : int = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ : Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _snake_case ( _snake_case : list[list[int]] ): lowerCAmelCase : Union[str, Any] = [] for i in range(len(_snake_case ) ): lowerCAmelCase : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_snake_case ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_snake_case ) - 1: neighbour_count += cells[i + 1][j] if i < len(_snake_case ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_snake_case ) return next_generation def _snake_case ( _snake_case : list[list[int]] , _snake_case : int ): lowerCAmelCase : int = [] for _ in range(_snake_case ): # Create output image lowerCAmelCase : Union[str, Any] = Image.new('''RGB''' , (len(cells[0] ), len(_snake_case )) ) lowerCAmelCase : Union[str, Any] = img.load() # Save cells to image for x in range(len(_snake_case ) ): for y in range(len(cells[0] ) ): lowerCAmelCase : Optional[int] = 255 - cells[y][x] * 255 lowerCAmelCase : List[Any] = (colour, colour, colour) # Save image images.append(_snake_case ) lowerCAmelCase : Union[str, Any] = new_generation(_snake_case ) return images if __name__ == "__main__": snake_case__ : Union[str, Any] = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
637
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Tuple = HfArgumentParser(lowerCamelCase_ ) lowerCAmelCase__ : Dict = parser.parse_args_into_dataclasses()[0] lowerCAmelCase__ : Optional[Any] = TensorFlowBenchmark(args=lowerCamelCase_ ) try: lowerCAmelCase__ : Optional[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase__ : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase__ : str = " ".join(str(lowerCamelCase_ ).split(" " )[:-1] ) lowerCAmelCase__ : str = "" lowerCAmelCase__ : int = eval(str(lowerCamelCase_ ).split(" " )[-1] ) lowerCAmelCase__ : Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCAmelCase__ : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase_ ) raise ValueError(lowerCamelCase_ ) benchmark.run() if __name__ == "__main__": main()
378
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" @wraps(lowerCamelCase_ ) def _inner_fn(*lowerCamelCase_ , **lowerCamelCase_ ): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , lowerCamelCase_ , ) return fn(*lowerCamelCase_ , **lowerCamelCase_ ) return _inner_fn
378
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __SCREAMING_SNAKE_CASE ( _lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : List[str] = True def UpperCAmelCase__ ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = XLMProphetNetTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = "[PAD]" _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(A_ ) , 1_012 ) def UpperCAmelCase__ ( self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = XLMProphetNetTokenizer(A_ , keep_accents=A_ ) _UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = "Hello World!" _UpperCAmelCase = [35_389, 6_672, 49, 2] self.assertListEqual(A_ , self.big_tokenizer.encode(A_ ) ) @slow def UpperCAmelCase__ ( self : Dict ): # fmt: off _UpperCAmelCase = {"input_ids": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
700
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __lowerCAmelCase = True except ImportError: __lowerCAmelCase = False __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCamelCase ( _lowerCAmelCase ) -> str: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __SCREAMING_SNAKE_CASE ( lowercase): @staticmethod def UpperCAmelCase__ ( __UpperCamelCase : ArgumentParser ): _UpperCAmelCase = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=__UpperCamelCase , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=__UpperCamelCase , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=__UpperCamelCase ) def __init__( self : List[Any] , __UpperCamelCase : bool , __UpperCamelCase : str , __UpperCamelCase : List[str]=None , *__UpperCamelCase : List[Any] ): _UpperCAmelCase = testing _UpperCAmelCase = testing_file _UpperCAmelCase = path def UpperCAmelCase__ ( self : List[Any] ): warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _UpperCAmelCase = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(__UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) _UpperCAmelCase = ( Path(__UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _UpperCAmelCase = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(__UpperCamelCase ) ) else: with open(self._testing_file , "r" ) as configuration_file: _UpperCAmelCase = json.load(__UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__UpperCamelCase , extra_context=__UpperCamelCase , ) _UpperCAmelCase = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: _UpperCAmelCase = json.load(__UpperCamelCase ) _UpperCAmelCase = configuration["lowercase_modelname"] _UpperCAmelCase = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F'''{directory}/configuration.json''' ) _UpperCAmelCase = "PyTorch" in generate_tensorflow_pytorch_and_flax _UpperCAmelCase = "TensorFlow" in generate_tensorflow_pytorch_and_flax _UpperCAmelCase = "Flax" in generate_tensorflow_pytorch_and_flax _UpperCAmelCase = F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=__UpperCamelCase ) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , "w" ): pass shutil.move( F'''{directory}/__init__.py''' , F'''{model_dir}/__init__.py''' , ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''' , F'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(__UpperCamelCase : str ): with open(__UpperCamelCase , "r" ) as f: _UpperCAmelCase = f.readlines() with open(__UpperCamelCase , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/{lowercase_model_name}.md''' , F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : List[str] ): # Create temp file _UpperCAmelCase , _UpperCAmelCase = mkstemp() _UpperCAmelCase = False with fdopen(__UpperCamelCase , "w" ) as new_file: with open(__UpperCamelCase ) as old_file: for line in old_file: new_file.write(__UpperCamelCase ) if line_to_copy_below in line: _UpperCAmelCase = True for line_to_copy in lines_to_copy: new_file.write(__UpperCamelCase ) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(__UpperCamelCase , __UpperCamelCase ) # Remove original file remove(__UpperCamelCase ) # Move new file move(__UpperCamelCase , __UpperCamelCase ) def skip_units(__UpperCamelCase : List[Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__UpperCamelCase : Union[str, Any] ): with open(__UpperCamelCase ) as datafile: _UpperCAmelCase = [] _UpperCAmelCase = False _UpperCAmelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: _UpperCAmelCase = line.split("\"" )[1] _UpperCAmelCase = skip_units(__UpperCamelCase ) elif "# Below: " in line and "##" not in line: _UpperCAmelCase = line.split("\"" )[1] _UpperCAmelCase = skip_units(__UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = [] elif "# Replace with" in line and "##" not in line: _UpperCAmelCase = [] elif "##" not in line: lines_to_copy.append(__UpperCamelCase ) remove(__UpperCamelCase ) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(__UpperCamelCase )
129
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : List[str] = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
673
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase_ ( a_ ): _A : int = 'wav2vec2' def __init__( self , snake_case__=32 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=1_28 , snake_case__=16 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__=3_20 , snake_case__=2 , snake_case__=0.1 , snake_case__=1_00 , snake_case__=2_56 , snake_case__=2_56 , snake_case__=0.1 , snake_case__="sum" , snake_case__=False , snake_case__=False , snake_case__=2_56 , snake_case__=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=5_12 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size UpperCAmelCase = do_stable_layer_norm UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase = num_codevectors_per_group UpperCAmelCase = num_codevector_groups UpperCAmelCase = contrastive_logits_temperature UpperCAmelCase = feat_quantizer_dropout UpperCAmelCase = num_negatives UpperCAmelCase = codevector_dim UpperCAmelCase = proj_codevector_dim UpperCAmelCase = diversity_loss_weight # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # adapter UpperCAmelCase = add_adapter UpperCAmelCase = adapter_kernel_size UpperCAmelCase = adapter_stride UpperCAmelCase = num_adapter_layers UpperCAmelCase = output_hidden_size or hidden_size UpperCAmelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = xvector_output_dim @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
673
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : int = 'data2vec-vision' def __init__( self , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.0 , A=0.0 , A=0.0_2 , A=1E-12 , A=224 , A=16 , A=3 , A=False , A=False , A=False , A=False , A=0.1 , A=0.1 , A=True , A=[3, 5, 7, 11] , A=[1, 2, 3, 6] , A=True , A=0.4 , A=256 , A=1 , A=False , A=255 , **A , ): super().__init__(**A ) _lowerCamelCase : Dict = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : int = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Optional[Any] = use_mask_token _lowerCamelCase : str = use_absolute_position_embeddings _lowerCamelCase : Union[str, Any] = use_relative_position_bias _lowerCamelCase : int = use_shared_relative_position_bias _lowerCamelCase : Any = layer_scale_init_value _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCamelCase : Any = out_indices _lowerCamelCase : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCamelCase : Tuple = use_auxiliary_head _lowerCamelCase : Any = auxiliary_loss_weight _lowerCamelCase : Any = auxiliary_channels _lowerCamelCase : str = auxiliary_num_convs _lowerCamelCase : str = auxiliary_concat_input _lowerCamelCase : Any = semantic_loss_ignore_index class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Dict = version.parse("""1.11""" ) @property def _lowerCAmelCase ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowerCAmelCase ( self ): return 1E-4
701
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = tempfile.mkdtemp() # fmt: off _lowerCamelCase : List[str] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(A , range(len(A ) ) ) ) _lowerCamelCase : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowerCamelCase : Optional[Any] = {'unk_token': '<unk>'} _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) _lowerCamelCase : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A , A ) def _lowerCAmelCase ( self , **A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self , **A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self , **A ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCamelCase : List[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Optional[int] = self.get_rust_tokenizer() _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : str = CLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCamelCase : Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) _lowerCamelCase : Dict = CLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCamelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase : str = self.get_image_processor(do_normalize=A , padding_value=1.0 ) _lowerCamelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Any = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : str = self.prepare_image_inputs() _lowerCamelCase : List[Any] = image_processor(A , return_tensors='np' ) _lowerCamelCase : int = processor(images=A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Dict = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : Optional[Any] = 'lower newer' _lowerCamelCase : Union[str, Any] = processor(text=A ) _lowerCamelCase : Tuple = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : List[Any] = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : Any = 'lower newer' _lowerCamelCase : Any = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Optional[int] = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : int = processor.batch_decode(A ) _lowerCamelCase : Dict = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : int = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : str = 'lower newer' _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
349
0
"""simple docstring""" from collections import defaultdict def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : List[Any] = 1 _lowerCamelCase : List[Any] = True for v in tree[start]: if v not in visited: ret += dfs(A_ ) if ret % 2 == 0: cuts.append(A_ ) return ret def snake_case_ ( ): '''simple docstring''' dfs(1 ) if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ = 10, 9 lowerCAmelCase__ = defaultdict(list) lowerCAmelCase__ = {} lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
83
'''simple docstring''' import sys lowerCAmelCase_ : List[str] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _lowerCamelCase (__lowerCamelCase : str = N ) -> int: a__ = -sys.maxsize - 1 for i in range(len(__lowerCamelCase ) - 12 ): a__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: a__ = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
489
0
from jiwer import compute_measures import datasets __a = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __a = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __a = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/jitsi/jiwer/'''] ,reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] ,) def a__ ( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=False ) -> int: if concatenate_texts: return compute_measures(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )["wer"] else: UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Dict = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = compute_measures(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
300
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Dict = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase_ : int = dict(zip(_SCREAMING_SNAKE_CASE ,range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase_ : List[Any] = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase_ : Dict = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase_ : str = tempfile.mkdtemp() UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname ,_SCREAMING_SNAKE_CASE ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) # load decoder from hub UpperCAmelCase_ : str = '''hf-internal-testing/ngram-beam-search-decoder''' def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : int = self.add_kwargs_tokens_map.copy() kwargs.update(_SCREAMING_SNAKE_CASE ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Any: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_feature_extractor() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : Tuple = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_SCREAMING_SNAKE_CASE ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase_ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def a__ ( self ) -> Dict: UpperCAmelCase_ : str = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Any = self.get_feature_extractor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = floats_list((3, 1_000) ) UpperCAmelCase_ : Any = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : Any = processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = self.get_decoder() UpperCAmelCase_ : str = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = '''This is a test string''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ,_SCREAMING_SNAKE_CASE=(2, 10, 16) ,_SCREAMING_SNAKE_CASE=77 ) -> int: np.random.seed(_SCREAMING_SNAKE_CASE ) return np.random.rand(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : int = self.get_feature_extractor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = self.get_decoder() UpperCAmelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) UpperCAmelCase_ : Optional[Any] = processor.decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = decoder.decode_beams(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_feature_extractor() UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase_ : Dict = processor.batch_decode(_SCREAMING_SNAKE_CASE ) else: with get_context(_SCREAMING_SNAKE_CASE ).Pool() as pool: UpperCAmelCase_ : str = processor.batch_decode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = list(_SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase_ : List[str] = decoder.decode_beams_batch(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.logit_score ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,decoded_processor.lm_score ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_decoder() UpperCAmelCase_ : Any = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase_ : List[Any] = 15 UpperCAmelCase_ : Optional[Any] = -20.0 UpperCAmelCase_ : Tuple = -4.0 UpperCAmelCase_ : Union[str, Any] = processor.batch_decode( _SCREAMING_SNAKE_CASE ,beam_width=_SCREAMING_SNAKE_CASE ,beam_prune_logp=_SCREAMING_SNAKE_CASE ,token_min_logp=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[Any] = decoded_processor_out.text UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase_ : List[str] = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,beam_width=_SCREAMING_SNAKE_CASE ,beam_prune_logp=_SCREAMING_SNAKE_CASE ,token_min_logp=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : str = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase_ : Union[str, Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase_ : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_SCREAMING_SNAKE_CASE ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = self.get_feature_extractor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self._get_dummy_logits() UpperCAmelCase_ : List[Any] = 2.0 UpperCAmelCase_ : Optional[int] = 5.0 UpperCAmelCase_ : List[Any] = -20.0 UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : str = processor.batch_decode( _SCREAMING_SNAKE_CASE ,alpha=_SCREAMING_SNAKE_CASE ,beta=_SCREAMING_SNAKE_CASE ,unk_score_offset=_SCREAMING_SNAKE_CASE ,lm_score_boundary=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Tuple = decoded_processor_out.text UpperCAmelCase_ : Optional[Any] = list(_SCREAMING_SNAKE_CASE ) decoder.reset_params( alpha=_SCREAMING_SNAKE_CASE ,beta=_SCREAMING_SNAKE_CASE ,unk_score_offset=_SCREAMING_SNAKE_CASE ,lm_score_boundary=_SCREAMING_SNAKE_CASE ,) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase_ : Optional[int] = decoder.decode_beams_batch( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-20.0 ) self.assertEqual(lm_model.score_boundary ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Tuple = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase_ : Dict = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase_ : Any = os.listdir(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : int = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase_ : List[str] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase_ : List[Any] = os.listdir(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = os.listdir(_SCREAMING_SNAKE_CASE ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase_ : Optional[Any] = processor_wavaveca(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : List[str] = processor_auto(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1e-2 ) UpperCAmelCase_ : Any = self._get_dummy_logits() UpperCAmelCase_ : int = processor_wavaveca.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = processor_auto.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : Any = self.get_decoder() UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def a__ ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : int = [d[key] for d in offsets] return retrieved_list def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[str] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : Union[str, Any] = self._get_dummy_logits()[0] UpperCAmelCase_ : Tuple = processor.decode(_SCREAMING_SNAKE_CASE ,output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase_ : int = self._get_dummy_logits() UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ,output_word_offsets=_SCREAMING_SNAKE_CASE ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def a__ ( self ) -> Union[str, Any]: import torch UpperCAmelCase_ : List[str] = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase_ : Tuple = iter(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = next(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase_ : Dict = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase_ : List[str] = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ).logits.cpu().numpy() UpperCAmelCase_ : str = processor.decode(logits[0] ,output_word_offsets=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase_ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase_ : Any = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(''' '''.join(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''word''' ) ) ,output.text ) # output times UpperCAmelCase_ : List[Any] = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''start_time''' ) ) UpperCAmelCase_ : str = torch.tensor(self.get_from_offsets(_SCREAMING_SNAKE_CASE ,'''end_time''' ) ) # fmt: off UpperCAmelCase_ : str = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) UpperCAmelCase_ : Optional[int] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=0.01 ) ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=0.01 ) )
300
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def UpperCamelCase ( self , lowercase=0 ) -> Optional[Any]: '''simple docstring''' A__ = np.random.RandomState(lowercase ) A__ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs() A__ = pipe(**lowercase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs() A__ = 3 * [inputs["prompt"]] # forward A__ = pipe(**lowercase ) A__ = output.images[0, -3:, -3:, -1] A__ = self.get_dummy_inputs() A__ = 3 * [inputs.pop("prompt" )] A__ = pipe.tokenizer( lowercase , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=lowercase , return_tensors="np" , ) A__ = text_inputs["input_ids"] A__ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] A__ = prompt_embeds # forward A__ = pipe(**lowercase ) A__ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowercase ) A__ = self.get_dummy_inputs() A__ = 3 * ["this is a negative prompt"] A__ = negative_prompt A__ = 3 * [inputs["prompt"]] # forward A__ = pipe(**lowercase ) A__ = output.images[0, -3:, -3:, -1] A__ = self.get_dummy_inputs() A__ = 3 * [inputs.pop("prompt" )] A__ = [] for p in [prompt, negative_prompt]: A__ = pipe.tokenizer( lowercase , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=lowercase , return_tensors="np" , ) A__ = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) A__ , A__ = embeds # forward A__ = pipe(**lowercase ) A__ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = ort.SessionOptions() A__ = False return options def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase ) A__ = "A painting of a squirrel eating a burger" np.random.seed(0 ) A__ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) A__ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase ) A__ = "open neural network exchange" A__ = np.random.RandomState(0 ) A__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase , output_type="np" ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) A__ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase ) A__ = "open neural network exchange" A__ = np.random.RandomState(0 ) A__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase , output_type="np" ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = 0 def test_callback_fn(lowercase , lowercase , lowercase ) -> None: A__ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 A__ = False A__ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) A__ = "Andromeda galaxy in a bottle" A__ = np.random.RandomState(0 ) pipe( prompt=lowercase , num_inference_steps=5 , guidance_scale=7.5 , generator=lowercase , callback=lowercase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowercase , lowercase ) assert pipe.safety_checker is None A__ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) A__ = OnnxStableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None A__ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
514
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a__ : """simple docstring""" def __init__( self , lowercase , lowercase=2 , lowercase=3 , lowercase=4 , lowercase=2 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=36 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=6 , lowercase=6 , lowercase=3 , lowercase=4 , lowercase=None , lowercase=1000 , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = patch_size A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = coordinate_size A__ = shape_size A__ = num_labels A__ = num_choices A__ = scope A__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A__ = text_seq_length A__ = (image_size // patch_size) ** 2 + 1 A__ = self.text_seq_length + self.image_seq_length def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) A__ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = tmp_coordinate A__ = tf.constant(lowercase ) A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.text_seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = TFLayoutLMvaModel(config=lowercase ) # text + image A__ = model(lowercase , pixel_values=lowercase , training=lowercase ) A__ = model( lowercase , bbox=lowercase , pixel_values=lowercase , attention_mask=lowercase , token_type_ids=lowercase , training=lowercase , ) A__ = model(lowercase , bbox=lowercase , pixel_values=lowercase , training=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A__ = model(lowercase , training=lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A__ = model({"pixel_values": pixel_values} , training=lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = self.num_labels A__ = TFLayoutLMvaForSequenceClassification(config=lowercase ) A__ = model( lowercase , bbox=lowercase , pixel_values=lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , training=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = self.num_labels A__ = TFLayoutLMvaForTokenClassification(config=lowercase ) A__ = model( lowercase , bbox=lowercase , pixel_values=lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , training=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' A__ = 2 A__ = TFLayoutLMvaForQuestionAnswering(config=lowercase ) A__ = model( lowercase , bbox=lowercase , pixel_values=lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , training=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __lowerCamelCase = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' return True def UpperCamelCase ( self , lowercase , lowercase , lowercase=False ) -> dict: '''simple docstring''' A__ = copy.deepcopy(lowercase ) if model_class in get_values(lowercase ): A__ = { k: tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowercase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase ): A__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase ): A__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) A__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase ): A__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase ): A__ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = TFLayoutLMvaModelTester(self ) A__ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase ) if getattr(lowercase , "hf_compute_loss" , lowercase ): # The number of elements in the loss should be the same as the number of elements in the label A__ = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) A__ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowercase )[0] ] A__ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs A__ = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) A__ = prepared_for_class.pop("input_ids" ) A__ = model(lowercase , **lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions A__ = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) A__ = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: A__ = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: A__ = -100 A__ = tf.convert_to_tensor(lowercase ) A__ = model(lowercase , **lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict A__ = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) A__ = model(lowercase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple A__ = self._prepare_for_class(inputs_dict.copy() , lowercase , return_labels=lowercase ) # Get keys that were added with the _prepare_for_class function A__ = prepared_for_class.keys() - inputs_dict.keys() A__ = inspect.signature(model.call ).parameters A__ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple A__ = {0: "input_ids"} for label_key in label_keys: A__ = signature_names.index(lowercase ) A__ = label_key A__ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple A__ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: A__ = prepared_for_class[value] A__ = tuple(lowercase ) # Send to model A__ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def UpperCamelCase ( self ) -> int: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def UpperCamelCase ( self ) -> int: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) @slow def UpperCamelCase ( self ) -> str: '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFLayoutLMvaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowercase ) if is_vision_available() else None @slow def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowercase , return_tensors="tf" ).pixel_values A__ = tf.constant([[1, 2]] ) A__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass A__ = model(input_ids=lowercase , bbox=lowercase , pixel_values=lowercase , training=lowercase ) # verify the logits A__ = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , lowercase ) A__ = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ) )
514
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class snake_case__ ( __lowercase ): def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowercase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowercase , "num_attention_heads" ) ) class snake_case__ : def __init__( self : List[Any] , lowercase : Optional[int] , lowercase : Tuple=13 , lowercase : Union[str, Any]=32 , lowercase : int=2 , lowercase : Tuple=3 , lowercase : Optional[Any]=6_40 , lowercase : Dict=4 , lowercase : Optional[int]="silu" , lowercase : Dict=3 , lowercase : List[str]=32 , lowercase : Union[str, Any]=0.1 , lowercase : List[str]=0.1 , lowercase : List[str]=0.1 , lowercase : Any=0.0_2 , lowercase : Union[str, Any]=True , lowercase : Dict=True , lowercase : Any=10 , lowercase : List[str]=None , ): '''simple docstring''' UpperCAmelCase : int = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = patch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Optional[Any] = last_hidden_size UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = conv_kernel_size UpperCAmelCase : str = output_stride UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : List[str] = classifier_dropout_prob UpperCAmelCase : str = use_labels UpperCAmelCase : Any = is_training UpperCAmelCase : Dict = num_labels UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = scope def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Optional[int] = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : Optional[int] , lowercase : Tuple , lowercase : List[str] , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase : List[Any] = MobileViTModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase : List[Any] = model(lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self : Union[str, Any] , lowercase : Tuple , lowercase : Any , lowercase : int , lowercase : Any ): '''simple docstring''' UpperCAmelCase : int = self.num_labels UpperCAmelCase : int = MobileViTForImageClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase : Union[str, Any] = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : int , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.num_labels UpperCAmelCase : Any = MobileViTForSemanticSegmentation(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase : str = model(lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase : Tuple = model(lowercase , labels=lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase : Tuple = config_and_inputs UpperCAmelCase : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( __lowercase , __lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : str = MobileViTModelTester(self ) UpperCAmelCase : int = MobileViTConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not output attentions" ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(lowercase ) UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Dict = [*signature.parameters.keys()] UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def __lowerCAmelCase ( self : int ): '''simple docstring''' def check_hidden_states_output(lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Any ): UpperCAmelCase : str = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase : Any = model(**self._prepare_for_class(lowercase , lowercase ) ) UpperCAmelCase : Tuple = outputs.hidden_states UpperCAmelCase : Tuple = 5 self.assertEqual(len(lowercase ) , lowercase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase : Any = 2 for i in range(len(lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Any = True check_hidden_states_output(lowercase , lowercase , lowercase ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase ) @slow def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = MobileViTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : List[Any] = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(lowercase ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**lowercase ) # verify the logits UpperCAmelCase : Optional[int] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowercase ) UpperCAmelCase : List[str] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCAmelCase : Optional[int] = model.to(lowercase ) UpperCAmelCase : str = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Tuple = image_processor(images=lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase : int = model(**lowercase ) UpperCAmelCase : Any = outputs.logits # verify the logits UpperCAmelCase : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowercase ) UpperCAmelCase : Optional[Any] = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : int = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCAmelCase : str = model.to(lowercase ) UpperCAmelCase : str = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : List[Any] = image_processor(images=lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase : List[Any] = model(**lowercase ) UpperCAmelCase : List[str] = outputs.logits.detach().cpu() UpperCAmelCase : Any = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(50, 60)] ) UpperCAmelCase : Optional[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowercase ) UpperCAmelCase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase ) UpperCAmelCase : Union[str, Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowercase )
706
"""simple docstring""" from typing import Any class snake_case__ : def __init__( self : Union[str, Any] , lowercase : Any ): '''simple docstring''' UpperCAmelCase : Dict = data UpperCAmelCase : Optional[Any] = None def __repr__( self : str ): '''simple docstring''' return f"""Node({self.data})""" class snake_case__ : def __init__( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Optional[Any] = None def __iter__( self : Dict ): '''simple docstring''' UpperCAmelCase : str = self.head while node: yield node.data UpperCAmelCase : Tuple = node.next def __len__( self : Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : Any ): '''simple docstring''' return "->".join([str(lowercase ) for item in self] ) def __getitem__( self : List[str] , lowercase : int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : str , lowercase : int , lowercase : Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) UpperCAmelCase : List[str] = self.head for _ in range(lowercase ): UpperCAmelCase : List[Any] = current.next UpperCAmelCase : List[str] = data def __lowerCAmelCase ( self : Optional[Any] , lowercase : Any ): '''simple docstring''' self.insert_nth(len(self ) , lowercase ) def __lowerCAmelCase ( self : List[str] , lowercase : Any ): '''simple docstring''' self.insert_nth(0 , lowercase ) def __lowerCAmelCase ( self : List[str] , lowercase : int , lowercase : Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) UpperCAmelCase : List[Any] = Node(lowercase ) if self.head is None: UpperCAmelCase : Optional[Any] = new_node elif index == 0: UpperCAmelCase : Optional[int] = self.head # link new_node to head UpperCAmelCase : Optional[Any] = new_node else: UpperCAmelCase : Optional[int] = self.head for _ in range(index - 1 ): UpperCAmelCase : Union[str, Any] = temp.next UpperCAmelCase : Dict = temp.next UpperCAmelCase : Any = new_node def __lowerCAmelCase ( self : Dict ): # print every node data '''simple docstring''' print(self ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.delete_nth(0 ) def __lowerCAmelCase ( self : str ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def __lowerCAmelCase ( self : Optional[Any] , lowercase : int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) UpperCAmelCase : List[str] = self.head # default first node if index == 0: UpperCAmelCase : Tuple = self.head.next else: UpperCAmelCase : Union[str, Any] = self.head for _ in range(index - 1 ): UpperCAmelCase : Dict = temp.next UpperCAmelCase : Optional[Any] = temp.next UpperCAmelCase : int = temp.next.next return delete_node.data def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return self.head is None def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : List[Any] = None UpperCAmelCase : str = self.head while current: # Store the current node's next node. UpperCAmelCase : List[Any] = current.next # Make the current node's next point backwards UpperCAmelCase : List[str] = prev # Make the previous node be the current node UpperCAmelCase : Optional[Any] = current # Make the current node the next node (to progress iteration) UpperCAmelCase : Any = next_node # Return prev in order to put the head at the end UpperCAmelCase : List[str] = prev def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : Optional[int] = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCAmelCase : Union[str, Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [ -9, 1_00, Node(77_34_51_12 ), "dlrow olleH", 7, 55_55, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] UpperCAmelCase : Optional[Any] = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCAmelCase : Tuple = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCAmelCase : Any = linked_list.delete_tail() assert result == 1_2.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCAmelCase : Union[str, Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase_ ( ): '''simple docstring''' from doctest import testmod testmod() UpperCAmelCase : Any = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(_lowercase ) print("\nReading/changing Node data using indexing:" ) print(F"""Element at Position 1: {linked_list[1]}""" ) UpperCAmelCase : int = input("Enter New Value: " ).strip() print("New list:" ) print(_lowercase ) print(F"""length of linked_list is : {len(_lowercase )}""" ) if __name__ == "__main__": main()
292
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'visual_bert' def __init__(self , lowerCamelCase=30_522 , lowerCamelCase=768 , lowerCamelCase=512 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , **lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = visual_embedding_dim _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = type_vocab_size _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = bypass_transformer _lowerCAmelCase = special_visual_initialize
156
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __lowerCamelCase : __UpperCamelCase = 42 # setable values __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None @classmethod def A__ (cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return cls(common=lowerCamelCase , init_noise_sigma=lowerCamelCase , timesteps=lowerCamelCase ) @dataclass class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 class __lowerCamelCase ( __lowercase , __lowercase ): __UpperCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __UpperCamelCase = 42 @property def A__ (self ): '''simple docstring''' return True @register_to_config def __init__(self , lowerCamelCase = 1_000 , lowerCamelCase = 0.0001 , lowerCamelCase = 0.02 , lowerCamelCase = "linear" , lowerCamelCase = None , lowerCamelCase = "fixed_small" , lowerCamelCase = True , lowerCamelCase = "epsilon" , lowerCamelCase = jnp.floataa , ): '''simple docstring''' _lowerCAmelCase = dtype def A__ (self , lowerCamelCase = None ): '''simple docstring''' if common is None: _lowerCAmelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _lowerCAmelCase = jnp.array(1.0 , dtype=self.dtype ) _lowerCAmelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCamelCase , init_noise_sigma=lowerCamelCase , timesteps=lowerCamelCase , ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' return sample def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase = () ): '''simple docstring''' _lowerCAmelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (jnp.arange(0 , lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCamelCase , timesteps=lowerCamelCase , ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = state.common.alphas_cumprod[t] _lowerCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCAmelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _lowerCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _lowerCAmelCase = jnp.clip(lowerCamelCase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _lowerCAmelCase = jnp.log(jnp.clip(lowerCamelCase , a_min=1e-20 ) ) elif variance_type == "fixed_large": _lowerCAmelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _lowerCAmelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _lowerCAmelCase = variance _lowerCAmelCase = state.common.betas[t] _lowerCAmelCase = (predicted_variance + 1) / 2 _lowerCAmelCase = frac * max_log + (1 - frac) * min_log return variance def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , ): '''simple docstring''' _lowerCAmelCase = timestep if key is None: _lowerCAmelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _lowerCAmelCase , _lowerCAmelCase = jnp.split(lowerCamelCase , sample.shape[1] , axis=1 ) else: _lowerCAmelCase = None # 1. compute alphas, betas _lowerCAmelCase = state.common.alphas_cumprod[t] _lowerCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _lowerCAmelCase = 1 - alpha_prod_t _lowerCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = jnp.clip(lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _lowerCAmelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _lowerCAmelCase = jax.random.split(lowerCamelCase , num=1 ) _lowerCAmelCase = jax.random.normal(lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCamelCase , lowerCamelCase , predicted_variance=lowerCamelCase ) ** 0.5) * noise _lowerCAmelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _lowerCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCamelCase , state=lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' return add_noise_common(state.common , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' return get_velocity_common(state.common , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __len__(self ): '''simple docstring''' return self.config.num_train_timesteps
156
1
"""simple docstring""" from math import factorial def lowercase ( UpperCamelCase : List[Any] = 20 ): """simple docstring""" A__ : List[str] =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... A__ : List[str] =n // 2 return int(factorial(UpperCamelCase ) / (factorial(UpperCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __A : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
703
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Any = {"vocab_file": "sentencepiece.bpe.model"} __A : List[Any] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } __A : List[Any] = { "camembert-base": 512, } __A : Optional[int] = "▁" class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Tuple = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int="<s>" , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : str="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : List[str]="<pad>" , UpperCamelCase__ : Union[str, Any]="<mask>" , UpperCamelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , UpperCamelCase__ : Optional[Dict[str, Any]] = None , **UpperCamelCase__ : Dict , ): # Mask token behave like a normal word, i.e. include the space before it A__ : str =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token A__ : List[Any] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) A__ : Any =vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> A__ : Optional[Any] ={"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} A__ : str =len(self.fairseq_tokens_to_ids ) A__ : Union[str, Any] =len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) A__ : Optional[int] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCAmelCase ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Optional[int] =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def _UpperCAmelCase ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : Optional[int] =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self : Any ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def _UpperCAmelCase ( self : Union[str, Any] ): A__ : List[Any] ={self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self : str , UpperCamelCase__ : str ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCamelCase__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] ): A__ : Dict =[] A__ : Tuple ="" A__ : int =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token A__ : List[Any] =True A__ : Optional[int] =[] else: current_sub_tokens.append(UpperCamelCase__ ) A__ : Dict =False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __getstate__( self : Dict ): A__ : Dict =self.__dict__.copy() A__ : List[Any] =None return state def __setstate__( self : Any , UpperCamelCase__ : int ): A__ : Union[str, Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ : List[str] ={} A__ : int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ : int =os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: A__ : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
595
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Any = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
239
import numpy as np def _SCREAMING_SNAKE_CASE ( a , a , a , a , a ) -> Optional[Any]: __A : List[Any] = int(np.ceil((x_end - xa) / h ) ) __A : Tuple = np.zeros((n + 1,) ) __A : Tuple = ya __A : Optional[Any] = xa for k in range(a ): __A : List[Any] = f(a , y[k] ) __A : int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __A : Optional[int] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __A : Dict = f(x + h , y[k] + h * ka ) __A : Union[str, Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
239
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.0_2 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase="None" , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ): '''simple docstring''' a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = relative_attention a__ = position_biased_input a__ = pos_att_type a__ = scope def _A ( self ): '''simple docstring''' a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = TFDebertaVaModel(config=lowerCamelCase ) a__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} a__ = [input_ids, input_mask] a__ = model(lowerCamelCase ) a__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = TFDebertaVaForMaskedLM(config=lowerCamelCase ) a__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.num_labels a__ = TFDebertaVaForSequenceClassification(config=lowerCamelCase ) a__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.num_labels a__ = TFDebertaVaForTokenClassification(config=lowerCamelCase ) a__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = TFDebertaVaForQuestionAnswering(config=lowerCamelCase ) a__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } a__ = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self ): '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' A_ : str = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) A_ : int = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) A_ : int = False A_ : Optional[Any] = False def _A ( self ): '''simple docstring''' a__ = TFDebertaVaModelTester(self ) a__ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _A ( self ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def _A ( self ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def _A ( self ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def _A ( self ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def _A ( self ): '''simple docstring''' a__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(lowerCamelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def _A ( self ): '''simple docstring''' pass @slow def _A ( self ): '''simple docstring''' a__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) a__ = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) a__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a__ = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] a__ = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCamelCase , atol=1e-4 )
412
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' A_ : Any = AutoencoderKL A_ : List[Any] = 'sample' A_ : Optional[Any] = 1e-2 @property def _A ( self ): '''simple docstring''' a__ = 4 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase ) return {"sample": image} @property def _A ( self ): '''simple docstring''' return (3, 32, 32) @property def _A ( self ): '''simple docstring''' return (3, 32, 32) def _A ( self ): '''simple docstring''' a__ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } a__ = self.dummy_input return init_dict, inputs_dict def _A ( self ): '''simple docstring''' pass def _A ( self ): '''simple docstring''' pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def _A ( self ): '''simple docstring''' a__ , a__ = self.prepare_init_args_and_inputs_for_common() a__ = self.model_class(**lowerCamelCase ) model.to(lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training a__ = model(**lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() a__ = torch.randn_like(lowerCamelCase ) a__ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing a__ = self.model_class(**lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training a__ = model_a(**lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() a__ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) a__ = dict(model.named_parameters() ) a__ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def _A ( self ): '''simple docstring''' a__ , a__ = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCamelCase ) a__ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _A ( self ): '''simple docstring''' a__ = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) a__ = model.to(lowerCamelCase ) model.eval() if torch_device == "mps": a__ = torch.manual_seed(0 ) else: a__ = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) a__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) a__ = image.to(lowerCamelCase ) with torch.no_grad(): a__ = model(lowerCamelCase , sample_posterior=lowerCamelCase , generator=lowerCamelCase ).sample a__ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": a__ = torch.tensor( [ -4.00_78e-01, -3.83_23e-04, -1.26_81e-01, -1.14_62e-01, 2.00_95e-01, 1.08_93e-01, -8.82_47e-02, -3.03_61e-01, -9.86_44e-03, ] ) elif torch_device == "cpu": a__ = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: a__ = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase , lowerCamelCase , rtol=1e-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return f'gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase ) for s in shape] )}.npy' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self , lowerCamelCase=0 , lowerCamelCase=(4, 3, 512, 512) , lowerCamelCase=False ): '''simple docstring''' a__ = torch.floataa if fpaa else torch.floataa a__ = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase , lowerCamelCase ) ) ).to(lowerCamelCase ).to(lowerCamelCase ) return image def _A ( self , lowerCamelCase="CompVis/stable-diffusion-v1-4" , lowerCamelCase=False ): '''simple docstring''' a__ = """fp16""" if fpaa else None a__ = torch.floataa if fpaa else torch.floataa a__ = AutoencoderKL.from_pretrained( lowerCamelCase , subfolder="""vae""" , torch_dtype=lowerCamelCase , revision=lowerCamelCase , ) model.to(lowerCamelCase ).eval() return model def _A ( self , lowerCamelCase=0 ): '''simple docstring''' if torch_device == "mps": return torch.manual_seed(lowerCamelCase ) return torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase ) a__ = self.get_generator(lowerCamelCase ) with torch.no_grad(): a__ = model(lowerCamelCase , generator=lowerCamelCase , sample_posterior=lowerCamelCase ).sample assert sample.shape == image.shape a__ = sample[-1, -2:, -2:, :2].flatten().float().cpu() a__ = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model(fpaa=lowerCamelCase ) a__ = self.get_sd_image(lowerCamelCase , fpaa=lowerCamelCase ) a__ = self.get_generator(lowerCamelCase ) with torch.no_grad(): a__ = model(lowerCamelCase , generator=lowerCamelCase , sample_posterior=lowerCamelCase ).sample assert sample.shape == image.shape a__ = sample[-1, -2:, :2, -2:].flatten().float().cpu() a__ = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase ) with torch.no_grad(): a__ = model(lowerCamelCase ).sample assert sample.shape == image.shape a__ = sample[-1, -2:, -2:, :2].flatten().float().cpu() a__ = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] a__ = sample[-1, -2:, :2, -2:].flatten().cpu() a__ = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model(fpaa=lowerCamelCase ) a__ = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase ) with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] a__ = sample[-1, -2:, :2, -2:].flatten().float().cpu() a__ = torch.tensor(lowerCamelCase ) assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def _A ( self , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model(fpaa=lowerCamelCase ) a__ = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase ) with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def _A ( self , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): a__ = model.decode(lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def _A ( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' a__ = self.get_sd_vae_model() a__ = self.get_sd_image(lowerCamelCase ) a__ = self.get_generator(lowerCamelCase ) with torch.no_grad(): a__ = model.encode(lowerCamelCase ).latent_dist a__ = dist.sample(generator=lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] a__ = sample[0, -1, -3:, -3:].flatten().cpu() a__ = torch.tensor(lowerCamelCase ) a__ = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=lowerCamelCase )
412
1
'''simple docstring''' def A__ ( __lowerCAmelCase : int ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
50
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ = 10**12 ): '''simple docstring''' _snake_case = 1 _snake_case = 0 _snake_case = 1 _snake_case = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'{solution() = }')
368
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = LongformerTokenizer UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Union[str, Any] = LongformerTokenizerFast UpperCAmelCase__ : List[str] = True def UpperCamelCase( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _snake_case = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) _snake_case = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _snake_case = {"unk_token": "<unk>"} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase ) ) def UpperCamelCase( self , **lowerCamelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) def UpperCamelCase( self , **lowerCamelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase ): _snake_case = "lower newer" _snake_case = "lower newer" return input_text, output_text def UpperCamelCase( self ): _snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = "lower newer" _snake_case = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] _snake_case = tokenizer.tokenize(lowerCamelCase ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase , lowerCamelCase ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) def UpperCamelCase( self ): _snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowerCamelCase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowerCamelCase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def UpperCamelCase( self ): _snake_case = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) _snake_case = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase ) _snake_case = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase ) _snake_case = tokenizer.encode( "sequence builders" , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) _snake_case = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase( self ): _snake_case = self.get_tokenizer() _snake_case = "Encode this sequence." _snake_case = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments _snake_case = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase , lowerCamelCase ) _snake_case = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase , lowerCamelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) _snake_case = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase , lowerCamelCase ) # Testing spaces after special tokens _snake_case = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase )} ) # mask token has a left space _snake_case = tokenizer.convert_tokens_to_ids(lowerCamelCase ) _snake_case = "Encode <mask> sequence" _snake_case = "Encode <mask>sequence" _snake_case = tokenizer.encode(lowerCamelCase ) _snake_case = encoded.index(lowerCamelCase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase , lowerCamelCase ) _snake_case = tokenizer.encode(lowerCamelCase ) _snake_case = encoded.index(lowerCamelCase ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase , lowerCamelCase ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) _snake_case = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) _snake_case = "A, <mask> AllenNLP sentence." _snake_case = tokenizer_r.encode_plus(lowerCamelCase , add_special_tokens=lowerCamelCase , return_token_type_ids=lowerCamelCase ) _snake_case = tokenizer_p.encode_plus(lowerCamelCase , add_special_tokens=lowerCamelCase , return_token_type_ids=lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def UpperCamelCase( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowerCamelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , lowerCamelCase ) self.assertEqual(post_processor_state["trim_offsets"] , lowerCamelCase ) def UpperCamelCase( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = "hello" # `hello` is a token in the vocabulary of `pretrained_name` _snake_case = F'''{text_of_1_token} {text_of_1_token}''' _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) _snake_case = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ) + 1, len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) _snake_case = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ) + 1, len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) _snake_case = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ), len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) _snake_case = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ), len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) _snake_case = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) _snake_case = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase ) + 1, 1 + len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) _snake_case = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase ), 1 + len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) _snake_case = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase ), 1 + len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , )
368
1
'''simple docstring''' from math import factorial def _UpperCamelCase ( UpperCamelCase__ = 1_0_0 ): return sum(map(__a , str(factorial(__a ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
407
from string import ascii_uppercase lowerCamelCase__ = {char: i for i, char in enumerate(ascii_uppercase)} lowerCamelCase__ = dict(enumerate(ascii_uppercase)) def A(__a: str , __a: str ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = 0 while True: if x == i: lowerCAmelCase_ = 0 if len(__a ) == len(__a ): break key += key[i] i += 1 return key def A(__a: str , __a: str ): lowerCAmelCase_ = "" lowerCAmelCase_ = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCAmelCase_ = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def A(__a: str , __a: str ): lowerCAmelCase_ = "" lowerCAmelCase_ = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCAmelCase_ = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def A(): lowerCAmelCase_ = "THE GERMAN ATTACK" lowerCAmelCase_ = "SECRET" lowerCAmelCase_ = generate_key(__a , __a ) lowerCAmelCase_ = cipher_text(__a , __a ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(__a , __a )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
122
0
def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase = False ) -> bool: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis lowerCamelCase__: Any = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] lowerCamelCase__: List[str] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase__: List[Any] = primes[:idx] break lowerCamelCase__: Optional[Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase__: Union[str, Any] = False for r in range(_UpperCamelCase ): lowerCamelCase__: Optional[Any] = pow(_UpperCamelCase , d * 2**r , _UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase__: Dict = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ) -> None: '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
702
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure)
242
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "blip_2_vision_model" def __init__( self : Dict , __snake_case : Any=1_4_0_8 , __snake_case : Union[str, Any]=6_1_4_4 , __snake_case : List[str]=3_9 , __snake_case : int=1_6 , __snake_case : Tuple=2_2_4 , __snake_case : Any=1_4 , __snake_case : List[Any]="gelu" , __snake_case : Optional[Any]=0.00001 , __snake_case : Union[str, Any]=0.0 , __snake_case : Dict=1E-10 , __snake_case : List[str]=True , **__snake_case : Optional[int] , ) -> Tuple: super().__init__(**__snake_case ) __magic_name__: Any = hidden_size __magic_name__: Any = intermediate_size __magic_name__: Union[str, Any] = num_hidden_layers __magic_name__: List[Any] = num_attention_heads __magic_name__: Any = patch_size __magic_name__: int = image_size __magic_name__: Tuple = initializer_range __magic_name__: List[Any] = attention_dropout __magic_name__: Union[str, Any] = layer_norm_eps __magic_name__: Dict = hidden_act __magic_name__: str = qkv_bias @classmethod def lowerCamelCase__ ( cls : List[str] , __snake_case : Union[str, os.PathLike] , **__snake_case : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__snake_case ) __magic_name__, __magic_name__: Union[str, Any] = cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __magic_name__: int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "blip_2_qformer" def __init__( self : Optional[Any] , __snake_case : Optional[Any]=3_0_5_2_2 , __snake_case : List[Any]=7_6_8 , __snake_case : int=1_2 , __snake_case : str=1_2 , __snake_case : Union[str, Any]=3_0_7_2 , __snake_case : Union[str, Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[Any]=5_1_2 , __snake_case : str=0.02 , __snake_case : Any=1E-12 , __snake_case : Tuple=0 , __snake_case : Tuple="absolute" , __snake_case : Dict=2 , __snake_case : List[Any]=1_4_0_8 , **__snake_case : Tuple , ) -> Dict: super().__init__(pad_token_id=__snake_case , **__snake_case ) __magic_name__: Optional[Any] = vocab_size __magic_name__: Optional[int] = hidden_size __magic_name__: Dict = num_hidden_layers __magic_name__: str = num_attention_heads __magic_name__: List[str] = hidden_act __magic_name__: Any = intermediate_size __magic_name__: int = hidden_dropout_prob __magic_name__: str = attention_probs_dropout_prob __magic_name__: int = max_position_embeddings __magic_name__: List[str] = initializer_range __magic_name__: Optional[int] = layer_norm_eps __magic_name__: Dict = position_embedding_type __magic_name__: List[Any] = cross_attention_frequency __magic_name__: Tuple = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls : Tuple , __snake_case : Union[str, os.PathLike] , **__snake_case : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__snake_case ) __magic_name__, __magic_name__: Optional[Any] = cls.get_config_dict(__snake_case , **__snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __magic_name__: List[str] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "blip-2" UpperCAmelCase__ = True def __init__( self : str , __snake_case : Dict=None , __snake_case : int=None , __snake_case : Tuple=None , __snake_case : int=3_2 , **__snake_case : Tuple ) -> List[Any]: super().__init__(**__snake_case ) if vision_config is None: __magic_name__: int = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: __magic_name__: str = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: __magic_name__: Optional[Any] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __magic_name__: Dict = BlipaVisionConfig(**__snake_case ) __magic_name__: Optional[int] = BlipaQFormerConfig(**__snake_case ) __magic_name__: str = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __magic_name__: Union[str, Any] = CONFIG_MAPPING[text_model_type](**__snake_case ) __magic_name__: Tuple = self.text_config.tie_word_embeddings __magic_name__: Optional[int] = self.text_config.is_encoder_decoder __magic_name__: Optional[Any] = num_query_tokens __magic_name__: int = self.vision_config.hidden_size __magic_name__: List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __magic_name__: Tuple = 1.0 __magic_name__: Any = 0.02 @classmethod def lowerCamelCase__ ( cls : List[str] , __snake_case : BlipaVisionConfig , __snake_case : BlipaQFormerConfig , __snake_case : PretrainedConfig , **__snake_case : Optional[int] , ) -> str: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__snake_case , ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: __magic_name__: Optional[int] = copy.deepcopy(self.__dict__ ) __magic_name__: List[Any] = self.vision_config.to_dict() __magic_name__: int = self.qformer_config.to_dict() __magic_name__: Dict = self.text_config.to_dict() __magic_name__: Optional[int] = self.__class__.model_type return output
96
"""simple docstring""" def a ( __UpperCAmelCase : int = 1_0_0 ) -> int: __magic_name__: str = 0 __magic_name__: Any = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
96
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __lowerCamelCase = logging.get_logger(__name__) @dataclass class a__ : def __init__( self : Tuple , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Union[str, Any]=6.0 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=False , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : int="fp4" , lowerCamelCase_ : str=False , **lowerCamelCase_ : int , ): a_ : int = load_in_abit a_ : List[str] = load_in_abit a_ : Union[str, Any] = llm_inta_threshold a_ : Optional[int] = llm_inta_skip_modules a_ : List[str] = llm_inta_enable_fpaa_cpu_offload a_ : List[Any] = llm_inta_has_fpaa_weight a_ : str = bnb_abit_quant_type a_ : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: a_ : List[Any] = torch.floataa elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): a_ : str = getattr(lowerCamelCase_ , lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , torch.dtype ): a_ : str = bnb_abit_compute_dtype else: raise ValueError("""bnb_4bit_compute_dtype must be a string or a torch.dtype""" ) self.post_init() def UpperCAmelCase( self : str ): if not isinstance(self.llm_inta_threshold , lowerCamelCase_ ): raise ValueError("""llm_int8_threshold must be a float""" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCamelCase_ ): raise ValueError("""llm_int8_skip_modules must be a list of strings""" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCamelCase_ ): raise ValueError("""llm_int8_enable_fp32_cpu_offload must be a boolean""" ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCamelCase_ ): raise ValueError("""llm_int8_has_fp16_weight must be a boolean""" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("""bnb_4bit_compute_dtype must be torch.dtype""" ) if not isinstance(self.bnb_abit_quant_type , lowerCamelCase_ ): raise ValueError("""bnb_4bit_quant_type must be a string""" ) if not isinstance(self.bnb_abit_use_double_quant , lowerCamelCase_ ): raise ValueError("""bnb_4bit_use_double_quant must be a boolean""" ) if self.load_in_abit and not version.parse(importlib.metadata.version("""bitsandbytes""" ) ) >= version.parse( """0.39.0""" ): raise ValueError( """4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version""" ) def UpperCAmelCase( self : List[Any] ): return self.load_in_abit or self.load_in_abit def UpperCAmelCase( self : Optional[int] ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase( cls : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , **lowerCamelCase_ : int ): a_ : Optional[Any] = cls(**lowerCamelCase_ ) a_ : Dict = [] for key, value in kwargs.items(): if hasattr(lowerCamelCase_ , lowerCamelCase_ ): setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) to_remove.append(lowerCamelCase_ ) for key in to_remove: kwargs.pop(lowerCamelCase_ , lowerCamelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] ): with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: a_ : List[Any] = self.to_dict() a_ : Tuple = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + """\n""" writer.write(lowerCamelCase_ ) def UpperCAmelCase( self : int ): a_ : Any = copy.deepcopy(self.__dict__ ) a_ : Dict = str(output["""bnb_4bit_compute_dtype"""] ).split(""".""" )[1] return output def __repr__( self : Tuple ): return F'''{self.__class__.__name__} {self.to_json_string()}''' def UpperCAmelCase( self : Optional[int] , lowerCamelCase_ : bool = True ): if use_diff is True: a_ : Any = self.to_diff_dict() else: a_ : Tuple = self.to_dict() return json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + "\n" def UpperCAmelCase( self : List[Any] ): a_ : Optional[int] = self.to_dict() # get the default config dict a_ : Tuple = BitsAndBytesConfig().to_dict() a_ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: a_ : List[Any] = value return serializable_config_dict
478
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __lowerCamelCase = logging.get_logger(__name__) def _a ( __UpperCamelCase=None , __UpperCamelCase=None ): return field(default_factory=lambda: default , metadata=__UpperCamelCase ) @dataclass class a__ : lowerCamelCase__: List[str] = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) lowerCamelCase__: List[int] = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) lowerCamelCase__: List[int] = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) lowerCamelCase__: bool = field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) lowerCamelCase__: bool = field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) lowerCamelCase__: bool = field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) lowerCamelCase__: bool = field(default=lowerCAmelCase_ , metadata={"""help""": """Use FP16 to accelerate inference."""} ) lowerCamelCase__: bool = field(default=lowerCAmelCase_ , metadata={"""help""": """Benchmark training of model"""} ) lowerCamelCase__: bool = field(default=lowerCAmelCase_ , metadata={"""help""": """Verbose memory tracing"""} ) lowerCamelCase__: bool = field( default=lowerCAmelCase_ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) lowerCamelCase__: bool = field( default=lowerCAmelCase_ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) lowerCamelCase__: bool = field(default=lowerCAmelCase_ , metadata={"""help""": """Trace memory line by line"""} ) lowerCamelCase__: bool = field(default=lowerCAmelCase_ , metadata={"""help""": """Save result to a CSV file"""} ) lowerCamelCase__: bool = field(default=lowerCAmelCase_ , metadata={"""help""": """Save all print statements in a log file"""} ) lowerCamelCase__: bool = field(default=lowerCAmelCase_ , metadata={"""help""": """Whether to print environment information"""} ) lowerCamelCase__: bool = field( default=lowerCAmelCase_ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) lowerCamelCase__: str = field( default=F"""inference_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) lowerCamelCase__: str = field( default=F"""inference_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) lowerCamelCase__: str = field( default=F"""train_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) lowerCamelCase__: str = field( default=F"""train_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) lowerCamelCase__: str = field( default=F"""env_info_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) lowerCamelCase__: str = field( default=F"""log_{round(time() )}.csv""" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) lowerCamelCase__: int = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) lowerCamelCase__: bool = field( default=lowerCAmelCase_ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def UpperCAmelCase( self : Any ): warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , lowerCamelCase_ , ) def UpperCAmelCase( self : Union[str, Any] ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase( self : List[str] ): if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def UpperCAmelCase( self : Union[str, Any] ): if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
478
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
418
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> Optional[Any]: return EnvironmentCommand() class lowercase_ ( A ): """simple docstring""" @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : ArgumentParser ): """simple docstring""" _SCREAMING_SNAKE_CASE = parser.add_parser("env" ) download_parser.set_defaults(func=__lowerCamelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = huggingface_hub.__version__ _SCREAMING_SNAKE_CASE = "not installed" _SCREAMING_SNAKE_CASE = "NA" if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = torch.__version__ _SCREAMING_SNAKE_CASE = torch.cuda.is_available() _SCREAMING_SNAKE_CASE = "not installed" if is_transformers_available(): import transformers _SCREAMING_SNAKE_CASE = transformers.__version__ _SCREAMING_SNAKE_CASE = "not installed" if is_accelerate_available(): import accelerate _SCREAMING_SNAKE_CASE = accelerate.__version__ _SCREAMING_SNAKE_CASE = "not installed" if is_xformers_available(): import xformers _SCREAMING_SNAKE_CASE = xformers.__version__ _SCREAMING_SNAKE_CASE = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(__lowerCamelCase ) ) return info @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : List[Any] ): """simple docstring""" return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
418
1
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins __lowerCamelCase : Tuple = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=lowerCAmelCase_ ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.getbasetemp() / "cache" lowercase = test_hf_cache_home / "datasets" lowercase = test_hf_cache_home / "metrics" lowercase = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(lowerCAmelCase_ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(lowerCAmelCase_ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(lowerCAmelCase_ ) ) lowercase = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(lowerCAmelCase_ ) ) lowercase = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCAmelCase_ ) ) @pytest.fixture(autouse=lowerCAmelCase_ , scope="session" ) def UpperCAmelCase_ ( ): """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase_ ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , lowerCAmelCase_ ) @pytest.fixture def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , lowerCAmelCase_ )
459
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCamelCase : Any = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCamelCase : Dict = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __lowerCamelCase : List[Any] = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase__ (self : List[str] ) -> Union[str, Any]: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def UpperCAmelCase__ (self : Tuple , A__ : Dict , A__ : Tuple , A__ : int = CHRF.CHAR_ORDER , A__ : int = CHRF.WORD_ORDER , A__ : int = CHRF.BETA , A__ : bool = False , A__ : bool = False , A__ : bool = False , ) -> List[str]: lowercase = len(references[0] ) if any(len(A__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowercase = [[refs[i] for refs in references] for i in range(A__ )] lowercase = CHRF(A__ , A__ , A__ , A__ , A__ , A__ ) lowercase = sb_chrf.corpus_score(A__ , A__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
459
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = WavaVecaPhonemeCTCTokenizer A_ = False def _UpperCAmelCase ( self ) -> Optional[int]: super().setUp() UpperCamelCase_ = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) UpperCamelCase_ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCamelCase_ = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ) -> Tuple[str, list]: UpperCamelCase_ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase )) for i in range(len(_UpperCAmelCase ) )] UpperCamelCase_ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: UpperCamelCase_ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: UpperCamelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase_ = [t[0] for t in toks] # Ensure consistency UpperCamelCase_ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: UpperCamelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: UpperCamelCase_ = ' ' + output_txt UpperCamelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) UpperCamelCase_ = tokenizer('m xxx ɪ' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) UpperCamelCase_ = tokenizer('m aaa ɪ ccc' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa UpperCamelCase_ = tokenizer('maɪ c' , do_phonemize=_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , [3, 200] ) # mai should be <unk> (=3) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCAmelCase ).input_ids , tokenizer(_UpperCAmelCase , do_phonemize=_UpperCAmelCase ).input_ids ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) UpperCamelCase_ = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] UpperCamelCase_ = tokenizer.decode(sample_ids[0] ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_UpperCAmelCase ).input_ids , tokenizer(_UpperCAmelCase , do_phonemize=_UpperCAmelCase ).input_ids ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off UpperCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter UpperCamelCase_ = tokenizer.decode(sample_ids[0] ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter UpperCamelCase_ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , batch_tokens[0] ) self.assertEqual(_UpperCAmelCase , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) UpperCamelCase_ = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer.phonemize(_UpperCAmelCase , phonemizer_lang='en-us' ) UpperCamelCase_ = tokenizer.decode(tokenizer(_UpperCAmelCase ).input_ids , filter_word_delimiter_token=_UpperCAmelCase ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=_UpperCAmelCase ) UpperCamelCase_ = 'Hello how are you' UpperCamelCase_ = tokenizer(_UpperCAmelCase , phonemizer_lang='en-us' ).input_ids UpperCamelCase_ = tokenizer(_UpperCAmelCase , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = tokenizer.decode(_UpperCAmelCase ) UpperCamelCase_ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(_UpperCAmelCase , 'ɛ l o h aʊ a ʁ j u' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase_ = 'Hello how Are you' UpperCamelCase_ = 'hello how are you' UpperCamelCase_ = tokenizer(_UpperCAmelCase ).input_ids UpperCamelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off UpperCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def _UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCamelCase_ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on UpperCamelCase_ = tokenizer.decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase , filter_word_delimiter_token=_UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(isinstance(outputs_list[0] , _UpperCAmelCase ) ) # transform list to ModelOutput UpperCamelCase_ = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(_UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): [recursive_check(_UpperCAmelCase , _UpperCAmelCase ) for la, la in zip(_UpperCAmelCase , _UpperCAmelCase )] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off UpperCamelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode(_UpperCAmelCase , output_char_offsets=_UpperCAmelCase ) for ids in sample_ids] check_list_tuples_equal(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def _UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase_ = tokenizer.vocab_size UpperCamelCase_ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCamelCase_ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCamelCase_ = tokenizer.add_tokens(_UpperCAmelCase ) UpperCamelCase_ = tokenizer.vocab_size UpperCamelCase_ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) UpperCamelCase_ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCamelCase_ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCamelCase_ = tokenizer.add_special_tokens(_UpperCAmelCase ) UpperCamelCase_ = tokenizer.vocab_size UpperCamelCase_ = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) UpperCamelCase_ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> Optional[int]: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCamelCase_ = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase_ = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] UpperCamelCase_ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(output['text'] , _UpperCAmelCase )
23
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A = logging.get_logger(__name__) class a__ ( __magic_name__ ): lowercase_ = ["input_features", "is_longer"] def __init__( self : List[str] , UpperCamelCase_ : Dict=64 , UpperCamelCase_ : Tuple=48000 , UpperCamelCase_ : List[Any]=480 , UpperCamelCase_ : List[str]=10 , UpperCamelCase_ : str=1024 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 14000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = top_db __UpperCAmelCase : Optional[Any] = truncation __UpperCAmelCase : str = padding __UpperCAmelCase : int = fft_window_size __UpperCAmelCase : str = (fft_window_size >> 1) + 1 __UpperCAmelCase : List[Any] = hop_length __UpperCAmelCase : Optional[Any] = max_length_s __UpperCAmelCase : Tuple = max_length_s * sampling_rate __UpperCAmelCase : str = sampling_rate __UpperCAmelCase : int = frequency_min __UpperCAmelCase : Optional[Any] = frequency_max __UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale="htk" , ) __UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm="slaney" , mel_scale="slaney" , ) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Dict = copy.deepcopy(self.__dict__) __UpperCAmelCase : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a_ ( self : int , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None): """simple docstring""" __UpperCAmelCase : List[Any] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , "hann") , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel="dB" , ) return log_mel_spectrogram.T def a_ ( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : Optional[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : str = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : Dict = [0] # randomly choose index for each part __UpperCAmelCase : Dict = np.random.choice(ranges[0]) __UpperCAmelCase : List[str] = np.random.choice(ranges[1]) __UpperCAmelCase : List[Any] = np.random.choice(ranges[2]) __UpperCAmelCase : List[Any] = mel[idx_front : idx_front + chunk_frames, :] __UpperCAmelCase : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCAmelCase : List[str] = mel[idx_back : idx_back + chunk_frames, :] __UpperCAmelCase : Tuple = torch.tensor(mel[None, None, :]) __UpperCAmelCase : Union[str, Any] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode="bilinear" , align_corners=UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = mel_shrink[0][0].numpy() __UpperCAmelCase : Optional[int] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def a_ ( self : Optional[Any] , UpperCamelCase_ : np.array , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCAmelCase : List[str] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCAmelCase : List[Any] = len(UpperCamelCase_) - max_length __UpperCAmelCase : int = np.random.randint(0 , overflow + 1) __UpperCAmelCase : Union[str, Any] = waveform[idx : idx + max_length] __UpperCAmelCase : Union[str, Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney)[None, :] elif truncation == "fusion": __UpperCAmelCase : Any = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters) __UpperCAmelCase : Dict = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCAmelCase : Tuple = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCAmelCase : List[str] = np.stack([mel, mel, mel, mel] , axis=0) __UpperCAmelCase : Any = False else: __UpperCAmelCase : List[str] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented") else: __UpperCAmelCase : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCAmelCase : Tuple = int(max_length / len(UpperCamelCase_)) __UpperCAmelCase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1))[:max_length] if padding == "repeatpad": __UpperCAmelCase : Union[str, Any] = int(max_length / len(UpperCamelCase_)) __UpperCAmelCase : Optional[Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : int = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0) if truncation == "fusion": __UpperCAmelCase : Any = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters) __UpperCAmelCase : List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: __UpperCAmelCase : Optional[int] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self : Dict , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Any , ): """simple docstring""" __UpperCAmelCase : int = truncation if truncation is not None else self.truncation __UpperCAmelCase : Optional[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") __UpperCAmelCase : List[str] = isinstance(UpperCamelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}") __UpperCAmelCase : str = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __UpperCAmelCase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray): __UpperCAmelCase : Tuple = np.asarray(UpperCamelCase_ , dtype=np.floataa) elif isinstance(UpperCamelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __UpperCAmelCase : Optional[int] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __UpperCAmelCase : int = [np.asarray(UpperCamelCase_)] # convert to mel spectrogram, truncate and pad if needed. __UpperCAmelCase : Optional[int] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_) for waveform in raw_speech ] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : List[Any] = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_) is_longer.append(UpperCamelCase_) if truncation == "fusion" and sum(UpperCamelCase_) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCAmelCase : Any = np.random.randint(0 , len(UpperCamelCase_)) __UpperCAmelCase : Optional[int] = True if isinstance(input_mel[0] , UpperCamelCase_): __UpperCAmelCase : Tuple = [np.asarray(UpperCamelCase_ , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool __UpperCAmelCase : List[str] = [[longer] for longer in is_longer] __UpperCAmelCase : Optional[int] = {"input_features": input_mel, "is_longer": is_longer} __UpperCAmelCase : Optional[int] = BatchFeature(UpperCamelCase_) if return_tensors is not None: __UpperCAmelCase : Any = input_features.convert_to_tensors(UpperCamelCase_) return input_features
77
0
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch UpperCAmelCase_ : List[str] = True except ImportError: UpperCAmelCase_ : int = False try: from torch.hub import _get_torch_home UpperCAmelCase_ : Optional[int] = _get_torch_home() except ImportError: UpperCAmelCase_ : str = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) UpperCAmelCase_ : int = os.path.join(torch_cache_home, 'transformers') UpperCAmelCase_ : List[Any] = 'https://cdn.huggingface.co' UpperCAmelCase_ : str = 'https://s3.amazonaws.com/models.huggingface.co/bert' UpperCAmelCase_ : Optional[int] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) UpperCAmelCase_ : Optional[int] = os.path.join(PATH, 'config.yaml') UpperCAmelCase_ : Optional[Any] = os.path.join(PATH, 'attributes.txt') UpperCAmelCase_ : int = os.path.join(PATH, 'objects.txt') UpperCAmelCase_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) UpperCAmelCase_ : Optional[Any] = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) UpperCAmelCase_ : str = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) UpperCAmelCase_ : Tuple = 'pytorch_model.bin' UpperCAmelCase_ : int = 'config.yaml' def _lowercase ( UpperCamelCase__ : Any=OBJECTS, UpperCamelCase__ : Tuple=ATTRIBUTES ): __A : List[Any] = [] with open(UpperCamelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) __A : Union[str, Any] = [] with open(UpperCamelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def _lowercase ( UpperCamelCase__ : List[Any] ): __A : Optional[int] = OrderedDict() with open(UpperCamelCase__, 'rb' ) as f: __A : Optional[int] = pkl.load(UpperCamelCase__ )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): __A : Optional[Any] = ckp.pop(UpperCamelCase__ ) if isinstance(UpperCamelCase__, np.ndarray ): __A : List[str] = torch.tensor(UpperCamelCase__ ) else: assert isinstance(UpperCamelCase__, torch.tensor ), type(UpperCamelCase__ ) __A : Tuple = v return r class _lowerCamelCase : '''simple docstring''' __lowercase : List[str] = {} def __init__( self , __lowercase , __lowercase = "root" , __lowercase=0 ): """simple docstring""" __A : Dict = name __A : List[str] = level __A : Any = {} for k, v in dictionary.items(): if v is None: raise ValueError() __A : int = copy.deepcopy(__lowercase ) __A : List[Any] = copy.deepcopy(__lowercase ) if isinstance(__lowercase , __lowercase ): __A : int = Config(__lowercase , name=__lowercase , level=level + 1 ) __A : str = v setattr(self , __lowercase , __lowercase ) __A : List[str] = d def __repr__( self ): """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self , __lowercase , __lowercase ): """simple docstring""" __A : int = val __A : Dict = val __A : str = key.split('.' ) __A : Optional[Any] = len(__lowercase ) - 1 __A : Any = self._pointer if len(__lowercase ) > 1: for i, l in enumerate(__lowercase ): if hasattr(self , __lowercase ) and isinstance(getattr(self , __lowercase ) , __lowercase ): setattr(getattr(self , __lowercase ) , '.'.join(levels[i:] ) , __lowercase ) if l == last_level: __A : Optional[int] = val else: __A : str = pointer[l] def snake_case__ ( self ): """simple docstring""" return self._pointer def snake_case__ ( self , __lowercase , __lowercase ): """simple docstring""" with open(F"""{file_name}""" , 'w' ) as stream: dump(__lowercase , __lowercase ) def snake_case__ ( self , __lowercase , __lowercase ): """simple docstring""" with open(F"""{file_name}""" , 'w' ) as stream: json.dump(__lowercase , __lowercase ) @staticmethod def snake_case__ ( __lowercase ): """simple docstring""" with open(__lowercase ) as stream: __A : Any = load(__lowercase , Loader=__lowercase ) return data def __str__( self ): """simple docstring""" __A : int = ' ' if self._name != "root": __A : Optional[Any] = F"""{t * (self._level-1)}{self._name}:\n""" else: __A : Optional[Any] = '' __A : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__lowercase , __lowercase ): r += F"""{t * (self._level)}{v}\n""" self._level += 1 else: r += F"""{t * (self._level)}{k}: {v} ({type(__lowercase ).__name__})\n""" __A : Optional[int] = level return r[:-1] @classmethod def snake_case__ ( cls , __lowercase , **__lowercase ): """simple docstring""" __A ,__A : str = cls.get_config_dict(__lowercase , **__lowercase ) return cls(__lowercase ) @classmethod def snake_case__ ( cls , __lowercase , **__lowercase ): """simple docstring""" __A : Union[str, Any] = kwargs.pop('cache_dir' , __lowercase ) __A : Tuple = kwargs.pop('force_download' , __lowercase ) __A : Optional[int] = kwargs.pop('resume_download' , __lowercase ) __A : Tuple = kwargs.pop('proxies' , __lowercase ) __A : int = kwargs.pop('local_files_only' , __lowercase ) if os.path.isdir(__lowercase ): __A : Any = os.path.join(__lowercase , __lowercase ) elif os.path.isfile(__lowercase ) or is_remote_url(__lowercase ): __A : Tuple = pretrained_model_name_or_path else: __A : Optional[int] = hf_bucket_url(__lowercase , filename=__lowercase , use_cdn=__lowercase ) try: # Load from URL or cache if already cached __A : List[Any] = cached_path( __lowercase , cache_dir=__lowercase , force_download=__lowercase , proxies=__lowercase , resume_download=__lowercase , local_files_only=__lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __A : List[str] = Config.load_yaml(__lowercase ) except EnvironmentError: __A : Dict = 'Can\'t load config for' raise EnvironmentError(__lowercase ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(__lowercase ), kwargs def _lowercase ( UpperCamelCase__ : Any ): __A : Any = torch.load('dump.pt', map_location=in_tensor.device ) __A : Optional[Any] = in_tensor.numpy() __A : Union[str, Any] = out_tensor.numpy()[0] print(na.shape, na[0, 0, :5] ) print(na.shape, na[0, 0, :5] ) assert np.allclose(UpperCamelCase__, UpperCamelCase__, rtol=0.01, atol=0.1 ), ( f"""{sum([1 for x in np.isclose(UpperCamelCase__, UpperCamelCase__, rtol=0.01, atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def _lowercase ( UpperCamelCase__ : List[str] ): __A : Any = urlparse(UpperCamelCase__ ) return parsed.scheme in ("http", "https") def _lowercase ( UpperCamelCase__ : str, UpperCamelCase__ : str, UpperCamelCase__ : Tuple=True ): __A : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __A : List[str] = '/' not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def _lowercase ( UpperCamelCase__ : Any, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : List[str]=0, UpperCamelCase__ : Tuple=None, ): __A : Any = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ): ua += "; " + "; ".join('{}/{}'.format(UpperCamelCase__, UpperCamelCase__ ) for k, v in user_agent.items() ) elif isinstance(UpperCamelCase__, UpperCamelCase__ ): ua += "; " + user_agent __A : Dict = {'user-agent': ua} if resume_size > 0: __A : str = 'bytes=%d-' % (resume_size,) __A : List[Any] = requests.get(UpperCamelCase__, stream=UpperCamelCase__, proxies=UpperCamelCase__, headers=UpperCamelCase__ ) if response.status_code == 416: # Range not satisfiable return __A : Any = response.headers.get('Content-Length' ) __A : List[Any] = resume_size + int(UpperCamelCase__ ) if content_length is not None else None __A : str = tqdm( unit='B', unit_scale=UpperCamelCase__, total=UpperCamelCase__, initial=UpperCamelCase__, desc='Downloading', ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(UpperCamelCase__ ) ) temp_file.write(UpperCamelCase__ ) progress.close() def _lowercase ( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : List[Any]=False, UpperCamelCase__ : List[str]=None, UpperCamelCase__ : Optional[int]=10, UpperCamelCase__ : Dict=False, UpperCamelCase__ : List[str]=None, UpperCamelCase__ : Optional[Any]=False, ): if cache_dir is None: __A : List[str] = TRANSFORMERS_CACHE if isinstance(UpperCamelCase__, UpperCamelCase__ ): __A : List[Any] = str(UpperCamelCase__ ) os.makedirs(UpperCamelCase__, exist_ok=UpperCamelCase__ ) __A : str = None if not local_files_only: try: __A : int = requests.head(UpperCamelCase__, allow_redirects=UpperCamelCase__, proxies=UpperCamelCase__, timeout=UpperCamelCase__ ) if response.status_code == 200: __A : Tuple = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __A : int = url_to_filename(UpperCamelCase__, UpperCamelCase__ ) # get cache path to put the file __A : List[Any] = os.path.join(UpperCamelCase__, UpperCamelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(UpperCamelCase__ ): return cache_path else: __A : str = [ file for file in fnmatch.filter(os.listdir(UpperCamelCase__ ), filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(UpperCamelCase__ ) > 0: return os.path.join(UpperCamelCase__, matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(UpperCamelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __A : List[str] = cache_path + '.lock' with FileLock(UpperCamelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(UpperCamelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __A : Optional[int] = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(UpperCamelCase__, 'a+b' ) as f: yield f __A : List[str] = _resumable_file_manager if os.path.exists(UpperCamelCase__ ): __A : int = os.stat(UpperCamelCase__ ).st_size else: __A : Union[str, Any] = 0 else: __A : Dict = partial(tempfile.NamedTemporaryFile, dir=UpperCamelCase__, delete=UpperCamelCase__ ) __A : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s', UpperCamelCase__, temp_file.name, ) http_get( UpperCamelCase__, UpperCamelCase__, proxies=UpperCamelCase__, resume_size=UpperCamelCase__, user_agent=UpperCamelCase__, ) os.replace(temp_file.name, UpperCamelCase__ ) __A : str = {'url': url, 'etag': etag} __A : Dict = cache_path + '.json' with open(UpperCamelCase__, 'w' ) as meta_file: json.dump(UpperCamelCase__, UpperCamelCase__ ) return cache_path def _lowercase ( UpperCamelCase__ : List[str], UpperCamelCase__ : Dict=None ): __A : Tuple = url.encode('utf-8' ) __A : int = shaaaa(UpperCamelCase__ ) __A : Tuple = url_hash.hexdigest() if etag: __A : Tuple = etag.encode('utf-8' ) __A : Optional[Any] = shaaaa(UpperCamelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def _lowercase ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : str=False, UpperCamelCase__ : Any=None, UpperCamelCase__ : Tuple=False, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Union[str, Any]=False, UpperCamelCase__ : Union[str, Any]=False, UpperCamelCase__ : Optional[Any]=False, ): if cache_dir is None: __A : int = TRANSFORMERS_CACHE if isinstance(UpperCamelCase__, UpperCamelCase__ ): __A : Union[str, Any] = str(UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ): __A : List[str] = str(UpperCamelCase__ ) if is_remote_url(UpperCamelCase__ ): # URL, so get it from the cache (downloading if necessary) __A : Tuple = get_from_cache( UpperCamelCase__, cache_dir=UpperCamelCase__, force_download=UpperCamelCase__, proxies=UpperCamelCase__, resume_download=UpperCamelCase__, user_agent=UpperCamelCase__, local_files_only=UpperCamelCase__, ) elif os.path.exists(UpperCamelCase__ ): # File, and it exists. __A : Optional[Any] = url_or_filename elif urlparse(UpperCamelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(UpperCamelCase__ ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(UpperCamelCase__ ) ) if extract_compressed_file: if not is_zipfile(UpperCamelCase__ ) and not tarfile.is_tarfile(UpperCamelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __A ,__A : List[str] = os.path.split(UpperCamelCase__ ) __A : Optional[Any] = output_file.replace('.', '-' ) + '-extracted' __A : str = os.path.join(UpperCamelCase__, UpperCamelCase__ ) if os.path.isdir(UpperCamelCase__ ) and os.listdir(UpperCamelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __A : Any = output_path + '.lock' with FileLock(UpperCamelCase__ ): shutil.rmtree(UpperCamelCase__, ignore_errors=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ ) if is_zipfile(UpperCamelCase__ ): with ZipFile(UpperCamelCase__, 'r' ) as zip_file: zip_file.extractall(UpperCamelCase__ ) zip_file.close() elif tarfile.is_tarfile(UpperCamelCase__ ): __A : Optional[int] = tarfile.open(UpperCamelCase__ ) tar_file.extractall(UpperCamelCase__ ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(UpperCamelCase__ ) ) return output_path_extracted return output_path def _lowercase ( UpperCamelCase__ : int, UpperCamelCase__ : str="," ): assert isinstance(UpperCamelCase__, UpperCamelCase__ ) if os.path.isfile(UpperCamelCase__ ): with open(UpperCamelCase__ ) as f: __A : Any = eval(f.read() ) else: __A : Optional[int] = requests.get(UpperCamelCase__ ) try: __A : int = requests.json() except Exception: __A : Dict = req.content.decode() assert data is not None, "could not connect" try: __A : Dict = eval(UpperCamelCase__ ) except Exception: __A : Any = data.split('\n' ) req.close() return data def _lowercase ( UpperCamelCase__ : Optional[Any] ): __A : Dict = requests.get(UpperCamelCase__ ) __A : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def _lowercase ( UpperCamelCase__ : Union[str, Any] ): __A : Optional[Any] = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(UpperCamelCase__ ) with open(UpperCamelCase__, 'rb' ) as stream: __A : Union[str, Any] = pkl.load(UpperCamelCase__ ) __A : Union[str, Any] = weights.pop('model' ) __A : Optional[Any] = {} for k, v in model.items(): __A : int = torch.from_numpy(UpperCamelCase__ ) if "running_var" in k: __A : List[str] = torch.tensor([0] ) __A : Optional[Any] = k.replace('running_var', 'num_batches_tracked' ) __A : Dict = zero return new def _lowercase ( ): print(f"""{os.path.abspath(os.path.join(UpperCamelCase__, os.pardir ) )}/demo.ipynb""" ) def _lowercase ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Union[str, Any]="RGB" ): assert isinstance(UpperCamelCase__, UpperCamelCase__ ) if os.path.isfile(UpperCamelCase__ ): __A : Any = cva.imread(UpperCamelCase__ ) else: __A : Any = get_image_from_url(UpperCamelCase__ ) assert img is not None, f"""could not connect to: {im}""" __A : int = cva.cvtColor(UpperCamelCase__, cva.COLOR_BGR2RGB ) if input_format == "RGB": __A : Any = img[:, :, ::-1] return img def _lowercase ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Any=1 ): return (images[i : i + batch] for i in range(0, len(UpperCamelCase__ ), UpperCamelCase__ ))
540
'''simple docstring''' from __future__ import annotations class _lowerCamelCase : '''simple docstring''' def __init__( self , __lowercase ): """simple docstring""" __A : Dict = order # a_{0} ... a_{k} __A : str = [1.0] + [0.0] * order # b_{0} ... b_{k} __A : Any = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __A : Optional[int] = [0.0] * self.order # y[n-1] ... y[n-k] __A : Dict = [0.0] * self.order def snake_case__ ( self , __lowercase , __lowercase ): """simple docstring""" if len(__lowercase ) < self.order: __A : List[Any] = [1.0, *a_coeffs] if len(__lowercase ) != self.order + 1: __A : Tuple = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__lowercase )}""" ) raise ValueError(__lowercase ) if len(__lowercase ) != self.order + 1: __A : List[Any] = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__lowercase )}""" ) raise ValueError(__lowercase ) __A : Optional[int] = a_coeffs __A : Optional[int] = b_coeffs def snake_case__ ( self , __lowercase ): """simple docstring""" __A : Union[str, Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __A : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __A : List[str] = self.input_history[:-1] __A : Optional[int] = self.output_history[:-1] __A : Optional[int] = sample __A : Dict = result return result
540
1
'''simple docstring''' import math def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ (UpperCamelCase : int = 1_0001 ): '''simple docstring''' try: _a = int(UpperCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) _a = [] _a = 2 while len(UpperCamelCase ) < nth: if is_prime(UpperCamelCase ): primes.append(UpperCamelCase ) num += 1 else: num += 1 return primes[len(UpperCamelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
22
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A ( unittest.TestCase ): def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A ( _a ,unittest.TestCase ): lowercase_ = ImageGPTImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _a = ImageGPTImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) ) def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) _a = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' ) image_processor_first.to_json_file(lowerCAmelCase_ ) _a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict() _a = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase_ ) _a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict() _a = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase_ ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass def snake_case_ (): '''simple docstring''' _a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) _a = Image.open(dataset[4]['''file'''] ) _a = Image.open(dataset[5]['''file'''] ) _a = [imagea, imagea] return images @require_vision @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) _a = prepare_images() # test non-batched _a = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) _a = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ ) # test batched _a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) _a = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
22
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowercase__ = ['''bert-base-uncased''', '''bert-base-cased'''] lowercase__ = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class UpperCAmelCase_ ( tf.keras.Model ): """simple docstring""" def __init__( self , UpperCAmelCase_ ): super().__init__() snake_case_ = tokenizer snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase_ ) snake_case_ = TFAutoModel.from_config(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ ): snake_case_ = self.tokenizer(UpperCAmelCase_ ) snake_case_ = self.bert(**UpperCAmelCase_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ): super().setUp() snake_case_ = [ BertTokenizer.from_pretrained(UpperCAmelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false snake_case_ = [TFBertTokenizer.from_pretrained(UpperCAmelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(UpperCAmelCase_ , use_fast_bert_tokenizer=UpperCAmelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) snake_case_ = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] snake_case_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): snake_case_ = tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding="longest" ) snake_case_ = tf_tokenizer(UpperCAmelCase_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _lowercase ( self ): for tf_tokenizer in self.tf_tokenizers: snake_case_ = tf_tokenizer(self.paired_sentences ) snake_case_ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _lowercase ( self ): for tf_tokenizer in self.tf_tokenizers: snake_case_ = tf.function(UpperCAmelCase_ ) for test_inputs in (self.test_sentences, self.paired_sentences): snake_case_ = tf.constant(UpperCAmelCase_ ) snake_case_ = compiled_tokenizer(UpperCAmelCase_ ) snake_case_ = tf_tokenizer(UpperCAmelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase ( self ): for tf_tokenizer in self.tf_tokenizers: snake_case_ = ModelToSave(tokenizer=UpperCAmelCase_ ) snake_case_ = tf.convert_to_tensor(self.test_sentences ) snake_case_ = model(UpperCAmelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: snake_case_ = Path(UpperCAmelCase_ ) / "saved.model" model.save(UpperCAmelCase_ ) snake_case_ = tf.keras.models.load_model(UpperCAmelCase_ ) snake_case_ = loaded_model(UpperCAmelCase_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
420
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowercase__ = logging.get_logger(__name__) lowercase__ = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } lowercase__ = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } lowercase__ = { '''jukebox''': 5_12, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_LYRIC_TOKENS_SIZES snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=["v3", "v2", "v2"] , UpperCAmelCase_=5_12 , UpperCAmelCase_=5 , UpperCAmelCase_="<|endoftext|>" , **UpperCAmelCase_ , ): snake_case_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token super().__init__( unk_token=UpperCAmelCase_ , n_genres=UpperCAmelCase_ , version=UpperCAmelCase_ , max_n_lyric_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) snake_case_ = version snake_case_ = max_n_lyric_tokens snake_case_ = n_genres with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: snake_case_ = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: snake_case_ = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: snake_case_ = json.load(UpperCAmelCase_ ) snake_case_ = R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: snake_case_ = oov.replace(R"\-'" , R"\-+'" ) snake_case_ = regex.compile(UpperCAmelCase_ ) snake_case_ = {v: k for k, v in self.artists_encoder.items()} snake_case_ = {v: k for k, v in self.genres_encoder.items()} snake_case_ = {v: k for k, v in self.lyrics_encoder.items()} @property def _lowercase ( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _lowercase ( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = [self.artists_encoder.get(UpperCAmelCase_ , 0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase_ ) ): snake_case_ = [self.genres_encoder.get(UpperCAmelCase_ , 0 ) for genre in list_genres[genres]] snake_case_ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case_ = [[self.lyrics_encoder.get(UpperCAmelCase_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _lowercase ( self , UpperCAmelCase_ ): return list(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ): snake_case_ , snake_case_ , snake_case_ = self.prepare_for_tokenization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = self._tokenize(UpperCAmelCase_ ) return artist, genre, lyrics def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case_ = artists[idx].lower() snake_case_ = [genres[idx].lower()] else: snake_case_ = self._normalize(artists[idx] ) + ".v2" snake_case_ = [ self._normalize(UpperCAmelCase_ ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case_ = regex.compile(R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) snake_case_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" snake_case_ = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase_ ) )} snake_case_ = 0 snake_case_ = len(UpperCAmelCase_ ) + 1 snake_case_ = self.vocab snake_case_ = {v: k for k, v in self.vocab.items()} snake_case_ = "" else: snake_case_ = regex.compile(R"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) snake_case_ = self._run_strip_accents(UpperCAmelCase_ ) snake_case_ = lyrics.replace("\\" , "\n" ) snake_case_ = self.out_of_vocab.sub("" , UpperCAmelCase_ ), [], [] return artists, genres, lyrics def _lowercase ( self , UpperCAmelCase_ ): snake_case_ = unicodedata.normalize("NFD" , UpperCAmelCase_ ) snake_case_ = [] for char in text: snake_case_ = unicodedata.category(UpperCAmelCase_ ) if cat == "Mn": continue output.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ ): snake_case_ = ( [chr(UpperCAmelCase_ ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) snake_case_ = frozenset(UpperCAmelCase_ ) snake_case_ = re.compile(R"_+" ) snake_case_ = "".join([c if c in accepted else "_" for c in text.lower()] ) snake_case_ = pattern.sub("_" , UpperCAmelCase_ ).strip("_" ) return text def _lowercase ( self , UpperCAmelCase_ ): return " ".join(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ): # Convert to TensorType if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TensorType(UpperCAmelCase_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf snake_case_ = tf.constant snake_case_ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch snake_case_ = torch.tensor snake_case_ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 snake_case_ = jnp.array snake_case_ = _is_jax else: snake_case_ = np.asarray snake_case_ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case_ = [inputs] if not is_tensor(UpperCAmelCase_ ): snake_case_ = as_tensor(UpperCAmelCase_ ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="" , UpperCAmelCase_="pt" ): snake_case_ = [0, 0, 0] snake_case_ = [artist] * len(self.version ) snake_case_ = [genres] * len(self.version ) snake_case_ , snake_case_ , snake_case_ = self.tokenize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ , snake_case_ , snake_case_ = self._convert_token_to_id(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = [-INFINITY] * len(full_tokens[-1] ) snake_case_ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase_ ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase_ ) ) snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase_ ) ) snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase_ ) ) return (artists_file, genres_file, lyrics_file) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = self.artists_decoder.get(UpperCAmelCase_ ) snake_case_ = [self.genres_decoder.get(UpperCAmelCase_ ) for genre in genres_index] snake_case_ = [self.lyrics_decoder.get(UpperCAmelCase_ ) for character in lyric_index] return artist, genres, lyrics
420
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A_ = UniSpeechSatForSequenceClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) A_ = downstream_dict['projector.weight'] A_ = downstream_dict['projector.bias'] A_ = downstream_dict['model.post_net.linear.weight'] A_ = downstream_dict['model.post_net.linear.bias'] return model def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A_ = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) A_ = downstream_dict['model.linear.weight'] A_ = downstream_dict['model.linear.bias'] return model def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A_ = UniSpeechSatForXVector.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) A_ = downstream_dict['connector.weight'] A_ = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): A_ = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] A_ = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] A_ = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] A_ = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] A_ = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] A_ = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] A_ = downstream_dict['objective.W'] return model @torch.no_grad() def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A_ = torch.load(UpperCAmelCase_ , map_location="cpu" ) A_ = checkpoint['Downstream'] A_ = UniSpeechSatConfig.from_pretrained(UpperCAmelCase_ ) A_ = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ ) A_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): A_ = convert_classification(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith("ForAudioFrameClassification" ): A_ = convert_diarization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith("ForXVector" ): A_ = convert_xvector(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: A_ = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
452
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A_ ( _A , unittest.TestCase ): _lowerCamelCase : Optional[Any] = XLMTokenizer _lowerCamelCase : Optional[Any] = False def lowercase ( self : List[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _UpperCAmelCase = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) _UpperCAmelCase = ["l o 123", "lo w 1456", "e r</w> 1789", ""] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def lowercase ( self : List[str] , snake_case_ : Tuple ): _UpperCAmelCase = "lower newer" _UpperCAmelCase = "lower newer" return input_text, output_text def lowercase ( self : Dict ): _UpperCAmelCase = XLMTokenizer(self.vocab_file , self.merges_file ) _UpperCAmelCase = "lower" _UpperCAmelCase = ["low", "er</w>"] _UpperCAmelCase = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = tokens + ["<unk>"] _UpperCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) @slow def lowercase ( self : Optional[int] ): _UpperCAmelCase = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) _UpperCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase ) _UpperCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
717
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class A_ ( unittest.TestCase ): def lowercase ( self : List[str] ): _UpperCAmelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(snake_case_ ) , torch_builtin(snake_case_ ) ) ) self.assertFalse(torch.allclose(gelu_python(snake_case_ ) , gelu_new(snake_case_ ) ) ) def lowercase ( self : int ): _UpperCAmelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase = get_activation("gelu" ) _UpperCAmelCase = get_activation("gelu_10" ) _UpperCAmelCase = torch_builtin(snake_case_ ) _UpperCAmelCase = geluaa(snake_case_ ) _UpperCAmelCase = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(snake_case_ ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowercase ( self : Any ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(snake_case_ ): get_activation("bogus" ) with self.assertRaises(snake_case_ ): get_activation(snake_case_ ) def lowercase ( self : Dict ): _UpperCAmelCase = get_activation("gelu" ) _UpperCAmelCase = 1 _UpperCAmelCase = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(snake_case_ ): _UpperCAmelCase = acta.a
119
0
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ = (image_size // patch_size) ** 2 lowerCamelCase__ = num_patches + 1 def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = ViTMSNModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.type_sequence_label_size lowerCamelCase__ = ViTMSNForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ = 1 lowerCamelCase__ = ViTMSNForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _UpperCamelCase = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = ViTMSNModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,nn.Linear ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = ViTMSNModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): torch.manual_seed(2 ) lowerCamelCase__ = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_lowerCAmelCase ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**_lowerCAmelCase ) # verify the logits lowerCamelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
50
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase__ = 5_0_0_0_0 lowerCAmelCase__ = 5_0_0_0 lowerCAmelCase__ , lowerCAmelCase__ = os.path.split(__file__) lowerCAmelCase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: datasets.Dataset , SCREAMING_SNAKE_CASE_: List[Any] ) -> str: '''simple docstring''' for i in range(SCREAMING_SNAKE_CASE_ ): A__ = dataset[i] @get_duration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: datasets.Dataset , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[str] ) -> str: '''simple docstring''' for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): A__ = dataset[i : i + batch_size] @get_duration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: datasets.Dataset , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]: '''simple docstring''' with dataset.formatted_as(type=SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): A__ = dataset[i] @get_duration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: datasets.Dataset , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: List[Any] ) -> Any: '''simple docstring''' with dataset.formatted_as(type=SCREAMING_SNAKE_CASE_ ): for i in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = dataset[i : i + batch_size] def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' A__ = {"num examples": SPEED_TEST_N_EXAMPLES} A__ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0_0}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0_0_0}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_0}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_0_0_0}), ] A__ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0_0}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0_0_0}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_0}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) A__ = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) A__ = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , "dataset.arrow" ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ , seq_shapes={"list": (1_0_0,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(SCREAMING_SNAKE_CASE_ ) ) A__ = func(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) print("shuffling dataset" ) A__ = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(SCREAMING_SNAKE_CASE_ ) ) A__ = func( SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
514
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = None __UpperCamelCase = field(default="Translation" , init=lowerCAmelCase_ , repr=lowerCAmelCase_ ) def __call__( self : List[Any] ) -> List[str]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = None __UpperCamelCase = field(default="TranslationVariableLanguages" , init=lowerCAmelCase_ , repr=lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' a__ : Any = sorted(set(self.languages ) ) if self.languages else None a__ : List[str] = len(self.languages ) if self.languages else None def __call__( self : List[str] ) -> str: '''simple docstring''' return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = set(self.languages ) if self.languages and set(__lowerCAmelCase ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(__lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__lowerCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a__ : Optional[int] = [] for lang, text in translation_dict.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a__ , a__ : Any = zip(*sorted(__lowerCAmelCase ) ) return {"language": languages, "translation": translations} def __lowerCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
707
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = ["pixel_values"] def __init__( self : str , A__ : bool = True , A__ : int = 3_2 , A__ : List[str]=PILImageResampling.BILINEAR , A__ : bool = True , **A__ : Tuple , ) -> None: '''simple docstring''' a__ : Optional[int] = do_resize a__ : List[str] = do_rescale a__ : Optional[int] = size_divisor a__ : Any = resample super().__init__(**A__ ) def __lowerCAmelCase ( self : int , A__ : np.ndarray , A__ : int , A__ : Optional[int] , A__ : Optional[ChannelDimension] = None , **A__ : List[Any] ) -> np.ndarray: '''simple docstring''' a__ , a__ : Optional[int] = get_image_size(A__ ) # Rounds the height and width down to the closest multiple of size_divisor a__ : List[Any] = height // size_divisor * size_divisor a__ : List[str] = width // size_divisor * size_divisor a__ : int = resize(A__ , (new_h, new_w) , resample=A__ , data_format=A__ , **A__ ) return image def __lowerCAmelCase ( self : int , A__ : np.ndarray , A__ : float , A__ : Optional[ChannelDimension] = None , **A__ : Optional[int] ) -> np.ndarray: '''simple docstring''' return rescale(image=A__ , scale=A__ , data_format=A__ , **A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , A__ : Optional[bool] = None , A__ : Optional[int] = None , A__ : int=None , A__ : Optional[bool] = None , A__ : Optional[Union[TensorType, str]] = None , A__ : ChannelDimension = ChannelDimension.FIRST , **A__ : str , ) -> BatchFeature: '''simple docstring''' a__ : Tuple = do_resize if do_resize is not None else self.do_resize a__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale a__ : Tuple = size_divisor if size_divisor is not None else self.size_divisor a__ : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) a__ : int = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. a__ : Any = [to_numpy_array(A__ ) for img in images] if do_resize: a__ : Optional[Any] = [self.resize(A__ , size_divisor=A__ , resample=A__ ) for image in images] if do_rescale: a__ : str = [self.rescale(A__ , scale=1 / 2_5_5 ) for image in images] a__ : Dict = [to_channel_dimension_format(A__ , A__ ) for image in images] a__ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=A__ , tensor_type=A__ )
340
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_ ( ) -> Optional[Any]: a__ : Tuple = HfArgumentParser(_UpperCAmelCase ) a__ : Optional[Any] = parser.parse_args_into_dataclasses()[0] a__ : Union[str, Any] = TensorFlowBenchmark(args=_UpperCAmelCase ) try: a__ : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Optional[Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : Optional[int] = " ".join(str(_UpperCAmelCase ).split(" " )[:-1] ) a__ : Optional[int] = "" a__ : int = eval(str(_UpperCAmelCase ).split(" " )[-1] ) a__ : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: a__ : List[str] = full_error_msg + begin_error_msg + str(_UpperCAmelCase ) raise ValueError(_UpperCAmelCase ) benchmark.run() if __name__ == "__main__": main()
37
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) a__ : Any = logging.getLogger() def UpperCAmelCase_ ( ) -> Any: '''simple docstring''' A_ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A_ = parser.parse_args() return args.f def UpperCAmelCase_ ( _UpperCAmelCase :Union[str, Any] ) -> str: '''simple docstring''' A_ = {} A_ = os.path.join(_UpperCAmelCase , '''all_results.json''' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase , '''r''' ) as f: A_ = json.load(_UpperCAmelCase ) else: raise ValueError(f'can\'t find {path}' ) return results def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' A_ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() a__ : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): @classmethod def __UpperCAmelCase ( cls ): """simple docstring""" A_ = tempfile.mkdtemp() A_ = os.path.join(cls.tmpdir ,'''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) A_ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __UpperCAmelCase ( cls ): """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertLess(result['''perplexity'''] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertLess(result['''perplexity'''] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = 7 if get_gpu_count() > 1 else 2 A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.75 ) self.assertLess(result['''train_loss'''] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] ,2_8 ) self.assertGreaterEqual(result['''eval_exact'''] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_rouge1'''] ,1_0 ) self.assertGreaterEqual(result['''eval_rouge2'''] ,2 ) self.assertGreaterEqual(result['''eval_rougeL'''] ,7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] ,7 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_bleu'''] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''translation_no_trainer''' ) ) ) @slow def __UpperCAmelCase ( self ): """simple docstring""" A_ = logging.StreamHandler(sys.stdout ) logger.addHandler(__snake_case ) A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] ,0.10 ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''image_classification_no_trainer''' ) ) )
188
0
"""simple docstring""" from math import sqrt def lowercase (_snake_case ) -> List[Any]: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(sqrt(UpperCAmelCase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_snake_case = 10001 ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCAmelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCAmelCase__ ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
714
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self : List[str] , *A_ : Dict , **A_ : Any )-> Any: super().__init__(*A_ , **A_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A ( self : int , A_ : List[Any]=None )-> Tuple: __UpperCamelCase = {} if top_k is not None: __UpperCamelCase = top_k return {}, {}, postprocess_params def __call__( self : str , A_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **A_ : Tuple )-> str: return super().__call__(A_ , **A_ ) def A ( self : Union[str, Any] , A_ : int )-> Tuple: __UpperCamelCase = load_image(A_ ) __UpperCamelCase = self.image_processor(images=A_ , return_tensors=self.framework ) return model_inputs def A ( self : str , A_ : Union[str, Any] )-> Union[str, Any]: __UpperCamelCase = self.model(**A_ ) return model_outputs def A ( self : Union[str, Any] , A_ : Any , A_ : Tuple=5 )-> int: if top_k > self.model.config.num_labels: __UpperCamelCase = self.model.config.num_labels if self.framework == "pt": __UpperCamelCase = model_outputs.logits.softmax(-1 )[0] __UpperCamelCase , __UpperCamelCase = probs.topk(A_ ) elif self.framework == "tf": __UpperCamelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] __UpperCamelCase = tf.math.top_k(A_ , k=A_ ) __UpperCamelCase , __UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __UpperCamelCase = scores.tolist() __UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A_ , A_ )]
228
0
'''simple docstring''' import math import sys import cva import numpy as np def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> np.ndarray: # For applying gaussian function for each element in matrix. _a : Optional[Any] = math.sqrt(lowerCAmelCase_ ) _a : str = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> np.ndarray: _a : Optional[int] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> np.ndarray: # Creates a gaussian kernel of given dimension. _a : str = np.zeros((kernel_size, kernel_size) ) for i in range(0 , lowerCAmelCase_ ): for j in range(0 , lowerCAmelCase_ ): _a : Union[str, Any] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> np.ndarray: _a : int = np.zeros(img.shape ) _a : List[str] = get_gauss_kernel(lowerCAmelCase_ , lowerCAmelCase_ ) _a , _a : List[Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _a : Optional[int] = get_slice(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a : Optional[Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] _a : Tuple = vec_gaussian(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Union[str, Any] = np.multiply(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Any = np.multiply(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Optional[int] = np.sum(lowerCAmelCase_ ) / np.sum(lowerCAmelCase_ ) _a : int = val return imga def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple: _a : Tuple = args[1] if args[1:] else '../image_data/lena.jpg' _a : Dict = float(args[2] ) if args[2:] else 1.0 _a : Any = float(args[3] ) if args[3:] else 1.0 if args[4:]: _a : List[str] = int(args[4] ) _a : Union[str, Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: _a : List[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parse_args(sys.argv) __lowerCAmelCase = cva.imread(filename, 0) cva.imshow('''input image''', img) __lowerCAmelCase = img / 255 __lowerCAmelCase = out.astype('''float32''') __lowerCAmelCase = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __lowerCAmelCase = out * 255 __lowerCAmelCase = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
358
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowerCAmelCase = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
1
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class A_ ( unittest.TestCase ): def _snake_case ( self : int ) -> str: __magic_name__ = inspect.getfile(accelerate.test_utils ) __magic_name__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) __magic_name__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _snake_case ( self : str ) -> Union[str, Any]: __magic_name__ = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __magic_name__ = [sys.executable] + distributed_args execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() )
468
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( snake_case_ , unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaPriorPipeline UpperCAmelCase__ = ['''prompt'''] UpperCAmelCase__ = ['''prompt''', '''negative_prompt'''] UpperCAmelCase__ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def _snake_case ( self : Dict ) -> Dict: return 3_2 @property def _snake_case ( self : Tuple ) -> Tuple: return 3_2 @property def _snake_case ( self : Dict ) -> Optional[int]: return self.time_input_dim @property def _snake_case ( self : List[Any] ) -> str: return self.time_input_dim * 4 @property def _snake_case ( self : List[str] ) -> List[Any]: return 1_0_0 @property def _snake_case ( self : List[str] ) -> Tuple: __magic_name__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self : Optional[int] ) -> Optional[int]: torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__lowerCamelCase ) @property def _snake_case ( self : List[str] ) -> Union[str, Any]: torch.manual_seed(0 ) __magic_name__ = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } __magic_name__ = PriorTransformer(**__lowerCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __magic_name__ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __magic_name__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) __magic_name__ = CLIPVisionModelWithProjection(__lowerCamelCase ) return model @property def _snake_case ( self : Union[str, Any] ) -> int: __magic_name__ = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=__lowerCamelCase , do_normalize=__lowerCamelCase , do_resize=__lowerCamelCase , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def _snake_case ( self : List[Any] ) -> Optional[Any]: __magic_name__ = self.dummy_prior __magic_name__ = self.dummy_image_encoder __magic_name__ = self.dummy_text_encoder __magic_name__ = self.dummy_tokenizer __magic_name__ = self.dummy_image_processor __magic_name__ = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=__lowerCamelCase , clip_sample_range=10.0 , ) __magic_name__ = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def _snake_case ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : str=0 ) -> Optional[int]: if str(__lowerCamelCase ).startswith("mps" ): __magic_name__ = torch.manual_seed(__lowerCamelCase ) else: __magic_name__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __magic_name__ = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _snake_case ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ = "cpu" __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**__lowerCamelCase ) __magic_name__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __magic_name__ = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) __magic_name__ = output.image_embeds __magic_name__ = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] __magic_name__ = image[0, -1_0:] __magic_name__ = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) __magic_name__ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _snake_case ( self : Dict ) -> List[str]: __magic_name__ = torch_device == "cpu" __magic_name__ = True __magic_name__ = False self._test_inference_batch_single_identical( test_max_difference=__lowerCamelCase , relax_max_difference=__lowerCamelCase , test_mean_pixel_difference=__lowerCamelCase , ) @skip_mps def _snake_case ( self : Tuple ) -> Tuple: __magic_name__ = torch_device == "cpu" __magic_name__ = False self._test_attention_slicing_forward_pass( test_max_difference=__lowerCamelCase , test_mean_pixel_difference=__lowerCamelCase , )
468
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _snake_case ( A__ ): _lowercase : List[Any] = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) _lowercase : Any = '''CIDAS/clipseg-rd64-refined''' _lowercase : List[str] = '''image_segmenter''' _lowercase : str = CLIPSegForImageSegmentation _lowercase : List[Any] = ['''image''', '''text'''] _lowercase : List[str] = ['''image'''] def __init__( self , *a , **a) -> str: requires_backends(self , ['vision']) super().__init__(*a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Optional[Any]: return self.pre_processor(text=[label] , images=[image] , padding=a , return_tensors='pt') def SCREAMING_SNAKE_CASE__ ( self , a) -> str: with torch.no_grad(): SCREAMING_SNAKE_CASE = self.model(**a).logits return logits def SCREAMING_SNAKE_CASE__ ( self , a) -> Tuple: SCREAMING_SNAKE_CASE = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 return Image.fromarray((array * 255).astype(np.uinta))
73
import os def __UpperCAmelCase( ): with open(os.path.dirname(lowercase_ ) + '''/p022_names.txt''' ) as file: _lowerCamelCase : Optional[int] = str(file.readlines()[0] ) _lowerCamelCase : List[Any] = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Tuple = 0 for i, name in enumerate(lowercase_ ): for letter in name: name_score += ord(lowercase_ ) - 64 total_score += (i + 1) * name_score _lowerCamelCase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
114
0
'''simple docstring''' import requests SCREAMING_SNAKE_CASE_ = 'YOUR API KEY' def UpperCamelCase__ ( _lowercase : str , _lowercase : str = giphy_api_key ) -> list: __UpperCAmelCase: Optional[int] = """+""".join(query.split() ) __UpperCAmelCase: List[str] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __UpperCAmelCase: Union[str, Any] = requests.get(_lowercase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
466
'''simple docstring''' from __future__ import annotations import time import numpy as np SCREAMING_SNAKE_CASE_ = [8, 5, 9, 7] SCREAMING_SNAKE_CASE_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] SCREAMING_SNAKE_CASE_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' __UpperCAmelCase: str = claim_vector __UpperCAmelCase: Optional[Any] = allocated_resources_table __UpperCAmelCase: List[str] = maximum_claim_table def lowercase_ ( self ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowercase_ ( self ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowercase_ ( self ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(snake_case_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowercase_ ( self ): '''simple docstring''' return {self.__need().index(snake_case_ ): i for i in self.__need()} def lowercase_ ( self , **snake_case_ ): '''simple docstring''' __UpperCAmelCase: Dict = self.__need() __UpperCAmelCase: Optional[Any] = self.__allocated_resources_table __UpperCAmelCase: int = self.__available_resources() __UpperCAmelCase: List[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: __UpperCAmelCase: Any = False for each_need in need_list: __UpperCAmelCase: Any = True for index, need in enumerate(snake_case_ ): if need > available_resources[index]: __UpperCAmelCase: Tuple = False break if execution: __UpperCAmelCase: Optional[int] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __UpperCAmelCase: Tuple = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(snake_case_ ) # update available/freed resources stack __UpperCAmelCase: Dict = np.array(snake_case_ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(snake_case_ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def lowercase_ ( self ): '''simple docstring''' print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(snake_case_ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(snake_case_ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(snake_case_ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(snake_case_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
466
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowercase__ ( A_ ): def __init__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> str: _lowerCamelCase : str = path_or_paths _lowerCamelCase : Optional[Any] = split if split or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) else """train""" _lowerCamelCase : int = features _lowerCamelCase : Any = cache_dir _lowerCamelCase : Optional[Any] = keep_in_memory _lowerCamelCase : Optional[int] = streaming _lowerCamelCase : Union[str, Any] = num_proc _lowerCamelCase : Union[str, Any] = kwargs @abstractmethod def UpperCamelCase_ ( self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowercase__ ( A_ ): def __init__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> Tuple: _lowerCamelCase : Tuple = features _lowerCamelCase : Any = cache_dir _lowerCamelCase : int = keep_in_memory _lowerCamelCase : Dict = streaming _lowerCamelCase : List[str] = num_proc _lowerCamelCase : List[Any] = kwargs @abstractmethod def UpperCamelCase_ ( self) -> Union[Dataset, IterableDataset]: pass
88
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __A : int , __A : int , __A : int , __A : Union[str, Any]=0.0 , __A : Optional[int] = None , __A : str = "geglu" , __A : Optional[int] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : str = "layer_norm" , __A : bool = False , ): super().__init__() snake_case__ : str = only_cross_attention snake_case__ : str = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" snake_case__ : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case__ : Tuple = AdaLayerNorm(__A , __A ) elif self.use_ada_layer_norm_zero: snake_case__ : Optional[Any] = AdaLayerNormZero(__A , __A ) else: snake_case__ : List[str] = nn.LayerNorm(__A , elementwise_affine=__A ) snake_case__ : Optional[Any] = Attention( query_dim=__A , heads=__A , dim_head=__A , dropout=__A , bias=__A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case__ : Union[str, Any] = ( AdaLayerNorm(__A , __A ) if self.use_ada_layer_norm else nn.LayerNorm(__A , elementwise_affine=__A ) ) snake_case__ : List[Any] = Attention( query_dim=__A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__A , dim_head=__A , dropout=__A , bias=__A , upcast_attention=__A , ) # is self-attn if encoder_hidden_states is none else: snake_case__ : Tuple = None snake_case__ : List[str] = None # 3. Feed-forward snake_case__ : Optional[int] = nn.LayerNorm(__A , elementwise_affine=__A ) snake_case__ : str = FeedForward(__A , dropout=__A , activation_fn=__A , final_dropout=__A ) # let chunk size default to None snake_case__ : List[Any] = None snake_case__ : str = 0 def _lowercase ( self : int , __A : Optional[int] , __A : int ): # Sets chunk feed-forward snake_case__ : Dict = chunk_size snake_case__ : str = dim def _lowercase ( self : List[str] , __A : torch.FloatTensor , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.LongTensor] = None , __A : Dict[str, Any] = None , __A : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case__ : Tuple = self.norma(__A , __A ) elif self.use_ada_layer_norm_zero: snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ : Dict = self.norma( __A , __A , __A , hidden_dtype=hidden_states.dtype ) else: snake_case__ : str = self.norma(__A ) snake_case__ : Union[str, Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case__ : Union[str, Any] = self.attna( __A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__A , **__A , ) if self.use_ada_layer_norm_zero: snake_case__ : str = gate_msa.unsqueeze(1 ) * attn_output snake_case__ : Dict = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case__ : List[str] = ( self.norma(__A , __A ) if self.use_ada_layer_norm else self.norma(__A ) ) snake_case__ : int = self.attna( __A , encoder_hidden_states=__A , attention_mask=__A , **__A , ) snake_case__ : Dict = attn_output + hidden_states # 3. Feed-forward snake_case__ : Any = self.norma(__A ) if self.use_ada_layer_norm_zero: snake_case__ : int = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case__ : Dict = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case__ : str = torch.cat( [self.ff(__A ) for hid_slice in norm_hidden_states.chunk(__A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case__ : Dict = self.ff(__A ) if self.use_ada_layer_norm_zero: snake_case__ : List[Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case__ : str = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __A : int , __A : Optional[int] = None , __A : int = 4 , __A : float = 0.0 , __A : str = "geglu" , __A : bool = False , ): super().__init__() snake_case__ : str = int(dim * mult ) snake_case__ : Any = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case__ : Tuple = GELU(__A , __A ) if activation_fn == "gelu-approximate": snake_case__ : Union[str, Any] = GELU(__A , __A , approximate="tanh" ) elif activation_fn == "geglu": snake_case__ : Dict = GEGLU(__A , __A ) elif activation_fn == "geglu-approximate": snake_case__ : Dict = ApproximateGELU(__A , __A ) snake_case__ : Tuple = nn.ModuleList([] ) # project in self.net.append(__A ) # project dropout self.net.append(nn.Dropout(__A ) ) # project out self.net.append(nn.Linear(__A , __A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__A ) ) def _lowercase ( self : int , __A : Dict ): for module in self.net: snake_case__ : Optional[Any] = module(__A ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : str = "none" ): super().__init__() snake_case__ : Optional[int] = nn.Linear(__A , __A ) snake_case__ : List[str] = approximate def _lowercase ( self : List[str] , __A : Optional[Any] ): if gate.device.type != "mps": return F.gelu(__A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _lowercase ( self : Any , __A : str ): snake_case__ : List[str] = self.proj(__A ) snake_case__ : List[Any] = self.gelu(__A ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : int , __A : int , __A : int ): super().__init__() snake_case__ : Any = nn.Linear(__A , dim_out * 2 ) def _lowercase ( self : Dict , __A : Optional[int] ): if gate.device.type != "mps": return F.gelu(__A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowercase ( self : str , __A : List[Any] ): snake_case__, snake_case__ : Optional[int] = self.proj(__A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__A ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int ): super().__init__() snake_case__ : Optional[int] = nn.Linear(__A , __A ) def _lowercase ( self : Union[str, Any] , __A : Tuple ): snake_case__ : List[str] = self.proj(__A ) return x * torch.sigmoid(1.7_0_2 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __A : List[Any] , __A : str ): super().__init__() snake_case__ : Union[str, Any] = nn.Embedding(__A , __A ) snake_case__ : Optional[int] = nn.SiLU() snake_case__ : Optional[int] = nn.Linear(__A , embedding_dim * 2 ) snake_case__ : Tuple = nn.LayerNorm(__A , elementwise_affine=__A ) def _lowercase ( self : Any , __A : Dict , __A : str ): snake_case__ : Any = self.linear(self.silu(self.emb(__A ) ) ) snake_case__, snake_case__ : List[Any] = torch.chunk(__A , 2 ) snake_case__ : Tuple = self.norm(__A ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : str , __A : int , __A : List[str] ): super().__init__() snake_case__ : List[str] = CombinedTimestepLabelEmbeddings(__A , __A ) snake_case__ : str = nn.SiLU() snake_case__ : Optional[Any] = nn.Linear(__A , 6 * embedding_dim , bias=__A ) snake_case__ : Tuple = nn.LayerNorm(__A , elementwise_affine=__A , eps=1e-6 ) def _lowercase ( self : Dict , __A : List[str] , __A : Optional[int] , __A : Any , __A : Optional[Any]=None ): snake_case__ : List[str] = self.linear(self.silu(self.emb(__A , __A , hidden_dtype=__A ) ) ) snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ : Optional[int] = emb.chunk(6 , dim=1 ) snake_case__ : List[Any] = self.norm(__A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , __A : int , __A : int , __A : int , __A : Optional[str] = None , __A : float = 1e-5 ): super().__init__() snake_case__ : int = num_groups snake_case__ : Any = eps if act_fn is None: snake_case__ : Dict = None else: snake_case__ : Any = get_activation(__A ) snake_case__ : List[str] = nn.Linear(__A , out_dim * 2 ) def _lowercase ( self : str , __A : Optional[Any] , __A : Tuple ): if self.act: snake_case__ : List[Any] = self.act(__A ) snake_case__ : Union[str, Any] = self.linear(__A ) snake_case__ : Optional[int] = emb[:, :, None, None] snake_case__, snake_case__ : List[str] = emb.chunk(2 , dim=1 ) snake_case__ : Dict = F.group_norm(__A , self.num_groups , eps=self.eps ) snake_case__ : List[str] = x * (1 + scale) + shift return x
297
0
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class a : pass
254
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
254
1
from math import factorial class _lowercase : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: int = real if isinstance(A_ , A_ ): lowerCAmelCase_: Dict = [1] * rank else: lowerCAmelCase_: Optional[int] = rank def __repr__( self ): return ( F'''{self.real}+''' F'''{"+".join(str(A_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def _a ( self ): lowerCAmelCase_: List[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , A_ ) def __add__( self , lowerCamelCase__ ): if not isinstance(A_ , A_ ): return Dual(self.real + other , self.duals ) lowerCAmelCase_: List[str] = self.duals.copy() lowerCAmelCase_: Union[str, Any] = other.duals.copy() if len(A_ ) > len(A_ ): o_dual.extend([1] * (len(A_ ) - len(A_ )) ) elif len(A_ ) < len(A_ ): s_dual.extend([1] * (len(A_ ) - len(A_ )) ) lowerCAmelCase_: Union[str, Any] = [] for i in range(len(A_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , A_ ) SCREAMING_SNAKE_CASE: Any = __add__ def __sub__( self , lowerCamelCase__ ): return self + other * -1 def __mul__( self , lowerCamelCase__ ): if not isinstance(A_ , A_ ): lowerCAmelCase_: Dict = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , A_ ) lowerCAmelCase_: Tuple = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , A_ ) SCREAMING_SNAKE_CASE: str = __mul__ def __truediv__( self , lowerCamelCase__ ): if not isinstance(A_ , A_ ): lowerCAmelCase_: Any = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , A_ ) raise ValueError def __floordiv__( self , lowerCamelCase__ ): if not isinstance(A_ , A_ ): lowerCAmelCase_: Any = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , A_ ) raise ValueError def __pow__( self , lowerCamelCase__ ): if n < 0 or isinstance(A_ , A_ ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self lowerCAmelCase_: Dict = self for _ in range(n - 1 ): x *= self return x def snake_case__ ( lowercase , lowercase , lowercase ): if not callable(lowercase__ ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(lowercase__ , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(lowercase__ , lowercase__ ): raise ValueError("differentiate() requires an int as input for order" ) lowerCAmelCase_: Dict = Dual(lowercase__ , 1 ) lowerCAmelCase_: List[Any] = func(lowercase__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() def snake_case__ ( lowercase ): return y**2 * y**4 print(differentiate(f, 9, 2))
613
"""simple docstring""" from collections import defaultdict def a_ ( lowercase__ :int ): __lowerCamelCase = 1 __lowerCamelCase = True for v in tree[start]: if v not in visited: ret += dfs(lowercase__ ) if ret % 2 == 0: cuts.append(lowercase__ ) return ret def a_ ( ): dfs(1 ) if __name__ == "__main__": __magic_name__ , __magic_name__ : Tuple = 1_0, 9 __magic_name__ : Tuple = defaultdict(list) __magic_name__ : dict[int, bool] = {} __magic_name__ : list[int] = [] __magic_name__ : List[str] = 0 __magic_name__ : Tuple = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
281
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a_ = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a_ = concatenate_datasets a_ = DownloadConfig a_ = DownloadManager a_ = DownloadMode a_ = DownloadConfig a_ = DownloadMode a_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
375
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") a_ = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) a_ = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) a_ = BeautifulSoup(res.text, "html.parser") a_ = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
375
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , **_snake_case : Union[str, Any] ) -> List[Any]: super().__init__(**_snake_case ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , _snake_case : Union[str, List[str], "Image", List["Image"]] , **_snake_case : Dict ) -> Dict: return super().__call__(_snake_case , **_snake_case ) def lowerCAmelCase_ ( self : List[Any] , **_snake_case : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def lowerCAmelCase_ ( self : Dict , _snake_case : List[Any] , _snake_case : List[Any]=None , _snake_case : List[str]="This is a photo of {}." ) -> Tuple: SCREAMING_SNAKE_CASE__ = load_image(_snake_case ) SCREAMING_SNAKE_CASE__ = self.image_processor(images=[image] , return_tensors=self.framework ) SCREAMING_SNAKE_CASE__ = candidate_labels SCREAMING_SNAKE_CASE__ = [hypothesis_template.format(_snake_case ) for x in candidate_labels] SCREAMING_SNAKE_CASE__ = self.tokenizer(_snake_case , return_tensors=self.framework , padding=_snake_case ) SCREAMING_SNAKE_CASE__ = [text_inputs] return inputs def lowerCAmelCase_ ( self : Dict , _snake_case : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = model_inputs.pop("candidate_labels" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , _snake_case ): SCREAMING_SNAKE_CASE__ = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE__ = text_inputs[0][0] SCREAMING_SNAKE_CASE__ = self.model(**_snake_case , **_snake_case ) SCREAMING_SNAKE_CASE__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def lowerCAmelCase_ ( self : Optional[int] , _snake_case : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = model_outputs.pop("candidate_labels" ) SCREAMING_SNAKE_CASE__ = model_outputs["logits"][0] if self.framework == "pt": SCREAMING_SNAKE_CASE__ = logits.softmax(dim=-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = probs.tolist() if not isinstance(_snake_case , _snake_case ): SCREAMING_SNAKE_CASE__ = [scores] elif self.framework == "tf": SCREAMING_SNAKE_CASE__ = stable_softmax(_snake_case , axis=-1 ) SCREAMING_SNAKE_CASE__ = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) SCREAMING_SNAKE_CASE__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_snake_case , _snake_case ) , key=lambda _snake_case : -x[0] ) ] return result
159
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _A = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "mumbai" ) -> Generator[tuple[str, str], None, None]: SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): SCREAMING_SNAKE_CASE__ = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() SCREAMING_SNAKE_CASE__ = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
159
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __magic_name__ = logging.getLogger(__name__) def _A ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if os.path.exists(_lowerCamelCase): if os.path.exists(os.path.join(_lowerCamelCase , "config.json")) and os.path.isfile( os.path.join(_lowerCamelCase , "config.json")): os.remove(os.path.join(_lowerCamelCase , "config.json")) if os.path.exists(os.path.join(_lowerCamelCase , "pytorch_model.bin")) and os.path.isfile( os.path.join(_lowerCamelCase , "pytorch_model.bin")): os.remove(os.path.join(_lowerCamelCase , "pytorch_model.bin")) else: os.makedirs(_lowerCamelCase) model.save_pretrained(_lowerCamelCase) def _A ( lowerCAmelCase_ , lowerCAmelCase_=False): '''simple docstring''' lowerCamelCase_ : str = 2 if unlogit: lowerCamelCase_ : Tuple = torch.pow(_lowerCamelCase , _lowerCamelCase) lowerCamelCase_ : Optional[int] = p * torch.log(_lowerCamelCase) lowerCamelCase_ : Optional[int] = 0 return -plogp.sum(dim=-1) def _A ( lowerCAmelCase_): '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F"""{x + 1}""" for x in range(len(_lowerCamelCase)))) for row in range(len(_lowerCamelCase)): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:.5f}""" for x in tensor[row].cpu().data)) else: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:d}""" for x in tensor[row].cpu().data)) def _A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False): '''simple docstring''' lowerCamelCase_ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads lowerCamelCase_ : Optional[Any] = torch.zeros(_lowerCamelCase , _lowerCamelCase).to(args.device) lowerCamelCase_ : Union[str, Any] = torch.zeros(_lowerCamelCase , _lowerCamelCase).to(args.device) if head_mask is None: lowerCamelCase_ : str = torch.ones(_lowerCamelCase , _lowerCamelCase).to(args.device) head_mask.requires_grad_(requires_grad=_lowerCamelCase) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCamelCase_ : Optional[Any] = None lowerCamelCase_ : Dict = 0.0 lowerCamelCase_ : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(_lowerCamelCase , desc="Iteration" , disable=args.local_rank not in [-1, 0])): lowerCamelCase_ : int = tuple(t.to(args.device) for t in inputs) (lowerCamelCase_ ) : Union[str, Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCamelCase_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , head_mask=_lowerCamelCase) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCamelCase_ : Optional[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowerCamelCase): lowerCamelCase_ : Tuple = entropy(attn.detach() , _lowerCamelCase) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowerCamelCase).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCamelCase_ : Optional[int] = 2 lowerCamelCase_ : Dict = torch.pow(torch.pow(_lowerCamelCase , _lowerCamelCase).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1E-20 if not args.dont_normalize_global_importance: lowerCamelCase_ : Optional[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies") print_ad_tensor(_lowerCamelCase) if compute_importance: logger.info("Head importance scores") print_ad_tensor(_lowerCamelCase) logger.info("Head ranked by importance scores") lowerCamelCase_ : Any = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) lowerCamelCase_ : int = torch.arange( head_importance.numel() , device=args.device) lowerCamelCase_ : int = head_ranks.view_as(_lowerCamelCase) print_ad_tensor(_lowerCamelCase) return attn_entropy, head_importance, total_loss def _A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Tuple = compute_heads_importance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase) lowerCamelCase_ : int = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , _lowerCamelCase , original_score * args.masking_threshold) lowerCamelCase_ : int = torch.ones_like(_lowerCamelCase) lowerCamelCase_ : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount)) lowerCamelCase_ : Dict = original_score while current_score >= original_score * args.masking_threshold: lowerCamelCase_ : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCamelCase_ : Optional[int] = float("Inf") lowerCamelCase_ : Optional[Any] = head_importance.view(-1).sort()[1] if len(_lowerCamelCase) <= num_to_mask: print("BREAK BY num_to_mask") break # mask heads lowerCamelCase_ : Tuple = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist())) lowerCamelCase_ : int = new_head_mask.view(-1) lowerCamelCase_ : Optional[Any] = 0.0 lowerCamelCase_ : Optional[Any] = new_head_mask.view_as(_lowerCamelCase) lowerCamelCase_ : Any = new_head_mask.clone().detach() print_ad_tensor(_lowerCamelCase) # Compute metric and head importance again lowerCamelCase_ : Union[str, Any] = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , head_mask=_lowerCamelCase) lowerCamelCase_ : Optional[Any] = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , _lowerCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask") print_ad_tensor(_lowerCamelCase) np.save(os.path.join(args.output_dir , "head_mask.npy") , head_mask.detach().cpu().numpy()) return head_mask def _A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : int = datetime.now() lowerCamelCase_ : List[str] = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , compute_importance=_lowerCamelCase , head_mask=_lowerCamelCase) lowerCamelCase_ : int = 1 / loss lowerCamelCase_ : Optional[Any] = datetime.now() - before_time lowerCamelCase_ : Tuple = sum(p.numel() for p in model.parameters()) lowerCamelCase_ : Any = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCamelCase)) } for k, v in heads_to_prune.items(): if isinstance(_lowerCamelCase , _lowerCamelCase): lowerCamelCase_ : Optional[Any] = [ v, ] assert sum(len(_lowerCamelCase) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowerCamelCase) lowerCamelCase_ : Union[str, Any] = sum(p.numel() for p in model.parameters()) lowerCamelCase_ : Dict = datetime.now() lowerCamelCase_ : List[Any] = compute_heads_importance( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , compute_entropy=_lowerCamelCase , compute_importance=_lowerCamelCase , head_mask=_lowerCamelCase , actually_pruned=_lowerCamelCase , ) lowerCamelCase_ : Optional[int] = 1 / loss lowerCamelCase_ : Optional[int] = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , _lowerCamelCase , _lowerCamelCase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , _lowerCamelCase , _lowerCamelCase) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100) save_model(_lowerCamelCase , args.output_dir) def _A ( ): '''simple docstring''' lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=_lowerCamelCase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=_lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=_lowerCamelCase , type=_lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=_lowerCamelCase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances.") parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory") parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets") parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers") parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy.") parser.add_argument( "--masking_threshold" , default=0.9 , type=_lowerCamelCase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=_lowerCamelCase , help="Amount to heads to masking at each masking step.") parser.add_argument("--metric_name" , default="acc" , type=_lowerCamelCase , help="Metric to use for head masking.") parser.add_argument( "--max_seq_length" , default=128 , type=_lowerCamelCase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=_lowerCamelCase , help="Batch size.") parser.add_argument("--seed" , type=_lowerCamelCase , default=42) parser.add_argument("--local_rank" , type=_lowerCamelCase , default=-1 , help="local_rank for distributed training on gpus") parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available") parser.add_argument("--server_ip" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging.") parser.add_argument("--server_port" , type=_lowerCamelCase , default="" , help="Can be used for distant debugging.") lowerCamelCase_ : Dict = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCamelCase) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCamelCase_ : List[str] = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") lowerCamelCase_ : List[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) lowerCamelCase_ : Optional[Any] = torch.device("cuda" , args.local_rank) lowerCamelCase_ : Optional[int] = 1 torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1))) lowerCamelCase_ : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: lowerCamelCase_ : List[Any] = nn.parallel.DistributedDataParallel( _lowerCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCamelCase) elif args.n_gpu > 1: lowerCamelCase_ : Union[str, Any] = nn.DataParallel(_lowerCamelCase) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowerCamelCase) torch.save(_lowerCamelCase , os.path.join(args.output_dir , "run_args.bin")) logger.info("Training/evaluation parameters %s" , _lowerCamelCase) # Prepare dataset lowerCamelCase_ : Union[str, Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) lowerCamelCase_ : str = (torch.from_numpy(_lowerCamelCase),) lowerCamelCase_ : int = TensorDataset(*_lowerCamelCase) lowerCamelCase_ : Union[str, Any] = RandomSampler(_lowerCamelCase) lowerCamelCase_ : List[str] = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCamelCase_ : int = mask_heads(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) prune_heads(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
705
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False): '''simple docstring''' if radian_mode: return [magnitude * cos(lowerCAmelCase_), magnitude * sin(lowerCAmelCase_)] return [magnitude * cos(radians(lowerCAmelCase_)), magnitude * sin(radians(lowerCAmelCase_))] def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10**-1): '''simple docstring''' lowerCamelCase_ : NDArray[floataa] = cross(lowerCAmelCase_ , lowerCAmelCase_) lowerCamelCase_ : float = sum(lowerCAmelCase_) return abs(lowerCAmelCase_) < eps if __name__ == "__main__": # Test to check if it works __magic_name__ = array( [ polar_force(7_18.4, 1_8_0 - 3_0), polar_force(8_79.54, 4_5), polar_force(1_0_0, -9_0), ] ) __magic_name__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __magic_name__ = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) __magic_name__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __magic_name__ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) __magic_name__ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
73
0
'''simple docstring''' import math def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list: __snake_case = [True] * n __snake_case = False __snake_case = False __snake_case = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): __snake_case = i * 2 while index < n: __snake_case = False __snake_case = index + i __snake_case = [2] for i in range(3 , _UpperCAmelCase , 2 ): if is_prime[i]: primes.append(_UpperCAmelCase ) return primes def __UpperCAmelCase ( _UpperCAmelCase : int = 99_99_66_66_33_33 ) -> int: __snake_case = math.floor(math.sqrt(_UpperCAmelCase ) ) + 1_00 __snake_case = prime_sieve(_UpperCAmelCase ) __snake_case = 0 __snake_case = 0 __snake_case = primes[prime_index] while (last_prime**2) <= limit: __snake_case = primes[prime_index + 1] __snake_case = last_prime**2 __snake_case = next_prime**2 # Get numbers divisible by lps(current) __snake_case = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __snake_case = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __snake_case = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __snake_case = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
69
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 __snake_case , __snake_case = 1, 1 for _ in range(number_of_steps - 1 ): __snake_case , __snake_case = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
69
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
627
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class __lowercase ( __snake_case ): UpperCamelCase = '''ctrl''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , __lowerCamelCase : Optional[int]=2_4_6_5_3_4 , __lowerCamelCase : Union[str, Any]=2_5_6 , __lowerCamelCase : int=1_2_8_0 , __lowerCamelCase : Optional[Any]=8_1_9_2 , __lowerCamelCase : List[str]=4_8 , __lowerCamelCase : Dict=1_6 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Union[str, Any]=1e-6 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Union[str, Any]=True , **__lowerCamelCase : List[str] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = dff UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = use_cache super().__init__(**__lowerCamelCase )
627
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase: """simple docstring""" a : int =PegasusConfig a : List[str] ={} a : Optional[int] ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: List[str] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Optional[int] = inputs_dict['input_ids'] UpperCamelCase_: Optional[int] = input_ids[:1, :] UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[int] = inputs_dict['head_mask'] UpperCamelCase_: Optional[int] = 1 # first forward pass UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str: if attention_mask is None: UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Tuple =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : List[str] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Dict = TFPegasusModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a : int =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Union[str, Any] ='''google/pegasus-xsum''' @cached_property def _a ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _a ( self ): self._assert_generated_batch_equal_expected()
57
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp A : Dict = 5 A : Optional[int] = 10 @require_sentencepiece @require_tokenizers class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SpeechaTextTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def __A ( self : Optional[Any] ) -> str: super().setUp() SCREAMING_SNAKE_CASE_ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) SCREAMING_SNAKE_CASE_ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ = "<pad>" SCREAMING_SNAKE_CASE_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __A ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1_001 ) def __A ( self : List[Any] ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_001 ) def __A ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __A ( self : List[str] ) -> List[Any]: # fmt: off SCREAMING_SNAKE_CASE_ = {"input_ids": [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCamelCase__ = '''C\'est trop cool''' lowerCamelCase__ = '''Esto es genial''' @classmethod def __A ( cls : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __A ( self : str ) -> int: self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __A ( self : List[Any] ) -> Union[str, Any]: self.assertEqual(self.tokenizer.vocab_size , 10_000 ) def __A ( self : Any ) -> int: self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE_ = [ES_CODE, 4, 1_601, 47, 7_647, 2] SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = "fr" SCREAMING_SNAKE_CASE_ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __A ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE_ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
140
0
def lowerCamelCase_ ( UpperCamelCase__ : list ): '''simple docstring''' for i in range(len(UpperCamelCase__ ) - 1, 0, -1 ): UpperCamelCase__ = False for j in range(UpperCamelCase__, 0, -1 ): if unsorted[j] < unsorted[j - 1]: UpperCamelCase__ , UpperCamelCase__ = unsorted[j - 1], unsorted[j] UpperCamelCase__ = True for j in range(UpperCamelCase__ ): if unsorted[j] > unsorted[j + 1]: UpperCamelCase__ , UpperCamelCase__ = unsorted[j + 1], unsorted[j] UpperCamelCase__ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowercase = input("""Enter numbers separated by a comma:\n""").strip() lowercase = [int(item) for item in user_input.split(""",""")] print(f'{cocktail_shaker_sort(unsorted) = }')
705
def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = 1 while len(UpperCamelCase__ ) < 1e6: constant.append(str(UpperCamelCase__ ) ) i += 1 UpperCamelCase__ = ''''''.join(UpperCamelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
591
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Tuple = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int ='van' def __init__( self, lowerCAmelCase=224, lowerCAmelCase=3, lowerCAmelCase=[7, 3, 3, 3], lowerCAmelCase=[4, 2, 2, 2], lowerCAmelCase=[64, 128, 320, 512], lowerCAmelCase=[3, 3, 12, 3], lowerCAmelCase=[8, 8, 4, 4], lowerCAmelCase="gelu", lowerCAmelCase=0.0_2, lowerCAmelCase=1e-6, lowerCAmelCase=1e-2, lowerCAmelCase=0.0, lowerCAmelCase=0.0, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =image_size lowerCamelCase_ =num_channels lowerCamelCase_ =patch_sizes lowerCamelCase_ =strides lowerCamelCase_ =hidden_sizes lowerCamelCase_ =depths lowerCamelCase_ =mlp_ratios lowerCamelCase_ =hidden_act lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =layer_scale_init_value lowerCamelCase_ =drop_path_rate lowerCamelCase_ =dropout_rate
676
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =['image_processor', 'tokenizer'] lowercase : str ='CLIPImageProcessor' lowercase : Optional[Any] =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase ) if text is not None and images is not None: lowerCamelCase_ =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ), tensor_type=lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
676
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'width_multiplier' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_="swish" , A_=3 , A_=32 , A_=0.1 , A_=0.02 , A_=True , A_=True , A_=10 , A_=None , A_=0.25 , A_=0.0 , A_=0.0 , ) -> Dict: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = make_divisible(512 * width_multiplier , divisor=8 ) UpperCamelCase = hidden_act UpperCamelCase = conv_kernel_size UpperCamelCase = output_stride UpperCamelCase = classifier_dropout_prob UpperCamelCase = use_labels UpperCamelCase = is_training UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = width_multiplier UpperCamelCase = ffn_dropout UpperCamelCase = attn_dropout def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = MobileViTVaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileViTVaForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileViTVaForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : int = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowercase : Dict = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : str = False __lowercase : int = False __lowercase : Optional[int] = False __lowercase : Optional[Any] = False def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = MobileViTVaModelTester(self ) UpperCamelCase = MobileViTVaConfigTester(self , config_class=A_ , has_text_modality=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def __UpperCamelCase ( self ) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = 5 self.assertEqual(len(A_ ) , A_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase = 2 for i in range(len(A_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) @slow def __UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MobileViTVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> int: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(50, 60)] ) UpperCamelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A_ )
707
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCAmelCase : Tuple = _symbol_database.Default() _UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) _UpperCAmelCase : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCAmelCase : int = None _UpperCAmelCase : List[str] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCAmelCase : Optional[Any] = 45 _UpperCAmelCase : Any = 1_581 _UpperCAmelCase : Tuple = 1_517 _UpperCAmelCase : List[str] = 1_570 _UpperCAmelCase : int = 1_584 _UpperCAmelCase : List[Any] = 1_793 _UpperCAmelCase : Optional[int] = 1_795 _UpperCAmelCase : Any = 1_916 _UpperCAmelCase : Tuple = 1_864 _UpperCAmelCase : List[Any] = 1_905 _UpperCAmelCase : Union[str, Any] = 1_919 _UpperCAmelCase : str = 2_429 _UpperCAmelCase : Any = 2_208 _UpperCAmelCase : Dict = 2_418 _UpperCAmelCase : Optional[Any] = 2_323 _UpperCAmelCase : Tuple = 2_407 # @@protoc_insertion_point(module_scope)
3
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase : Optional[int] = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = seq_length UpperCamelCase : Optional[int] = is_training UpperCamelCase : List[str] = use_input_mask UpperCamelCase : int = use_token_type_ids UpperCamelCase : List[Any] = use_labels UpperCamelCase : Tuple = vocab_size UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : str = embedding_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Tuple = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : Optional[Any] = num_labels UpperCamelCase : Optional[Any] = num_choices UpperCamelCase : Union[str, Any] = scope def a_ ( self ): UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Tuple = None if self.use_input_mask: UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : List[str] = None if self.use_token_type_ids: UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : List[str] = None UpperCamelCase : Any = None UpperCamelCase : str = None if self.use_labels: UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = MegatronBertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) UpperCamelCase : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) UpperCamelCase : str = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = MegatronBertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = MegatronBertForCausalLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = MegatronBertForNextSentencePrediction(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : Optional[int] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : Optional[int] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = MegatronBertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : Tuple = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = self.num_labels UpperCamelCase : List[str] = MegatronBertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = self.num_labels UpperCamelCase : Tuple = MegatronBertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = self.num_choices UpperCamelCase : int = MegatronBertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : List[str] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( UpperCamelCase ) : str = config_and_inputs UpperCamelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase : Union[str, Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase : Union[str, Any] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase : Union[str, Any] = True # test_resize_embeddings = False lowercase : Optional[int] = False def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase : Optional[int] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): UpperCamelCase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) UpperCamelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def a_ ( self ): UpperCamelCase : Dict = MegatronBertModelTester(self ) UpperCamelCase : int = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCAmelCase_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCAmelCase_ ) def a_ ( self ): UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCAmelCase_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCAmelCase_ ) def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCAmelCase_ ) def a_ ( self ): UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCAmelCase_ ) def a_ ( self ): UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCAmelCase_ ) def a_ ( self ): UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCAmelCase_ ) def A_ ( snake_case_ : Union[str, Any] ): '''simple docstring''' return torch.tensor( __a ,dtype=torch.long ,device=__a ,) __A : int = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""" ) def a_ ( self ): UpperCamelCase : Optional[Any] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: UpperCamelCase : Optional[int] = os.path.join(os.environ["""MYDIR"""] , UpperCAmelCase_ ) UpperCamelCase : Dict = MegatronBertModel.from_pretrained(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.half() UpperCamelCase : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): UpperCamelCase : Dict = model(UpperCAmelCase_ )[0] UpperCamelCase : Dict = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , UpperCAmelCase_ ) UpperCamelCase : Any = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): UpperCamelCase : Optional[Any] = output[0, ii, jj] UpperCamelCase : Optional[Any] = expected[3 * ii + jj] UpperCamelCase : Tuple = "ii={} jj={} a={} b={}".format(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(math.isclose(UpperCAmelCase_ , UpperCAmelCase_ , rel_tol=UpperCAmelCase_ , abs_tol=UpperCAmelCase_ ) , msg=UpperCAmelCase_ )
499
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A = logging.getLogger(__name__) def lowerCAmelCase_ ( __a , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = False , ) -> str: """simple docstring""" lowerCamelCase__: int =bnb_quantization_config.load_in_abit lowerCamelCase__: Any =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) lowerCamelCase__: List[Any] =[] # custom device map if isinstance(__a , __a ) and len(device_map.keys() ) > 1: lowerCamelCase__: Optional[int] =[key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__: Any =get_keys_to_not_convert(__a ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__a ) lowerCamelCase__: List[str] =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__: List[Any] =[] lowerCamelCase__: int =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__a ) # compatibility with peft lowerCamelCase__: List[str] =load_in_abit lowerCamelCase__: int =load_in_abit lowerCamelCase__: Tuple =get_parameter_device(__a ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) lowerCamelCase__: Tuple =replace_with_bnb_layers(__a , __a , modules_to_not_convert=__a ) # convert param to the right dtype lowerCamelCase__: Dict =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__: str =name.replace(".weight" , "" ).replace(".bias" , "" ) lowerCamelCase__: Optional[Any] =getattr(__a , __a , __a ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__a ): param.to(__a ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): lowerCamelCase__: str =replace_with_bnb_layers( __a , __a , modules_to_not_convert=__a ) lowerCamelCase__: Optional[Any] =get_quantized_model_device_map( __a , __a , __a , max_memory=__a , no_split_module_classes=__a , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__: Any =True lowerCamelCase__: List[str] =any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( __a , __a , __a , dtype=bnb_quantization_config.torch_dtype , offload_folder=__a , offload_state_dict=__a , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__a , device_map=__a , offload_dir=__a ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None ) -> str: """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCamelCase__: str ={"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(__a , __a ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) lowerCamelCase__: Optional[int] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__: Optional[Any] ={} lowerCamelCase__: str =special_dtypes lowerCamelCase__: List[str] =no_split_module_classes lowerCamelCase__: Dict =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__: Optional[Any] =get_balanced_memory( __a , low_zero=(device_map == "balanced_low_0") , max_memory=__a , **__a , ) lowerCamelCase__: Union[str, Any] =max_memory lowerCamelCase__: Dict =infer_auto_device_map(__a , **__a ) if isinstance(__a , __a ): # check if don't have any quantized module on the cpu lowerCamelCase__: Union[str, Any] =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__: List[Any] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def lowerCAmelCase_ ( __a , __a , __a=None , __a=None ) -> Optional[Any]: """simple docstring""" if modules_to_not_convert is None: lowerCamelCase__: List[Any] =[] lowerCamelCase__ , lowerCamelCase__: Any =_replace_with_bnb_layers( __a , __a , __a , __a ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , ) -> List[Any]: """simple docstring""" lowerCamelCase__: Optional[int] =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__: Optional[Any] =[] current_key_name.append(__a ) if isinstance(__a , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__: List[str] =".".join(__a ) lowerCamelCase__: Optional[Any] =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__: int =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__: Optional[int] =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__a , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__: Dict =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) lowerCamelCase__: Dict =module.weight.data if module.bias is not None: lowerCamelCase__: List[Any] =module.bias.data bnb_module.requires_grad_(__a ) setattr(__a , __a , __a ) lowerCamelCase__: int =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__: List[str] =_replace_with_bnb_layers( __a , __a , __a , __a ) lowerCamelCase__: Union[str, Any] =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" with init_empty_weights(): lowerCamelCase__: Any =deepcopy(__a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__: str =find_tied_parameters(__a ) # For compatibility with Accelerate < 0.18 if isinstance(__a , __a ): lowerCamelCase__: int =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__: str =sum(__a , [] ) lowerCamelCase__: str =len(__a ) > 0 # Check if it is a base model lowerCamelCase__: Optional[Any] =False if hasattr(__a , "base_model_prefix" ): lowerCamelCase__: Union[str, Any] =not hasattr(__a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__: Optional[int] =list(model.named_children() ) lowerCamelCase__: Optional[int] =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__: Union[str, Any] =set(__a ) - set(__a ) lowerCamelCase__: List[str] =list(set(__a ) ) + list(__a ) # remove ".weight" from the keys lowerCamelCase__: List[Any] =[".weight", ".bias"] lowerCamelCase__: Tuple =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__: Optional[Any] =name.replace(__a , "" ) filtered_module_names.append(__a ) return filtered_module_names def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" for m in model.modules(): if isinstance(__a , bnb.nn.Linearabit ): return True return False def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" return next(parameter.parameters() ).device def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__a , __a , 0 , dtype=__a , value=__a ) lowerCamelCase__: Dict =param_name lowerCamelCase__: Tuple =model if "." in tensor_name: lowerCamelCase__: Any =tensor_name.split("." ) for split in splits[:-1]: lowerCamelCase__: Any =getattr(__a , __a ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) lowerCamelCase__: str =new_module lowerCamelCase__: int =splits[-1] # offload weights lowerCamelCase__: str =False offload_weight(module._parameters[tensor_name] , __a , __a , index=__a ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , __a , index=__a , ) else: offload_weight(__a , __a , __a , index=__a ) offload_weight(__a , param_name.replace("weight" , "SCB" ) , __a , index=__a ) set_module_tensor_to_device(__a , __a , "meta" , dtype=__a , value=torch.empty(*param.size() ) )
59
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowercase = TypeVar('T') class lowerCamelCase__ ( Generic[T] ): __lowerCamelCase = 42 # Cache store of keys __lowerCamelCase = 42 # References of the keys in cache __lowerCamelCase = 10 # Maximum capacity of cache def __init__( self : Optional[int] , __a : int ): '''simple docstring''' lowerCamelCase__: Optional[int] = deque() lowerCamelCase__: List[Any] = set() if not n: lowerCamelCase__: List[Any] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowerCamelCase__: int = n def lowerCamelCase_ ( self : List[Any] , __a : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCamelCase__: Optional[int] = self.dq_store.pop() self.key_reference.remove(__a ) else: self.dq_store.remove(__a ) self.dq_store.appendleft(__a ) self.key_reference.add(__a ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for k in self.dq_store: print(__a ) def __repr__( self : str ): '''simple docstring''' return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() _lowercase = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
717
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase = logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( A__ ): __lowerCamelCase = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : Optional[Any] , **__a : Optional[Any] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCamelCase__: List[Any] = deprecated_arg[3:] setattr(self , __a , not kwargs.pop(__a ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowerCamelCase__: int = kwargs.pop("""torchscript""" , self.torchscript ) lowerCamelCase__: str = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowerCamelCase__: List[str] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**__a ) __lowerCamelCase = field(default=A__ , metadata={"""help""": """Trace the models using torchscript"""} ) __lowerCamelCase = field(default=A__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) __lowerCamelCase = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowerCamelCase__: Dict = torch.device("""cpu""" ) lowerCamelCase__: Optional[int] = 0 elif is_torch_tpu_available(): lowerCamelCase__: str = xm.xla_device() lowerCamelCase__: Dict = 0 else: lowerCamelCase__: int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowerCamelCase__: Tuple = torch.cuda.device_count() return device, n_gpu @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' return self.n_gpu > 0
242
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase = '''LayoutLMv3ImageProcessor''' _UpperCAmelCase = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self , snake_case=None , snake_case=None , **snake_case ) -> List[Any]: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case , ) _UpperCAmelCase = kwargs.pop('feature_extractor' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case , snake_case ) def __call__( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = True , snake_case = False , snake_case = None , snake_case = None , snake_case = 0 , snake_case = None , snake_case = None , snake_case = None , snake_case = False , snake_case = False , snake_case = False , snake_case = False , snake_case = True , snake_case = None , **snake_case , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor _UpperCAmelCase = self.image_processor(images=snake_case , return_tensors=snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(snake_case , snake_case ): _UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) _UpperCAmelCase = features['words'] _UpperCAmelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , stride=snake_case , pad_to_multiple_of=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , return_overflowing_tokens=snake_case , return_special_tokens_mask=snake_case , return_offsets_mapping=snake_case , return_length=snake_case , verbose=snake_case , return_tensors=snake_case , **snake_case , ) # add pixel values _UpperCAmelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: _UpperCAmelCase = self.get_overflowing_images(snake_case , encoded_inputs['overflow_to_sample_mapping'] ) _UpperCAmelCase = images return encoded_inputs def lowerCamelCase_ ( self , snake_case , snake_case ) -> str: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(snake_case ) != len(snake_case ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f' {len(snake_case )} and {len(snake_case )}' ) return images_with_overflow def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> Dict: return self.tokenizer.batch_decode(*snake_case , **snake_case ) def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> str: return self.tokenizer.decode(*snake_case , **snake_case ) @property def lowerCamelCase_ ( self ) -> Any: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCamelCase_ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case , ) return self.image_processor_class @property def lowerCamelCase_ ( self ) -> List[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case , ) return self.image_processor
573
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowercase__ : '''simple docstring''' def lowerCamelCase_ ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=snake_case , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) _UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCamelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=snake_case , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) _UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = inputs['prompt'] _UpperCAmelCase = inputs['generator'] _UpperCAmelCase = inputs['num_inference_steps'] _UpperCAmelCase = inputs['output_type'] if "image" in inputs: _UpperCAmelCase = inputs['image'] else: _UpperCAmelCase = None if "mask_image" in inputs: _UpperCAmelCase = inputs['mask_image'] else: _UpperCAmelCase = None if "original_image" in inputs: _UpperCAmelCase = inputs['original_image'] else: _UpperCAmelCase = None _UpperCAmelCase , _UpperCAmelCase = pipe.encode_prompt(snake_case ) # inputs with prompt converted to embeddings _UpperCAmelCase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _UpperCAmelCase = image if mask_image is not None: _UpperCAmelCase = mask_image if original_image is not None: _UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(snake_case , snake_case , snake_case ) _UpperCAmelCase = pipe(**snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case ) _UpperCAmelCase = self.pipeline_class.from_pretrained(snake_case ) pipe_loaded.to(snake_case ) pipe_loaded.set_progress_bar_config(disable=snake_case ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case , snake_case ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = inputs['generator'] _UpperCAmelCase = inputs['num_inference_steps'] _UpperCAmelCase = inputs['output_type'] # inputs with prompt converted to embeddings _UpperCAmelCase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _UpperCAmelCase = image if mask_image is not None: _UpperCAmelCase = mask_image if original_image is not None: _UpperCAmelCase = original_image _UpperCAmelCase = pipe_loaded(**snake_case )[0] _UpperCAmelCase = np.abs(to_np(snake_case ) - to_np(snake_case ) ).max() self.assertLess(snake_case , 1E-4 ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case ) _UpperCAmelCase = self.pipeline_class.from_pretrained(snake_case ) pipe_loaded.to(snake_case ) pipe_loaded.set_progress_bar_config(disable=snake_case ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe_loaded(**snake_case )[0] _UpperCAmelCase = np.abs(to_np(snake_case ) - to_np(snake_case ) ).max() self.assertLess(snake_case , 1E-4 )
573
1
from math import sqrt def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase_ = True # 0 and 1 are none primes. if number <= 1: lowercase_ = False for divisor in range(2 , int(round(sqrt(UpperCAmelCase__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase_ = False break # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'status' must been from type bool" return status def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase_ = list(range(2 , n + 1 ) ) lowercase_ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(UpperCAmelCase__ ) ): for j in range(i + 1 , len(UpperCAmelCase__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase_ = 0 # filters actual prime numbers. lowercase_ = [x for x in begin_list if x != 0] # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n > 2), "'N' must been an int and > 2" lowercase_ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(UpperCAmelCase__ ): ans.append(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and number >= 0, "'number' must been an int and >= 0" lowercase_ = [] # this list will be returns of the function. # potential prime number factors. lowercase_ = 2 lowercase_ = number if number == 0 or number == 1: ans.append(UpperCAmelCase__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(UpperCAmelCase__ ): while quotient != 1: if is_prime(UpperCAmelCase__ ) and (quotient % factor == 0): ans.append(UpperCAmelCase__ ) quotient /= factor else: factor += 1 else: ans.append(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type list" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase_ = 0 # prime factorization of 'number' lowercase_ = prime_factorization(UpperCAmelCase__ ) lowercase_ = max(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type int" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase_ = 0 # prime factorization of 'number' lowercase_ = prime_factorization(UpperCAmelCase__ ) lowercase_ = min(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'ans' must been from type int" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , UpperCAmelCase__ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , UpperCAmelCase__ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase_ ( UpperCAmelCase__ ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (number > 2) and is_even(UpperCAmelCase__ ) ), "'number' must been an int, even and > 2" lowercase_ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase_ = get_prime_numbers(UpperCAmelCase__ ) lowercase_ = len(UpperCAmelCase__ ) # run variable for while-loops. lowercase_ = 0 lowercase_ = None # exit variable. for break up the loops lowercase_ = True while i < len_pn and loop: lowercase_ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase_ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (len(UpperCAmelCase__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase_ = 0 while numbera != 0: lowercase_ = numbera % numbera lowercase_ = numbera lowercase_ = rest # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase_ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase_ = prime_factorization(UpperCAmelCase__ ) lowercase_ = prime_factorization(UpperCAmelCase__ ) elif numbera == 1 or numbera == 1: lowercase_ = [] lowercase_ = [] lowercase_ = max(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = 0 lowercase_ = 0 lowercase_ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase_ = prime_fac_a.count(UpperCAmelCase__ ) lowercase_ = prime_fac_a.count(UpperCAmelCase__ ) for _ in range(max(UpperCAmelCase__ , UpperCAmelCase__ ) ): ans *= n else: lowercase_ = prime_fac_a.count(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ): ans *= n done.append(UpperCAmelCase__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase_ = prime_fac_a.count(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ): ans *= n done.append(UpperCAmelCase__ ) # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n >= 0), "'number' must been a positive int" lowercase_ = 0 lowercase_ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(UpperCAmelCase__ ): ans += 1 # precondition assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and is_prime( UpperCAmelCase__ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert ( is_prime(UpperCAmelCase__ ) and is_prime(UpperCAmelCase__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase_ = p_number_a + 1 # jump to the next number lowercase_ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(UpperCAmelCase__ ): number += 1 while number < p_number_a: ans.append(UpperCAmelCase__ ) number += 1 # fetch the next prime number. while not is_prime(UpperCAmelCase__ ): number += 1 # precondition assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ans[0] != p_number_a and ans[len(UpperCAmelCase__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n >= 1), "'n' must been int and >= 1" lowercase_ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(UpperCAmelCase__ ) # precondition assert ans[0] == 1 and ans[len(UpperCAmelCase__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase_ = get_divisors(UpperCAmelCase__ ) # precondition assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (divisors[0] == 1) and (divisors[len(UpperCAmelCase__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase_ = gcd(abs(UpperCAmelCase__ ) , abs(UpperCAmelCase__ ) ) # precondition assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase_ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase_ ( UpperCAmelCase__ ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase_ = 0 lowercase_ = 1 lowercase_ = 1 # this will be return for _ in range(n - 1 ): lowercase_ = ans ans += fiba lowercase_ = tmp return ans
650
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : str , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = deque() lowercase_ = set() if not n: lowercase_ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: lowercase_ = n def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self : Optional[Any] ): '''simple docstring''' return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
650
1
from math import pi def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
343
import math import sys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : str = '' try: with open(_UpperCAmelCase, 'rb' ) as binary_file: lowerCAmelCase : Any = binary_file.read() for dat in data: lowerCAmelCase : int = f"{dat:08b}" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Tuple = {'0': '0', '1': '1'} lowerCAmelCase , lowerCAmelCase : Tuple = '', '' lowerCAmelCase : Any = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase : List[Any] = lexicon[curr_string] result += last_match_id lowerCAmelCase : int = last_match_id + '0' if math.loga(_UpperCAmelCase ).is_integer(): lowerCAmelCase : List[str] = {} for curr_key in list(_UpperCAmelCase ): lowerCAmelCase : List[Any] = lexicon.pop(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = new_lex lowerCAmelCase : Tuple = last_match_id + '1' index += 1 lowerCAmelCase : List[Any] = '' return result def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> None: '''simple docstring''' lowerCAmelCase : Dict = 8 try: with open(_UpperCAmelCase, 'wb' ) as opened_file: lowerCAmelCase : List[Any] = [ to_write[i : i + byte_length] for i in range(0, len(_UpperCAmelCase ), _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCAmelCase, 2 ).to_bytes(1, byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : int = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase : int = data_bits[counter:] lowerCAmelCase : Optional[int] = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> None: '''simple docstring''' lowerCAmelCase : Tuple = read_file_binary(_UpperCAmelCase ) lowerCAmelCase : int = remove_prefix(_UpperCAmelCase ) lowerCAmelCase : List[str] = decompress_data(_UpperCAmelCase ) write_file_binary(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
343
1
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _UpperCAmelCase = logging.getLogger(__name__) class a ( UpperCAmelCase__ ): def __init__( self : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple=None ) -> Optional[int]: '''simple docstring''' super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: List[str] =None def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually SCREAMING_SNAKE_CASE_: List[str] =self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE_: Optional[int] =str(distributed_port + 1 ) SCREAMING_SNAKE_CASE_: Any =dist.new_group(ranks=__lowerCAmelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Tuple=torch.floataa ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =torch.empty(__lowerCAmelCase , dtype=__lowerCAmelCase ) dist.scatter(__lowerCAmelCase , src=0 , scatter_list=__lowerCAmelCase , group=self.process_group ) return target_tensor def lowerCamelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE_: str =next((addr for addr in addrs if addr.startswith("""e""" )) , __lowerCAmelCase ) return ifname def lowerCamelCase__ ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : int ) -> Tuple[np.ndarray, List[dict]]: '''simple docstring''' if not dist.is_initialized(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) # distributed training SCREAMING_SNAKE_CASE_: Any =dist.get_world_size(group=self.process_group ) # gather logic SCREAMING_SNAKE_CASE_: List[str] =None if self._is_main(): SCREAMING_SNAKE_CASE_: Dict =[torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCAmelCase )] dist.gather(torch.tensor(__lowerCAmelCase ) , dst=0 , gather_list=__lowerCAmelCase , group=self.process_group ) # scatter logic SCREAMING_SNAKE_CASE_: int =question_hidden_states.shape[0] SCREAMING_SNAKE_CASE_: Dict =[] SCREAMING_SNAKE_CASE_: Tuple =[] if self._is_main(): assert len(__lowerCAmelCase ) == world_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self._main_retrieve(torch.cat(__lowerCAmelCase ).numpy() , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self._scattered(__lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) SCREAMING_SNAKE_CASE_: Dict =self._scattered(__lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCAmelCase )
710
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
0
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A = None , A = None , A = None , A = False , A = False , A = None , **A , ) -> Optional[int]: super().__init__( A , split=A , features=A , cache_dir=A , keep_in_memory=A , streaming=A , num_proc=A , **A , ) _SCREAMING_SNAKE_CASE = path_or_paths if isinstance(A , A ) else {self.split: path_or_paths} _SCREAMING_SNAKE_CASE = Text( cache_dir=A , data_files=A , features=A , **A , ) def snake_case_( self ) -> int: # Build iterable dataset if self.streaming: _SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , num_proc=self.num_proc , ) _SCREAMING_SNAKE_CASE = self.builder.as_dataset( split=self.split , verification_mode=A , in_memory=self.keep_in_memory ) return dataset
314
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ) ->List[Any]: _SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=False ) ->Optional[int]: for i in range(config.num_hidden_layers ): if base_model: _SCREAMING_SNAKE_CASE = """""" else: _SCREAMING_SNAKE_CASE = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( __lowerCamelCase : Dict ) ->Dict: _SCREAMING_SNAKE_CASE = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : Union[str, Any] ) ->Union[str, Any]: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. _SCREAMING_SNAKE_CASE = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ) ->Optional[Any]: _SCREAMING_SNAKE_CASE = dct.pop(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = val def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple ) ->List[str]: _SCREAMING_SNAKE_CASE = ViTMSNConfig() _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = """datasets/huggingface/label-files""" _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _SCREAMING_SNAKE_CASE = 384 _SCREAMING_SNAKE_CASE = 1536 _SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: _SCREAMING_SNAKE_CASE = 1024 _SCREAMING_SNAKE_CASE = 4096 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: _SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = 1024 _SCREAMING_SNAKE_CASE = 4096 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = ViTMSNModel(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""target_encoder"""] _SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = create_rename_keys(__lowerCamelCase , base_model=__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , base_model=__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) _SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=__lowerCamelCase , image_std=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _SCREAMING_SNAKE_CASE = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCamelCase , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
314
1
__SCREAMING_SNAKE_CASE : str = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
149
def snake_case_ ( lowercase__ : list[int] ): '''simple docstring''' _lowerCAmelCase =[] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): _lowerCAmelCase =nums.pop(0 ) _lowerCAmelCase =permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def snake_case_ ( lowercase__ : Optional[Any] ): '''simple docstring''' def backtrack(lowercase__ : List[Any] ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): _lowerCAmelCase , _lowerCAmelCase =nums[i], nums[start] backtrack(start + 1 ) _lowerCAmelCase , _lowerCAmelCase =nums[i], nums[start] # backtrack _lowerCAmelCase =[] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __SCREAMING_SNAKE_CASE : Any = permutea([1, 2, 3]) print(res) doctest.testmod()
149
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel A_ = False A_ = True A_ = False if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") A_ = parser.parse_args() A_ = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } A_ = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } A_ = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: A_ = reader.read() A_ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): A_ = UNetaDModel(**config) else: A_ = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel A_ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) A_ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: A_ = config[key] del config[key] A_ = [k.replace("UNetRes", "") for k in config["down_block_types"]] A_ = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: A_ = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) A_ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue A_ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: A_ = param_value A_ = True if not has_changed: A_ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
42
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
"""simple docstring""" import numpy as np from PIL import Image def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase = np.array(__A ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 # compute the shape of the output matrix _UpperCAmelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _UpperCAmelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _UpperCAmelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 return updated_arr def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = np.array(__A ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 # compute the shape of the output matrix _UpperCAmelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _UpperCAmelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _UpperCAmelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image lowerCAmelCase_ = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
701
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = """deberta-v2""" def __init__( self , a__=12_81_00 , a__=15_36 , a__=24 , a__=24 , a__=61_44 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=0 , a__=0.02 , a__=1E-7 , a__=False , a__=-1 , a__=0 , a__=True , a__=None , a__=0 , a__="gelu" , **a__ , ): super().__init__(**a__ ) _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = relative_attention _UpperCAmelCase = max_relative_positions _UpperCAmelCase = pad_token_id _UpperCAmelCase = position_biased_input # Backwards compatibility if type(a__ ) == str: _UpperCAmelCase = [x.strip() for x in pos_att_type.lower().split('|' )] _UpperCAmelCase = pos_att_type _UpperCAmelCase = vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = kwargs.get('pooler_hidden_size' , a__ ) _UpperCAmelCase = pooler_dropout _UpperCAmelCase = pooler_hidden_act class lowerCAmelCase ( snake_case ): @property def __A ( self ): if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def __A ( self ): return 12 def __A ( self , a__ , a__ = -1 , a__ = -1 , a__ = -1 , a__ = False , a__ = None , a__ = 3 , a__ = 40 , a__ = 40 , a__ = None , ): _UpperCAmelCase = super().generate_dummy_inputs(preprocessor=a__ , framework=a__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
494
0
import copy import re class __lowercase : """simple docstring""" _UpperCAmelCase = """hp""" _UpperCAmelCase = {} _UpperCAmelCase = None @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = prefix SCREAMING_SNAKE_CASE_ : Dict = defaults cls.build_naming_info() @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if len(lowerCAmelCase__ ) == 0: return "" SCREAMING_SNAKE_CASE_ : Tuple = None if any(char.isdigit() for char in word ): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCAmelCase__ ) + 1 ): SCREAMING_SNAKE_CASE_ : Tuple = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE_ : Tuple = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = '' while integer != 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = chr(ord('A' ) + integer % 1_0 ) + s integer //= 1_0 return s SCREAMING_SNAKE_CASE_ : Dict = 0 while True: SCREAMING_SNAKE_CASE_ : Optional[Any] = word + '#' + int_to_alphabetic(lowerCAmelCase__ ) if sword in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE_ : Dict = sword break SCREAMING_SNAKE_CASE_ : List[str] = short_word SCREAMING_SNAKE_CASE_ : Optional[int] = word return short_word @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = param_name.split('_' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [TrialShortNamer.shortname_for_word(lowerCAmelCase__ , lowerCAmelCase__ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name SCREAMING_SNAKE_CASE_ : Any = ['', '_'] for separator in separators: SCREAMING_SNAKE_CASE_ : Union[str, Any] = separator.join(lowerCAmelCase__ ) if shortname not in info["reverse_short_param"]: SCREAMING_SNAKE_CASE_ : Any = shortname SCREAMING_SNAKE_CASE_ : Optional[int] = param_name return shortname return param_name @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = TrialShortNamer.shortname_for_key(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = short_name SCREAMING_SNAKE_CASE_ : List[str] = param_name @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" if cls.NAMING_INFO is not None: return SCREAMING_SNAKE_CASE_ : Any = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } SCREAMING_SNAKE_CASE_ : int = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = info @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ ): """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None SCREAMING_SNAKE_CASE_ : str = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue SCREAMING_SNAKE_CASE_ : int = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 if v else 0 SCREAMING_SNAKE_CASE_ : int = '' if isinstance(lowerCAmelCase__ , (int, float) ) else '-' SCREAMING_SNAKE_CASE_ : List[Any] = F'''{key}{sep}{v}''' name.append(lowerCAmelCase__ ) return "_".join(lowerCAmelCase__ ) @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = repr[len(cls.PREFIX ) + 1 :] if repr == "": SCREAMING_SNAKE_CASE_ : Optional[Any] = [] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = repr.split('_' ) SCREAMING_SNAKE_CASE_ : int = {} for value in values: if "-" in value: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = value.split('-' ) else: SCREAMING_SNAKE_CASE_ : str = re.sub('[0-9.]' , '' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = float(re.sub('[^0-9.]' , '' , lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : int = cls.NAMING_INFO['reverse_short_param'][p_k] SCREAMING_SNAKE_CASE_ : Union[str, Any] = p_v for k in cls.DEFAULTS: if k not in parameters: SCREAMING_SNAKE_CASE_ : Tuple = cls.DEFAULTS[k] return parameters
101
from __future__ import annotations import math def _lowercase ( UpperCAmelCase_): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : List[str] = str(UpperCAmelCase_) snake_case__ : str = [n] for i in range(1 , len(UpperCAmelCase_)): list_nums.append(int(str_num[i:])) list_nums.append(int(str_num[:-i])) return list_nums def _lowercase ( UpperCAmelCase_): """simple docstring""" if len(str(UpperCAmelCase_)) > 3: if not is_prime(int(str(UpperCAmelCase_)[-3:])) or not is_prime(int(str(UpperCAmelCase_)[:3])): return False return True def _lowercase ( UpperCAmelCase_ = 11): """simple docstring""" snake_case__ : list[int] = [] snake_case__ : Dict = 13 while len(UpperCAmelCase_) != count: if validate(UpperCAmelCase_): snake_case__ : Tuple = list_truncated_nums(UpperCAmelCase_) if all(is_prime(UpperCAmelCase_) for i in list_nums): list_truncated_primes.append(UpperCAmelCase_) num += 2 return list_truncated_primes def _lowercase ( ): """simple docstring""" return sum(compute_truncated_primes(11)) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
648
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 2_5_5 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = size if size is not None else {'''shortest_edge''': 2_5_6} UpperCamelCase__ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCamelCase__ : int = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) UpperCamelCase__ : Optional[int] = do_resize UpperCamelCase__ : str = size UpperCamelCase__ : Dict = do_center_crop UpperCamelCase__ : Tuple = crop_size UpperCamelCase__ : List[Any] = resample UpperCamelCase__ : List[Any] = do_rescale UpperCamelCase__ : Dict = rescale_factor UpperCamelCase__ : Union[str, Any] = offset UpperCamelCase__ : Tuple = do_normalize UpperCamelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" in size: UpperCamelCase__ : Any = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: UpperCamelCase__ : str = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = image.astype(np.floataa ) if offset: UpperCamelCase__ : Any = image - (scale / 2) return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : Optional[int] = to_numpy_array(__SCREAMING_SNAKE_CASE ) if do_resize: UpperCamelCase__ : Any = self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) if do_center_crop: UpperCamelCase__ : Optional[Any] = self.center_crop(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) if do_rescale: UpperCamelCase__ : Union[str, Any] = self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE ) if do_normalize: UpperCamelCase__ : List[Any] = self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return image def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase__ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : Dict = resample if resample is not None else self.resample UpperCamelCase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Optional[Any] = offset if offset is not None else self.offset UpperCamelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ : int = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ : int = image_std if image_std is not None else self.image_std UpperCamelCase__ : Optional[Any] = size if size is not None else self.size UpperCamelCase__ : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : int = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCamelCase__ : str = make_batched(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [ [ self._preprocess_image( image=__SCREAMING_SNAKE_CASE , do_resize=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , do_center_crop=__SCREAMING_SNAKE_CASE , crop_size=__SCREAMING_SNAKE_CASE , do_rescale=__SCREAMING_SNAKE_CASE , rescale_factor=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , image_mean=__SCREAMING_SNAKE_CASE , image_std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , ) for img in video ] for video in videos ] UpperCamelCase__ : List[Any] = {'''pixel_values''': videos} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
462
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase ={ "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
462
1
'''simple docstring''' from math import isqrt def lowercase__( __UpperCamelCase: int ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 ,isqrt(__UpperCamelCase ) + 1 ) ) def lowercase__( __UpperCamelCase: int = 10**6 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : List[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
28
from math import ceil def _lowerCamelCase( lowercase__ = 1_0_0_1 ) -> int: '''simple docstring''' __lowercase= 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __lowercase= 2 * i + 1 __lowercase= 2 * i __lowercase= total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
230
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =1 _UpperCAmelCase =3 _UpperCAmelCase =(32, 32) _UpperCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_snake_case ) return image @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_snake_case , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=_snake_case , )[0] _UpperCAmelCase =image[0, -3:, -3:, -1] _UpperCAmelCase =image_from_tuple[0, -3:, -3:, -1] _UpperCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCAmelCase =np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images assert image.shape[0] == 2 _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _UpperCAmelCase =unet.half() _UpperCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type="np" , ).images _UpperCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , output_type="np" , ) _UpperCAmelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( _snake_case , torch_dtype=torch.floataa , ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , output_type="np" , ) _UpperCAmelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def SCREAMING_SNAKE_CASE ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( _snake_case , torch_dtype=torch.floataa , ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , num_inference_steps=5 , output_type="np" , ) _UpperCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
592
from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->bool: _UpperCAmelCase =get_failure_array(_lowerCamelCase ) # 2) Step through text searching for pattern _UpperCAmelCase , _UpperCAmelCase =0, 0 # index into text, pattern while i < len(_lowerCamelCase ): if pattern[j] == text[i]: if j == (len(_lowerCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCAmelCase =failure[j - 1] continue i += 1 return False def lowerCamelCase__ ( _lowerCamelCase ) ->list[int]: _UpperCAmelCase =[0] _UpperCAmelCase =0 _UpperCAmelCase =1 while j < len(_lowerCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCAmelCase =failure[i - 1] continue j += 1 failure.append(_lowerCamelCase ) return failure if __name__ == "__main__": # Test 1) snake_case__ : Dict = 'abc1abc12' snake_case__ : Tuple = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case__ : int = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) snake_case__ : Tuple = 'ABABX' snake_case__ : Any = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) snake_case__ : Optional[int] = 'AAAB' snake_case__ : Optional[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) snake_case__ : int = 'abcdabcy' snake_case__ : int = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) snake_case__ : str = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
592
1
"""simple docstring""" class _UpperCAmelCase: def __init__( self , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = name _UpperCamelCase = val def __str__( self) -> Optional[int]: '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self , __a) -> Union[str, Any]: '''simple docstring''' return self.val < other.val class _UpperCAmelCase: def __init__( self , __a) -> str: '''simple docstring''' _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = self.build_heap(__a) def __getitem__( self , __a) -> Union[str, Any]: '''simple docstring''' return self.get_value(__a) def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' return (idx - 1) // 2 def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' return idx * 2 + 1 def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' return idx * 2 + 2 def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' return self.heap_dict[key] def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = len(__a) - 1 _UpperCamelCase = self.get_parent_idx(__a) for idx, i in enumerate(__a): _UpperCamelCase = idx _UpperCamelCase = i.val for i in range(__a , -1 , -1): self.sift_down(__a , __a) return array def UpperCAmelCase ( self , __a , __a) -> int: '''simple docstring''' while True: _UpperCamelCase = self.get_left_child_idx(__a) # noqa: E741 _UpperCamelCase = self.get_right_child_idx(__a) _UpperCamelCase = idx if l < len(__a) and array[l] < array[idx]: _UpperCamelCase = l if r < len(__a) and array[r] < array[smallest]: _UpperCamelCase = r if smallest != idx: _UpperCamelCase , _UpperCamelCase = array[smallest], array[idx] ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _UpperCamelCase = smallest else: break def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_parent_idx(__a) while p >= 0 and self.heap[p] > self.heap[idx]: _UpperCamelCase , _UpperCamelCase = self.heap[idx], self.heap[p] _UpperCamelCase , _UpperCamelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _UpperCamelCase = p _UpperCamelCase = self.get_parent_idx(__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self.heap[0] def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.heap[-1], self.heap[0] _UpperCamelCase , _UpperCamelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _UpperCamelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' self.heap.append(__a) _UpperCamelCase = len(self.heap) - 1 _UpperCamelCase = node.val self.sift_up(len(self.heap) - 1) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return len(self.heap) == 0 def UpperCAmelCase ( self , __a , __a) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _UpperCamelCase = new_value _UpperCamelCase = new_value self.sift_up(self.idx_of_element[node]) _a = Node("""R""", -1) _a = Node("""B""", 6) _a = Node("""A""", 3) _a = Node("""X""", 1) _a = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _a = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
19
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int ) -> int: def count_of_possible_combinations(SCREAMING_SNAKE_CASE :int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int ) -> int: def count_of_possible_combinations_with_dp_array( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowerCAmelCase : int = sum( count_of_possible_combinations_with_dp_array(target - item , SCREAMING_SNAKE_CASE ) for item in array ) __lowerCAmelCase : Optional[Any] = answer return answer __lowerCAmelCase : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int ) -> int: __lowerCAmelCase : Tuple = [0] * (target + 1) __lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = 3 _UpperCAmelCase = 5 _UpperCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
504
0
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowerCAmelCase : List[str] = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ ,snake_case__ ,snake_case__ : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Union[str, Any]: """simple docstring""" return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return self.major, self.minor, self.patch def lowercase__ ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return Version(__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return other raise TypeError(f'''{other} (type {type(__SCREAMING_SNAKE_CASE )}) cannot be compared to version.''' ) def __eq__( self , lowerCamelCase ) -> List[Any]: """simple docstring""" try: snake_case__ : List[str] = self._validate_operand(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Dict = self._validate_operand(__SCREAMING_SNAKE_CASE ) return self.tuple < other.tuple def __hash__( self ) -> Dict: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self ) -> Dict: """simple docstring""" return self.version_str def _A ( snake_case__ : Dict ): snake_case__ : Optional[int] = _VERSION_REG.match(_UpperCAmelCase ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_UpperCAmelCase ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def _A ( snake_case__ : str ): return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
716
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) snake_case__ : int = '''pytorch_model.bin''' snake_case__ : List[str] = '''pytorch_model.bin.index.json''' snake_case__ : int = '''adapter_config.json''' snake_case__ : List[Any] = '''adapter_model.bin''' snake_case__ : Union[str, Any] = '''adapter_model.safetensors''' snake_case__ : Tuple = '''tf_model.h5''' snake_case__ : str = '''tf_model.h5.index.json''' snake_case__ : Any = '''model.ckpt''' snake_case__ : str = '''flax_model.msgpack''' snake_case__ : str = '''flax_model.msgpack.index.json''' snake_case__ : Tuple = '''model.safetensors''' snake_case__ : List[Any] = '''model.safetensors.index.json''' snake_case__ : Optional[Any] = '''config.json''' snake_case__ : Union[str, Any] = '''preprocessor_config.json''' snake_case__ : Union[str, Any] = FEATURE_EXTRACTOR_NAME snake_case__ : Dict = '''generation_config.json''' snake_case__ : Tuple = '''modelcard.json''' snake_case__ : List[Any] = '''▁''' snake_case__ : Union[str, Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility snake_case__ : Union[str, Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. snake_case__ : Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] snake_case__ : Dict = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowercase ( _lowerCAmelCase ): if version.parse(_lowercase ) < version.parse(_lowercase ): if "dev" in min_version: UpperCAmelCase__ = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: UpperCAmelCase__ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
392
class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase ): __A : Optional[Any] = n __A : Optional[int] = [None] * self.n __A : Optional[int] = 0 # index of the first element __A : Any = 0 __A : Any = 0 def __len__( self ): return self.size def __UpperCAmelCase( self ): return self.size == 0 def __UpperCAmelCase( self ): return False if self.is_empty() else self.array[self.front] def __UpperCAmelCase( self , __UpperCAmelCase ): if self.size >= self.n: raise Exception("QUEUE IS FULL" ) __A : Tuple = data __A : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def __UpperCAmelCase( self ): if self.size == 0: raise Exception("UNDERFLOW" ) __A : List[Any] = self.array[self.front] __A : str = None __A : Optional[Any] = (self.front + 1) % self.n self.size -= 1 return temp
520
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _lowerCamelCase = random.Random() def lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None )-> List[str]: """simple docstring""" if rng is None: a =global_rng a =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=400 , _lowerCAmelCase=2_000 , _lowerCAmelCase=10 , _lowerCAmelCase=160 , _lowerCAmelCase=8 , _lowerCAmelCase=0.0 , _lowerCAmelCase=4_000 , _lowerCAmelCase=False , _lowerCAmelCase=True , ): a =parent a =batch_size a =min_seq_length a =max_seq_length a =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a =padding_value a =sampling_rate a =return_attention_mask a =do_normalize a =feature_size a =chunk_length a =hop_length def lowerCAmelCase__ ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self , _lowerCAmelCase=False , _lowerCAmelCase=False ): def _flatten(_lowerCAmelCase ): return list(itertools.chain(*__a ) ) if equal_length: a =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a =[np.asarray(__a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( __lowercase , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = WhisperFeatureExtractor if is_speech_available() else None def lowerCAmelCase__ ( self ): a =WhisperFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =feat_extract_first.save_pretrained(__a )[0] check_json_file_has_correct_format(__a ) a =self.feature_extraction_class.from_pretrained(__a ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__a , __a ) ) self.assertEqual(__a , __a ) def lowerCAmelCase__ ( self ): a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =os.path.join(__a , """feat_extract.json""" ) feat_extract_first.to_json_file(__a ) a =self.feature_extraction_class.from_json_file(__a ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__a , __a ) ) self.assertEqual(__a , __a ) def lowerCAmelCase__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a =[floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a =[np.asarray(__a ) for speech_input in speech_inputs] # Test feature size a =feature_extractor(__a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a =feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features a =feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) ) # Test batched a =feature_extractor(__a , return_tensors="""np""" ).input_features a =feature_extractor(__a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a =[floats_list((1, x) )[0] for x in (800, 800, 800)] a =np.asarray(__a ) a =feature_extractor(__a , return_tensors="""np""" ).input_features a =feature_extractor(__a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) ) # Test truncation required a =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a =[np.asarray(__a ) for speech_input in speech_inputs] a =[x[: feature_extractor.n_samples] for x in speech_inputs] a =[np.asarray(__a ) for speech_input in speech_inputs_truncated] a =feature_extractor(__a , return_tensors="""np""" ).input_features a =feature_extractor(__a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1E-3 ) ) def lowerCAmelCase__ ( self ): import torch a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =np.random.rand(100 , 32 ).astype(np.floataa ) a =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a =feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a =feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech a =ds.sort("""id""" ).select(range(__a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): # fmt: off a =torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on a =self._load_datasamples(1 ) a =WhisperFeatureExtractor() a =feature_extractor(__a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __a , atol=1E-4 ) ) def lowerCAmelCase__ ( self ): a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =self._load_datasamples(1 )[0] a =((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue a =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__a )[0] self.assertTrue(np.all(np.mean(__a ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__a ) - 1 ) < 1E-3 ) )
720
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowerCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } _lowerCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } _lowerCamelCase = '''▁''' class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Tuple = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase = None , **_lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) a =vocab_file a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) a ={"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} a =len(self.sp_model ) - 1 a ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a =[self.cls_token_id] a =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self ): return len(self.sp_model ) def lowerCAmelCase__ ( self ): a ={self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , _lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a =self.sp_model.PieceToId(_lowerCAmelCase ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , _lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =[] a ="""""" a =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token a =True a =[] else: current_sub_tokens.append(_lowerCAmelCase ) a =False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): a =self.__dict__.copy() a =None return state def __setstate__( self , _lowerCAmelCase ): a =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a ={} a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a =os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: a =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
321
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer A = logging.get_logger(__name__) A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] A = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } A = {F'''funnel-transformer/{name}''': 5_1_2 for name in _model_names} A = {F'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = FunnelTokenizer __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = 2 def __init__( self : List[Any] , _lowercase : str=None , _lowercase : Any=None , _lowercase : int=True , _lowercase : Optional[int]="<unk>" , _lowercase : Any="<sep>" , _lowercase : Optional[int]="<pad>" , _lowercase : Optional[Any]="<cls>" , _lowercase : List[str]="<mask>" , _lowercase : Dict="<s>" , _lowercase : Any="</s>" , _lowercase : str=True , _lowercase : Dict=True , _lowercase : Optional[int]=None , _lowercase : Dict="##" , **_lowercase : Tuple , ) -> List[Any]: super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , clean_text=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , wordpieces_prefix=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("strip_accents" , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop("type" ) ) snake_case : int = do_lower_case snake_case : int = strip_accents snake_case : Optional[int] = tokenize_chinese_chars snake_case : Optional[Any] = normalizer_class(**__SCREAMING_SNAKE_CASE ) snake_case : int = do_lower_case def __lowercase ( self : str , _lowercase : List[Any] , _lowercase : Union[str, Any]=None ) -> Any: snake_case : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ) -> List[int]: snake_case : Any = [self.sep_token_id] snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Any , _lowercase : str , _lowercase : Optional[str] = None ) -> Tuple[str]: snake_case : Optional[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
449
from itertools import permutations def lowercase__ ( A_: tuple ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __UpperCAmelCase =[7, 11, 13, 17] for i, test in enumerate(A_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase__ ( A_: int = 10 ) -> int: """simple docstring""" return sum( int("""""".join(map(A_ , A_ ) ) ) for num in permutations(range(A_ ) ) if is_substring_divisible(A_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
68
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL snake_case__ : Dict = logging.get_logger(__name__) def __lowerCamelCase ( A__ : Optional[Any] , A__ : List[str] , A__ : Union[str, Any] , A__ : Optional[Any] ) -> Tuple[int, int]: def constraint_to_multiple_of(A__ : int , A__ : Optional[Any] , A__ : List[str]=0 , A__ : Optional[int]=None ): lowerCamelCase_ : str = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCamelCase_ : int = math.floor(val / multiple ) * multiple if x < min_val: lowerCamelCase_ : Any = math.ceil(val / multiple ) * multiple return x lowerCamelCase_ : Optional[int] = (output_size, output_size) if isinstance(a__ , a__ ) else output_size lowerCamelCase_, lowerCamelCase_ : Optional[Any] = get_image_size(a__ ) lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = output_size # determine new height and width lowerCamelCase_ : List[str] = output_height / input_height lowerCamelCase_ : List[str] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCamelCase_ : int = scale_width else: # fit height lowerCamelCase_ : Any = scale_height lowerCamelCase_ : Optional[int] = constraint_to_multiple_of(scale_height * input_height , multiple=a__ ) lowerCamelCase_ : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=a__ ) return (new_height, new_width) class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = ["pixel_values"] def __init__( self : int , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = False , __a : int = 1 , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Optional[Any] , ) ->None: super().__init__(**lowercase_ ) lowerCamelCase_ : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384} lowerCamelCase_ : Tuple = get_size_dict(lowercase_ ) lowerCamelCase_ : Any = do_resize lowerCamelCase_ : Union[str, Any] = size lowerCamelCase_ : List[str] = keep_aspect_ratio lowerCamelCase_ : int = ensure_multiple_of lowerCamelCase_ : Optional[int] = resample lowerCamelCase_ : Optional[Any] = do_rescale lowerCamelCase_ : Tuple = rescale_factor lowerCamelCase_ : Tuple = do_normalize lowerCamelCase_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self : str , __a : np.ndarray , __a : Dict[str, int] , __a : bool = False , __a : int = 1 , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) ->np.ndarray: lowerCamelCase_ : List[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCamelCase_ : int = get_resize_output_image_size( lowercase_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowerCAmelCase ( self : int , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) ->Union[str, Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) ->np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : int = None , __a : bool = None , __a : int = None , __a : PILImageResampling = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : Optional[Any] , ) ->PIL.Image.Image: lowerCamelCase_ : Dict = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : Optional[Any] = size if size is not None else self.size lowerCamelCase_ : Any = get_size_dict(lowercase_ ) lowerCamelCase_ : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCamelCase_ : Union[str, Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCamelCase_ : Optional[Any] = resample if resample is not None else self.resample lowerCamelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ : int = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ : Any = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ : Optional[Any] = image_std if image_std is not None else self.image_std lowerCamelCase_ : Optional[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase_ : Dict = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCamelCase_ : Dict = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCamelCase_ : Dict = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCamelCase_ : Any = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCamelCase_ : Union[str, Any] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCamelCase_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowerCAmelCase ( self : str , __a : int , __a : List[Tuple] = None ) ->Optional[Any]: lowerCamelCase_ : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowercase_ ): lowerCamelCase_ : Union[str, Any] = target_sizes.numpy() lowerCamelCase_ : Dict = [] for idx in range(len(lowercase_ ) ): lowerCamelCase_ : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowercase_ ) lowerCamelCase_ : List[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCamelCase_ : Optional[int] = logits.argmax(dim=1 ) lowerCamelCase_ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
716
import qiskit def __lowerCamelCase ( A__ : int = 2 ) -> qiskit.result.counts.Counts: lowerCamelCase_ : List[Any] = qubits # Using Aer's simulator lowerCamelCase_ : Tuple = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register lowerCamelCase_ : int = qiskit.QuantumCircuit(A__ , A__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , A__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , A__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(A__ ) ) , list(range(A__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCamelCase_ : Union[str, Any] = qiskit.execute(A__ , A__ , shots=1000 ) return job.result().get_counts(A__ ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
171
0
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Union[str, Any] , *lowerCamelCase__ :Optional[int] , **lowerCamelCase__ :Dict ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
45
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = 'openai/whisper-base' A = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) A = 'transcriber' A = WhisperProcessor A = WhisperForConditionalGeneration A = ['audio'] A = ['text'] def __a ( self ,__SCREAMING_SNAKE_CASE ): return self.pre_processor(__SCREAMING_SNAKE_CASE ,return_tensors='pt' ).input_features def __a ( self ,__SCREAMING_SNAKE_CASE ): return self.model.generate(inputs=__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ): return self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE ,skip_special_tokens=__SCREAMING_SNAKE_CASE )[0]
220
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A = KandinskyVaaImgaImgPipeline A = ['image_embeds', 'negative_image_embeds', 'image'] A = [ 'image_embeds', 'negative_image_embeds', 'image', ] A = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A = False @property def __a ( self ): return 32 @property def __a ( self ): return 32 @property def __a ( self ): return self.time_input_dim @property def __a ( self ): return self.time_input_dim * 4 @property def __a ( self ): return 100 @property def __a ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def __a ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ): SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : List[str] = self.dummy_movq SCREAMING_SNAKE_CASE : int = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } SCREAMING_SNAKE_CASE : int = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=0 ): SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) ,rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((256, 256) ) if str(__SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __a ( self ): SCREAMING_SNAKE_CASE : Optional[Any] = 'cpu' SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Tuple = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ,return_dict=__SCREAMING_SNAKE_CASE ,)[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): SCREAMING_SNAKE_CASE : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) SCREAMING_SNAKE_CASE : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A red cartoon frog, 4k' SCREAMING_SNAKE_CASE : str = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = pipe_prior( __SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( image=__SCREAMING_SNAKE_CASE ,image_embeds=__SCREAMING_SNAKE_CASE ,negative_image_embeds=__SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,num_inference_steps=100 ,height=768 ,width=768 ,strength=0.2 ,output_type='np' ,) SCREAMING_SNAKE_CASE : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
220
1
import math def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCamelCase__ ) if number < 1: __lowerCamelCase : int = F"Input value of [number={number}] must be > 0" raise ValueError(lowerCamelCase__ ) elif number == 1: return 3 elif number == 2: return 5 else: __lowerCamelCase : Any = int(math.log(number // 3 , 2 ) ) + 2 __lowerCamelCase : List[Any] = [3, 5] __lowerCamelCase : Union[str, Any] = 2 __lowerCamelCase : List[str] = 3 for block in range(1 , lowerCamelCase__ ): for _ in range(lowerCamelCase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): a =0 try: a =proth(number) except ValueError: print(F"""ValueError: there is no {number}th Proth number""") continue print(F"""The {number}th Proth number: {value}""")
652
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Optional[Any] = KandinskyVaaControlnetPipeline _UpperCAmelCase : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] _UpperCAmelCase : int = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] _UpperCAmelCase : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Tuple = False @property def lowerCAmelCase ( self : Tuple): return 3_2 @property def lowerCAmelCase ( self : List[Any]): return 3_2 @property def lowerCAmelCase ( self : str): return self.time_input_dim @property def lowerCAmelCase ( self : List[str]): return self.time_input_dim * 4 @property def lowerCAmelCase ( self : List[str]): return 1_0_0 @property def lowerCAmelCase ( self : Dict): torch.manual_seed(0) __lowerCamelCase : Optional[Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowerCamelCase : Union[str, Any] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__) return model @property def lowerCAmelCase ( self : Union[str, Any]): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Optional[Any]): torch.manual_seed(0) __lowerCamelCase : int = VQModel(**self.dummy_movq_kwargs) return model def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Tuple = self.dummy_unet __lowerCamelCase : List[Any] = self.dummy_movq __lowerCamelCase : str = DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule='linear' ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,steps_offset=1 ,prediction_type='epsilon' ,thresholding=SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Dict = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[int]=0): __lowerCamelCase : str = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(SCREAMING_SNAKE_CASE__)).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1)).to( SCREAMING_SNAKE_CASE__) # create hint __lowerCamelCase : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(SCREAMING_SNAKE_CASE__)).to(SCREAMING_SNAKE_CASE__) if str(SCREAMING_SNAKE_CASE__).startswith('mps'): __lowerCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : int = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Dict = 'cpu' __lowerCamelCase : Tuple = self.get_dummy_components() __lowerCamelCase : Any = self.pipeline_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : int = output.images __lowerCamelCase : Tuple = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) ,return_dict=SCREAMING_SNAKE_CASE__ ,)[0] __lowerCamelCase : Dict = image[0, -3:, -3:, -1] __lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCamelCase : List[str] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : int): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy') __lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png') __lowerCamelCase : Tuple = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE__)).float() / 255.0 __lowerCamelCase : str = hint.permute(2 ,0 ,1).unsqueeze(0) __lowerCamelCase : Tuple = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa) pipe_prior.to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' ,torch_dtype=torch.floataa) __lowerCamelCase : int = pipeline.to(SCREAMING_SNAKE_CASE__) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = 'A robot, 4k photo' __lowerCamelCase : List[str] = torch.Generator(device='cuda').manual_seed(0) __lowerCamelCase , __lowerCamelCase : Optional[Any] = pipe_prior( SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() __lowerCamelCase : Optional[Any] = torch.Generator(device='cuda').manual_seed(0) __lowerCamelCase : Any = pipeline( image_embeds=SCREAMING_SNAKE_CASE__ ,negative_image_embeds=SCREAMING_SNAKE_CASE__ ,hint=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=1_0_0 ,output_type='np' ,) __lowerCamelCase : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
652
1
'''simple docstring''' def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def a_ ( ) -> None: assert nand_gate(0 ,0 ) == 1 assert nand_gate(0 ,1 ) == 1 assert nand_gate(1 ,0 ) == 1 assert nand_gate(1 ,1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
124
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ) -> Dict: # Initialise PyTorch model __snake_case : Tuple = BertConfig.from_json_file(_UpperCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) __snake_case : Optional[int] = BertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
124
1
"""simple docstring""" import math def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 ) ->list: """simple docstring""" lowerCAmelCase__ :List[str] = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = i lowerCAmelCase__ :Any = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCAmelCase__ :str = array[temp_index - 1] temp_index -= 1 lowerCAmelCase__ :Tuple = temp_index_value return array def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->None: # Max Heap """simple docstring""" lowerCAmelCase__ :Any = index lowerCAmelCase__ :Optional[int] = 2 * index + 1 # Left Node lowerCAmelCase__ :int = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCAmelCase__ :Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCAmelCase__ :str = right_index if largest != index: lowerCAmelCase__ , lowerCAmelCase__ :Dict = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): lowerCAmelCase__ , lowerCAmelCase__ :int = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Optional[int] = low lowerCAmelCase__ :int = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCAmelCase__ , lowerCAmelCase__ :List[str] = array[j], array[i] i += 1 def __A (_SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) == 0: return array lowerCAmelCase__ :Dict = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase__ :Tuple = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 lowerCAmelCase__ :Any = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) lowerCAmelCase__ :Tuple = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A = input("""Enter numbers separated by a comma : """).strip() __A = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
93
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = TaConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) _lowerCAmelCase : Union[str, Any] = TaForConditionalGeneration(_A ) # Load weights from tf checkpoint load_tf_weights_in_ta(_A , _A , _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_A ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
444
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DiTPipeline UpperCAmelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } UpperCAmelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' torch.manual_seed(0) A__ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase__ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=UpperCAmelCase__ , ) A__ = AutoencoderKL() A__ = DDIMScheduler() A__ = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=0) ->str: '''simple docstring''' if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs(UpperCAmelCase__) A__ = pipe(**UpperCAmelCase__).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3)) A__ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457]) A__ = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCAmelCase__ , 1e-3) def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase__ , expected_max_diff=1e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' A__ = torch.manual_seed(0) A__ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''') pipe.to('''cuda''') A__ = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] A__ = pipe.get_label_ids(UpperCAmelCase__) A__ = pipe(UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=40 , output_type='''np''').images for word, image in zip(UpperCAmelCase__ , UpperCAmelCase__): A__ = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""") assert np.abs((expected_image - image).max()) < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' A__ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''') A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to('''cuda''') A__ = ['''vase''', '''umbrella'''] A__ = pipe.get_label_ids(UpperCAmelCase__) A__ = torch.manual_seed(0) A__ = pipe(UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=25 , output_type='''np''').images for word, image in zip(UpperCAmelCase__ , UpperCAmelCase__): A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' f"""/dit/{word}_512.npy""") assert np.abs((expected_image - image).max()) < 1e-1
87
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A (__UpperCAmelCase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE = MgpstrTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = False def __a ( self ) -> List[Any]: '''simple docstring''' super().setUp() # fmt: off _snake_case : int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _snake_case : Optional[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) _snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) def __a ( self , **lowercase_ ) -> Optional[Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def __a ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' _snake_case : Optional[Any] = '''tester''' _snake_case : List[str] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def __a ( self ) -> Any: '''simple docstring''' pass def __a ( self ) -> Optional[int]: '''simple docstring''' _snake_case : List[str] = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _snake_case : int = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _snake_case : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=lowercase_ ) self.assertEqual(len(lowercase_ ) , 1 ) _snake_case : Union[str, Any] = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) self.assertTrue(special_token not in decoded ) def __a ( self ) -> List[Any]: '''simple docstring''' _snake_case : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _snake_case , _snake_case : int = self.get_input_output_texts(lowercase_ ) _snake_case : Optional[Any] = tokenizer.tokenize(lowercase_ ) _snake_case : Any = tokenizer.convert_tokens_to_ids(lowercase_ ) _snake_case : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _snake_case : Tuple = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertNotEqual(len(lowercase_ ) , 0 ) _snake_case : str = tokenizer.decode(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , lowercase_ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def __a ( self ) -> str: '''simple docstring''' pass
326
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _SCREAMING_SNAKE_CASE ( _UpperCamelCase ): def A__ (self): '''simple docstring''' __UpperCAmelCase =tempfile.mkdtemp() __UpperCAmelCase =5 # Realm tok __UpperCAmelCase =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __UpperCAmelCase =os.path.join(self.tmpdirname , '''realm_tokenizer''') os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) __UpperCAmelCase =os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) __UpperCAmelCase =os.path.join(self.tmpdirname , '''realm_block_records''') os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) def A__ (self): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''')) def A__ (self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def A__ (self): '''simple docstring''' __UpperCAmelCase =RealmConfig(num_block_records=self.num_block_records) return config def A__ (self): '''simple docstring''' __UpperCAmelCase =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], }) return dataset def A__ (self): '''simple docstring''' __UpperCAmelCase =np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=_UpperCAmelCase , ) return block_records def A__ (self): '''simple docstring''' __UpperCAmelCase =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def A__ (self): '''simple docstring''' __UpperCAmelCase =self.get_config() __UpperCAmelCase =self.get_dummy_retriever() __UpperCAmelCase =retriever.tokenizer __UpperCAmelCase =np.array([0, 3] , dtype='''long''') __UpperCAmelCase =tokenizer(['''Test question''']).input_ids __UpperCAmelCase =tokenizer( ['''the fourth'''] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids __UpperCAmelCase =config.reader_seq_len __UpperCAmelCase =retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='''np''') self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0)) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0)) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0)) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.get_config() __UpperCAmelCase =self.get_dummy_retriever() __UpperCAmelCase =retriever.tokenizer __UpperCAmelCase =np.array([0, 3, 5] , dtype='''long''') __UpperCAmelCase =tokenizer(['''Test question''']).input_ids __UpperCAmelCase =tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids __UpperCAmelCase =config.reader_seq_len __UpperCAmelCase =retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='''np''') self.assertEqual([False, True, True] , _UpperCAmelCase) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _UpperCAmelCase) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''')) # Test local path __UpperCAmelCase =retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''')) self.assertEqual(retriever.block_records[0] , B'''This is the first record''') # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''') as mock_hf_hub_download: __UpperCAmelCase =os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''') , _REALM_BLOCK_RECORDS_FILENAME) __UpperCAmelCase =RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''') self.assertEqual(retriever.block_records[0] , B'''This is the first record''')
713
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__(self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=3_2 , UpperCAmelCase=3 , UpperCAmelCase=1_0 , UpperCAmelCase=[1_0, 2_0, 3_0, 4_0] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): '''simple docstring''' __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =image_size __UpperCAmelCase =num_channels __UpperCAmelCase =embeddings_size __UpperCAmelCase =hidden_sizes __UpperCAmelCase =depths __UpperCAmelCase =is_training __UpperCAmelCase =use_labels __UpperCAmelCase =hidden_act __UpperCAmelCase =num_labels __UpperCAmelCase =scope __UpperCAmelCase =len(UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase =None if self.use_labels: __UpperCAmelCase =ids_tensor([self.batch_size] , self.num_labels) __UpperCAmelCase =self.get_config() return config, pixel_values, labels def A__ (self): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =TFRegNetModel(config=UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase , training=UpperCAmelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.num_labels __UpperCAmelCase =TFRegNetForImageClassification(UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =config_and_inputs __UpperCAmelCase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a_ : Any = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () a_ : Union[str, Any] = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) a_ : str = False a_ : List[str] = False a_ : int = False a_ : List[str] = False a_ : List[Any] = False def A__ (self): '''simple docstring''' __UpperCAmelCase =TFRegNetModelTester(self) __UpperCAmelCase =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase) def A__ (self): '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''') def A__ (self): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''')) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def A__ (self): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''') def A__ (self): '''simple docstring''' pass def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(UpperCAmelCase) __UpperCAmelCase =inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase =[*signature.parameters.keys()] __UpperCAmelCase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase) def A__ (self): '''simple docstring''' def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): __UpperCAmelCase =model_class(UpperCAmelCase) __UpperCAmelCase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) , training=UpperCAmelCase) __UpperCAmelCase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase =layer_type __UpperCAmelCase =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase={}): __UpperCAmelCase =model(UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase).to_tuple() def recursive_check(UpperCAmelCase , UpperCAmelCase): if isinstance(UpperCAmelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase): recursive_check(UpperCAmelCase , UpperCAmelCase) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCAmelCase , UpperCAmelCase)) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}""" ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase) for model_class in self.all_model_classes: __UpperCAmelCase =model_class(UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True}) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True}) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase =TFRegNetModel.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) def SCREAMING_SNAKE_CASE ( ) -> Tuple: __UpperCAmelCase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def A__ (self): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ (self): '''simple docstring''' __UpperCAmelCase =TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) __UpperCAmelCase =self.default_image_processor __UpperCAmelCase =prepare_img() __UpperCAmelCase =image_processor(images=UpperCAmelCase , return_tensors='''tf''') # forward pass __UpperCAmelCase =model(**UpperCAmelCase , training=UpperCAmelCase) # verify the logits __UpperCAmelCase =tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase) __UpperCAmelCase =tf.constant([-0.4180, -1.5051, -3.4836]) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4)
142
0
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class _a ( tf.keras.layers.Layer): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=1 , __UpperCamelCase : Optional[int]=False , **__UpperCamelCase : Any )->Any: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = d_embed _UpperCAmelCase = d_proj _UpperCAmelCase = cutoffs + [vocab_size] _UpperCAmelCase = [0] + self.cutoffs _UpperCAmelCase = div_val _UpperCAmelCase = self.cutoffs[0] _UpperCAmelCase = len(self.cutoffs ) - 1 _UpperCAmelCase = self.shortlist_size + self.n_clusters _UpperCAmelCase = keep_order _UpperCAmelCase = [] _UpperCAmelCase = [] def lowercase__ ( self : Any , __UpperCamelCase : str )->int: if self.n_clusters > 0: _UpperCAmelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=__UpperCamelCase , name='''cluster_weight''' ) _UpperCAmelCase = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=__UpperCamelCase , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _UpperCAmelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=__UpperCamelCase , name=F'out_projs_._{i}' , ) self.out_projs.append(__UpperCamelCase ) else: self.out_projs.append(__UpperCamelCase ) _UpperCAmelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=__UpperCamelCase , name=F'out_layers_._{i}_._weight' , ) _UpperCAmelCase = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=__UpperCamelCase , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.d_embed // (self.div_val**i) _UpperCAmelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=__UpperCamelCase , name=F'out_projs_._{i}' ) self.out_projs.append(__UpperCamelCase ) _UpperCAmelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=__UpperCamelCase , name=F'out_layers_._{i}_._weight' , ) _UpperCAmelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=__UpperCamelCase , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(__UpperCamelCase ) @staticmethod def lowercase__ ( __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Tuple=None )->int: _UpperCAmelCase = x if proj is not None: _UpperCAmelCase = tf.einsum('''ibd,ed->ibe''' , __UpperCamelCase , __UpperCamelCase ) return tf.einsum('''ibd,nd->ibn''' , __UpperCamelCase , __UpperCamelCase ) + b @staticmethod def lowercase__ ( __UpperCamelCase : Tuple , __UpperCamelCase : Dict )->Tuple: _UpperCAmelCase = shape_list(__UpperCamelCase ) _UpperCAmelCase = tf.range(lp_size[0] , dtype=target.dtype ) _UpperCAmelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : int=False )->List[Any]: _UpperCAmelCase = 0 if self.n_clusters == 0: _UpperCAmelCase = self._logit(__UpperCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _UpperCAmelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__UpperCamelCase , logits=__UpperCamelCase ) _UpperCAmelCase = tf.nn.log_softmax(__UpperCamelCase , axis=-1 ) else: _UpperCAmelCase = shape_list(__UpperCamelCase ) _UpperCAmelCase = [] _UpperCAmelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _UpperCAmelCase = (target >= l_idx) & (target < r_idx) _UpperCAmelCase = tf.where(__UpperCamelCase ) _UpperCAmelCase = tf.boolean_mask(__UpperCamelCase , __UpperCamelCase ) - l_idx if self.div_val == 1: _UpperCAmelCase = self.out_layers[0][0][l_idx:r_idx] _UpperCAmelCase = self.out_layers[0][1][l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i][0] _UpperCAmelCase = self.out_layers[i][1] if i == 0: _UpperCAmelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) _UpperCAmelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) _UpperCAmelCase = self._logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.out_projs[0] ) _UpperCAmelCase = tf.nn.log_softmax(__UpperCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _UpperCAmelCase = tf.boolean_mask(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self._gather_logprob(__UpperCamelCase , __UpperCamelCase ) else: _UpperCAmelCase = self._logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.out_projs[i] ) _UpperCAmelCase = tf.nn.log_softmax(__UpperCamelCase ) _UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster _UpperCAmelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__UpperCamelCase ) if target is not None: _UpperCAmelCase = tf.boolean_mask(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tf.boolean_mask(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self._gather_logprob(__UpperCamelCase , __UpperCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__UpperCamelCase , -cur_logprob , shape_list(__UpperCamelCase ) ) _UpperCAmelCase = tf.concat(__UpperCamelCase , axis=-1 ) if target is not None: if return_mean: _UpperCAmelCase = tf.reduce_mean(__UpperCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__UpperCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__UpperCamelCase , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
602
"""simple docstring""" __A : int = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Any = frozenset(["prompt", "negative_prompt"]) __A : Optional[Any] = frozenset([]) __A : List[Any] = frozenset(["image"]) __A : int = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Any = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Any = frozenset(["prompt", "image", "negative_prompt"]) __A : Dict = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : str = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[Any] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Union[str, Any] = frozenset(["image", "mask_image"]) __A : Tuple = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : int = frozenset(["example_image", "image", "mask_image"]) __A : Union[str, Any] = frozenset(["class_labels"]) __A : Union[str, Any] = frozenset(["class_labels"]) __A : List[Any] = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Tuple = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : List[str] = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Tuple = frozenset(["prompt", "negative_prompt"]) __A : Dict = frozenset(["input_tokens"]) __A : List[str] = frozenset(["input_tokens"])
602
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( A_ : Tuple , A_ : Union[str, Any] , A_ : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[str] =TaConfig.from_json_file(A_ ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase__ : List[str] =TaForConditionalGeneration(A_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(A_ , A_ , A_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
582
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCamelCase ( ) -> int: '''simple docstring''' UpperCamelCase__ : str =ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=A_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=A_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=A_ ) return parser.parse_args() def _lowerCamelCase ( ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Dict =parse_args() # Import training_script as a module. UpperCamelCase__ : Union[str, Any] =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase__ : Optional[Any] =script_fpath.stem UpperCamelCase__ : Any =importlib.import_module(A_ ) # Patch sys.argv UpperCamelCase__ : Optional[Any] =[args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
582
1
"""simple docstring""" lowercase_ = 6_5_5_2_1 def lowercase ( lowerCAmelCase__ : str ) -> int: __a = 1 __a = 0 for plain_chr in plain_text: __a = (a + ord(lowerCAmelCase__ )) % MOD_ADLER __a = (b + a) % MOD_ADLER return (b << 16) | a
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
1
import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase: """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=0.2 , lowerCamelCase=0.2 ) -> Any: """simple docstring""" lowercase__ : Optional[int] = bp_numa lowercase__ : int = bp_numa lowercase__ : Optional[int] = bp_numa lowercase__ : List[str] = conva_get[:2] lowercase__ : str = conva_get[2] lowercase__ : Tuple = size_pa lowercase__ : Union[str, Any] = rate_w lowercase__ : Optional[Any] = rate_t lowercase__ : str = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__ : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__ : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__ : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__ : List[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def __a ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowercase_ , "wb" ) as f: pickle.dump(lowercase_ , lowercase_ ) print(f"""Model saved: {save_path}""" ) @classmethod def __a ( cls , lowerCamelCase ) -> Tuple: """simple docstring""" with open(lowercase_ , "rb" ) as f: lowercase__ : List[Any] = pickle.load(lowercase_ ) # noqa: S301 lowercase__ : Any = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) lowercase__ : Tuple = model_dic.get("size_pooling1" ) lowercase__ : Tuple = model_dic.get("num_bp1" ) lowercase__ : Dict = model_dic.get("num_bp2" ) lowercase__ : Tuple = model_dic.get("num_bp3" ) lowercase__ : List[str] = model_dic.get("rate_weight" ) lowercase__ : Optional[int] = model_dic.get("rate_thre" ) # create model instance lowercase__ : List[str] = CNN(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # modify model parameter lowercase__ : int = model_dic.get("w_conv1" ) lowercase__ : str = model_dic.get("wkj" ) lowercase__ : List[Any] = model_dic.get("vji" ) lowercase__ : Union[str, Any] = model_dic.get("thre_conv1" ) lowercase__ : Union[str, Any] = model_dic.get("thre_bp2" ) lowercase__ : List[str] = model_dic.get("thre_bp3" ) return conv_ins def __a ( self , lowerCamelCase ) -> str: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def __a ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return round(lowercase_ , 3 ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = convs[0] lowercase__ : Tuple = convs[1] lowercase__ : Tuple = np.shape(lowercase_ )[0] # get the data slice of original image data, data_focus lowercase__ : Dict = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase_ ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase_ ): lowercase__ : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase_ ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__ : List[Any] = [] lowercase__ : int = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase_ ): lowercase__ : Any = [] for i_focus in range(len(lowercase_ ) ): lowercase__ : List[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase_ ) ) lowercase__ : Optional[int] = np.asmatrix(lowercase_ ).reshape( lowercase_ , lowercase_ ) data_featuremap.append(lowercase_ ) # expanding the data slice to One dimenssion lowercase__ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase_ ) ) lowercase__ : Tuple = np.asarray(lowercase_ ) return focus_list, data_featuremap def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="average_pool" ) -> Union[str, Any]: """simple docstring""" lowercase__ : int = len(featuremaps[0] ) lowercase__ : Optional[int] = int(size_map / size_pooling ) lowercase__ : Dict = [] for i_map in range(len(lowercase_ ) ): lowercase__ : Any = featuremaps[i_map] lowercase__ : List[Any] = [] for i_focus in range(0 , lowercase_ , lowercase_ ): for j_focus in range(0 , lowercase_ , lowercase_ ): lowercase__ : List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase_ ) ) lowercase__ : int = np.asmatrix(lowercase_ ).reshape(lowercase_ , lowercase_ ) featuremap_pooled.append(lowercase_ ) return featuremap_pooled def __a ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = [] for i in range(len(lowercase_ ) ): lowercase__ : List[str] = np.shape(data[i] ) lowercase__ : Optional[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__ : int = data_listed.getA().tolist()[0] data_expanded.extend(lowercase_ ) lowercase__ : Union[str, Any] = np.asarray(lowercase_ ) return data_expanded def __a ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = np.asarray(lowercase_ ) lowercase__ : Optional[Any] = np.shape(lowercase_ ) lowercase__ : Tuple = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : Tuple = [] lowercase__ : List[str] = 0 for i_map in range(lowercase_ ): lowercase__ : Any = np.ones((size_map, size_map) ) for i in range(0 , lowercase_ , lowercase_ ): for j in range(0 , lowercase_ , lowercase_ ): lowercase__ : List[str] = pd_pool[ i_pool ] lowercase__ : Tuple = i_pool + 1 lowercase__ : Dict = np.multiply( lowercase_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase_ ) return pd_all def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=bool ) -> Union[str, Any]: """simple docstring""" print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(lowercase_ )) ) print((" - - Shape: Teach_Data ", np.shape(lowercase_ )) ) lowercase__ : Tuple = 0 lowercase__ : Optional[Any] = [] lowercase__ : str = 10000 while rp < n_repeat and mse >= error_accuracy: lowercase__ : Any = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(lowercase_ ) ): # print('------------Learning Image: %d--------------'%p) lowercase__ : Any = np.asmatrix(datas_train[p] ) lowercase__ : Optional[int] = np.asarray(datas_teach[p] ) lowercase__ : List[Any] = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : List[Any] = self.pooling(lowercase_ , self.size_poolinga ) lowercase__ : List[str] = np.shape(lowercase_ ) lowercase__ : Dict = self._expand(lowercase_ ) lowercase__ : Tuple = data_bp_input lowercase__ : Union[str, Any] = np.dot(lowercase_ , self.vji.T ) - self.thre_bpa lowercase__ : Tuple = self.sig(lowercase_ ) lowercase__ : Tuple = np.dot(lowercase_ , self.wkj.T ) - self.thre_bpa lowercase__ : Tuple = self.sig(lowercase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__ : int = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase_ , (1 - bp_outa) ) ) lowercase__ : str = np.multiply( np.dot(lowercase_ , self.wkj ) , np.multiply(lowercase_ , (1 - bp_outa) ) ) lowercase__ : List[Any] = np.dot(lowercase_ , self.vji ) lowercase__ : Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__ : Tuple = pd_conva_pooled.T.getA().tolist() lowercase__ : Any = self._calculate_gradient_from_pool( lowercase_ , lowercase_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__ : Dict = self._expand_mat(pd_conva_all[k_conv] ) lowercase__ : Union[str, Any] = self.rate_weight * np.dot(lowercase_ , lowercase_ ) lowercase__ : str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__ : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__ : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__ : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre lowercase__ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__ : Any = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__ : Dict = rp + 1 lowercase__ : Any = error_count / patterns all_mse.append(lowercase_ ) def draw_error(): lowercase__ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase_ , "+-" ) plt.plot(lowercase_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(lowercase_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def __a ( self , lowerCamelCase ) -> int: """simple docstring""" lowercase__ : List[Any] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(lowercase_ )) ) for p in range(len(lowercase_ ) ): lowercase__ : Any = np.asmatrix(datas_test[p] ) lowercase__ : Any = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : List[str] = self.pooling(lowercase_ , self.size_poolinga ) lowercase__ : List[Any] = self._expand(lowercase_ ) lowercase__ : str = data_bp_input lowercase__ : int = bp_outa * self.vji.T - self.thre_bpa lowercase__ : Union[str, Any] = self.sig(lowercase_ ) lowercase__ : Tuple = bp_outa * self.wkj.T - self.thre_bpa lowercase__ : Any = self.sig(lowercase_ ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__ : List[Any] = [list(map(self.do_round , lowercase_ ) ) for each in produce_out] return np.asarray(lowercase_ ) def __a ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = np.asmatrix(lowercase_ ) lowercase__ : Optional[int] = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Dict = self.pooling(lowercase_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
708
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" ,[ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) -> List[Any]: lowercase__ : List[str] = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } lowercase__ , lowercase__ : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase__ : List[Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE_ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase__ : Tuple = file_path.read_text(encoding="utf-8" ) else: lowercase__ : List[str] = output_path.read_text(encoding="utf-8" ) lowercase__ : Dict = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" ,[ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) -> Optional[Any]: lowercase__ : Optional[Any] = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } lowercase__ : List[Any] = input_paths[compression_format] if input_path is None: lowercase__ : Union[str, Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) assert extractor_format is not None lowercase__ : Optional[int] = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase__ : Tuple = file_path.read_text(encoding="utf-8" ) else: lowercase__ : Dict = output_path.read_text(encoding="utf-8" ) lowercase__ : Optional[Any] = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int: import tarfile lowercase__ : Any = tmp_path / "data_dot_dot" directory.mkdir() lowercase__ : Union[str, Any] = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join(".." ,text_file.name ) ) return path @pytest.fixture def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: import tarfile lowercase__ : List[str] = tmp_path / "data_sym_link" directory.mkdir() lowercase__ : Tuple = directory / "tar_file_with_sym_link.tar" os.symlink(".." ,directory / "subdir" ,target_is_directory=SCREAMING_SNAKE_CASE_ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(str(directory / "subdir" ) ,arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" ,[("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ : Dict = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } lowercase__ : Dict = insecure_tar_files[insecure_tar_file] lowercase__ : Optional[int] = tmp_path / "extracted" TarExtractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase__ : Dict = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 lowercase__ : str = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE_ ) # but we're right
298
0
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ ) return flax_params def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } __SCREAMING_SNAKE_CASE = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __SCREAMING_SNAKE_CASE = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"layer.\1" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"layer.\1" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flax_dict[key] __SCREAMING_SNAKE_CASE = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key].T ) else: __SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_flax_param(lowerCAmelCase_ ) if not use_large: __SCREAMING_SNAKE_CASE = PixaStructVisionConfig() __SCREAMING_SNAKE_CASE = PixaStructTextConfig() else: __SCREAMING_SNAKE_CASE = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) __SCREAMING_SNAKE_CASE = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) __SCREAMING_SNAKE_CASE = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = PixaStructForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = rename_and_convert_flax_params(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) __SCREAMING_SNAKE_CASE = PixaStructImageProcessor() __SCREAMING_SNAKE_CASE = PixaStructProcessor(image_processor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) if use_large: __SCREAMING_SNAKE_CASE = 4096 __SCREAMING_SNAKE_CASE = True # mkdir if needed os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) print("Model saved in {}".format(lowerCAmelCase_ ) ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') a__ : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : int = RoCBertTokenizer snake_case__ : int = None snake_case__ : Optional[Any] = False snake_case__ : int = True snake_case__ : Any = filter_non_english def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: super().setUp() __SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} for i, value in enumerate(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> List[str]: __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(UpperCAmelCase__ , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def UpperCAmelCase_ ( self : int ) -> Dict: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self : int ) -> List[Any]: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def UpperCAmelCase_ ( self : List[Any] ) -> str: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCAmelCase_ ( self : List[str] ) -> Tuple: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCAmelCase_ ( self : int ) -> int: __SCREAMING_SNAKE_CASE = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase__ , "do_lower_case" ) else False __SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = ["的", "人", "有"] __SCREAMING_SNAKE_CASE = "".join(UpperCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase__ ) ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __SCREAMING_SNAKE_CASE = tokenizer.encode("你好" , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.encode("你是谁" , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase_ ( self : str ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __SCREAMING_SNAKE_CASE = "你好,你是谁" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.prepare_for_model( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
682
1
import heapq def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(SCREAMING_SNAKE_CASE , [-1 * len(SCREAMING_SNAKE_CASE ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ = heapq.heappop(SCREAMING_SNAKE_CASE )[1][0] chosen_vertices.add(SCREAMING_SNAKE_CASE ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ = elem[1][1].index(SCREAMING_SNAKE_CASE ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(SCREAMING_SNAKE_CASE ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __lowercase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
563
from __future__ import annotations def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) == 0: return [] A_ ,A_ = min(SCREAMING_SNAKE_CASE ), max(SCREAMING_SNAKE_CASE ) A_ = int(max_value - min_value ) + 1 A_ = [[] for _ in range(SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
563
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = np.shape(lowerCAmelCase ) if rows != columns: _lowerCAmelCase = ( """'table' has to be of square shaped array but got a """ f"{rows}x{columns} array:\n{table}" ) raise ValueError(lowerCAmelCase ) _lowerCAmelCase = np.zeros((rows, columns) ) _lowerCAmelCase = np.zeros((rows, columns) ) for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): _lowerCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) _lowerCAmelCase = (table[i][j] - total) / upper[j][j] _lowerCAmelCase = 1 for j in range(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(lowerCAmelCase ) ) _lowerCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
207
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Dict , _lowercase : List[str] , _lowercase : int=2 , _lowercase : Optional[Any]=True , _lowercase : Optional[int]=False , _lowercase : Tuple=10 , _lowercase : Tuple=3 , _lowercase : Union[str, Any]=32 * 4 , _lowercase : Any=32 * 6 , _lowercase : Any=4 , _lowercase : Any=32 , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_auxiliary_loss SCREAMING_SNAKE_CASE__ = num_queries SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_size SCREAMING_SNAKE_CASE__ = max_size SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = mask_feature_size def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowercase ) SCREAMING_SNAKE_CASE__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowercase ) SCREAMING_SNAKE_CASE__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowercase ) > 0.5 ).float() SCREAMING_SNAKE_CASE__ = (torch.rand((self.batch_size, self.num_labels) , device=_lowercase ) > 0.5).long() SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __a ( self : List[Any] ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def __a ( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = output.encoder_hidden_states SCREAMING_SNAKE_CASE__ = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , config.decoder_config.decoder_layers ) def __a ( self : Dict , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : List[Any]=False ): """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE__ = MaskFormerModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase , output_hidden_states=_lowercase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowercase , _lowercase ) def __a ( self : Optional[Any] , _lowercase : Any , _lowercase : Any , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() def comm_check_on_output(_lowercase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ = model(_lowercase ) comm_check_on_output(_lowercase ) SCREAMING_SNAKE_CASE__ = model( pixel_values=_lowercase , pixel_mask=_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) comm_check_on_output(_lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __snake_case ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase_ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MaskFormerModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def __a ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowercase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def __a ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def __a ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def __a ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def __a ( self : Optional[Any] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __a ( self : Tuple ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __a ( self : List[str] ): """simple docstring""" pass def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) @slow def __a ( self : Any ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: SCREAMING_SNAKE_CASE__ = MaskFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE__ = { "pixel_values": torch.randn((2, 3, *size) , device=_lowercase ), "mask_labels": torch.randn((2, 10, *size) , device=_lowercase ), "class_labels": torch.zeros(2 , 10 , device=_lowercase ).long(), } SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = model(**_lowercase ) self.assertTrue(outputs.loss is not None ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = model(**_lowercase , output_attentions=_lowercase ) self.assertTrue(outputs.attentions is not None ) def __a ( self : str ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE__ = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ).loss loss.backward() def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't SCREAMING_SNAKE_CASE__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCamelCase : Union[str, Any] = 1e-4 def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __snake_case ( unittest.TestCase ): @cached_property def __a ( self : int ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**_lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowercase , atol=_lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**_lowercase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE__ = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] SCREAMING_SNAKE_CASE__ = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**_lowercase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE__ = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] SCREAMING_SNAKE_CASE__ = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE__ = inputs["pixel_values"].to(_lowercase ) SCREAMING_SNAKE_CASE__ = [el.to(_lowercase ) for el in inputs["mask_labels"]] SCREAMING_SNAKE_CASE__ = [el.to(_lowercase ) for el in inputs["class_labels"]] with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**_lowercase ) self.assertTrue(outputs.loss is not None )
715
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCamelCase : List[str] = TypeVar('''KEY''') __lowerCamelCase : int = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase_ , slots=lowerCamelCase_ ) class __snake_case ( Generic[KEY, VAL] ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class __snake_case ( _Item ): def __init__( self : List[Any] ): """simple docstring""" super().__init__(_lowercase , _lowercase ) def __bool__( self : List[str] ): """simple docstring""" return False __lowerCamelCase : str = _DeletedItem() class __snake_case ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[int] , _lowercase : int = 8 , _lowercase : float = 0.75 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = initial_block_size SCREAMING_SNAKE_CASE__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 SCREAMING_SNAKE_CASE__ = capacity_factor SCREAMING_SNAKE_CASE__ = 0 def __a ( self : Union[str, Any] , _lowercase : KEY ): """simple docstring""" return hash(_lowercase ) % len(self._buckets ) def __a ( self : List[str] , _lowercase : int ): """simple docstring""" return (ind + 1) % len(self._buckets ) def __a ( self : Union[str, Any] , _lowercase : int , _lowercase : KEY , _lowercase : VAL ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self._buckets[ind] if not stored: SCREAMING_SNAKE_CASE__ = _Item(_lowercase , _lowercase ) self._len += 1 return True elif stored.key == key: SCREAMING_SNAKE_CASE__ = _Item(_lowercase , _lowercase ) return True else: return False def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_lowercase ) def __a ( self : Dict ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False SCREAMING_SNAKE_CASE__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __a ( self : List[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self._buckets SCREAMING_SNAKE_CASE__ = [None] * new_size SCREAMING_SNAKE_CASE__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __a ( self : Tuple ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def __a ( self : Tuple ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def __a ( self : List[str] , _lowercase : KEY ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self._get_bucket_index(_lowercase ) for _ in range(len(self._buckets ) ): yield ind SCREAMING_SNAKE_CASE__ = self._get_next_ind(_lowercase ) def __a ( self : List[str] , _lowercase : KEY , _lowercase : VAL ): """simple docstring""" for ind in self._iterate_buckets(_lowercase ): if self._try_set(_lowercase , _lowercase , _lowercase ): break def __setitem__( self : List[str] , _lowercase : KEY , _lowercase : VAL ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(_lowercase , _lowercase ) def __delitem__( self : Tuple , _lowercase : KEY ): """simple docstring""" for ind in self._iterate_buckets(_lowercase ): SCREAMING_SNAKE_CASE__ = self._buckets[ind] if item is None: raise KeyError(_lowercase ) if item is _deleted: continue if item.key == key: SCREAMING_SNAKE_CASE__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple , _lowercase : KEY ): """simple docstring""" for ind in self._iterate_buckets(_lowercase ): SCREAMING_SNAKE_CASE__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_lowercase ) def __len__( self : List[Any] ): """simple docstring""" return self._len def __iter__( self : List[str] ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """ ,""".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
379
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : str ): __a = 0 for ch in input_str: __a = ord(a_ ) __a = pow(2 , a_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
539
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowercase ( __magic_name__ ): _a = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _a = Features({"""audio""": Audio()} ) _a = Features({"""labels""": ClassLabel} ) _a = "audio" _a = "labels" def UpperCamelCase__ ( self , UpperCamelCase ) -> Dict: if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , UpperCamelCase ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __a = copy.deepcopy(self ) __a = self.label_schema.copy() __a = features[self.label_column] __a = label_schema return task_template @property def UpperCamelCase__ ( self ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
539
1
'''simple docstring''' def _a ( lowerCamelCase_ ): snake_case : Dict =0 while len(lowerCamelCase_ ) > 1: snake_case : Optional[Any] =0 # Consider two files with minimum cost to be merged for _ in range(2 ): snake_case : List[Any] =files.index(min(lowerCamelCase_ ) ) temp += files[min_index] files.pop(lowerCamelCase_ ) files.append(lowerCamelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
136
'''simple docstring''' def _a ( ): for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def _a ( lowerCamelCase_ ): snake_case : Optional[Any] =1 snake_case : int =2 while i * i <= n: snake_case : Any =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _a ( ): return next(i for i in triangle_number_generator() if count_divisors(lowerCamelCase_ ) > 5_00 ) if __name__ == "__main__": print(solution())
136
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = ['pixel_values'] def __init__( self : Union[str, Any] , __magic_name__ : bool = True , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : Any , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 256} lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase__ = get_resize_output_image_size(__magic_name__ , size=size["shortest_edge"] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] ): """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ): """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : Union[str, Any] , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : List[Tuple] = None ): """simple docstring""" lowerCAmelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__magic_name__ ): lowerCAmelCase__ = target_sizes.numpy() lowerCAmelCase__ = [] for idx in range(len(__magic_name__ ) ): lowerCAmelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__magic_name__ ) lowerCAmelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__magic_name__ ) else: lowerCAmelCase__ = logits.argmax(dim=1 ) lowerCAmelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
48
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = BertJapaneseTokenizer lowerCamelCase__ : str = False lowerCamelCase__ : Optional[int] = True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: super().setUp() SCREAMING_SNAKE_CASE__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = """こんにちは、世界。 \nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_input_output_texts(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = MecabTokenizer(do_lower_case=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer( do_lower_case=__UpperCAmelCase , normalize_text=__UpperCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = MecabTokenizer(normalize_text=__UpperCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(do_lower_case=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(normalize_text=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(trim_whitespace=__UpperCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """こんにちは、世界。\nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__UpperCAmelCase , """wb""" ) as handle: pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(normalize_text=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(trim_whitespace=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) SCREAMING_SNAKE_CASE__ = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE__ = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__UpperCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) SCREAMING_SNAKE_CASE__ = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__UpperCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Dict = BertJapaneseTokenizer lowerCamelCase__ : Tuple = False def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__UpperCAmelCase : List[Any] ) -> List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = """こんにちは、世界。 \nこんばんは、世界。""" SCREAMING_SNAKE_CASE__ = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __UpperCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = CharacterTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""ありがとう。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = """cl-tohoku/bert-base-japanese""" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) SCREAMING_SNAKE_CASE__ = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
196
0
from __future__ import annotations a__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] a__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> list[float]: _snake_case : List[str] = [] _snake_case : List[str] = len(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): _snake_case : float = -1 for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if arr[i] < arr[j]: _snake_case : Optional[int] = arr[j] break result.append(SCREAMING_SNAKE_CASE__ ) return result def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> list[float]: _snake_case : Union[str, Any] = [] for i, outer in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case : float = -1 for inner in arr[i + 1 :]: if outer < inner: _snake_case : Union[str, Any] = inner break result.append(SCREAMING_SNAKE_CASE__ ) return result def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> list[float]: _snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) _snake_case : list[float] = [] _snake_case : list[float] = [-1] * arr_size for index in reversed(range(SCREAMING_SNAKE_CASE__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _snake_case : Union[str, Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) a__ = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
198
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
198
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 100 , ) -> float: """simple docstring""" __UpperCAmelCase : Optional[int] = x_start __UpperCAmelCase : List[str] = fnc(UpperCamelCase ) __UpperCAmelCase : Tuple = 0.0 for _ in range(UpperCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCAmelCase : int = (x_end - x_start) / steps + xa __UpperCAmelCase : Tuple = fnc(UpperCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCAmelCase : List[Any] = xa __UpperCAmelCase : Dict = fxa return area if __name__ == "__main__": def _UpperCamelCase ( UpperCamelCase ) -> Optional[int]: """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A = 10 while i <= 100_000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
77
import os # Precomputes a list of the 100 first triangular numbers __a = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a ( ): '''simple docstring''' lowercase_ = os.path.dirname(os.path.realpath(snake_case__ ) ) lowercase_ = os.path.join(snake_case__ , '''words.txt''' ) lowercase_ = '''''' with open(snake_case__ ) as f: lowercase_ = f.readline() lowercase_ = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] lowercase_ = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
97
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Any = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
91
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Dict = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
91
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
96
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCAmelCase ( __lowerCamelCase ): def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
583
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
142
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Tuple = '''align_text_model''' def __init__(self , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase) __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =hidden_act __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_size __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =position_embedding_type __UpperCAmelCase =use_cache __UpperCAmelCase =pad_token_id @classmethod def A__ (cls , UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''') == "align": __UpperCAmelCase =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase , **UpperCAmelCase) class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Dict = '''align_vision_model''' def __init__(self , UpperCAmelCase = 3 , UpperCAmelCase = 6_0_0 , UpperCAmelCase = 2.0 , UpperCAmelCase = 3.1 , UpperCAmelCase = 8 , UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , UpperCAmelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , UpperCAmelCase = [] , UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase = 0.25 , UpperCAmelCase = "swish" , UpperCAmelCase = 2_5_6_0 , UpperCAmelCase = "mean" , UpperCAmelCase = 0.02 , UpperCAmelCase = 0.001 , UpperCAmelCase = 0.99 , UpperCAmelCase = 0.2 , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase) __UpperCAmelCase =num_channels __UpperCAmelCase =image_size __UpperCAmelCase =width_coefficient __UpperCAmelCase =depth_coefficient __UpperCAmelCase =depth_divisor __UpperCAmelCase =kernel_sizes __UpperCAmelCase =in_channels __UpperCAmelCase =out_channels __UpperCAmelCase =depthwise_padding __UpperCAmelCase =strides __UpperCAmelCase =num_block_repeats __UpperCAmelCase =expand_ratios __UpperCAmelCase =squeeze_expansion_ratio __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dim __UpperCAmelCase =pooling_type __UpperCAmelCase =initializer_range __UpperCAmelCase =batch_norm_eps __UpperCAmelCase =batch_norm_momentum __UpperCAmelCase =drop_connect_rate __UpperCAmelCase =sum(UpperCAmelCase) * 4 @classmethod def A__ (cls , UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''') == "align": __UpperCAmelCase =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase , **UpperCAmelCase) class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : int = '''align''' a_ : Optional[Any] = True def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=6_4_0 , UpperCAmelCase=1.0 , UpperCAmelCase=0.02 , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase) if text_config is None: __UpperCAmelCase ={} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''') if vision_config is None: __UpperCAmelCase ={} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''') __UpperCAmelCase =AlignTextConfig(**UpperCAmelCase) __UpperCAmelCase =AlignVisionConfig(**UpperCAmelCase) __UpperCAmelCase =projection_dim __UpperCAmelCase =temperature_init_value __UpperCAmelCase =initializer_range @classmethod def A__ (cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =copy.deepcopy(self.__dict__) __UpperCAmelCase =self.text_config.to_dict() __UpperCAmelCase =self.vision_config.to_dict() __UpperCAmelCase =self.__class__.model_type return output
142
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple ): super().__init__() __lowercase = nn.Linear(3 ,4 ) __lowercase = nn.BatchNormad(4 ) __lowercase = nn.Linear(4 ,5 ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[Any] ): return self.lineara(self.batchnorm(self.lineara(lowercase__ ) ) ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Dict ,*lowercase__ : List[str] ,**lowercase__ : List[str] ): return (args[0] + 1,) + args[1:], kwargs class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ): return output + 1 class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = ModelForTest() __lowercase = ModelHook() add_hook_to_module(lowercase__ ,lowercase__ ) self.assertEqual(test_model._hf_hook ,lowercase__ ) self.assertTrue(hasattr(lowercase__ ,'''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,'''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,['''x'''] ) remove_hook_from_module(lowercase__ ) self.assertFalse(hasattr(lowercase__ ,'''_hf_hook''' ) ) self.assertFalse(hasattr(lowercase__ ,'''_old_forward''' ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = ModelForTest() __lowercase = ModelHook() add_hook_to_module(lowercase__ ,lowercase__ ) add_hook_to_module(lowercase__ ,lowercase__ ,append=lowercase__ ) self.assertEqual(isinstance(test_model._hf_hook ,lowercase__ ) ,lowercase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) ,2 ) self.assertTrue(hasattr(lowercase__ ,'''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,'''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,['''x'''] ) remove_hook_from_module(lowercase__ ) self.assertFalse(hasattr(lowercase__ ,'''_hf_hook''' ) ) self.assertFalse(hasattr(lowercase__ ,'''_old_forward''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ModelForTest() __lowercase = torch.randn(2 ,3 ) __lowercase = test_model(x + 1 ) __lowercase = test_model(x + 2 ) __lowercase = PreForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,lowercase__ ,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __lowercase = PreForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,lowercase__ ,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __lowercase = SequentialHook(PreForwardHook() ,PreForwardHook() ) add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) assert torch.allclose(lowercase__ ,lowercase__ ,atol=1e-5 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ModelForTest() __lowercase = torch.randn(2 ,3 ) __lowercase = test_model(lowercase__ ) __lowercase = PostForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,output + 1 ,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __lowercase = PostForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,output + 1 ,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __lowercase = SequentialHook(PostForwardHook() ,PostForwardHook() ) add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) assert torch.allclose(lowercase__ ,output + 2 ,atol=1e-5 ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ModelForTest() __lowercase = torch.randn(2 ,3 ) __lowercase = test_model(lowercase__ ) __lowercase = PostForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,output + 1 ) ) self.assertTrue(outputa.requires_grad ) __lowercase = True __lowercase = test_model(lowercase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device(0 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase__ ,AlignDevicesHook(io_same_device=lowercase__ ) ) __lowercase = torch.randn(2 ,3 ).to(0 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,torch.device(0 ) ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # This will move each submodule on different devices __lowercase = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara ,AlignDevicesHook(**lowercase__ ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**lowercase__ ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**lowercase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device ,lowercase__ ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # Now test with buffers included in the offload __lowercase = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara ,AlignDevicesHook(**lowercase__ ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**lowercase__ ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**lowercase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('''meta''' ) ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # This will move each submodule on different devices __lowercase = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(lowercase__ ,execution_device=lowercase__ ,offload=lowercase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase = torch.device(lowercase__ ) self.assertEqual(model.batchnorm.running_mean.device ,lowercase__ ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__ ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(lowercase__ ,execution_device=lowercase__ ,offload=lowercase__ ,offload_buffers=lowercase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('''meta''' ) ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__ ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # This will move each submodule on different devices __lowercase = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( lowercase__ ,execution_device=lowercase__ ,offload=lowercase__ ,weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase = torch.device(lowercase__ ) self.assertEqual(model.batchnorm.running_mean.device ,lowercase__ ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__ ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( lowercase__ ,execution_device=lowercase__ ,offload=lowercase__ ,weights_map=model.state_dict() ,offload_buffers=lowercase__ ,) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('''meta''' ) ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__ ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) )
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = '''Hello, World!''' UpperCamelCase__ : int = '''en_XX''' def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: bool ): __SCREAMING_SNAKE_CASE : List[Any] = Path("""data_bin""" ) __SCREAMING_SNAKE_CASE : List[str] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowerCamelCase ).parent ) , checkpoint_file=Path(_lowerCamelCase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowerCamelCase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowerCamelCase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = xmod.model.encoder.sentence_encoder __SCREAMING_SNAKE_CASE : Optional[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __SCREAMING_SNAKE_CASE : int = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = XmodForSequenceClassification(_lowerCamelCase ) if classification_head else XmodForMaskedLM(_lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings __SCREAMING_SNAKE_CASE : Any = xmod_sent_encoder.embed_tokens.weight __SCREAMING_SNAKE_CASE : List[Any] = xmod_sent_encoder.embed_positions.weight __SCREAMING_SNAKE_CASE : List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __SCREAMING_SNAKE_CASE : int = xmod_sent_encoder.layernorm_embedding.weight __SCREAMING_SNAKE_CASE : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __SCREAMING_SNAKE_CASE : Tuple = model.roberta.encoder.layer[i] __SCREAMING_SNAKE_CASE : int = xmod_sent_encoder.layers[i] # self attention __SCREAMING_SNAKE_CASE : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = xmod_layer.self_attn.q_proj.weight __SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.self_attn.q_proj.bias __SCREAMING_SNAKE_CASE : Any = xmod_layer.self_attn.k_proj.weight __SCREAMING_SNAKE_CASE : Tuple = xmod_layer.self_attn.k_proj.bias __SCREAMING_SNAKE_CASE : Optional[Any] = xmod_layer.self_attn.v_proj.weight __SCREAMING_SNAKE_CASE : str = xmod_layer.self_attn.v_proj.bias # self-attention output __SCREAMING_SNAKE_CASE : Union[str, Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) __SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.self_attn.out_proj.weight __SCREAMING_SNAKE_CASE : List[str] = xmod_layer.self_attn.out_proj.bias __SCREAMING_SNAKE_CASE : Any = xmod_layer.self_attn_layer_norm.weight __SCREAMING_SNAKE_CASE : Union[str, Any] = xmod_layer.self_attn_layer_norm.bias # intermediate __SCREAMING_SNAKE_CASE : List[Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = xmod_layer.fca.weight __SCREAMING_SNAKE_CASE : int = xmod_layer.fca.bias # output __SCREAMING_SNAKE_CASE : int = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) __SCREAMING_SNAKE_CASE : Any = xmod_layer.fca.weight __SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.fca.bias __SCREAMING_SNAKE_CASE : str = xmod_layer.final_layer_norm.weight __SCREAMING_SNAKE_CASE : str = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __SCREAMING_SNAKE_CASE : str = xmod_layer.adapter_layer_norm.weight __SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __SCREAMING_SNAKE_CASE : Union[str, Any] = bert_output.adapter_modules[lang_code] __SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.adapter_modules[lang_code] __SCREAMING_SNAKE_CASE : Optional[int] = from_adapter.fca.weight __SCREAMING_SNAKE_CASE : List[str] = from_adapter.fca.bias __SCREAMING_SNAKE_CASE : List[Any] = from_adapter.fca.weight __SCREAMING_SNAKE_CASE : Optional[int] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __SCREAMING_SNAKE_CASE : List[Any] = xmod_sent_encoder.layer_norm.weight __SCREAMING_SNAKE_CASE : Optional[int] = xmod_sent_encoder.layer_norm.bias if classification_head: __SCREAMING_SNAKE_CASE : List[Any] = xmod.model.classification_heads["""mnli"""].dense.weight __SCREAMING_SNAKE_CASE : str = xmod.model.classification_heads["""mnli"""].dense.bias __SCREAMING_SNAKE_CASE : str = xmod.model.classification_heads["""mnli"""].out_proj.weight __SCREAMING_SNAKE_CASE : int = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __SCREAMING_SNAKE_CASE : Union[str, Any] = xmod.model.encoder.lm_head.dense.weight __SCREAMING_SNAKE_CASE : Tuple = xmod.model.encoder.lm_head.dense.bias __SCREAMING_SNAKE_CASE : str = xmod.model.encoder.lm_head.layer_norm.weight __SCREAMING_SNAKE_CASE : List[str] = xmod.model.encoder.lm_head.layer_norm.bias __SCREAMING_SNAKE_CASE : Optional[Any] = xmod.model.encoder.lm_head.weight __SCREAMING_SNAKE_CASE : List[Any] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __SCREAMING_SNAKE_CASE : int = xmod.encode(_lowerCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase )[0] if classification_head: __SCREAMING_SNAKE_CASE : Dict = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowerCamelCase ) ) else: __SCREAMING_SNAKE_CASE : Any = xmod.model(_lowerCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __SCREAMING_SNAKE_CASE : Dict = torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowerCamelCase ).mkdir(parents=_lowerCamelCase , exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) UpperCamelCase__ : int = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
178
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
178
1