The Dataset Viewer has been disabled on this dataset.

Long-RVOS: A Comprehensive Benchmark for Long-term Referring Video Object Segmentation

Dataset Description

Dataset Summary

Long-RVOS is the first large-scale long-term referring video object segmentation benchmark, containing 2,000+ videos with an average duration exceeding 60 seconds. The dataset addresses the challenge of segmenting and tracking objects in long-form videos based on natural language descriptions, advancing the task towards more practical and realistic scenarios.

Dataset Statistics

  • Total videos: 2,193
  • Average video duration: 60.3 seconds
  • Average frames per video: 361.7
  • Object categories: 163
  • Splits: Train, Validation, and Test sets

Dataset Structure

Data Organization

The dataset is organized as follows:

data/
└── long_rvos/
    β”œβ”€β”€ train/
    β”‚   β”œβ”€β”€ JPEGImages/
    β”‚   β”‚   └── {video_id}/
    β”‚   β”‚       └── {frame_name}.jpg
    β”‚   β”œβ”€β”€ Annotations/
    β”‚   β”‚   └── {video_id}/
    β”‚   β”‚       └── {object_id}/
    β”‚   β”‚           └── {frame_name}.png
    β”‚   └── meta_expressions.json
    β”œβ”€β”€ valid/
    β”‚   β”œβ”€β”€ JPEGImages/
    β”‚   β”œβ”€β”€ Annotations/
    β”‚   └── meta_expressions.json
    └── test/
        β”œβ”€β”€ JPEGImages/
        β”œβ”€β”€ Annotations/
        └── meta_expressions.json

Data Format

  • JPEGImages: Video frames extracted and stored as JPEG images
  • Annotations: Binary mask annotations (PNG format) for each object instance in each visible frame
  • meta_expressions.json: JSON file containing referring expressions and metadata

Annotation Format

The meta_expressions.json file contains:

{
  "videos": {
    "{video_id}": {
      "frames": ["00000", "00001", ...],
      "expressions": {
        "{expression_id}": {
          "exp": "referring expression text",
          "obj_id": object_id,
          "exp_type": "static|dynamic|hybrid"
        }
      }
    }
  }
}

Usage (Please refer to the GitHub repository)

Downloading the Dataset

Option 1: Using the Download Script

python scripts/download_dataset.py \
    --repo_id iSEE-Laboratory/Long-RVOS \
    --output_dir data

Option 2: Using Hugging Face Hub API

from huggingface_hub import snapshot_download

snapshot_download(
    repo_id="iSEE-Laboratory/Long-RVOS",
    repo_type="dataset",
    local_dir="./data"
)

Option 3: Manual Download

Download from this repo or Google Drive.

Citation

If you use the Long-RVOS dataset in your research, please cite:

@article{liang2025longrvos,
  title={Long-RVOS: A Comprehensive Benchmark for Long-term Referring Video Object Segmentation},
  author={Liang, Tianming and Jiang, Haichao and Yang, Yuting and Tan, Chaolei and Li, Shuai and Zheng, Wei-Shi and Hu, Jian-Fang},
  journal={arXiv preprint arXiv:2505.12702},
  year={2025}
}

License

This dataset is licensed under the Apache 2.0 License. Please refer to the LICENSE file for details.

Contact

For questions, issues, or contributions, please refer to the GitHub repository.


Dataset Version: 1.0
Last Updated: 2025

Downloads last month
70

Collection including iSEE-Laboratory/Long-RVOS