Datasets:
Long-RVOS: A Comprehensive Benchmark for Long-term Referring Video Object Segmentation
- GitHub Repository: https://github.com/iSEE-Laboratory/Long_RVOS
- Project Page: https://isee-laboratory.github.io/Long-RVOS/
- Paper: arXiv:2505.12702
Dataset Description
Dataset Summary
Long-RVOS is the first large-scale long-term referring video object segmentation benchmark, containing 2,000+ videos with an average duration exceeding 60 seconds. The dataset addresses the challenge of segmenting and tracking objects in long-form videos based on natural language descriptions, advancing the task towards more practical and realistic scenarios.
Dataset Statistics
- Total videos: 2,193
- Average video duration: 60.3 seconds
- Average frames per video: 361.7
- Object categories: 163
- Splits: Train, Validation, and Test sets
Dataset Structure
Data Organization
The dataset is organized as follows:
data/
βββ long_rvos/
βββ train/
β βββ JPEGImages/
β β βββ {video_id}/
β β βββ {frame_name}.jpg
β βββ Annotations/
β β βββ {video_id}/
β β βββ {object_id}/
β β βββ {frame_name}.png
β βββ meta_expressions.json
βββ valid/
β βββ JPEGImages/
β βββ Annotations/
β βββ meta_expressions.json
βββ test/
βββ JPEGImages/
βββ Annotations/
βββ meta_expressions.json
Data Format
- JPEGImages: Video frames extracted and stored as JPEG images
- Annotations: Binary mask annotations (PNG format) for each object instance in each visible frame
- meta_expressions.json: JSON file containing referring expressions and metadata
Annotation Format
The meta_expressions.json file contains:
{
"videos": {
"{video_id}": {
"frames": ["00000", "00001", ...],
"expressions": {
"{expression_id}": {
"exp": "referring expression text",
"obj_id": object_id,
"exp_type": "static|dynamic|hybrid"
}
}
}
}
}
Usage (Please refer to the GitHub repository)
Downloading the Dataset
Option 1: Using the Download Script
python scripts/download_dataset.py \
--repo_id iSEE-Laboratory/Long-RVOS \
--output_dir data
Option 2: Using Hugging Face Hub API
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="iSEE-Laboratory/Long-RVOS",
repo_type="dataset",
local_dir="./data"
)
Option 3: Manual Download
Download from this repo or Google Drive.
Citation
If you use the Long-RVOS dataset in your research, please cite:
@article{liang2025longrvos,
title={Long-RVOS: A Comprehensive Benchmark for Long-term Referring Video Object Segmentation},
author={Liang, Tianming and Jiang, Haichao and Yang, Yuting and Tan, Chaolei and Li, Shuai and Zheng, Wei-Shi and Hu, Jian-Fang},
journal={arXiv preprint arXiv:2505.12702},
year={2025}
}
License
This dataset is licensed under the Apache 2.0 License. Please refer to the LICENSE file for details.
Contact
For questions, issues, or contributions, please refer to the GitHub repository.
Dataset Version: 1.0
Last Updated: 2025
- Downloads last month
- 70