repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
akhilpm/Masters-Project
kpcaWithTreeFS/mnistKPCA.py
1
3216
''' KPCA based feature engineering for MNIST handwritten digits classification Author : Akhil P M Kernel used : Arc-cosine Kernel ''' import numpy as np import matplotlib.pyplot as plt import time from sklearn import svm, datasets from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets.mldata import fetch_mldata from sklearn.metrics import accuracy_score from sklearn.cross_validation import train_test_split def compute_J(N, theta): if N == 0: return np.pi - theta elif N == 1: return np.sin(theta) + (np.pi - theta) * np.cos(theta) elif N == 2: return 3*np.sin(theta)*np.cos(theta) + (np.pi - theta)*(1 + 2*pow(np.cos(theta), 2)) elif N == 3: return 4*pow(np.sin(theta), 3) + 15*np.sin(theta)*pow(np.cos(theta), 2) + \ (np.pi- theta)*(9*pow(np.sin(theta),2)*np.cos(theta) + 15*pow(np.cos(theta),3)) else: return np.zeros(theta.shape) def arc_cosine_vector(X, Y): """param = a vector of n(degree) values at each layer """ param = np.array([1,1,1]) no_of_layers = len(param) M = np.dot(X, Y.T) temp1 = np.diag(np.dot(X, X.T)) temp2 = np.diag(np.dot(Y, Y.T)) for i in xrange(no_of_layers): norm_matrix = np.outer(temp1,temp2) #the matix of k_xx, and K_yy's theta = np.arccos( np.maximum( np.minimum(M/np.sqrt(norm_matrix), 1.0), -1.0)) n_l = param[i] M = np.multiply(np.power(norm_matrix, n_l/2.0), compute_J(n_l, theta)) / np.pi if i < no_of_layers-1: zero1 = np.zeros(len(temp1)) zero2 = np.zeros(len(temp2)) temp1 = np.multiply(np.power(temp1, n_l), compute_J(n_l, zero1)) / np.pi temp2 = np.multiply(np.power(temp2, n_l), compute_J(n_l, zero2)) / np.pi return M def arc_cosine(X, Y): lenX = X.shape[0] incr = 1000 M = np.zeros((lenX, Y.shape[0])) for i in range(0,lenX,incr): M[i:i+incr] = arc_cosine_vector(X[i:i+incr], Y) return M def main(): #set the timer start = time.time() #load the data mnist = fetch_mldata('MNIST original') mnist.target = mnist.target.astype(np.int32) seed = np.random.randint(1,30000) rand = np.random.RandomState(seed) items = len(mnist.target) indices = rand.randint(items, size = 70000) trindex = indices[0:30000] tsindex = indices[30000:] #scale down features to the range [0, 1] mnist.data = mnist.data/255.0 mnist.data = mnist.data.astype(np.float32) trainX = mnist.data[trindex] testX = mnist.data[tsindex] trainY = mnist.target[trindex] testY = mnist.target[tsindex] #extract the features using KPCA kpca = KernelPCA(kernel='precomputed') kpca_train = arc_cosine(trainX[0:1000], trainX[0:1000]) #Fit the model from data in X kpca.fit(kpca_train) kernel_train = arc_cosine(trainX, trainX[0:1000]) kernel_test = arc_cosine(testX, trainX[0:1000]) trainX_kpca = kpca.transform(kernel_train) testX_kpca = kpca.transform(kernel_test) print testX_kpca.shape #fit the svm model and compute accuaracy measure clf = svm.SVC(kernel=arc_cosine) clf.fit(trainX_kpca, trainY) pred = clf.predict(testX_kpca) print accuracy_score(testY, pred) print('total : %d, correct : %d, incorrect : %d\n' %(len(pred), np.sum(pred == testY), np.sum(pred != testY))) print('Test Time : %f Minutes\n' %((time.time()-start)/60)) if __name__ == '__main__': main()
mit
yl565/statsmodels
statsmodels/graphics/_regressionplots_doc.py
31
3795
_plot_added_variable_doc = """\ Create an added variable plot for a fitted regression model. Parameters ---------- %(extra_params_doc)sfocus_exog : int or string The column index of exog, or a variable name, indicating the variable whose role in the regression is to be assessed. resid_type : string The type of residuals to use for the dependent variable. If None, uses `resid_deviance` for GLM/GEE and `resid` otherwise. use_glm_weights : bool Only used if the model is a GLM or GEE. If True, the residuals for the focus predictor are computed using WLS, with the weights obtained from the IRLS calculations for fitting the GLM. If False, unweighted regression is used. fit_kwargs : dict, optional Keyword arguments to be passed to fit when refitting the model. ax : Axes instance Matplotlib Axes instance Returns ------- fig : matplotlib Figure A matplotlib figure instance. """ _plot_partial_residuals_doc = """\ Create a partial residual, or 'component plus residual' plot for a fited regression model. Parameters ---------- %(extra_params_doc)sfocus_exog : int or string The column index of exog, or variable name, indicating the variable whose role in the regression is to be assessed. ax : Axes instance Matplotlib Axes instance Returns ------- fig : matplotlib Figure A matplotlib figure instance. """ _plot_ceres_residuals_doc = """\ Produces a CERES (Conditional Expectation Partial Residuals) plot for a fitted regression model. Parameters ---------- %(extra_params_doc)sfocus_exog : integer or string The column index of results.model.exog, or the variable name, indicating the variable whose role in the regression is to be assessed. frac : float Lowess tuning parameter for the adjusted model used in the CERES analysis. Not used if `cond_means` is provided. cond_means : array-like, optional If provided, the columns of this array span the space of the conditional means E[exog | focus exog], where exog ranges over some or all of the columns of exog (other than the focus exog). ax : matplotlib.Axes instance, optional The axes on which to draw the plot. If not provided, a new axes instance is created. Returns ------- fig : matplotlib.Figure instance The figure on which the partial residual plot is drawn. References ---------- RD Cook and R Croos-Dabrera (1998). Partial residual plots in generalized linear models. Journal of the American Statistical Association, 93:442. RD Cook (1993). Partial residual plots. Technometrics 35:4. Notes ----- `cond_means` is intended to capture the behavior of E[x1 | x2], where x2 is the focus exog and x1 are all the other exog variables. If all the conditional mean relationships are linear, it is sufficient to set cond_means equal to the focus exog. Alternatively, cond_means may consist of one or more columns containing functional transformations of the focus exog (e.g. x2^2) that are thought to capture E[x1 | x2]. If nothing is known or suspected about the form of E[x1 | x2], set `cond_means` to None, and it will be estimated by smoothing each non-focus exog against the focus exog. The values of `frac` control these lowess smooths. If cond_means contains only the focus exog, the results are equivalent to a partial residual plot. If the focus variable is believed to be independent of the other exog variables, `cond_means` can be set to an (empty) nx0 array. """
bsd-3-clause
ryfeus/lambda-packs
Keras_tensorflow_nightly/source2.7/tensorflow/contrib/learn/python/learn/estimators/estimator.py
14
62939
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import copy import os import tempfile import numpy as np import six from google.protobuf import message from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_args from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import _sklearn as sklearn from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.meta_graph_transform import meta_graph_transform from tensorflow.contrib.training.python.training import evaluation from tensorflow.core.framework import summary_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import metrics as metrics_lib from tensorflow.python.ops import resources from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import tag_constants from tensorflow.python.summary import summary as core_summary from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import device_setter from tensorflow.python.training import monitored_session from tensorflow.python.training import saver from tensorflow.python.training import training_util from tensorflow.python.util import compat from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect AS_ITERABLE_DATE = '2016-09-15' AS_ITERABLE_INSTRUCTIONS = ( 'The default behavior of predict() is changing. The default value for\n' 'as_iterable will change to True, and then the flag will be removed\n' 'altogether. The behavior of this flag is described below.') SCIKIT_DECOUPLE_DATE = '2016-12-01' SCIKIT_DECOUPLE_INSTRUCTIONS = ( 'Estimator is decoupled from Scikit Learn interface by moving into\n' 'separate class SKCompat. Arguments x, y and batch_size are only\n' 'available in the SKCompat class, Estimator will only accept input_fn.\n' 'Example conversion:\n' ' est = Estimator(...) -> est = SKCompat(Estimator(...))') def _verify_input_args(x, y, input_fn, feed_fn, batch_size): """Verifies validity of co-existence of input arguments.""" if input_fn is None: if x is None: raise ValueError('Either x or input_fn must be provided.') if tensor_util.is_tensor(x) or y is not None and tensor_util.is_tensor(y): raise ValueError('Inputs cannot be tensors. Please provide input_fn.') if feed_fn is not None: raise ValueError('Can not provide both feed_fn and x or y.') else: if (x is not None) or (y is not None): raise ValueError('Can not provide both input_fn and x or y.') if batch_size is not None: raise ValueError('Can not provide both input_fn and batch_size.') def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions. Args: x: Numpy, Pandas or Dask matrix or iterable. y: Numpy, Pandas or Dask matrix or iterable. input_fn: Pre-defined input function for training data. feed_fn: Pre-defined data feeder function. batch_size: Size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: Data input and feeder function based on training data. Raises: ValueError: Only one of `(x & y)` or `input_fn` must be provided. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if input_fn is not None: return input_fn, feed_fn df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size, shuffle=shuffle, epochs=epochs) return df.input_builder, df.get_feed_dict_fn() @deprecated(None, 'Please specify feature columns explicitly.') def infer_real_valued_columns_from_input_fn(input_fn): """Creates `FeatureColumn` objects for inputs defined by `input_fn`. This interprets all inputs as dense, fixed-length float values. This creates a local graph in which it calls `input_fn` to build the tensors, then discards it. Args: input_fn: Input function returning a tuple of: features - Dictionary of string feature name to `Tensor` or `Tensor`. labels - `Tensor` of label values. Returns: List of `FeatureColumn` objects. """ with ops.Graph().as_default(): features, _ = input_fn() return layers.infer_real_valued_columns(features) @deprecated(None, 'Please specify feature columns explicitly.') def infer_real_valued_columns_from_input(x): """Creates `FeatureColumn` objects for inputs defined by input `x`. This interprets all inputs as dense, fixed-length float values. Args: x: Real-valued matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. Returns: List of `FeatureColumn` objects. """ input_fn, _ = _get_input_fn( x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) return infer_real_valued_columns_from_input_fn(input_fn) def _model_fn_args(fn): """Get argument names for function-like object. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `tuple` of string argument names. Raises: ValueError: if partial function has positionally bound arguments """ _, fn = tf_decorator.unwrap(fn) if hasattr(fn, 'func') and hasattr(fn, 'keywords') and hasattr(fn, 'args'): # Handle functools.partial and similar objects. return tuple([ arg for arg in tf_inspect.getargspec(fn.func).args[len(fn.args):] if arg not in set(fn.keywords.keys()) ]) # Handle function. return tuple(tf_inspect.getargspec(fn).args) def _get_replica_device_setter(config): """Creates a replica device setter if required. Args: config: A RunConfig instance. Returns: A replica device setter, or None. """ ps_ops = [ 'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable', 'MutableHashTableV2', 'MutableHashTableOfTensors', 'MutableHashTableOfTensorsV2', 'MutableDenseHashTable', 'MutableDenseHashTableV2', 'VarHandleOp' ] if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return device_setter.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=ps_ops, cluster=config.cluster_spec) else: return None def _make_metrics_ops(metrics, features, labels, predictions): """Add metrics based on `features`, `labels`, and `predictions`. `metrics` contains a specification for how to run metrics. It is a dict mapping friendly names to either `MetricSpec` objects, or directly to a metric function (assuming that `predictions` and `labels` are single tensors), or to `(pred_name, metric)` `tuple`, which passes `predictions[pred_name]` and `labels` to `metric` (assuming `labels` is a single tensor). Users are encouraged to use `MetricSpec` objects, which are more flexible and cleaner. They also lead to clearer errors. Args: metrics: A dict mapping names to metrics specification, for example `MetricSpec` objects. features: A dict of tensors returned from an input_fn as features/inputs. labels: A single tensor or a dict of tensors returned from an input_fn as labels. predictions: A single tensor or a dict of tensors output from a model as predictions. Returns: A dict mapping the friendly given in `metrics` to the result of calling the given metric function. Raises: ValueError: If metrics specifications do not work with the type of `features`, `labels`, or `predictions` provided. Mostly, a dict is given but no pred_name specified. """ metrics = metrics or {} # If labels is a dict with a single key, unpack into a single tensor. labels_tensor_or_dict = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor_or_dict = labels[list(labels.keys())[0]] result = {} # Iterate in lexicographic order, so the graph is identical among runs. for name, metric in sorted(six.iteritems(metrics)): if isinstance(metric, metric_spec.MetricSpec): result[name] = metric.create_metric_ops(features, labels, predictions) continue # TODO(b/31229024): Remove the rest of this loop logging.warning('Please specify metrics using MetricSpec. Using bare ' 'functions or (key, fn) tuples is deprecated and support ' 'for it will be removed on Oct 1, 2016.') if isinstance(name, tuple): # Multi-head metrics. if len(name) != 2: raise ValueError('Invalid metric for {}. It returned a tuple with ' 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError('Metrics passed provide (name, prediction), ' 'but predictions are not dict. ' 'Metrics: %s, Predictions: %s.' % (metrics, predictions)) # Here are two options: labels are single Tensor or a dict. if isinstance(labels, dict) and name[1] in labels: # If labels are dict and the prediction name is in it, apply metric. result[name[0]] = metric(predictions[name[1]], labels[name[1]]) else: # Otherwise pass the labels to the metric. result[name[0]] = metric(predictions[name[1]], labels_tensor_or_dict) else: # Single head metrics. if isinstance(predictions, dict): raise ValueError('Metrics passed provide only name, no prediction, ' 'but predictions are dict. ' 'Metrics: %s, Labels: %s.' % (metrics, labels_tensor_or_dict)) result[name] = metric(predictions, labels_tensor_or_dict) return result def _dict_to_str(dictionary): """Get a `str` representation of a `dict`. Args: dictionary: The `dict` to be represented as `str`. Returns: A `str` representing the `dictionary`. """ results = [] for k, v in sorted(dictionary.items()): if isinstance(v, float) or isinstance(v, np.float32) or isinstance( v, int) or isinstance(v, np.int64) or isinstance(v, np.int32): results.append('%s = %s' % (k, v)) else: results.append('Type of %s = %s' % (k, type(v))) return ', '.join(results) def _write_dict_to_summary(output_dir, dictionary, current_global_step): """Writes a `dict` into summary file in given output directory. Args: output_dir: `str`, directory to write the summary file in. dictionary: the `dict` to be written to summary file. current_global_step: `int`, the current global step. """ logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary)) summary_writer = core_summary.FileWriterCache.get(output_dir) summary_proto = summary_pb2.Summary() for key in dictionary: if dictionary[key] is None: continue if key == 'global_step': continue if (isinstance(dictionary[key], np.float32) or isinstance(dictionary[key], float)): summary_proto.value.add(tag=key, simple_value=float(dictionary[key])) elif (isinstance(dictionary[key], np.int64) or isinstance(dictionary[key], np.int32) or isinstance(dictionary[key], int)): summary_proto.value.add(tag=key, simple_value=int(dictionary[key])) elif isinstance(dictionary[key], six.string_types): try: summ = summary_pb2.Summary.FromString(dictionary[key]) for i, _ in enumerate(summ.value): summ.value[i].tag = key summary_proto.value.extend(summ.value) except message.DecodeError: logging.warn('Skipping summary for %s, cannot parse string to Summary.', key) continue elif isinstance(dictionary[key], np.ndarray): value = summary_proto.value.add() value.tag = key value.node_name = key tensor_proto = tensor_util.make_tensor_proto(dictionary[key]) value.tensor.CopyFrom(tensor_proto) logging.info( 'Summary for np.ndarray is not visible in Tensorboard by default. ' 'Consider using a Tensorboard plugin for visualization (see ' 'https://github.com/tensorflow/tensorboard-plugin-example/blob/master/README.md' ' for more information).') else: logging.warn( 'Skipping summary for %s, must be a float, np.float32, np.int64, ' 'np.int32 or int or np.ndarray or a serialized string of Summary.', key) summary_writer.add_summary(summary_proto, current_global_step) summary_writer.flush() GraphRewriteSpec = collections.namedtuple('GraphRewriteSpec', ['tags', 'transforms']) class BaseEstimator(sklearn.BaseEstimator, evaluable.Evaluable, trainable.Trainable): """Abstract BaseEstimator class to train and evaluate TensorFlow models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Users should not instantiate or subclass this class. Instead, use an `Estimator`. """ __metaclass__ = abc.ABCMeta # Note that for Google users, this is overridden with # learn_runner.EstimatorConfig. # TODO(wicke): Remove this once launcher takes over config functionality _Config = run_config.RunConfig # pylint: disable=invalid-name @deprecated(None, 'Please replace uses of any Estimator from tf.contrib.learn' ' with an Estimator from tf.estimator.*') def __init__(self, model_dir=None, config=None): """Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. If `None`, the model_dir in `config` will be used if set. If both are set, they must be same. config: A RunConfig instance. """ # Create a run configuration. if config is None: self._config = BaseEstimator._Config() logging.info('Using default config.') else: self._config = config if self._config.session_config is None: self._session_config = config_pb2.ConfigProto(allow_soft_placement=True) else: self._session_config = self._config.session_config # Model directory. if (model_dir is not None) and (self._config.model_dir is not None): if model_dir != self._config.model_dir: # TODO(b/9965722): remove this suppression after it is no longer # necessary. # pylint: disable=g-doc-exception raise ValueError( 'model_dir are set both in constructor and RunConfig, but with ' "different values. In constructor: '{}', in RunConfig: " "'{}' ".format(model_dir, self._config.model_dir)) # pylint: enable=g-doc-exception self._model_dir = model_dir or self._config.model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) if self._config.model_dir is None: self._config = self._config.replace(model_dir=self._model_dir) logging.info('Using config: %s', str(vars(self._config))) # Set device function depending if there are replicas or not. self._device_fn = _get_replica_device_setter(self._config) # Features and labels TensorSignature objects. # TODO(wicke): Rename these to something more descriptive self._features_info = None self._labels_info = None self._graph = None @property def config(self): # TODO(wicke): make RunConfig immutable, and then return it without a copy. return copy.deepcopy(self._config) @property def model_fn(self): """Returns the model_fn which is bound to self.params. Returns: The model_fn with the following signature: `def model_fn(features, labels, mode, metrics)` """ def public_model_fn(features, labels, mode, config): return self._call_model_fn(features, labels, mode, config=config) return public_model_fn @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Trainable`. Raises: ValueError: If `x` or `y` are not `None` while `input_fn` is not `None`. ValueError: If both `steps` and `max_steps` are not `None`. """ if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') _verify_input_args(x, y, input_fn, None, batch_size) if x is not None: SKCompat(self).fit(x, y, batch_size, steps, max_steps, monitors) return self if max_steps is not None: try: start_step = load_variable(self._model_dir, ops.GraphKeys.GLOBAL_STEP) if max_steps <= start_step: logging.info('Skipping training since max_steps has already saved.') return self except: # pylint: disable=bare-except pass hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) if steps is not None or max_steps is not None: hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps)) loss = self._train_model(input_fn=input_fn, hooks=hooks) logging.info('Loss for final step: %s.', loss) return self @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def partial_fit(self, x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. input_fn: Input function. If set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. Returns: `self`, for chaining. Raises: ValueError: If at least one of `x` and `y` is provided, and `input_fn` is provided. """ logging.warning('The current implementation of partial_fit is not optimized' ' for use in a loop. Consider using fit() instead.') return self.fit( x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=monitors) @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Evaluable`. Raises: ValueError: If at least one of `x` or `y` is provided, and at least one of `input_fn` or `feed_fn` is provided. Or if `metrics` is not `None` or `dict`. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if x is not None: return SKCompat(self).score(x, y, batch_size, steps, metrics, name) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks, log_progress=log_progress) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('batch_size', None), ('as_iterable', True)) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True, iterate_batches=False): """Returns predictions for given features. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. input_fn: Input function. If set, `x` and 'batch_size' must be `None`. batch_size: Override default batch size. If set, 'input_fn' must be 'None'. outputs: list of `str`, name of the output to predict. If `None`, returns all. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). iterate_batches: If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True. Returns: A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True. Raises: ValueError: If x and input_fn are both provided or both `None`. """ _verify_input_args(x, None, input_fn, None, batch_size) if x is not None and not as_iterable: return SKCompat(self).predict(x, batch_size) input_fn, feed_fn = _get_input_fn(x, None, input_fn, None, batch_size) return self._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=as_iterable, iterate_batches=iterate_batches) def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor. """ return load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)] @property def model_dir(self): return self._model_dir @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def export( self, export_dir, input_fn=export._default_input_fn, # pylint: disable=protected-access input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None, checkpoint_path=None): """Exports inference graph into given dir. Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to a the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. checkpoint_path: the checkpoint path of the model to be exported. If it is `None` (which is default), will use the latest checkpoint in export_dir. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value. """ # pylint: disable=protected-access return export._export_estimator( estimator=self, export_dir=export_dir, signature_fn=signature_fn, prediction_key=prediction_key, input_fn=input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep, checkpoint_path=checkpoint_path) @abc.abstractproperty def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass @abc.abstractproperty def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: A `ModelFnOps` object. """ raise NotImplementedError('_get_eval_ops not implemented in BaseEstimator') @deprecated( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate, ' 'which makes this function useless. This will be removed after the ' 'deprecation date.') def _get_feature_ops_from_example(self, examples_batch): """Returns feature parser for given example batch using features info. This function requires `fit()` has been called. Args: examples_batch: batch of tf.Example Returns: features: `Tensor` or `dict` of `Tensor` objects. Raises: ValueError: If `_features_info` attribute is not available (usually because `fit()` has not been called). """ if self._features_info is None: raise ValueError('Features information missing, was fit() ever called?') return tensor_signature.create_example_parser_from_signatures( self._features_info, examples_batch) def _check_inputs(self, features, labels): if self._features_info is not None: logging.debug('Given features: %s, required signatures: %s.', str(features), str(self._features_info)) if not tensor_signature.tensors_compatible(features, self._features_info): raise ValueError('Features are incompatible with given information. ' 'Given features: %s, required signatures: %s.' % (str(features), str(self._features_info))) else: self._features_info = tensor_signature.create_signatures(features) logging.debug('Setting feature info to %s.', str(self._features_info)) if labels is not None: if self._labels_info is not None: logging.debug('Given labels: %s, required signatures: %s.', str(labels), str(self._labels_info)) if not tensor_signature.tensors_compatible(labels, self._labels_info): raise ValueError('Labels are incompatible with given information. ' 'Given labels: %s, required signatures: %s.' % (str(labels), str(self._labels_info))) else: self._labels_info = tensor_signature.create_signatures(labels) logging.debug('Setting labels info to %s', str(self._labels_info)) def _extract_metric_update_ops(self, eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} for name, metric_ops in six.iteritems(eval_dict): if isinstance(metric_ops, (list, tuple)): if len(metric_ops) == 2: value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) else: logging.warning( 'Ignoring metric {}. It returned a list|tuple with len {}, ' 'expected 2'.format(name, len(metric_ops))) value_ops[name] = metric_ops else: value_ops[name] = metric_ops if update_ops: update_ops = control_flow_ops.group(*update_ops) else: update_ops = None return update_ops, value_ops def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None, name='', checkpoint_path=None, hooks=None, log_progress=True): # TODO(wicke): Remove this once Model and associated code are gone. if (hasattr(self._config, 'execution_mode') and self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset')): return None, None # Check that model has been trained (if nothing has been set explicitly). if not checkpoint_path: latest_path = saver.latest_checkpoint(self._model_dir) if not latest_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) checkpoint_path = latest_path # Setup output directory. eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = training_util.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) model_fn_results = self._get_eval_ops(features, labels, metrics) eval_dict = model_fn_results.eval_metric_ops update_op, eval_dict = self._extract_metric_update_ops(eval_dict) # We need to copy the hook array as we modify it, thus [:]. hooks = hooks[:] if hooks else [] if feed_fn: hooks.append(basic_session_run_hooks.FeedFnHook(feed_fn)) if steps == 0: logging.warning('evaluation steps are 0. If `input_fn` does not raise ' '`OutOfRangeError`, the evaluation will never stop. ' 'Use steps=None if intended.') if steps: hooks.append( evaluation.StopAfterNEvalsHook(steps, log_progress=log_progress)) global_step_key = 'global_step' while global_step_key in eval_dict: global_step_key = '_' + global_step_key eval_dict[global_step_key] = global_step eval_results = evaluation.evaluate_once( checkpoint_path=checkpoint_path, master=self._config.evaluation_master, scaffold=model_fn_results.scaffold, eval_ops=update_op, final_ops=eval_dict, hooks=hooks, config=self._session_config) current_global_step = eval_results[global_step_key] _write_dict_to_summary(eval_dir, eval_results, current_global_step) return eval_results, current_global_step def _get_features_from_input_fn(self, input_fn): result = input_fn() if isinstance(result, (list, tuple)): return result[0] return result def _infer_model(self, input_fn, feed_fn=None, outputs=None, as_iterable=True, iterate_batches=False): # Check that model has been trained. checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) training_util.create_global_step(g) features = self._get_features_from_input_fn(input_fn) infer_ops = self._get_predict_ops(features) predictions = self._filter_predictions(infer_ops.predictions, outputs) mon_sess = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, scaffold=infer_ops.scaffold, config=self._session_config)) if not as_iterable: with mon_sess: if not mon_sess.should_stop(): return mon_sess.run(predictions, feed_fn() if feed_fn else None) else: return self._predict_generator(mon_sess, predictions, feed_fn, iterate_batches) def _predict_generator(self, mon_sess, predictions, feed_fn, iterate_batches): with mon_sess: while not mon_sess.should_stop(): preds = mon_sess.run(predictions, feed_fn() if feed_fn else None) if iterate_batches: yield preds elif not isinstance(predictions, dict): for pred in preds: yield pred else: first_tensor = list(preds.values())[0] if isinstance(first_tensor, sparse_tensor.SparseTensorValue): batch_length = first_tensor.dense_shape[0] else: batch_length = first_tensor.shape[0] for i in range(batch_length): yield {key: value[i] for key, value in six.iteritems(preds)} if self._is_input_constant(feed_fn, mon_sess.graph): return def _is_input_constant(self, feed_fn, graph): # If there are no queue_runners, the input `predictions` is a # constant, and we should stop after the first epoch. If, # instead, there are queue_runners, eventually they should throw # an `OutOfRangeError`. if graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS): return False # data_feeder uses feed_fn to generate `OutOfRangeError`. if feed_fn is not None: return False return True def _filter_predictions(self, predictions, outputs): if not outputs: return predictions if not isinstance(predictions, dict): raise ValueError( 'outputs argument is not valid in case of non-dict predictions.') existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in outputs } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, outputs)) return predictions def _train_model(self, input_fn, hooks): all_hooks = [] self._graph = ops.Graph() with self._graph.as_default() as g, g.device(self._device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step = training_util.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) training_util._get_or_create_global_step_read() # pylint: disable=protected-access model_fn_ops = self._get_train_ops(features, labels) ops.add_to_collection(ops.GraphKeys.LOSSES, model_fn_ops.loss) all_hooks.extend(hooks) all_hooks.extend([ basic_session_run_hooks.NanTensorHook(model_fn_ops.loss), basic_session_run_hooks.LoggingTensorHook( { 'loss': model_fn_ops.loss, 'step': global_step }, every_n_iter=100) ]) scaffold = model_fn_ops.scaffold or monitored_session.Scaffold() if not (scaffold.saver or ops.get_collection(ops.GraphKeys.SAVERS)): ops.add_to_collection( ops.GraphKeys.SAVERS, saver.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, keep_checkpoint_every_n_hours=( self._config.keep_checkpoint_every_n_hours), defer_build=True, save_relative_paths=True)) chief_hooks = [] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): saver_hook_exists = any([ isinstance(h, basic_session_run_hooks.CheckpointSaverHook) for h in (all_hooks + model_fn_ops.training_hooks + chief_hooks + model_fn_ops.training_chief_hooks) ]) if not saver_hook_exists: chief_hooks = [ basic_session_run_hooks.CheckpointSaverHook( self._model_dir, save_secs=self._config.save_checkpoints_secs, save_steps=self._config.save_checkpoints_steps, scaffold=scaffold) ] with monitored_session.MonitoredTrainingSession( master=self._config.master, is_chief=self._config.is_chief, checkpoint_dir=self._model_dir, scaffold=scaffold, hooks=all_hooks + model_fn_ops.training_hooks, chief_only_hooks=chief_hooks + model_fn_ops.training_chief_hooks, save_checkpoint_secs=0, # Saving is handled by a hook. save_summaries_steps=self._config.save_summary_steps, config=self._session_config) as mon_sess: loss = None while not mon_sess.should_stop(): _, loss = mon_sess.run([model_fn_ops.train_op, model_fn_ops.loss]) return loss def _identity_feature_engineering_fn(features, labels): return features, labels class Estimator(BaseEstimator): """Estimator class is the basic TensorFlow model trainer/evaluator. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ def __init__(self, model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None): """Constructs an `Estimator` instance. Args: model_fn: Model function. Follows the signature: * Args: * `features`: single `Tensor` or `dict` of `Tensor`s (depending on data passed to `fit`), * `labels`: `Tensor` or `dict` of `Tensor`s (for multi-head models). If mode is `ModeKeys.INFER`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode`: Optional. Specifies if this training, evaluation or prediction. See `ModeKeys`. * `params`: Optional `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * `config`: Optional configuration object. Will receive what is passed to Estimator in `config` parameter, or the default `config`. Allows updating things in your model_fn based on configuration such as `num_ps_replicas`. * `model_dir`: Optional directory where model parameters, graph etc are saved. Will receive what is passed to Estimator in `model_dir` parameter, or the default `model_dir`. Allows updating things in your model_fn that expect model_dir, such as training hooks. * Returns: `ModelFnOps` Also supports a legacy signature which returns tuple of: * predictions: `Tensor`, `SparseTensor` or dictionary of same. Can also be any type that is convertible to a `Tensor` or `SparseTensor`, or dictionary of same. * loss: Scalar loss `Tensor`. * train_op: Training update `Tensor` or `Operation`. Supports next three signatures for the function: * `(features, labels) -> (predictions, loss, train_op)` * `(features, labels, mode) -> (predictions, loss, train_op)` * `(features, labels, mode, params) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config, model_dir) -> (predictions, loss, train_op)` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. Raises: ValueError: parameters of `model_fn` don't match `params`. """ super(Estimator, self).__init__(model_dir=model_dir, config=config) if model_fn is not None: # Check number of arguments of the given function matches requirements. model_fn_args = _model_fn_args(model_fn) if params is not None and 'params' not in model_fn_args: raise ValueError('Estimator\'s model_fn (%s) does not have a params ' 'argument, but params (%s) were passed to the ' 'Estimator\'s constructor.' % (model_fn, params)) if params is None and 'params' in model_fn_args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) self._model_fn = model_fn self.params = params self._feature_engineering_fn = ( feature_engineering_fn or _identity_feature_engineering_fn) def _call_model_fn(self, features, labels, mode, metrics=None, config=None): """Calls model function with support of 2, 3 or 4 arguments. Args: features: features dict. labels: labels dict. mode: ModeKeys metrics: Dict of metrics. config: RunConfig. Returns: A `ModelFnOps` object. If model_fn returns a tuple, wraps them up in a `ModelFnOps` object. Raises: ValueError: if model_fn returns invalid objects. """ features, labels = self._feature_engineering_fn(features, labels) model_fn_args = _model_fn_args(self._model_fn) kwargs = {} if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = self.params if 'config' in model_fn_args: if config: kwargs['config'] = config else: kwargs['config'] = self.config if 'model_dir' in model_fn_args: kwargs['model_dir'] = self.model_dir model_fn_results = self._model_fn(features, labels, **kwargs) if isinstance(model_fn_results, model_fn_lib.ModelFnOps): model_fn_ops = model_fn_results else: # Here model_fn_results should be a tuple with 3 elements. if len(model_fn_results) != 3: raise ValueError('Unrecognized value returned by model_fn, ' 'please return ModelFnOps.') model_fn_ops = model_fn_lib.ModelFnOps( mode=mode, predictions=model_fn_results[0], loss=model_fn_results[1], train_op=model_fn_results[2]) # Custom metrics should overwrite defaults. if metrics: model_fn_ops.eval_metric_ops.update( _make_metrics_ops(metrics, features, labels, model_fn_ops.predictions)) return model_fn_ops def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN) def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: `ModelFnOps` object. Raises: ValueError: if `metrics` don't match `labels`. """ model_fn_ops = self._call_model_fn(features, labels, model_fn_lib.ModeKeys.EVAL, metrics) if metric_key.MetricKey.LOSS not in model_fn_ops.eval_metric_ops: model_fn_ops.eval_metric_ops[metric_key.MetricKey.LOSS] = ( metrics_lib.mean(model_fn_ops.loss)) return model_fn_ops def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ labels = tensor_signature.create_placeholders_from_signatures( self._labels_info) return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.INFER) def export_savedmodel(self, export_dir_base, serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, checkpoint_path=None, graph_rewrite_specs=(GraphRewriteSpec( (tag_constants.SERVING,), ()),), strip_default_attrs=False): # pylint: disable=line-too-long """Exports inference graph as a SavedModel into given dir. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. serving_input_fn: A function that takes no argument and returns an `InputFnOps`. default_output_alternative_key: the name of the head to serve when none is specified. Not needed for single-headed models. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. graph_rewrite_specs: an iterable of `GraphRewriteSpec`. Each element will produce a separate MetaGraphDef within the exported SavedModel, tagged and rewritten as specified. Defaults to a single entry using the default serving tag ("serve") and no rewriting. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes). Returns: The string path to the exported directory. Raises: ValueError: if an unrecognized export_type is requested. """ # pylint: enable=line-too-long if serving_input_fn is None: raise ValueError('serving_input_fn must be defined.') if not checkpoint_path: # Locate the latest checkpoint checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) # We'll write the SavedModel to a temporary directory and then atomically # rename it at the end. This helps to avoid corrupt / incomplete outputs, # which could otherwise occur if the job is preempted or otherwise fails # in the middle of SavedModel creation. temp_export_dir = saved_model_export_utils.get_temp_export_dir(export_dir) builder = saved_model_builder.SavedModelBuilder(temp_export_dir) # Build the base graph with ops.Graph().as_default() as g: training_util.create_global_step(g) # Call the serving_input_fn and collect the input alternatives. input_ops = serving_input_fn() input_alternatives, features = ( saved_model_export_utils.get_input_alternatives(input_ops)) # TODO(b/34388557) This is a stopgap, pending recording model provenance. # Record which features are expected at serving time. It is assumed that # these are the features that were used in training. for feature_key in input_ops.features.keys(): ops.add_to_collection( constants.COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS, feature_key) # Call the model_fn and collect the output alternatives. model_fn_ops = self._call_model_fn(features, None, model_fn_lib.ModeKeys.INFER) output_alternatives, actual_default_output_alternative_key = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, default_output_alternative_key)) init_op = control_flow_ops.group(variables.local_variables_initializer(), resources.initialize_resources( resources.shared_resources()), lookup_ops.tables_initializer()) # Build the SignatureDefs from all pairs of input and output alternatives signature_def_map = saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, actual_default_output_alternative_key) # Export the first MetaGraphDef with variables, assets etc. with tf_session.Session('') as session: # pylint: disable=protected-access saveables = variables._all_saveable_objects() # pylint: enable=protected-access if (model_fn_ops.scaffold is not None and model_fn_ops.scaffold.saver is not None): saver_for_restore = model_fn_ops.scaffold.saver elif saveables: saver_for_restore = saver.Saver(saveables, sharded=True) saver_for_restore.restore(session, checkpoint_path) # Perform the export if not graph_rewrite_specs or graph_rewrite_specs[0].transforms: raise ValueError('The first element of graph_rewrite_specs ' 'must specify no transforms.') untransformed_tags = graph_rewrite_specs[0].tags # TODO(soergel): switch to main_op or otherwise update when dust settles builder.add_meta_graph_and_variables( session, untransformed_tags, signature_def_map=signature_def_map, assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS), legacy_init_op=init_op, strip_default_attrs=strip_default_attrs) # pylint: disable=protected-access base_meta_graph_def = builder._saved_model.meta_graphs[0] # pylint: enable=protected-access if graph_rewrite_specs[1:]: # Prepare the input_names and output_names needed for the # meta_graph_transform call below. input_names = [ tensor.name for input_dict in input_alternatives.values() for tensor in input_dict.values() ] output_names = [ tensor.name for output_alternative in output_alternatives.values() for tensor in output_alternative[1].values() ] # Write the additional MetaGraphDefs for graph_rewrite_spec in graph_rewrite_specs[1:]: # TODO(soergel) consider moving most of this to saved_model.builder_impl # as e.g. builder.add_rewritten_meta_graph(rewritten_graph_def, tags) transformed_meta_graph_def = meta_graph_transform.meta_graph_transform( base_meta_graph_def, input_names, output_names, graph_rewrite_spec.transforms, graph_rewrite_spec.tags) # pylint: disable=protected-access meta_graph_def = builder._saved_model.meta_graphs.add() # pylint: enable=protected-access meta_graph_def.CopyFrom(transformed_meta_graph_def) # Add the extra assets if assets_extra: assets_extra_path = os.path.join( compat.as_bytes(temp_export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join( compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) gfile.MakeDirs(dest_path) gfile.Copy(source, dest_absolute) builder.save(as_text) gfile.Rename(temp_export_dir, export_dir) return export_dir # For time of deprecation x,y from Estimator allow direct access. # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Please switch to the Estimator interface.') def __init__(self, estimator): self._estimator = estimator def fit(self, x, y, batch_size=128, steps=None, max_steps=None, monitors=None): input_fn, feed_fn = _get_input_fn( x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) all_monitors = [] if feed_fn: all_monitors = [basic_session_run_hooks.FeedFnHook(feed_fn)] if monitors: all_monitors.extend(monitors) self._estimator.fit( input_fn=input_fn, steps=steps, max_steps=max_steps, monitors=all_monitors) return self def score(self, x, y, batch_size=128, steps=None, metrics=None, name=None): input_fn, feed_fn = _get_input_fn( x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._estimator._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results def predict(self, x, batch_size=128, outputs=None): input_fn, feed_fn = _get_input_fn( x, None, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) results = list( self._estimator._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=True, iterate_batches=True)) if not isinstance(results[0], dict): return np.concatenate([output for output in results], axis=0) return { key: np.concatenate([output[key] for output in results], axis=0) for key in results[0] }
mit
geome-mitbbs/QTS_Research
Trade_Algo.py
1
7950
try: from . import Portfolio from . import Data_API from .Quant_Indicators import * except: import Portfolio import Data_API from Quant_Indicators import * class Trade_Algo: def __init__(self,command=None): self.command = command if not self.safety_check(): self.command = """raise Exception("not safe to run")""" def filter_string(self): # first suppress all the """sss""" string. new_command = "" left_quotes_saw = 0 left_quotes_pos = [] for i in range(len(self.command)): if(self.command[i] != "\""): left_quotes_saw = 0 else: if(left_quotes_saw<3): left_quotes_saw += 1 if(left_quotes_saw==3): left_quotes_pos.append(i-2) left_quotes_saw = 0 if(len(left_quotes_pos)//2 * 2 != len(left_quotes_pos)): raise Exception("Not proper string") if(len(left_quotes_pos)==0): return self.command for i in range(len(left_quotes_pos)//2): if i==0: new_command += self.command[0:left_quotes_pos[2*i]] else: new_command += self.command[left_quotes_pos[2*i-1]+3:left_quotes_pos[2*i]] if i== len(left_quotes_pos)//2-1: new_command += self.command[left_quotes_pos[2*i+1]+3:] return new_command def find_used_vars(self): new_command = self.filter_string() ret = dict() list = ['portfolio','portfolio1','portfolio2','portfolio3','quant_index','quant_index1','quant_index2','quant_index3'] for item in list: if item in new_command: ret[item] = None self.used_vars = ret def find_tickers(self): # find all the "ABC" in the command and they should be all the tickers if(self.command == """raise Exception("not safe to run")"""): self.tickers = [] return new_command = self.filter_string() tickers = [] current_ticker = "" saw_left_quote = False for c in new_command: if not saw_left_quote: if c != "\"": pass else: saw_left_quote = True else: if c != "\"": current_ticker += c else: tickers.append(current_ticker) current_ticker = "" saw_left_quote = False self.tickers = tickers def safety_check(self): # check if self.command is safe to run....need this before go production return True def back_test(self,start_date=None,end_date=None,initial_cash=0,initial_portfolio=None): if end_date == None: end_date = Data_API.Pricing_Database.pricing_date if isinstance(start_date,int): start_date = Data_API.add_pricing_date(start_date,in_place=False) if isinstance(end_date,int): end_date = Data_API.add_pricing_date(end_date,in_place=False) #for pnl if initial_portfolio == None: portfolio = Portfolio.Portfolio(initial_cash) portfolio1=Portfolio.Portfolio(initial_cash) portfolio2=Portfolio.Portfolio(initial_cash) portfolio3=Portfolio.Portfolio(initial_cash) else: portfolio = initial_portfolio portfolio1 = initial_portfolio portfolio2 = initial_portfolio portfolio3 = initial_portfolio #for information quant_index=[] quant_index1=[] quant_index2=[] quant_index3=[] self.find_tickers() self.find_used_vars() cache = Data_API.Cache() for ticker in self.tickers: cache.get_ticker_data(ticker) #set back the date. orig_pd = Data_API.Pricing_Database.pricing_date try: Data_API.set_pricing_date(start_date) while Data_API.Pricing_Database.pricing_date <= end_date: exec(self.command) portfolio.record_pnl() portfolio1.record_pnl() portfolio2.record_pnl() portfolio3.record_pnl() Data_API.add_pricing_date(1) self.portfolio = portfolio self.portfolio1 = portfolio1 self.portfolio2 = portfolio2 self.portfolio3 = portfolio3 self.quant_index = quant_index self.quant_index1=quant_index1 self.quant_index2=quant_index2 self.quant_index3=quant_index3 Data_API.set_pricing_date(orig_pd) self.pnls = {'portfolio':self.portfolio.pnl_as_of_date,\ 'portfolio1':self.portfolio1.pnl_as_of_date,\ 'portfolio2':self.portfolio2.pnl_as_of_date,\ 'portfolio3':self.portfolio3.pnl_as_of_date} self.quant_indices = {'quant_index':self.quant_index,\ 'quant_index1':self.quant_index1,\ 'quant_index2':self.quant_index2,\ 'quant_index3':self.quant_index3} except Exception as e: Data_API.set_pricing_date(orig_pd) raise e def back_test_summary(self): output = "" if "portfolio" in self.used_vars: output += """portfolio:\n""" + str(self.portfolio.get_measures()) + """\n""" if "portfolio1" in self.used_vars: output += """portfolio1:\n""" + str(self.portfolio1.get_measures()) + """\n""" if "portfolio2" in self.used_vars: output += """portfolio2:\n""" + str(self.portfolio2.get_measures()) + """\n""" if "portfolio3" in self.used_vars: output += """portfolio3:\n""" + str(self.portfolio3.get_measures()) + """\n""" return output def back_test_plot(self): import matplotlib.pyplot as plt import matplotlib.dates as mdates fig = plt.figure() all_lines = [] ax = fig.add_subplot(111) ax.set_ylabel('PnL') has_right_ax = False if 'quant_index' in self.used_vars or \ 'quant_index1' in self.used_vars or \ 'quant_index2' in self.used_vars or \ 'quant_index3' in self.used_vars: has_right_ax = True dates = [ x[0] for x in self.pnls['portfolio'] ] for v in self.used_vars: if 'portfolio' in v: all_lines += ax.plot(dates, [x[1] for x in self.pnls[v]],label=v,linewidth=1) if has_right_ax: right_ax = ax.twinx() for v in self.used_vars: if 'index' in v: all_lines += right_ax.plot(dates, self.quant_indices[v],label=v,linewidth=1,ls='dotted') right_ax.set_ylabel('quant_index') # format the ticks years = mdates.YearLocator() # every year months = mdates.MonthLocator() # every month yearsFmt = mdates.DateFormatter('%Y') ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) datemin = min(dates) datemax = max(dates) ax.set_xlim(datemin, datemax) ax.format_xdata = mdates.DateFormatter('%Y-%m-%d') ax.grid(True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() fig.tight_layout() plt.legend(all_lines,[l.get_label() for l in all_lines],loc='best') plt.show()
mit
synthicity/urbansim
urbansim/utils/sampling.py
4
7852
import math import numpy as np import pandas as pd def get_probs(data, prob_column=None): """ Checks for presence of a probability column and returns the result as a numpy array. If the probabilities are weights (i.e. they don't sum to 1), then this will be recalculated. Parameters ---------- data: pandas.DataFrame Table to sample from. prob_column: string, optional, default None Name of the column in the data to provide probabilities or weights. Returns ------- numpy.array """ if prob_column is None: p = None else: p = data[prob_column].fillna(0).values if p.sum() == 0: p = np.ones(len(p)) if abs(p.sum() - 1.0) > 1e-8: p = p / (1.0 * p.sum()) return p def accounting_sample_replace(total, data, accounting_column, prob_column=None, max_iterations=50): """ Sample rows with accounting with replacement. Parameters ---------- total : int The control total the sampled rows will attempt to match. data: pandas.DataFrame Table to sample from. accounting_column: string Name of column with accounting totals/quantities to apply towards the control. prob_column: string, optional, default None Name of the column in the data to provide probabilities or weights. max_iterations: int, optional, default 50 When using an accounting attribute, the maximum number of sampling iterations that will be applied. Returns ------- sample_rows : pandas.DataFrame Table containing the sample. matched: bool Indicates if the total was matched exactly. """ # check for probabilities p = get_probs(data, prob_column) # determine avg number of accounting items per sample (e.g. persons per household) per_sample = data[accounting_column].sum() / (1.0 * len(data.index.values)) curr_total = 0 remaining = total sample_rows = pd.DataFrame() closest = None closest_remain = total matched = False for i in range(0, max_iterations): # stop if we've hit the control if remaining == 0: matched = True break # if sampling with probabilities, re-caclc the # of items per sample # after the initial sample, this way the sample size reflects the probabilities if p is not None and i == 1: per_sample = sample_rows[accounting_column].sum() / (1.0 * len(sample_rows)) # update the sample num_samples = int(math.ceil(math.fabs(remaining) / per_sample)) if remaining > 0: # we're short, add to the sample curr_ids = np.random.choice(data.index.values, num_samples, p=p) sample_rows = pd.concat([sample_rows, data.loc[curr_ids]]) else: # we've overshot, remove from existing samples (FIFO) sample_rows = sample_rows.iloc[num_samples:].copy() # update the total and check for the closest result curr_total = sample_rows[accounting_column].sum() remaining = total - curr_total if abs(remaining) < closest_remain: closest_remain = abs(remaining) closest = sample_rows return closest, matched def accounting_sample_no_replace(total, data, accounting_column, prob_column=None): """ Samples rows with accounting without replacement. Parameters ---------- total : int The control total the sampled rows will attempt to match. data: pandas.DataFrame Table to sample from. accounting_column: string Name of column with accounting totals/quantities to apply towards the control. prob_column: string, optional, default None Name of the column in the data to provide probabilities or weights. Returns ------- sample_rows : pandas.DataFrame Table containing the sample. matched: bool Indicates if the total was matched exactly. """ # make sure this is even feasible if total > data[accounting_column].sum(): raise ValueError('Control total exceeds the available samples') # check for probabilities p = get_probs(data, prob_column) # shuffle the rows if p is None: # random shuffle shuff_idx = np.random.permutation(data.index.values) else: # weighted shuffle ran_p = pd.Series(np.power(np.random.rand(len(p)), 1.0 / p), index=data.index) ran_p.sort_values(ascending=False) shuff_idx = ran_p.index.values # get the initial sample shuffle = data.loc[shuff_idx] csum = np.cumsum(shuffle[accounting_column].values) pos = np.searchsorted(csum, total, 'right') sample = shuffle.iloc[:pos] # refine the sample sample_idx = sample.index.values sample_total = sample[accounting_column].sum() shortage = total - sample_total matched = False for idx, row in shuffle.iloc[pos:].iterrows(): if shortage == 0: # we've matached matched = True break # add the current element if it doesnt exceed the total cnt = row[accounting_column] if cnt <= shortage: sample_idx = np.append(sample_idx, idx) shortage -= cnt return shuffle.loc[sample_idx].copy(), matched def sample_rows(total, data, replace=True, accounting_column=None, max_iterations=50, prob_column=None, return_status=False): """ Samples and returns rows from a data frame while matching a desired control total. The total may represent a simple row count or may attempt to match a sum/quantity from an accounting column. Parameters ---------- total : int The control total the sampled rows will attempt to match. data: pandas.DataFrame Table to sample from. replace: bool, optional, default True Indicates if sampling with or without replacement. accounting_column: string, optional Name of column with accounting totals/quantities to apply towards the control. If not provided then row counts will be used for accounting. max_iterations: int, optional, default 50 When using an accounting attribute, the maximum number of sampling iterations that will be applied. Only applicable when sampling with replacement. prob_column: string, optional, default None If provided, name of the column in the data frame to provide probabilities or weights. If not provided, the sampling is random. return_status: bool, optional, default True If True, will also return a bool indicating if the total was matched exactly. Returns ------- sample_rows : pandas.DataFrame Table containing the sample. matched: bool If return_status is True, returns True if total is matched exactly. """ if not data.index.is_unique: raise ValueError('Data must have a unique index') # simplest case, just return n random rows if accounting_column is None: if replace is False and total > len(data.index.values): raise ValueError('Control total exceeds the available samples') p = get_probs(prob_column) rows = data.loc[np.random.choice( data.index.values, int(total), replace=replace, p=p)].copy() matched = True # sample with accounting else: if replace: rows, matched = accounting_sample_replace( total, data, accounting_column, prob_column, max_iterations) else: rows, matched = accounting_sample_no_replace( total, data, accounting_column, prob_column) # return the results if return_status: return rows, matched else: return rows
bsd-3-clause
3manuek/scikit-learn
examples/manifold/plot_mds.py
261
2616
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com> # Licence: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) plt.scatter(X_true[:, 0], X_true[:, 1], c='r', s=20) plt.scatter(pos[:, 0], pos[:, 1], s=20, c='g') plt.scatter(npos[:, 0], npos[:, 1], s=20, c='b') plt.legend(('True position', 'MDS', 'NMDS'), loc='best') similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
GOFAI/glasstone
examples/wseg10.py
1
1738
import matplotlib.pyplot as plt from matplotlib import cm, colors, colorbar import numpy as np from glasstone.fallout import WSEG10 # ground zero x & y locations (st. mi) gzx = 1 gzy = 1 # yield in megatons yld = 0.01 # fission fraction ff = 1.0 # wind speed (mph) wind_speed = 1.151515 * 2.0 # wind direction (in degrees with wind from north = 0) wind_direction = 225 # wind shear (change in mph per kilofoot change in altitude) wind_shear = 0.23 x = np.arange(-1, 10, 0.1) y = np.arange(-1, 10, 0.1) X, Y = np.meshgrid(x, y) # use WSEG10's native units w = WSEG10(gzx, gzy, yld, ff, wind_speed, wind_direction, wind_shear, dunits='mi', wunits='mph', yunits='MT', shearunits='mph/kilofoot') dose = np.vectorize(w.D_Hplus1) Z = dose(X, Y, dunits='mi', doseunits='Roentgen') fig = plt.figure() ax1 = fig.add_axes([0.1, 0.1, 0.7, 0.8]) ax2 = fig.add_axes([0.85, 0.1, 0.05, 0.75]) CS = ax1.contour(X, Y, Z, [100, 300, 500, 1000, 3000], colors=('b', 'g', 'c', 'y', 'r'), linewidths=2) cmap = colors.ListedColormap(['b', 'g', 'c', 'y']) cmap.set_over('r') cmap.set_under('w') norm = colors.BoundaryNorm([100, 300, 500, 1000, 3000], cmap.N) cb = colorbar.ColorbarBase(ax2, cmap=cmap, norm=norm, boundaries=[0] + [100, 300, 500, 1000, 3000] + [5000], extend='both', extendfrac='auto') cb.set_label(r'$H+1$ dose rate $(R/hr)$') ax1.grid(True) ax1.set_title('WSEG-10 $H+1$ dose rate contours for 10kT burst') ax1.text(-0.5, 7.5, '$Wind: SW, 2.30303 mi/hr$\n$Shear: 0.23 mi/hr-kilofeet$\n$Yield: 10kT$\n$GZ:1,1$\n$FF: 1.0$\n$HOB: 0$') ax1.set_ylim([-0.5, 11]) ax1.set_ylabel('$st.$ $miles$') ax1.set_xlabel('$st.$ $miles$') plt.show()
mit
jundongl/PyFeaST
skfeature/function/sparse_learning_based/UDFS.py
3
3369
import numpy as np import scipy import math from skfeature.utility.sparse_learning import generate_diagonal_matrix, calculate_l21_norm from sklearn.metrics.pairwise import pairwise_distances def udfs(X, **kwargs): """ This function implements l2,1-norm regularized discriminative feature selection for unsupervised learning, i.e., min_W Tr(W^T M W) + gamma ||W||_{2,1}, s.t. W^T W = I Input ----- X: {numpy array}, shape (n_samples, n_features) input data kwargs: {dictionary} gamma: {float} parameter in the objective function of UDFS (default is 1) n_clusters: {int} Number of clusters k: {int} number of nearest neighbor verbose: {boolean} True if want to display the objective function value, false if not Output ------ W: {numpy array}, shape(n_features, n_clusters) feature weight matrix Reference Yang, Yi et al. "l2,1-Norm Regularized Discriminative Feature Selection for Unsupervised Learning." AAAI 2012. """ # default gamma is 0.1 if 'gamma' not in kwargs: gamma = 0.1 else: gamma = kwargs['gamma'] # default k is set to be 5 if 'k' not in kwargs: k = 5 else: k = kwargs['k'] if 'n_clusters' not in kwargs: n_clusters = 5 else: n_clusters = kwargs['n_clusters'] if 'verbose' not in kwargs: verbose = False else: verbose = kwargs['verbose'] # construct M n_sample, n_feature = X.shape M = construct_M(X, k, gamma) D = np.eye(n_feature) max_iter = 1000 obj = np.zeros(max_iter) for iter_step in range(max_iter): # update W as the eigenvectors of P corresponding to the first n_clusters # smallest eigenvalues P = M + gamma*D eigen_value, eigen_vector = scipy.linalg.eigh(a=P) W = eigen_vector[:, 0:n_clusters] # update D as D_ii = 1 / 2 / ||W(i,:)|| D = generate_diagonal_matrix(W) obj[iter_step] = calculate_obj(X, W, M, gamma) if verbose: print('obj at iter {0}: {1}'.format(iter_step+1, obj[iter_step])) if iter_step >= 1 and math.fabs(obj[iter_step] - obj[iter_step-1]) < 1e-3: break return W def construct_M(X, k, gamma): """ This function constructs the M matrix described in the paper """ n_sample, n_feature = X.shape Xt = X.T D = pairwise_distances(X) # sort the distance matrix D in ascending order idx = np.argsort(D, axis=1) # choose the k-nearest neighbors for each instance idx_new = idx[:, 0:k+1] H = np.eye(k+1) - 1/(k+1) * np.ones((k+1, k+1)) I = np.eye(k+1) Mi = np.zeros((n_sample, n_sample)) for i in range(n_sample): Xi = Xt[:, idx_new[i, :]] Xi_tilde =np.dot(Xi, H) Bi = np.linalg.inv(np.dot(Xi_tilde.T, Xi_tilde) + gamma*I) Si = np.zeros((n_sample, k+1)) for q in range(k+1): Si[idx_new[q], q] = 1 Mi = Mi + np.dot(np.dot(Si, np.dot(np.dot(H, Bi), H)), Si.T) M = np.dot(np.dot(X.T, Mi), X) return M def calculate_obj(X, W, M, gamma): """ This function calculates the objective function of ls_l21 described in the paper """ return np.trace(np.dot(np.dot(W.T, M), W)) + gamma*calculate_l21_norm(W)
gpl-2.0
tochikuji/pyPyrTools
pyrtools/showIm.py
1
3701
import numpy from PIL import Image import scipy.stats import matplotlib.pyplot as plt def showIm(*args): # check and set input parameters if len(args) == 0: print("showIm( matrix, range, zoom, label, nshades )") print(" matrix is string. It should be the name of a 2D array.") print(" range is a two element tuple. It specifies the values that ") print(" map to the min and max colormap values. Passing a value ") print(" of 'auto' (default) sets range=[min,max]. 'auto2' sets ") print(" range=[mean-2*stdev, mean+2*stdev]. 'auto3' sets ") print(" range=[p1-(p2-p1)/8, p2+(p2-p1)/8], where p1 is the 10th ") print(" percientile value of the sorted matix samples, and p2 is ") print(" the 90th percentile value.") print(" zoom specifies the number of matrix samples per screen pixel.") print(" It will be rounded to an integer, or 1 divided by an ") print(" integer.") # print " A value of 'same' or 'auto' (default) causes the " # print " zoom value to be chosen automatically to fit the image into" # print " the current axes." # print " A value of 'full' fills the axis region " # print " (leaving no room for labels)." print(" label - A string that is used as a figure title.") print(" NSHADES (optional) specifies the number of gray shades, ") print(" and defaults to the size of the current colormap. ") if len(args) > 0: # matrix entered matrix = numpy.array(args[0]) if len(args) > 1: # range entered if isinstance(args[1], str): if args[1] is "auto": imRange = (numpy.amin(matrix), numpy.amax(matrix)) elif args[1] is "auto2": imRange = (matrix.mean() - 2 * matrix.std(), matrix.mean() + 2 * matrix.std()) elif args[1] is "auto3": # p1 = numpy.percentile(matrix, 10) not in python 2.6.6?! #p2 = numpy.percentile(matrix, 90) p1 = scipy.stats.scoreatpercentile(numpy.hstack(matrix), 10) p2 = scipy.stats.scoreatpercentile(numpy.hstack(matrix), 90) imRange = (p1 - (p2 - p1) / 8.0, p2 + (p2 - p1) / 8.0) else: print("Error: range of %s is not recognized." % args[1]) print(" please use a two element tuple or ") print(" 'auto', 'auto2' or 'auto3'") print(" enter 'showIm' for more info about options") return else: imRange = args[1][0], args[1][1] else: imRange = (numpy.amin(matrix), numpy.amax(matrix)) if len(args) > 2: # zoom entered zoom = args[2] else: zoom = 1 if len(args) > 3: # label entered label = args[3] else: label = '' if len(args) > 4: # colormap entered nshades = args[4] print("colormap parameter is not supported.") print("Such specification does not make any sense.") else: nshades = 256 # NOQA # show image # create canvas (mpl) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_title(label) width = matrix.shape[0] * zoom height = matrix.shape[1] * zoom # normalize image to [0, 255] pmin, pmax = matrix.min(), matrix.max() matrix = (matrix - pmin) / (pmax - pmin) * 255 img = Image.fromarray(matrix.astype(numpy.uint8)) # zoom if zoom != 1: img.thumbnail((width, height), Image.BICUBIC) ax.imshow(img, cmap='gray') plt.show()
mit
keras-team/keras-io
examples/vision/xray_classification_with_tpus.py
1
12745
""" Title: Pneumonia Classification on TPU Author: Amy MiHyun Jang Date created: 2020/07/28 Last modified: 2020/08/24 Description: Medical image classification on TPU. """ """ ## Introduction + Set-up This tutorial will explain how to build an X-ray image classification model to predict whether an X-ray scan shows presence of pneumonia. """ import re import os import random import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print("Device:", tpu.master()) tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except: strategy = tf.distribute.get_strategy() print("Number of replicas:", strategy.num_replicas_in_sync) """ We need a Google Cloud link to our data to load the data using a TPU. Below, we define key configuration parameters we'll use in this example. To run on TPU, this example must be on Colab with the TPU runtime selected. """ AUTOTUNE = tf.data.experimental.AUTOTUNE BATCH_SIZE = 25 * strategy.num_replicas_in_sync IMAGE_SIZE = [180, 180] CLASS_NAMES = ["NORMAL", "PNEUMONIA"] """ ## Load the data The Chest X-ray data we are using from [*Cell*](https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5) divides the data into training and test files. Let's first load in the training TFRecords. """ train_images = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/train/images.tfrec" ) train_paths = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/train/paths.tfrec" ) ds = tf.data.Dataset.zip((train_images, train_paths)) """ Let's count how many healthy/normal chest X-rays we have and how many pneumonia chest X-rays we have: """ COUNT_NORMAL = len( [ filename for filename in train_paths if "NORMAL" in filename.numpy().decode("utf-8") ] ) print("Normal images count in training set: " + str(COUNT_NORMAL)) COUNT_PNEUMONIA = len( [ filename for filename in train_paths if "PNEUMONIA" in filename.numpy().decode("utf-8") ] ) print("Pneumonia images count in training set: " + str(COUNT_PNEUMONIA)) """ Notice that there are way more images that are classified as pneumonia than normal. This shows that we have an imbalance in our data. We will correct for this imbalance later on in our notebook. """ """ We want to map each filename to the corresponding (image, label) pair. The following methods will help us do that. As we only have two labels, we will encode the label so that `1` or `True` indicates pneumonia and `0` or `False` indicates normal. """ def get_label(file_path): # convert the path to a list of path components parts = tf.strings.split(file_path, "/") # The second to last is the class-directory return parts[-2] == "PNEUMONIA" def decode_img(img): # convert the compressed string to a 3D uint8 tensor img = tf.image.decode_jpeg(img, channels=3) # resize the image to the desired size. return tf.image.resize(img, IMAGE_SIZE) def process_path(image, path): label = get_label(path) # load the raw data from the file as a string img = decode_img(image) return img, label ds = ds.map(process_path, num_parallel_calls=AUTOTUNE) """ Let's split the data into a training and validation datasets. """ ds = ds.shuffle(10000) train_ds = ds.take(4200) val_ds = ds.skip(4200) """ Let's visualize the shape of an (image, label) pair. """ for image, label in train_ds.take(1): print("Image shape: ", image.numpy().shape) print("Label: ", label.numpy()) """ Load and format the test data as well. """ test_images = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/test/images.tfrec" ) test_paths = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/test/paths.tfrec" ) test_ds = tf.data.Dataset.zip((test_images, test_paths)) test_ds = test_ds.map(process_path, num_parallel_calls=AUTOTUNE) test_ds = test_ds.batch(BATCH_SIZE) """ ## Visualize the dataset First, let's use buffered prefetching so we can yield data from disk without having I/O become blocking. Please note that large image datasets should not be cached in memory. We do it here because the dataset is not very large and we want to train on TPU. """ def prepare_for_training(ds, cache=True): # This is a small dataset, only load it once, and keep it in memory. # use `.cache(filename)` to cache preprocessing work for datasets that don't # fit in memory. if cache: if isinstance(cache, str): ds = ds.cache(cache) else: ds = ds.cache() ds = ds.batch(BATCH_SIZE) # `prefetch` lets the dataset fetch batches in the background while the model # is training. ds = ds.prefetch(buffer_size=AUTOTUNE) return ds """ Call the next batch iteration of the training data. """ train_ds = prepare_for_training(train_ds) val_ds = prepare_for_training(val_ds) image_batch, label_batch = next(iter(train_ds)) """ Define the method to show the images in the batch. """ def show_batch(image_batch, label_batch): plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(image_batch[n] / 255) if label_batch[n]: plt.title("PNEUMONIA") else: plt.title("NORMAL") plt.axis("off") """ As the method takes in NumPy arrays as its parameters, call the numpy function on the batches to return the tensor in NumPy array form. """ show_batch(image_batch.numpy(), label_batch.numpy()) """ ## Build the CNN To make our model more modular and easier to understand, let's define some blocks. As we're building a convolution neural network, we'll create a convolution block and a dense layer block. The architecture for this CNN has been inspired by this [article](https://towardsdatascience.com/deep-learning-for-detecting-pneumonia-from-x-ray-images-fc9a3d9fdba8). """ from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing def conv_block(filters, inputs): x = layers.SeparableConv2D(filters, 3, activation="relu", padding="same")(inputs) x = layers.SeparableConv2D(filters, 3, activation="relu", padding="same")(x) x = layers.BatchNormalization()(x) outputs = layers.MaxPool2D()(x) return outputs def dense_block(units, dropout_rate, inputs): x = layers.Dense(units, activation="relu")(inputs) x = layers.BatchNormalization()(x) outputs = layers.Dropout(dropout_rate)(x) return outputs """ The following method will define the function to build our model for us. The images originally have values that range from [0, 255]. CNNs work better with smaller numbers so we will scale this down for our input. The Dropout layers are important, as they reduce the likelikhood of the model overfitting. We want to end the model with a `Dense` layer with one node, as this will be the binary output that determines if an X-ray shows presence of pneumonia. """ def build_model(): inputs = keras.Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3)) x = preprocessing.Rescaling(1.0 / 255)(inputs) x = layers.Conv2D(16, 3, activation="relu", padding="same")(x) x = layers.Conv2D(16, 3, activation="relu", padding="same")(x) x = layers.MaxPool2D()(x) x = conv_block(32, x) x = conv_block(64, x) x = conv_block(128, x) x = layers.Dropout(0.2)(x) x = conv_block(256, x) x = layers.Dropout(0.2)(x) x = layers.Flatten()(x) x = dense_block(512, 0.7, x) x = dense_block(128, 0.5, x) x = dense_block(64, 0.3, x) outputs = layers.Dense(1, activation="sigmoid")(x) model = keras.Model(inputs=inputs, outputs=outputs) return model """ ## Correct for data imbalance We saw earlier in this example that the data was imbalanced, with more images classified as pneumonia than normal. We will correct for that by using class weighting: """ initial_bias = np.log([COUNT_PNEUMONIA / COUNT_NORMAL]) print("Initial bias: {:.5f}".format(initial_bias[0])) TRAIN_IMG_COUNT = COUNT_NORMAL + COUNT_PNEUMONIA weight_for_0 = (1 / COUNT_NORMAL) * (TRAIN_IMG_COUNT) / 2.0 weight_for_1 = (1 / COUNT_PNEUMONIA) * (TRAIN_IMG_COUNT) / 2.0 class_weight = {0: weight_for_0, 1: weight_for_1} print("Weight for class 0: {:.2f}".format(weight_for_0)) print("Weight for class 1: {:.2f}".format(weight_for_1)) """ The weight for class `0` (Normal) is a lot higher than the weight for class `1` (Pneumonia). Because there are less normal images, each normal image will be weighted more to balance the data as the CNN works best when the training data is balanced. """ """ ## Train the model """ """ ### Defining callbacks The checkpoint callback saves the best weights of the model, so next time we want to use the model, we do not have to spend time training it. The early stopping callback stops the training process when the model starts becoming stagnant, or even worse, when the model starts overfitting. """ checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("xray_model.h5", save_best_only=True) early_stopping_cb = tf.keras.callbacks.EarlyStopping( patience=10, restore_best_weights=True ) """ We also want to tune our learning rate. Too high of a learning rate will cause the model to diverge. Too small of a learning rate will cause the model to be too slow. We implement the exponential learning rate scheduling method below. """ initial_learning_rate = 0.015 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps=100000, decay_rate=0.96, staircase=True ) """ ### Fit the model For our metrics, we want to include precision and recall as they will provide use with a more informed picture of how good our model is. Accuracy tells us what fraction of the labels is correct. Since our data is not balanced, accuracy might give a skewed sense of a good model (i.e. a model that always predicts PNEUMONIA will be 74% accurate but is not a good model). Precision is the number of true positives (TP) over the sum of TP and false positives (FP). It shows what fraction of labeled positives are actually correct. Recall is the number of TP over the sum of TP and false negatves (FN). It shows what fraction of actual positives are correct. Since there are only two possible labels for the image, we will be using the binary crossentropy loss. When we fit the model, remember to specify the class weights, which we defined earlier. Because we are using a TPU, training will be quick - less than 2 minutes. """ with strategy.scope(): model = build_model() METRICS = [ tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.Precision(name="precision"), tf.keras.metrics.Recall(name="recall"), ] model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule), loss="binary_crossentropy", metrics=METRICS, ) history = model.fit( train_ds, epochs=100, validation_data=val_ds, class_weight=class_weight, callbacks=[checkpoint_cb, early_stopping_cb], ) """ ## Visualizing model performance Let's plot the model accuracy and loss for the training and the validating set. Note that no random seed is specified for this notebook. For your notebook, there might be slight variance. """ fig, ax = plt.subplots(1, 4, figsize=(20, 3)) ax = ax.ravel() for i, met in enumerate(["precision", "recall", "binary_accuracy", "loss"]): ax[i].plot(history.history[met]) ax[i].plot(history.history["val_" + met]) ax[i].set_title("Model {}".format(met)) ax[i].set_xlabel("epochs") ax[i].set_ylabel(met) ax[i].legend(["train", "val"]) """ We see that the accuracy for our model is around 95%. """ """ ## Predict and evaluate results Let's evaluate the model on our test data! """ model.evaluate(test_ds, return_dict=True) """ We see that our accuracy on our test data is lower than the accuracy for our validating set. This may indicate overfitting. Our recall is greater than our precision, indicating that almost all pneumonia images are correctly identified but some normal images are falsely identified. We should aim to increase our precision. """ for image, label in test_ds.take(1): plt.imshow(image[0] / 255.0) plt.title(CLASS_NAMES[label[0].numpy()]) prediction = model.predict(test_ds.take(1))[0] scores = [1 - prediction, prediction] for score, name in zip(scores, CLASS_NAMES): print("This image is %.2f percent %s" % ((100 * score), name))
apache-2.0
wjw12/emc
density.py
1
3126
from particle import * @mlab.show def show(a): mlab.pipeline.volume(mlab.pipeline.scalar_field(a)) @mlab.show def drawp(points): mlab.points3d(points[:,0],points[:,1],points[:,2]) def test0(): # rotate a point a = 17 r = 8 p = np.ones((a,a)) m = np.zeros((a,a,a)) m[r,:,:] = p new_m = np.zeros((a,a,a)) points = fibonacciSphere(500) rot = [] p0 = points[0] eye = np.eye(3) for p1 in points[1:]: v = np.cross(p0,p1) s = np.linalg.norm(v) # sin of vectors c = np.dot(p0,p1) # cos of vectors v = makeCrossMatrix(v) vv = (1-c)/(s*s) * np.dot(v,v) rot_mat = np.eye(3) + v + vv rot.append(rot_mat) ro_points = np.zeros((500,3)) ro_points[0] = p0 for i in range(1,500): p_ = np.dot(rot[i-1], p0) ro_points[i] = p_ drawp(ro_points) def test(): import matplotlib.pyplot as plt # rotate a plane, without rotating around an axis a = 17 r = 8 p = np.ones((a,a)) m = np.zeros((a,a,a)) m[:,r,:] = p new_m = np.zeros((a,a,a)) points = fibonacciSphere(500) rot = [] eye = np.eye(3) p0 = points[0] for p1 in points[1:]: v = np.cross(p0,p1) s = np.linalg.norm(v) # sin of vectors c = np.dot(p0,p1) # cos of vectors v = makeCrossMatrix(v) vv = (1-c)/(s*s) * np.dot(v,v) rot_mat = np.eye(3) + v + vv rot.append(rot_mat) show(m) # compress all planes of random directions by simply adding them together c = 0 for i in rot: displace = np.array([r,r,r]) offset = -np.dot(i,displace) + displace mm = affine_transform(m,i,offset) new_m += mm c += 1 show(new_m) y = new_m[r,r,:] x = [i for i in range(len(y))] plt.plot(x,y) plt.show() def test__(): a = 17 r = 8 p = np.ones((a,a)) m = np.zeros((a,a,a)) m[:,r,:] = p new_m = np.zeros((a,a,a)) points = fibonacciSphere(200) rot = [] ang = 50 sin_value = np.sin(np.linspace(0, 2*np.pi, ang)) cos_value = np.cos(np.linspace(0, 2*np.pi, ang)) # store the values to reuse eye = np.eye(3) for p1 in points: k = makeCrossMatrix(p1) kk = np.dot(k,k) for i in range(ang): rot.append(eye + k*sin_value[i] + kk*(1-cos_value[i])) # compress all planes of random directions by simply adding them together for i in rot: displace = np.array([r,r,r]) offset = -np.dot(i,displace) + displace mm = affine_transform(m,i,offset,order=5) new_m += mm show(m) show(new_m) def test2(n): from numpy.linalg import qr a = 17 R = 8 p = np.ones((a,a)) m = np.zeros((a,a,a)) m[:,R,:] = p new_m = np.zeros((a,a,a)) for i in range(n): q, r = qr(np.random.randn(3,3)) d = np.diagonal(r) d = d/np.abs(d) q = np.multiply(q,d) displace = np.array([R,R,R]) offset = -np.dot(q,displace) + displace mm = affine_transform(m,q,offset,order=5) new_m += mm show(new_m)
gpl-2.0
cxhernandez/osprey
osprey/tests/test_cli_worker_and_dump.py
1
2065
from __future__ import print_function, absolute_import, division import os import sys import json import shutil import subprocess import tempfile from distutils.spawn import find_executable from numpy.testing.decorators import skipif try: __import__('msmbuilder') HAVE_MSMBUILDER = True except: HAVE_MSMBUILDER = False OSPREY_BIN = find_executable('osprey') @skipif(not HAVE_MSMBUILDER, 'this test requires MSMBuilder') def test_1(): from msmbuilder.example_datasets import FsPeptide assert OSPREY_BIN is not None cwd = os.path.abspath(os.curdir) dirname = tempfile.mkdtemp() FsPeptide(dirname).get() try: os.chdir(dirname) subprocess.check_call([OSPREY_BIN, 'skeleton', '-t', 'msmbuilder', '-f', 'config.yaml']) subprocess.check_call([OSPREY_BIN, 'worker', 'config.yaml', '-n', '1']) assert os.path.exists('osprey-trials.db') yield _test_dump_1 yield _test_plot_1 finally: os.chdir(cwd) shutil.rmtree(dirname) def test_2(): assert OSPREY_BIN is not None cwd = os.path.abspath(os.curdir) dirname = tempfile.mkdtemp() try: os.chdir(dirname) subprocess.check_call([OSPREY_BIN, 'skeleton', '-t', 'sklearn', '-f', 'config.yaml']) subprocess.check_call([OSPREY_BIN, 'worker', 'config.yaml', '-n', '1']) assert os.path.exists('osprey-trials.db') subprocess.check_call([OSPREY_BIN, 'current_best', 'config.yaml']) yield _test_dump_1 yield _test_plot_1 finally: os.chdir(cwd) shutil.rmtree(dirname) def _test_dump_1(): out = subprocess.check_output( [OSPREY_BIN, 'dump', 'config.yaml', '-o', 'json']) if sys.version_info >= (3, 0): out = out.decode() json.loads(out) def _test_plot_1(): out = subprocess.check_output( [OSPREY_BIN, 'plot', 'config.yaml', '--no-browser']) if not os.path.isfile('./plot.html'): raise ValueError('Plot not created')
apache-2.0
yarikoptic/pystatsmodels
tools/examples_rst.py
30
5894
#! /usr/bin/env python import os import sys import re import subprocess import pickle from StringIO import StringIO # 3rd party from matplotlib import pyplot as plt # Ours import hash_funcs #---------------------------------------------------- # Globals #---------------------------------------------------- # these files do not get made into .rst files because of # some problems, they may need a simple cleaning up exclude_list = ['run_all.py', # these need to be cleaned up 'example_ols_tftest.py', 'example_glsar.py', 'example_ols_table.py', #not finished yet 'example_arima.py', 'try_wls.py'] file_path = os.path.dirname(__file__) docs_rst_dir = os.path.realpath(os.path.join(file_path, '../docs/source/examples/generated/')) example_dir = os.path.realpath(os.path.join(file_path, '../examples/')) def check_script(filename): """ Run all the files in filelist from run_all. Add any with problems to exclude_list and return it. """ file_to_run = "python -c\"import warnings; " file_to_run += "warnings.simplefilter('ignore'); " file_to_run += "from matplotlib import use; use('Agg'); " file_to_run += "execfile(r'%s')\"" % os.path.join(example_dir, filename) proc = subprocess.Popen(file_to_run, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) #NOTE: use communicate to wait for process termination stdout, stderr = proc.communicate() result = proc.returncode if result != 0: # raised an error msg = "Not generating reST from %s. An error occurred.\n" % filename msg += stderr print msg return False return True def parse_docstring(block): """ Strips the docstring from a string representation of the file. Returns the docstring and block without it """ ds = "\"{3}|'{3}" try: start = re.search(ds, block).end() end = re.search(ds, block[start:]).start() except: #TODO: make more informative raise IOError("File %s does not have a docstring?") docstring = block[start:start+end] block = block[start+end+3:] return docstring.strip(), block def parse_file(block): """ Block is a raw string file. """ docstring, block = parse_docstring(block) # just get the first line from the docstring docstring = docstring.split('\n')[0] or docstring.split('\n')[1] outfile = [docstring,'='*len(docstring),''] block = block.split('\n') # iterate through the rest of block, anything in comments is stripped of # # anything else is fair game to go in an ipython directive code_snippet = False for line in block: #if not len(line): # continue # preserve blank lines if line.startswith('#') and not (line.startswith('#%') or line.startswith('#@')): # on some ReST text if code_snippet: # were on a code snippet outfile.append('') code_snippet = False line = line.strip() # try to remove lines like # hello -> #hello line = re.sub("(?<=#) (?!\s)", "", line) # make sure commented out things have a space line = re.sub("#\.\.(?!\s)", "#.. ", line) line = re.sub("^#+", "", line) # strip multiple hashes outfile.append(line) else: if not code_snippet: # new code block outfile.append('\n.. ipython:: python\n') code_snippet = True # handle decorators and magic functions if line.startswith('#%') or line.startswith('#@'): line = line[1:] outfile.append(' '+line.strip('\n')) return '\n'.join(outfile) def write_file(outfile, rst_file_pth): """ Write outfile to rst_file_pth """ print "Writing ", os.path.basename(rst_file_pth) write_file = open(rst_file_pth, 'w') write_file.writelines(outfile) write_file.close() def restify(example_file, filehash, fname): """ Takes a whole file ie., the result of file.read(), its md5 hash, and the filename Parse the file Write the new .rst Update the hash_dict """ write_filename = os.path.join(docs_rst_dir, fname[:-2] + 'rst') try: rst_file = parse_file(example_file) except IOError as err: raise IOError(err.message % fname) write_file(rst_file, write_filename) if filehash is not None: hash_funcs.update_hash_dict(filehash, fname) if __name__ == "__main__": sys.path.insert(0, example_dir) from run_all import filelist sys.path.remove(example_dir) if not os.path.exists(docs_rst_dir): os.makedirs(docs_rst_dir) if len(sys.argv) > 1: # given a file,files to process, no help flag yet for example_file in sys.argv[1:]: whole_file = open(example_file, 'r').read() restify(whole_file, None, example_file) else: # process the whole directory for root, dirnames, filenames in os.walk(example_dir): if 'notebooks' in root: continue for example in filenames: example_file = os.path.join(root, example) whole_file = open(example_file, 'r').read() to_write, filehash = hash_funcs.check_hash(whole_file, example) if not to_write: print "Hash has not changed for file %s" % example continue elif (not example.endswith('.py') or example in exclude_list or not check_script(example_file)): continue restify(whole_file, filehash, example)
bsd-3-clause
pytroll/pygac
pygac/utils.py
1
11310
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author(s): # Stephan Finkensieper <stephan.finkensieper@dwd.de> # Carlos Horn <carlos.horn@external.eumetsat.int> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import gzip import io import logging from contextlib import contextmanager, nullcontext import numpy as np LOG = logging.getLogger(__name__) def gzip_inspected(open_file): """Try to gzip decompress the file object if applicable.""" try: file_object = gzip.GzipFile(mode='rb', fileobj=open_file) file_object.read(1) except OSError: file_object = open_file finally: file_object.seek(0) return file_object @contextmanager def file_opener(file): if isinstance(file, io.IOBase) and file.seekable(): # avoid closing the file using nullcontext open_file = nullcontext(file) elif hasattr(file, 'open'): try: open_file = file.open(mode='rb') except TypeError: open_file = file.open() else: open_file = open(file, mode='rb') # set open_file into context in case of lazy loading in __enter__ method. with open_file as file_object: yield gzip_inspected(file_object) def get_absolute_azimuth_angle_diff(sat_azi, sun_azi): """Calculates absolute azimuth difference angle. """ rel_azi = abs(sat_azi - sun_azi) rel_azi = rel_azi % 360 # Not using np.where to avoid copying array rel_azi[rel_azi > 180] = 360.0 - rel_azi[rel_azi > 180] return rel_azi def centered_modulus(array, divisor): """Transform array to half open range ]-divisor/2, divisor/2].""" arr = array % divisor arr[arr > divisor / 2] -= divisor return arr def calculate_sun_earth_distance_correction(jday): """Calculate the sun earth distance correction. In 2008 3-4 different equations of ESD were considered. This one was chosen as it at the time gave reflectances most closely matching the PATMOS-x data provided then by Andy Heidinger. Formula might need to be reconsidered if jday is updated to a float. """ # Earth-Sun distance correction factor corr = 1.0 - 0.0334 * np.cos(2.0 * np.pi * (jday - 2) / 365.25) return corr def check_user_scanlines(start_line, end_line, first_valid_lat=None, last_valid_lat=None, along_track=None): """Check user-defined scanlines. Can be used by both pygac and satpy. Args: start_line: User-defined start line (afer stripping, if enabled) end_line: User-defined end line (afer stripping, if enabled) first_valid_lat: First scanline with valid latitudes last_valid_lat: Last scanline with valid latitudes along_track: Number of scanlines (only needed if stripping is disabled) """ if first_valid_lat is not None and last_valid_lat is not None: num_valid_lines = last_valid_lat - first_valid_lat + 1 else: if along_track is None: raise ValueError('Need along_track') num_valid_lines = along_track start_line = int(start_line) end_line = int(end_line) if end_line == 0: # If the user specifies 0 as the last scanline, process all # scanlines with valid coordinates end_line = num_valid_lines - 1 elif end_line >= num_valid_lines: end_line = num_valid_lines - 1 LOG.warning('Given end line exceeds scanline range, resetting ' 'to {}'.format(end_line)) if start_line > num_valid_lines: raise ValueError('Given start line {} exceeds scanline range {}' .format(start_line, num_valid_lines)) return start_line, end_line def strip_invalid_lat(lats): """Strip invalid latitudes at the end and beginning of the orbit.""" no_wrong_lat = np.where(np.logical_not(np.isnan(lats))) return min(no_wrong_lat[0]), max(no_wrong_lat[0]) def slice_channel(ch, start_line, end_line, first_valid_lat=None, last_valid_lat=None, midnight_scanline=None, miss_lines=None, qual_flags=None): """Slice channel data using user-defined start/end line. If valid_lat_start/end are given, strip scanlines with invalid coordinates at the beginning and end of the orbit. Can be used by both pygac and satpy. Args: ch: Channel data start_line: User-defined start line (afer stripping, if enabled) end_line: User-defined end line (after stripping, if enabled) first_valid_lat: First scanline with valid latitudes last_valid_lat: Last scanline with valid latitudes. midnight_scanline: If given, update midnight scanline to the new scanline range. miss_lines: If given, update list of missing lines with the ones that have been stripped due to invalid coordinates qual_flags: Quality flags, needed to updated missing lines. """ if first_valid_lat is not None and last_valid_lat is not None: # Strip invalid coordinates and update midnight scanline as well as # user-defined start/end lines ch, updated = _slice(ch, start_line=first_valid_lat, end_line=last_valid_lat, update=[midnight_scanline]) midnight_scanline = updated[0] # Reset user-defined end line, if it has been removed end_line = min(end_line, ch.shape[0] - 1) start_line = min(start_line, ch.shape[0] - 1) # Update missing scanlines if miss_lines is not None: miss_lines = _update_missing_scanlines( miss_lines=miss_lines, qual_flags=qual_flags, start_line=first_valid_lat, end_line=last_valid_lat) # Slice data using user-defined start/end lines ch_slc, updated = _slice(ch, start_line=start_line, end_line=end_line, update=[midnight_scanline]) midnight_scanline = updated[0] return ch_slc, miss_lines, midnight_scanline def _slice(ch, start_line, end_line, update=None): """Slice the given channel. Args: start_line: New start line end_line: New end line update: List of scanlines to be updated to the new range """ # Slice data using new start/end lines if len(ch.shape) == 1: ch_slc = ch[start_line:end_line + 1].copy() else: ch_slc = ch[start_line:end_line + 1, :].copy() if update: updated = [_update_scanline(l, start_line, end_line) if l is not None else None for l in update] return ch_slc, updated return ch_slc def _update_scanline(scanline, new_start_line, new_end_line): """Update the given scanline to the new range. Set scanline to None if it lies outside the new range. """ scanline -= new_start_line num_lines = new_end_line - new_start_line + 1 if scanline < 0 or scanline >= num_lines: scanline = None return scanline def _update_missing_scanlines(miss_lines, qual_flags, start_line, end_line): """Add scanlines excluded by slicing to the list of missing scanlines. Args: miss_lines: List of missing scanlines qual_flags: Quality flags start_line: New start line of the slice end_line: New end line of the slice """ return np.sort(np.unique( qual_flags[0:start_line, 0].tolist() + miss_lines.tolist() + qual_flags[end_line + 1:, 0].tolist() )) def plot_correct_times_thresh(res, filename=None): """Visualize results of GACReader.correct_times_thresh.""" import matplotlib.pyplot as plt t = res['t'] tcorr = res.get('tcorr') n = res['n'] offsets = res.get('offsets') t0_head = res.get('t0_head') max_diff_from_t0_head = res.get('max_diff_from_t0_head') fail_reason = res.get('fail_reason', 'Failed for unknown reason') # Setup figure along_track = np.arange(t.size) _, (ax0, ax1, ax2) = plt.subplots(nrows=3, sharex=True, figsize=(8, 10)) # Plot original vs corrected timestamps ax0.plot(along_track, t, "b-", label="original") if tcorr is not None: ax0.plot(along_track, tcorr, color="red", linestyle="--", label="corrected") else: ax0.set_title(fail_reason) ax0.set_ylabel("Time") ax0.set_ylim(t.min() - np.timedelta64(30, "m"), t.max() + np.timedelta64(30, "m")) ax0.legend(loc="best") # Plot offset (original time - ideal time) if offsets is not None: ax1.plot(along_track, offsets) ax1.fill_between( along_track, t0_head - np.ones(along_track.size) * max_diff_from_t0_head, t0_head + np.ones(along_track.size) * max_diff_from_t0_head, facecolor="g", alpha=0.33) ax1.axhline(y=t0_head, color="g", linestyle="--", label="Header timestamp") ax1.set_ylim(t0_head - 5 * max_diff_from_t0_head, t0_head + 5 * max_diff_from_t0_head) ax1.set_ylabel("Offset t-tn [ms]") ax1.legend(loc="best") # Plot scanline number ax2.plot(along_track, n) ax2.set_ylabel("Scanline number") ax2.set_xlabel("Along Track") if filename: plt.savefig(filename, bbox_inches="tight", dpi=100) else: plt.show() def plot_correct_scanline_numbers(res, filename=None): """Visualize results of GACReader.correct_scanline_numbers.""" import matplotlib.pyplot as plt along_track = res['along_track'] n_orig = res['n_orig'] n_corr = res['n_corr'] within_range = res['within_range'] thresh = res['thresh'] diffs = res['diffs'] nz_diffs = res['nz_diffs'] # Setup figure _, (ax0, ax1) = plt.subplots(nrows=2) # Plot original vs corrected scanline numbers ax0.plot(along_track, n_orig, "b-", label="original") along_track_corr = along_track.copy() along_track_corr = along_track_corr[within_range] along_track_corr = along_track_corr[diffs <= thresh] ax0.plot(along_track_corr, n_corr, "r--", label="corrected") ax0.set_ylabel("Scanline Number") ax0.set_xlabel("Along Track") ax0.legend(loc="best") # Plot difference from ideal ax1.plot(np.arange(len(nz_diffs)), nz_diffs) ax1.axhline(thresh, color="r", label="thresh={0:.2f}" .format(thresh)) ax1.set_xlabel("Index") ax1.set_ylabel("nonzero |n - n'|") ax1.legend() plt.tight_layout() if filename: plt.savefig(filename, bbox_inches='tight') else: plt.show()
gpl-3.0
fabianp/scikit-learn
benchmarks/bench_multilabel_metrics.py
86
7286
#!/usr/bin/env python """ A comparison of multilabel target formats and metrics over them """ from __future__ import division from __future__ import print_function from timeit import timeit from functools import partial import itertools import argparse import sys import matplotlib.pyplot as plt import scipy.sparse as sp import numpy as np from sklearn.datasets import make_multilabel_classification from sklearn.metrics import (f1_score, accuracy_score, hamming_loss, jaccard_similarity_score) from sklearn.utils.testing import ignore_warnings METRICS = { 'f1': partial(f1_score, average='micro'), 'f1-by-sample': partial(f1_score, average='samples'), 'accuracy': accuracy_score, 'hamming': hamming_loss, 'jaccard': jaccard_similarity_score, } FORMATS = { 'sequences': lambda y: [list(np.flatnonzero(s)) for s in y], 'dense': lambda y: y, 'csr': lambda y: sp.csr_matrix(y), 'csc': lambda y: sp.csc_matrix(y), } @ignore_warnings def benchmark(metrics=tuple(v for k, v in sorted(METRICS.items())), formats=tuple(v for k, v in sorted(FORMATS.items())), samples=1000, classes=4, density=.2, n_times=5): """Times metric calculations for a number of inputs Parameters ---------- metrics : array-like of callables (1d or 0d) The metric functions to time. formats : array-like of callables (1d or 0d) These may transform a dense indicator matrix into multilabel representation. samples : array-like of ints (1d or 0d) The number of samples to generate as input. classes : array-like of ints (1d or 0d) The number of classes in the input. density : array-like of ints (1d or 0d) The density of positive labels in the input. n_times : int Time calling the metric n_times times. Returns ------- array of floats shaped like (metrics, formats, samples, classes, density) Time in seconds. """ metrics = np.atleast_1d(metrics) samples = np.atleast_1d(samples) classes = np.atleast_1d(classes) density = np.atleast_1d(density) formats = np.atleast_1d(formats) out = np.zeros((len(metrics), len(formats), len(samples), len(classes), len(density)), dtype=float) it = itertools.product(samples, classes, density) for i, (s, c, d) in enumerate(it): _, y_true = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, return_indicator=True, random_state=42) _, y_pred = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, return_indicator=True, random_state=84) for j, f in enumerate(formats): f_true = f(y_true) f_pred = f(y_pred) for k, metric in enumerate(metrics): t = timeit(partial(metric, f_true, f_pred), number=n_times) out[k, j].flat[i] = t return out def _tabulate(results, metrics, formats): """Prints results by metric and format Uses the last ([-1]) value of other fields """ column_width = max(max(len(k) for k in formats) + 1, 8) first_width = max(len(k) for k in metrics) head_fmt = ('{:<{fw}s}' + '{:>{cw}s}' * len(formats)) row_fmt = ('{:<{fw}s}' + '{:>{cw}.3f}' * len(formats)) print(head_fmt.format('Metric', *formats, cw=column_width, fw=first_width)) for metric, row in zip(metrics, results[:, :, -1, -1, -1]): print(row_fmt.format(metric, *row, cw=column_width, fw=first_width)) def _plot(results, metrics, formats, title, x_ticks, x_label, format_markers=('x', '|', 'o', '+'), metric_colors=('c', 'm', 'y', 'k', 'g', 'r', 'b')): """ Plot the results by metric, format and some other variable given by x_label """ fig = plt.figure('scikit-learn multilabel metrics benchmarks') plt.title(title) ax = fig.add_subplot(111) for i, metric in enumerate(metrics): for j, format in enumerate(formats): ax.plot(x_ticks, results[i, j].flat, label='{}, {}'.format(metric, format), marker=format_markers[j], color=metric_colors[i % len(metric_colors)]) ax.set_xlabel(x_label) ax.set_ylabel('Time (s)') ax.legend() plt.show() if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument('metrics', nargs='*', default=sorted(METRICS), help='Specifies metrics to benchmark, defaults to all. ' 'Choices are: {}'.format(sorted(METRICS))) ap.add_argument('--formats', nargs='+', choices=sorted(FORMATS), help='Specifies multilabel formats to benchmark ' '(defaults to all).') ap.add_argument('--samples', type=int, default=1000, help='The number of samples to generate') ap.add_argument('--classes', type=int, default=10, help='The number of classes') ap.add_argument('--density', type=float, default=.2, help='The average density of labels per sample') ap.add_argument('--plot', choices=['classes', 'density', 'samples'], default=None, help='Plot time with respect to this parameter varying ' 'up to the specified value') ap.add_argument('--n-steps', default=10, type=int, help='Plot this many points for each metric') ap.add_argument('--n-times', default=5, type=int, help="Time performance over n_times trials") args = ap.parse_args() if args.plot is not None: max_val = getattr(args, args.plot) if args.plot in ('classes', 'samples'): min_val = 2 else: min_val = 0 steps = np.linspace(min_val, max_val, num=args.n_steps + 1)[1:] if args.plot in ('classes', 'samples'): steps = np.unique(np.round(steps).astype(int)) setattr(args, args.plot, steps) if args.metrics is None: args.metrics = sorted(METRICS) if args.formats is None: args.formats = sorted(FORMATS) results = benchmark([METRICS[k] for k in args.metrics], [FORMATS[k] for k in args.formats], args.samples, args.classes, args.density, args.n_times) _tabulate(results, args.metrics, args.formats) if args.plot is not None: print('Displaying plot', file=sys.stderr) title = ('Multilabel metrics with %s' % ', '.join('{0}={1}'.format(field, getattr(args, field)) for field in ['samples', 'classes', 'density'] if args.plot != field)) _plot(results, args.metrics, args.formats, title, steps, args.plot)
bsd-3-clause
zaxliu/deepnap
experiments/kdd-exps/experiment_QNN_legacy_template.py
1
4398
# System built-in modules import time from datetime import datetime import sys import os from multiprocessing import Pool # Project dependency modules import pandas as pd pd.set_option('mode.chained_assignment', None) # block warnings due to DataFrame value assignment import lasagne # Project modules sys.path.append('../') from sleep_control.traffic_emulator import TrafficEmulator from sleep_control.traffic_server import TrafficServer from sleep_control.controller import QController, DummyController, NController from sleep_control.integration import Emulation from sleep_control.env_models import SJTUModel from rl.qtable import QAgent from rl.qnn_theano import QAgentNN from rl.mixin import PhiMixin, DynaMixin sys_stdout = sys.stdout log_file_name = "Default" # Composite classes class Phi_QAgentNN(PhiMixin, QAgentNN): def __init__(self, **kwargs): super(Phi_QAgentNN, self).__init__(**kwargs) # Parameters # |- Agent # |- QAgent actions = [(True, None), (False, 'serve_all')] gamma, alpha = 0.9, 0.9 # TD backup explore_strategy, epsilon = 'epsilon', 0.02 # exploration # |- QAgentNN # | - Phi phi_length = 5 dim_state = (1, phi_length, 3+2) range_state_slice = [(0, 10), (0, 10), (0, 10), (0, 1), (0, 1)] range_state = [[range_state_slice]*phi_length] # | - Other params momentum, learning_rate = 0.9, 0.01 # SGD num_buffer, memory_size = 2, 200 reward_scaling, reward_scaling_update = 1, 'adaptive' batch_size, update_period, freeze_period, rs_period = 100, 4, 16, 32 # |- Env model Rs, Rw, Rf, Co, Cw = 1.0, -1.0, -10.0, -5.0, 0.0 beta = None # R = (1-beta)*ServiceReward + beta*Cost reward_params = (Rs, Rw, Rf, Co, Cw, beta) # |- Env # |- Time start_time = pd.to_datetime("2014-10-15 09:20:00") total_time = pd.Timedelta(days=7) time_step = pd.Timedelta(seconds=2) backoff_epochs = num_buffer*memory_size+phi_length head_datetime = start_time - time_step*backoff_epochs tail_datetime = head_datetime + total_time TOTAL_EPOCHS = int(total_time/time_step) # |- Reward rewarding = {'serve': Rs, 'wait': Rw, 'fail': Rf} # load from processed data session_df =pd.read_csv( filepath_or_buffer='../data/trace_dh3.dat', parse_dates=['startTime_datetime', 'endTime_datetime'] ) te = TrafficEmulator( session_df=session_df, time_step=time_step, head_datetime=head_datetime, tail_datetime=tail_datetime, rewarding=rewarding, verbose=2) ts = TrafficServer(cost=(Co, Cw), verbose=2) agent = Phi_QAgentNN( phi_length=phi_length, dim_state=dim_state, range_state=range_state, f_build_net = None, batch_size=batch_size, learning_rate=learning_rate, momentum=momentum, reward_scaling=reward_scaling, reward_scaling_update=reward_scaling_update, rs_period=rs_period, update_period=update_period, freeze_period=freeze_period, memory_size=memory_size, num_buffer=num_buffer, # Below is QAgent params actions=actions, alpha=alpha, gamma=gamma, explore_strategy=explore_strategy, epsilon=epsilon, verbose=2) c = QController(agent=agent) emu = Emulation(te=te, ts=ts, c=c, beta=beta) # Heavyliftings t = time.time() sys.stdout = sys_stdout log_path = './log/' if os.path.isfile(log_path+log_file_name): print "Log file {} already exist. Experiment cancelled.".format(log_file_name) else: log_file = open(log_path+log_file_name,"w") print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{}%'.format(int(100.0*emu.epoch/TOTAL_EPOCHS)), print log_file_name time.sleep(1) sys.stdout = log_file while emu.epoch is not None and emu.epoch<TOTAL_EPOCHS: # log time print "Epoch {},".format(emu.epoch), left = emu.te.head_datetime + emu.te.epoch*emu.te.time_step right = left + emu.te.time_step print "{} - {}".format(left.strftime("%Y-%m-%d %H:%M:%S"), right.strftime("%Y-%m-%d %H:%M:%S")) emu.step() print if emu.epoch%(0.05*TOTAL_EPOCHS)==0: sys.stdout = sys_stdout print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{}%'.format(int(100.0*emu.epoch/TOTAL_EPOCHS)), print log_file_name time.sleep(1) sys.stdout = log_file sys.stdout = sys_stdout log_file.close() print print log_file_name, print '{:.3f} sec,'.format(time.time()-t), print '{:.3f} min'.format((time.time()-t)/60)
bsd-3-clause
Stargrazer82301/CAAPR
CAAPR/CAAPR_AstroMagic/PTS/pts/eagle/plotdensitycurves.py
2
4043
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.eagle.plotdensitycurves Plot stellar, gas and dust # densities in function of the galaxy radius for an EAGLE SKIRT-run. # # The facilities in this module serve to plot stellar, gas and dust # densities in function of the galaxy radius for a particular EAGLE SKIRT-run. # The data is calculated based on the SPH particles in the input files, # assuming al mass is concentrated in a particle's center position. # ---------------------------------------------------------------------- # use a non-interactive back-end to generate high-quality vector graphics import matplotlib.pyplot as plt # import standard modules import os.path import numpy as np # import pts modules from ..core.tools import archive as arch # ---------------------------------------------------------------------- # load columns text file in given directory and with name ending with given extension def loadfile(inpath, extension): filenames = arch.listdir(inpath, extension) if len(filenames)!=1: raise ValueError("input file not found") filepath = os.path.join(inpath, filenames[0]) return np.loadtxt(arch.opentext(filepath), unpack=True) # ---------------------------------------------------------------------- ## This function creates a PDF plot with histograms of stellar, gas and dust # densities in function of the galaxy radius for a particular EAGLE SKIRT-run. # The data is calculated based on the SPH particles in the input files, # assuming al mass is concentrated in a particle's center position. # The output plot is placed in the SKIRT-run's visualization directory. def plotdensitycurves(skirtrun): # setup the figure figure = plt.figure(figsize=(10,6)) rmax = 50 # kpc # load and plot the stars x,y,z,h,M,Z,t = loadfile(skirtrun.inpath(), "_stars.dat") r = np.sqrt(x*x + y*y + z*z)/1000 # kpc r[r>rmax] = rmax plt.hist(r, weights=M, bins=25, range=(0,rmax), histtype='step', log=True, color='b', label="stars") # load and plot the gas x,y,z,h,Mgas,Z,T = loadfile(skirtrun.inpath(), "_gas.dat") r = np.sqrt(x*x + y*y + z*z)/1000 # kpc r[r>rmax] = rmax M = Mgas.copy() M[np.abs(T)>75000] = 0 if np.any(M): plt.hist(r, weights=M*Z, bins=25, range=(0,rmax), histtype='step', log=True, color='m', ls='dashed', label="metals (T<75000K)") M = Mgas.copy() M[np.abs(T)>8000] = 0 if np.any(M): plt.hist(r, weights=M*Z, bins=25, range=(0,rmax), histtype='step', log=True, color='m', ls='dotted', label="metals (T<8000K)") M = Mgas.copy() M[T>8000] = 0 if np.any(M): plt.hist(r, weights=M*Z, bins=25, range=(0,rmax), histtype='step', log=True, color='m', ls='solid', label="metals (T<8000K or SFR>0)") # load and plot the hii regions try: x,y,z,h,SFR,Z,logC,P,fPDR = loadfile(skirtrun.inpath(), "_hii.dat") r = np.sqrt(x*x + y*y + z*z)/1000 # kpc r[r>rmax] = rmax plt.hist(r, weights=SFR*1e7, bins=25, range=(0,rmax), histtype='step', log=True, color='c', label="hii regions") except ValueError: pass # add axis labels, legend and title plt.grid('on') plt.xlabel("r (kpc)", fontsize='medium') plt.ylabel("Mass (Msun)", fontsize='medium') plt.ylim(1e4, 1e9) plt.legend(loc='upper right', prop={'size':'small'}) plt.title("runid {} -- {}".format(skirtrun.runid(), skirtrun.prefix()), fontsize='medium') # save the figure plotpath = os.path.join(skirtrun.vispath(), skirtrun.prefix()+"_density_curves.pdf") plt.savefig(plotpath, bbox_inches='tight', pad_inches=0.25) plt.close() print "Created PDF plot file " + plotpath # ----------------------------------------------------------------------
mit
moonboots/tensorflow
tensorflow/python/client/notebook.py
26
4596
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Notebook front-end to TensorFlow. When you run this binary, you'll see something like below, which indicates the serving URL of the notebook: The IPython Notebook is running at: http://127.0.0.1:8888/ Press "Shift+Enter" to execute a cell Press "Enter" on a cell to go into edit mode. Press "Escape" to go back into command mode and use arrow keys to navigate. Press "a" in command mode to insert cell above or "b" to insert cell below. Your root notebooks directory is FLAGS.notebook_dir """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import socket import sys # pylint: disable=g-import-not-at-top # Official recommended way of turning on fast protocol buffers as of 10/21/14 os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "cpp" os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION"] = "2" from tensorflow.python.platform import app from tensorflow.python.platform import flags FLAGS = flags.FLAGS flags.DEFINE_string( "password", None, "Password to require. If set, the server will allow public access." " Only used if notebook config file does not exist.") flags.DEFINE_string("notebook_dir", "experimental/brain/notebooks", "root location where to store notebooks") ORIG_ARGV = sys.argv # Main notebook process calls itself with argv[1]="kernel" to start kernel # subprocesses. IS_KERNEL = len(sys.argv) > 1 and sys.argv[1] == "kernel" def main(unused_argv): sys.argv = ORIG_ARGV if not IS_KERNEL: # Drop all flags. sys.argv = [sys.argv[0]] # NOTE(sadovsky): For some reason, putting this import at the top level # breaks inline plotting. It's probably a bug in the stone-age version of # matplotlib. from IPython.html.notebookapp import NotebookApp # pylint: disable=g-import-not-at-top notebookapp = NotebookApp.instance() notebookapp.open_browser = True # password functionality adopted from quality/ranklab/main/tools/notebook.py # add options to run with "password" if FLAGS.password: from IPython.lib import passwd # pylint: disable=g-import-not-at-top notebookapp.ip = "0.0.0.0" notebookapp.password = passwd(FLAGS.password) else: print ("\nNo password specified; Notebook server will only be available" " on the local machine.\n") notebookapp.initialize(argv=["--notebook-dir", FLAGS.notebook_dir]) if notebookapp.ip == "0.0.0.0": proto = "https" if notebookapp.certfile else "http" url = "%s://%s:%d%s" % (proto, socket.gethostname(), notebookapp.port, notebookapp.base_project_url) print("\nNotebook server will be publicly available at: %s\n" % url) notebookapp.start() return # Drop the --flagfile flag so that notebook doesn't complain about an # "unrecognized alias" when parsing sys.argv. sys.argv = ([sys.argv[0]] + [z for z in sys.argv[1:] if not z.startswith("--flagfile")]) from IPython.kernel.zmq.kernelapp import IPKernelApp # pylint: disable=g-import-not-at-top kernelapp = IPKernelApp.instance() kernelapp.initialize() # Enable inline plotting. Equivalent to running "%matplotlib inline". ipshell = kernelapp.shell ipshell.enable_matplotlib("inline") kernelapp.start() if __name__ == "__main__": # When the user starts the main notebook process, we don't touch sys.argv. # When the main process launches kernel subprocesses, it writes all flags # to a tmpfile and sets --flagfile to that tmpfile, so for kernel # subprocesses here we drop all flags *except* --flagfile, then call # app.run(), and then (in main) restore all flags before starting the # kernel app. if IS_KERNEL: # Drop everything except --flagfile. sys.argv = ([sys.argv[0]] + [x for x in sys.argv[1:] if x.startswith("--flagfile")]) app.run()
apache-2.0
joergdietrich/astropy
astropy/table/table.py
2
101482
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, division, print_function, unicode_literals) from ..extern import six from ..extern.six.moves import zip, range from .index import TableIndices, TableLoc, TableILoc import re import sys from collections import OrderedDict, Mapping import warnings from copy import deepcopy import numpy as np from numpy import ma from .. import log from ..io import registry as io_registry from ..units import Quantity from ..utils import isiterable, ShapedLikeNDArray from ..utils.compat.numpy import broadcast_to as np_broadcast_to from ..utils.console import color_print from ..utils.metadata import MetaData from ..utils.data_info import BaseColumnInfo, MixinInfo, ParentDtypeInfo, DataInfo from . import groups from .pprint import TableFormatter from .column import (BaseColumn, Column, MaskedColumn, _auto_names, FalseArray, col_copy) from .row import Row from .np_utils import fix_column_name, recarray_fromrecords from .info import TableInfo from .index import Index, _IndexModeContext, get_index from . import conf __doctest_skip__ = ['Table.read', 'Table.write', 'Table.convert_bytestring_to_unicode', 'Table.convert_unicode_to_bytestring', ] class TableReplaceWarning(UserWarning): """ Warning class for cases when a table column is replaced via the Table.__setitem__ syntax e.g. t['a'] = val. This does not inherit from AstropyWarning because we want to use stacklevel=3 to show the user where the issue occurred in their code. """ pass def descr(col): """Array-interface compliant full description of a column. This returns a 3-tuple (name, type, shape) that can always be used in a structured array dtype definition. """ col_dtype = 'O' if (col.info.dtype is None) else col.info.dtype col_shape = col.shape[1:] if hasattr(col, 'shape') else () return (col.info.name, col_dtype, col_shape) def has_info_class(obj, cls): return hasattr(obj, 'info') and isinstance(obj.info, cls) class TableColumns(OrderedDict): """OrderedDict subclass for a set of columns. This class enhances item access to provide convenient access to columns by name or index, including slice access. It also handles renaming of columns. The initialization argument ``cols`` can be a list of ``Column`` objects or any structure that is valid for initializing a Python dict. This includes a dict, list of (key, val) tuples or [key, val] lists, etc. Parameters ---------- cols : dict, list, tuple; optional Column objects as data structure that can init dict (see above) """ def __init__(self, cols={}): if isinstance(cols, (list, tuple)): # `cols` should be a list of two-tuples, but it is allowed to have # columns (BaseColumn or mixins) in the list. newcols = [] for col in cols: if has_info_class(col, BaseColumnInfo): newcols.append((col.info.name, col)) else: newcols.append(col) cols = newcols super(TableColumns, self).__init__(cols) def __getitem__(self, item): """Get items from a TableColumns object. :: tc = TableColumns(cols=[Column(name='a'), Column(name='b'), Column(name='c')]) tc['a'] # Column('a') tc[1] # Column('b') tc['a', 'b'] # <TableColumns names=('a', 'b')> tc[1:3] # <TableColumns names=('b', 'c')> """ if isinstance(item, six.string_types): return OrderedDict.__getitem__(self, item) elif isinstance(item, (int, np.integer)): return self.values()[item] elif (isinstance(item, np.ndarray) and item.shape == () and item.dtype.kind == 'i'): return self.values()[item.item()] elif isinstance(item, tuple): return self.__class__([self[x] for x in item]) elif isinstance(item, slice): return self.__class__([self[x] for x in list(self)[item]]) else: raise IndexError('Illegal key or index value for {} object' .format(self.__class__.__name__)) def __setitem__(self, item, value): if item in self: raise ValueError("Cannot replace column '{0}'. Use Table.replace_column() instead." .format(item)) super(TableColumns, self).__setitem__(item, value) def __repr__(self): names = ("'{0}'".format(x) for x in six.iterkeys(self)) return "<{1} names=({0})>".format(",".join(names), self.__class__.__name__) def _rename_column(self, name, new_name): if name == new_name: return if new_name in self: raise KeyError("Column {0} already exists".format(new_name)) mapper = {name: new_name} new_names = [mapper.get(name, name) for name in self] cols = list(six.itervalues(self)) self.clear() self.update(list(zip(new_names, cols))) # Define keys and values for Python 2 and 3 source compatibility def keys(self): return list(OrderedDict.keys(self)) def values(self): return list(OrderedDict.values(self)) class Table(object): """A class to represent tables of heterogeneous data. `Table` provides a class for heterogeneous tabular data, making use of a `numpy` structured array internally to store the data values. A key enhancement provided by the `Table` class is the ability to easily modify the structure of the table by adding or removing columns, or adding new rows of data. In addition table and column metadata are fully supported. `Table` differs from `~astropy.nddata.NDData` by the assumption that the input data consists of columns of homogeneous data, where each column has a unique identifier and may contain additional metadata such as the data unit, format, and description. Parameters ---------- data : numpy ndarray, dict, list, Table, or table-like object, optional Data to initialize table. masked : bool, optional Specify whether the table is masked. names : list, optional Specify column names dtype : list, optional Specify column data types meta : dict, optional Metadata associated with the table. copy : bool, optional Copy the input data (default=True). rows : numpy ndarray, list of lists, optional Row-oriented data for table instead of ``data`` argument copy_indices : bool, optional Copy any indices in the input data (default=True) **kwargs : dict, optional Additional keyword args when converting table-like object .. note:: If the input is a Table the ``meta`` is always copied regardless of the ``copy`` parameter. """ meta = MetaData() # Define class attributes for core container objects to allow for subclass # customization. Row = Row Column = Column MaskedColumn = MaskedColumn TableColumns = TableColumns TableFormatter = TableFormatter def as_array(self, keep_byteorder=False): """ Return a new copy of the table in the form of a structured np.ndarray or np.ma.MaskedArray object (as appropriate). Parameters ---------- keep_byteorder : bool, optional By default the returned array has all columns in native byte order. However, if this option is `True` this preserves the byte order of all columns (if any are non-native). Returns ------- table_array : np.ndarray (unmasked) or np.ma.MaskedArray (masked) Copy of table as a numpy structured array """ if len(self.columns) == 0: return None sys_byteorder = ('>', '<')[sys.byteorder == 'little'] native_order = ('=', sys_byteorder) dtype = [] cols = self.columns.values() for col in cols: col_descr = descr(col) byteorder = col.info.dtype.byteorder if not keep_byteorder and byteorder not in native_order: new_dt = np.dtype(col_descr[1]).newbyteorder('=') col_descr = (col_descr[0], new_dt, col_descr[2]) dtype.append(col_descr) empty_init = ma.empty if self.masked else np.empty data = empty_init(len(self), dtype=dtype) for col in cols: # When assigning from one array into a field of a structured array, # Numpy will automatically swap those columns to their destination # byte order where applicable data[col.info.name] = col return data def __init__(self, data=None, masked=None, names=None, dtype=None, meta=None, copy=True, rows=None, copy_indices=True, **kwargs): # Set up a placeholder empty table self._set_masked(masked) self.columns = self.TableColumns() self.meta = meta self.formatter = self.TableFormatter() self._copy_indices = True # copy indices from this Table by default self._init_indices = copy_indices # whether to copy indices in init self.primary_key = None # Must copy if dtype are changing if not copy and dtype is not None: raise ValueError('Cannot specify dtype when copy=False') # Row-oriented input, e.g. list of lists or list of tuples, list of # dict, Row instance. Set data to something that the subsequent code # will parse correctly. is_list_of_dict = False if rows is not None: if data is not None: raise ValueError('Cannot supply both `data` and `rows` values') if all(isinstance(row, dict) for row in rows): is_list_of_dict = True # Avoid doing the all(...) test twice. data = rows elif isinstance(rows, self.Row): data = rows else: rec_data = recarray_fromrecords(rows) data = [rec_data[name] for name in rec_data.dtype.names] # Infer the type of the input data and set up the initialization # function, number of columns, and potentially the default col names default_names = None if hasattr(data, '__astropy_table__'): # Data object implements the __astropy_table__ interface method. # Calling that method returns an appropriate instance of # self.__class__ and respects the `copy` arg. The returned # Table object should NOT then be copied (though the meta # will be deep-copied anyway). data = data.__astropy_table__(self.__class__, copy, **kwargs) copy = False elif kwargs: raise TypeError('__init__() got unexpected keyword argument {!r}' .format(list(kwargs.keys())[0])) if (isinstance(data, np.ndarray) and data.shape == (0,) and not data.dtype.names): data = None if isinstance(data, self.Row): data = data._table[data._index:data._index + 1] if isinstance(data, (list, tuple)): init_func = self._init_from_list if data and (is_list_of_dict or all(isinstance(row, dict) for row in data)): n_cols = len(data[0]) else: n_cols = len(data) elif isinstance(data, np.ndarray): if data.dtype.names: init_func = self._init_from_ndarray # _struct n_cols = len(data.dtype.names) default_names = data.dtype.names else: init_func = self._init_from_ndarray # _homog if data.shape == (): raise ValueError('Can not initialize a Table with a scalar') elif len(data.shape) == 1: data = data[np.newaxis, :] n_cols = data.shape[1] elif isinstance(data, Mapping): init_func = self._init_from_dict default_names = list(data) n_cols = len(default_names) elif isinstance(data, Table): init_func = self._init_from_table n_cols = len(data.colnames) default_names = data.colnames # don't copy indices if the input Table is in non-copy mode self._init_indices = self._init_indices and data._copy_indices elif data is None: if names is None: if dtype is None: return # Empty table try: # No data nor names but dtype is available. This must be # valid to initialize a structured array. dtype = np.dtype(dtype) names = dtype.names dtype = [dtype[name] for name in names] except Exception: raise ValueError('dtype was specified but could not be ' 'parsed for column names') # names is guaranteed to be set at this point init_func = self._init_from_list n_cols = len(names) data = [[]] * n_cols else: raise ValueError('Data type {0} not allowed to init Table' .format(type(data))) # Set up defaults if names and/or dtype are not specified. # A value of None means the actual value will be inferred # within the appropriate initialization routine, either from # existing specification or auto-generated. if names is None: names = default_names or [None] * n_cols if dtype is None: dtype = [None] * n_cols # Numpy does not support Unicode column names on Python 2, or # bytes column names on Python 3, so fix them up now. names = [fix_column_name(name) for name in names] self._check_names_dtype(names, dtype, n_cols) # Finally do the real initialization init_func(data, names, dtype, n_cols, copy) # Whatever happens above, the masked property should be set to a boolean if type(self.masked) is not bool: raise TypeError("masked property has not been set to True or False") def __getstate__(self): columns = OrderedDict((key, col if isinstance(col, BaseColumn) else col_copy(col)) for key, col in self.columns.items()) return (columns, self.meta) def __setstate__(self, state): columns, meta = state self.__init__(columns, meta=meta) @property def mask(self): # Dynamic view of available masks if self.masked: mask_table = Table([col.mask for col in self.columns.values()], names=self.colnames, copy=False) # Set hidden attribute to force inplace setitem so that code like # t.mask['a'] = [1, 0, 1] will correctly set the underlying mask. # See #5556 for discussion. mask_table._setitem_inplace = True else: mask_table = None return mask_table @mask.setter def mask(self, val): self.mask[:] = val @property def _mask(self): """This is needed so that comparison of a masked Table and a MaskedArray works. The requirement comes from numpy.ma.core so don't remove this property.""" return self.as_array().mask def filled(self, fill_value=None): """Return a copy of self, with masked values filled. If input ``fill_value`` supplied then that value is used for all masked entries in the table. Otherwise the individual ``fill_value`` defined for each table column is used. Parameters ---------- fill_value : str If supplied, this ``fill_value`` is used for all masked entries in the entire table. Returns ------- filled_table : Table New table with masked values filled """ if self.masked: data = [col.filled(fill_value) for col in six.itervalues(self.columns)] else: data = self return self.__class__(data, meta=deepcopy(self.meta)) @property def indices(self): ''' Return the indices associated with columns of the table as a TableIndices object. ''' lst = [] for column in self.columns.values(): for index in column.info.indices: if sum([index is x for x in lst]) == 0: # ensure uniqueness lst.append(index) return TableIndices(lst) @property def loc(self): ''' Return a TableLoc object that can be used for retrieving rows by index in a given data range. Note that both loc and iloc work only with single-column indices. ''' return TableLoc(self) @property def iloc(self): ''' Return a TableILoc object that can be used for retrieving indexed rows in the order they appear in the index. ''' return TableILoc(self) def add_index(self, colnames, engine=None, unique=False): ''' Insert a new index among one or more columns. If there are no indices, make this index the primary table index. Parameters ---------- colnames : str or list List of column names (or a single column name) to index engine : type or None Indexing engine class to use, from among SortedArray, BST, FastBST, and FastRBT. If the supplied argument is None (by default), use SortedArray. unique : bool (defaults to False) Whether the values of the index must be unique ''' if isinstance(colnames, six.string_types): colnames = (colnames,) columns = self.columns[tuple(colnames)].values() # make sure all columns support indexing for col in columns: if not getattr(col.info, '_supports_indexing', False): raise ValueError('Cannot create an index on column "{0}", of ' 'type "{1}"'.format(col.info.name, type(col))) index = Index(columns, engine=engine, unique=unique) if not self.indices: self.primary_key = colnames for col in columns: col.info.indices.append(index) def remove_indices(self, colname): ''' Remove all indices involving the given column. If the primary index is removed, the new primary index will be the most recently added remaining index. Parameters ---------- colname : str Name of column ''' col = self.columns[colname] for index in self.indices: try: index.col_position(col.info.name) except ValueError: pass else: for c in index.columns: c.info.indices.remove(index) def index_mode(self, mode): ''' Return a context manager for an indexing mode. Parameters ---------- mode : str Either 'freeze', 'copy_on_getitem', or 'discard_on_copy'. In 'discard_on_copy' mode, indices are not copied whenever columns or tables are copied. In 'freeze' mode, indices are not modified whenever columns are modified; at the exit of the context, indices refresh themselves based on column values. This mode is intended for scenarios in which one intends to make many additions or modifications in an indexed column. In 'copy_on_getitem' mode, indices are copied when taking column slices as well as table slices, so col[i0:i1] will preserve indices. ''' return _IndexModeContext(self, mode) def __array__(self, dtype=None): """Support converting Table to np.array via np.array(table). Coercion to a different dtype via np.array(table, dtype) is not supported and will raise a ValueError. """ if dtype is not None: raise ValueError('Datatype coercion is not allowed') # This limitation is because of the following unexpected result that # should have made a table copy while changing the column names. # # >>> d = astropy.table.Table([[1,2],[3,4]]) # >>> np.array(d, dtype=[('a', 'i8'), ('b', 'i8')]) # array([(0, 0), (0, 0)], # dtype=[('a', '<i8'), ('b', '<i8')]) return self.as_array().data if self.masked else self.as_array() def _check_names_dtype(self, names, dtype, n_cols): """Make sure that names and dtype are both iterable and have the same length as data. """ for inp_list, inp_str in ((dtype, 'dtype'), (names, 'names')): if not isiterable(inp_list): raise ValueError('{0} must be a list or None'.format(inp_str)) if len(names) != n_cols or len(dtype) != n_cols: raise ValueError( 'Arguments "names" and "dtype" must match number of columns' .format(inp_str)) def _set_masked_from_cols(self, cols): if self.masked is None: if any(isinstance(col, (MaskedColumn, ma.MaskedArray)) for col in cols): self._set_masked(True) else: self._set_masked(False) elif not self.masked: if any(np.any(col.mask) for col in cols if isinstance(col, (MaskedColumn, ma.MaskedArray))): self._set_masked(True) def _init_from_list_of_dicts(self, data, names, dtype, n_cols, copy): names_from_data = set() for row in data: names_from_data.update(row) cols = {} for name in names_from_data: cols[name] = [] for i, row in enumerate(data): try: cols[name].append(row[name]) except KeyError: raise ValueError('Row {0} has no value for column {1}'.format(i, name)) if all(name is None for name in names): names = sorted(names_from_data) self._init_from_dict(cols, names, dtype, n_cols, copy) return def _init_from_list(self, data, names, dtype, n_cols, copy): """Initialize table from a list of columns. A column can be a Column object, np.ndarray, mixin, or any other iterable object. """ if data and all(isinstance(row, dict) for row in data): self._init_from_list_of_dicts(data, names, dtype, n_cols, copy) return # Set self.masked appropriately, then get class to create column instances. self._set_masked_from_cols(data) cols = [] def_names = _auto_names(n_cols) for col, name, def_name, dtype in zip(data, names, def_names, dtype): # Structured ndarray gets viewed as a mixin if isinstance(col, np.ndarray) and len(col.dtype) > 1: col = col.view(NdarrayMixin) if isinstance(col, (Column, MaskedColumn)): col = self.ColumnClass(name=(name or col.info.name or def_name), data=col, dtype=dtype, copy=copy, copy_indices=self._init_indices) elif self._add_as_mixin_column(col): # Copy the mixin column attributes if they exist since the copy below # may not get this attribute. if copy: col = col_copy(col, copy_indices=self._init_indices) col.info.name = name or col.info.name or def_name elif isinstance(col, np.ndarray) or isiterable(col): col = self.ColumnClass(name=(name or def_name), data=col, dtype=dtype, copy=copy, copy_indices=self._init_indices) else: raise ValueError('Elements in list initialization must be ' 'either Column or list-like') cols.append(col) self._init_from_cols(cols) def _init_from_ndarray(self, data, names, dtype, n_cols, copy): """Initialize table from an ndarray structured array""" data_names = data.dtype.names or _auto_names(n_cols) struct = data.dtype.names is not None names = [name or data_names[i] for i, name in enumerate(names)] cols = ([data[name] for name in data_names] if struct else [data[:, i] for i in range(n_cols)]) # Set self.masked appropriately, then get class to create column instances. self._set_masked_from_cols(cols) if copy: self._init_from_list(cols, names, dtype, n_cols, copy) else: dtype = [(name, col.dtype, col.shape[1:]) for name, col in zip(names, cols)] newdata = data.view(dtype).ravel() columns = self.TableColumns() for name in names: columns[name] = self.ColumnClass(name=name, data=newdata[name]) columns[name].info.parent_table = self self.columns = columns def _init_from_dict(self, data, names, dtype, n_cols, copy): """Initialize table from a dictionary of columns""" # TODO: is this restriction still needed with no ndarray? if not copy: raise ValueError('Cannot use copy=False with a dict data input') data_list = [data[name] for name in names] self._init_from_list(data_list, names, dtype, n_cols, copy) def _init_from_table(self, data, names, dtype, n_cols, copy): """Initialize table from an existing Table object """ table = data # data is really a Table, rename for clarity self.meta.clear() self.meta.update(deepcopy(table.meta)) self.primary_key = table.primary_key cols = list(table.columns.values()) self._init_from_list(cols, names, dtype, n_cols, copy) def _convert_col_for_table(self, col): """ Make sure that all Column objects have correct class for this type of Table. For a base Table this most commonly means setting to MaskedColumn if the table is masked. Table subclasses like QTable override this method. """ if col.__class__ is not self.ColumnClass and isinstance(col, Column): col = self.ColumnClass(col) # copy attributes and reference data return col def _init_from_cols(self, cols): """Initialize table from a list of Column or mixin objects""" lengths = set(len(col) for col in cols) if len(lengths) != 1: raise ValueError('Inconsistent data column lengths: {0}' .format(lengths)) # Set the table masking self._set_masked_from_cols(cols) # Make sure that all Column-based objects have correct class. For # plain Table this is self.ColumnClass, but for instance QTable will # convert columns with units to a Quantity mixin. newcols = [self._convert_col_for_table(col) for col in cols] self._make_table_from_cols(self, newcols) # Deduplicate indices. It may happen that after pickling or when # initing from an existing table that column indices which had been # references to a single index object got *copied* into an independent # object. This results in duplicates which will cause downstream problems. index_dict = {} for col in self.itercols(): for i, index in enumerate(col.info.indices or []): names = tuple(ind_col.info.name for ind_col in index.columns) if names in index_dict: col.info.indices[i] = index_dict[names] else: index_dict[names] = index def _new_from_slice(self, slice_): """Create a new table as a referenced slice from self.""" table = self.__class__(masked=self.masked) table.meta.clear() table.meta.update(deepcopy(self.meta)) table.primary_key = self.primary_key cols = self.columns.values() newcols = [] for col in cols: col.info._copy_indices = self._copy_indices newcol = col[slice_] if col.info.indices: newcol = col.info.slice_indices(newcol, slice_, len(col)) newcols.append(newcol) col.info._copy_indices = True self._make_table_from_cols(table, newcols) return table @staticmethod def _make_table_from_cols(table, cols): """ Make ``table`` in-place so that it represents the given list of ``cols``. """ colnames = set(col.info.name for col in cols) if None in colnames: raise TypeError('Cannot have None for column name') if len(colnames) != len(cols): raise ValueError('Duplicate column names') columns = table.TableColumns((col.info.name, col) for col in cols) for col in cols: col.info.parent_table = table if table.masked and not hasattr(col, 'mask'): col.mask = FalseArray(col.shape) table.columns = columns def itercols(self): """ Iterate over the columns of this table. Examples -------- To iterate over the columns of a table:: >>> t = Table([[1], [2]]) >>> for col in t.itercols(): ... print(col) col0 ---- 1 col1 ---- 2 Using ``itercols()`` is similar to ``for col in t.columns.values()`` but is syntactically preferred. """ for colname in self.columns: yield self[colname] def _base_repr_(self, html=False, descr_vals=None, max_width=None, tableid=None, show_dtype=True, max_lines=None, tableclass=None): if descr_vals is None: descr_vals = [self.__class__.__name__] if self.masked: descr_vals.append('masked=True') descr_vals.append('length={0}'.format(len(self))) descr = '<' + ' '.join(descr_vals) + '>\n' if html: from ..utils.xml.writer import xml_escape descr = xml_escape(descr) if tableid is None: tableid = 'table{id}'.format(id=id(self)) data_lines, outs = self.formatter._pformat_table( self, tableid=tableid, html=html, max_width=max_width, show_name=True, show_unit=None, show_dtype=show_dtype, max_lines=max_lines, tableclass=tableclass) out = descr + '\n'.join(data_lines) if six.PY2 and isinstance(out, six.text_type): out = out.encode('utf-8') return out def _repr_html_(self): return self._base_repr_(html=True, max_width=-1, tableclass=conf.default_notebook_table_class) def __repr__(self): return self._base_repr_(html=False, max_width=None) def __unicode__(self): return '\n'.join(self.pformat()) if not six.PY2: __str__ = __unicode__ def __bytes__(self): return six.text_type(self).encode('utf-8') if six.PY2: __str__ = __bytes__ @property def has_mixin_columns(self): """ True if table has any mixin columns (defined as columns that are not Column subclasses) """ return any(has_info_class(col, MixinInfo) for col in self.columns.values()) def _add_as_mixin_column(self, col): """ Determine if ``col`` should be added to the table directly as a mixin column. """ if isinstance(col, BaseColumn): return False # Is it a mixin but not not Quantity (which gets converted to Column with # unit set). return has_info_class(col, MixinInfo) and not isinstance(col, Quantity) def pprint(self, max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False, align=None): """Print a formatted string representation of the table. If no value of ``max_lines`` is supplied then the height of the screen terminal is used to set ``max_lines``. If the terminal height cannot be determined then the default is taken from the configuration item ``astropy.conf.max_lines``. If a negative value of ``max_lines`` is supplied then there is no line limit applied. The same applies for max_width except the configuration item is ``astropy.conf.max_width``. Parameters ---------- max_lines : int Maximum number of lines in table output max_width : int or `None` Maximum character width of output show_name : bool Include a header row for column names (default=True) show_unit : bool Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit. show_dtype : bool Include a header row for column dtypes (default=True) align : str or list or tuple or `None` Left/right alignment of columns. Default is right (None) for all columns. Other allowed values are '>', '<', '^', and '0=' for right, left, centered, and 0-padded, respectively. A list of strings can be provided for alignment of tables with multiple columns. """ lines, outs = self.formatter._pformat_table(self, max_lines, max_width, show_name=show_name, show_unit=show_unit, show_dtype=show_dtype, align=align) if outs['show_length']: lines.append('Length = {0} rows'.format(len(self))) n_header = outs['n_header'] for i, line in enumerate(lines): if i < n_header: color_print(line, 'red') else: print(line) def _make_index_row_display_table(self, index_row_name): if index_row_name not in self.columns: idx_col = self.ColumnClass(name=index_row_name, data=np.arange(len(self))) return self.__class__([idx_col] + self.columns.values(), copy=False) else: return self def show_in_notebook(self, tableid=None, css=None, display_length=50, table_class='astropy-default', show_row_index='idx'): """Render the table in HTML and show it in the IPython notebook. Parameters ---------- tableid : str or `None` An html ID tag for the table. Default is ``table{id}-XXX``, where id is the unique integer id of the table object, id(self), and XXX is a random number to avoid conflicts when printing the same table multiple times. table_class : str or `None` A string with a list of HTML classes used to style the table. The special default string ('astropy-default') means that the string will be retrieved from the configuration item ``astropy.table.default_notebook_table_class``. Note that these table classes may make use of bootstrap, as this is loaded with the notebook. See `this page <http://getbootstrap.com/css/#tables>`_ for the list of classes. css : string A valid CSS string declaring the formatting for the table. Default to ``astropy.table.jsviewer.DEFAULT_CSS_NB``. display_length : int, optional Number or rows to show. Defaults to 50. show_row_index : str or False If this does not evaluate to False, a column with the given name will be added to the version of the table that gets displayed. This new column shows the index of the row in the table itself, even when the displayed table is re-sorted by another column. Note that if a column with this name already exists, this option will be ignored. Defaults to "idx". Notes ----- Currently, unlike `show_in_browser` (with ``jsviewer=True``), this method needs to access online javascript code repositories. This is due to modern browsers' limitations on accessing local files. Hence, if you call this method while offline (and don't have a cached version of jquery and jquery.dataTables), you will not get the jsviewer features. """ from .jsviewer import JSViewer from IPython.display import HTML if tableid is None: tableid = 'table{0}-{1}'.format(id(self), np.random.randint(1, 1e6)) jsv = JSViewer(display_length=display_length) if show_row_index: display_table = self._make_index_row_display_table(show_row_index) else: display_table = self if table_class == 'astropy-default': table_class = conf.default_notebook_table_class html = display_table._base_repr_(html=True, max_width=-1, tableid=tableid, max_lines=-1, show_dtype=False, tableclass=table_class) columns = display_table.columns.values() sortable_columns = [i for i, col in enumerate(columns) if col.dtype.kind in 'iufc'] html += jsv.ipynb(tableid, css=css, sort_columns=sortable_columns) return HTML(html) def show_in_browser(self, max_lines=5000, jsviewer=False, browser='default', jskwargs={'use_local_files': True}, tableid=None, table_class="display compact", css=None, show_row_index='idx'): """Render the table in HTML and show it in a web browser. Parameters ---------- max_lines : int Maximum number of rows to export to the table (set low by default to avoid memory issues, since the browser view requires duplicating the table in memory). A negative value of ``max_lines`` indicates no row limit. jsviewer : bool If `True`, prepends some javascript headers so that the table is rendered as a `DataTables <https://datatables.net>`_ data table. This allows in-browser searching & sorting. browser : str Any legal browser name, e.g. ``'firefox'``, ``'chrome'``, ``'safari'`` (for mac, you may need to use ``'open -a "/Applications/Google Chrome.app" {}'`` for Chrome). If ``'default'``, will use the system default browser. jskwargs : dict Passed to the `astropy.table.JSViewer` init. Defaults to ``{'use_local_files': True}`` which means that the JavaScript libraries will be served from local copies. tableid : str or `None` An html ID tag for the table. Default is ``table{id}``, where id is the unique integer id of the table object, id(self). table_class : str or `None` A string with a list of HTML classes used to style the table. Default is "display compact", and other possible values can be found in http://www.datatables.net/manual/styling/classes css : string A valid CSS string declaring the formatting for the table. Defaults to ``astropy.table.jsviewer.DEFAULT_CSS``. show_row_index : str or False If this does not evaluate to False, a column with the given name will be added to the version of the table that gets displayed. This new column shows the index of the row in the table itself, even when the displayed table is re-sorted by another column. Note that if a column with this name already exists, this option will be ignored. Defaults to "idx". """ import os import webbrowser import tempfile from ..extern.six.moves.urllib.parse import urljoin from ..extern.six.moves.urllib.request import pathname2url from .jsviewer import DEFAULT_CSS if css is None: css = DEFAULT_CSS # We can't use NamedTemporaryFile here because it gets deleted as # soon as it gets garbage collected. tmpdir = tempfile.mkdtemp() path = os.path.join(tmpdir, 'table.html') with open(path, 'w') as tmp: if jsviewer: if show_row_index: display_table = self._make_index_row_display_table(show_row_index) else: display_table = self display_table.write(tmp, format='jsviewer', css=css, max_lines=max_lines, jskwargs=jskwargs, table_id=tableid, table_class=table_class) else: self.write(tmp, format='html') try: br = webbrowser.get(None if browser == 'default' else browser) except webbrowser.Error: log.error("Browser '{}' not found.".format(browser)) else: br.open(urljoin('file:', pathname2url(path))) def pformat(self, max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False, html=False, tableid=None, align=None, tableclass=None): """Return a list of lines for the formatted string representation of the table. If no value of ``max_lines`` is supplied then the height of the screen terminal is used to set ``max_lines``. If the terminal height cannot be determined then the default is taken from the configuration item ``astropy.conf.max_lines``. If a negative value of ``max_lines`` is supplied then there is no line limit applied. The same applies for ``max_width`` except the configuration item is ``astropy.conf.max_width``. Parameters ---------- max_lines : int or `None` Maximum number of rows to output max_width : int or `None` Maximum character width of output show_name : bool Include a header row for column names (default=True) show_unit : bool Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit. show_dtype : bool Include a header row for column dtypes (default=True) html : bool Format the output as an HTML table (default=False) tableid : str or `None` An ID tag for the table; only used if html is set. Default is "table{id}", where id is the unique integer id of the table object, id(self) align : str or list or tuple or `None` Left/right alignment of columns. Default is right (None) for all columns. Other allowed values are '>', '<', '^', and '0=' for right, left, centered, and 0-padded, respectively. A list of strings can be provided for alignment of tables with multiple columns. tableclass : str or list of str or `None` CSS classes for the table; only used if html is set. Default is none Returns ------- lines : list Formatted table as a list of strings """ lines, outs = self.formatter._pformat_table( self, max_lines, max_width, show_name=show_name, show_unit=show_unit, show_dtype=show_dtype, html=html, tableid=tableid, tableclass=tableclass, align=align) if outs['show_length']: lines.append('Length = {0} rows'.format(len(self))) return lines def more(self, max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False): """Interactively browse table with a paging interface. Supported keys:: f, <space> : forward one page b : back one page r : refresh same page n : next row p : previous row < : go to beginning > : go to end q : quit browsing h : print this help Parameters ---------- max_lines : int Maximum number of lines in table output max_width : int or `None` Maximum character width of output show_name : bool Include a header row for column names (default=True) show_unit : bool Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit. show_dtype : bool Include a header row for column dtypes (default=True) """ self.formatter._more_tabcol(self, max_lines, max_width, show_name=show_name, show_unit=show_unit, show_dtype=show_dtype) def __getitem__(self, item): if isinstance(item, six.string_types): return self.columns[item] elif isinstance(item, (int, np.integer)): return self.Row(self, item) elif (isinstance(item, np.ndarray) and item.shape == () and item.dtype.kind == 'i'): return self.Row(self, item.item()) elif (isinstance(item, (tuple, list)) and item and all(isinstance(x, six.string_types) for x in item)): bad_names = [x for x in item if x not in self.colnames] if bad_names: raise ValueError('Slice name(s) {0} not valid column name(s)' .format(', '.join(bad_names))) out = self.__class__([self[x] for x in item], meta=deepcopy(self.meta), copy_indices=self._copy_indices) out._groups = groups.TableGroups(out, indices=self.groups._indices, keys=self.groups._keys) return out elif ((isinstance(item, np.ndarray) and item.size == 0) or (isinstance(item, (tuple, list)) and not item)): # If item is an empty array/list/tuple then return the table with no rows return self._new_from_slice([]) elif (isinstance(item, slice) or isinstance(item, np.ndarray) or isinstance(item, list) or isinstance(item, tuple) and all(isinstance(x, np.ndarray) for x in item)): # here for the many ways to give a slice; a tuple of ndarray # is produced by np.where, as in t[np.where(t['a'] > 2)] # For all, a new table is constructed with slice of all columns return self._new_from_slice(item) else: raise ValueError('Illegal type {0} for table item access' .format(type(item))) def __setitem__(self, item, value): # If the item is a string then it must be the name of a column. # If that column doesn't already exist then create it now. if isinstance(item, six.string_types) and item not in self.colnames: NewColumn = self.MaskedColumn if self.masked else self.Column # If value doesn't have a dtype and won't be added as a mixin then # convert to a numpy array. if not hasattr(value, 'dtype') and not self._add_as_mixin_column(value): value = np.asarray(value) # Structured ndarray gets viewed as a mixin if isinstance(value, np.ndarray) and len(value.dtype) > 1: value = value.view(NdarrayMixin) # Make new column and assign the value. If the table currently # has no rows (len=0) of the value is already a Column then # define new column directly from value. In the latter case # this allows for propagation of Column metadata. Otherwise # define a new column with the right length and shape and then # set it from value. This allows for broadcasting, e.g. t['a'] # = 1. name = item # If this is a column-like object that could be added directly to table if isinstance(value, BaseColumn) or self._add_as_mixin_column(value): # If we're setting a new column to a scalar, broadcast it. # (things will fail in _init_from_cols if this doesn't work) if (len(self) > 0 and (getattr(value, 'isscalar', False) or getattr(value, 'shape', None) == () or len(value) == 1)): new_shape = (len(self),) + getattr(value, 'shape', ())[1:] if isinstance(value, np.ndarray): value = np_broadcast_to(value, shape=new_shape, subok=True) elif isinstance(value, ShapedLikeNDArray): value = value._apply(np_broadcast_to, shape=new_shape, subok=True) new_column = col_copy(value) new_column.info.name = name elif len(self) == 0: new_column = NewColumn(value, name=name) else: new_column = NewColumn(name=name, length=len(self), dtype=value.dtype, shape=value.shape[1:], unit=getattr(value, 'unit', None)) new_column[:] = value # Now add new column to the table self.add_columns([new_column], copy=False) else: n_cols = len(self.columns) if isinstance(item, six.string_types): # Set an existing column by first trying to replace, and if # this fails do an in-place update. See definition of mask # property for discussion of the _setitem_inplace attribute. if (not getattr(self, '_setitem_inplace', False) and not conf.replace_inplace): try: self._replace_column_warnings(item, value) return except Exception: pass self.columns[item][:] = value elif isinstance(item, (int, np.integer)): # Set the corresponding row assuming value is an iterable. if not hasattr(value, '__len__'): raise TypeError('Right side value must be iterable') if len(value) != n_cols: raise ValueError('Right side value needs {0} elements (one for each column)' .format(n_cols)) for col, val in zip(self.columns.values(), value): col[item] = val elif (isinstance(item, slice) or isinstance(item, np.ndarray) or isinstance(item, list) or (isinstance(item, tuple) and # output from np.where all(isinstance(x, np.ndarray) for x in item))): if isinstance(value, Table): vals = (col for col in value.columns.values()) elif isinstance(value, np.ndarray) and value.dtype.names: vals = (value[name] for name in value.dtype.names) elif np.isscalar(value): import itertools vals = itertools.repeat(value, n_cols) else: # Assume this is an iterable that will work if len(value) != n_cols: raise ValueError('Right side value needs {0} elements (one for each column)' .format(n_cols)) vals = value for col, val in zip(self.columns.values(), vals): col[item] = val else: raise ValueError('Illegal type {0} for table item access' .format(type(item))) def __delitem__(self, item): if isinstance(item, six.string_types): self.remove_column(item) elif isinstance(item, tuple): self.remove_columns(item) def field(self, item): """Return column[item] for recarray compatibility.""" return self.columns[item] @property def masked(self): return self._masked @masked.setter def masked(self, masked): raise Exception('Masked attribute is read-only (use t = Table(t, masked=True)' ' to convert to a masked table)') def _set_masked(self, masked): """ Set the table masked property. Parameters ---------- masked : bool State of table masking (`True` or `False`) """ if hasattr(self, '_masked'): # The only allowed change is from None to False or True, or False to True if self._masked is None and masked in [False, True]: self._masked = masked elif self._masked is False and masked is True: log.info("Upgrading Table to masked Table. Use Table.filled() to convert to unmasked table.") self._masked = masked elif self._masked is masked: raise Exception("Masked attribute is already set to {0}".format(masked)) else: raise Exception("Cannot change masked attribute to {0} once it is set to {1}" .format(masked, self._masked)) else: if masked in [True, False, None]: self._masked = masked else: raise ValueError("masked should be one of True, False, None") if self._masked: self._column_class = self.MaskedColumn else: self._column_class = self.Column @property def ColumnClass(self): if self._column_class is None: return self.Column else: return self._column_class @property def dtype(self): return np.dtype([descr(col) for col in self.columns.values()]) @property def colnames(self): return list(self.columns.keys()) def keys(self): return list(self.columns.keys()) def __len__(self): if len(self.columns) == 0: return 0 lengths = set(len(col) for col in self.columns.values()) if len(lengths) != 1: len_strs = [' {0} : {1}'.format(name, len(col)) for name, col in self.columns.items()] raise ValueError('Column length mismatch:\n{0}'.format('\n'.join(len_strs))) return lengths.pop() def index_column(self, name): """ Return the positional index of column ``name``. Parameters ---------- name : str column name Returns ------- index : int Positional index of column ``name``. Examples -------- Create a table with three columns 'a', 'b' and 'c':: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z Get index of column 'b' of the table:: >>> t.index_column('b') 1 """ try: return self.colnames.index(name) except ValueError: raise ValueError("Column {0} does not exist".format(name)) def add_column(self, col, index=None, rename_duplicate=False): """ Add a new Column object ``col`` to the table. If ``index`` is supplied then insert column before ``index`` position in the list of columns, otherwise append column to the end of the list. Parameters ---------- col : Column Column object to add. index : int or `None` Insert column before this position or at end (default) rename_duplicate : bool Uniquify column name if it already exist (default=False) Examples -------- Create a table with two columns 'a' and 'b':: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> print(t) a b --- --- 1 0.1 2 0.2 3 0.3 Create a third column 'c' and append it to the end of the table:: >>> col_c = Column(name='c', data=['x', 'y', 'z']) >>> t.add_column(col_c) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z Add column 'd' at position 1. Note that the column is inserted before the given index:: >>> col_d = Column(name='d', data=['a', 'b', 'c']) >>> t.add_column(col_d, 1) >>> print(t) a d b c --- --- --- --- 1 a 0.1 x 2 b 0.2 y 3 c 0.3 z Add second column named 'b' with rename_duplicate:: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> col_b = Column(name='b', data=[1.1, 1.2, 1.3]) >>> t.add_column(col_b, rename_duplicate=True) >>> print(t) a b b_1 --- --- --- 1 0.1 1.1 2 0.2 1.2 3 0.3 1.3 To add several columns use add_columns. """ if index is None: index = len(self.columns) self.add_columns([col], [index], rename_duplicate=rename_duplicate) def add_columns(self, cols, indexes=None, copy=True, rename_duplicate=False): """ Add a list of new Column objects ``cols`` to the table. If a corresponding list of ``indexes`` is supplied then insert column before each ``index`` position in the *original* list of columns, otherwise append columns to the end of the list. Parameters ---------- cols : list of Columns Column objects to add. indexes : list of ints or `None` Insert column before this position or at end (default) copy : bool Make a copy of the new columns (default=True) rename_duplicate : bool Uniquify new column names if they duplicate the existing ones (default=False) Examples -------- Create a table with two columns 'a' and 'b':: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> print(t) a b --- --- 1 0.1 2 0.2 3 0.3 Create column 'c' and 'd' and append them to the end of the table:: >>> col_c = Column(name='c', data=['x', 'y', 'z']) >>> col_d = Column(name='d', data=['u', 'v', 'w']) >>> t.add_columns([col_c, col_d]) >>> print(t) a b c d --- --- --- --- 1 0.1 x u 2 0.2 y v 3 0.3 z w Add column 'c' at position 0 and column 'd' at position 1. Note that the columns are inserted before the given position:: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> col_c = Column(name='c', data=['x', 'y', 'z']) >>> col_d = Column(name='d', data=['u', 'v', 'w']) >>> t.add_columns([col_c, col_d], [0, 1]) >>> print(t) c a d b --- --- --- --- x 1 u 0.1 y 2 v 0.2 z 3 w 0.3 Add second column 'b' and column 'c' with ``rename_duplicate``:: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> col_b = Column(name='b', data=[1.1, 1.2, 1.3]) >>> col_c = Column(name='c', data=['x', 'y', 'z']) >>> t.add_columns([col_b, col_c], rename_duplicate=True) >>> print(t) a b b_1 c --- --- --- --- 1 0.1 1.1 x 2 0.2 1.2 y 3 0.3 1.3 z """ if indexes is None: indexes = [len(self.columns)] * len(cols) elif len(indexes) != len(cols): raise ValueError('Number of indexes must match number of cols') if copy: cols = [col_copy(col) for col in cols] if len(self.columns) == 0: # No existing table data, init from cols newcols = cols else: newcols = list(self.columns.values()) new_indexes = list(range(len(newcols) + 1)) for col, index in zip(cols, indexes): i = new_indexes.index(index) new_indexes.insert(i, None) newcols.insert(i, col) if rename_duplicate: existing_names = set(self.colnames) for col in cols: i = 1 orig_name = col.info.name while col.info.name in existing_names: # If the column belongs to another table then copy it # before renaming if col.info.parent_table is not None: col = col_copy(col) new_name = '{0}_{1}'.format(orig_name, i) col.info.name = new_name i += 1 existing_names.add(new_name) self._init_from_cols(newcols) def _replace_column_warnings(self, name, col): """ Same as replace_column but issues warnings under various circumstances. """ warns = conf.replace_warnings if 'refcount' in warns and name in self.colnames: refcount = sys.getrefcount(self[name]) if name in self.colnames: old_col = self[name] # This may raise an exception (e.g. t['a'] = 1) in which case none of # the downstream code runs. self.replace_column(name, col) if 'always' in warns: warnings.warn("replaced column '{}'".format(name), TableReplaceWarning, stacklevel=3) if 'slice' in warns: try: # Check for ndarray-subclass slice. An unsliced instance # has an ndarray for the base while sliced has the same class # as parent. if isinstance(old_col.base, old_col.__class__): msg = ("replaced column '{}' which looks like an array slice. " "The new column no longer shares memory with the " "original array.".format(name)) warnings.warn(msg, TableReplaceWarning, stacklevel=3) except AttributeError: pass if 'refcount' in warns: # Did reference count change? new_refcount = sys.getrefcount(self[name]) if refcount != new_refcount: msg = ("replaced column '{}' and the number of references " "to the column changed.".format(name)) warnings.warn(msg, TableReplaceWarning, stacklevel=3) if 'attributes' in warns: # Any of the standard column attributes changed? changed_attrs = [] new_col = self[name] # Check base DataInfo attributes that any column will have for attr in DataInfo.attr_names: if getattr(old_col.info, attr) != getattr(new_col.info, attr): changed_attrs.append(attr) if changed_attrs: msg = ("replaced column '{}' and column attributes {} changed." .format(name, changed_attrs)) warnings.warn(msg, TableReplaceWarning, stacklevel=3) def replace_column(self, name, col): """ Replace column ``name`` with the new ``col`` object. Parameters ---------- name : str Name of column to replace col : column object (list, ndarray, Column, etc) New column object to replace the existing column Examples -------- Replace column 'a' with a float version of itself:: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> float_a = t['a'].astype(float) >>> t.replace_column('a', float_a) """ if name not in self.colnames: raise ValueError('column name {0} is not in the table'.format(name)) if self[name].info.indices: raise ValueError('cannot replace a table index column') t = self.__class__([col], names=[name]) cols = OrderedDict(self.columns) cols[name] = t[name] self._init_from_cols(cols.values()) def remove_row(self, index): """ Remove a row from the table. Parameters ---------- index : int Index of row to remove Examples -------- Create a table with three columns 'a', 'b' and 'c':: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z Remove row 1 from the table:: >>> t.remove_row(1) >>> print(t) a b c --- --- --- 1 0.1 x 3 0.3 z To remove several rows at the same time use remove_rows. """ # check the index against the types that work with np.delete if not isinstance(index, (six.integer_types, np.integer)): raise TypeError("Row index must be an integer") self.remove_rows(index) def remove_rows(self, row_specifier): """ Remove rows from the table. Parameters ---------- row_specifier : slice, int, or array of ints Specification for rows to remove Examples -------- Create a table with three columns 'a', 'b' and 'c':: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z Remove rows 0 and 2 from the table:: >>> t.remove_rows([0, 2]) >>> print(t) a b c --- --- --- 2 0.2 y Note that there are no warnings if the slice operator extends outside the data:: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.remove_rows(slice(10, 20, 1)) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z """ # Update indices for index in self.indices: index.remove_rows(row_specifier) keep_mask = np.ones(len(self), dtype=np.bool) keep_mask[row_specifier] = False columns = self.TableColumns() for name, col in self.columns.items(): newcol = col[keep_mask] newcol.info.parent_table = self columns[name] = newcol self._replace_cols(columns) # Revert groups to default (ungrouped) state if hasattr(self, '_groups'): del self._groups def remove_column(self, name): """ Remove a column from the table. This can also be done with:: del table[name] Parameters ---------- name : str Name of column to remove Examples -------- Create a table with three columns 'a', 'b' and 'c':: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z Remove column 'b' from the table:: >>> t.remove_column('b') >>> print(t) a c --- --- 1 x 2 y 3 z To remove several columns at the same time use remove_columns. """ self.remove_columns([name]) def remove_columns(self, names): ''' Remove several columns from the table. Parameters ---------- names : list A list containing the names of the columns to remove Examples -------- Create a table with three columns 'a', 'b' and 'c':: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z Remove columns 'b' and 'c' from the table:: >>> t.remove_columns(['b', 'c']) >>> print(t) a --- 1 2 3 Specifying only a single column also works. Remove column 'b' from the table:: >>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.remove_columns('b') >>> print(t) a c --- --- 1 x 2 y 3 z This gives the same as using remove_column. ''' if isinstance(names, six.string_types): names = [names] for name in names: if name not in self.columns: raise KeyError("Column {0} does not exist".format(name)) for name in names: self.columns.pop(name) def _convert_string_dtype(self, in_kind, out_kind, python3_only): """ Convert string-like columns to/from bytestring and unicode (internal only). Parameters ---------- in_kind : str Input dtype.kind out_kind : str Output dtype.kind python3_only : bool Only do this operation for Python 3 """ if python3_only and six.PY2: return # If there are no `in_kind` columns then do nothing cols = self.columns.values() if not any(col.dtype.kind == in_kind for col in cols): return newcols = [] for col in cols: if col.dtype.kind == in_kind: newdtype = re.sub(in_kind, out_kind, col.dtype.str) newcol = col.__class__(col, dtype=newdtype) else: newcol = col newcols.append(newcol) self._init_from_cols(newcols) def convert_bytestring_to_unicode(self, python3_only=False): """ Convert bytestring columns (dtype.kind='S') to unicode (dtype.kind='U') assuming ASCII encoding. Internally this changes string columns to represent each character in the string with a 4-byte UCS-4 equivalent, so it is inefficient for memory but allows Python 3 scripts to manipulate string arrays with natural syntax. The ``python3_only`` parameter is provided as a convenience so that code can be written in a Python 2 / 3 compatible way:: >>> t = Table.read('my_data.fits') >>> t.convert_bytestring_to_unicode(python3_only=True) Parameters ---------- python3_only : bool Only do this operation for Python 3 """ self._convert_string_dtype('S', 'U', python3_only) def convert_unicode_to_bytestring(self, python3_only=False): """ Convert ASCII-only unicode columns (dtype.kind='U') to bytestring (dtype.kind='S'). When exporting a unicode string array to a file in Python 3, it may be desirable to encode unicode columns as bytestrings. This routine takes advantage of numpy automated conversion which works for strings that are pure ASCII. The ``python3_only`` parameter is provided as a convenience so that code can be written in a Python 2 / 3 compatible way:: >>> t.convert_unicode_to_bytestring(python3_only=True) >>> t.write('my_data.fits') Parameters ---------- python3_only : bool Only do this operation for Python 3 """ self._convert_string_dtype('U', 'S', python3_only) def keep_columns(self, names): ''' Keep only the columns specified (remove the others). Parameters ---------- names : list A list containing the names of the columns to keep. All other columns will be removed. Examples -------- Create a table with three columns 'a', 'b' and 'c':: >>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z Specifying only a single column name keeps only this column. Keep only column 'a' of the table:: >>> t.keep_columns('a') >>> print(t) a --- 1 2 3 Specifying a list of column names is keeps is also possible. Keep columns 'a' and 'c' of the table:: >>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.keep_columns(['a', 'c']) >>> print(t) a c --- --- 1 x 2 y 3 z ''' if isinstance(names, six.string_types): names = [names] for name in names: if name not in self.columns: raise KeyError("Column {0} does not exist".format(name)) remove = list(set(self.keys()) - set(names)) self.remove_columns(remove) def rename_column(self, name, new_name): ''' Rename a column. This can also be done directly with by setting the ``name`` attribute for a column:: table[name].name = new_name TODO: this won't work for mixins Parameters ---------- name : str The current name of the column. new_name : str The new name for the column Examples -------- Create a table with three columns 'a', 'b' and 'c':: >>> t = Table([[1,2],[3,4],[5,6]], names=('a','b','c')) >>> print(t) a b c --- --- --- 1 3 5 2 4 6 Renaming column 'a' to 'aa':: >>> t.rename_column('a' , 'aa') >>> print(t) aa b c --- --- --- 1 3 5 2 4 6 ''' if name not in self.keys(): raise KeyError("Column {0} does not exist".format(name)) self.columns[name].info.name = new_name def add_row(self, vals=None, mask=None): """Add a new row to the end of the table. The ``vals`` argument can be: sequence (e.g. tuple or list) Column values in the same order as table columns. mapping (e.g. dict) Keys corresponding to column names. Missing values will be filled with np.zeros for the column dtype. `None` All values filled with np.zeros for the column dtype. This method requires that the Table object "owns" the underlying array data. In particular one cannot add a row to a Table that was initialized with copy=False from an existing array. The ``mask`` attribute should give (if desired) the mask for the values. The type of the mask should match that of the values, i.e. if ``vals`` is an iterable, then ``mask`` should also be an iterable with the same length, and if ``vals`` is a mapping, then ``mask`` should be a dictionary. Parameters ---------- vals : tuple, list, dict or `None` Use the specified values in the new row mask : tuple, list, dict or `None` Use the specified mask values in the new row Examples -------- Create a table with three columns 'a', 'b' and 'c':: >>> t = Table([[1,2],[4,5],[7,8]], names=('a','b','c')) >>> print(t) a b c --- --- --- 1 4 7 2 5 8 Adding a new row with entries '3' in 'a', '6' in 'b' and '9' in 'c':: >>> t.add_row([3,6,9]) >>> print(t) a b c --- --- --- 1 4 7 2 5 8 3 6 9 """ self.insert_row(len(self), vals, mask) def insert_row(self, index, vals=None, mask=None): """Add a new row before the given ``index`` position in the table. The ``vals`` argument can be: sequence (e.g. tuple or list) Column values in the same order as table columns. mapping (e.g. dict) Keys corresponding to column names. Missing values will be filled with np.zeros for the column dtype. `None` All values filled with np.zeros for the column dtype. The ``mask`` attribute should give (if desired) the mask for the values. The type of the mask should match that of the values, i.e. if ``vals`` is an iterable, then ``mask`` should also be an iterable with the same length, and if ``vals`` is a mapping, then ``mask`` should be a dictionary. Parameters ---------- vals : tuple, list, dict or `None` Use the specified values in the new row mask : tuple, list, dict or `None` Use the specified mask values in the new row """ colnames = self.colnames N = len(self) if index < -N or index > N: raise IndexError("Index {0} is out of bounds for table with length {1}" .format(index, N)) if index < 0: index += N def _is_mapping(obj): """Minimal checker for mapping (dict-like) interface for obj""" attrs = ('__getitem__', '__len__', '__iter__', 'keys', 'values', 'items') return all(hasattr(obj, attr) for attr in attrs) if mask is not None and not self.masked: # Possibly issue upgrade warning and update self.ColumnClass. This # does not change the existing columns. self._set_masked(True) if _is_mapping(vals) or vals is None: # From the vals and/or mask mappings create the corresponding lists # that have entries for each table column. if mask is not None and not _is_mapping(mask): raise TypeError("Mismatch between type of vals and mask") # Now check that the mask is specified for the same keys as the # values, otherwise things get really confusing. if mask is not None and set(vals.keys()) != set(mask.keys()): raise ValueError('keys in mask should match keys in vals') if vals and any(name not in colnames for name in vals): raise ValueError('Keys in vals must all be valid column names') vals_list = [] mask_list = [] for name in colnames: if vals and name in vals: vals_list.append(vals[name]) mask_list.append(False if mask is None else mask[name]) else: col = self[name] if hasattr(col, 'dtype'): # Make a placeholder zero element of the right type which is masked. # This assumes the appropriate insert() method will broadcast a # numpy scalar to the right shape. vals_list.append(np.zeros(shape=(), dtype=col.dtype)) # For masked table any unsupplied values are masked by default. mask_list.append(self.masked and vals is not None) else: raise ValueError("Value must be supplied for column '{0}'".format(name)) vals = vals_list mask = mask_list if isiterable(vals): if mask is not None and (not isiterable(mask) or _is_mapping(mask)): raise TypeError("Mismatch between type of vals and mask") if len(self.columns) != len(vals): raise ValueError('Mismatch between number of vals and columns') if mask is not None: if len(self.columns) != len(mask): raise ValueError('Mismatch between number of masks and columns') else: mask = [False] * len(self.columns) else: raise TypeError('Vals must be an iterable or mapping or None') columns = self.TableColumns() try: # Insert val at index for each column for name, col, val, mask_ in zip(colnames, self.columns.values(), vals, mask): # If the new row caused a change in self.ColumnClass then # Column-based classes need to be converted first. This is # typical for adding a row with mask values to an unmasked table. if isinstance(col, Column) and not isinstance(col, self.ColumnClass): col = self.ColumnClass(col, copy=False) newcol = col.insert(index, val) if not isinstance(newcol, BaseColumn): newcol.info.name = name if self.masked: newcol.mask = FalseArray(newcol.shape) if len(newcol) != N + 1: raise ValueError('Incorrect length for column {0} after inserting {1}' ' (expected {2}, got {3})' .format(name, val, len(newcol), N + 1)) newcol.info.parent_table = self # Set mask if needed if self.masked: newcol.mask[index] = mask_ columns[name] = newcol # insert row in indices for table_index in self.indices: table_index.insert_row(index, vals, self.columns.values()) except Exception as err: raise ValueError("Unable to insert row because of exception in column '{0}':\n{1}" .format(name, err)) else: self._replace_cols(columns) # Revert groups to default (ungrouped) state if hasattr(self, '_groups'): del self._groups def _replace_cols(self, columns): for col, new_col in zip(self.columns.values(), columns.values()): new_col.info.indices = [] for index in col.info.indices: index.columns[index.col_position(col.info.name)] = new_col new_col.info.indices.append(index) self.columns = columns def argsort(self, keys=None, kind=None): """ Return the indices which would sort the table according to one or more key columns. This simply calls the `numpy.argsort` function on the table with the ``order`` parameter set to ``keys``. Parameters ---------- keys : str or list of str The column name(s) to order the table by kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. Returns ------- index_array : ndarray, int Array of indices that sorts the table by the specified key column(s). """ if isinstance(keys, six.string_types): keys = [keys] # use index sorted order if possible if keys is not None: index = get_index(self, self[keys]) if index is not None: return index.sorted_data() kwargs = {} if keys: kwargs['order'] = keys if kind: kwargs['kind'] = kind if keys: data = self[keys].as_array() else: data = self.as_array() return data.argsort(**kwargs) def sort(self, keys=None): ''' Sort the table according to one or more keys. This operates on the existing table and does not return a new table. Parameters ---------- keys : str or list of str The key(s) to order the table by. If None, use the primary index of the Table. Examples -------- Create a table with 3 columns:: >>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'], ... [12,15,18]], names=('firstname','name','tel')) >>> print(t) firstname name tel --------- ------- --- Max Miller 12 Jo Miller 15 John Jackson 18 Sorting according to standard sorting rules, first 'name' then 'firstname':: >>> t.sort(['name','firstname']) >>> print(t) firstname name tel --------- ------- --- John Jackson 18 Jo Miller 15 Max Miller 12 ''' if keys is None: if not self.indices: raise ValueError("Table sort requires input keys or a table index") keys = [x.info.name for x in self.indices[0].columns] if isinstance(keys, six.string_types): keys = [keys] indexes = self.argsort(keys) sort_index = get_index(self, self[keys]) if sort_index is not None: # avoid inefficient relabelling of sorted index prev_frozen = sort_index._frozen sort_index._frozen = True for col in self.columns.values(): col[:] = col.take(indexes, axis=0) if sort_index is not None: # undo index freeze sort_index._frozen = prev_frozen # now relabel the sort index appropriately sort_index.sort() def reverse(self): ''' Reverse the row order of table rows. The table is reversed in place and there are no function arguments. Examples -------- Create a table with three columns:: >>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'], ... [12,15,18]], names=('firstname','name','tel')) >>> print(t) firstname name tel --------- ------- --- Max Miller 12 Jo Miller 15 John Jackson 18 Reversing order:: >>> t.reverse() >>> print(t) firstname name tel --------- ------- --- John Jackson 18 Jo Miller 15 Max Miller 12 ''' for col in self.columns.values(): col[:] = col[::-1] for index in self.indices: index.reverse() @classmethod def read(cls, *args, **kwargs): """ Read and parse a data table and return as a Table. This function provides the Table interface to the astropy unified I/O layer. This allows easily reading a file in many supported data formats using syntax such as:: >>> from astropy.table import Table >>> dat = Table.read('table.dat', format='ascii') >>> events = Table.read('events.fits', format='fits') The arguments and keywords (other than ``format``) provided to this function are passed through to the underlying data reader (e.g. `~astropy.io.ascii.read`). """ return io_registry.read(cls, *args, **kwargs) def write(self, *args, **kwargs): """ Write this Table object out in the specified format. This function provides the Table interface to the astropy unified I/O layer. This allows easily writing a file in many supported data formats using syntax such as:: >>> from astropy.table import Table >>> dat = Table([[1, 2], [3, 4]], names=('a', 'b')) >>> dat.write('table.dat', format='ascii') The arguments and keywords (other than ``format``) provided to this function are passed through to the underlying data reader (e.g. `~astropy.io.ascii.write`). """ io_registry.write(self, *args, **kwargs) def copy(self, copy_data=True): ''' Return a copy of the table. Parameters ---------- copy_data : bool If `True` (the default), copy the underlying data array. Otherwise, use the same data array .. note:: The ``meta`` is always deepcopied regardless of the value for ``copy_data``. ''' out = self.__class__(self, copy=copy_data) # If the current table is grouped then do the same in the copy if hasattr(self, '_groups'): out._groups = groups.TableGroups(out, indices=self._groups._indices, keys=self._groups._keys) return out def __deepcopy__(self, memo=None): return self.copy(True) def __copy__(self): return self.copy(False) def __lt__(self, other): if six.PY2: raise TypeError("unorderable types: Table() < {0}". format(str(type(other)))) else: return super(Table, self).__lt__(other) def __gt__(self, other): if six.PY2: raise TypeError("unorderable types: Table() > {0}". format(str(type(other)))) else: return super(Table, self).__gt__(other) def __le__(self, other): if six.PY2: raise TypeError("unorderable types: Table() <= {0}". format(str(type(other)))) else: return super(Table, self).__le__(other) def __ge__(self, other): if six.PY2: raise TypeError("unorderable types: Table() >= {0}". format(str(type(other)))) else: return super(Table, self).__ge__(other) def __eq__(self, other): if isinstance(other, Table): other = other.as_array() if self.masked: if isinstance(other, np.ma.MaskedArray): result = self.as_array() == other else: # If mask is True, then by definition the row doesn't match # because the other array is not masked. false_mask = np.zeros(1, dtype=[(n, bool) for n in self.dtype.names]) result = (self.as_array().data == other) & (self.mask == false_mask) else: if isinstance(other, np.ma.MaskedArray): # If mask is True, then by definition the row doesn't match # because the other array is not masked. false_mask = np.zeros(1, dtype=[(n, bool) for n in other.dtype.names]) result = (self.as_array() == other.data) & (other.mask == false_mask) else: result = self.as_array() == other return result def __ne__(self, other): return ~self.__eq__(other) @property def groups(self): if not hasattr(self, '_groups'): self._groups = groups.TableGroups(self) return self._groups def group_by(self, keys): """ Group this table by the specified ``keys`` This effectively splits the table into groups which correspond to unique values of the ``keys`` grouping object. The output is a new `TableGroups` which contains a copy of this table but sorted by row according to ``keys``. The ``keys`` input to `group_by` can be specified in different ways: - String or list of strings corresponding to table column name(s) - Numpy array (homogeneous or structured) with same length as this table - `Table` with same length as this table Parameters ---------- keys : str, list of str, numpy array, or `Table` Key grouping object Returns ------- out : `Table` New table with groups set """ if self.has_mixin_columns: raise NotImplementedError('group_by not available for tables with mixin columns') return groups.table_group_by(self, keys) def to_pandas(self): """ Return a :class:`pandas.DataFrame` instance Returns ------- dataframe : :class:`pandas.DataFrame` A pandas :class:`pandas.DataFrame` instance Raises ------ ImportError If pandas is not installed ValueError If the Table contains mixin or multi-dimensional columns """ from pandas import DataFrame if self.has_mixin_columns: raise ValueError("Cannot convert a table with mixin columns to a pandas DataFrame") if any(getattr(col, 'ndim', 1) > 1 for col in self.columns.values()): raise ValueError("Cannot convert a table with multi-dimensional columns to a pandas DataFrame") out = OrderedDict() for name, column in self.columns.items(): if isinstance(column, MaskedColumn): if column.dtype.kind in ['i', 'u']: out[name] = column.astype(float).filled(np.nan) elif column.dtype.kind in ['f', 'c']: out[name] = column.filled(np.nan) else: out[name] = column.astype(np.object).filled(np.nan) else: out[name] = column if out[name].dtype.byteorder not in ('=', '|'): out[name] = out[name].byteswap().newbyteorder() return DataFrame(out) @classmethod def from_pandas(cls, dataframe): """ Create a `Table` from a :class:`pandas.DataFrame` instance Parameters ---------- dataframe : :class:`pandas.DataFrame` The pandas :class:`pandas.DataFrame` instance Returns ------- table : `Table` A `Table` (or subclass) instance """ out = OrderedDict() for name in dataframe.columns: column = dataframe[name] mask = np.array(column.isnull()) data = np.array(column) if data.dtype.kind == 'O': # If all elements of an object array are string-like or np.nan # then coerce back to a native numpy str/unicode array. string_types = six.string_types if not six.PY2: string_types += (bytes,) nan = np.nan if all(isinstance(x, string_types) or x is nan for x in data): # Force any missing (null) values to b''. Numpy will # upcast to str/unicode as needed. data[mask] = b'' # When the numpy object array is represented as a list then # numpy initializes to the correct string or unicode type. data = np.array([x for x in data]) if np.any(mask): out[name] = MaskedColumn(data=data, name=name, mask=mask) else: out[name] = Column(data=data, name=name) return cls(out) info = TableInfo() class QTable(Table): """A class to represent tables of heterogeneous data. `QTable` provides a class for heterogeneous tabular data which can be easily modified, for instance adding columns or new rows. The `QTable` class is identical to `Table` except that columns with an associated ``unit`` attribute are converted to `~astropy.units.Quantity` objects. Parameters ---------- data : numpy ndarray, dict, list, Table, or table-like object, optional Data to initialize table. masked : bool, optional Specify whether the table is masked. names : list, optional Specify column names dtype : list, optional Specify column data types meta : dict, optional Metadata associated with the table. copy : bool, optional Copy the input data (default=True). rows : numpy ndarray, list of lists, optional Row-oriented data for table instead of ``data`` argument copy_indices : bool, optional Copy any indices in the input data (default=True) **kwargs : dict, optional Additional keyword args when converting table-like object """ def _add_as_mixin_column(self, col): """ Determine if ``col`` should be added to the table directly as a mixin column. """ return has_info_class(col, MixinInfo) def _convert_col_for_table(self, col): if (isinstance(col, Column) and getattr(col, 'unit', None) is not None): # We need to turn the column into a quantity, or a subclass # identified in the unit (such as u.mag()). q_cls = getattr(col.unit, '_quantity_class', Quantity) qcol = q_cls(col.data, col.unit, copy=False) qcol.info = col.info col = qcol else: col = super(QTable, self)._convert_col_for_table(col) return col class NdarrayMixin(np.ndarray): """ Mixin column class to allow storage of arbitrary numpy ndarrays within a Table. This is a subclass of numpy.ndarray and has the same initialization options as ndarray(). """ info = ParentDtypeInfo() def __new__(cls, obj, *args, **kwargs): self = np.array(obj, *args, **kwargs).view(cls) if 'info' in getattr(obj, '__dict__', ()): self.info = obj.info return self def __array_finalize__(self, obj): if obj is None: return if six.callable(super(NdarrayMixin, self).__array_finalize__): super(NdarrayMixin, self).__array_finalize__(obj) # Self was created from template (e.g. obj[slice] or (obj * 2)) # or viewcast e.g. obj.view(Column). In either case we want to # init Column attributes for self from obj if possible. if 'info' in getattr(obj, '__dict__', ()): self.info = obj.info def __reduce__(self): # patch to pickle Quantity objects (ndarray subclasses), see # http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html object_state = list(super(NdarrayMixin, self).__reduce__()) object_state[2] = (object_state[2], self.__dict__) return tuple(object_state) def __setstate__(self, state): # patch to unpickle NdarrayMixin objects (ndarray subclasses), see # http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html nd_state, own_state = state super(NdarrayMixin, self).__setstate__(nd_state) self.__dict__.update(own_state)
bsd-3-clause
ankurankan/pgmpy
pgmpy/inference/bn_inference.py
2
8890
from pgmpy.inference import Inference from pgmpy.models import BayesianNetwork import pandas as pd import numpy as np import networkx as nx import itertools class BayesianModelInference(Inference): """ Inference class specific to Bayesian Models """ def __init__(self, model): """ Class to calculate probability (pmf) values specific to Bayesian Models Parameters ---------- model: Bayesian Model model on which inference queries will be computed """ if not isinstance(model, BayesianNetwork): raise TypeError( "Model expected type: BayesianNetwork, got type: ", type(model) ) super(BayesianModelInference, self).__init__(model) self._initialize_structures() self.topological_order = list(nx.topological_sort(model)) def pre_compute_reduce(self, variable): """ Get probability arrays for a node as function of conditional dependencies Internal function used for Bayesian networks, eg. in BayesianModelSampling and BayesianModelProbability. Parameters ---------- variable: Bayesian Model Node node of the Bayesian network Returns ------- dict: dictionary with probability array for node as function of conditional dependency values """ variable_cpd = self.model.get_cpds(variable) variable_evid = variable_cpd.variables[:0:-1] cached_values = {} for state_combination in itertools.product( *[range(self.cardinality[var]) for var in variable_evid] ): states = list(zip(variable_evid, state_combination)) cached_values[state_combination] = variable_cpd.reduce( states, inplace=False, show_warnings=False ).values return cached_values def pre_compute_reduce_maps(self, variable): """ Get probability array-maps for a node as function of conditional dependencies Internal function used for Bayesian networks, eg. in BayesianModelSampling and BayesianModelProbability. Parameters ---------- variable: Bayesian Model Node node of the Bayesian network Returns ------- dict: dictionary with probability array-index for node as function of conditional dependency values, dictionary with mapping of probability array-index to probability array. """ variable_cpd = self.model.get_cpds(variable) variable_evid = variable_cpd.variables[:0:-1] state_combinations = [ tuple(sc) for sc in itertools.product( *[range(self.cardinality[var]) for var in variable_evid] ) ] weights_list = np.array( [ variable_cpd.reduce( list(zip(variable_evid, sc)), inplace=False, show_warnings=False ).values for sc in state_combinations ] ) unique_weights, weights_indices = np.unique( weights_list, axis=0, return_inverse=True ) # convert weights to index; make mapping of state to index state_to_index = dict(zip(state_combinations, weights_indices)) # make mapping of index to weights index_to_weight = dict(enumerate(unique_weights)) # return mappings of state to index, and index to weight return state_to_index, index_to_weight class BayesianModelProbability(BayesianModelInference): """ Class to calculate probability (pmf) values specific to Bayesian Models """ def __init__(self, model): """ Class to calculate probability (pmf) values specific to Bayesian Models Parameters ---------- model: Bayesian Model model on which inference queries will be computed """ super(BayesianModelProbability, self).__init__(model) def _log_probability_node(self, data, ordering, node): """ Evaluate the log probability of each datapoint for a specific node. Internal function used by log_probability(). Parameters ---------- data: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. ordering: list ordering of columns in data, used by the Bayesian model. default is topological ordering used by model. node: Bayesian Model Node node from the Bayesian network. Returns ------- ndarray: having shape (n_samples,) The array of log(density) evaluations. These are normalized to be probability densities, so values will be low for high-dimensional data. """ def vec_translate(a, my_dict): return np.vectorize(my_dict.__getitem__)(a) cpd = self.model.get_cpds(node) # variable to probe: data[n], where n is the node number current = cpd.variables[0] current_idx = ordering.index(current) current_val = data[:, current_idx] current_no = vec_translate(current_val, cpd.name_to_no[current]) # conditional dependencies E of the probed variable evidence = cpd.variables[:0:-1] evidence_idx = [ordering.index(ev) for ev in evidence] evidence_val = data[:, evidence_idx] evidence_no = np.empty_like(evidence_val) for i, ev in enumerate(evidence): evidence_no[:, i] = vec_translate(evidence_val[:, i], cpd.name_to_no[ev]) if evidence: # there are conditional dependencies E for data[n] for this node # Here we retrieve the array: p(x[n]|E). We do this for each x in data. # We pick the specific node value from the arrays below. state_to_index, index_to_weight = self.pre_compute_reduce_maps( variable=node ) unique, inverse = np.unique(evidence_no, axis=0, return_inverse=True) weights = np.array( [index_to_weight[state_to_index[tuple(u)]] for u in unique] )[inverse] else: # there are NO conditional dependencies for this node # retrieve array: p(x[n]). We do this for each x in data. # We pick the specific node value from the arrays below. weights = np.array([cpd.values] * len(data)) # pick the specific node value x[n] from the array p(x[n]|E) or p(x[n]) # We do this for each x in data. probability_node = np.array([weights[i][cn] for i, cn in enumerate(current_no)]) return np.log(probability_node) def log_probability(self, data, ordering=None): """ Evaluate the logarithmic probability of each point in a data set. Parameters ---------- data: pandas dataframe OR array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. ordering: list ordering of columns in data, used by the Bayesian model. default is topological ordering used by model. Returns ------- ndarray: having shape (n_samples,) The array of log(density) evaluations. These are normalized to be probability densities, so values will be low for high-dimensional data. """ if isinstance(data, pd.DataFrame): # use numpy array from now on. ordering = data.columns.to_list() data = data.values if ordering is None: ordering = self.topological_order logp = np.array( [ self._log_probability_node(data, ordering, node) for node in self.topological_order ] ) return np.sum(logp, axis=0) def score(self, data, ordering=None): """ Compute the total log probability density under the model. Parameters ---------- data: pandas dataframe OR array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. ordering: list ordering of columns in data, used by the Bayesian model. default is topological ordering used by model. Returns ------- float: total log-likelihood of the data in data. This is normalized to be a probability density, so the value will be low for high-dimensional data. """ return np.sum(self.log_probability(data, ordering))
mit
wanggang3333/scikit-learn
sklearn/manifold/tests/test_isomap.py
226
3941
from itertools import product import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y))
bsd-3-clause
mrry/tensorflow
tensorflow/contrib/learn/python/learn/tests/estimators_test.py
7
5456
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom optimizer tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import tensorflow as tf from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.estimators._sklearn import train_test_split # TODO(b/29580537): Remove when we deprecate feature column inference. class InferredfeatureColumnTest(tf.test.TestCase): """Custom optimizer tests.""" def testIrisMomentum(self): random.seed(42) iris = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) def custom_optimizer(): return tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9) cont_features = [ tf.contrib.layers.real_valued_column("", dimension=4)] classifier = learn.DNNClassifier( feature_columns=cont_features, hidden_units=[10, 20, 10], n_classes=3, optimizer=custom_optimizer, config=learn.RunConfig(tf_random_seed=1)) classifier.fit(x_train, y_train, steps=400) score = accuracy_score(y_test, classifier.predict(x_test)) self.assertGreater(score, 0.65, "Failed with score = {0}".format(score)) class FeatureEngineeringFunctionTest(tf.test.TestCase): """Tests feature_engineering_fn.""" def testFeatureEngineeringFn(self): def input_fn(): return {"x": tf.constant([1.])}, {"y": tf.constant([11.])} def feature_engineering_fn(features, targets): _, _ = features, targets return { "transformed_x": tf.constant([9.]) }, { "transformed_y": tf.constant([99.]) } def model_fn(features, targets): # dummy variable: _ = tf.Variable([0.]) _ = targets predictions = features["transformed_x"] loss = tf.constant([2.]) return predictions, loss, tf.no_op() estimator = tf.contrib.learn.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator.fit(input_fn=input_fn, steps=1) prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) # predictions = transformed_x (9) self.assertEqual(9., prediction) def testNoneFeatureEngineeringFn(self): def input_fn(): return {"x": tf.constant([1.])}, {"y": tf.constant([11.])} def feature_engineering_fn(features, targets): _, _ = features, targets return {"x": tf.constant([9.])}, {"y": tf.constant([99.])} def model_fn(features, targets): # dummy variable: _ = tf.Variable([0.]) _ = targets predictions = features["x"] loss = tf.constant([2.]) return predictions, loss, tf.no_op() estimator_with_fe_fn = tf.contrib.learn.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=1) estimator_without_fe_fn = tf.contrib.learn.Estimator(model_fn=model_fn) estimator_without_fe_fn.fit(input_fn=input_fn, steps=1) # predictions = x prediction_with_fe_fn = next( estimator_with_fe_fn.predict(input_fn=input_fn, as_iterable=True)) self.assertEqual(9., prediction_with_fe_fn) prediction_without_fe_fn = next( estimator_without_fe_fn.predict(input_fn=input_fn, as_iterable=True)) self.assertEqual(1., prediction_without_fe_fn) class CustomOptimizer(tf.test.TestCase): """Custom optimizer tests.""" def testIrisMomentum(self): random.seed(42) iris = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) def custom_optimizer(): return tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9) classifier = learn.DNNClassifier( hidden_units=[10, 20, 10], feature_columns=learn.infer_real_valued_columns_from_input(x_train), n_classes=3, optimizer=custom_optimizer, config=learn.RunConfig(tf_random_seed=1)) classifier.fit(x_train, y_train, steps=400) score = accuracy_score(y_test, classifier.predict(x_test)) self.assertGreater(score, 0.65, "Failed with score = {0}".format(score)) if __name__ == "__main__": tf.test.main()
apache-2.0
MyRookie/SentimentAnalyse
venv/lib/python2.7/site-packages/numpy/linalg/linalg.py
11
75845
"""Lite version of scipy.linalg. Notes ----- This module is a lite version of the linalg.py module in SciPy which contains high-level Python interface to the LAPACK library. The lite version only accesses the following LAPACK functions: dgesv, zgesv, dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. """ from __future__ import division, absolute_import, print_function __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError', 'multi_dot'] import warnings from numpy.core import ( array, asarray, zeros, empty, empty_like, transpose, intc, single, double, csingle, cdouble, inexact, complexfloating, newaxis, ravel, all, Inf, dot, add, multiply, sqrt, maximum, fastCopyAndTranspose, sum, isfinite, size, finfo, errstate, geterrobj, longdouble, rollaxis, amin, amax, product, abs, broadcast, atleast_2d, intp, asanyarray, isscalar ) from numpy.lib import triu, asfarray from numpy.linalg import lapack_lite, _umath_linalg from numpy.matrixlib.defmatrix import matrix_power from numpy.compat import asbytes # For Python2/3 compatibility _N = asbytes('N') _V = asbytes('V') _A = asbytes('A') _S = asbytes('S') _L = asbytes('L') fortran_int = intc # Error object class LinAlgError(Exception): """ Generic Python-exception-derived object raised by linalg functions. General purpose exception class, derived from Python's exception.Exception class, programmatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function. Parameters ---------- None Examples -------- >>> from numpy import linalg as LA >>> LA.inv(np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...linalg.py", line 350, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "...linalg.py", line 249, in solve raise LinAlgError('Singular matrix') numpy.linalg.LinAlgError: Singular matrix """ pass # Dealing with errors in _umath_linalg _linalg_error_extobj = None def _determine_error_states(): global _linalg_error_extobj errobj = geterrobj() bufsize = errobj[0] with errstate(invalid='call', over='ignore', divide='ignore', under='ignore'): invalid_call_errmask = geterrobj()[1] _linalg_error_extobj = [bufsize, invalid_call_errmask, None] _determine_error_states() def _raise_linalgerror_singular(err, flag): raise LinAlgError("Singular matrix") def _raise_linalgerror_nonposdef(err, flag): raise LinAlgError("Matrix is not positive definite") def _raise_linalgerror_eigenvalues_nonconvergence(err, flag): raise LinAlgError("Eigenvalues did not converge") def _raise_linalgerror_svd_nonconvergence(err, flag): raise LinAlgError("SVD did not converge") def get_linalg_error_extobj(callback): extobj = list(_linalg_error_extobj) extobj[2] = callback return extobj def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_prepare__", new.__array_wrap__) return new, wrap def isComplexType(t): return issubclass(t, complexfloating) _real_types_map = {single : single, double : double, csingle : single, cdouble : double} _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _realType(t, default=double): return _real_types_map.get(t, default) def _complexType(t, default=cdouble): return _complex_types_map.get(t, default) def _linalgRealType(t): """Cast the type t to either double or cdouble.""" return double _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) result_type = single is_complex = False for a in arrays: if issubclass(a.dtype.type, inexact): if isComplexType(a.dtype.type): is_complex = True rt = _realType(a.dtype.type, default=None) if rt is None: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: rt = double if rt is double: result_type = double if is_complex: t = cdouble result_type = _complex_types_map[result_type] else: t = double return t, result_type # _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _to_native_byte_order(*arrays): ret = [] for arr in arrays: if arr.dtype.byteorder not in ('=', '|'): ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) else: ret.append(arr) if len(ret) == 1: return ret[0] else: return ret def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.type is type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if len(a.shape) != 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'two-dimensional' % len(a.shape)) def _assertRankAtLeast2(*arrays): for a in arrays: if len(a.shape) < 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'at least two-dimensional' % len(a.shape)) def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError('Array must be square') def _assertNdSquareness(*arrays): for a in arrays: if max(a.shape[-2:]) != min(a.shape[-2:]): raise LinAlgError('Last 2 dimensions of the array must be square') def _assertFinite(*arrays): for a in arrays: if not (isfinite(a).all()): raise LinAlgError("Array must not contain infs or NaNs") def _assertNoEmpty2d(*arrays): for a in arrays: if a.size == 0 and product(a.shape[-2:]) == 0: raise LinAlgError("Arrays cannot be empty") # Linear equations def tensorsolve(a, b, axes=None): """ Solve the tensor equation ``a x = b`` for x. It is assumed that all indices of `x` are summed over in the product, together with the rightmost indices of `a`, as is done in, for example, ``tensordot(a, x, axes=len(b.shape))``. Parameters ---------- a : array_like Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals the shape of that sub-tensor of `a` consisting of the appropriate number of its rightmost indices, and must be such that ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 'square'). b : array_like Right-hand tensor, which can be of any shape. axes : tuple of ints, optional Axes in `a` to reorder to the right, before inversion. If None (default), no reordering is done. Returns ------- x : ndarray, shape Q Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorinv, einsum Examples -------- >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> b = np.random.randn(2*3, 4) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ a, wrap = _makearray(a) b = asarray(b) an = a.ndim if axes is not None: allaxes = list(range(0, an)) for k in axes: allaxes.remove(k) allaxes.insert(an, k) a = a.transpose(allaxes) oldshape = a.shape[-(an-b.ndim):] prod = 1 for k in oldshape: prod *= k a = a.reshape(-1, prod) b = b.ravel() res = wrap(solve(a, b)) res.shape = oldshape return res def solve(a, b): """ Solve a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, `x`, of the well-determined, i.e., full rank, linear matrix equation `ax = b`. Parameters ---------- a : (..., M, M) array_like Coefficient matrix. b : {(..., M,), (..., M, K)}, array_like Ordinate or "dependent variable" values. Returns ------- x : {(..., M,), (..., M, K)} ndarray Solution to the system a x = b. Returned shape is identical to `b`. Raises ------ LinAlgError If `a` is singular or not square. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The solutions are computed using LAPACK routine _gesv `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use `lstsq` for the least-squares best "solution" of the system/equation. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([ 2., 3.]) Check that the solution is correct: >>> np.allclose(np.dot(a, x), b) True """ a, _ = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) b, wrap = _makearray(b) t, result_t = _commonType(a, b) # We use the b = (..., M,) logic, only if the number of extra dimensions # match exactly if b.ndim == a.ndim - 1: if a.shape[-1] == 0 and b.shape[-1] == 0: # Legal, but the ufunc cannot handle the 0-sized inner dims # let the ufunc handle all wrong cases. a = a.reshape(a.shape[:-1]) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve1 else: if b.size == 0: if (a.shape[-1] == 0 and b.shape[-2] == 0) or b.shape[-1] == 0: a = a[:,:1].reshape(a.shape[:-1] + (1,)) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve signature = 'DD->D' if isComplexType(t) else 'dd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) r = gufunc(a, b, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) def tensorinv(a, ind=2): """ Compute the 'inverse' of an N-dimensional array. The result is an inverse for `a` relative to the tensordot operation ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the tensordot operation. Parameters ---------- a : array_like Tensor to 'invert'. Its shape must be 'square', i. e., ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. ind : int, optional Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. Returns ------- b : ndarray `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``. Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorsolve Examples -------- >>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) oldshape = a.shape prod = 1 if ind > 0: invshape = oldshape[ind:] + oldshape[:ind] for k in oldshape[ind:]: prod *= k else: raise ValueError("Invalid ind argument.") a = a.reshape(prod, -1) ia = inv(a) return ia.reshape(*invshape) # Matrix inversion def inv(a): """ Compute the (multiplicative) inverse of a matrix. Given a square matrix `a`, return the matrix `ainv` satisfying ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. Parameters ---------- a : (..., M, M) array_like Matrix to be inverted. Returns ------- ainv : (..., M, M) ndarray or matrix (Multiplicative) inverse of the matrix `a`. Raises ------ LinAlgError If `a` is not square or inversion fails. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. Examples -------- >>> from numpy.linalg import inv >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) True If a is a matrix object, then the return value is a matrix as well: >>> ainv = inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]]) Inverses of several matrices can be computed at once: >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> inv(a) array([[[-2. , 1. ], [ 1.5, -0.5]], [[-5. , 2. ], [ 3. , -1. ]]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) if a.shape[-1] == 0: # The inner array is 0x0, the ufunc cannot handle this case return wrap(empty_like(a, dtype=result_t)) signature = 'D->D' if isComplexType(t) else 'd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj) return wrap(ainv.astype(result_t, copy=False)) # Cholesky decomposition def cholesky(a): """ Cholesky decomposition. Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, where `L` is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose if `a` is real-valued). `a` must be Hermitian (symmetric if real-valued) and positive-definite. Only `L` is actually returned. Parameters ---------- a : (..., M, M) array_like Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : (..., M, M) array_like Upper or lower-triangular Cholesky factor of `a`. Returns a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the decomposition fails, for example, if `a` is not positive-definite. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The Cholesky decomposition is often used as a fast way of solving .. math:: A \\mathbf{x} = \\mathbf{b} (when `A` is both Hermitian/symmetric and positive-definite). First, we solve for :math:`\\mathbf{y}` in .. math:: L \\mathbf{y} = \\mathbf{b}, and then for :math:`\\mathbf{x}` in .. math:: L.H \\mathbf{x} = \\mathbf{y}. Examples -------- >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> LA.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) """ extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef) gufunc = _umath_linalg.cholesky_lo a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = gufunc(a, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) # QR decompostion def qr(a, mode='reduced'): """ Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like, shape (M, N) Matrix to be factored. mode : {'reduced', 'complete', 'r', 'raw', 'full', 'economic'}, optional If K = min(M, N), then 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) 'complete' : returns q, r with dimensions (M, M), (M, N) 'r' : returns r only with dimensions (K, N) 'raw' : returns h, tau with dimensions (N, M), (K,) 'full' : alias of 'reduced', deprecated 'economic' : returns h from 'raw', deprecated. The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, see the notes for more information. The default is 'reduced' and to maintain backward compatibility with earlier versions of numpy both it and the old default 'full' can be omitted. Note that array h returned in 'raw' mode is transposed for calling Fortran. The 'economic' mode is deprecated. The modes 'full' and 'economic' may be passed using only the first letter for backwards compatibility, but all others must be spelled out. See the Notes for more explanation. Returns ------- q : ndarray of float or complex, optional A matrix with orthonormal columns. When mode = 'complete' the result is an orthogonal/unitary matrix depending on whether or not a is real/complex. The determinant may be either +/- 1 in that case. r : ndarray of float or complex, optional The upper-triangular matrix. (h, tau) : ndarrays of np.double or np.cdouble, optional The array h contains the Householder reflectors that generate q along with r. The tau array contains scaling factors for the reflectors. In the deprecated 'economic' mode only h is returned. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved except for the 'raw' mode. So if `a` is of type `matrix`, all the return values will be matrices too. New 'reduced', 'complete', and 'raw' options for mode were added in Numpy 1.8 and the old option 'full' was made an alias of 'reduced'. In addition the options 'full' and 'economic' were deprecated. Because 'full' was the previous default and 'reduced' is the new default, backward compatibility can be maintained by letting `mode` default. The 'raw' option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed to be FORTRAN compatible. No routines using the 'raw' return are currently exposed by numpy, but some are available in lapack_lite and just await the necessary work. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> r3 = np.linalg.qr(a, mode='economic') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True >>> # But only triu parts are guaranteed equal when mode='economic' >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = LA.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(LA.inv(r), p) array([ 1.1e-16, 1.0e+00]) """ if mode not in ('reduced', 'complete', 'r', 'raw'): if mode in ('f', 'full'): # 2013-04-01, 1.8 msg = "".join(( "The 'full' option is deprecated in favor of 'reduced'.\n", "For backward compatibility let mode default.")) warnings.warn(msg, DeprecationWarning) mode = 'reduced' elif mode in ('e', 'economic'): # 2013-04-01, 1.8 msg = "The 'economic' option is deprecated.", warnings.warn(msg, DeprecationWarning) mode = 'economic' else: raise ValueError("Unrecognized mode '%s'" % mode) a, wrap = _makearray(a) _assertRank2(a) _assertNoEmpty2d(a) m, n = a.shape t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) mn = min(m, n) tau = zeros((mn,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeqrf routine_name = 'zgeqrf' else: lapack_routine = lapack_lite.dgeqrf routine_name = 'dgeqrf' # calculate optimal size of work data 'work' lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # do qr decomposition lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # handle modes that don't return q if mode == 'r': r = _fastCopyAndTranspose(result_t, a[:, :mn]) return wrap(triu(r)) if mode == 'raw': return a, tau if mode == 'economic': if t != result_t : a = a.astype(result_t, copy=False) return wrap(a.T) # generate q from a if mode == 'complete' and m > n: mc = m q = empty((m, m), t) else: mc = mn q = empty((n, m), t) q[:n] = a if isComplexType(t): lapack_routine = lapack_lite.zungqr routine_name = 'zungqr' else: lapack_routine = lapack_lite.dorgqr routine_name = 'dorgqr' # determine optimal lwork lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # compute q lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) q = _fastCopyAndTranspose(result_t, q[:mc]) r = _fastCopyAndTranspose(result_t, a[:, :mc]) return wrap(q), wrap(triu(r)) # Eigenvalues def eigvals(a): """ Compute the eigenvalues of a general matrix. Main difference between `eigvals` and `eig`: the eigenvectors aren't returned. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues will be computed. Returns ------- w : (..., M,) ndarray The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eig : eigenvalues and right eigenvectors of general arrays eigvalsh : eigenvalues of symmetric or Hermitian arrays. eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. Examples -------- Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as ``A``: >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by Q on one side and by Q.T on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->D' if isComplexType(t) else 'd->D' w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj) if not isComplexType(t): if all(w.imag == 0): w = w.real result_t = _realType(result_t) else: result_t = _complexType(result_t) return w.astype(result_t, copy=False) def eigvalsh(a, UPLO='L'): """ Compute the eigenvalues of a Hermitian or real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues are to be computed. UPLO : {'L', 'U'}, optional Same as `lower`, with 'L' for lower and 'U' for upper triangular. Deprecated. Returns ------- w : (..., M,) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. eigvals : eigenvalues of general real or complex arrays. eig : eigenvalues and right eigenvectors of general real or complex arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues are computed using LAPACK routines _syevd, _heevd Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigvalsh_lo else: gufunc = _umath_linalg.eigvalsh_up a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->d' if isComplexType(t) else 'd->d' w = gufunc(a, signature=signature, extobj=extobj) return w.astype(_realType(result_t), copy=False) def _convertarray(a): t, result_t = _commonType(a) a = _fastCT(a.astype(t)) return a, t, result_t # Eigenvectors def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be of complex type, unless the imaginary part is zero in which case it will be cast to a real type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvals : eigenvalues of a non-symmetric array. eigh : eigenvalues and eigenvectors of a symmetric or Hermitian (conjugate symmetric) array. eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->DD' if isComplexType(t) else 'd->DD' w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj) if not isComplexType(t) and all(w.imag == 0.0): w = w.real vt = vt.real result_t = _realType(result_t) else: result_t = _complexType(result_t) vt = vt.astype(result_t, copy=False) return w.astype(result_t, copy=False), wrap(vt) def eigh(a, UPLO='L'): """ Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. Returns two objects, a 1-D array containing the eigenvalues of `a`, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). Parameters ---------- a : (..., M, M) array Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Returns ------- w : (..., M) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. v : {(..., M, M) ndarray, (..., M, M) matrix} The column ``v[:, i]`` is the normalized eigenvector corresponding to the eigenvalue ``w[i]``. Will return a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of symmetric or Hermitian arrays. eig : eigenvalues and right eigenvectors for non-symmetric arrays. eigvals : eigenvalues of non-symmetric arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary and `a`, `w`, and `v` satisfy the equations ``dot(a, v[:, i]) = w[i] * v[:, i]``. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([ 0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([ 0.+0.j, 0.+0.j]) >>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([ 0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigh_lo else: gufunc = _umath_linalg.eigh_up signature = 'D->dD' if isComplexType(t) else 'd->dd' w, vt = gufunc(a, signature=signature, extobj=extobj) w = w.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return w, wrap(vt) # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): """ Singular Value Decomposition. Factors the matrix `a` as ``u * np.diag(s) * v``, where `u` and `v` are unitary and `s` is a 1-d array of `a`'s singular values. Parameters ---------- a : (..., M, N) array_like A real or complex matrix of shape (`M`, `N`) . full_matrices : bool, optional If True (default), `u` and `v` have the shapes (`M`, `M`) and (`N`, `N`), respectively. Otherwise, the shapes are (`M`, `K`) and (`K`, `N`), respectively, where `K` = min(`M`, `N`). compute_uv : bool, optional Whether or not to compute `u` and `v` in addition to `s`. True by default. Returns ------- u : { (..., M, M), (..., M, K) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. s : (..., K) array The singular values for every matrix, sorted in descending order. v : { (..., N, N), (..., K, N) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The decomposition is performed using LAPACK routine _gesdd The SVD is commonly written as ``a = U S V.H``. The `v` returned by this function is ``V.H`` and ``u = U``. If ``U`` is a unitary matrix, it means that it satisfies ``U.H = inv(U)``. The rows of `v` are the eigenvectors of ``a.H a``. The columns of `u` are the eigenvectors of ``a a.H``. For row ``i`` in `v` and column ``i`` in `u`, the corresponding eigenvalue is ``s[i]**2``. If `a` is a `matrix` object (as opposed to an `ndarray`), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) Reconstruction based on full SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=True) >>> U.shape, V.shape, s.shape ((9, 9), (6, 6), (6,)) >>> S = np.zeros((9, 6), dtype=complex) >>> S[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True Reconstruction based on reduced SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=False) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence) m = a.shape[-2] n = a.shape[-1] if compute_uv: if full_matrices: if m < n: gufunc = _umath_linalg.svd_m_f else: gufunc = _umath_linalg.svd_n_f else: if m < n: gufunc = _umath_linalg.svd_m_s else: gufunc = _umath_linalg.svd_n_s signature = 'D->DdD' if isComplexType(t) else 'd->ddd' u, s, vt = gufunc(a, signature=signature, extobj=extobj) u = u.astype(result_t, copy=False) s = s.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return wrap(u), s, wrap(vt) else: if m < n: gufunc = _umath_linalg.svd_m else: gufunc = _umath_linalg.svd_n signature = 'D->d' if isComplexType(t) else 'd->d' s = gufunc(a, signature=signature, extobj=extobj) s = s.astype(_realType(result_t), copy=False) return s def cond(x, p=None): """ Compute the condition number of a matrix. This function is capable of returning the condition number using one of seven different norms, depending on the value of `p` (see Parameters below). Parameters ---------- x : (..., M, N) array_like The matrix whose condition number is sought. p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional Order of the norm: ===== ============================ p norm for matrices ===== ============================ None 2-norm, computed directly using the ``SVD`` 'fro' Frobenius norm inf max(sum(abs(x), axis=1)) -inf min(sum(abs(x), axis=1)) 1 max(sum(abs(x), axis=0)) -1 min(sum(abs(x), axis=0)) 2 2-norm (largest sing. value) -2 smallest singular value ===== ============================ inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Returns ------- c : {float, inf} The condition number of the matrix. May be infinite. See Also -------- numpy.linalg.norm Notes ----- The condition number of `x` is defined as the norm of `x` times the norm of the inverse of `x` [1]_; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, Academic Press, Inc., 1980, pg. 285. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 >>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 0.70710678118654746 """ x = asarray(x) # in case we have a matrix if p is None: s = svd(x, compute_uv=False) return s[..., 0]/s[..., -1] else: return norm(x, p, axis=(-2, -1)) * norm(inv(x), p, axis=(-2, -1)) def matrix_rank(M, tol=None): """ Return matrix rank of array using SVD method Rank of the array is the number of SVD singular values of the array that are greater than `tol`. Parameters ---------- M : {(M,), (M, N)} array_like array of <=2 dimensions tol : {None, float}, optional threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * max(M.shape) * eps``. Notes ----- The default threshold to detect rank deficiency is a test on the magnitude of the singular values of `M`. By default, we identify singular values less than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in *Numerical recipes* in the discussion of SVD solutions for linear least squares [2]. This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD computation. Imagine that there is a column in `M` that is an exact (in floating point) linear combination of other columns in `M`. Computing the SVD on `M` will not produce a singular value exactly equal to 0 in general: any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default threshold will detect such numerical rank deficiency. The threshold may declare a matrix `M` rank deficient even if the linear combination of some columns of `M` is not exactly equal to another column of `M` but only numerically very close to another column of `M`. We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in the 2007 edition of *Numerical recipes* there is an alternative threshold of ``S.max() * np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe this threshold as being based on "expected roundoff error" (p 71). The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have more information about the sources of error in `M` that would make you consider other tolerance values to detect *effective* rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] MATLAB reference documention, "Rank" http://www.mathworks.com/help/techdoc/ref/rank.html .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795. Examples -------- >>> from numpy.linalg import matrix_rank >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = asarray(M) if M.ndim > 2: raise TypeError('array should have 2 or fewer dimensions') if M.ndim < 2: return int(not all(M==0)) S = svd(M, compute_uv=False) if tol is None: tol = S.max() * max(M.shape) * finfo(S.dtype).eps return sum(S > tol) # Generalized inverse def pinv(a, rcond=1e-15 ): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all *large* singular values. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. rcond : float Cutoff for small singular values. Singular values smaller (in modulus) than `rcond` * largest_singular_value (again, in modulus) are set to zero. Returns ------- B : (N, M) ndarray The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so is `B`. Raises ------ LinAlgError If the SVD computation does not converge. Notes ----- The pseudo-inverse of a matrix A, denoted :math:`A^+`, is defined as: "the matrix that 'solves' [the least-squares problem] :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular value decomposition of A, then :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting of A's so-called singular values, (followed, typically, by zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix consisting of the reciprocals of A's singular values (again, followed by zeros). [1]_ References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. Examples -------- The following example checks that ``a * a+ * a == a`` and ``a+ * a * a+ == a+``: >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) a = a.conjugate() u, s, vt = svd(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*maximum.reduce(s) for i in range(min(n, m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0. res = dot(transpose(vt), multiply(s[:, newaxis], transpose(u))) return wrap(res) # Determinant def slogdet(a): """ Compute the sign and (natural) logarithm of the determinant of an array. If an array has a very small or very large determinant, then a call to `det` may overflow or underflow. This routine is more robust against such issues, because it computes the logarithm of the determinant rather than the determinant itself. Parameters ---------- a : (..., M, M) array_like Input array, has to be a square 2-D array. Returns ------- sign : (...) array_like A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. logdet : (...) array_like The natural log of the absolute value of the determinant. If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``. See Also -------- det Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. .. versionadded:: 1.6.0. The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``: >>> a = np.array([[1, 2], [3, 4]]) >>> (sign, logdet) = np.linalg.slogdet(a) >>> (sign, logdet) (-1, 0.69314718055994529) >>> sign * np.exp(logdet) -2.0 Computing log-determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> sign, logdet = np.linalg.slogdet(a) >>> (sign, logdet) (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154])) >>> sign * np.exp(logdet) array([-2., -3., -8.]) This routine succeeds where ordinary `det` does not: >>> np.linalg.det(np.eye(500) * 0.1) 0.0 >>> np.linalg.slogdet(np.eye(500) * 0.1) (1, -1151.2925464970228) """ a = asarray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) real_t = _realType(result_t) signature = 'D->Dd' if isComplexType(t) else 'd->dd' sign, logdet = _umath_linalg.slogdet(a, signature=signature) if isscalar(sign): sign = sign.astype(result_t) else: sign = sign.astype(result_t, copy=False) if isscalar(logdet): logdet = logdet.astype(real_t) else: logdet = logdet.astype(real_t, copy=False) return sign, logdet def det(a): """ Compute the determinant of an array. Parameters ---------- a : (..., M, M) array_like Input array to compute determinants for. Returns ------- det : (...) array_like Determinant of `a`. See Also -------- slogdet : Another way to representing the determinant, more suitable for large matrices where underflow/overflow may occur. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> np.linalg.det(a) -2.0 Computing determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> np.linalg.det(a) array([-2., -3., -8.]) """ a = asarray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = _umath_linalg.det(a, signature=signature) if isscalar(r): r = r.astype(result_t) else: r = r.astype(result_t, copy=False) return r # Linear Least Squares def lstsq(a, b, rcond=-1): """ Return the least-squares solution to a linear matrix equation. Solves the equation `a x = b` by computing a vector `x` that minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : (M, N) array_like "Coefficient" matrix. b : {(M,), (M, K)} array_like Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. rcond : float, optional Cut-off ratio for small singular values of `a`. Singular values are set to zero if they are smaller than `rcond` times the largest singular value of `a`. Returns ------- x : {(N,), (N, K)} ndarray Least-squares solution. If `b` is two-dimensional, the solutions are in the `K` columns of `x`. residuals : {(), (1,), (K,)} ndarray Sums of residuals; squared Euclidean 2-norm for each column in ``b - a*x``. If the rank of `a` is < N or M <= N, this is an empty array. If `b` is 1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,). rank : int Rank of matrix `a`. s : (min(M, N),) ndarray Singular values of `a`. Raises ------ LinAlgError If computation does not converge. Notes ----- If `b` is a matrix, then all array results are returned as matrices. Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y)[0] >>> print(m, c) 1.0 -0.95 Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o', label='Original data', markersize=10) >>> plt.plot(x, m*x + c, 'r', label='Fitted line') >>> plt.legend() >>> plt.show() """ import math a, _ = _makearray(a) b, wrap = _makearray(b) is_1d = len(b.shape) == 1 if is_1d: b = b[:, newaxis] _assertRank2(a, b) m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n, m) if m != b.shape[0]: raise LinAlgError('Incompatible dimensions') t, result_t = _commonType(a, b) result_real_t = _realType(result_t) real_t = _linalgRealType(t) bstar = zeros((ldb, n_rhs), t) bstar[:b.shape[0], :n_rhs] = b.copy() a, bstar = _fastCopyAndTranspose(t, a, bstar) a, bstar = _to_native_byte_order(a, bstar) s = zeros((min(m, n),), real_t) nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 ) iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = zeros((lwork,), real_t) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) rwork = zeros((lwork,), real_t) a_real = zeros((m, n), real_t) bstar_real = zeros((ldb, n_rhs,), real_t) results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m, bstar_real, ldb, s, rcond, 0, rwork, -1, iwork, 0) lrwork = int(rwork[0]) work = zeros((lwork,), t) rwork = zeros((lrwork,), real_t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError('SVD did not converge in Linear Least Squares') resids = array([], result_real_t) if is_1d: x = array(ravel(bstar)[:n], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = array([sum(abs(ravel(bstar)[n:])**2)], dtype=result_real_t) else: resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_real_t) else: x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = sum(abs(transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) else: resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) st = s[:min(n, m)].astype(result_real_t, copy=True) return wrap(x), wrap(resids), results['rank'], st def _multi_svd_norm(x, row_axis, col_axis, op): """Compute a function of the singular values of the 2-D matrices in `x`. This is a private utility function used by numpy.linalg.norm(). Parameters ---------- x : ndarray row_axis, col_axis : int The axes of `x` that hold the 2-D matrices. op : callable This should be either numpy.amin or numpy.amax or numpy.sum. Returns ------- result : float or ndarray If `x` is 2-D, the return values is a float. Otherwise, it is an array with ``x.ndim - 2`` dimensions. The return values are either the minimum or maximum or sum of the singular values of the matrices, depending on whether `op` is `numpy.amin` or `numpy.amax` or `numpy.sum`. """ if row_axis > col_axis: row_axis -= 1 y = rollaxis(rollaxis(x, col_axis, x.ndim), row_axis, -1) result = op(svd(y, compute_uv=0), axis=-1) return result def norm(x, ord=None, axis=None, keepdims=False): """ Matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like Input array. If `axis` is None, `x` must be 1-D or 2-D. ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. axis : {int, 2-tuple of ints, None}, optional If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned. keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `x`. .. versionadded:: 1.10.0 Returns ------- n : float or ndarray Norm of the matrix or vector(s). Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4.0 >>> LA.norm(b, np.inf) 9.0 >>> LA.norm(a, -np.inf) 0.0 >>> LA.norm(b, -np.inf) 2.0 >>> LA.norm(a, 1) 20.0 >>> LA.norm(b, 1) 7.0 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6.0 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345 >>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan Using the `axis` argument to compute vector norms: >>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([ 6., 6.]) Using the `axis` argument to compute matrix norms: >>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824) """ x = asarray(x) if not issubclass(x.dtype.type, inexact): x = x.astype(float) # Immediately handle some default, simple, fast, and common cases. if axis is None: ndim = x.ndim if ((ord is None) or (ord in ('f', 'fro') and ndim == 2) or (ord == 2 and ndim == 1)): x = x.ravel(order='K') if isComplexType(x.dtype.type): sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag) else: sqnorm = dot(x, x) ret = sqrt(sqnorm) if keepdims: ret = ret.reshape(ndim*[1]) return ret # Normalize the `axis` argument to a tuple. nd = x.ndim if axis is None: axis = tuple(range(nd)) elif not isinstance(axis, tuple): try: axis = int(axis) except: raise TypeError("'axis' must be None, an integer or a tuple of integers") axis = (axis,) if len(axis) == 1: if ord == Inf: return abs(x).max(axis=axis, keepdims=keepdims) elif ord == -Inf: return abs(x).min(axis=axis, keepdims=keepdims) elif ord == 0: # Zero norm return (x != 0).astype(float).sum(axis=axis, keepdims=keepdims) elif ord == 1: # special case for speedup return add.reduce(abs(x), axis=axis, keepdims=keepdims) elif ord is None or ord == 2: # special case for speedup s = (x.conj() * x).real return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) else: try: ord + 1 except TypeError: raise ValueError("Invalid norm order for vectors.") if x.dtype.type is longdouble: # Convert to a float type, so integer arrays give # float results. Don't apply asfarray to longdouble arrays, # because it will downcast to float64. absx = abs(x) else: absx = x if isComplexType(x.dtype.type) else asfarray(x) if absx.dtype is x.dtype: absx = abs(absx) else: # if the type changed, we can safely overwrite absx abs(absx, out=absx) absx **= ord return add.reduce(absx, axis=axis, keepdims=keepdims) ** (1.0 / ord) elif len(axis) == 2: row_axis, col_axis = axis if row_axis < 0: row_axis += nd if col_axis < 0: col_axis += nd if not (0 <= row_axis < nd and 0 <= col_axis < nd): raise ValueError('Invalid axis %r for an array with shape %r' % (axis, x.shape)) if row_axis == col_axis: raise ValueError('Duplicate axes given.') if ord == 2: ret = _multi_svd_norm(x, row_axis, col_axis, amax) elif ord == -2: ret = _multi_svd_norm(x, row_axis, col_axis, amin) elif ord == 1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis) elif ord == Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis) elif ord == -1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis) elif ord == -Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis) elif ord in [None, 'fro', 'f']: ret = sqrt(add.reduce((x.conj() * x).real, axis=axis)) elif ord == 'nuc': ret = _multi_svd_norm(x, row_axis, col_axis, sum) else: raise ValueError("Invalid norm order for matrices.") if keepdims: ret_shape = list(x.shape) ret_shape[axis[0]] = 1 ret_shape[axis[1]] = 1 ret = ret.reshape(ret_shape) return ret else: raise ValueError("Improper number of dimensions to norm.") # multi_dot def multi_dot(arrays): """ Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order. `multi_dot` chains `numpy.dot` and uses optimal parenthesization of the matrices [1]_ [2]_. Depending on the shapes of the matrices, this can speed up the multiplication a lot. If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector. The other arguments must be 2-D. Think of `multi_dot` as:: def multi_dot(arrays): return functools.reduce(np.dot, arrays) Parameters ---------- arrays : sequence of array_like If the first argument is 1-D it is treated as row vector. If the last argument is 1-D it is treated as column vector. The other arguments must be 2-D. Returns ------- output : ndarray Returns the dot product of the supplied arrays. See Also -------- dot : dot multiplication with two arguments. References ---------- .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378 .. [2] http://en.wikipedia.org/wiki/Matrix_chain_multiplication Examples -------- `multi_dot` allows you to write:: >>> from numpy.linalg import multi_dot >>> # Prepare some data >>> A = np.random.random(10000, 100) >>> B = np.random.random(100, 1000) >>> C = np.random.random(1000, 5) >>> D = np.random.random(5, 333) >>> # the actual dot multiplication >>> multi_dot([A, B, C, D]) instead of:: >>> np.dot(np.dot(np.dot(A, B), C), D) >>> # or >>> A.dot(B).dot(C).dot(D) Example: multiplication costs of different parenthesizations ------------------------------------------------------------ The cost for a matrix multiplication can be calculated with the following function:: def cost(A, B): return A.shape[0] * A.shape[1] * B.shape[1] Let's assume we have three matrices :math:`A_{10x100}, B_{100x5}, C_{5x50}$`. The costs for the two different parenthesizations are as follows:: cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500 cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000 """ n = len(arrays) # optimization only makes sense for len(arrays) > 2 if n < 2: raise ValueError("Expecting at least two arrays.") elif n == 2: return dot(arrays[0], arrays[1]) arrays = [asanyarray(a) for a in arrays] # save original ndim to reshape the result array into the proper form later ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim # Explicitly convert vectors to 2D arrays to keep the logic of the internal # _multi_dot_* functions as simple as possible. if arrays[0].ndim == 1: arrays[0] = atleast_2d(arrays[0]) if arrays[-1].ndim == 1: arrays[-1] = atleast_2d(arrays[-1]).T _assertRank2(*arrays) # _multi_dot_three is much faster than _multi_dot_matrix_chain_order if n == 3: result = _multi_dot_three(arrays[0], arrays[1], arrays[2]) else: order = _multi_dot_matrix_chain_order(arrays) result = _multi_dot(arrays, order, 0, n - 1) # return proper shape if ndim_first == 1 and ndim_last == 1: return result[0, 0] # scalar elif ndim_first == 1 or ndim_last == 1: return result.ravel() # 1-D else: return result def _multi_dot_three(A, B, C): """ Find the best order for three arrays and do the multiplication. For three arguments `_multi_dot_three` is approximately 15 times faster than `_multi_dot_matrix_chain_order` """ # cost1 = cost((AB)C) cost1 = (A.shape[0] * A.shape[1] * B.shape[1] + # (AB) A.shape[0] * B.shape[1] * C.shape[1]) # (--)C # cost2 = cost((AB)C) cost2 = (B.shape[0] * B.shape[1] * C.shape[1] + # (BC) A.shape[0] * A.shape[1] * C.shape[1]) # A(--) if cost1 < cost2: return dot(dot(A, B), C) else: return dot(A, dot(B, C)) def _multi_dot_matrix_chain_order(arrays, return_costs=False): """ Return a np.array that encodes the optimal order of mutiplications. The optimal order array is then used by `_multi_dot()` to do the multiplication. Also return the cost matrix if `return_costs` is `True` The implementation CLOSELY follows Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices. cost[i, j] = min([ cost[prefix] + cost[suffix] + cost_mult(prefix, suffix) for k in range(i, j)]) """ n = len(arrays) # p stores the dimensions of the matrices # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50] p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]] # m is a matrix of costs of the subproblems # m[i,j]: min number of scalar multiplications needed to compute A_{i..j} m = zeros((n, n), dtype=double) # s is the actual ordering # s[i, j] is the value of k at which we split the product A_i..A_j s = empty((n, n), dtype=intp) for l in range(1, n): for i in range(n - l): j = i + l m[i, j] = Inf for k in range(i, j): q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1] if q < m[i, j]: m[i, j] = q s[i, j] = k # Note that Cormen uses 1-based index return (s, m) if return_costs else s def _multi_dot(arrays, order, i, j): """Actually do the multiplication with the given order.""" if i == j: return arrays[i] else: return dot(_multi_dot(arrays, order, i, order[i, j]), _multi_dot(arrays, order, order[i, j] + 1, j))
mit
superphy/backend
app/modules/qc/qc.py
1
4021
from __future__ import division import os import tempfile import subprocess import argparse import pandas as pd from middleware.graphers.turtle_grapher import generate_turtle_skeleton def create_blast_db(query_file): ''' :param query_file: genome file that was given by the user. ''' tempdir = tempfile.mkdtemp() blast_db_path = os.path.join(tempdir, 'ecoli_blastdb') ret_code = subprocess.call(["makeblastdb", "-in", query_file, "-dbtype", "nucl", "-title", "ecoli_blastdb", "-out", blast_db_path]) if ret_code == 0: return blast_db_path else: raise Exception("Could not create blast db") def run_blast(blast_db): ''' Compares db made from user submitted data against https://raw.githubusercontent.com/superphy/version-1/master/Sequences/genome_content_panseq/putative_e_coli_specific.fasta The ref contains 10 ecoli-specific gene sequences Output format is set to '10'(csv) ''' ecoli_ref = os.path.abspath(os.path.dirname(os.path.abspath(__file__)) + '/' + 'putative_e_coli_specific.fasta') blast_output_file = blast_db + '.output' ret_code = subprocess.call(["blastn", "-query", ecoli_ref, "-db", blast_db, "-out", blast_output_file, "-outfmt", '10 " qseqid qlen sseqid length pident sstart send sframe "', "-word_size", "11"]) if ret_code == 0: return blast_output_file else: raise Exception("Could not run blast") def parse_blast_records(blast_output_file): ''' Recall, headers are: https://edwards.sdsu.edu/research/blast-output-8/ For QC, we only consider perfect matches against our reference. returns a list of unique hits from the reference db ''' print blast_output_file blast_records = pd.read_csv(blast_output_file, header=None) blast_records.columns = ['qseqid','qlen','sseqid','length','pident','sstart','send','sframe'] # filter for results with percent identity >= 90% blast_records_pi_passed = blast_records[blast_records['pident']>=90] print blast_records_pi_passed # calculate percent length blast_records_pi_passed['pl'] = blast_records_pi_passed['length']/blast_records_pi_passed['qlen'] * 100 # filter for results with percent length >= 90% blast_records_pi_pl_passed = blast_records_pi_passed[blast_records_pi_passed['pl'] >= 90] print blast_records_pi_pl_passed # take only unique hits of the reference sequence that pass pi/pl checks (we don't count repeats) unique_hits = blast_records_pi_pl_passed['qseqid'].unique() print unique_hits return unique_hits def check_header_parsing(query_file): ''' Checks that SeqIO can parse the file okay before continuing. ''' try: graph = generate_turtle_skeleton(query_file) return True except: return False def check_ecoli(query_file): # Checks if the query_file is an E.Coli genome. # run blast for ecoli specific sequences blast_db = create_blast_db(query_file) blast_output_file = run_blast(blast_db) unique_hits = parse_blast_records(blast_output_file) if len(unique_hits) >= 3: return True else: return False def qc(query_file): ''' Compares the query_file against a reference db of ecoli-specific gene sequences. We consider a "pass" if the query_file has >=3 of the sequences. Returns True for pass, False for failed qc check (not ecoli.) ''' return check_header_parsing(query_file) and check_ecoli(query_file) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-i", required=True) args = parser.parse_args() print qc(args.i)
apache-2.0
guschmue/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
72
12865
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat( [labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose( predictions['class'], np.argmax( predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose( classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
apache-2.0
ltiao/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
LeeMendelowitz/basketball-reference
run_games.py
1
1036
""" Download all 2013 boxscores. """ import os import sys from file_utils import make_dirs import pandas import time import requests from basketball_reference import games_table from basketball_reference.globals import URL_BASE def games_to_csv(): src = os.path.join('pages', 'NBA_2013_games.html') games_table.to_csv(src, 'games.csv') def download_boxscores(): """ Download all boxscores. """ df = pandas.read_csv('games.csv') urls = df['box_score_url'] #import pdb; pdb.set_trace() n = len(urls) for i, url in enumerate(urls): url = url.lstrip('/') dirpath = os.path.dirname(url) make_dirs(dirpath) full_url = '%s/%s'%(URL_BASE, url) sys.stderr.write("Downloading file %i of %i: %s..."%(i, n, full_url)) response = requests.get(full_url) with open(url, 'w') as f: f.write(response.text.encode('utf-8', errors='ignore')) sys.stderr.write('done!\n') # Be kind to Basketball-Reference.com time.sleep(1) if __name__ == '__main__': download_boxscores()
gpl-3.0
UPenn-RoboCup/UPennalizers
Lib/Modules/Util/Python/monitor_shm.py
3
2295
#!/usr/bin/env python import matplotlib.pyplot as mpl import numpy as np from scipy.misc import pilutil import time import shm import os vcmImage = shm.ShmWrapper('vcmImage181%s' % str(os.getenv('USER'))); def draw_data(rgb, labelA): mpl.subplot(2,2,1); mpl.imshow(rgb) # disp('Received image.') mpl.subplot(2,2,2); # labelA = sw.vcmImage.get_labelA(); # labelA = typecast( labelA, 'uint8' ); # labelA = reshape( labelA, [80,60] ); # labelA = permute( labelA, [2 1] ); mpl.imshow(labelA); # TODO: Port the Matlab Colormap # cbk=[0 0 0];cr=[1 0 0];cg=[0 1 0];cb=[0 0 1];cy=[1 1 0];cw=[1 1 1]; # cmap=[cbk;cr;cy;cy;cb;cb;cb;cb;cg;cg;cg;cg;cg;cg;cg;cg;cw]; # colormap(cmap); # hold on; # plot_ball( sw.vcmBall ); # plot_goalposts( sw.vcmGoal ); # print 'Received Label A." mpl.subplot(2,2,3); # Draw the field for localization reasons #plot_field(); # hold on; # plot robots # for t in range( len(teamNumbers) ): # for p in range(nPlayers): # if (~isempty(robots{p, t})): # plot_robot_struct(robots{p, t}); mpl.subplot(2,2,4); # What to draw here? #plot(10,10); #hold on; #plot_goalposts( sw.vcmGoal ); mpl.draw(); def on_button_press(event): global vcmImage # get the yuyv image data yuyv = vcmImage.get_yuyv(); # data is actually int32 (YUYV format) not float64 yuyv.dtype = 'uint32'; n = yuyv.shape[0]; # convert to uint8 to seperate out YUYV yuyv.dtype = 'uint8'; # reshape to Nx4 yuyv_u8 = yuyv.reshape((120, 80, 4)); # convert to ycbcr (approx.) ycbcr = yuyv_u8[0:-1:2, :, [0,1,3]]; # convert to rgb # there is probably a better way to do this... rgb = np.asarray(pilutil.toimage(ycbcr, mode='YCbCr').convert('RGB').getdata()); rgb = rgb.reshape((60, 80, 3))/255.0; # Get the labelA data labelA = vcmImage.get_labelA(); # data is actually uint8 (one bit per label) labelA.dtype = 'uint8'; n = yuyv.shape[0]; labelA = labelA.reshape( (60,80) ); # labelA = permute( labelA, [2 1] ); # display image draw_data(rgb, labelA) if __name__=='__main__': # create connection to image shm print('Click on the image to update...'); fig = mpl.figure(); fig.canvas.mpl_connect('button_press_event', on_button_press); mpl.show(); time.sleep(0.1);
gpl-3.0
niketanpansare/systemml
projects/breast_cancer/breastcancer/visualization.py
18
2001
#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- """ Visualization -- Predicting Breast Cancer Proliferation Scores with Apache SystemML This module contains functions for visualizing data for the breast cancer project. """ import matplotlib.pyplot as plt def visualize_tile(tile): """ Plot a tissue tile. Args: tile: A 3D NumPy array of shape (tile_size, tile_size, channels). Returns: None """ plt.imshow(tile) plt.show() def visualize_sample(sample, size=256): """ Plot a tissue sample. Args: sample: A square sample flattened to a vector of size (channels*size_x*size_y). size: The width and height of the square samples. Returns: None """ # Change type, reshape, transpose to (size_x, size_y, channels). length = sample.shape[0] channels = int(length / (size * size)) if channels > 1: sample = sample.astype('uint8').reshape((channels, size, size)).transpose(1,2,0) plt.imshow(sample) else: vmax = 255 if sample.max() > 1 else 1 sample = sample.reshape((size, size)) plt.imshow(sample, cmap="gray", vmin=0, vmax=vmax) plt.show()
apache-2.0
superbobry/pymc3
pymc3/examples/ARM5_4.py
14
1026
''' Created on May 18, 2012 @author: jsalvatier ''' import numpy as np from pymc3 import * import theano.tensor as t import pandas as pd wells = get_data_file('pymc3.examples', 'data/wells.dat') data = pd.read_csv(wells, delimiter=u' ', index_col=u'id', dtype={u'switch': np.int8}) data.dist /= 100 data.educ /= 4 col = data.columns P = data[col[1:]] P = P - P.mean() P['1'] = 1 Pa = np.array(P) with Model() as model: effects = Normal( 'effects', mu=0, tau=100. ** -2, shape=len(P.columns)) p = sigmoid(dot(Pa, effects)) s = Bernoulli('s', p, observed=np.array(data.switch)) def run(n=3000): if n == "short": n = 50 with model: # move the chain to the MAP which should be a good starting point start = find_MAP() H = model.fastd2logp() # find a good orientation using the hessian at the MAP h = H(start) step = HamiltonianMC(model.vars, h) trace = sample(n, step, start) if __name__ == '__main__': run()
apache-2.0
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/sklearn/tests/test_grid_search.py
53
28730
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler, ChangedBehaviorWarning) from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.cross_validation import KFold, StratifiedKFold, FitFailedWarning from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
gpl-2.0
noam09/deluge-telegramer
telegramer/include/future/utils/__init__.py
8
20325
""" A selection of cross-compatible functions for Python 2 and 3. This module exports useful functions for 2/3 compatible code: * bind_method: binds functions to classes * ``native_str_to_bytes`` and ``bytes_to_native_str`` * ``native_str``: always equal to the native platform string object (because this may be shadowed by imports from future.builtins) * lists: lrange(), lmap(), lzip(), lfilter() * iterable method compatibility: - iteritems, iterkeys, itervalues - viewitems, viewkeys, viewvalues These use the original method if available, otherwise they use items, keys, values. * types: * text_type: unicode in Python 2, str in Python 3 * binary_type: str in Python 2, bytes in Python 3 * string_types: basestring in Python 2, str in Python 3 * bchr(c): Take an integer and make a 1-character byte string * bord(c) Take the result of indexing on a byte string and make an integer * tobytes(s) Take a text string, a byte string, or a sequence of characters taken from a byte string, and make a byte string. * raise_from() * raise_with_traceback() This module also defines these decorators: * ``python_2_unicode_compatible`` * ``with_metaclass`` * ``implements_iterator`` Some of the functions in this module come from the following sources: * Jinja2 (BSD licensed: see https://github.com/mitsuhiko/jinja2/blob/master/LICENSE) * Pandas compatibility module pandas.compat * six.py by Benjamin Peterson * Django """ import types import sys import numbers import functools import copy import inspect PY3 = sys.version_info[0] == 3 PY35_PLUS = sys.version_info[0:2] >= (3, 5) PY36_PLUS = sys.version_info[0:2] >= (3, 6) PY2 = sys.version_info[0] == 2 PY26 = sys.version_info[0:2] == (2, 6) PY27 = sys.version_info[0:2] == (2, 7) PYPY = hasattr(sys, 'pypy_translation_info') def python_2_unicode_compatible(cls): """ A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3, this decorator is a no-op. To support Python 2 and 3 with a single code base, define a __str__ method returning unicode text and apply this decorator to the class, like this:: >>> from future.utils import python_2_unicode_compatible >>> @python_2_unicode_compatible ... class MyClass(object): ... def __str__(self): ... return u'Unicode string: \u5b54\u5b50' >>> a = MyClass() Then, after this import: >>> from future.builtins import str the following is ``True`` on both Python 3 and 2:: >>> str(a) == a.encode('utf-8').decode('utf-8') True and, on a Unicode-enabled terminal with the right fonts, these both print the Chinese characters for Confucius:: >>> print(a) >>> print(str(a)) The implementation comes from django.utils.encoding. """ if not PY3: cls.__unicode__ = cls.__str__ cls.__str__ = lambda self: self.__unicode__().encode('utf-8') return cls def with_metaclass(meta, *bases): """ Function from jinja2/_compat.py. License: BSD. Use it like this:: class BaseForm(object): pass class FormType(type): pass class Form(with_metaclass(FormType, BaseForm)): pass This requires a bit of explanation: the basic idea is to make a dummy metaclass for one level of class instantiation that replaces itself with the actual metaclass. Because of internal type checks we also need to make sure that we downgrade the custom metaclass for one level to something closer to type (that's why __call__ and __init__ comes back from type etc.). This has the advantage over six.with_metaclass of not introducing dummy classes into the final MRO. """ class metaclass(meta): __call__ = type.__call__ __init__ = type.__init__ def __new__(cls, name, this_bases, d): if this_bases is None: return type.__new__(cls, name, (), d) return meta(name, bases, d) return metaclass('temporary_class', None, {}) # Definitions from pandas.compat and six.py follow: if PY3: def bchr(s): return bytes([s]) def bstr(s): if isinstance(s, str): return bytes(s, 'latin-1') else: return bytes(s) def bord(s): return s string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes else: # Python 2 def bchr(s): return chr(s) def bstr(s): return str(s) def bord(s): return ord(s) string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str ### if PY3: def tobytes(s): if isinstance(s, bytes): return s else: if isinstance(s, str): return s.encode('latin-1') else: return bytes(s) else: # Python 2 def tobytes(s): if isinstance(s, unicode): return s.encode('latin-1') else: return ''.join(s) tobytes.__doc__ = """ Encodes to latin-1 (where the first 256 chars are the same as ASCII.) """ if PY3: def native_str_to_bytes(s, encoding='utf-8'): return s.encode(encoding) def bytes_to_native_str(b, encoding='utf-8'): return b.decode(encoding) def text_to_native_str(t, encoding=None): return t else: # Python 2 def native_str_to_bytes(s, encoding=None): from future.types import newbytes # to avoid a circular import return newbytes(s) def bytes_to_native_str(b, encoding=None): return native(b) def text_to_native_str(t, encoding='ascii'): """ Use this to create a Py2 native string when "from __future__ import unicode_literals" is in effect. """ return unicode(t).encode(encoding) native_str_to_bytes.__doc__ = """ On Py3, returns an encoded string. On Py2, returns a newbytes type, ignoring the ``encoding`` argument. """ if PY3: # list-producing versions of the major Python iterating functions def lrange(*args, **kwargs): return list(range(*args, **kwargs)) def lzip(*args, **kwargs): return list(zip(*args, **kwargs)) def lmap(*args, **kwargs): return list(map(*args, **kwargs)) def lfilter(*args, **kwargs): return list(filter(*args, **kwargs)) else: import __builtin__ # Python 2-builtin ranges produce lists lrange = __builtin__.range lzip = __builtin__.zip lmap = __builtin__.map lfilter = __builtin__.filter def isidentifier(s, dotted=False): ''' A function equivalent to the str.isidentifier method on Py3 ''' if dotted: return all(isidentifier(a) for a in s.split('.')) if PY3: return s.isidentifier() else: import re _name_re = re.compile(r"[a-zA-Z_][a-zA-Z0-9_]*$") return bool(_name_re.match(s)) def viewitems(obj, **kwargs): """ Function for iterating over dictionary items with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewitems", None) if not func: func = obj.items return func(**kwargs) def viewkeys(obj, **kwargs): """ Function for iterating over dictionary keys with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewkeys", None) if not func: func = obj.keys return func(**kwargs) def viewvalues(obj, **kwargs): """ Function for iterating over dictionary values with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewvalues", None) if not func: func = obj.values return func(**kwargs) def iteritems(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewitems(). """ func = getattr(obj, "iteritems", None) if not func: func = obj.items return func(**kwargs) def iterkeys(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewkeys(). """ func = getattr(obj, "iterkeys", None) if not func: func = obj.keys return func(**kwargs) def itervalues(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewvalues(). """ func = getattr(obj, "itervalues", None) if not func: func = obj.values return func(**kwargs) def bind_method(cls, name, func): """Bind a method to class, python 2 and python 3 compatible. Parameters ---------- cls : type class to receive bound method name : basestring name of method on class instance func : function function to be bound as method Returns ------- None """ # only python 2 has an issue with bound/unbound methods if not PY3: setattr(cls, name, types.MethodType(func, None, cls)) else: setattr(cls, name, func) def getexception(): return sys.exc_info()[1] def _get_caller_globals_and_locals(): """ Returns the globals and locals of the calling frame. Is there an alternative to frame hacking here? """ caller_frame = inspect.stack()[2] myglobals = caller_frame[0].f_globals mylocals = caller_frame[0].f_locals return myglobals, mylocals def _repr_strip(mystring): """ Returns the string without any initial or final quotes. """ r = repr(mystring) if r.startswith("'") and r.endswith("'"): return r[1:-1] else: return r if PY3: def raise_from(exc, cause): """ Equivalent to: raise EXCEPTION from CAUSE on Python 3. (See PEP 3134). """ myglobals, mylocals = _get_caller_globals_and_locals() # We pass the exception and cause along with other globals # when we exec(): myglobals = myglobals.copy() myglobals['__python_future_raise_from_exc'] = exc myglobals['__python_future_raise_from_cause'] = cause execstr = "raise __python_future_raise_from_exc from __python_future_raise_from_cause" exec(execstr, myglobals, mylocals) def raise_(tp, value=None, tb=None): """ A function that matches the Python 2.x ``raise`` statement. This allows re-raising exceptions with the cls value and traceback on Python 2 and 3. """ if value is not None and isinstance(tp, Exception): raise TypeError("instance exception may not have a separate value") if value is not None: exc = tp(value) else: exc = tp if exc.__traceback__ is not tb: raise exc.with_traceback(tb) raise exc def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc.with_traceback(traceback) else: def raise_from(exc, cause): """ Equivalent to: raise EXCEPTION from CAUSE on Python 3. (See PEP 3134). """ # Is either arg an exception class (e.g. IndexError) rather than # instance (e.g. IndexError('my message here')? If so, pass the # name of the class undisturbed through to "raise ... from ...". if isinstance(exc, type) and issubclass(exc, Exception): e = exc() # exc = exc.__name__ # execstr = "e = " + _repr_strip(exc) + "()" # myglobals, mylocals = _get_caller_globals_and_locals() # exec(execstr, myglobals, mylocals) else: e = exc e.__suppress_context__ = False if isinstance(cause, type) and issubclass(cause, Exception): e.__cause__ = cause() e.__suppress_context__ = True elif cause is None: e.__cause__ = None e.__suppress_context__ = True elif isinstance(cause, BaseException): e.__cause__ = cause e.__suppress_context__ = True else: raise TypeError("exception causes must derive from BaseException") e.__context__ = sys.exc_info()[1] raise e exec(''' def raise_(tp, value=None, tb=None): raise tp, value, tb def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc, None, traceback '''.strip()) raise_with_traceback.__doc__ = ( """Raise exception with existing traceback. If traceback is not passed, uses sys.exc_info() to get traceback.""" ) # Deprecated alias for backward compatibility with ``future`` versions < 0.11: reraise = raise_ def implements_iterator(cls): ''' From jinja2/_compat.py. License: BSD. Use as a decorator like this:: @implements_iterator class UppercasingIterator(object): def __init__(self, iterable): self._iter = iter(iterable) def __iter__(self): return self def __next__(self): return next(self._iter).upper() ''' if PY3: return cls else: cls.next = cls.__next__ del cls.__next__ return cls if PY3: get_next = lambda x: x.next else: get_next = lambda x: x.__next__ def encode_filename(filename): if PY3: return filename else: if isinstance(filename, unicode): return filename.encode('utf-8') return filename def is_new_style(cls): """ Python 2.7 has both new-style and old-style classes. Old-style classes can be pesky in some circumstances, such as when using inheritance. Use this function to test for whether a class is new-style. (Python 3 only has new-style classes.) """ return hasattr(cls, '__class__') and ('__dict__' in dir(cls) or hasattr(cls, '__slots__')) # The native platform string and bytes types. Useful because ``str`` and # ``bytes`` are redefined on Py2 by ``from future.builtins import *``. native_str = str native_bytes = bytes def istext(obj): """ Deprecated. Use:: >>> isinstance(obj, str) after this import: >>> from future.builtins import str """ return isinstance(obj, type(u'')) def isbytes(obj): """ Deprecated. Use:: >>> isinstance(obj, bytes) after this import: >>> from future.builtins import bytes """ return isinstance(obj, type(b'')) def isnewbytes(obj): """ Equivalent to the result of ``isinstance(obj, newbytes)`` were ``__instancecheck__`` not overridden on the newbytes subclass. In other words, it is REALLY a newbytes instance, not a Py2 native str object? """ # TODO: generalize this so that it works with subclasses of newbytes # Import is here to avoid circular imports: from future.types.newbytes import newbytes return type(obj) == newbytes def isint(obj): """ Deprecated. Tests whether an object is a Py3 ``int`` or either a Py2 ``int`` or ``long``. Instead of using this function, you can use: >>> from future.builtins import int >>> isinstance(obj, int) The following idiom is equivalent: >>> from numbers import Integral >>> isinstance(obj, Integral) """ return isinstance(obj, numbers.Integral) def native(obj): """ On Py3, this is a no-op: native(obj) -> obj On Py2, returns the corresponding native Py2 types that are superclasses for backported objects from Py3: >>> from builtins import str, bytes, int >>> native(str(u'ABC')) u'ABC' >>> type(native(str(u'ABC'))) unicode >>> native(bytes(b'ABC')) b'ABC' >>> type(native(bytes(b'ABC'))) bytes >>> native(int(10**20)) 100000000000000000000L >>> type(native(int(10**20))) long Existing native types on Py2 will be returned unchanged: >>> type(native(u'ABC')) unicode """ if hasattr(obj, '__native__'): return obj.__native__() else: return obj # Implementation of exec_ is from ``six``: if PY3: import builtins exec_ = getattr(builtins, "exec") else: def exec_(code, globs=None, locs=None): """Execute code in a namespace.""" if globs is None: frame = sys._getframe(1) globs = frame.f_globals if locs is None: locs = frame.f_locals del frame elif locs is None: locs = globs exec("""exec code in globs, locs""") # Defined here for backward compatibility: def old_div(a, b): """ DEPRECATED: import ``old_div`` from ``past.utils`` instead. Equivalent to ``a / b`` on Python 2 without ``from __future__ import division``. TODO: generalize this to other objects (like arrays etc.) """ if isinstance(a, numbers.Integral) and isinstance(b, numbers.Integral): return a // b else: return a / b def as_native_str(encoding='utf-8'): ''' A decorator to turn a function or method call that returns text, i.e. unicode, into one that returns a native platform str. Use it as a decorator like this:: from __future__ import unicode_literals class MyClass(object): @as_native_str(encoding='ascii') def __repr__(self): return next(self._iter).upper() ''' if PY3: return lambda f: f else: def encoder(f): @functools.wraps(f) def wrapper(*args, **kwargs): return f(*args, **kwargs).encode(encoding=encoding) return wrapper return encoder # listvalues and listitems definitions from Nick Coghlan's (withdrawn) # PEP 496: try: dict.iteritems except AttributeError: # Python 3 def listvalues(d): return list(d.values()) def listitems(d): return list(d.items()) else: # Python 2 def listvalues(d): return d.values() def listitems(d): return d.items() if PY3: def ensure_new_type(obj): return obj else: def ensure_new_type(obj): from future.types.newbytes import newbytes from future.types.newstr import newstr from future.types.newint import newint from future.types.newdict import newdict native_type = type(native(obj)) # Upcast only if the type is already a native (non-future) type if issubclass(native_type, type(obj)): # Upcast if native_type == str: # i.e. Py2 8-bit str return newbytes(obj) elif native_type == unicode: return newstr(obj) elif native_type == int: return newint(obj) elif native_type == long: return newint(obj) elif native_type == dict: return newdict(obj) else: return obj else: # Already a new type assert type(obj) in [newbytes, newstr] return obj __all__ = ['PY2', 'PY26', 'PY3', 'PYPY', 'as_native_str', 'bind_method', 'bord', 'bstr', 'bytes_to_native_str', 'encode_filename', 'ensure_new_type', 'exec_', 'get_next', 'getexception', 'implements_iterator', 'is_new_style', 'isbytes', 'isidentifier', 'isint', 'isnewbytes', 'istext', 'iteritems', 'iterkeys', 'itervalues', 'lfilter', 'listitems', 'listvalues', 'lmap', 'lrange', 'lzip', 'native', 'native_bytes', 'native_str', 'native_str_to_bytes', 'old_div', 'python_2_unicode_compatible', 'raise_', 'raise_with_traceback', 'reraise', 'text_to_native_str', 'tobytes', 'viewitems', 'viewkeys', 'viewvalues', 'with_metaclass' ]
gpl-3.0
severinson/Coded-Shuffling
tests/simulationtests.py
2
4673
############################################################################ # Copyright 2016 Albin Severinson # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # ############################################################################ '''This module contains tests of the simulation module. ''' import os import math import unittest import tempfile import pandas as pd import simulation from functools import partial from model import SystemParameters from solvers.heuristicsolver import HeuristicSolver from evaluation.binsearch import SampleEvaluator class EvaluationTests(unittest.TestCase): '''Tests of the simulation module.''' def verify_result(self, result, correct_result, delta=0.1): '''Check the results against known correct results. Args: result: Measured result. correct_result: Dict with correct results. delta: Correct result must be within a delta fraction of the measured result. ''' for key, value in correct_result.items(): if value == math.inf: self.assertAlmostEqual(result[key].mean(), value, places=1, msg='key={}, value={}'.format(str(key), str(value))) else: self.assertAlmostEqual(result[key].mean(), value, delta=value*delta, msg='key={}, value={}'.format(str(key), str(value))) def verify_solver(self, solver, parameters, correct_results): '''Check the results from evaluating the assignment produced by some solver against known correct results. Args: solver: Assignment solver. parameters: System parameters. correct_results: List of dicts with correct results. ''' evaluator = binsearch.SampleEvaluator(num_samples=1000) for par, correct_result in zip(parameters, correct_results): assignment = solver.solve(par) self.assertTrue(assignment.is_valid()) result = evaluator.evaluate(par, assignment) self.verify_result(result, correct_result) return def test_simulation(self): '''Test basic functionality.''' parameters = SystemParameters(rows_per_batch=5, num_servers=10, q=9, num_outputs=9, server_storage=1/3, num_partitions=5) correct = {'servers': 9, 'batches': 324, 'delay': 25.460714285714285/9, 'unicast_load_1': 720/540/9, 'multicast_load_1': 840/540/9, 'unicast_load_2': 0, 'multicast_load_2': 1470/540/9} solver = HeuristicSolver() evaluator = SampleEvaluator(num_samples=1000) with tempfile.TemporaryDirectory() as tmpdir: filename = os.path.join(tmpdir, parameters.identifier() + '.csv') dataframe = simulation.simulate( parameters, directory=tmpdir, rerun=False, samples=10, solver=solver, assignment_eval=evaluator, ) self.verify_result(dataframe, correct) simulate_fun = partial( simulation.simulate, directory=tmpdir, rerun=False, samples=10, solver=solver, assignment_eval=evaluator, ) dataframe = simulation.simulate_parameter_list( parameter_list=[parameters], simulate_fun=simulate_fun, map_complexity_fun=lambda x: 1, encode_delay_fun=lambda x: 0, reduce_delay_fun=lambda x: 0, ) self.verify_result(dataframe, correct) return
apache-2.0
paulocoding/DataScienceMachineLearning
DataMunging/DataProcessing.py
2
1705
import pandas as pd def sum_of_digits(str_value): """ Sum up all the digits in a number till it is single digit Eg: 1 => 1 11 => 2 123 => 6 1235 => 2 98 => 8 """ total = 0 for num in str_value: total += int(num) if total > 9: return sum_of_digits(str(total)) return total def do_processing(file_name): # Read an excel file. Make sure it is in in XLSX format and # you have XlsxWriter package installed. # Pandas uses this package to read excel files. df = pd.read_excel(file_name) # Split the name into first name and last name # You will get a pandas Series which has 1 column with a list in each row fn_ln_list = df['Name'].str.split(' ') # Use list comprehension to build a list for the first name and last name df['first_name'] = [name[0] for name in fn_ln_list] df['last_name'] = [name[1] for name in fn_ln_list] # Pandas DataFrame automatically recognizes the date field and converts # it into a datetime object. Using strftime to convert the datetime object # to a string in the format DDMMYYYY df['dob'] = df['Date Of Birth'].apply(lambda x: x.strftime('%d%m%Y')) # Sum the numbers in DOB to a single digit # Create a new field to save the sum of digits df['sum_dob'] = df['dob'].apply(sum_of_digits) print "\n\n\nDataFrame:\n" print "----------\n", df print "\n\n\nDataFrame Columns:\n" print "------------------\n", df.columns print "\n\n\nDataFrame Data Types:\n" print "---------------------\n", df.dtypes if __name__ == '__main__': file_name = 'person_details.xlsx' do_processing(file_name)
mit
cortedeltimo/SickRage
lib/future/utils/__init__.py
36
20238
""" A selection of cross-compatible functions for Python 2 and 3. This module exports useful functions for 2/3 compatible code: * bind_method: binds functions to classes * ``native_str_to_bytes`` and ``bytes_to_native_str`` * ``native_str``: always equal to the native platform string object (because this may be shadowed by imports from future.builtins) * lists: lrange(), lmap(), lzip(), lfilter() * iterable method compatibility: - iteritems, iterkeys, itervalues - viewitems, viewkeys, viewvalues These use the original method if available, otherwise they use items, keys, values. * types: * text_type: unicode in Python 2, str in Python 3 * binary_type: str in Python 2, bythes in Python 3 * string_types: basestring in Python 2, str in Python 3 * bchr(c): Take an integer and make a 1-character byte string * bord(c) Take the result of indexing on a byte string and make an integer * tobytes(s) Take a text string, a byte string, or a sequence of characters taken from a byte string, and make a byte string. * raise_from() * raise_with_traceback() This module also defines these decorators: * ``python_2_unicode_compatible`` * ``with_metaclass`` * ``implements_iterator`` Some of the functions in this module come from the following sources: * Jinja2 (BSD licensed: see https://github.com/mitsuhiko/jinja2/blob/master/LICENSE) * Pandas compatibility module pandas.compat * six.py by Benjamin Peterson * Django """ import types import sys import numbers import functools import copy import inspect PY3 = sys.version_info[0] == 3 PY2 = sys.version_info[0] == 2 PY26 = sys.version_info[0:2] == (2, 6) PY27 = sys.version_info[0:2] == (2, 7) PYPY = hasattr(sys, 'pypy_translation_info') def python_2_unicode_compatible(cls): """ A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3, this decorator is a no-op. To support Python 2 and 3 with a single code base, define a __str__ method returning unicode text and apply this decorator to the class, like this:: >>> from future.utils import python_2_unicode_compatible >>> @python_2_unicode_compatible ... class MyClass(object): ... def __str__(self): ... return u'Unicode string: \u5b54\u5b50' >>> a = MyClass() Then, after this import: >>> from future.builtins import str the following is ``True`` on both Python 3 and 2:: >>> str(a) == a.encode('utf-8').decode('utf-8') True and, on a Unicode-enabled terminal with the right fonts, these both print the Chinese characters for Confucius:: >>> print(a) >>> print(str(a)) The implementation comes from django.utils.encoding. """ if not PY3: cls.__unicode__ = cls.__str__ cls.__str__ = lambda self: self.__unicode__().encode('utf-8') return cls def with_metaclass(meta, *bases): """ Function from jinja2/_compat.py. License: BSD. Use it like this:: class BaseForm(object): pass class FormType(type): pass class Form(with_metaclass(FormType, BaseForm)): pass This requires a bit of explanation: the basic idea is to make a dummy metaclass for one level of class instantiation that replaces itself with the actual metaclass. Because of internal type checks we also need to make sure that we downgrade the custom metaclass for one level to something closer to type (that's why __call__ and __init__ comes back from type etc.). This has the advantage over six.with_metaclass of not introducing dummy classes into the final MRO. """ class metaclass(meta): __call__ = type.__call__ __init__ = type.__init__ def __new__(cls, name, this_bases, d): if this_bases is None: return type.__new__(cls, name, (), d) return meta(name, bases, d) return metaclass('temporary_class', None, {}) # Definitions from pandas.compat and six.py follow: if PY3: def bchr(s): return bytes([s]) def bstr(s): if isinstance(s, str): return bytes(s, 'latin-1') else: return bytes(s) def bord(s): return s string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes else: # Python 2 def bchr(s): return chr(s) def bstr(s): return str(s) def bord(s): return ord(s) string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str ### if PY3: def tobytes(s): if isinstance(s, bytes): return s else: if isinstance(s, str): return s.encode('latin-1') else: return bytes(s) else: # Python 2 def tobytes(s): if isinstance(s, unicode): return s.encode('latin-1') else: return ''.join(s) tobytes.__doc__ = """ Encodes to latin-1 (where the first 256 chars are the same as ASCII.) """ if PY3: def native_str_to_bytes(s, encoding='utf-8'): return s.encode(encoding) def bytes_to_native_str(b, encoding='utf-8'): return b.decode(encoding) def text_to_native_str(t, encoding=None): return t else: # Python 2 def native_str_to_bytes(s, encoding=None): from future.types import newbytes # to avoid a circular import return newbytes(s) def bytes_to_native_str(b, encoding=None): return native(b) def text_to_native_str(t, encoding='ascii'): """ Use this to create a Py2 native string when "from __future__ import unicode_literals" is in effect. """ return unicode(t).encode(encoding) native_str_to_bytes.__doc__ = """ On Py3, returns an encoded string. On Py2, returns a newbytes type, ignoring the ``encoding`` argument. """ if PY3: # list-producing versions of the major Python iterating functions def lrange(*args, **kwargs): return list(range(*args, **kwargs)) def lzip(*args, **kwargs): return list(zip(*args, **kwargs)) def lmap(*args, **kwargs): return list(map(*args, **kwargs)) def lfilter(*args, **kwargs): return list(filter(*args, **kwargs)) else: import __builtin__ # Python 2-builtin ranges produce lists lrange = __builtin__.range lzip = __builtin__.zip lmap = __builtin__.map lfilter = __builtin__.filter def isidentifier(s, dotted=False): ''' A function equivalent to the str.isidentifier method on Py3 ''' if dotted: return all(isidentifier(a) for a in s.split('.')) if PY3: return s.isidentifier() else: import re _name_re = re.compile(r"[a-zA-Z_][a-zA-Z0-9_]*$") return bool(_name_re.match(s)) def viewitems(obj, **kwargs): """ Function for iterating over dictionary items with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewitems", None) if not func: func = obj.items return func(**kwargs) def viewkeys(obj, **kwargs): """ Function for iterating over dictionary keys with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewkeys", None) if not func: func = obj.keys return func(**kwargs) def viewvalues(obj, **kwargs): """ Function for iterating over dictionary values with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewvalues", None) if not func: func = obj.values return func(**kwargs) def iteritems(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewitems(). """ func = getattr(obj, "iteritems", None) if not func: func = obj.items return func(**kwargs) def iterkeys(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewkeys(). """ func = getattr(obj, "iterkeys", None) if not func: func = obj.keys return func(**kwargs) def itervalues(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewvalues(). """ func = getattr(obj, "itervalues", None) if not func: func = obj.values return func(**kwargs) def bind_method(cls, name, func): """Bind a method to class, python 2 and python 3 compatible. Parameters ---------- cls : type class to receive bound method name : basestring name of method on class instance func : function function to be bound as method Returns ------- None """ # only python 2 has an issue with bound/unbound methods if not PY3: setattr(cls, name, types.MethodType(func, None, cls)) else: setattr(cls, name, func) def getexception(): return sys.exc_info()[1] def _get_caller_globals_and_locals(): """ Returns the globals and locals of the calling frame. Is there an alternative to frame hacking here? """ caller_frame = inspect.stack()[2] myglobals = caller_frame[0].f_globals mylocals = caller_frame[0].f_locals return myglobals, mylocals def _repr_strip(mystring): """ Returns the string without any initial or final quotes. """ r = repr(mystring) if r.startswith("'") and r.endswith("'"): return r[1:-1] else: return r if PY3: def raise_from(exc, cause): """ Equivalent to: raise EXCEPTION from CAUSE on Python 3. (See PEP 3134). """ myglobals, mylocals = _get_caller_globals_and_locals() # We pass the exception and cause along with other globals # when we exec(): myglobals = myglobals.copy() myglobals['__python_future_raise_from_exc'] = exc myglobals['__python_future_raise_from_cause'] = cause execstr = "raise __python_future_raise_from_exc from __python_future_raise_from_cause" exec(execstr, myglobals, mylocals) def raise_(tp, value=None, tb=None): """ A function that matches the Python 2.x ``raise`` statement. This allows re-raising exceptions with the cls value and traceback on Python 2 and 3. """ if value is not None and isinstance(tp, Exception): raise TypeError("instance exception may not have a separate value") if value is not None: exc = tp(value) else: exc = tp if exc.__traceback__ is not tb: raise exc.with_traceback(tb) raise exc def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc.with_traceback(traceback) else: def raise_from(exc, cause): """ Equivalent to: raise EXCEPTION from CAUSE on Python 3. (See PEP 3134). """ # Is either arg an exception class (e.g. IndexError) rather than # instance (e.g. IndexError('my message here')? If so, pass the # name of the class undisturbed through to "raise ... from ...". if isinstance(exc, type) and issubclass(exc, Exception): e = exc() # exc = exc.__name__ # execstr = "e = " + _repr_strip(exc) + "()" # myglobals, mylocals = _get_caller_globals_and_locals() # exec(execstr, myglobals, mylocals) else: e = exc e.__suppress_context__ = False if isinstance(cause, type) and issubclass(cause, Exception): e.__cause__ = cause() e.__suppress_context__ = True elif cause is None: e.__cause__ = None e.__suppress_context__ = True elif isinstance(cause, BaseException): e.__cause__ = cause e.__suppress_context__ = True else: raise TypeError("exception causes must derive from BaseException") e.__context__ = sys.exc_info()[1] raise e exec(''' def raise_(tp, value=None, tb=None): raise tp, value, tb def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc, None, traceback '''.strip()) raise_with_traceback.__doc__ = ( """Raise exception with existing traceback. If traceback is not passed, uses sys.exc_info() to get traceback.""" ) # Deprecated alias for backward compatibility with ``future`` versions < 0.11: reraise = raise_ def implements_iterator(cls): ''' From jinja2/_compat.py. License: BSD. Use as a decorator like this:: @implements_iterator class UppercasingIterator(object): def __init__(self, iterable): self._iter = iter(iterable) def __iter__(self): return self def __next__(self): return next(self._iter).upper() ''' if PY3: return cls else: cls.next = cls.__next__ del cls.__next__ return cls if PY3: get_next = lambda x: x.next else: get_next = lambda x: x.__next__ def encode_filename(filename): if PY3: return filename else: if isinstance(filename, unicode): return filename.encode('utf-8') return filename def is_new_style(cls): """ Python 2.7 has both new-style and old-style classes. Old-style classes can be pesky in some circumstances, such as when using inheritance. Use this function to test for whether a class is new-style. (Python 3 only has new-style classes.) """ return hasattr(cls, '__class__') and ('__dict__' in dir(cls) or hasattr(cls, '__slots__')) # The native platform string and bytes types. Useful because ``str`` and # ``bytes`` are redefined on Py2 by ``from future.builtins import *``. native_str = str native_bytes = bytes def istext(obj): """ Deprecated. Use:: >>> isinstance(obj, str) after this import: >>> from future.builtins import str """ return isinstance(obj, type(u'')) def isbytes(obj): """ Deprecated. Use:: >>> isinstance(obj, bytes) after this import: >>> from future.builtins import bytes """ return isinstance(obj, type(b'')) def isnewbytes(obj): """ Equivalent to the result of ``isinstance(obj, newbytes)`` were ``__instancecheck__`` not overridden on the newbytes subclass. In other words, it is REALLY a newbytes instance, not a Py2 native str object? """ # TODO: generalize this so that it works with subclasses of newbytes # Import is here to avoid circular imports: from future.types.newbytes import newbytes return type(obj) == newbytes def isint(obj): """ Deprecated. Tests whether an object is a Py3 ``int`` or either a Py2 ``int`` or ``long``. Instead of using this function, you can use: >>> from future.builtins import int >>> isinstance(obj, int) The following idiom is equivalent: >>> from numbers import Integral >>> isinstance(obj, Integral) """ return isinstance(obj, numbers.Integral) def native(obj): """ On Py3, this is a no-op: native(obj) -> obj On Py2, returns the corresponding native Py2 types that are superclasses for backported objects from Py3: >>> from builtins import str, bytes, int >>> native(str(u'ABC')) u'ABC' >>> type(native(str(u'ABC'))) unicode >>> native(bytes(b'ABC')) b'ABC' >>> type(native(bytes(b'ABC'))) bytes >>> native(int(10**20)) 100000000000000000000L >>> type(native(int(10**20))) long Existing native types on Py2 will be returned unchanged: >>> type(native(u'ABC')) unicode """ if hasattr(obj, '__native__'): return obj.__native__() else: return obj # Implementation of exec_ is from ``six``: if PY3: import builtins exec_ = getattr(builtins, "exec") else: def exec_(code, globs=None, locs=None): """Execute code in a namespace.""" if globs is None: frame = sys._getframe(1) globs = frame.f_globals if locs is None: locs = frame.f_locals del frame elif locs is None: locs = globs exec("""exec code in globs, locs""") # Defined here for backward compatibility: def old_div(a, b): """ DEPRECATED: import ``old_div`` from ``past.utils`` instead. Equivalent to ``a / b`` on Python 2 without ``from __future__ import division``. TODO: generalize this to other objects (like arrays etc.) """ if isinstance(a, numbers.Integral) and isinstance(b, numbers.Integral): return a // b else: return a / b def as_native_str(encoding='utf-8'): ''' A decorator to turn a function or method call that returns text, i.e. unicode, into one that returns a native platform str. Use it as a decorator like this:: from __future__ import unicode_literals class MyClass(object): @as_native_str(encoding='ascii') def __repr__(self): return next(self._iter).upper() ''' if PY3: return lambda f: f else: def encoder(f): @functools.wraps(f) def wrapper(*args, **kwargs): return f(*args, **kwargs).encode(encoding=encoding) return wrapper return encoder # listvalues and listitems definitions from Nick Coghlan's (withdrawn) # PEP 496: try: dict.iteritems except AttributeError: # Python 3 def listvalues(d): return list(d.values()) def listitems(d): return list(d.items()) else: # Python 2 def listvalues(d): return d.values() def listitems(d): return d.items() if PY3: def ensure_new_type(obj): return obj else: def ensure_new_type(obj): from future.types.newbytes import newbytes from future.types.newstr import newstr from future.types.newint import newint from future.types.newdict import newdict native_type = type(native(obj)) # Upcast only if the type is already a native (non-future) type if issubclass(native_type, type(obj)): # Upcast if native_type == str: # i.e. Py2 8-bit str return newbytes(obj) elif native_type == unicode: return newstr(obj) elif native_type == int: return newint(obj) elif native_type == long: return newint(obj) elif native_type == dict: return newdict(obj) else: return obj else: # Already a new type assert type(obj) in [newbytes, newstr] return obj __all__ = ['PY2', 'PY26', 'PY3', 'PYPY', 'as_native_str', 'bind_method', 'bord', 'bstr', 'bytes_to_native_str', 'encode_filename', 'ensure_new_type', 'exec_', 'get_next', 'getexception', 'implements_iterator', 'is_new_style', 'isbytes', 'isidentifier', 'isint', 'isnewbytes', 'istext', 'iteritems', 'iterkeys', 'itervalues', 'lfilter', 'listitems', 'listvalues', 'lmap', 'lrange', 'lzip', 'native', 'native_bytes', 'native_str', 'native_str_to_bytes', 'old_div', 'python_2_unicode_compatible', 'raise_', 'raise_with_traceback', 'reraise', 'text_to_native_str', 'tobytes', 'viewitems', 'viewkeys', 'viewvalues', 'with_metaclass' ]
gpl-3.0
musically-ut/statsmodels
statsmodels/examples/tsa/ex_arma_all.py
34
1982
from __future__ import print_function import numpy as np from numpy.testing import assert_almost_equal import matplotlib.pyplot as plt import statsmodels.sandbox.tsa.fftarma as fa from statsmodels.tsa.descriptivestats import TsaDescriptive from statsmodels.tsa.arma_mle import Arma x = fa.ArmaFft([1, -0.5], [1., 0.4], 40).generate_sample(size=200, burnin=1000) d = TsaDescriptive(x) d.plot4() #d.fit(order=(1,1)) d.fit((1,1), trend='nc') print(d.res.params) modc = Arma(x) resls = modc.fit(order=(1,1)) print(resls[0]) rescm = modc.fit_mle(order=(1,1), start_params=[-0.4,0.4, 1.]) print(rescm.params) #decimal 1 corresponds to threshold of 5% difference assert_almost_equal(resls[0] / d.res.params, 1, decimal=1) assert_almost_equal(rescm.params[:-1] / d.res.params, 1, decimal=1) #copied to tsa.tests plt.figure() plt.plot(x, 'b-o') plt.plot(modc.predicted(), 'r-') plt.figure() plt.plot(modc.error_estimate) #plt.show() from statsmodels.miscmodels.tmodel import TArma modct = TArma(x) reslst = modc.fit(order=(1,1)) print(reslst[0]) rescmt = modct.fit_mle(order=(1,1), start_params=[-0.4,0.4, 10, 1.],maxiter=500, maxfun=500) print(rescmt.params) from statsmodels.tsa.arima_model import ARMA mkf = ARMA(x) ##rkf = mkf.fit((1,1)) ##rkf.params rkf = mkf.fit((1,1), trend='nc') print(rkf.params) from statsmodels.tsa.arima_process import arma_generate_sample np.random.seed(12345) y_arma22 = arma_generate_sample([1.,-.85,.35, -0.1],[1,.25,-.7], nsample=1000) ##arma22 = ARMA(y_arma22) ##res22 = arma22.fit(trend = 'nc', order=(2,2)) ##print 'kf ',res22.params ##res22css = arma22.fit(method='css',trend = 'nc', order=(2,2)) ##print 'css', res22css.params mod22 = Arma(y_arma22) resls22 = mod22.fit(order=(2,2)) print('ls ', resls22[0]) resmle22 = mod22.fit_mle(order=(2,2), maxfun=2000) print('mle', resmle22.params) f = mod22.forecast() f3 = mod22.forecast3(start=900)[-20:] print(y_arma22[-10:]) print(f[-20:]) print(f3[-109:-90]) plt.show()
bsd-3-clause
talbrecht/pism_pik
test/vnreport.py
1
8967
#!/usr/bin/env python from pylab import close, figure, clf, hold, plot, xlabel, ylabel, xticks, yticks, axis, legend, title, grid, show, savefig from numpy import array, polyfit, polyval, log10, floor, ceil, unique import sys try: from netCDF4 import Dataset as NC except: print "netCDF4 is not installed!" sys.exit(1) class Plotter: def __init__(self, save_figures, nc, file_format): self.save_figures = save_figures self.nc = nc self.file_format = file_format def plot(self, x, vars, testname, plot_title): # This mask lets us choose data corresponding to a particular test: test = array(map(chr, self.nc.variables['test'][:])) mask = (test == testname) # If we have less than 2 points to plot, then bail. if (sum(mask) < 2): print "Skipping Test %s %s (not enough data to plot)" % (testname, plot_title) return # Get the independent variable and transform it. Note that everywhere here # I assume that neither dx (dy, dz) nor errors can be zero or negative. dx = self.nc.variables[x][mask] dim = log10(dx) figure(figsize=(10, 6)) clf() hold(True) colors = ['red', 'blue', 'green', 'black', 'brown', 'cyan'] for (v, c) in zip(vars, colors): # Get a particular variable, transform and fit a line through it: data = log10(self.nc.variables[v][mask]) p = polyfit(dim, data, 1) # Try to get the long_name, use short_name if it fails: try: name = self.nc.variables[v].long_name except: name = v # Create a label for the independent variable: if (x == "dx"): dim_name = "\Delta x" if (x == "dy"): dim_name = "\Delta y" if (x == "dz"): dim_name = "\Delta z" if (x == "dzb"): dim_name = "\Delta z_{bed}" # Variable label: var_label = "%s, $O(%s^{%1.2f})$" % (name, dim_name, p[0]) print "Test {} {}: convergence rate: O(dx^{:1.4f})".format(testname, name, p[0]) # Plot errors and the linear fit: plot(dim, data, label=var_label, marker='o', color=c) plot(dim, polyval(p, dim), ls="--", color=c) # Shrink axes, then expand vertically to have integer powers of 10: axis('tight') _, _, ymin, ymax = axis() axis(ymin=floor(ymin), ymax=ceil(ymax)) # Switch to km if dx (dy, dz) are big: units = self.nc.variables[x].units if (dx.min() > 1000.0 and (units == "meters")): dx = dx / 1000.0 units = "km" # Round grid spacing in x-ticks: xticks(dim, map(lambda(x): "%d" % x, dx)) xlabel("$%s$ (%s)" % (dim_name, units)) # Use default (figured out by matplotlib) locations, but change labels for y-ticks: loc, _ = yticks() yticks(loc, map(lambda(x): "$10^{%1.1f}$" % x, loc)) # Make sure that all variables given have the same units: try: ylabels = array(map(lambda(x): self.nc.variables[x].units, vars)) if (any(ylabels != ylabels[0])): print "Incompatible units!" else: ylabel(ylabels[0]) except: pass # Legend, grid and the title: legend(loc='best', borderpad=1, labelspacing=0.5, handletextpad=0.75, handlelength=0.02) # prop = FontProperties(size='smaller'), grid(True) title("Test %s %s (%s)" % (testname, plot_title, self.nc.source)) if self.save_figures: filename = "%s_%s_%s.%s" % (self.nc.source.replace(" ", "_"), testname.replace(" ", "_"), plot_title.replace(" ", "_"), self.file_format) savefig(filename) def plot_tests(self, list_of_tests): for test_name in list_of_tests: # thickness, volume and eta errors: if test_name in ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'L']: self.plot('dx', ["maximum_thickness", "average_thickness"], test_name, "ice thickness errors") self.plot('dx', ["relative_volume"], test_name, "relative ice volume errors") self.plot('dx', ["relative_max_eta"], test_name, r"relative max eta errors") # errors that are reported for test E only: if (test_name == 'E'): self.plot('dx', ["maximum_basal_velocity", "average_basal_velocity"], 'E', r"basal velocity errors") self.plot('dx', ["maximum_basal_u", "maximum_basal_v"], 'E', "basal velocity (ub and vb) errors") self.plot('dx', ["relative_basal_velocity"], 'E', "relative basal velocity errors") # F and G temperature, sigma and velocity errors: if test_name in ['F', 'G']: self.plot('dx', ["maximum_sigma", "average_sigma"], test_name, "strain heating errors") self.plot('dx', ["maximum_temperature", "average_temperature", "maximum_basal_temperature", "average_basal_temperature"], test_name, "ice temperature errors") self.plot('dx', ["maximum_surface_velocity", "maximum_surface_w"], test_name, "maximum ice surface velocity errors") self.plot('dx', ["average_surface_velocity", "average_surface_w"], test_name, "average ice surface velocity errors") # test I: plot only the u component if test_name == 'I': self.plot('dy', ["relative_velocity"], test_name, "relative velocity errors") self.plot('dy', ["maximum_u", "average_u"], test_name, "velocity errors") # tests J and M: if test_name in ['J', 'M']: self.plot('dx', ["relative_velocity"], test_name, "relative velocity errors") self.plot('dx', ["max_velocity", "maximum_u", "average_u", "maximum_v", "average_v"], test_name, "velocity errors") # test K temperature errors: if (test_name == 'K'): self.plot('dz', ["maximum_temperature", "average_temperature", "maximum_bedrock_temperature", "average_bedrock_temperature"], 'K', "temperature errors") # test O temperature and basal melt rate errors: if (test_name == 'O'): self.plot('dz', ["maximum_temperature", "average_temperature", "maximum_bedrock_temperature", "average_bedrock_temperature"], 'K', "temperature errors") self.plot('dz', ["maximum_basal_melt_rate"], 'O', "basal melt rate errors") # test V: plot only the u component if test_name == 'V': self.plot('dx', ["relative_velocity"], test_name, "relative velocity errors") self.plot('dx', ["maximum_u", "average_u"], test_name, "velocity errors") from argparse import ArgumentParser parser = ArgumentParser() parser.description = """Plot script for PISM verification results.""" parser.add_argument("filename", help="The NetCDF error report file name, usually produces by running vfnow.py") parser.add_argument("-t", nargs="+", dest="tests_to_plot", default=None, help="Test results to plot (space-delimited list)") parser.add_argument("--save_figures", dest="save_figures", action="store_true", help="Save figures to .png files") parser.add_argument("--file_format", dest="file_format", default="png", help="File format for --save_figures (png, pdf, jpg, ...)") options = parser.parse_args() input_file = NC(options.filename, 'r') available_tests = unique(array(map(chr, input_file.variables['test'][:]))) tests_to_plot = options.tests_to_plot if len(available_tests) == 1: if tests_to_plot == None: tests_to_plot = available_tests else: if (tests_to_plot == None): print """Please choose tests to plot using the -t option. (Input file %s has reports for tests %s available.)""" % (input, str(available_tests)) sys.exit(0) if (tests_to_plot[0] == "all"): tests_to_plot = available_tests close('all') p = Plotter(options.save_figures, input_file, options.file_format) p.plot_tests(tests_to_plot) try: # show() will break if we didn't plot anything if not options.save_figures: show() except: pass
gpl-3.0
pranavtbhat/EE219
project2/c.py
2
4916
from StdSuites.AppleScript_Suite import vector import cPickle from sklearn.feature_extraction import text from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import Pipeline from pandas import DataFrame import nltk import operator import os import numpy as np from nltk import word_tokenize from nltk.stem import WordNetLemmatizer from nltk.stem.snowball import SnowballStemmer from nltk.tokenize import RegexpTokenizer import math # RegExpTokenizer reduces term count from 29k to 25k class StemTokenizer(object): def __init__(self): self.wnl = WordNetLemmatizer() self.snowball_stemmer = SnowballStemmer("english", ignore_stopwords=True) self.regex_tokenizer = RegexpTokenizer(r'\w+') def __call__(self, doc): # tmp = [self.wnl.lemmatize(t) for t in word_tokenize(doc)] tmp = [self.snowball_stemmer.stem(t) for t in self.regex_tokenizer.tokenize(doc)] return tmp def calculate_tcicf(freq, maxFreq, categories, categories_per_term): val= ((0.5+(0.5*(freq/float(maxFreq))))*math.log10(categories/float(1+categories_per_term))) return val all_categories=['comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'alt.atheism', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'misc.forsale', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc' ] all_docs_per_category=[] for cat in all_categories: categories=[cat] all_data = fetch_20newsgroups(subset='train',categories=categories).data temp = "" for doc in all_data: temp= temp + " "+doc all_docs_per_category.append(temp) stop_words = text.ENGLISH_STOP_WORDS # Ignore words appearing in less than 2 documents or more than 99% documents. # min_df reduces from 100k to 29k vectorizer = CountVectorizer(analyzer='word',stop_words=stop_words,ngram_range=(1, 1), tokenizer=StemTokenizer(), lowercase=True,max_df=0.99, min_df=2) # # test_corpus = [ # 'This document is the first document.', # 'This is the second second document.', # 'And the third one with extra extra extra text.', # 'Is this the first document?', # ] vectorized_newsgroups_train = vectorizer.fit_transform(all_docs_per_category) #print "All terms:", vectorizer.get_feature_names() #print vectorized_newsgroups_train.shape #print vectorized_newsgroups_train def calculate(): max_term_freq_per_category=[0]*vectorized_newsgroups_train.shape[0] category_count_per_term=[0]*vectorized_newsgroups_train.shape[1] for i in range(0,vectorized_newsgroups_train.shape[0],1): max_term_freq_per_category[i]=np.amax(vectorized_newsgroups_train[i,:]) for i in range(0,vectorized_newsgroups_train.shape[1],1): for j in range(0,vectorized_newsgroups_train.shape[0],1): category_count_per_term[i]+= (0 if vectorized_newsgroups_train[j,i]==0 else 1) # print vectorized_newsgroups_train.shape # # print len(max_term_freq_per_category) # print len(category_count_per_term) # Calculate tc-icf - Notice the matrix is sparse! # print len(vectorizer.get_feature_names()) tf_icf = np.zeros((len(vectorizer.get_feature_names()), vectorized_newsgroups_train.shape[1])) for i in range(vectorized_newsgroups_train.shape[1]): row = vectorized_newsgroups_train[:,i].toarray() for j in range(vectorized_newsgroups_train.shape[0]): # print row[j,0],max_term_freq_per_category[j],len(all_categories),category_count_per_term[i] tf_icf[i][j] = calculate_tcicf(row[j,0],max_term_freq_per_category[j],len(all_categories),category_count_per_term[i]) # cPickle.dump(tf_icf,open("data/tc_icf.pkl", "wb")) return tf_icf # if not (os.path.isfile("data/tc_icf.pkl")): # print "Calculating" # tf_icf=calculate() # else: # tf_icf=cPickle.load(open("data/tc_icf.pkl", "rb")) tf_icf=calculate() # print top 10 significant term for this class for category in [2,3,14,15]: tficf={} term_index=0; for term in vectorizer.get_feature_names(): tficf[term]=tf_icf[term_index][category] term_index+=1 significant_terms = dict(sorted(tficf.iteritems(), key=operator.itemgetter(1), reverse=True)[:10]) #get 10 significant terms print significant_terms.keys()
unlicense
ron1818/Singaboat_RobotX2016
robotx_nav/nodes/task1_toplevel.py
3
9161
#!/usr/bin/env python """ task 1: ----------------- Created by Ren Ye @ 2016-11-06 Authors: Ren Ye, Reinaldo ----------------- <put the descriptions from robotx.org pdf file> <put the algorithms in natural language, can use bullet points, best is to use markdown format> <if you have plan b, can put it here> ## example ## + Go to start point + Rotate in position to detect red_1 and green_1 buoys + Plot perpendicular waypoints wrt to position of red and green buoys + Move towards waypoints move_base_forward + meanwhile requesting positions of red_2 and green_2 + shutdown move_base_forward, create new move_base_forward towards mid of red_2 and green_2 <change log put here> ### @ 2016-11-06 ### + create template renye's approach: 1. drive to gps waypoint 2. slowly in place rotate # noneed 3. detect red and green totems by any camera 4. rotate to bow to red and green totems 5. roi of red in bow/left and roi of green in bow/right, calculate center 6. drive until roi vanishes from both bow cameras, detect totem from port and starboard 7. see new roi from bow 8. drive with 5 and 6 reinaldo's approach: 1. fill bucket of markers array until full 2. do k-means clustering to differentiate monocolor totems 3. get closest pairs 4. plan based on pairs, replan if new plan is far from old plan 5. loop to 2. 6. terminate if displacement from start to end > termination_distance """ import rospy import multiprocessing as mp import math import time import numpy as np import os import tf from sklearn.cluster import KMeans from nav_msgs.msg import Odometry from geometry_msgs.msg import Point, Pose from visualization_msgs.msg import MarkerArray, Marker from move_base_forward import Forward from move_base_force_cancel import ForceCancel from tf.transformations import euler_from_quaternion from nav_msgs.msg import Odometry def constant_heading(goal): constant_obj = Forward(nodename="constant_heading", target=goal, waypoint_separation=5, is_relative=False) def cancel_forward(): os.system('rosnode kill constant_heading') class PassGates(object): pool = mp.Pool() x0, y0, yaw0= 0, 0, 0 MAX_DATA=30 markers_array=MarkerArray() red_totem=np.zeros((MAX_DATA, 2)) #unordered list green_totem=np.zeros((MAX_DATA, 2)) red_centers=np.zeros((2, 2)) #ordered list of centers x, y green_centers=np.zeros((2, 2)) red_position=np.zeros((2, 2)) #ordered list of centers x, y green_position=np.zeros((2, 2)) red_counter=0 green_counter=0 replan_min=5 termination_displacement=60 def __init__(self): print("starting task 1") rospy.init_node('task_1', anonymous=True) rospy.Subscriber("/filtered_marker_array", MarkerArray, self.marker_callback, queue_size = 50) self.marker_pub= rospy.Publisher('waypoint_markers', Marker, queue_size=5) self.odom_received = False self.base_frame = rospy.get_param("~base_frame", "base_link") self.fixed_frame = rospy.get_param("~fixed_frame", "map") # tf_listener self.tf_listener = tf.TransformListener() rospy.wait_for_message("/odometry/filtered/global", Odometry) rospy.Subscriber("/odometry/filtered/global", Odometry, self.odom_callback, queue_size=50) while not self.odom_received: rospy.sleep(1) print("odom received") init_position =np.array([self.x0, self.y0, 0]) prev_target=np.array([self.x0, self.y0, 0]) while(self.red_counter<self.MAX_DATA and self.green_counter<self.MAX_DATA): #wait for data bucket to fill up time.sleep(1) print("bucket full") while not rospy.is_shutdown(): self.matrix_reorder() print("reorder complete") target = self.plan_waypoint() print(target) if self.euclid_distance(target, prev_target)>self.replan_min: #replan #force cancel self.pool.apply(cancel_forward) #plan new constant heading print("replan") self.pool.apply_async(constant_heading, args = (target, )) prev_target=target else: pass #termination condition if self.euclid_distance(np.array([self.x0, self.y0, 0]), init_position)>self.termination_displacement: self.pool.apply(cancel_forward) print("Task 1 Completed") break time.sleep(1) self.pool.close() self.pool.join() def plan_waypoint(self): distance=20 dis_red=1000 dis_green=1000 #find closest available totem pairs for m in self.red_position: if self.distance_from_boat(m) < dis_red: nearest_red=m dis_red=self.distance_from_boat(m) for n in self.green_position: if self.distance_from_boat(n) < dis_green: nearest_green=n dis_green=self.distance_from_boat(n) #plan dis=nearest_red-nearest_green [x_center, y_center]=[(nearest_red[0]+nearest_green[0])/2, (nearest_red[1]+nearest_green[1])/2] if math.sqrt(dis.dot(dis.T)) <20: theta=math.atan2(math.sin(math.atan2(nearest_green[1]-nearest_red[1], nearest_green[0]-nearest_red[0])+math.pi/2), math.cos(math.atan2(nearest_green[1]-nearest_red[1], nearest_green[0]-nearest_red[0])+math.pi/2)) #theta = math.atan2(nearest_green[1]-nearest_red[1], nearest_green[0]-nearest_red[0])+math.pi/2 else: theta = math.atan2(nearest_green[1]-nearest_red[1], nearest_green[0]-nearest_red[0])+math.atan2(10,30) return np.array([x_center+distance*math.cos(theta), y_center+distance*math.sin(theta), theta]) def distance_from_boat(self, target): return math.sqrt((target[0]-self.x0)**2+(target[1]-self.y0)**2) def euclid_distance(self, target1, target2): return math.sqrt((target1[0]-target2[0])**2+(target1[1]-target2[1])**2) def is_complete(self): pass def marker_callback(self, msg): if len(msg.markers)>0: for i in range(len(msg.markers)): if msg.markers[i].type == 3: #may append more than 1 markers if msg.markers[i].id == 0: self.red_totem[self.red_counter%self.MAX_DATA]=[msg.markers[i].pose.position.x, msg.markers[i].pose.position.y] self.red_counter+=1 elif msg.markers[i].id == 1: self.green_totem[self.green_counter%self.MAX_DATA]=[msg.markers[i].pose.position.x, msg.markers[i].pose.position.y] self.green_counter+=1 else: pass # list is full if (self.red_counter>self.MAX_DATA): red_kmeans = KMeans(n_clusters=2).fit(self.red_totem) self.red_centers=red_kmeans.cluster_centers_ if(self.green_counter>self.MAX_DATA): green_kmeans = KMeans(n_clusters=2).fit(self.green_totem) self.green_centers=green_kmeans.cluster_centers_ #visualize markers in rviz for i in range(len(msg.markers)): self.marker_pub.publish(msg.markers[i]) def matrix_reorder(self): if self.red_centers[0].dot(self.red_centers[0].T)< self.red_centers[1].dot(self.red_centers[1].T): self.red_position=self.red_centers else: self.red_position[0]=self.red_centers[1] self.red_position[1]=self.red_centers[0] if self.green_centers[0].dot(self.green_centers[0].T)< self.green_centers[1].dot(self.green_centers[1].T): self.green_position=self.green_centers else: self.green_position[0]=self.green_centers[1] self.green_position[1]=self.green_centers[0] def get_tf(self, fixed_frame, base_frame): """ transform from base_link to map """ trans_received = False while not trans_received: try: (trans, rot) = self.tf_listener.lookupTransform(fixed_frame, base_frame, rospy.Time(0)) trans_received = True return (Point(*trans), Quaternion(*rot)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): pass def odom_callback(self, msg): trans, rot = self.get_tf("map", "base_link") self.x0 = trans.x self.y0 = trans.y _, _, self.yaw0 = euler_from_quaternion((rot.x, rot.y, rot.z, rot.w)) self.odom_received = True if __name__ == '__main__': try: PassGates() # stage 1: gps except rospy.ROSInterruptException: rospy.loginfo("Task 1 Finished")
gpl-3.0
anaderi/lhcb_trigger_ml
hep_ml/experiments/gradient_boosting.py
1
20009
from __future__ import division, print_function import copy import numbers import numpy import pandas from scipy.special import expit, logit from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.ensemble._gradient_boosting import _random_sample_mask from sklearn.ensemble.gradient_boosting import LossFunction from sklearn.tree.tree import DecisionTreeRegressor, DTYPE from sklearn.utils.random import check_random_state from sklearn.utils.validation import check_arrays, column_or_1d, array2d from hep_ml.commonutils import check_sample_weight, generate_sample, map_on_cluster, indices_of_values from hep_ml.losses import AbstractLossFunction from transformations import enhance_data, Shuffler real_s = 691.988607712 real_b = 410999.847322 #region Functions for measurements def get_higgs_data(train_file = '/Users/axelr/ipython/datasets/higgs/training.csv'): data = pandas.read_csv(train_file, index_col='EventId') answers_bs = numpy.ravel(data.Label) weights = numpy.ravel(data.Weight) data = data.drop(['Label', 'Weight'], axis=1) answers = numpy.zeros(len(answers_bs), dtype=numpy.int) answers[answers_bs == 's'] = 1 return data, answers, weights def AMS(answers, predictions, sample_weight): """ Predictions are classes """ assert len(answers) == len(predictions) == len(sample_weight) predictions = column_or_1d(predictions) total_s = numpy.sum(sample_weight[answers > 0.5]) total_b = numpy.sum(sample_weight[answers < 0.5]) s = numpy.sum(sample_weight[answers * predictions > 0.5]) b = numpy.sum(sample_weight[(1 - answers) * predictions > 0.5]) s *= real_s / total_s b *= real_b / total_b br = 10. radicand = 2 * ( (s+b+br) * numpy.log(1.0 + s/(b+br)) - s) if radicand < 0: raise ValueError('Radicand is negative') else: return numpy.sqrt(radicand) def compute_ams_on_cuts(answers, predictions, sample_weight): """ Prediction is probabilities""" assert len(answers) == len(predictions) == len(sample_weight) answers = column_or_1d(answers) predictions = column_or_1d(predictions) sample_weight = column_or_1d(sample_weight) order = numpy.argsort(predictions)[::-1] reordered_answers = answers[order] reordered_weights = sample_weight[order] s_cumulative = numpy.cumsum(reordered_answers * reordered_weights) b_cumulative = numpy.cumsum((1 - reordered_answers) * reordered_weights) b_cumulative *= real_b / b_cumulative[-1] s_cumulative *= real_s / s_cumulative[-1] br = 10. s = s_cumulative b = b_cumulative radicands = 2 * ((s + b + br) * numpy.log(1.0 + s/(b + br)) - s) return predictions[order], radicands def optimal_AMS(answers, predictions, sample_weight): """ Prediction is probabilities """ cuts, radicands = compute_ams_on_cuts(answers, predictions, sample_weight) return numpy.sqrt(numpy.max(radicands)) def plot_ams_report(answers, predictions, sample_weight=None): import pylab cuts, radicands = compute_ams_on_cuts(answers, predictions, sample_weight) pylab.figure(figsize=(18, 9)) pylab.subplot(131) pylab.title('On cuts') pylab.plot(cuts, numpy.sqrt(numpy.clip(radicands, 0, 100))) pylab.subplot(132) pylab.title('On signal order') order = numpy.argsort(predictions)[::-1] pylab.plot( numpy.sqrt(numpy.clip(radicands[answers[order] > 0.5], 0, 100)) ) pylab.subplot(133) pylab.title('On common order') pylab.plot( numpy.sqrt(radicands) ) def plot_AMS_on_cuts(answers, predictions, sample_weight): """ Prediction is probabilities """ import pylab cuts, radicands = compute_ams_on_cuts(answers, predictions, sample_weight) pylab.plot(cuts, numpy.sqrt(numpy.clip(radicands, 0, 100))) def plot_AMS_on_signal_order(answers, predictions, sample_weight): """ Prediction is probabilities """ import pylab cuts, radicands = compute_ams_on_cuts(answers, predictions, sample_weight) order = numpy.argsort(predictions)[::-1] pylab.plot( numpy.sqrt(numpy.clip(radicands[answers[order] > 0.5], 0, 100)) ) #endregion #region Losses class MyLossFunction(BaseEstimator): def fit(self, X, y, sample_weight=None): pass def negative_gradient(self, y, y_pred, sample_weight=None): raise NotImplementedError() def update_terminal_regions(self, tree, X, y, residual, pred, sample_mask, sample_weight): assert y.ndim == 1 and residual.ndim == 1 and \ pred.ndim == 1 and sample_mask.ndim == 1 and sample_weight.ndim == 1 # residual is negative gradient # compute leaf for each sample in ``X``. terminal_regions = tree.apply(X) # mask all which are not in sample mask. masked_terminal_regions = terminal_regions.copy() masked_terminal_regions[~sample_mask] = -1 for leaf, leaf_indices in indices_of_values(masked_terminal_regions): if leaf == -1: continue self._update_terminal_region(tree, terminal_regions=masked_terminal_regions, leaf=leaf, X=X, y=y, residual=residual, pred=pred, sample_weight=sample_weight, leaf_indices=leaf_indices) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight, leaf_indices): """This function should select a better values for leaves""" pass class LogitLossFunction(MyLossFunction): def __init__(self, shift=0.): MyLossFunction.__init__(self) self.shift = shift def __call__(self, y, y_pred, sample_weight=None): y_signed = 2. * y - 1 sample_weight = check_sample_weight(y, sample_weight=sample_weight) return numpy.sum(sample_weight * numpy.log(1 + numpy.exp(- y_signed * y_pred - self.shift))) def negative_gradient(self, y, y_pred, sample_weight=None): y_signed = 2. * y - 1 sample_weight = check_sample_weight(y, sample_weight=sample_weight) return sample_weight * y_signed * expit(-y_signed * y_pred - self.shift) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight, leaf_indices): """Making one Newton step""" # terminal_region = numpy.where(terminal_regions == leaf)[0] terminal_region = leaf_indices y = y.take(terminal_region, axis=0) y_signed = 2. * y - 1 pred = pred.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region) argument = -y_signed * pred - self.shift n_gradient = numpy.sum(sample_weight * y_signed * expit(argument)) laplacian = numpy.sum(sample_weight / numpy.logaddexp(0., argument) / numpy.logaddexp(0., -argument)) tree.value[leaf, 0, 0] = n_gradient / laplacian class AdaLossFunction(MyLossFunction): def __init__(self, signal_curvature=1.): self.signal_curvature = signal_curvature # we need only one variable MyLossFunction.__init__(self) def fit(self, X, y, sample_weight=None): pass def _signed_multiplier(self, y): result = numpy.ones(len(y), dtype=float) result[y > 0.5] = - self.signal_curvature return result def _weight_multiplier(self, y): result = numpy.ones(len(y), dtype=float) result[y > 0.5] = 1 / self.signal_curvature return result def __call__(self, y, y_pred, sample_weight=None): signed_multiplier = self._signed_multiplier(y) weight_multiplier = self._weight_multiplier(y) sample_weight = check_sample_weight(y, sample_weight=sample_weight) return numpy.sum(sample_weight * weight_multiplier * numpy.exp(y_pred * signed_multiplier)) def negative_gradient(self, y, y_pred, sample_weight=None, **kargs): multiplier = self._signed_multiplier(y) y_signed = 2. * y - 1 sample_weight = check_sample_weight(y, sample_weight=sample_weight) return sample_weight * y_signed * numpy.exp(y_pred * multiplier) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight, leaf_indices): terminal_region = leaf_indices curv = self.signal_curvature y = y.take(terminal_region, axis=0) pred = pred.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region) w_sig = numpy.sum(sample_weight[y > 0.5] * numpy.exp(- curv * pred[y > 0.5])) w_bck = numpy.sum(sample_weight[y < 0.5] * numpy.exp(pred[y < 0.5])) # minimizing w_sig * exp(-curv * x) / curv + w_bck * exp(x) w_sum = w_sig + w_bck w_sig += 1e-4 * w_sum w_bck += 1e-4 * w_sum tree.value[leaf, 0, 0] = 1 / (1. + curv) * numpy.log(w_sig / w_bck) #endregion #region Interpolation def interpolate(vals, step, steps, use_log=False): if isinstance(vals, numbers.Number): return vals t = numpy.clip(step / float(steps), 0, 1) assert len(vals) == 2, 'Not two values' if use_log: return numpy.exp(numpy.interp(t, [0., 1.], numpy.log(vals))) else: return numpy.interp(t, [0., 1.], vals) #endregion #region GradientBoosting class GradientBoosting(BaseEstimator, ClassifierMixin): def __init__(self, loss, n_estimators=10, learning_rate=1., max_depth=15, min_samples_leaf=5, min_samples_split=2, max_features='auto', subsample=1., criterion='mse', splitter='best', weights_in_loss=True, update_tree=True, update_on='all', smearing=0.0, recount_step=1000, random_state=None): """ Supports only two classes :type loss: LossFunction :type n_estimators: int, :type learning_rate: float, :type max_depth: int | NoneType, :type min_samples_leaf: int, :type min_samples_split: int, :type max_features: int | 'auto', :type subsample: float, :type splitter: str, :type weights_in_loss: bool, :type update_on: str, 'all', 'same', 'other', 'random' :type smearing: float :type init_smearing: float :rtype: """ self.loss = loss self.n_estimators = n_estimators self.learning_rate = learning_rate self.max_depth = max_depth self.min_samples_leaf = min_samples_leaf self.min_samples_split = min_samples_split self.max_features = max_features self.subsample = subsample self.splitter = splitter self.criterion = criterion self.weights_in_loss = weights_in_loss self.random_state = random_state self.update_tree = update_tree self.update_on = update_on self.smearing = smearing self.recount_step = recount_step def fit(self, X, y, sample_weight=None): shuffler = Shuffler(X, random_state=self.random_state) X, y = check_arrays(X, y, dtype=DTYPE, sparse_format="dense", check_ccontiguous=True) y = column_or_1d(y, warn=True) n_samples = len(X) n_inbag = int(self.subsample * n_samples) sample_weight = check_sample_weight(y, sample_weight=sample_weight).copy() self.random_state = check_random_state(self.random_state) # skipping all checks assert self.update_on in ['all', 'same', 'other', 'random'] y_pred = numpy.zeros(len(y), dtype=float) self.classifiers = [] self.learning_rates = [] self.loss_values = [] self.loss = copy.copy(self.loss) self.loss.fit(X, y, sample_weight=sample_weight) iter_X = shuffler.generate(0.) prev_smearing = 1 for iteration in range(self.n_estimators): if iteration % self.recount_step == 0: if prev_smearing > 0: iter_smearing = interpolate(self.smearing, iteration, self.n_estimators) prev_smearing = iter_smearing iter_X = shuffler.generate(iter_smearing) iter_X, = check_arrays(iter_X, dtype=DTYPE, sparse_format="dense", check_ccontiguous=True) y_pred = numpy.zeros(len(y)) y_pred += sum(cl.predict(X) * rate for rate, cl in zip(self.learning_rates, self.classifiers)) self.loss_values.append(self.loss(y, y_pred, sample_weight=sample_weight)) tree = DecisionTreeRegressor( criterion=self.criterion, splitter=self.splitter, max_depth=interpolate(self.max_depth, iteration, self.n_estimators), min_samples_split=self.min_samples_split, min_samples_leaf=interpolate(self.min_samples_leaf, iteration, self.n_estimators, use_log=True), max_features=self.max_features, random_state=self.random_state) sample_mask = _random_sample_mask(n_samples, n_inbag, self.random_state) loss_weight = sample_weight if self.weights_in_loss else numpy.ones(len(sample_weight)) tree_weight = sample_weight if not self.weights_in_loss else numpy.ones(len(sample_weight)) residual = self.loss.negative_gradient(y, y_pred, sample_weight=loss_weight) tree.fit(numpy.array(iter_X)[sample_mask, :], residual[sample_mask], sample_weight=tree_weight[sample_mask], check_input=False) # update tree leaves if self.update_tree: if self.update_on == 'all': update_mask = numpy.ones(len(sample_mask), dtype=bool) elif self.update_on == 'same': update_mask = sample_mask elif self.update_on == 'other': update_mask = ~sample_mask else: # random update_mask = _random_sample_mask(n_samples, n_inbag, self.random_state) self.loss.update_terminal_regions(tree.tree_, X=iter_X, y=y, residual=residual, pred=y_pred, sample_mask=update_mask, sample_weight=sample_weight) iter_learning_rate = interpolate(self.learning_rate, iteration, self.n_estimators, use_log=True) y_pred += iter_learning_rate * tree.predict(X) self.classifiers.append(tree) self.learning_rates.append(iter_learning_rate) return self def decision_function(self, X): X = array2d(X, dtype=DTYPE) result = numpy.zeros(len(X)) for rate, estimator in zip(self.learning_rates, self.classifiers): result += rate * estimator.predict(X) return result def staged_decision_function(self, X): X = array2d(X, dtype=DTYPE) result = numpy.zeros(len(X)) for rate, classifier in zip(self.learning_rates, self.classifiers): result += rate * classifier.predict(X) yield result @staticmethod def _score_to_proba(score): result = numpy.zeros([len(score), 2], dtype=float) result[:, 1] = expit(score / 100.) result[:, 0] = 1. - result[:, 1] return result def _proba_to_score(self, proba): # for init_estimator return numpy.clip(logit(proba[:, 1]), -5., 5.) def predict(self, X): return numpy.argmax(self.predict_proba(X), axis=1) def predict_proba(self, X): return self._score_to_proba(self.decision_function(X)) def staged_predict_proba(self, X): for score in self.staged_decision_function(X): yield self._score_to_proba(score) def test_gradient_boosting(size=100, n_features=10): trainX, trainY = generate_sample(size, n_features) testX, testY = generate_sample(size, n_features) for loss in [AdaLossFunction()]: for update in ['all', 'same', 'other', 'random']: gb = GradientBoosting(loss=loss, update_on=update, smearing=[0.1, -0.1]) score = gb.fit(trainX, trainY).score(testX, testY) print(update, score) test_gradient_boosting() #endregion #region Reweighters def normalize_weight(y, weights, sig_weight=1., pow_sig=1., pow_bg=1.): result = numpy.copy(weights) assert numpy.all((y == 0) | (y == 1)), 'Supports only two classes' result[y == 1] **= pow_sig result[y == 0] **= pow_bg result[y == 1] /= numpy.mean(result[y == 1]) / sig_weight result[y == 0] /= numpy.mean(result[y == 0]) return result class ReweightingGB(GradientBoosting): def __init__(self, loss, sig_weight=1., pow_sig=1., pow_bg=1., n_estimators=10, learning_rate=1., max_depth=None, min_samples_leaf=5, min_samples_split=2, max_features='auto', criterion='mse', subsample=1., splitter='best', weights_in_loss=True, update_tree=True, update_on='all', smearing=0.01, init_estimator=None, init_smearing=0.05, recount_step=1000, random_state=None): GradientBoosting.__init__(self, loss=loss, n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_samples_split=min_samples_split, max_features=max_features, criterion=criterion, subsample=subsample, splitter=splitter, weights_in_loss=weights_in_loss, update_on=update_on, update_tree=update_tree, random_state=random_state, recount_step=recount_step, smearing=smearing) # Everything should be set via set_params self.sig_weight = sig_weight self.pow_bg = pow_bg self.pow_sig = pow_sig def fit(self, X, y, sample_weight=None): sample_weight = normalize_weight(y, sample_weight, sig_weight=self.sig_weight, pow_sig=self.pow_sig, pow_bg=self.pow_bg) return GradientBoosting.fit(self, X, y, sample_weight=sample_weight) base_gb = ReweightingGB(loss=AdaLossFunction()) base_gb.set_params(loss__signal_curvature=0.7, learning_rate=0.03, min_samples_leaf=125, n_estimators=400, smearing=0.01, max_features=13, update_tree=True, max_depth=16, subsample=0.5, sig_weight=0.1, weights_in_loss=False, update_on='all') base_gb_short = ReweightingGB(loss=AdaLossFunction()) base_gb_short.set_params(loss__signal_curvature=0.7, learning_rate=0.03, min_samples_leaf=150, n_estimators=500, smearing=0.0, max_features=16, update_tree=True, max_depth=14, subsample=0.4, sig_weight=0.1, weights_in_loss=False, update_on='all') base_gb_no_shuffle = ReweightingGB(loss=AdaLossFunction()) base_gb_no_shuffle.set_params(loss__signal_curvature=0.7, learning_rate=0.03, min_samples_leaf=125, n_estimators=250, smearing=0., max_features=13, update_tree=True, max_depth=16, subsample=0.5, sig_weight=0.1, weights_in_loss=False, update_on='all') base_gb_test = ReweightingGB(loss=AdaLossFunction()) base_gb_test.set_params(loss__signal_curvature=0.7, learning_rate=0.03, min_samples_leaf=125, n_estimators=1, smearing=0.01, max_features=15, update_tree=True, max_depth=16, subsample=0.5, sig_weight=0.1, weights_in_loss=False, update_on='all') #endregion """ import gradient_boosting as gb data, y, w = gb.get_higgs_data() voter = gb.base_gb voter.set_params(n_estimators=10) voter.fit(gb.enhance_data(data), y, w) """
mit
JackKelly/neuralnilm_prototype
scripts/e385.py
4
6024
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import (scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive, scaled_cost3) from neuralnilm.plot import MDNPlotter, CentralOutputPlotter from neuralnilm.updates import clipped_nesterov_momentum from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import mse, binary_crossentropy from lasagne.init import Uniform, Normal, Identity from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T """ e370 longer seq """ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] #PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" PATH = "/data/dk3810/figures" SAVE_PLOT_INTERVAL = 500 GRADIENT_STEPS = 100 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=512, # random_window=64, output_one_appliance=True, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.9, one_target_per_seq=False, n_seq_per_batch=128, # subsample_target=4, include_diff=False, include_power=True, clip_appliance_power=True, target_is_prediction=False, independently_center_inputs=True, standardise_input=True, unit_variance_targets=True, # input_padding=2, lag=0 # classification=True # reshape_target_to_2D=True # input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), # 'std': np.array([ 0.12636775], dtype=np.float32)}, # target_stats={ # 'mean': np.array([ 0.04066789, 0.01881946, # 0.24639061, 0.17608672, 0.10273963], # dtype=np.float32), # 'std': np.array([ 0.11449792, 0.07338708, # 0.26608968, 0.33463112, 0.21250485], # dtype=np.float32)} ) N = 50 net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), # loss_function=lambda x, t: mdn_nll(x, t).mean(), loss_function=lambda x, t: mse(x, t).mean(), # loss_function=lambda x, t: binary_crossentropy(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), # loss_function=ignore_inactive, # loss_function=partial(scaled_cost3, ignore_inactive=False), # updates_func=momentum, updates_func=clipped_nesterov_momentum, updates_kwargs={'clip_range': (0, 10)}, learning_rate=0.01, learning_rate_changes_by_iteration={ # 500: 1e-5, # 1500: 1e-6 # 800: 1e-4 # 500: 1e-3 # 4000: 1e-03, # 6000: 5e-06, # 7000: 1e-06 # 2000: 5e-06 # 3000: 1e-05 # 7000: 5e-06, # 10000: 1e-06, # 15000: 5e-07, # 50000: 1e-07 }, do_save_activations=True, # auto_reshape=False, # plotter=CentralOutputPlotter # plotter=MDNPlotter layers_config=[ { 'type': BidirectionalRecurrentLayer, 'num_units': 40, 'gradient_steps': GRADIENT_STEPS, 'nonlinearity': rectify, 'W_hid_to_hid': Identity(scale=0.1), 'W_in_to_hid': Normal(std=1) }, { 'type': BidirectionalRecurrentLayer, 'num_units': 40, 'gradient_steps': GRADIENT_STEPS, 'nonlinearity': rectify, 'W_hid_to_hid': Identity(scale=0.1), 'W_in_to_hid': Normal(std=1/sqrt(40)) } ] ) def exp_a(name): global source # source_dict_copy = deepcopy(source_dict) # source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) net_dict_copy['layers_config'].extend([ { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': T.nnet.softplus, 'W': Normal(std=1/sqrt(40)) } ]) net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") # raise finally: logging.shutdown() if __name__ == "__main__": main()
mit
ChanChiChoi/scikit-learn
examples/neighbors/plot_classification.py
287
1790
""" ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
pprett/statsmodels
statsmodels/examples/tsa/arma_plots.py
4
2478
'''Plot acf and pacf for some ARMA(1,1) ''' import numpy as np import matplotlib.pyplot as plt import statsmodels.tsa.arima_process as tsp from statsmodels.sandbox.tsa.fftarma import ArmaFft as FftArmaProcess import statsmodels.tsa.stattools as tss from statsmodels.graphics.tsaplots import plotacf np.set_printoptions(precision=2) arcoefs = [0.9, 0., -0.5] #[0.9, 0.5, 0.1, 0., -0.5] macoefs = [0.9, 0., -0.5] #[0.9, 0.5, 0.1, 0., -0.5] nsample = 1000 nburnin = 1000 sig = 1 fig = plt.figure(figsize=(8, 13)) fig.suptitle('ARMA: Autocorrelation (left) and Partial Autocorrelation (right)') subplotcount = 1 nrows = 4 for arcoef in arcoefs[:-1]: for macoef in macoefs[:-1]: ar = np.r_[1., -arcoef] ma = np.r_[1., macoef] #y = tsp.arma_generate_sample(ar,ma,nsample, sig, burnin) #armaprocess = FftArmaProcess(ar, ma, nsample) #TODO: make n optional #armaprocess.plot4() armaprocess = tsp.ArmaProcess(ar, ma) acf = armaprocess.acf(20)[:20] pacf = armaprocess.pacf(20)[:20] ax = fig.add_subplot(nrows, 2, subplotcount) plotacf(acf, ax=ax) ## ax.set_title('Autocorrelation \nar=%s, ma=%rs' % (ar, ma), ## size='xx-small') ax.text(0.7, 0.6, 'ar =%s \nma=%s' % (ar, ma), transform=ax.transAxes, horizontalalignment='left', #'right', size='xx-small') ax.set_xlim(-1,20) subplotcount +=1 ax = fig.add_subplot(nrows, 2, subplotcount) plotacf(pacf, ax=ax) ## ax.set_title('Partial Autocorrelation \nar=%s, ma=%rs' % (ar, ma), ## size='xx-small') ax.text(0.7, 0.6, 'ar =%s \nma=%s' % (ar, ma), transform=ax.transAxes, horizontalalignment='left', #'right', size='xx-small') ax.set_xlim(-1,20) subplotcount +=1 axs = fig.axes ### turn of the 2nd column y tick labels ##for ax in axs[1::2]:#[:,1].flat: ## for label in ax.get_yticklabels(): label.set_visible(False) # turn off all but the bottom xtick labels for ax in axs[:-2]:#[:-1,:].flat: for label in ax.get_xticklabels(): label.set_visible(False) # use a MaxNLocator on the first column y axis if you have a bunch of # rows to avoid bunching; example below uses at most 3 ticks import matplotlib.ticker as mticker for ax in axs: #[::2]:#[:,1].flat: ax.yaxis.set_major_locator( mticker.MaxNLocator(3 )) plt.show()
bsd-3-clause
Lawrence-Liu/scikit-learn
sklearn/tests/test_metaestimators.py
226
4954
"""Common tests for metaestimators""" import functools import numpy as np from sklearn.base import BaseEstimator from sklearn.externals.six import iterkeys from sklearn.datasets import make_classification from sklearn.utils.testing import assert_true, assert_false, assert_raises from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.feature_selection import RFE, RFECV from sklearn.ensemble import BaggingClassifier class DelegatorData(object): def __init__(self, name, construct, skip_methods=(), fit_args=make_classification()): self.name = name self.construct = construct self.fit_args = fit_args self.skip_methods = skip_methods DELEGATING_METAESTIMATORS = [ DelegatorData('Pipeline', lambda est: Pipeline([('est', est)])), DelegatorData('GridSearchCV', lambda est: GridSearchCV( est, param_grid={'param': [5]}, cv=2), skip_methods=['score']), DelegatorData('RandomizedSearchCV', lambda est: RandomizedSearchCV( est, param_distributions={'param': [5]}, cv=2, n_iter=1), skip_methods=['score']), DelegatorData('RFE', RFE, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('RFECV', RFECV, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('BaggingClassifier', BaggingClassifier, skip_methods=['transform', 'inverse_transform', 'score', 'predict_proba', 'predict_log_proba', 'predict']) ] def test_metaestimator_delegation(): # Ensures specified metaestimators have methods iff subestimator does def hides(method): @property def wrapper(obj): if obj.hidden_method == method.__name__: raise AttributeError('%r is hidden' % obj.hidden_method) return functools.partial(method, obj) return wrapper class SubEstimator(BaseEstimator): def __init__(self, param=1, hidden_method=None): self.param = param self.hidden_method = hidden_method def fit(self, X, y=None, *args, **kwargs): self.coef_ = np.arange(X.shape[1]) return True def _check_fit(self): if not hasattr(self, 'coef_'): raise RuntimeError('Estimator is not fit') @hides def inverse_transform(self, X, *args, **kwargs): self._check_fit() return X @hides def transform(self, X, *args, **kwargs): self._check_fit() return X @hides def predict(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_log_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def decision_function(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def score(self, X, *args, **kwargs): self._check_fit() return 1.0 methods = [k for k in iterkeys(SubEstimator.__dict__) if not k.startswith('_') and not k.startswith('fit')] methods.sort() for delegator_data in DELEGATING_METAESTIMATORS: delegate = SubEstimator() delegator = delegator_data.construct(delegate) for method in methods: if method in delegator_data.skip_methods: continue assert_true(hasattr(delegate, method)) assert_true(hasattr(delegator, method), msg="%s does not have method %r when its delegate does" % (delegator_data.name, method)) # delegation before fit raises an exception assert_raises(Exception, getattr(delegator, method), delegator_data.fit_args[0]) delegator.fit(*delegator_data.fit_args) for method in methods: if method in delegator_data.skip_methods: continue # smoke test delegation getattr(delegator, method)(delegator_data.fit_args[0]) for method in methods: if method in delegator_data.skip_methods: continue delegate = SubEstimator(hidden_method=method) delegator = delegator_data.construct(delegate) assert_false(hasattr(delegate, method)) assert_false(hasattr(delegator, method), msg="%s has method %r when its delegate does not" % (delegator_data.name, method))
bsd-3-clause
bmazin/ARCONS-pipeline
examples/Pal2014-J0337/plotLightCurve.py
1
1690
import numpy as np import matplotlib.pyplot as plt import figureHeader def plotPulseProfile(phaseBinEdges,pulseProfile,profileErrors=None,plotDoublePulse=True,ax=None,**kwargs): label = kwargs.pop('label','') if plotDoublePulse: doublePhaseBinEdges = np.concatenate([phaseBinEdges,phaseBinEdges[1:]+1.]) doubleSteppedPulseProfile = np.concatenate([pulseProfile,pulseProfile,[pulseProfile[-1]]]) ax.plot(doublePhaseBinEdges,doubleSteppedPulseProfile,drawstyle='steps-post',label=label,**kwargs) if not (profileErrors is None): doublePulseProfile = np.concatenate([pulseProfile,pulseProfile]) doubleProfileErrors = np.concatenate([profileErrors,profileErrors]) doubleBinCenters = doublePhaseBinEdges[0:-1]+np.diff(doublePhaseBinEdges)/2. ax.errorbar(doubleBinCenters,doublePulseProfile,yerr=doubleProfileErrors,linestyle='',**kwargs) else: steppedPulseProfile = np.concatenate([pulseProfile,[pulseProfile[-1]]]) ax.plot(phaseBinEdges,steppedPulseProfile,drawstyle='steps-post',label=label,**kwargs) if not (profileErrors is None): binCenters = phaseBinEdges[0:-1]+np.diff(phaseBinEdges)/2. ax.errorbar(binCenters,pulseProfile,yerr=profileErrors,linestyle='',**kwargs) lcData = np.load('lightcurvePlot.npz') phaseBinEdges = lcData['phaseBinEdges'] phaseProfile = lcData['phaseProfile'] profileErrors = lcData['profileErrors'] fig,ax = plt.subplots() plotPulseProfile(phaseBinEdges,phaseProfile,profileErrors,color='k',plotDoublePulse=False,ax=ax,linewidth=1.2) ax.set_xlabel('phase') ax.set_ylabel('counts') fig.savefig('lightcurve.eps') plt.show()
gpl-2.0
muku42/bokeh
bokeh/charts/builder/tests/test_step_builder.py
4
2479
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest import numpy as np from numpy.testing import assert_array_equal import pandas as pd from bokeh.charts import Step from bokeh.util.testing import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestStep(unittest.TestCase): def test_supported_input(self): xyvalues = OrderedDict() xyvalues['python'] = [2, 3, 7, 5, 26] xyvalues['pypy'] = [12, 33, 47, 15, 126] xyvalues['jython'] = [22, 43, 10, 25, 26] xyvaluesdf = pd.DataFrame(xyvalues) y_python = [ 2., 2., 3., 3., 7., 7., 5., 5., 26.] y_jython = [ 22., 22.,43., 43., 10., 10., 25., 25., 26.] y_pypy = [ 12., 12., 33., 33., 47., 47., 15., 15., 126.] x = [0, 1, 1, 2, 2, 3, 3, 4, 4] for i, _xy in enumerate([xyvalues, xyvaluesdf]): hm = create_chart(Step, _xy) builder = hm._builders[0] self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys()))) assert_array_equal(builder._data['x'], x) assert_array_equal(builder._data['y_python'], y_python) assert_array_equal(builder._data['y_jython'], y_jython) assert_array_equal(builder._data['y_pypy'], y_pypy) lvalues = [[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]] for _xy in [lvalues, np.array(lvalues)]: hm = create_chart(Step, _xy) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1', '2']) assert_array_equal(builder._data['y_0'], y_python) assert_array_equal(builder._data['y_1'], y_pypy) assert_array_equal(builder._data['y_2'], y_jython)
bsd-3-clause
plablo09/geo_context
roc_curve.py
1
3990
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.decomposition import PCA as sklearnPCA from sklearn import svm from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import StratifiedKFold import matplotlib.pyplot as plt from scipy import interp #set random state for camparability random_state = np.random.RandomState(0) #this function performs stratified k-folds and plots roc curves def plot_roc(predictor, target): cv = StratifiedKFold(target, n_folds=6) classifier = svm.SVC(probability=True,random_state=random_state) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) #all_tpr = [] for i, (train, test) in enumerate(cv): probas_ = classifier.fit(predictor[train], target[train]).predict_proba(predictor[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(target[test], probas_[:, 1],pos_label=3.0) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') mean_tpr /= len(cv) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic geo_context') plt.legend(loc="lower right") plt.show() #read data context = pd.read_csv('context_nuevo.csv') #select variable columns cols_select = context.columns[6:] variables = context.ix[:,cols_select] for c in ['no_se','uname','cont','lat','lon','geom','cve_mza']: del variables[c] #reclass intervalo as numerical def intervalo_to_numbers(x): equiv = {'sun':0,'mon':1,'tue':2,'wed':3,'thu':4,'fri':5,'sat':6,'sun':7} interval = 0.16666*int(x.split('.')[1]) day = x.split('.')[0] valor = equiv[day] + interval return valor reclass = variables['intervalo'].apply(intervalo_to_numbers) #drop old 'intervalo' column and replace it with numerical values del variables['intervalo'] variables = variables.join(reclass,how='inner') #Get dataframe as matrix and scale it: data = variables.as_matrix() Y = data[:,0] X = data[:,1:] scaled_X = preprocessing.scale(X) #Perform PCA analysis pca = sklearnPCA(n_components=0.80,whiten=True) pca_transform = pca.fit_transform(scaled_X) pca_transform.shape #Stratified k-fold #Get only positive and negative classes, first with original data X_bin, Y_bin = scaled_X[Y != 2], Y[Y != 2] #Same with PCA reduced data: #data = variables.as_matrix() #Y_pca = pca_transform[:,0] #X_pca = pca_transform[:,1:] #X_pca_bin, Y_pca_bin = X_pca[Y != 2], Y[Y != 2] #cv_pca = StratifiedKFold(Y_pca_bin, n_folds=6) #for i, (train, test) in enumerate(cv_pca): # probas_ = classifier.fit(X_pca_bin[train], Y_bin[train]).predict_proba(X_pca_bin[test]) # # Compute ROC curve and area the curve # fpr, tpr, thresholds = roc_curve(Y_bin[test], probas_[:, 1],pos_label=3.0) # mean_tpr += interp(mean_fpr, fpr, tpr) # mean_tpr[0] = 0.0 # roc_auc = auc(fpr, tpr) # plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) # #plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') # #mean_tpr /= len(cv_pca) #mean_tpr[-1] = 1.0 #mean_auc = auc(mean_fpr, mean_tpr) #plt.plot(mean_fpr, mean_tpr, 'k--', # label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) # #plt.xlim([-0.05, 1.05]) #plt.ylim([-0.05, 1.05]) #plt.xlabel('False Positive Rate') #plt.ylabel('True Positive Rate') #plt.title('Receiver operating characteristic geo_context') #plt.legend(loc="lower right") #plt.show()
apache-2.0
kevin-intel/scikit-learn
sklearn/gaussian_process/tests/test_gpc.py
3
10065
"""Testing for Gaussian process classification """ # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD 3 clause import warnings import numpy as np from scipy.optimize import approx_fprime import pytest from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels \ import RBF, ConstantKernel as C, WhiteKernel from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel from sklearn.exceptions import ConvergenceWarning from sklearn.utils._testing \ import assert_almost_equal, assert_array_equal def f(x): return np.sin(x) X = np.atleast_2d(np.linspace(0, 10, 30)).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = np.array(f(X).ravel() > 0, dtype=int) fX = f(X).ravel() y_mc = np.empty(y.shape, dtype=int) # multi-class y_mc[fX < -0.35] = 0 y_mc[(fX >= -0.35) & (fX < 0.35)] = 1 y_mc[fX > 0.35] = 2 fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=0.1), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))] non_fixed_kernels = [kernel for kernel in kernels if kernel != fixed_kernel] @pytest.mark.parametrize('kernel', kernels) def test_predict_consistent(kernel): # Check binary predict decision has also predicted probability above 0.5. gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5) def test_predict_consistent_structured(): # Check binary predict decision has also predicted probability above 0.5. X = ['A', 'AB', 'B'] y = np.array([True, False, True]) kernel = MiniSeqKernel(baseline_similarity_bounds='fixed') gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5) @pytest.mark.parametrize('kernel', non_fixed_kernels) def test_lml_improving(kernel): # Test that hyperparameter-tuning improves log-marginal likelihood. gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert (gpc.log_marginal_likelihood(gpc.kernel_.theta) > gpc.log_marginal_likelihood(kernel.theta)) @pytest.mark.parametrize('kernel', kernels) def test_lml_precomputed(kernel): # Test that lml of optimized kernel is stored correctly. gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_almost_equal(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(), 7) @pytest.mark.parametrize('kernel', kernels) def test_lml_without_cloning_kernel(kernel): # Test that clone_kernel=False has side-effects of kernel.theta. gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) input_theta = np.ones(gpc.kernel_.theta.shape, dtype=np.float64) gpc.log_marginal_likelihood(input_theta, clone_kernel=False) assert_almost_equal(gpc.kernel_.theta, input_theta, 7) @pytest.mark.parametrize('kernel', non_fixed_kernels) def test_converged_to_local_maximum(kernel): # Test that we are in local maximum after hyperparameter-optimization. gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpc.log_marginal_likelihood(gpc.kernel_.theta, True) assert np.all((np.abs(lml_gradient) < 1e-4) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 0]) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 1])) @pytest.mark.parametrize('kernel', kernels) def test_lml_gradient(kernel): # Compare analytic and numeric gradient of log marginal likelihood. gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpc.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the log marginal likelihood of the chosen theta. n_samples, n_features = 25, 2 rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0 kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessClassifier( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert lml > last_lml - np.finfo(np.float32).eps last_lml = lml @pytest.mark.parametrize('kernel', non_fixed_kernels) def test_custom_optimizer(kernel): # Test that GPC can use externally defined optimizers. # Define a dummy optimizer that simply tests 10 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(10): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer) gpc.fit(X, y_mc) # Checks that optimizer improved marginal likelihood assert (gpc.log_marginal_likelihood(gpc.kernel_.theta) > gpc.log_marginal_likelihood(kernel.theta)) @pytest.mark.parametrize('kernel', kernels) def test_multi_class(kernel): # Test GPC for multi-class classification problems. gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) y_prob = gpc.predict_proba(X2) assert_almost_equal(y_prob.sum(1), 1) y_pred = gpc.predict(X2) assert_array_equal(np.argmax(y_prob, 1), y_pred) @pytest.mark.parametrize('kernel', kernels) def test_multi_class_n_jobs(kernel): # Test that multi-class GPC produces identical results with n_jobs>1. gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2) gpc_2.fit(X, y_mc) y_prob = gpc.predict_proba(X2) y_prob_2 = gpc_2.predict_proba(X2) assert_almost_equal(y_prob, y_prob_2) def test_warning_bounds(): kernel = RBF(length_scale_bounds=[1e-5, 1e-3]) gpc = GaussianProcessClassifier(kernel=kernel) warning_message = ( "The optimal value found for dimension 0 of parameter " "length_scale is close to the specified upper bound " "0.001. Increasing the bound and calling fit again may " "find a better value." ) with pytest.warns(ConvergenceWarning, match=warning_message): gpc.fit(X, y) kernel_sum = (WhiteKernel(noise_level_bounds=[1e-5, 1e-3]) + RBF(length_scale_bounds=[1e3, 1e5])) gpc_sum = GaussianProcessClassifier(kernel=kernel_sum) with pytest.warns(None) as record: with warnings.catch_warnings(): # scipy 1.3.0 uses tostring which is deprecated in numpy warnings.filterwarnings("ignore", "tostring", DeprecationWarning) gpc_sum.fit(X, y) assert len(record) == 2 assert record[0].message.args[0] == ("The optimal value found for " "dimension 0 of parameter " "k1__noise_level is close to the " "specified upper bound 0.001. " "Increasing the bound and calling " "fit again may find a better value.") assert record[1].message.args[0] == ("The optimal value found for " "dimension 0 of parameter " "k2__length_scale is close to the " "specified lower bound 1000.0. " "Decreasing the bound and calling " "fit again may find a better value.") X_tile = np.tile(X, 2) kernel_dims = RBF(length_scale=[1., 2.], length_scale_bounds=[1e1, 1e2]) gpc_dims = GaussianProcessClassifier(kernel=kernel_dims) with pytest.warns(None) as record: with warnings.catch_warnings(): # scipy 1.3.0 uses tostring which is deprecated in numpy warnings.filterwarnings("ignore", "tostring", DeprecationWarning) gpc_dims.fit(X_tile, y) assert len(record) == 2 assert record[0].message.args[0] == ("The optimal value found for " "dimension 0 of parameter " "length_scale is close to the " "specified upper bound 100.0. " "Increasing the bound and calling " "fit again may find a better value.") assert record[1].message.args[0] == ("The optimal value found for " "dimension 1 of parameter " "length_scale is close to the " "specified upper bound 100.0. " "Increasing the bound and calling " "fit again may find a better value.")
bsd-3-clause
jpo/healthcareai-py
healthcareai/common/transformers.py
1
9289
"""Transformers This module contains transformers for preprocessing data. Most operate on DataFrames and are named appropriately. """ import numpy as np import pandas as pd from sklearn.base import TransformerMixin from imblearn.over_sampling import RandomOverSampler from imblearn.under_sampling import RandomUnderSampler from sklearn.preprocessing import StandardScaler class DataFrameImputer(TransformerMixin): """ Impute missing values in a dataframe. Columns of dtype object or category (assumed categorical) are imputed with the mode (most frequent value in column). Columns of other types (assumed continuous) are imputed with mean of column. """ def __init__(self, impute=True, verbose=True): self.impute = impute self.object_columns = None self.fill = None self.verbose = verbose def fit(self, X, y=None): # Return if not imputing if self.impute is False: return self # Grab list of object column names before doing imputation self.object_columns = X.select_dtypes(include=['object']).columns.values self.fill = pd.Series([X[c].value_counts().index[0] if X[c].dtype == np.dtype('O') or pd.core.common.is_categorical_dtype(X[c]) else X[c].mean() for c in X], index=X.columns) if self.verbose: num_nans = sum(X.select_dtypes(include=[np.number]).isnull().sum()) num_total = sum(X.select_dtypes(include=[np.number]).count()) percentage_imputed = num_nans / num_total * 100 print("Percentage Imputed: %.2f%%" % percentage_imputed) print("Note: Impute will always happen on prediction dataframe, otherwise rows are dropped, and will lead " "to missing predictions") # return self for scikit compatibility return self def transform(self, X, y=None): # Return if not imputing if self.impute is False: return X result = X.fillna(self.fill) for i in self.object_columns: if result[i].dtype not in ['object', 'category']: result[i] = result[i].astype('object') return result class DataFrameConvertTargetToBinary(TransformerMixin): # TODO Note that this makes healthcareai only handle N/Y in pred column """ Convert classification model's predicted col to 0/1 (otherwise won't work with GridSearchCV). Passes through data for regression models unchanged. This is to simplify the data pipeline logic. (Though that may be a more appropriate place for the logic...) Note that this makes healthcareai only handle N/Y in pred column """ def __init__(self, model_type, target_column): self.model_type = model_type self.target_column = target_column def fit(self, X, y=None): # return self for scikit compatibility return self def transform(self, X, y=None): # TODO: put try/catch here when type = class and predictor is numeric # TODO this makes healthcareai only handle N/Y in pred column if self.model_type == 'classification': # Turn off warning around replace pd.options.mode.chained_assignment = None # default='warn' # Replace 'Y'/'N' with 1/0 X[self.target_column].replace(['Y', 'N'], [1, 0], inplace=True) return X class DataFrameCreateDummyVariables(TransformerMixin): """Convert all categorical columns into dummy/indicator variables. Exclude given columns.""" def __init__(self, excluded_columns=None): self.excluded_columns = excluded_columns def fit(self, X, y=None): # return self for scikit compatibility return self def transform(self, X, y=None): columns_to_dummify = X.select_dtypes(include=[object, 'category']) # remove excluded columns (if they are still in the list) for column in columns_to_dummify: if column in self.excluded_columns: columns_to_dummify.remove(column) # Create dummy variables X = pd.get_dummies(X, columns=columns_to_dummify, drop_first=True, prefix_sep='.') return X class DataFrameConvertColumnToNumeric(TransformerMixin): """Convert a column into numeric variables.""" def __init__(self, column_name): self.column_name = column_name def fit(self, X, y=None): # return self for scikit compatibility return self def transform(self, X, y=None): X[self.column_name] = pd.to_numeric(arg=X[self.column_name], errors='raise') return X class DataFrameUnderSampling(TransformerMixin): """ Performs undersampling on a dataframe. Must be done BEFORE train/test split so that when we split the under/over sampled dataset. Must be done AFTER imputation, since under/over sampling will not work with missing values (imblearn requires target column to be converted to numerical values) """ def __init__(self, predicted_column, random_seed=0): self.random_seed = random_seed self.predicted_column = predicted_column def fit(self, X, y=None): # return self for scikit compatibility return self def transform(self, X, y=None): # TODO how do we validate this happens before train/test split? Or do we need to? Can we implement it in the # TODO simple trainer in the correct order and leave this to advanced users? # Extract predicted column y = np.squeeze(X[[self.predicted_column]]) # Copy the dataframe without the predicted column temp_dataframe = X.drop([self.predicted_column], axis=1) # Initialize and fit the under sampler under_sampler = RandomUnderSampler(random_state=self.random_seed) x_under_sampled, y_under_sampled = under_sampler.fit_sample(temp_dataframe, y) # Build the resulting under sampled dataframe result = pd.DataFrame(x_under_sampled) # Restore the column names result.columns = temp_dataframe.columns # Restore the y values y_under_sampled = pd.Series(y_under_sampled) result[self.predicted_column] = y_under_sampled return result class DataFrameOverSampling(TransformerMixin): """ Performs oversampling on a dataframe. Must be done BEFORE train/test split so that when we split the under/over sampled dataset. Must be done AFTER imputation, since under/over sampling will not work with missing values (imblearn requires target column to be converted to numerical values) """ def __init__(self, predicted_column, random_seed=0): self.random_seed = random_seed self.predicted_column = predicted_column def fit(self, X, y=None): # return self for scikit compatibility return self def transform(self, X, y=None): # TODO how do we validate this happens before train/test split? Or do we need to? Can we implement it in the # TODO simple trainer in the correct order and leave this to advanced users? # Extract predicted column y = np.squeeze(X[[self.predicted_column]]) # Copy the dataframe without the predicted column temp_dataframe = X.drop([self.predicted_column], axis=1) # Initialize and fit the under sampler over_sampler = RandomOverSampler(random_state=self.random_seed) x_over_sampled, y_over_sampled = over_sampler.fit_sample(temp_dataframe, y) # Build the resulting under sampled dataframe result = pd.DataFrame(x_over_sampled) # Restore the column names result.columns = temp_dataframe.columns # Restore the y values y_over_sampled = pd.Series(y_over_sampled) result[self.predicted_column] = y_over_sampled return result class DataFrameDropNaN(TransformerMixin): """Remove NaN values. Columns that are NaN or None are removed.""" def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X, y=None): # Uses pandas.DataFrame.dropna function where axis=1 is column action, and # how='all' requires all the values to be NaN or None to be removed. return X.dropna(axis=1, how='all') class DataFrameFeatureScaling(TransformerMixin): """Scales numeric features. Columns that are numerics are scaled, or otherwise specified.""" def __init__(self, columns_to_scale=None, reuse=None): self.columns_to_scale = columns_to_scale self.reuse = reuse def fit(self, X, y=None): return self def transform(self, X, y=None): # Check if it's reuse, if so, then use the reuse's DataFrameFeatureScaling if self.reuse: return self.reuse.fit_transform(X, y) # Check if we know what columns to scale, if not, then get all the numeric columns' names if not self.columns_to_scale: self.columns_to_scale = list(X.select_dtypes(include=[np.number]).columns) X[self.columns_to_scale] = StandardScaler().fit_transform(X[self.columns_to_scale]) return X
mit
BlueBrain/NEST
testsuite/manualtests/stdp_check.py
13
4713
# -*- coding: utf-8 -*- # # stdp_check.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. from matplotlib.pylab import * # Test script to reproduce changes in weight of a STDP synapse in an event-driven way. # Pre- and post-synaptic spike trains are read in from spike_detector-0-0-3.gdf # (output of test_stdp_poiss.sli). # output: pre/post \t spike time \t weight # # Synaptic dynamics for STDP synapses according to Abigail Morrison's # STDP model (see stdp_rec.pdf). # # first version: Moritz Helias, april 2006 # adapted to python MH, SK, May 2008 def stdp(w_init, w_max, pre_spikes, post_spikes, alpha, mu_plus, mu_minus, lmbd, tau_plus, tau_minus, delay): w = w_init # initial weight i = 0 # index of next presynaptic spike j = 0 # index of next postsynaptic spike K_plus = 0. K_minus = 0. last_t = 0. advance = True while advance: advance = False # next spike is presynaptic if pre_spikes[i] < post_spikes[j]: dt = pre_spikes[i] - last_t # evolve exponential filters K_plus *= exp(-dt/tau_plus) K_minus *= exp(-dt/tau_minus) # depression w = w/w_max - lmbd * alpha * (w/w_max)**mu_minus * K_minus if w > 0.: w *= w_max else: w = 0. print "pre\t%.16f\t%.16f" % (pre_spikes[i],w) K_plus += 1. last_t = pre_spikes[i] # time evolved until here if i < len(pre_spikes) - 1: i += 1 advance = True # same timing of next pre- and postsynaptic spike elif pre_spikes[i] == post_spikes[j]: dt = pre_spikes[i] - last_t # evolve exponential filters K_plus *= exp(-dt/tau_plus) K_minus *= exp(-dt/tau_minus) # facilitation w = w/w_max + lmbd * (1.-w/w_max)**mu_plus * K_plus if w < 1.: w *= w_max else: w = w_max print "post\t%.16f\t%.16f" % (post_spikes[j]-delay,w) # depression w = w/w_max - lmbd * alpha * (w/w_max)**mu_minus * K_minus if w > 0.: w *= w_max else: w = 0. print "pre\t%.16f\t%.16f" % (pre_spikes[i],w) K_plus += 1. K_minus += 1. last_t = pre_spikes[i] # time evolved until here if i < len(pre_spikes) - 1: i += 1 advance = True if j < len(post_spikes) - 1: j += 1 advance = True # next spike is postsynaptic else: dt = post_spikes[j] - last_t # evolve exponential filters K_plus *= exp(-dt / tau_plus) K_minus *= exp(-dt / tau_minus) # facilitation w = w/w_max + lmbd * (1.-w/w_max)**mu_plus * K_plus if w < 1.: w *= w_max else: w = w_max print "post\t%.16f\t%.16f" % (post_spikes[j]-delay,w) K_minus += 1. last_t = post_spikes[j] # time evolved until here if j < len(post_spikes) - 1: j += 1 advance = True return w # stdp parameters w_init = 35. w_max = 70. alpha = .95 mu_plus = .05 mu_minus = .05 lmbd = .025 tau_plus = 20. tau_minus = 20. # dendritic delay delay = 1. # load spikes from simulation with test_stdp_poiss.sli spikes = load("spike_detector-0-0-3.gdf") pre_spikes = spikes[find(spikes[:,0] == 5), 1] # delay is purely dendritic # postsynaptic spike arrives at sp_j + delay at the synapse post_spikes = spikes[find(spikes[:,0] == 6), 1] + delay # calculate development of stdp weight stdp(w_init, w_max, pre_spikes, post_spikes, alpha, mu_plus, mu_minus, lmbd, tau_plus, tau_minus, delay)
gpl-2.0
harshaneelhg/scikit-learn
sklearn/metrics/pairwise.py
104
42995
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Robert Layton <robertlayton@gmail.com> # Andreas Mueller <amueller@ais.uni-bonn.de> # Philippe Gervais <philippe.gervais@inria.fr> # Lars Buitinck <larsmans@gmail.com> # Joel Nothman <joel.nothman@gmail.com> # License: BSD 3 clause import itertools import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches from ..utils.fixes import partial from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib.parallel import cpu_count from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan # Utility Functions def _return_float_dtype(X, Y): """ 1. If dtype of X and Y is float32, then dtype float32 is returned. 2. Else dtype float is returned. """ if not issparse(X) and not isinstance(X, np.ndarray): X = np.asarray(X) if Y is None: Y_dtype = X.dtype elif not issparse(Y) and not isinstance(Y, np.ndarray): Y = np.asarray(Y) Y_dtype = Y.dtype else: Y_dtype = Y.dtype if X.dtype == Y_dtype == np.float32: dtype = np.float32 else: dtype = np.float return X, Y, dtype def check_pairwise_arrays(X, Y): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the second dimension of the two arrays is equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y, dtype = _return_float_dtype(X, Y) if Y is X or Y is None: X = Y = check_array(X, accept_sparse='csr', dtype=dtype) else: X = check_array(X, accept_sparse='csr', dtype=dtype) Y = check_array(Y, accept_sparse='csr', dtype=dtype) if X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y def check_paired_arrays(X, Y): """ Set X and Y appropriately and checks inputs for paired distances All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if x varies but y remains unchanged, then the right-most dot product `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_1, n_features) Y : {array-like, sparse matrix}, shape (n_samples_2, n_features) Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. Returns ------- distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2) Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]]) See also -------- paired_distances : distances betweens pairs of elements of X and Y. """ # should not need X_norm_squared because if you could precompute that as # well as Y, then you should just pre-compute the output and not even # call this function. X, Y = check_pairwise_arrays(X, Y) if Y_norm_squared is not None: YY = check_array(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") else: YY = row_norms(Y, squared=True)[np.newaxis, :] if X is Y: # shortcut in the common case euclidean_distances(X, X) XX = YY.T else: XX = row_norms(X, squared=True)[:, np.newaxis] distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances, out=distances) def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X, Y : {array-like, sparse matrix} Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable, default 'euclidean' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, optional Keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : numpy.ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ dist_func = None if metric in PAIRWISE_DISTANCE_FUNCTIONS: dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif not callable(metric) and not isinstance(metric, str): raise ValueError("'metric' must be a string or a callable") X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X # Allocate output arrays indices = np.empty(X.shape[0], dtype=np.intp) values = np.empty(X.shape[0]) values.fill(np.infty) for chunk_x in gen_batches(X.shape[0], batch_size): X_chunk = X[chunk_x, :] for chunk_y in gen_batches(Y.shape[0], batch_size): Y_chunk = Y[chunk_y, :] if dist_func is not None: if metric == 'euclidean': # special case, for speed d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d_chunk *= -2 d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis] d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :] np.maximum(d_chunk, 0, d_chunk) else: d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs) else: d_chunk = pairwise_distances(X_chunk, Y_chunk, metric=metric, **metric_kwargs) # Update indices and minimum values using chunk min_indices = d_chunk.argmin(axis=1) min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start), min_indices] flags = values[chunk_x] > min_values indices[chunk_x][flags] = min_indices[flags] + chunk_y.start values[chunk_x][flags] = min_values[flags] if metric == "euclidean" and not metric_kwargs.get("squared", False): np.sqrt(values, values) return indices, values def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ---------- X : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) Y : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ if metric_kwargs is None: metric_kwargs = {} return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size, metric_kwargs)[0] def manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=5e8): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. size_threshold : int, default=5e8 Unused parameter. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances(3, 3)#doctest:+ELLIPSIS array([[ 0.]]) >>> manhattan_distances(3, 2)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances(2, 3)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[ 0., 2.], [ 4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[ 1., 1.], [ 1., 1.]]...) """ X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, X.shape[1], D) return D if sum_over_features: return distance.cdist(X, Y, 'cityblock') D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) return D.reshape((-1, X.shape[1])) def cosine_distances(X, Y=None): """ Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- distance matrix : array An array with shape (n_samples_X, n_samples_Y). See also -------- sklearn.metrics.pairwise.cosine_similarity scipy.spatial.distance.cosine (dense matrices only) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) diff = X - Y if issparse(diff): diff.data = np.abs(diff.data) return np.squeeze(np.array(diff.sum(axis=1))) else: return np.abs(diff).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray, shape (n_samples, ) Notes ------ The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm """ X, Y = check_paired_arrays(X, Y) return .5 * row_norms(normalize(X) - normalize(Y), squared=True) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances} def paired_distances(X, Y, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray (n_samples, n_features) Array 1 for distance computation. Y : ndarray (n_samples, n_features) Array 2 for distance computation. metric : string or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray (n_samples, ) Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([ 0., 1.]) See also -------- pairwise_distances : pairwise distances. """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=True) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Read more in the :ref:`User Guide <polynomial_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 degree : int, default 3 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Read more in the :ref:`User Guide <sigmoid_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 Returns ------- Gram matrix: array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <rbf_kernel>`. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None, dense_output=True): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the :ref:`User Guide <cosine_similarity>`. Parameters ---------- X : ndarray or sparse array, shape: (n_samples_X, n_features) Input data. Y : ndarray or sparse array, shape: (n_samples_Y, n_features) Input data. If ``None``, the output will be the pairwise similarities between all samples in ``X``. dense_output : boolean (optional), default True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. Returns ------- kernel matrix : array An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X if n_jobs == 1: # Special case to avoid picklability checks in delayed return func(X, Y, **kwds) # TODO: in some cases, backend='threading' may be appropriate fd = delayed(func) ret = Parallel(n_jobs=n_jobs, verbose=0)( fd(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) def _pairwise_callable(X, Y, metric, **kwds): """Handle the callable case for pairwise_{distances,kernels} """ X, Y = check_pairwise_arrays(X, Y) if X is Y: # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.combinations(range(X.shape[0]), 2) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) # Make symmetric # NB: out += out.T will produce incorrect results out = out + out.T # Calculate diagonal # NB: nonzero diagonals are allowed for both metrics and kernels for i in range(X.shape[0]): x = X[i] out[i, i] = metric(x, x, **kwds) else: # Calculate all cells out = np.empty((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) return out _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"] def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features], optional An optional second feature array. Only allowed if metric != "precomputed". metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: if issparse(X) or issparse(Y): raise TypeError("scipy distance metrics do not" " support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if n_jobs == 1 and X is Y: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) func = partial(distance.cdist, metric=metric, **kwds) return _parallel_pairwise(X, Y, func, n_jobs, **kwds) # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": (), "cosine": (), "exp_chi2": frozenset(["gamma"]), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. filter_params: boolean Whether to filter invalid parameters or not. `**kwds` : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ if metric == "precomputed": return X elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: raise ValueError("Unknown kernel %r" % metric) return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
bsd-3-clause
edhuckle/statsmodels
statsmodels/datasets/cpunish/data.py
25
2597
"""US Capital Punishment dataset.""" __docformat__ = 'restructuredtext' COPYRIGHT = """Used with express permission from the original author, who retains all rights.""" TITLE = __doc__ SOURCE = """ Jeff Gill's `Generalized Linear Models: A Unified Approach` http://jgill.wustl.edu/research/books.html """ DESCRSHORT = """Number of state executions in 1997""" DESCRLONG = """This data describes the number of times capital punishment is implemented at the state level for the year 1997. The outcome variable is the number of executions. There were executions in 17 states. Included in the data are explanatory variables for median per capita income in dollars, the percent of the population classified as living in poverty, the percent of Black citizens in the population, the rate of violent crimes per 100,000 residents for 1996, a dummy variable indicating whether the state is in the South, and (an estimate of) the proportion of the population with a college degree of some kind. """ NOTE = """:: Number of Observations - 17 Number of Variables - 7 Variable name definitions:: EXECUTIONS - Executions in 1996 INCOME - Median per capita income in 1996 dollars PERPOVERTY - Percent of the population classified as living in poverty PERBLACK - Percent of black citizens in the population VC100k96 - Rate of violent crimes per 100,00 residents for 1996 SOUTH - SOUTH == 1 indicates a state in the South DEGREE - An esimate of the proportion of the state population with a college degree of some kind State names are included in the data file, though not returned by load. """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Load the cpunish data and return a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): """ Load the cpunish data and return a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/cpunish.csv', 'rb'), delimiter=",", names=True, dtype=float, usecols=(1,2,3,4,5,6,7)) return data
bsd-3-clause
bavardage/statsmodels
statsmodels/sandbox/tsa/examples/example_var.py
37
1218
""" Look at some macro plots, then do some VARs and IRFs. """ import numpy as np import statsmodels.api as sm import scikits.timeseries as ts import scikits.timeseries.lib.plotlib as tplt from matplotlib import pyplot as plt data = sm.datasets.macrodata.load() data = data.data ### Create Timeseries Representations of a few vars dates = ts.date_array(start_date=ts.Date('Q', year=1959, quarter=1), end_date=ts.Date('Q', year=2009, quarter=3)) ts_data = data[['realgdp','realcons','cpi']].view(float).reshape(-1,3) ts_data = np.column_stack((ts_data, (1 - data['unemp']/100) * data['pop'])) ts_series = ts.time_series(ts_data, dates) fig = tplt.tsfigure() fsp = fig.add_tsplot(221) fsp.tsplot(ts_series[:,0],'-') fsp.set_title("Real GDP") fsp = fig.add_tsplot(222) fsp.tsplot(ts_series[:,1],'r-') fsp.set_title("Real Consumption") fsp = fig.add_tsplot(223) fsp.tsplot(ts_series[:,2],'g-') fsp.set_title("CPI") fsp = fig.add_tsplot(224) fsp.tsplot(ts_series[:,3],'y-') fsp.set_title("Employment") # Plot real GDP #plt.subplot(221) #plt.plot(data['realgdp']) #plt.title("Real GDP") # Plot employment #plt.subplot(222) # Plot cpi #plt.subplot(223) # Plot real consumption #plt.subplot(224) #plt.show()
bsd-3-clause
aiguofer/bokeh
examples/app/gapminder/main.py
3
2668
# -*- coding: utf-8 -*- import pandas as pd from bokeh.core.properties import field from bokeh.io import curdoc from bokeh.layouts import layout from bokeh.models import ( ColumnDataSource, HoverTool, SingleIntervalTicker, Slider, Button, Label, CategoricalColorMapper, ) from bokeh.palettes import Spectral6 from bokeh.plotting import figure from data import process_data fertility_df, life_expectancy_df, population_df_size, regions_df, years, regions_list = process_data() sources = {} region_name = regions_df.Group region_name.name = 'region' for year in years: fertility = fertility_df[year] fertility.name = 'fertility' life = life_expectancy_df[year] life.name = 'life' population = population_df_size[year] population.name = 'population' df = pd.concat([fertility, life, population, region_name], axis=1) df = df.fillna('NaN') sources[year] = ColumnDataSource(df) source = sources[years[0]] plot = figure(x_range=(1, 9), y_range=(20, 100), title='Gapminder Data', plot_height=300) plot.xaxis.ticker = SingleIntervalTicker(interval=1) plot.xaxis.axis_label = "Children per woman (total fertility)" plot.yaxis.ticker = SingleIntervalTicker(interval=20) plot.yaxis.axis_label = "Life expectancy at birth (years)" label = Label(x=1.1, y=18, text=str(years[0]), text_font_size='70pt', text_color='#eeeeee') plot.add_layout(label) color_mapper = CategoricalColorMapper(palette=Spectral6, factors=regions_list) plot.circle( x='fertility', y='life', size='population', source=source, fill_color={'field': 'region', 'transform': color_mapper}, fill_alpha=0.8, line_color='#7c7e71', line_width=0.5, line_alpha=0.5, legend=field('region'), ) plot.add_tools(HoverTool(tooltips="@index", show_arrow=False, point_policy='follow_mouse')) def animate_update(): year = slider.value + 1 if year > years[-1]: year = years[0] slider.value = year def slider_update(attrname, old, new): year = slider.value label.text = str(year) source.data = sources[year].data slider = Slider(start=years[0], end=years[-1], value=years[0], step=1, title="Year") slider.on_change('value', slider_update) def animate(): if button.label == '► Play': button.label = '❚❚ Pause' curdoc().add_periodic_callback(animate_update, 200) else: button.label = '► Play' curdoc().remove_periodic_callback(animate_update) button = Button(label='► Play', width=60) button.on_click(animate) layout = layout([ [plot], [slider, button], ], sizing_mode='scale_width') curdoc().add_root(layout) curdoc().title = "Gapminder"
bsd-3-clause
lorenzo-desantis/mne-python
examples/inverse/plot_make_inverse_operator.py
21
3232
""" =============================================================== Assemble inverse operator and compute MNE-dSPM inverse solution =============================================================== Assemble M/EEG, MEG, and EEG inverse operators and compute dSPM inverse solution on MNE evoked dataset and stores the solution in stc files for visualisation. """ # Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.minimum_norm import (make_inverse_operator, apply_inverse, write_inverse_operator) print(__doc__) data_path = sample.data_path() fname_fwd_meeg = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' fname_fwd_eeg = data_path + '/MEG/sample/sample_audvis-eeg-oct-6-fwd.fif' fname_cov = data_path + '/MEG/sample/sample_audvis-shrunk-cov.fif' fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' snr = 3.0 lambda2 = 1.0 / snr ** 2 # Load data evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0)) forward_meeg = mne.read_forward_solution(fname_fwd_meeg, surf_ori=True) noise_cov = mne.read_cov(fname_cov) # Restrict forward solution as necessary for MEG forward_meg = mne.pick_types_forward(forward_meeg, meg=True, eeg=False) # Alternatively, you can just load a forward solution that is restricted forward_eeg = mne.read_forward_solution(fname_fwd_eeg, surf_ori=True) # make an M/EEG, MEG-only, and EEG-only inverse operators info = evoked.info inverse_operator_meeg = make_inverse_operator(info, forward_meeg, noise_cov, loose=0.2, depth=0.8) inverse_operator_meg = make_inverse_operator(info, forward_meg, noise_cov, loose=0.2, depth=0.8) inverse_operator_eeg = make_inverse_operator(info, forward_eeg, noise_cov, loose=0.2, depth=0.8) write_inverse_operator('sample_audvis-meeg-oct-6-inv.fif', inverse_operator_meeg) write_inverse_operator('sample_audvis-meg-oct-6-inv.fif', inverse_operator_meg) write_inverse_operator('sample_audvis-eeg-oct-6-inv.fif', inverse_operator_eeg) # Compute inverse solution stcs = dict() stcs['meeg'] = apply_inverse(evoked, inverse_operator_meeg, lambda2, "dSPM", pick_ori=None) stcs['meg'] = apply_inverse(evoked, inverse_operator_meg, lambda2, "dSPM", pick_ori=None) stcs['eeg'] = apply_inverse(evoked, inverse_operator_eeg, lambda2, "dSPM", pick_ori=None) # Save result in stc files names = ['meeg', 'meg', 'eeg'] for name in names: stcs[name].save('mne_dSPM_inverse-%s' % name) ############################################################################### # View activation time-series plt.close('all') plt.figure(figsize=(8, 6)) for ii in range(len(stcs)): name = names[ii] stc = stcs[name] plt.subplot(len(stcs), 1, ii + 1) plt.plot(1e3 * stc.times, stc.data[::150, :].T) plt.ylabel('%s\ndSPM value' % str.upper(name)) plt.xlabel('time (ms)') plt.show()
bsd-3-clause
CforED/Machine-Learning
examples/semi_supervised/plot_label_propagation_structure.py
45
2433
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy', marker='s', lw=0, label="outer labeled", s=10) plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c', marker='s', lw=0, label='inner labeled', s=10) plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange', marker='.', label='unlabeled') plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Raw data (2 classes=outer and inner)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy', marker='s', lw=0, s=10, label="outer learned") plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c', marker='s', lw=0, s=10, label="inner learned") plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
Fireblend/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
276
3790
# Authors: Lars Buitinck <L.J.Buitinck@uva.nl> # Dan Blanchard <dblanchard@ets.org> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
liam2/larray
larray/tests/test_array.py
2
174871
# -*- coding: utf8 -*- from __future__ import absolute_import, division, print_function import os import re import sys import pytest import numpy as np import pandas as pd from collections import OrderedDict from larray.tests.common import (inputpath, tmp_path, meta, assert_array_equal, assert_array_nan_equal, assert_larray_equiv, assert_larray_equal, needs_xlwings, needs_pytables, needs_xlsxwriter, needs_xlrd, needs_python35, needs_python36, needs_python37) from larray import (Array, LArray, Axis, LGroup, union, zeros, zeros_like, ndtest, empty, ones, eye, diag, stack, clip, exp, where, X, mean, isnan, round, read_hdf, read_csv, read_eurostat, read_excel, from_lists, from_string, open_excel, from_frame, sequence, nan, IGroup) from larray.inout.pandas import from_series from larray.core.axis import _to_ticks, _to_key from larray.util.misc import LHDFStore from larray.util.compat import StringIO from larray.core.metadata import Metadata # ================== # # Test Value Strings # # ================== # def test_value_string_split(): assert_array_equal(_to_ticks('M,F'), np.asarray(['M', 'F'])) assert_array_equal(_to_ticks('M, F'), np.asarray(['M', 'F'])) def test_value_string_union(): assert union('A11,A22', 'A12,A22') == ['A11', 'A22', 'A12'] def test_value_string_range(): assert_array_equal(_to_ticks('0..115'), np.asarray(range(116))) assert_array_equal(_to_ticks('..115'), np.asarray(range(116))) with pytest.raises(ValueError): _to_ticks('10..') with pytest.raises(ValueError): _to_ticks('..') # ================ # # Test Key Strings # # ================ # def test_key_string_nonstring(): assert _to_key(('M', 'F')) == ['M', 'F'] assert _to_key(['M', 'F']) == ['M', 'F'] def test_key_string_split(): assert _to_key('M,F') == ['M', 'F'] assert _to_key('M, F') == ['M', 'F'] assert _to_key('M,') == ['M'] assert _to_key('M') == 'M' def test_key_string_slice_strings(): # these two examples have different results and this is fine because numeric axes do not necessarily start at 0 assert _to_key('0:115') == slice(0, 115) assert _to_key(':115') == slice(115) assert _to_key('10:') == slice(10, None) assert _to_key(':') == slice(None) # =================== # # Test Metadata # # =================== # def test_read_set_update_delete_metadata(meta, tmpdir): # __eq__ meta2 = meta.copy() assert meta2 == meta # set/get metadata to/from an array arr = ndtest((3, 3)) arr.meta = meta assert arr.meta == meta # access item assert arr.meta.date == meta.date # add new item arr.meta.city = 'London' assert arr.meta.city == 'London' # update item arr.meta.city = 'Berlin' assert arr.meta.city == 'Berlin' # __contains__ assert 'city' in arr.meta # delete item del arr.meta.city assert arr.meta == meta # __reduce__ and __reduce_ex__ import pickle fname = os.path.join(tmpdir.strpath, 'test_metadata.pkl') with open(fname, 'wb') as f: pickle.dump(meta, f) with open(fname, 'rb') as f: meta2 = Metadata(pickle.load(f)) assert meta2 == meta @needs_pytables def test_metadata_hdf(meta, tmpdir): key = 'meta' fname = os.path.join(tmpdir.strpath, 'test_metadata.hdf') with LHDFStore(fname) as store: ndtest(3).to_hdf(store, key) meta.to_hdf(store, key) meta2 = Metadata.from_hdf(store, key) assert meta2 == meta def test_meta_arg_array_creation(array): meta_list = [('title', 'test array'), ('description', 'Array used for testing'), ('author', 'John Cleese')] meta = Metadata(meta_list) # meta as list arr = Array(array.data, array.axes, meta=meta_list) assert arr.meta == meta # meta as OrderedDict arr = Array(array.data, array.axes, meta=OrderedDict(meta_list)) assert arr.meta == meta # ================ # # Test Array # # ================ # # AXES lipro = Axis(['P%02d' % i for i in range(1, 16)], 'lipro') age = Axis('age=0..115') sex = Axis('sex=M,F') vla = 'A11,A12,A13,A23,A24,A31,A32,A33,A34,A35,A36,A37,A38,A41,A42,A43,A44,A45,A46,A71,A72,A73' wal = 'A25,A51,A52,A53,A54,A55,A56,A57,A61,A62,A63,A64,A65,A81,A82,A83,A84,A85,A91,A92,A93' bru = 'A21' vla_str = vla wal_str = wal bru_str = bru belgium = union(vla, wal, bru) geo = Axis(belgium, 'geo') # ARRAYS @pytest.fixture() def array(): data = np.arange(116 * 44 * 2 * 15).reshape(116, 44, 2, 15).astype(float) return Array(data, axes=(age, geo, sex, lipro)) @pytest.fixture() def small_array(): small_data = np.arange(30).reshape(2, 15) return Array(small_data, axes=(sex, lipro)) io_1d = ndtest(3) io_2d = ndtest("a=1..3; b=b0,b1") io_3d = ndtest("a=1..3; b=b0,b1; c=c0..c2") io_int_labels = ndtest("a=0..2; b=0..2; c=0..2") io_unsorted = ndtest("a=3..1; b=b1,b0; c=c2..c0") io_missing_values = ndtest("a=1..3; b=b0,b1; c=c0..c2", dtype=float) io_missing_values[2, 'b0'] = nan io_missing_values[3, 'b1'] = nan io_narrow_missing_values = io_missing_values.copy() io_narrow_missing_values[2, 'b1', 'c1'] = nan def test_larray_renamed_as_array(): with pytest.warns(FutureWarning) as caught_warnings: arr = LArray([0, 1, 2, 3], 'a=a0..a3') assert len(caught_warnings) == 1 assert caught_warnings[0].message.args[0] == "LArray has been renamed as Array." assert caught_warnings[0].filename == __file__ def test_ndtest(): arr = ndtest('a=a0..a2') assert arr.shape == (3,) assert arr.axes.names == ['a'] assert_array_equal(arr.data, np.arange(3)) # using an explicit Axis object a = Axis('a=a0..a2') arr = ndtest(a) assert arr.shape == (3,) assert arr.axes.names == ['a'] assert_array_equal(arr.data, np.arange(3)) # using a group as an axis arr = ndtest(a[:'a1']) assert arr.shape == (2,) assert arr.axes.names == ['a'] assert_array_equal(arr.data, np.arange(2)) def test_getattr(array): assert type(array.geo) == Axis assert array.geo is geo with pytest.raises(AttributeError): array.geom def test_zeros(): la = zeros((geo, age)) assert la.shape == (44, 116) assert_array_equal(la, np.zeros((44, 116))) def test_zeros_like(array): la = zeros_like(array) assert la.shape == (116, 44, 2, 15) assert_array_equal(la, np.zeros((116, 44, 2, 15))) def test_bool(): a = ones([2]) # ValueError: The truth value of an array with more than one element # is ambiguous. Use a.any() or a.all() with pytest.raises(ValueError): bool(a) a = ones([1]) assert bool(a) a = zeros([1]) assert not bool(a) a = Array(np.array(2), []) assert bool(a) a = Array(np.array(0), []) assert not bool(a) def test_iter(small_array): l = list(small_array) assert_array_equal(l[0], small_array['M']) assert_array_equal(l[1], small_array['F']) def test_keys(): arr = ndtest((2, 2)) a, b = arr.axes keys = arr.keys() assert list(keys) == [(a.i[0], b.i[0]), (a.i[0], b.i[1]), (a.i[1], b.i[0]), (a.i[1], b.i[1])] assert keys[0] == (a.i[0], b.i[0]) assert keys[-1] == (a.i[1], b.i[1]) keys = arr.keys(ascending=False) assert list(keys) == [(a.i[1], b.i[1]), (a.i[1], b.i[0]), (a.i[0], b.i[1]), (a.i[0], b.i[0])] assert keys[0] == (a.i[1], b.i[1]) assert keys[-1] == (a.i[0], b.i[0]) keys = arr.keys(('b', 'a')) assert list(keys) == [(b.i[0], a.i[0]), (b.i[0], a.i[1]), (b.i[1], a.i[0]), (b.i[1], a.i[1])] assert keys[1] == (b.i[0], a.i[1]) assert keys[2] == (b.i[1], a.i[0]) keys = arr.keys(('b', 'a'), ascending=False) assert list(keys) == [(b.i[1], a.i[1]), (b.i[1], a.i[0]), (b.i[0], a.i[1]), (b.i[0], a.i[0])] assert keys[1] == (b.i[1], a.i[0]) assert keys[2] == (b.i[0], a.i[1]) keys = arr.keys('b') assert list(keys) == [(b.i[0],), (b.i[1],)] assert keys[0] == (b.i[0],) assert keys[-1] == (b.i[1],) keys = arr.keys('b', ascending=False) assert list(keys) == [(b.i[1],), (b.i[0],)] assert keys[0] == (b.i[1],) assert keys[-1] == (b.i[0],) def test_values(): arr = ndtest((2, 2)) a, b = arr.axes values = arr.values() assert list(values) == [0, 1, 2, 3] assert values[0] == 0 assert values[-1] == 3 values = arr.values(ascending=False) assert list(values) == [3, 2, 1, 0] assert values[0] == 3 assert values[-1] == 0 values = arr.values(('b', 'a')) assert list(values) == [0, 2, 1, 3] assert values[1] == 2 assert values[2] == 1 values = arr.values(('b', 'a'), ascending=False) assert list(values) == [3, 1, 2, 0] assert values[1] == 1 assert values[2] == 2 values = arr.values('b') res = list(values) assert_larray_equal(res[0], arr['b0']) assert_larray_equal(res[1], arr['b1']) assert_larray_equal(values[0], arr['b0']) assert_larray_equal(values[-1], arr['b1']) values = arr.values('b', ascending=False) res = list(values) assert_larray_equal(res[0], arr['b1']) assert_larray_equal(res[1], arr['b0']) assert_larray_equal(values[0], arr['b1']) assert_larray_equal(values[-1], arr['b0']) def test_items(): arr = ndtest((2, 2)) a, b = arr.axes items = arr.items() assert list(items) == [((a.i[0], b.i[0]), 0), ((a.i[0], b.i[1]), 1), ((a.i[1], b.i[0]), 2), ((a.i[1], b.i[1]), 3)] assert items[0] == ((a.i[0], b.i[0]), 0) assert items[-1] == ((a.i[1], b.i[1]), 3) items = arr.items(ascending=False) assert list(items) == [((a.i[1], b.i[1]), 3), ((a.i[1], b.i[0]), 2), ((a.i[0], b.i[1]), 1), ((a.i[0], b.i[0]), 0)] assert items[0] == ((a.i[1], b.i[1]), 3) assert items[-1] == ((a.i[0], b.i[0]), 0) items = arr.items(('b', 'a')) assert list(items) == [((b.i[0], a.i[0]), 0), ((b.i[0], a.i[1]), 2), ((b.i[1], a.i[0]), 1), ((b.i[1], a.i[1]), 3)] assert items[1] == ((b.i[0], a.i[1]), 2) assert items[2] == ((b.i[1], a.i[0]), 1) items = arr.items(('b', 'a'), ascending=False) assert list(items) == [((b.i[1], a.i[1]), 3), ((b.i[1], a.i[0]), 1), ((b.i[0], a.i[1]), 2), ((b.i[0], a.i[0]), 0)] assert items[1] == ((b.i[1], a.i[0]), 1) assert items[2] == ((b.i[0], a.i[1]), 2) items = arr.items('b') items_list = list(items) key, value = items[0] assert key == (b.i[0],) assert_larray_equal(value, arr['b0']) key, value = items_list[0] assert key == (b.i[0],) assert_larray_equal(value, arr['b0']) key, value = items[-1] assert key == (b.i[1],) assert_larray_equal(value, arr['b1']) key, value = items_list[-1] assert key == (b.i[1],) assert_larray_equal(value, arr['b1']) items = arr.items('b', ascending=False) items_list = list(items) key, value = items[0] assert key == (b.i[1],) assert_larray_equal(value, arr['b1']) key, value = items_list[0] assert key == (b.i[1],) assert_larray_equal(value, arr['b1']) key, value = items[-1] assert key == (b.i[0],) assert_larray_equal(value, arr['b0']) key, value = items_list[-1] assert key == (b.i[0],) assert_larray_equal(value, arr['b0']) def test_rename(array): new_array = array.rename('sex', 'gender') # old array axes names not modified assert array.axes.names == ['age', 'geo', 'sex', 'lipro'] assert new_array.axes.names == ['age', 'geo', 'gender', 'lipro'] new_array = array.rename(sex, 'gender') # old array axes names not modified assert array.axes.names == ['age', 'geo', 'sex', 'lipro'] assert new_array.axes.names == ['age', 'geo', 'gender', 'lipro'] def test_info(array, meta): array.meta = meta expected = """\ title: test array description: Array used for testing author: John Cleese location: Ministry of Silly Walks office_number: 42 score: 9.7 date: 1970-03-21 00:00:00 116 x 44 x 2 x 15 age [116]: 0 1 2 ... 113 114 115 geo [44]: 'A11' 'A12' 'A13' ... 'A92' 'A93' 'A21' sex [2]: 'M' 'F' lipro [15]: 'P01' 'P02' 'P03' ... 'P13' 'P14' 'P15' dtype: float64 memory used: 1.17 Mb""" assert array.info == expected def test_str(small_array, array): lipro3 = lipro['P01:P03'] # zero dimension / scalar assert str(small_array[lipro['P01'], sex['F']]) == "15" # empty / len 0 first dimension assert str(small_array[sex[[]]]) == "Array([])" # one dimension assert str(small_array[lipro3, sex['M']]) == """\ lipro P01 P02 P03 0 1 2""" # two dimensions assert str(small_array.filter(lipro=lipro3)) == """\ sex\\lipro P01 P02 P03 M 0 1 2 F 15 16 17""" # four dimensions (too many rows) assert str(array.filter(lipro=lipro3)) == """\ age geo sex\\lipro P01 P02 P03 0 A11 M 0.0 1.0 2.0 0 A11 F 15.0 16.0 17.0 0 A12 M 30.0 31.0 32.0 0 A12 F 45.0 46.0 47.0 0 A13 M 60.0 61.0 62.0 ... ... ... ... ... ... 115 A92 F 153045.0 153046.0 153047.0 115 A93 M 153060.0 153061.0 153062.0 115 A93 F 153075.0 153076.0 153077.0 115 A21 M 153090.0 153091.0 153092.0 115 A21 F 153105.0 153106.0 153107.0""" # too many columns assert str(array['P01', 'A11', 'M']) == """\ age 0 1 2 ... 112 113 114 115 0.0 1320.0 2640.0 ... 147840.0 149160.0 150480.0 151800.0""" arr = Array([0, ''], Axis(['a0', ''], 'a')) assert str(arr) == "a a0 \n 0 " def test_getitem(array): raw = array.data age, geo, sex, lipro = array.axes age159 = age[[1, 5, 9]] lipro159 = lipro['P01,P05,P09'] # LGroup at "correct" place subset = array[age159] assert subset.axes[1:] == (geo, sex, lipro) assert subset.axes[0].equals(Axis([1, 5, 9], 'age')) assert_array_equal(subset, raw[[1, 5, 9]]) # LGroup at "incorrect" place assert_array_equal(array[lipro159], raw[..., [0, 4, 8]]) # multiple LGroup key (in "incorrect" order) res = array[lipro159, age159] assert res.axes.names == ['age', 'geo', 'sex', 'lipro'] assert_array_equal(res, raw[[1, 5, 9]][..., [0, 4, 8]]) # LGroup key and scalar res = array[lipro159, 5] assert res.axes.names == ['geo', 'sex', 'lipro'] assert_array_equal(res, raw[..., [0, 4, 8]][5]) # mixed LGroup/positional key assert_array_equal(array[[1, 5, 9], lipro159], raw[[1, 5, 9]][..., [0, 4, 8]]) # single None slice assert_array_equal(array[:], raw) # only Ellipsis assert_array_equal(array[...], raw) # Ellipsis and LGroup assert_array_equal(array[..., lipro159], raw[..., [0, 4, 8]]) # string 'int..int' assert_array_equal(array['10..13'], array['10,11,12,13']) assert_array_equal(array['8, 10..13, 15'], array['8,10,11,12,13,15']) # ambiguous label arr = ndtest("a=l0,l1;b=l1,l2") res = arr[arr.b['l1']] assert_array_equal(res, arr.data[:, 0]) # scalar group on another axis arr = ndtest((3, 2)) alt_a = Axis("alt_a=a1..a2") lgroup = alt_a['a1'] assert_array_equal(arr[lgroup], arr['a1']) pgroup = alt_a.i[0] assert_array_equal(arr[pgroup], arr['a1']) # key with duplicate axes with pytest.raises(ValueError): array[age[1, 2], age[3, 4]] # key with lgroup from another axis leading to duplicate axis bad = Axis(3, 'bad') with pytest.raises(ValueError): array[bad[1, 2], age[3, 4]] def test_getitem_abstract_axes(array): raw = array.data age, geo, sex, lipro = array.axes age159 = X.age[1, 5, 9] lipro159 = X.lipro['P01,P05,P09'] # LGroup at "correct" place subset = array[age159] assert subset.axes[1:] == (geo, sex, lipro) assert subset.axes[0].equals(Axis([1, 5, 9], 'age')) assert_array_equal(subset, raw[[1, 5, 9]]) # LGroup at "incorrect" place assert_array_equal(array[lipro159], raw[..., [0, 4, 8]]) # multiple LGroup key (in "incorrect" order) assert_array_equal(array[lipro159, age159], raw[[1, 5, 9]][..., [0, 4, 8]]) # mixed LGroup/positional key assert_array_equal(array[[1, 5, 9], lipro159], raw[[1, 5, 9]][..., [0, 4, 8]]) # single None slice assert_array_equal(array[:], raw) # only Ellipsis assert_array_equal(array[...], raw) # Ellipsis and LGroup assert_array_equal(array[..., lipro159], raw[..., [0, 4, 8]]) # key with duplicate axes with pytest.raises(ValueError): array[X.age[1, 2], X.age[3]] # key with invalid axis with pytest.raises(ValueError): array[X.bad[1, 2], X.age[3, 4]] def test_getitem_anonymous_axes(): arr = ndtest([Axis(3), Axis(4)]) raw = arr.data assert_array_equal(arr[X[0][1:]], raw[1:]) assert_array_equal(arr[X[1][2:]], raw[:, 2:]) assert_array_equal(arr[X[0][2:], X[1][1:]], raw[2:, 1:]) assert_array_equal(arr.i[2:, 1:], raw[2:, 1:]) def test_getitem_guess_axis(array): raw = array.data age, geo, sex, lipro = array.axes # key at "correct" place assert_array_equal(array[[1, 5, 9]], raw[[1, 5, 9]]) subset = array[[1, 5, 9]] assert subset.axes[1:] == (geo, sex, lipro) assert subset.axes[0].equals(Axis([1, 5, 9], 'age')) assert_array_equal(subset, raw[[1, 5, 9]]) # key at "incorrect" place assert_array_equal(array['P01,P05,P09'], raw[..., [0, 4, 8]]) assert_array_equal(array[['P01', 'P05', 'P09']], raw[..., [0, 4, 8]]) # multiple keys (in "incorrect" order) assert_array_equal(array['P01,P05,P09', [1, 5, 9]], raw[[1, 5, 9]][..., [0, 4, 8]]) # mixed LGroup/key assert_array_equal(array[lipro['P01,P05,P09'], [1, 5, 9]], raw[[1, 5, 9]][..., [0, 4, 8]]) # single None slice assert_array_equal(array[:], raw) # only Ellipsis assert_array_equal(array[...], raw) # Ellipsis and LGroup assert_array_equal(array[..., 'P01,P05,P09'], raw[..., [0, 4, 8]]) assert_array_equal(array[..., ['P01', 'P05', 'P09']], raw[..., [0, 4, 8]]) # LGroup without axis (which also needs to be guessed) g = LGroup(['P01', 'P05', 'P09']) assert_array_equal(array[g], raw[..., [0, 4, 8]]) # key with duplicate axes with pytest.raises(ValueError, match="key has several values for axis: age"): array[[1, 2], [3, 4]] # key with invalid label (ie label not found on any axis) with pytest.raises(ValueError, match="999 is not a valid label for any axis"): array[[1, 2], 999] # key with invalid label list (ie list of labels not found on any axis) with pytest.raises(ValueError, match=r"\[998, 999\] is not a valid label for any axis"): array[[1, 2], [998, 999]] # key with partial invalid list (ie list containing a label not found # on any axis) # FIXME: the message should be the same as for 999, 4 (ie it should NOT mention age). with pytest.raises(ValueError, match=r"age\[3, 999\] is not a valid label for any axis"): array[[1, 2], [3, 999]] with pytest.raises(ValueError, match=r"\[999, 4\] is not a valid label for any axis"): array[[1, 2], [999, 4]] # ambiguous key arr = ndtest("a=l0,l1;b=l1,l2") with pytest.raises(ValueError, match=r"l1 is ambiguous \(valid in a, b\)"): arr['l1'] # ambiguous key disambiguated via string res = arr['b[l1]'] assert_array_equal(res, arr.data[:, 0]) def test_getitem_positional_group(array): raw = array.data age, geo, sex, lipro = array.axes age159 = age.i[1, 5, 9] lipro159 = lipro.i[0, 4, 8] # LGroup at "correct" place subset = array[age159] assert subset.axes[1:] == (geo, sex, lipro) assert subset.axes[0].equals(Axis([1, 5, 9], 'age')) assert_array_equal(subset, raw[[1, 5, 9]]) # LGroup at "incorrect" place assert_array_equal(array[lipro159], raw[..., [0, 4, 8]]) # multiple LGroup key (in "incorrect" order) assert_array_equal(array[lipro159, age159], raw[[1, 5, 9]][..., [0, 4, 8]]) # mixed LGroup/positional key assert_array_equal(array[[1, 5, 9], lipro159], raw[[1, 5, 9]][..., [0, 4, 8]]) # single None slice assert_array_equal(array[:], raw) # only Ellipsis assert_array_equal(array[...], raw) # Ellipsis and LGroup assert_array_equal(array[..., lipro159], raw[..., [0, 4, 8]]) # key with duplicate axes with pytest.raises(ValueError, match="key has several values for axis: age"): array[age.i[1, 2], age.i[3, 4]] def test_getitem_str_positional_group(): arr = ndtest('a=l0..l2;b=l0..l2') a, b = arr.axes res = arr['b.i[1]'] expected = Array([1, 4, 7], 'a=l0..l2') assert_array_equal(res, expected) def test_getitem_abstract_positional(array): raw = array.data age, geo, sex, lipro = array.axes age159 = X.age.i[1, 5, 9] lipro159 = X.lipro.i[0, 4, 8] # LGroup at "correct" place subset = array[age159] assert subset.axes[1:] == (geo, sex, lipro) assert subset.axes[0].equals(Axis([1, 5, 9], 'age')) assert_array_equal(subset, raw[[1, 5, 9]]) # LGroup at "incorrect" place assert_array_equal(array[lipro159], raw[..., [0, 4, 8]]) # multiple LGroup key (in "incorrect" order) assert_array_equal(array[lipro159, age159], raw[[1, 5, 9]][..., [0, 4, 8]]) # mixed LGroup/positional key assert_array_equal(array[[1, 5, 9], lipro159], raw[[1, 5, 9]][..., [0, 4, 8]]) # single None slice assert_array_equal(array[:], raw) # only Ellipsis assert_array_equal(array[...], raw) # Ellipsis and LGroup assert_array_equal(array[..., lipro159], raw[..., [0, 4, 8]]) # key with duplicate axes with pytest.raises(ValueError, match="key has several values for axis: age"): array[X.age.i[2, 3], X.age.i[1, 5]] def test_getitem_bool_larray_key_arr_whout_bool_axis(): arr = ndtest((3, 2, 4)) raw = arr.data # all dimensions res = arr[arr < 5] assert isinstance(res, Array) assert res.ndim == 1 assert_array_equal(res, raw[raw < 5]) # missing dimension filter_ = arr['b1'] % 5 == 0 res = arr[filter_] assert isinstance(res, Array) assert res.ndim == 2 assert res.shape == (3, 2) raw_key = raw[:, 1, :] % 5 == 0 raw_d1, raw_d3 = raw_key.nonzero() assert_array_equal(res, raw[raw_d1, :, raw_d3]) # using an Axis object arr = ndtest('a=a0,a1;b=0..3') raw = arr.data res = arr[arr.b < 2] assert_array_equal(res, raw[:, :2]) # using an AxisReference (ExprNode) res = arr[X.b < 2] assert_array_equal(res, raw[:, :2]) def test_getitem_bool_larray_key_arr_wh_bool_axis(): gender = Axis([False, True], 'gender') arr = Array([0.1, 0.2], gender) id_axis = Axis('id=0..3') key = Array([True, False, True, True], id_axis) expected = Array([0.2, 0.1, 0.2, 0.2], id_axis) # LGroup using the real axis assert_larray_equal(arr[gender[key]], expected) # LGroup using an AxisReference assert_larray_equal(arr[X.gender[key]], expected) # this test checks that the current behavior does not change unintentionally... # ... but I am unsure the current behavior is what we actually want msg = re.escape("boolean subset key contains more axes ({id}) than array ({gender})") with pytest.raises(ValueError, match=msg): arr[key] def test_getitem_bool_larray_and_group_key(): arr = ndtest((3, 6, 4)).set_labels('b', '0..5') # using axis res = arr['a0,a2', arr.b < 3, 'c0:c3'] assert isinstance(res, Array) assert res.ndim == 3 expected = arr['a0,a2', '0:2', 'c0:c3'] assert_array_equal(res, expected) # using axis reference res = arr['a0,a2', X.b < 3, 'c0:c3'] assert isinstance(res, Array) assert res.ndim == 3 assert_array_equal(res, expected) def test_getitem_bool_ndarray_key_arr_whout_bool_axis(array): raw = array.data res = array[raw < 5] assert isinstance(res, Array) assert res.ndim == 1 assert_array_equal(res, raw[raw < 5]) def test_getitem_bool_ndarray_key_arr_wh_bool_axis(): gender = Axis([False, True], 'gender') arr = Array([0.1, 0.2], gender) key = np.array([True, False, True, True]) expected = arr.i[[1, 0, 1, 1]] # LGroup using the real axis assert_larray_equal(arr[gender[key]], expected) # LGroup using an AxisReference assert_larray_equal(arr[X.gender[key]], expected) # raw key => ??? # this test checks that the current behavior does not change unintentionally... # ... but I am unsure the current behavior is what we actually want # L? is to account for Python2 where shape can be 'long' integers msg = r"boolean key with a different shape \(\(4L?,\)\) than array \(\(2,\)\)" with pytest.raises(ValueError, match=msg): arr[key] def test_getitem_bool_anonymous_axes(): a = ndtest([Axis(2), Axis(3), Axis(4), Axis(5)]) mask = ones(a.axes[1, 3], dtype=bool) res = a[mask] assert res.ndim == 3 assert res.shape == (15, 2, 4) # XXX: we might want to transpose the result to always move combined axes to the front a = ndtest([Axis(2), Axis(3), Axis(4), Axis(5)]) mask = ones(a.axes[1, 2], dtype=bool) res = a[mask] assert res.ndim == 3 assert res.shape == (2, 12, 5) def test_getitem_igroup_on_int_axis(): a = Axis('a=1..3') arr = ndtest(a) assert arr[a.i[1]] == 1 def test_getitem_integer_string_axes(): arr = ndtest((5, 5)) a, b = arr.axes assert_array_equal(arr['0[a0, a2]'], arr[a['a0', 'a2']]) assert_array_equal(arr['0[a0:a2]'], arr[a['a0:a2']]) with pytest.raises(ValueError): arr['1[a0, a2]'] assert_array_equal(arr['0.i[0, 2]'], arr[a.i[0, 2]]) assert_array_equal(arr['0.i[0:2]'], arr[a.i[0:2]]) with pytest.raises(ValueError): arr['3.i[0, 2]'] def test_getitem_int_larray_lgroup_key(): # e axis go from 0 to 3 arr = ndtest("c=0,1; d=0,1; e=0..3") # key values go from 0 to 3 key = ndtest("a=0,1; b=0,1") # this replaces 'e' axis by 'a' and 'b' axes res = arr[X.e[key]] assert res.shape == (2, 2, 2, 2) assert res.axes.names == ['c', 'd', 'a', 'b'] def test_getitem_structured_key_with_groups(): arr = ndtest((3, 2)) expected = arr['a1':] a, b = arr.axes alt_a = Axis('a=a1..a3') # a) slice with lgroup # a.1) LGroup.axis from array.axes assert_array_equal(arr[a['a1']:a['a2']], expected) # a.2) LGroup.axis not from array.axes assert_array_equal((arr[alt_a['a1']:alt_a['a2']]), expected) # b) slice with igroup # b.1) IGroup.axis from array.axes assert_array_equal((arr[a.i[1]:a.i[2]]), expected) # b.2) IGroup.axis not from array.axes assert_array_equal((arr[alt_a.i[0]:alt_a.i[1]]), expected) # c) list with LGroup # c.1) LGroup.axis from array.axes assert_array_equal((arr[[a['a1'], a['a2']]]), expected) # c.2) LGroup.axis not from array.axes assert_array_equal((arr[[alt_a['a1'], alt_a['a2']]]), expected) # d) list with IGroup # d.1) IGroup.axis from array.axes assert_array_equal((arr[[a.i[1], a.i[2]]]), expected) # d.2) IGroup.axis not from array.axes assert_array_equal((arr[[alt_a.i[0], alt_a.i[1]]]), expected) def test_getitem_single_larray_key_guess(): # TODO: we really need another way to get test axes, e.g. testaxes(2, 3, 4) or testaxes((2, 3, 4)) a, b, c = ndtest((2, 3, 4)).axes arr = ndtest((a, b)) # >>> arr # a\b b0 b1 b2 # a0 0 1 2 # a1 3 4 5 # 1) key with extra axis key = Array(['a0', 'a1', 'a1', 'a0'], c) # replace the target axis by the extra axis expected = from_string(r""" c\b b0 b1 b2 c0 0 1 2 c1 3 4 5 c2 3 4 5 c3 0 1 2""") assert_array_equal(arr[key], expected) # 2) key with the target axis (the one being replaced) key = Array(['b1', 'b0', 'b2'], b) # axis stays the same but data should be flipped/shuffled expected = from_string(r""" a\b b0 b1 b2 a0 1 0 2 a1 4 3 5""") assert_array_equal(arr[key], expected) # 2bis) key with part of the target axis (the one being replaced) key = Array(['b2', 'b1'], 'b=b0,b1') expected = from_string(r""" a\b b0 b1 a0 2 1 a1 5 4""") assert_array_equal(arr[key], expected) # 3) key with another existing axis (not the target axis) key = Array(['a0', 'a1', 'a0'], b) expected = from_string(""" b b0 b1 b2 \t 0 4 2""") assert_array_equal(arr[key], expected) # TODO: this does not work yet but should be much easier to implement with "align" in make_np_broadcastable # 3bis) key with *part* of another existing axis (not the target axis) # key = Array(['a1', 'a0'], 'b=b0,b1') # expected = from_string(""" # b b0 b1 # \t 3 1""") # assert_array_equal(arr[key], expected) # 4) key has both the target axis and another existing axis # TODO: maybe we should make this work without requiring astype! key = from_string(r""" a\b b0 b1 b2 a0 a0 a1 a0 a1 a1 a0 a1""").astype(str) expected = from_string(r""" a\b b0 b1 b2 a0 0 4 2 a1 3 1 5""") assert_array_equal(arr[key], expected) # 5) key has both the target axis and an extra axis key = from_string(r""" a\c c0 c1 c2 c3 a0 a0 a1 a1 a0 a1 a1 a0 a0 a1""").astype(str) expected = from_string(r""" a c\b b0 b1 b2 a0 c0 0 1 2 a0 c1 3 4 5 a0 c2 3 4 5 a0 c3 0 1 2 a1 c0 3 4 5 a1 c1 0 1 2 a1 c2 0 1 2 a1 c3 3 4 5""") assert_array_equal(arr[key], expected) # 6) key has both another existing axis (not target) and an extra axis key = from_string(r""" a\c c0 c1 c2 c3 a0 b0 b1 b0 b1 a1 b2 b1 b2 b1""").astype(str) expected = from_string(r""" a\c c0 c1 c2 c3 a0 0 1 0 1 a1 5 4 5 4""") assert_array_equal(arr[key], expected) # 7) key has the target axis, another existing axis and an extra axis key = from_string(r""" a b\c c0 c1 c2 c3 a0 b0 a0 a1 a0 a1 a0 b1 a1 a0 a1 a0 a0 b2 a0 a1 a0 a1 a1 b0 a0 a1 a1 a0 a1 b1 a1 a1 a1 a1 a1 b2 a0 a1 a1 a0""").astype(str) expected = from_string(r""" a b\c c0 c1 c2 c3 a0 b0 0 3 0 3 a0 b1 4 1 4 1 a0 b2 2 5 2 5 a1 b0 0 3 3 0 a1 b1 4 4 4 4 a1 b2 2 5 5 2""") assert_array_equal(arr[key], expected) def test_getitem_multiple_larray_key_guess(): a, b, c, d, e = ndtest((2, 3, 2, 3, 2)).axes arr = ndtest((a, b)) # >>> arr # a\b b0 b1 b2 # a0 0 1 2 # a1 3 4 5 # 1) keys with each a different existing axis k1 = from_string(""" a a1 a0 \t b2 b0""") k2 = from_string(""" b b1 b2 b3 \t a0 a1 a0""") expected = from_string(r"""b\a a1 a0 b1 2 0 b2 5 3 b3 2 0""") assert_array_equal(arr[k1, k2], expected) # 2) keys with a common existing axis k1 = from_string(""" b b0 b1 b2 \t a1 a0 a1""") k2 = from_string(""" b b0 b1 b2 \t b1 b2 b0""") expected = from_string(""" b b0 b1 b2 \t 4 2 3""") assert_array_equal(arr[k1, k2], expected) # 3) keys with each a different extra axis k1 = from_string(""" c c0 c1 \t a1 a0""") k2 = from_string(""" d d0 d1 d2 \t b1 b2 b0""") expected = from_string(r"""c\d d0 d1 d2 c0 4 5 3 c1 1 2 0""") assert_array_equal(arr[k1, k2], expected) # 4) keys with a common extra axis k1 = from_string(r"""c\d d0 d1 d2 c0 a1 a0 a1 c1 a0 a1 a0""").astype(str) k2 = from_string(r"""c\e e0 e1 c0 b1 b2 c1 b0 b1""").astype(str) expected = from_string(r""" c d\e e0 e1 c0 d0 4 5 c0 d1 1 2 c0 d2 4 5 c1 d0 0 1 c1 d1 3 4 c1 d2 0 1""") assert_array_equal(arr[k1, k2], expected) def test_getitem_ndarray_key_guess(array): raw = array.data keys = ['P04', 'P01', 'P03', 'P02'] key = np.array(keys) res = array[key] assert isinstance(res, Array) assert res.axes == array.axes.replace(X.lipro, Axis(keys, 'lipro')) assert_array_equal(res, raw[:, :, :, [3, 0, 2, 1]]) def test_getitem_int_larray_key_guess(): a = Axis([0, 1], 'a') b = Axis([2, 3], 'b') c = Axis([4, 5], 'c') d = Axis([6, 7], 'd') e = Axis([8, 9, 10, 11], 'e') arr = ndtest([c, d, e]) key = Array([[8, 9], [10, 11]], [a, b]) assert arr[key].axes == [c, d, a, b] def test_getitem_int_ndarray_key_guess(): c = Axis([4, 5], 'c') d = Axis([6, 7], 'd') e = Axis([8, 9, 10, 11], 'e') arr = ndtest([c, d, e]) # ND keys do not work yet # key = nparray([[8, 11], [10, 9]]) key = np.array([8, 11, 10]) res = arr[key] assert res.axes == [c, d, Axis([8, 11, 10], 'e')] def test_getitem_axis_object(): arr = ndtest((2, 3)) a, b = arr.axes assert_array_equal(arr[a], arr) assert_array_equal(arr[b], arr) b2 = Axis('b=b0,b2') assert_array_equal(arr[b2], from_string("""a\\b b0 b2 a0 0 2 a1 3 5""")) def test_getitem_empty_tuple(): # an empty tuple should return a view on the original array arr = ndtest((2, 3)) res = arr[()] assert_array_equal(res, arr) assert res is not arr z = Array(0) res = z[()] assert res == z assert res is not z def test_positional_indexer_getitem(array): raw = array.data for key in [0, (0, 5, 1, 2), (slice(None), 5, 1), (0, 5), [1, 0], ([1, 0], 5)]: assert_array_equal(array.i[key], raw[key]) assert_array_equal(array.i[[1, 0], [5, 4]], raw[np.ix_([1, 0], [5, 4])]) with pytest.raises(IndexError): array.i[0, 0, 0, 0, 0] def test_positional_indexer_setitem(array): for key in [0, (0, 2, 1, 2), (slice(None), 2, 1), (0, 2), [1, 0], ([1, 0], 2)]: arr = array.copy() raw = array.data.copy() arr.i[key] = 42 raw[key] = 42 assert_array_equal(arr, raw) raw = array.data array.i[[1, 0], [5, 4]] = 42 raw[np.ix_([1, 0], [5, 4])] = 42 assert_array_equal(array, raw) def test_points_indexer_getitem(): arr = ndtest((2, 3, 3)) raw = arr.data keys = [ ('a0', 0), (('a0', 'c2'), (0, slice(None), 2)), (('a0', 'b1', 'c2'), (0, 1, 2)), # key in the "correct" order ((['a1', 'a0', 'a1', 'a0'], 'b1', ['c1', 'c0', 'c1', 'c0']), ([1, 0, 1, 0], 1, [1, 0, 1, 0])), # key in the "wrong" order ((['a1', 'a0', 'a1', 'a0'], ['c1', 'c0', 'c1', 'c0'], 'b1'), ([1, 0, 1, 0], 1, [1, 0, 1, 0])), # advanced key with a missing dimension ((['a1', 'a0', 'a1', 'a0'], ['c1', 'c0', 'c1', 'c0']), ([1, 0, 1, 0], slice(None), [1, 0, 1, 0])), ] for label_key, index_key in keys: assert_array_equal(arr.points[label_key], raw[index_key]) # XXX: we might want to raise KeyError or IndexError instead? with pytest.raises(ValueError): arr.points['a0', 'b1', 'c2', 'd0'] def test_points_indexer_setitem(): keys = [ ('a0', 0), (('a0', 'c2'), (0, slice(None), 2)), (('a0', 'b1', 'c2'), (0, 1, 2)), # key in the "correct" order ((['a1', 'a0', 'a1', 'a0'], 'b1', ['c1', 'c0', 'c1', 'c0']), ([1, 0, 1, 0], 1, [1, 0, 1, 0])), # key in the "wrong" order ((['a1', 'a0', 'a1', 'a0'], ['c1', 'c0', 'c1', 'c0'], 'b1'), ([1, 0, 1, 0], 1, [1, 0, 1, 0])), # advanced key with a missing dimension ((['a1', 'a0', 'a1', 'a0'], ['c1', 'c0', 'c1', 'c0']), ([1, 0, 1, 0], slice(None), [1, 0, 1, 0])), ] for label_key, index_key in keys: arr = ndtest((2, 3, 3)) raw = arr.data.copy() arr.points[label_key] = 42 raw[index_key] = 42 assert_array_equal(arr, raw) arr = ndtest(2) # XXX: we might want to raise KeyError or IndexError instead? with pytest.raises(ValueError): arr.points['a0', 'b1'] = 42 # test when broadcasting is involved arr = ndtest((2, 3, 4)) raw = arr.data.copy() raw_value = raw[:, 0, 0].reshape(2, 1) raw[:, [0, 1, 2], [0, 1, 2]] = raw_value arr.points['b0,b1,b2', 'c0,c1,c2'] = arr['b0', 'c0'] assert_array_equal(arr, raw) def test_setitem_larray(array, small_array): """ tests Array.__setitem__(key, value) where value is an Array """ age, geo, sex, lipro = array.axes # 1) using a LGroup key ages1_5_9 = age[[1, 5, 9]] # a) value has exactly the same shape as the target slice arr = array.copy() raw = array.data.copy() arr[ages1_5_9] = arr[ages1_5_9] + 25.0 raw[[1, 5, 9]] = raw[[1, 5, 9]] + 25.0 assert_array_equal(arr, raw) # b) value has exactly the same shape but LGroup at a "wrong" positions arr = array.copy() arr[geo[:], ages1_5_9] = arr[ages1_5_9] + 25.0 # same raw as previous test assert_array_equal(arr, raw) # c) value has an extra length-1 axis arr = array.copy() raw = array.data.copy() raw_value = raw[[1, 5, 9], np.newaxis] + 26.0 fake_axis = Axis(['label'], 'fake') age_axis = arr[ages1_5_9].axes.age value = Array(raw_value, axes=(age_axis, fake_axis, geo, sex, lipro)) arr[ages1_5_9] = value raw[[1, 5, 9]] = raw[[1, 5, 9]] + 26.0 assert_array_equal(arr, raw) # d) value has the same axes than target but one has length 1 # arr = array.copy() # raw = array.data.copy() # raw[[1, 5, 9]] = np.sum(raw[[1, 5, 9]], axis=1, keepdims=True) # arr[ages1_5_9] = arr[ages1_5_9].sum(geo=(geo.all(),)) # assert_array_equal(arr, raw) # e) value has a missing dimension arr = array.copy() raw = array.data.copy() arr[ages1_5_9] = arr[ages1_5_9].sum(geo) raw[[1, 5, 9]] = np.sum(raw[[1, 5, 9]], axis=1, keepdims=True) assert_array_equal(arr, raw) # 2) using a LGroup and scalar key (triggers advanced indexing/cross) # a) value has exactly the same shape as the target slice arr = array.copy() raw = array.data.copy() # using 1, 5, 8 and not 9 so that the list is not collapsed to slice value = arr[age[1, 5, 8], sex['M']] + 25.0 arr[age[1, 5, 8], sex['M']] = value raw[[1, 5, 8], :, 0] = raw[[1, 5, 8], :, 0] + 25.0 assert_array_equal(arr, raw) # 3) using a string key arr = array.copy() raw = array.data.copy() arr['1, 5, 9'] = arr['1, 5, 9'] + 27.0 raw[[1, 5, 9]] = raw[[1, 5, 9]] + 27.0 assert_array_equal(arr, raw) # 4) using ellipsis keys # only Ellipsis arr = array.copy() arr[...] = 0 assert_array_equal(arr, np.zeros_like(raw)) # Ellipsis and LGroup arr = array.copy() raw = array.data.copy() arr[..., lipro['P01,P05,P09']] = 0 raw[..., [0, 4, 8]] = 0 assert_array_equal(arr, raw) # 5) using a single slice(None) key arr = array.copy() arr[:] = 0 assert_array_equal(arr, np.zeros_like(raw)) # 6) incompatible axes arr = small_array.copy() la2 = small_array.copy() with pytest.raises(ValueError, match="Value {!s} axis is not present in target subset {!s}. " "A value can only have the same axes or fewer axes than the subset " "being targeted".format(la2.axes - arr['P01'].axes, arr['P01'].axes)): arr['P01'] = la2 la2 = arr.rename('sex', 'gender') with pytest.raises(ValueError, match="Value {!s} axis is not present in target subset {!s}. " "A value can only have the same axes or fewer axes than the subset " "being targeted".format(la2['P01'].axes - arr['P01'].axes, arr['P01'].axes)): arr['P01'] = la2['P01'] # 7) incompatible labels sex2 = Axis('sex=F,M') la2 = Array(small_array.data, axes=(sex2, lipro)) with pytest.raises(ValueError, match="incompatible axes:"): arr[:] = la2 # key has multiple Arrays (this is used within .points indexing) # ============================================================== # first some setup a = Axis(['a0', 'a1'], None) b = Axis(['b0', 'b1', 'b2'], None) expected = ndtest((a, b)) value = expected.combine_axes() # a) with anonymous axes combined_axis = value.axes[0] a_key = Array([0, 0, 0, 1, 1, 1], combined_axis) b_key = Array([0, 1, 2, 0, 1, 2], combined_axis) key = (a.i[a_key], b.i[b_key]) array = empty((a, b)) array[key] = value assert_array_equal(array, expected) # b) with wildcard combined_axis wild_combined_axis = combined_axis.ignore_labels() wild_a_key = Array([0, 0, 0, 1, 1, 1], wild_combined_axis) wild_b_key = Array([0, 1, 2, 0, 1, 2], wild_combined_axis) wild_key = (a.i[wild_a_key], b.i[wild_b_key]) array = empty((a, b)) array[wild_key] = value assert_array_equal(array, expected) # c) with a wildcard value wild_value = value.ignore_labels() array = empty((a, b)) array[key] = wild_value assert_array_equal(array, expected) # d) with a wildcard combined axis and wildcard value array = empty((a, b)) array[wild_key] = wild_value assert_array_equal(array, expected) def test_setitem_ndarray(array): """ tests Array.__setitem__(key, value) where value is a raw ndarray. In that case, value.shape is more restricted as we rely on numpy broadcasting. """ # a) value has exactly the same shape as the target slice arr = array.copy() raw = array.data.copy() value = raw[[1, 5, 9]] + 25.0 arr[[1, 5, 9]] = value raw[[1, 5, 9]] = value assert_array_equal(arr, raw) # b) value has the same axes than target but one has length 1 arr = array.copy() raw = array.data.copy() value = np.sum(raw[[1, 5, 9]], axis=1, keepdims=True) arr[[1, 5, 9]] = value raw[[1, 5, 9]] = value assert_array_equal(arr, raw) def test_setitem_scalar(array): """ tests Array.__setitem__(key, value) where value is a scalar """ # a) list key (one dimension) arr = array.copy() raw = array.data.copy() arr[[1, 5, 9]] = 42 raw[[1, 5, 9]] = 42 assert_array_equal(arr, raw) # b) full scalar key (ie set one cell) arr = array.copy() raw = array.data.copy() arr[0, 'P02', 'A12', 'M'] = 42 raw[0, 1, 0, 1] = 42 assert_array_equal(arr, raw) def test_setitem_bool_array_key(array): # XXX: this test is awfully slow (more than 1s) age, geo, sex, lipro = array.axes # Array key # a1) same shape, same order arr = array.copy() raw = array.data.copy() arr[arr < 5] = 0 raw[raw < 5] = 0 assert_array_equal(arr, raw) # a2) same shape, different order arr = array.copy() raw = array.data.copy() key = (arr < 5).T arr[key] = 0 raw[raw < 5] = 0 assert_array_equal(arr, raw) # b) numpy-broadcastable shape # arr = array.copy() # raw = array.data.copy() # key = arr[sex['F,']] < 5 # self.assertEqual(key.ndim, 4) # arr[key] = 0 # raw[raw[:, :, [1]] < 5] = 0 # assert_array_equal(arr, raw) # c) Array-broadcastable shape (missing axis) arr = array.copy() raw = array.data.copy() key = arr[sex['M']] < 5 assert key.ndim == 3 arr[key] = 0 raw_key = raw[:, :, 0, :] < 5 raw_d1, raw_d2, raw_d4 = raw_key.nonzero() raw[raw_d1, raw_d2, :, raw_d4] = 0 assert_array_equal(arr, raw) # ndarray key arr = array.copy() raw = array.data.copy() arr[raw < 5] = 0 raw[raw < 5] = 0 assert_array_equal(arr, raw) # d) Array with extra axes arr = array.copy() key = (arr < 5).expand([Axis(2, 'extra')]) assert key.ndim == 5 # TODO: make this work with pytest.raises(ValueError): arr[key] = 0 def test_set(array): age, geo, sex, lipro = array.axes # 1) using a LGroup key ages1_5_9 = age[[1, 5, 9]] # a) value has exactly the same shape as the target slice arr = array.copy() raw = array.data.copy() arr.set(arr[ages1_5_9] + 25.0, age=ages1_5_9) raw[[1, 5, 9]] = raw[[1, 5, 9]] + 25.0 assert_array_equal(arr, raw) # b) same size but a different shape (extra length-1 axis) arr = array.copy() raw = array.data.copy() raw_value = raw[[1, 5, 9], np.newaxis] + 26.0 fake_axis = Axis(['label'], 'fake') age_axis = arr[ages1_5_9].axes.age value = Array(raw_value, axes=(age_axis, fake_axis, geo, sex, lipro)) arr.set(value, age=ages1_5_9) raw[[1, 5, 9]] = raw[[1, 5, 9]] + 26.0 assert_array_equal(arr, raw) # dimension of length 1 # arr = array.copy() # raw = array.data.copy() # raw[[1, 5, 9]] = np.sum(raw[[1, 5, 9]], axis=1, keepdims=True) # arr.set(arr[ages1_5_9].sum(geo=(geo.all(),)), age=ages1_5_9) # assert_array_equal(arr, raw) # c) missing dimension arr = array.copy() raw = array.data.copy() arr.set(arr[ages1_5_9].sum(geo), age=ages1_5_9) raw[[1, 5, 9]] = np.sum(raw[[1, 5, 9]], axis=1, keepdims=True) assert_array_equal(arr, raw) # 2) using a raw key arr = array.copy() raw = array.data.copy() arr.set(arr[[1, 5, 9]] + 27.0, age=[1, 5, 9]) raw[[1, 5, 9]] = raw[[1, 5, 9]] + 27.0 assert_array_equal(arr, raw) def test_filter(array): age, geo, sex, lipro = array.axes ages1_5_9 = age[(1, 5, 9)] ages11 = age[11] # with LGroup assert array.filter(age=ages1_5_9).shape == (3, 44, 2, 15) # FIXME: this should raise a comprehensible error! # self.assertEqual(array.filter(age=[ages1_5_9]).shape, (3, 44, 2, 15)) # LGroup with 1 value => collapse assert array.filter(age=ages11).shape == (44, 2, 15) # LGroup with a list of 1 value => do not collapse assert array.filter(age=age[[11]]).shape == (1, 44, 2, 15) # LGroup with a list of 1 value defined as a string => do not collapse assert array.filter(lipro=lipro['P01,']).shape == (116, 44, 2, 1) # LGroup with 1 value # XXX: this does not work. Do we want to make this work? # filtered = array.filter(age=(ages11,)) # self.assertEqual(filtered.shape, (1, 44, 2, 15)) # list assert array.filter(age=[1, 5, 9]).shape == (3, 44, 2, 15) # string assert array.filter(lipro='P01,P02').shape == (116, 44, 2, 2) # multiple axes at once assert array.filter(age=[1, 5, 9], lipro='P01,P02').shape == (3, 44, 2, 2) # multiple axes one after the other assert array.filter(age=[1, 5, 9]).filter(lipro='P01,P02').shape == (3, 44, 2, 2) # a single value for one dimension => collapse the dimension assert array.filter(sex='M').shape == (116, 44, 15) # but a list with a single value for one dimension => do not collapse assert array.filter(sex=['M']).shape == (116, 44, 1, 15) assert array.filter(sex='M,').shape == (116, 44, 1, 15) # with duplicate keys # XXX: do we want to support this? I don't see any value in that but I might be short-sighted. # filtered = array.filter(lipro='P01,P02,P01') # XXX: we could abuse python to allow naming groups via Axis.__getitem__ # (but I doubt it is a good idea). # child = age[':17', 'child'] # slices # ------ # LGroup slice assert array.filter(age=age[:17]).shape == (18, 44, 2, 15) # string slice assert array.filter(lipro=':P03').shape == (116, 44, 2, 3) # raw slice assert array.filter(age=slice(17)).shape == (18, 44, 2, 15) # filter chain with a slice assert array.filter(age=slice(17)).filter(geo='A12,A13').shape == (18, 2, 2, 15) def test_filter_multiple_axes(array): # multiple values in each group assert array.filter(age=[1, 5, 9], lipro='P01,P02').shape == (3, 44, 2, 2) # with a group of one value assert array.filter(age=[1, 5, 9], sex='M,').shape == (3, 44, 1, 15) # with a discarded axis (there is a scalar in the key) assert array.filter(age=[1, 5, 9], sex='M').shape == (3, 44, 15) # with a discarded axis that is not adjacent to the ix_array axis ie with a sliced axis between the scalar axis # and the ix_array axis since our array has a axes: age, geo, sex, lipro, any of the following should be tested: # age+sex / age+lipro / geo+lipro # additionally, if the ix_array axis was first (ie ix_array on age), it worked even before the issue was fixed, # since the "indexing" subspace is tacked-on to the beginning (as the first dimension) assert array.filter(age=57, sex='M,F').shape == (44, 2, 15) assert array.filter(age=57, lipro='P01,P05').shape == (44, 2, 2) assert array.filter(geo='A57', lipro='P01,P05').shape == (116, 2, 2) def test_nonzero(): arr = ndtest((2, 3)) a, b = arr.axes cond = arr > 1 assert_array_equal(cond, from_string(r"""a\b b0 b1 b2 a0 False False True a1 True True True""")) a_group, b_group = cond.nonzero() assert isinstance(a_group, IGroup) assert a_group.axis is a assert a_group.key.equals(from_string("""a_b a0_b2 a1_b0 a1_b1 a1_b2 \t 0 1 1 1""")) assert isinstance(b_group, IGroup) assert b_group.axis is b assert b_group.key.equals(from_string("""a_b a0_b2 a1_b0 a1_b1 a1_b2 \t 2 0 1 2""")) expected = from_string("""a_b a0_b2 a1_b0 a1_b1 a1_b2 \t 2 3 4 5""") assert_array_equal(arr[a_group, b_group], expected) assert_array_equal(arr.points[a_group, b_group], expected) assert_array_equal(arr[cond], expected) def test_contains(): arr = ndtest('a=0..2;b=b0..b2;c=2..4') # string label assert 'b1' in arr assert 'b4' not in arr # int label assert 1 in arr assert 5 not in arr # duplicate label assert 2 in arr # slice assert not slice('b0', 'b2') in arr def test_sum_full_axes(array): age, geo, sex, lipro = array.axes # everything assert array.sum() == np.asarray(array).sum() # using axes numbers assert array.sum(axis=2).shape == (116, 44, 15) assert array.sum(axis=(0, 2)).shape == (44, 15) # using Axis objects assert array.sum(age).shape == (44, 2, 15) assert array.sum(age, sex).shape == (44, 15) # using axes names assert array.sum('age', 'sex').shape == (44, 15) # chained sum assert array.sum(age, sex).sum(geo).shape == (15,) assert array.sum(age, sex).sum(lipro, geo) == array.sum() # getitem on aggregated aggregated = array.sum(age, sex) assert aggregated[vla_str].shape == (22, 15) # filter on aggregated assert aggregated.filter(geo=vla_str).shape == (22, 15) def test_sum_full_axes_with_nan(array): array['M', 'P02', 'A12', 0] = nan raw = array.data # everything assert array.sum() == np.nansum(raw) assert isnan(array.sum(skipna=False)) # using Axis objects assert_array_nan_equal(array.sum(X.age), np.nansum(raw, 0)) assert_array_nan_equal(array.sum(X.age, skipna=False), raw.sum(0)) assert_array_nan_equal(array.sum(X.age, X.sex), np.nansum(raw, (0, 2))) assert_array_nan_equal(array.sum(X.age, X.sex, skipna=False), raw.sum((0, 2))) def test_sum_full_axes_keep_axes(array): agg = array.sum(keepaxes=True) assert agg.shape == (1, 1, 1, 1) for axis in agg.axes: assert axis.labels == ['sum'] agg = array.sum(keepaxes='total') assert agg.shape == (1, 1, 1, 1) for axis in agg.axes: assert axis.labels == ['total'] def test_mean_full_axes(array): raw = array.data assert array.mean() == np.mean(raw) assert_array_nan_equal(array.mean(X.age), np.mean(raw, 0)) assert_array_nan_equal(array.mean(X.age, X.sex), np.mean(raw, (0, 2))) def test_mean_groups(array): # using int type to test that we get a float in return arr = array.astype(int) raw = array.data res = arr.mean(X.geo['A11', 'A13', 'A24', 'A31']) assert_array_nan_equal(res, np.mean(raw[:, [0, 2, 4, 5]], 1)) def test_median_full_axes(array): raw = array.data assert array.median() == np.median(raw) assert_array_nan_equal(array.median(X.age), np.median(raw, 0)) assert_array_nan_equal(array.median(X.age, X.sex), np.median(raw, (0, 2))) def test_median_groups(array): raw = array.data res = array.median(X.geo['A11', 'A13', 'A24']) assert res.shape == (116, 2, 15) assert_array_nan_equal(res, np.median(raw[:, [0, 2, 4]], 1)) def test_percentile_full_axes(): arr = ndtest((2, 3, 4)) raw = arr.data assert arr.percentile(10) == np.percentile(raw, 10) assert_array_nan_equal(arr.percentile(10, X.a), np.percentile(raw, 10, 0)) assert_array_nan_equal(arr.percentile(10, X.c, X.a), np.percentile(raw, 10, (2, 0))) def test_percentile_groups(): arr = ndtest((2, 5, 3)) raw = arr.data res = arr.percentile(10, X.b['b0', 'b2', 'b4']) assert_array_nan_equal(res, np.percentile(raw[:, [0, 2, 4]], 10, 1)) def test_cumsum(array): raw = array.data # using Axis objects assert_array_equal(array.cumsum(X.age), raw.cumsum(0)) assert_array_equal(array.cumsum(X.lipro), raw.cumsum(3)) # using axes numbers assert_array_equal(array.cumsum(1), raw.cumsum(1)) # using axes names assert_array_equal(array.cumsum('sex'), raw.cumsum(2)) def test_group_agg_kwargs(array): age, geo, sex, lipro = array.axes vla, wal, bru = vla_str, wal_str, bru_str # a) group aggregate on a fresh array # a.1) one group => collapse dimension assert array.sum(sex='M').shape == (116, 44, 15) assert array.sum(sex='M,F').shape == (116, 44, 15) assert array.sum(sex=sex['M']).shape == (116, 44, 15) assert array.sum(geo='A11,A21,A25').shape == (116, 2, 15) assert array.sum(geo=['A11', 'A21', 'A25']).shape == (116, 2, 15) assert array.sum(geo=geo['A11,A21,A25']).shape == (116, 2, 15) assert array.sum(geo=':').shape == (116, 2, 15) assert array.sum(geo=geo[:]).shape == (116, 2, 15) assert array.sum(geo=geo[':']).shape == (116, 2, 15) # Include everything between two labels. Since A11 is the first label # and A21 is the last one, this should be equivalent to the previous # tests. assert array.sum(geo='A11:A21').shape == (116, 2, 15) assert_array_equal(array.sum(geo='A11:A21'), array.sum(geo=':')) assert_array_equal(array.sum(geo=geo['A11:A21']), array.sum(geo=':')) # a.2) a tuple of one group => do not collapse dimension assert array.sum(geo=(geo[:],)).shape == (116, 1, 2, 15) # a.3) several groups # string groups assert array.sum(geo=(vla, wal, bru)).shape == (116, 3, 2, 15) # with one label in several groups assert array.sum(sex=(['M'], ['M', 'F'])).shape == (116, 44, 2, 15) assert array.sum(sex=('M', 'M,F')).shape == (116, 44, 2, 15) assert array.sum(sex='M;M,F').shape == (116, 44, 2, 15) res = array.sum(geo=(vla, wal, bru, belgium)) assert res.shape == (116, 4, 2, 15) # a.4) several dimensions at the same time res = array.sum(lipro='P01,P03;P02,P05;:', geo=(vla, wal, bru, belgium)) assert res.shape == (116, 4, 2, 3) # b) both axis aggregate and group aggregate at the same time # Note that you must list "full axes" aggregates first (Python does not allow non-kwargs after kwargs. res = array.sum(age, sex, geo=(vla, wal, bru, belgium)) assert res.shape == (4, 15) # c) chain group aggregate after axis aggregate res = array.sum(age, sex).sum(geo=(vla, wal, bru, belgium)) assert res.shape == (4, 15) def test_group_agg_guess_axis(array): raw = array.data.copy() age, geo, sex, lipro = array.axes vla, wal, bru = vla_str, wal_str, bru_str # a) group aggregate on a fresh array # a.1) one group => collapse dimension # not sure I should support groups with a single item in an aggregate assert array.sum('M').shape == (116, 44, 15) assert array.sum('M,').shape == (116, 44, 15) assert array.sum('M,F').shape == (116, 44, 15) assert array.sum('A11,A21,A25').shape == (116, 2, 15) # with a name assert array.sum('A11,A21,A25 >> g1').shape == (116, 2, 15) assert array.sum(['A11', 'A21', 'A25']).shape == (116, 2, 15) # Include everything between two labels. Since A11 is the first label # and A21 is the last one, this should be equivalent to taking the # full axis. assert array.sum('A11:A21').shape == (116, 2, 15) assert_array_equal(array.sum('A11:A21'), array.sum(geo=':')) assert_array_equal(array.sum('A11:A21'), array.sum(geo)) # a.2) a tuple of one group => do not collapse dimension assert array.sum((geo[:],)).shape == (116, 1, 2, 15) # a.3) several groups # string groups assert array.sum((vla, wal, bru)).shape == (116, 3, 2, 15) # XXX: do we also want to support this? I do not really like it because it gets tricky when we have some other # axes into play. For now the error message is unclear because it first aggregates on "vla", then tries to # aggregate on "wal", but there is no "geo" dimension anymore. # self.assertEqual(array.sum(vla, wal, bru).shape, (116, 3, 2, 15)) # with one label in several groups assert array.sum((['M'], ['M', 'F'])).shape == (116, 44, 2, 15) assert array.sum(('M', 'M,F')).shape == (116, 44, 2, 15) assert array.sum('M;M,F').shape == (116, 44, 2, 15) # with group names res = array.sum('M >> men;M,F >> all') assert res.shape == (116, 44, 2, 15) assert 'sex' in res.axes men = sex['M'].named('men') all_ = sex['M,F'].named('all') assert_array_equal(res.axes.sex.labels, ['men', 'all']) assert_array_equal(res['men'], raw[:, :, 0, :]) assert_array_equal(res['all'], raw.sum(2)) res = array.sum(('M >> men', 'M,F >> all')) assert res.shape == (116, 44, 2, 15) assert 'sex' in res.axes assert_array_equal(res.axes.sex.labels, ['men', 'all']) assert_array_equal(res['men'], raw[:, :, 0, :]) assert_array_equal(res['all'], raw.sum(2)) res = array.sum((vla, wal, bru, belgium)) assert res.shape == (116, 4, 2, 15) # a.4) several dimensions at the same time res = array.sum('P01,P03;P02,P05;P01:', (vla, wal, bru, belgium)) assert res.shape == (116, 4, 2, 3) # b) both axis aggregate and group aggregate at the same time res = array.sum(age, sex, (vla, wal, bru, belgium)) assert res.shape == (4, 15) # c) chain group aggregate after axis aggregate res = array.sum(age, sex).sum((vla, wal, bru, belgium)) assert res.shape == (4, 15) def test_group_agg_label_group(array): age, geo, sex, lipro = array.axes vla, wal, bru = geo[vla_str], geo[wal_str], geo[bru_str] lg_belgium = geo[belgium] # a) group aggregate on a fresh array # a.1) one group => collapse dimension # not sure I should support groups with a single item in an aggregate men = sex.i[[0]] assert array.sum(men).shape == (116, 44, 15) assert array.sum(sex['M']).shape == (116, 44, 15) assert array.sum(sex['M,']).shape == (116, 44, 15) assert array.sum(sex['M,F']).shape == (116, 44, 15) assert array.sum(geo['A11,A21,A25']).shape == (116, 2, 15) assert array.sum(geo[['A11', 'A21', 'A25']]).shape == (116, 2, 15) assert array.sum(geo['A11', 'A21', 'A25']).shape == (116, 2, 15) assert array.sum(geo['A11,A21,A25']).shape == (116, 2, 15) assert array.sum(geo[:]).shape == (116, 2, 15) assert array.sum(geo[':']).shape == (116, 2, 15) assert array.sum(geo[:]).shape == (116, 2, 15) # Include everything between two labels. Since A11 is the first label and A21 is the last one, this should be # equivalent to the previous tests. assert array.sum(geo['A11:A21']).shape == (116, 2, 15) assert_array_equal(array.sum(geo['A11:A21']), array.sum(geo)) assert_array_equal(array.sum(geo['A11':'A21']), array.sum(geo)) # a.2) a tuple of one group => do not collapse dimension assert array.sum((geo[:],)).shape == (116, 1, 2, 15) # a.3) several groups # string groups assert array.sum((vla, wal, bru)).shape == (116, 3, 2, 15) # XXX: do we also want to support this? I do not really like it because it gets tricky when we have some other # axes into play. For now the error message is unclear because it first aggregates on "vla", then tries to # aggregate on "wal", but there is no "geo" dimension anymore. # self.assertEqual(array.sum(vla, wal, bru).shape, (116, 3, 2, 15)) # with one label in several groups assert array.sum((sex['M'], sex[['M', 'F']])).shape == (116, 44, 2, 15) assert array.sum((sex['M'], sex['M', 'F'])).shape == (116, 44, 2, 15) assert array.sum((sex['M'], sex['M,F'])).shape == (116, 44, 2, 15) # XXX: do we want to support this? # self.assertEqual(array.sum(sex['M;H,F']).shape, (116, 44, 2, 15)) res = array.sum((vla, wal, bru, lg_belgium)) assert res.shape == (116, 4, 2, 15) # a.4) several dimensions at the same time # self.assertEqual(array.sum(lipro['P01,P03;P02,P05;P01:'], (vla, wal, bru, lg_belgium)).shape, # (116, 4, 2, 3)) res = array.sum((lipro['P01,P03'], lipro['P02,P05'], lipro[:]), (vla, wal, bru, lg_belgium)) assert res.shape == (116, 4, 2, 3) # b) both axis aggregate and group aggregate at the same time res = array.sum(age, sex, (vla, wal, bru, lg_belgium)) assert res.shape == (4, 15) # c) chain group aggregate after axis aggregate res = array.sum(age, sex).sum((vla, wal, bru, lg_belgium)) assert res.shape == (4, 15) def test_group_agg_label_group_no_axis(array): age, geo, sex, lipro = array.axes vla, wal, bru = LGroup(vla_str), LGroup(wal_str), LGroup(bru_str) lg_belgium = LGroup(belgium) # a) group aggregate on a fresh array # a.1) one group => collapse dimension # not sure I should support groups with a single item in an aggregate assert array.sum(LGroup('M')).shape == (116, 44, 15) assert array.sum(LGroup('M,')).shape == (116, 44, 15) assert array.sum(LGroup('M,F')).shape == (116, 44, 15) assert array.sum(LGroup('A11,A21,A25')).shape == (116, 2, 15) assert array.sum(LGroup(['A11', 'A21', 'A25'])).shape == (116, 2, 15) # Include everything between two labels. Since A11 is the first label # and A21 is the last one, this should be equivalent to the full axis. assert array.sum(LGroup('A11:A21')).shape == (116, 2, 15) assert_array_equal(array.sum(LGroup('A11:A21')), array.sum(geo)) assert_array_equal(array.sum(LGroup(slice('A11', 'A21'))), array.sum(geo)) # a.3) several groups # string groups assert array.sum((vla, wal, bru)).shape == (116, 3, 2, 15) # XXX: do we also want to support this? I do not really like it because it gets tricky when we have some other # axes into play. For now the error message is unclear because it first aggregates on "vla", then tries to # aggregate on "wal", but there is no "geo" dimension anymore. # self.assertEqual(array.sum(vla, wal, bru).shape, (116, 3, 2, 15)) # with one label in several groups assert array.sum((LGroup('M'), LGroup(['M', 'F']))).shape == (116, 44, 2, 15) assert array.sum((LGroup('M'), LGroup('M,F'))).shape == (116, 44, 2, 15) # XXX: do we want to support this? # self.assertEqual(array.sum(sex['M;M,F']).shape, (116, 44, 2, 15)) res = array.sum((vla, wal, bru, lg_belgium)) assert res.shape == (116, 4, 2, 15) # a.4) several dimensions at the same time # self.assertEqual(array.sum(lipro['P01,P03;P02,P05;P01:'], (vla, wal, bru, lg_belgium)).shape, # (116, 4, 2, 3)) res = array.sum((LGroup('P01,P03'), LGroup('P02,P05')), (vla, wal, bru, lg_belgium)) assert res.shape == (116, 4, 2, 2) # b) both axis aggregate and group aggregate at the same time res = array.sum(age, sex, (vla, wal, bru, lg_belgium)) assert res.shape == (4, 15) # c) chain group aggregate after axis aggregate res = array.sum(age, sex).sum((vla, wal, bru, lg_belgium)) assert res.shape == (4, 15) def test_group_agg_axis_ref_label_group(array): age, geo, sex, lipro = X.age, X.geo, X.sex, X.lipro vla, wal, bru = geo[vla_str], geo[wal_str], geo[bru_str] lg_belgium = geo[belgium] # a) group aggregate on a fresh array # a.1) one group => collapse dimension # not sure I should support groups with a single item in an aggregate men = sex.i[[0]] assert array.sum(men).shape == (116, 44, 15) assert array.sum(sex['M']).shape == (116, 44, 15) assert array.sum(sex['M,']).shape == (116, 44, 15) assert array.sum(sex['M,F']).shape == (116, 44, 15) assert array.sum(geo['A11,A21,A25']).shape == (116, 2, 15) assert array.sum(geo[['A11', 'A21', 'A25']]).shape == (116, 2, 15) assert array.sum(geo['A11', 'A21', 'A25']).shape == (116, 2, 15) assert array.sum(geo['A11,A21,A25']).shape == (116, 2, 15) assert array.sum(geo[:]).shape == (116, 2, 15) assert array.sum(geo[':']).shape == (116, 2, 15) assert array.sum(geo[:]).shape == (116, 2, 15) # Include everything between two labels. Since A11 is the first label # and A21 is the last one, this should be equivalent to the previous # tests. assert array.sum(geo['A11:A21']).shape == (116, 2, 15) assert_array_equal(array.sum(geo['A11:A21']), array.sum(geo)) assert_array_equal(array.sum(geo['A11':'A21']), array.sum(geo)) # a.2) a tuple of one group => do not collapse dimension assert array.sum((geo[:],)).shape == (116, 1, 2, 15) # a.3) several groups # string groups assert array.sum((vla, wal, bru)).shape == (116, 3, 2, 15) # XXX: do we also want to support this? I do not really like it because # it gets tricky when we have some other axes into play. For now the # error message is unclear because it first aggregates on "vla", then # tries to aggregate on "wal", but there is no "geo" dimension anymore. # self.assertEqual(array.sum(vla, wal, bru).shape, (116, 3, 2, 15)) # with one label in several groups assert array.sum((sex['M'], sex[['M', 'F']])).shape == (116, 44, 2, 15) assert array.sum((sex['M'], sex['M', 'F'])).shape == (116, 44, 2, 15) assert array.sum((sex['M'], sex['M,F'])).shape == (116, 44, 2, 15) # XXX: do we want to support this? # self.assertEqual(array.sum(sex['M;M,F']).shape, (116, 44, 2, 15)) res = array.sum((vla, wal, bru, lg_belgium)) assert res.shape == (116, 4, 2, 15) # a.4) several dimensions at the same time # self.assertEqual(array.sum(lipro['P01,P03;P02,P05;P01:'], # (vla, wal, bru, belgium)).shape, # (116, 4, 2, 3)) res = array.sum((lipro['P01,P03'], lipro['P02,P05'], lipro[:]), (vla, wal, bru, lg_belgium)) assert res.shape == (116, 4, 2, 3) # b) both axis aggregate and group aggregate at the same time res = array.sum(age, sex, (vla, wal, bru, lg_belgium)) assert res.shape == (4, 15) # c) chain group aggregate after axis aggregate res = array.sum(age, sex).sum((vla, wal, bru, lg_belgium)) assert res.shape == (4, 15) def test_group_agg_one_axis(): a = Axis(range(3), 'a') la = ndtest(a) raw = np.asarray(la) assert_array_equal(la.sum(a[0, 2]), raw[[0, 2]].sum()) def test_group_agg_anonymous_axis(): la = ndtest([Axis(2), Axis(3)]) a1, a2 = la.axes raw = np.asarray(la) assert_array_equal(la.sum(a2[0, 2]), raw[:, [0, 2]].sum(1)) def test_group_agg_zero_padded_label(): arr = ndtest("a=01,02,03,10,11; b=b0..b2") expected = Array([36, 30, 39], "a=01_03,10,11") assert_array_equal(arr.sum("01,02,03 >> 01_03; 10; 11", "b"), expected) def test_group_agg_on_int_array(): # issue 193 arr = ndtest('year=2014..2018') group = arr.year[:2016] assert arr.mean(group) == 1.0 assert arr.median(group) == 1.0 assert arr.percentile(90, group) == 1.8 assert arr.std(group) == 1.0 assert arr.var(group) == 1.0 def test_group_agg_on_bool_array(): # issue 194 a = ndtest((2, 3)) b = a > 1 expected = from_string("""a,a0,a1 , 1, 2""", sep=',') assert_array_equal(b.sum('b1:'), expected) # TODO: fix this (and add other tests for references (X.) to anonymous axes # def test_group_agg_anonymous_axis_ref(): # la = ndtest([Axis(2), Axis(3)]) # raw = np.asarray(la) # # this does not work because x[1] refers to an axis with name 1, # # which does not exist. We might want to change this. # assert_array_equal(la.sum(x[1][0, 2]), raw[:, [0, 2]].sum(1)) # group aggregates on a group-aggregated array def test_group_agg_on_group_agg(array): age, geo, sex, lipro = array.axes vla, wal, bru = vla_str, wal_str, bru_str reg = array.sum(age, sex).sum(geo=(vla, wal, bru, belgium)) # 1) one group => collapse dimension assert reg.sum(lipro='P01,P02').shape == (4,) # 2) a tuple of one group => do not collapse dimension assert reg.sum(lipro=('P01,P02',)).shape == (4, 1) # 3) several groups assert reg.sum(lipro='P01;P02;:').shape == (4, 3) # this is INVALID # TODO: raise a nice exception # regsum = reg.sum(lipro='P01,P02,:') # this is currently allowed even though it can be confusing: # P01 and P02 are both groups with one element each. assert reg.sum(lipro=('P01', 'P02', ':')).shape == (4, 3) assert reg.sum(lipro=('P01', 'P02', lipro[:])).shape == (4, 3) # explicit groups are better assert reg.sum(lipro=('P01,', 'P02,', ':')).shape == (4, 3) assert reg.sum(lipro=(['P01'], ['P02'], ':')).shape == (4, 3) # 4) groups on the aggregated dimension # self.assertEqual(reg.sum(geo=([vla, bru], [wal, bru])).shape, (2, 3)) # vla, wal, bru # group aggregates on a group-aggregated array def test_group_agg_on_group_agg_nokw(array): age, geo, sex, lipro = array.axes vla, wal, bru = vla_str, wal_str, bru_str reg = array.sum(age, sex).sum((vla, wal, bru, belgium)) # XXX: should this be supported too? (it currently fails) # reg = array.sum(age, sex).sum(vla, wal, bru, belgium) # 1) one group => collapse dimension assert reg.sum('P01,P02').shape == (4,) # 2) a tuple of one group => do not collapse dimension assert reg.sum(('P01,P02',)).shape == (4, 1) # 3) several groups # : is ambiguous # self.assertEqual(reg.sum('P01;P02;:').shape, (4, 3)) assert reg.sum('P01;P02;P01:').shape == (4, 3) # this is INVALID # TODO: raise a nice exception # regsum = reg.sum(lipro='P01,P02,:') # this is currently allowed even though it can be confusing: # P01 and P02 are both groups with one element each. assert reg.sum(('P01', 'P02', 'P01:')).shape == (4, 3) assert reg.sum(('P01', 'P02', lipro[:])).shape == (4, 3) # explicit groups are better assert reg.sum(('P01,', 'P02,', 'P01:')).shape == (4, 3) assert reg.sum((['P01'], ['P02'], 'P01:')).shape == (4, 3) # 4) groups on the aggregated dimension # self.assertEqual(reg.sum(geo=([vla, bru], [wal, bru])).shape, (2, 3)) # vla, wal, bru def test_getitem_on_group_agg(array): age, geo, sex, lipro = array.axes vla, wal, bru = vla_str, wal_str, bru_str # using a string vla = vla_str reg = array.sum(age, sex).sum(geo=(vla, wal, bru, belgium)) # the following are all equivalent assert reg[vla].shape == (15,) assert reg[(vla,)].shape == (15,) assert reg[(vla, slice(None))].shape == (15,) assert reg[vla, slice(None)].shape == (15,) assert reg[vla, :].shape == (15,) # one more level... assert reg[vla]['P03'] == 389049848.0 # using an anonymous LGroup vla = geo[vla_str] reg = array.sum(age, sex).sum(geo=(vla, wal, bru, belgium)) # the following are all equivalent assert reg[vla].shape == (15,) assert reg[(vla,)].shape == (15,) assert reg[(vla, slice(None))].shape == (15,) assert reg[vla, slice(None)].shape == (15,) assert reg[vla, :].shape == (15,) # using a named LGroup vla = geo[vla_str] >> 'Vlaanderen' reg = array.sum(age, sex).sum(geo=(vla, wal, bru, belgium)) # the following are all equivalent assert reg[vla].shape == (15,) assert reg[(vla,)].shape == (15,) assert reg[(vla, slice(None))].shape == (15,) assert reg[vla, slice(None)].shape == (15,) assert reg[vla, :].shape == (15,) def test_getitem_on_group_agg_nokw(array): age, geo, sex, lipro = array.axes vla, wal, bru = vla_str, wal_str, bru_str # using a string vla = vla_str reg = array.sum(age, sex).sum((vla, wal, bru, belgium)) # the following are all equivalent assert reg[vla].shape == (15,) assert reg[(vla,)].shape == (15,) assert reg[(vla, slice(None))].shape == (15,) assert reg[vla, slice(None)].shape == (15,) assert reg[vla, :].shape == (15,) # one more level... assert reg[vla]['P03'] == 389049848.0 # using an anonymous LGroup vla = geo[vla_str] reg = array.sum(age, sex).sum((vla, wal, bru, belgium)) # the following are all equivalent assert reg[vla].shape == (15,) assert reg[(vla,)].shape == (15,) assert reg[(vla, slice(None))].shape == (15,) assert reg[vla, slice(None)].shape == (15,) assert reg[vla, :].shape == (15,) # using a named LGroup vla = geo[vla_str] >> 'Vlaanderen' reg = array.sum(age, sex).sum((vla, wal, bru, belgium)) # the following are all equivalent assert reg[vla].shape == (15,) assert reg[(vla,)].shape == (15,) assert reg[(vla, slice(None))].shape == (15,) assert reg[vla, slice(None)].shape == (15,) assert reg[vla, :].shape == (15,) def test_filter_on_group_agg(array): age, geo, sex, lipro = array.axes vla, wal, bru = vla_str, wal_str, bru_str # using a string # vla = vla_str # reg = array.sum(age, sex).sum(geo=(vla, wal, bru, belgium)) # assert reg.filter(geo=vla).shape == (15,) # using a named LGroup vla = geo[vla_str] >> 'Vlaanderen' reg = array.sum(age, sex).sum(geo=(vla, wal, bru, belgium)) assert reg.filter(geo=vla).shape == (15,) # Note that reg.filter(geo=(vla,)) does NOT work. It might be a # little confusing for users, because reg[(vla,)] works but it is # normal because reg.filter(geo=(vla,)) is equivalent to: # reg[((vla,),)] or reg[(vla,), :] # mixed LGroup/string slices child = age[:17] child_named = age[:17] >> 'child' working = age[18:64] retired = age[65:] byage = array.sum(age=(child, 5, working, retired)) assert byage.shape == (4, 44, 2, 15) byage = array.sum(age=(child, slice(5, 10), working, retired)) assert byage.shape == (4, 44, 2, 15) # filter on an aggregated larray created with mixed groups # assert byage.filter(age=':17').shape == (44, 2, 15) byage = array.sum(age=(child_named, 5, working, retired)) assert byage.filter(age=child_named).shape == (44, 2, 15) def test_sum_several_lg_groups(array): # 1) aggregated array created using LGroups # ----------------------------------------- fla = geo[vla_str] >> 'Flanders' wal = geo[wal_str] >> 'Wallonia' bru = geo[bru_str] >> 'Brussels' reg = array.sum(geo=(fla, wal, bru)) assert reg.shape == (116, 3, 2, 15) # the result is indexable # 1.a) by LGroup assert reg.filter(geo=fla).shape == (116, 2, 15) assert reg.filter(geo=(fla, wal)).shape == (116, 2, 2, 15) # 1.b) by string (name of groups) assert reg.filter(geo='Flanders').shape == (116, 2, 15) assert reg.filter(geo='Flanders,Wallonia').shape == (116, 2, 2, 15) # 2) aggregated array created using string groups # ----------------------------------------------- reg = array.sum(geo=(vla_str, wal_str, bru_str)) assert reg.shape == (116, 3, 2, 15) # the result is indexable # 2.a) by string (def) # assert reg.filter(geo=vla_str).shape == (116, 2, 15) assert reg.filter(geo=(vla_str, wal_str)).shape == (116, 2, 2, 15) # 2.b) by LGroup # assert reg.filter(geo=fla).shape == (116, 2, 15) # assert reg.filter(geo=(fla, wal)).shape == (116, 2, 2, 15) def test_sum_with_groups_from_other_axis(small_array): # use a group from another *compatible* axis lipro2 = Axis('lipro=P01..P15') assert small_array.sum(lipro=lipro2['P01,P03']).shape == (2,) # use (compatible) group from another *incompatible* axis # XXX: I am unsure whether or not this should be allowed. Maybe we # should simply check that the group is valid in axis, but that # will trigger a pretty meaningful error anyway lipro3 = Axis('lipro=P01,P03,P05') assert small_array.sum(lipro3['P01,P03']).shape == (2,) # use a group (from another axis) which is incompatible with the axis of # the same name in the array lipro4 = Axis('lipro=P01,P03,P16') with pytest.raises(ValueError, match=r"lipro\['P01', 'P16'\] is not a valid label for any axis"): small_array.sum(lipro4['P01,P16']) def test_agg_kwargs(array): raw = array.data # dtype assert array.sum(dtype=int) == raw.sum(dtype=int) # ddof assert array.std(ddof=0) == raw.std(ddof=0) # out res = array.std(X.sex) out = zeros_like(res) array.std(X.sex, out=out) assert_array_equal(res, out) def test_agg_by(array): age, geo, sex, lipro = array.axes vla, wal, bru = vla_str, wal_str, bru_str # no group or axis assert array.sum_by().shape == () assert array.sum_by() == array.sum() # a) group aggregate on a fresh array # a.1) one group res = array.sum_by(geo='A11,A21,A25') assert res.shape == () assert res == array.sum(geo='A11,A21,A25').sum() # a.2) a tuple of one group res = array.sum_by(geo=(geo[:],)) assert res.shape == (1,) assert_array_equal(res, array.sum(age, sex, lipro, geo=(geo[:],))) # a.3) several groups # string groups res = array.sum_by(geo=(vla, wal, bru)) assert res.shape == (3,) assert_array_equal(res, array.sum(age, sex, lipro, geo=(vla, wal, bru))) # with one label in several groups assert array.sum_by(sex=(['M'], ['M', 'F'])).shape == (2,) assert array.sum_by(sex=('M', 'M,F')).shape == (2,) res = array.sum_by(sex='M;M,F') assert res.shape == (2,) assert_array_equal(res, array.sum(age, geo, lipro, sex='M;M,F')) # a.4) several dimensions at the same time res = array.sum_by(geo=(vla, wal, bru, belgium), lipro='P01,P03;P02,P05;:') assert res.shape == (4, 3) assert_array_equal(res, array.sum(age, sex, geo=(vla, wal, bru, belgium), lipro='P01,P03;P02,P05;:')) # b) both axis aggregate and group aggregate at the same time # Note that you must list "full axes" aggregates first (Python does not allow non-kwargs after kwargs. res = array.sum_by(sex, geo=(vla, wal, bru, belgium)) assert res.shape == (4, 2) assert_array_equal(res, array.sum(age, lipro, geo=(vla, wal, bru, belgium))) # c) chain group aggregate after axis aggregate res = array.sum_by(geo, sex) assert res.shape == (44, 2) assert_array_equal(res, array.sum(age, lipro)) res2 = res.sum_by(geo=(vla, wal, bru, belgium)) assert res2.shape == (4,) assert_array_equal(res2, res.sum(sex, geo=(vla, wal, bru, belgium))) def test_agg_igroup(): arr = ndtest(3) res = arr.sum((X.a.i[:2], X.a.i[1:])) assert_array_equal(res.a.labels, [':a1', 'a1:']) def test_ratio(array): age, geo, sex, lipro = array.axes regions = (vla_str, wal_str, bru_str, belgium) reg = array.sum(age, sex, regions) assert reg.shape == (4, 15) fla = geo[vla_str] >> 'Flanders' wal = geo[wal_str] >> 'Wallonia' bru = geo[bru_str] >> 'Brussels' regions = (fla, wal, bru) reg = array.sum(age, sex, regions) ratio = reg.ratio() assert_array_equal(ratio, reg / reg.sum(geo, lipro)) assert ratio.shape == (3, 15) ratio = reg.ratio(geo) assert_array_equal(ratio, reg / reg.sum(geo)) assert ratio.shape == (3, 15) ratio = reg.ratio(geo, lipro) assert_array_equal(ratio, reg / reg.sum(geo, lipro)) assert ratio.shape == (3, 15) assert ratio.sum() == 1.0 def test_percent(array): age, geo, sex, lipro = array.axes regions = (vla_str, wal_str, bru_str, belgium) reg = array.sum(age, sex, regions) assert reg.shape == (4, 15) fla = geo[vla_str] >> 'Flanders' wal = geo[wal_str] >> 'Wallonia' bru = geo[bru_str] >> 'Brussels' regions = (fla, wal, bru) reg = array.sum(age, sex, regions) percent = reg.percent() assert_array_equal(percent, (reg * 100.0 / reg.sum(geo, lipro))) assert percent.shape == (3, 15) percent = reg.percent(geo) assert_array_equal(percent, (reg * 100.0 / reg.sum(geo))) assert percent.shape == (3, 15) percent = reg.percent(geo, lipro) assert_array_equal(percent, (reg * 100.0 / reg.sum(geo, lipro))) assert percent.shape == (3, 15) assert round(abs(percent.sum() - 100.0), 7) == 0 def test_total(array): age, geo, sex, lipro = array.axes # array = small_array # sex, lipro = array.axes assert array.with_total().shape == (117, 45, 3, 16) assert array.with_total(sex).shape == (116, 44, 3, 15) assert array.with_total(lipro).shape == (116, 44, 2, 16) assert array.with_total(sex, lipro).shape == (116, 44, 3, 16) fla = geo[vla_str] >> 'Flanders' wal = geo[wal_str] >> 'Wallonia' bru = geo[bru_str] >> 'Brussels' bel = geo[:] >> 'Belgium' assert array.with_total(geo=(fla, wal, bru), op=mean).shape == (116, 47, 2, 15) assert array.with_total((fla, wal, bru), op=mean).shape == (116, 47, 2, 15) # works but "wrong" for X.geo (double what is expected because it includes fla wal & bru) # TODO: we probably want to display a warning (or even an error?) in that case. # If we really want that behavior, we can still split the operation: # .with_total((fla, wal, bru)).with_total(X.geo) # OR we might want to only sum the axis as it was before the op (but that does not play well when working with # multiple axes). a1 = array.with_total(X.sex, (fla, wal, bru), X.geo, X.lipro) assert a1.shape == (116, 48, 3, 16) # correct total but the order is not very nice a2 = array.with_total(X.sex, X.geo, (fla, wal, bru), X.lipro) assert a2.shape == (116, 48, 3, 16) # the correct way to do it a3 = array.with_total(X.sex, (fla, wal, bru, bel), X.lipro) assert a3.shape == (116, 48, 3, 16) # a4 = array.with_total((lipro[':P05'], lipro['P05:']), op=mean) a4 = array.with_total((':P05', 'P05:'), op=mean) assert a4.shape == (116, 44, 2, 17) def test_transpose(): arr = ndtest((2, 3, 4)) a, b, c = arr.axes res = arr.transpose() assert res.axes == [c, b, a] res = arr.transpose('b', 'c', 'a') assert res.axes == [b, c, a] res = arr.transpose('b') assert res.axes == [b, a, c] # using Ellipsis instead of ... to avoid a syntax error on Python 2 (where ... is only available within []) res = arr.transpose(Ellipsis, 'a') assert res.axes == [b, c, a] res = arr.transpose('c', Ellipsis, 'a') assert res.axes == [c, b, a] def test_transpose_anonymous(): a = ndtest([Axis(2), Axis(3), Axis(4)]) # reordered = a.transpose(0, 2, 1) # self.assertEqual(reordered.shape, (2, 4, 3)) # axes = [1, 2] # => union(axes, ) # => axes.extend([[0]]) # => breaks because [0] not compatible with axes[0] # => breaks because [0] not compatible with [1] # a real union should not care and should return # [1, 2, 0] but will this break other stuff? My gut feeling is yes # when doing a binop between anonymous axes, we use union too (that might be the problem) and we need *that* # union to match axes by position reordered = a.transpose(1, 2) assert reordered.shape == (3, 4, 2) reordered = a.transpose(2, 0) assert reordered.shape == (4, 2, 3) reordered = a.transpose() assert reordered.shape == (4, 3, 2) def test_binary_ops(small_array): raw = small_array.data assert_array_equal(small_array + small_array, raw + raw) assert_array_equal(small_array + 1, raw + 1) assert_array_equal(1 + small_array, 1 + raw) assert_array_equal(small_array - small_array, raw - raw) assert_array_equal(small_array - 1, raw - 1) assert_array_equal(1 - small_array, 1 - raw) assert_array_equal(small_array * small_array, raw * raw) assert_array_equal(small_array * 2, raw * 2) assert_array_equal(2 * small_array, 2 * raw) with np.errstate(invalid='ignore'): raw_res = raw / raw with pytest.warns(RuntimeWarning) as caught_warnings: res = small_array / small_array assert_array_nan_equal(res, raw_res) assert len(caught_warnings) == 1 warn_msg = "invalid value (NaN) encountered during operation (this is typically caused by a 0 / 0)" assert caught_warnings[0].message.args[0] == warn_msg assert caught_warnings[0].filename == __file__ assert_array_equal(small_array / 2, raw / 2) with np.errstate(divide='ignore'): raw_res = 30 / raw with pytest.warns(RuntimeWarning) as caught_warnings: res = 30 / small_array assert_array_equal(res, raw_res) assert len(caught_warnings) == 1 assert caught_warnings[0].message.args[0] == "divide by zero encountered during operation" assert caught_warnings[0].filename == __file__ assert_array_equal(30 / (small_array + 1), 30 / (raw + 1)) raw_int = raw.astype(int) la_int = Array(raw_int, axes=(sex, lipro)) assert_array_equal(la_int / 2, raw_int / 2) assert_array_equal(la_int // 2, raw_int // 2) # test adding two larrays with different axes order assert_array_equal(small_array + small_array.transpose(), raw * 2) # mixed operations raw2 = raw / 2 la_raw2 = small_array - raw2 assert la_raw2.axes == small_array.axes assert_array_equal(la_raw2, raw - raw2) raw2_la = raw2 - small_array assert raw2_la.axes == small_array.axes assert_array_equal(raw2_la, raw2 - raw) la_ge_raw2 = small_array >= raw2 assert la_ge_raw2.axes == small_array.axes assert_array_equal(la_ge_raw2, raw >= raw2) raw2_ge_la = raw2 >= small_array assert raw2_ge_la.axes == small_array.axes assert_array_equal(raw2_ge_la, raw2 >= raw) def test_binary_ops_no_name_axes(small_array): raw = small_array.data raw2 = small_array.data + 1 la = ndtest([Axis(l) for l in small_array.shape]) la2 = ndtest([Axis(l) for l in small_array.shape]) + 1 assert_array_equal(la + la2, raw + raw2) assert_array_equal(la + 1, raw + 1) assert_array_equal(1 + la, 1 + raw) assert_array_equal(la - la2, raw - raw2) assert_array_equal(la - 1, raw - 1) assert_array_equal(1 - la, 1 - raw) assert_array_equal(la * la2, raw * raw2) assert_array_equal(la * 2, raw * 2) assert_array_equal(2 * la, 2 * raw) assert_array_nan_equal(la / la2, raw / raw2) assert_array_equal(la / 2, raw / 2) with np.errstate(divide='ignore'): raw_res = 30 / raw with pytest.warns(RuntimeWarning) as caught_warnings: res = 30 / la assert_array_equal(res, raw_res) assert len(caught_warnings) == 1 assert caught_warnings[0].message.args[0] == "divide by zero encountered during operation" assert caught_warnings[0].filename == __file__ assert_array_equal(30 / (la + 1), 30 / (raw + 1)) raw_int = raw.astype(int) la_int = Array(raw_int) assert_array_equal(la_int / 2, raw_int / 2) assert_array_equal(la_int // 2, raw_int // 2) # adding two larrays with different axes order cannot work with unnamed axes # assert_array_equal(la + la.transpose(), raw * 2) # mixed operations raw2 = raw / 2 la_raw2 = la - raw2 assert la_raw2.axes == la.axes assert_array_equal(la_raw2, raw - raw2) raw2_la = raw2 - la assert raw2_la.axes == la.axes assert_array_equal(raw2_la, raw2 - raw) la_ge_raw2 = la >= raw2 assert la_ge_raw2.axes == la.axes assert_array_equal(la_ge_raw2, raw >= raw2) raw2_ge_la = raw2 >= la assert raw2_ge_la.axes == la.axes assert_array_equal(raw2_ge_la, raw2 >= raw) def test_broadcasting_no_name(): a = ndtest([Axis(2), Axis(3)]) b = ndtest(Axis(3)) c = ndtest(Axis(2)) with pytest.raises(ValueError): # ValueError: incompatible axes: # Axis(None, [0, 1, 2]) # vs # Axis(None, [0, 1]) a * b d = a * c assert d.shape == (2, 3) # {0}*\{1}* 0 1 2 # 0 0 0 0 # 1 3 4 5 assert np.array_equal(d, [[0, 0, 0], [3, 4, 5]]) # it is unfortunate that the behavior is different from numpy (even though I find our behavior more intuitive) d = np.asarray(a) * np.asarray(b) assert d.shape == (2, 3) assert np.array_equal(d, [[0, 1, 4], [0, 4, 10]]) with pytest.raises(ValueError): # ValueError: operands could not be broadcast together with shapes (2,3) (2,) np.asarray(a) * np.asarray(c) def test_binary_ops_with_scalar_group(): time = Axis('time=2015..2019') arr = ndtest(3) expected = arr + 2015 assert_larray_equal(time.i[0] + arr, expected) assert_larray_equal(arr + time.i[0], expected) def test_unary_ops(small_array): raw = small_array.data # using numpy functions assert_array_equal(np.abs(small_array - 10), np.abs(raw - 10)) assert_array_equal(np.negative(small_array), np.negative(raw)) assert_array_equal(np.invert(small_array), np.invert(raw)) # using python builtin ops assert_array_equal(abs(small_array - 10), abs(raw - 10)) assert_array_equal(-small_array, -raw) assert_array_equal(+small_array, +raw) assert_array_equal(~small_array, ~raw) def test_mean(small_array): raw = small_array.data sex, lipro = small_array.axes assert_array_equal(small_array.mean(lipro), raw.mean(1)) def test_sequence(): res = sequence('b=b0..b2', ndtest(3) * 3, 1.0) assert_array_equal(ndtest((3, 3), dtype=float), res) def test_sort_values(): # 1D arrays arr = Array([0, 1, 6, 3, -1], "a=a0..a4") res = arr.sort_values() expected = Array([-1, 0, 1, 3, 6], "a=a4,a0,a1,a3,a2") assert_array_equal(res, expected) # ascending arg res = arr.sort_values(ascending=False) expected = Array([6, 3, 1, 0, -1], "a=a2,a3,a1,a0,a4") assert_array_equal(res, expected) # 3D arrays arr = Array([[[10, 2, 4], [3, 7, 1]], [[5, 1, 6], [2, 8, 9]]], 'a=a0,a1; b=b0,b1; c=c0..c2') res = arr.sort_values(axis='c') expected = Array([[[2, 4, 10], [1, 3, 7]], [[1, 5, 6], [2, 8, 9]]], [Axis('a=a0,a1'), Axis('b=b0,b1'), Axis(3, 'c')]) assert_array_equal(res, expected) def test_set_labels(small_array): small_array.set_labels(X.sex, ['Man', 'Woman'], inplace=True) expected = small_array.set_labels(X.sex, ['Man', 'Woman']) assert_array_equal(small_array, expected) def test_set_axes(small_array): lipro2 = Axis([l.replace('P', 'Q') for l in lipro.labels], 'lipro2') sex2 = Axis(['Man', 'Woman'], 'sex2') la = Array(small_array.data, axes=(sex, lipro2)) # replace one axis la2 = small_array.set_axes(X.lipro, lipro2) assert_array_equal(la, la2) la = Array(small_array.data, axes=(sex2, lipro2)) # all at once la2 = small_array.set_axes([sex2, lipro2]) assert_array_equal(la, la2) # using keywrods args la2 = small_array.set_axes(sex=sex2, lipro=lipro2) assert_array_equal(la, la2) # using dict la2 = small_array.set_axes({X.sex: sex2, X.lipro: lipro2}) assert_array_equal(la, la2) # using list of pairs (axis_to_replace, new_axis) la2 = small_array.set_axes([(X.sex, sex2), (X.lipro, lipro2)]) assert_array_equal(la, la2) def test_reindex(): arr = ndtest((2, 2)) res = arr.reindex(X.b, ['b1', 'b2', 'b0'], fill_value=-1) assert_array_equal(res, from_string("""a\\b b1 b2 b0 a0 1 -1 0 a1 3 -1 2""")) arr2 = ndtest((2, 2)) arr2.reindex(X.b, ['b1', 'b2', 'b0'], fill_value=-1, inplace=True) assert_array_equal(arr2, from_string("""a\\b b1 b2 b0 a0 1 -1 0 a1 3 -1 2""")) # Array fill value filler = ndtest(arr.a) res = arr.reindex(X.b, ['b1', 'b2', 'b0'], fill_value=filler) assert_array_equal(res, from_string("""a\\b b1 b2 b0 a0 1 0 0 a1 3 1 2""")) # using labels from another array arr = ndtest('a=v0..v2;b=v0,v2,v1,v3') res = arr.reindex('a', arr.b.labels, fill_value=-1) assert_array_equal(res, from_string("""a\\b v0 v2 v1 v3 v0 0 1 2 3 v2 8 9 10 11 v1 4 5 6 7 v3 -1 -1 -1 -1""")) res = arr.reindex('a', arr.b, fill_value=-1) assert_array_equal(res, from_string("""a\\b v0 v2 v1 v3 v0 0 1 2 3 v2 8 9 10 11 v1 4 5 6 7 v3 -1 -1 -1 -1""")) # passing a list of Axis arr = ndtest((2, 2)) res = arr.reindex([Axis("a=a0,a1"), Axis("c=c0"), Axis("b=b1,b2")], fill_value=-1) assert_array_equal(res, from_string(""" a b\\c c0 a0 b1 1 a0 b2 -1 a1 b1 3 a1 b2 -1""")) def test_expand(): country = Axis("country=BE,FR,DE") arr = ndtest(country) out1 = empty((sex, country)) arr.expand(out=out1) out2 = empty((sex, country)) out2[:] = arr assert_array_equal(out1, out2) def test_append(small_array): sex, lipro = small_array.axes small_array = small_array.append(lipro, small_array.sum(lipro), label='sum') assert small_array.shape == (2, 16) small_array = small_array.append(sex, small_array.sum(sex), label='sum') assert small_array.shape == (3, 16) # crap the sex axis is different !!!! we don't have this problem with # the kwargs syntax below # small_array = small_array.append(small_array.mean(sex), axis=sex, label='mean') # self.assertEqual(small_array.shape, (4, 16)) # another syntax (which implies we could not have an axis named "label") # small_array = small_array.append(lipro=small_array.sum(lipro), label='sum') # self.assertEqual(small_array.shape, (117, 44, 2, 15)) def test_insert(): # simple tests are in the docstring arr1 = ndtest((2, 3)) # insert at multiple places at once # we cannot use from_string in these tests because it deduplicates ambiguous (column) labels automatically res = arr1.insert([42, 43], before='b1', label='new') assert_array_equal(res, from_lists([ ['a\\b', 'b0', 'new', 'new', 'b1', 'b2'], ['a0', 0, 42, 43, 1, 2], ['a1', 3, 42, 43, 4, 5]])) res = arr1.insert(42, before=['b1', 'b2'], label='new') assert_array_equal(res, from_lists([ ['a\\b', 'b0', 'new', 'b1', 'new', 'b2'], ['a0', 0, 42, 1, 42, 2], ['a1', 3, 42, 4, 42, 5]])) res = arr1.insert(42, before='b1', label=['b0.1', 'b0.2']) assert_array_equal(res, from_string(r""" a\b b0 b0.1 b0.2 b1 b2 a0 0 42 42 1 2 a1 3 42 42 4 5""")) res = arr1.insert(42, before=['b1', 'b2'], label=['b0.5', 'b1.5']) assert_array_equal(res, from_string(r""" a\b b0 b0.5 b1 b1.5 b2 a0 0 42 1 42 2 a1 3 42 4 42 5""")) res = arr1.insert([42, 43], before='b1', label=['b0.1', 'b0.2']) assert_array_equal(res, from_string(r""" a\b b0 b0.1 b0.2 b1 b2 a0 0 42 43 1 2 a1 3 42 43 4 5""")) res = arr1.insert([42, 43], before=['b1', 'b2'], label='new') assert_array_equal(res, from_lists([ ['a\\b', 'b0', 'new', 'b1', 'new', 'b2'], [ 'a0', 0, 42, 1, 43, 2], [ 'a1', 3, 42, 4, 43, 5]])) res = arr1.insert([42, 43], before=['b1', 'b2'], label=['b0.5', 'b1.5']) assert_array_equal(res, from_string(r""" a\b b0 b0.5 b1 b1.5 b2 a0 0 42 1 43 2 a1 3 42 4 43 5""")) res = arr1.insert([42, 43], before='b1,b2', label=['b0.5', 'b1.5']) assert_array_equal(res, from_string(r""" a\b b0 b0.5 b1 b1.5 b2 a0 0 42 1 43 2 a1 3 42 4 43 5""")) arr2 = ndtest(2) res = arr1.insert([arr2 + 42, arr2 + 43], before=['b1', 'b2'], label=['b0.5', 'b1.5']) assert_array_equal(res, from_string(r""" a\b b0 b0.5 b1 b1.5 b2 a0 0 42 1 43 2 a1 3 43 4 44 5""")) arr3 = ndtest('a=a0,a1;b=b0.1,b0.2') + 42 res = arr1.insert(arr3, before='b1,b2') assert_array_equal(res, from_string(r""" a\b b0 b0.1 b1 b0.2 b2 a0 0 42 1 43 2 a1 3 44 4 45 5""")) # with ambiguous labels arr4 = ndtest('a=v0,v1;b=v0,v1') expected = from_string(r""" a\b v0 v0.5 v1 v0 0 42 1 v1 2 42 3""") res = arr4.insert(42, before='b[v1]', label='v0.5') assert_array_equal(res, expected) res = arr4.insert(42, before=X.b['v1'], label='v0.5') assert_array_equal(res, expected) res = arr4.insert(42, before=arr4.b['v1'], label='v0.5') assert_array_equal(res, expected) def test_drop(): arr1 = ndtest(3) expected = Array([0, 2], 'a=a0,a2') # indices res = arr1.drop('a.i[1]') assert_array_equal(res, expected) res = arr1.drop(X.a.i[1]) assert_array_equal(res, expected) # labels res = arr1.drop(X.a['a1']) assert_array_equal(res, expected) res = arr1.drop('a[a1]') assert_array_equal(res, expected) # 2D array arr2 = ndtest((2, 4)) expected = from_string(r""" a\b b0 b2 a0 0 2 a1 4 6""") res = arr2.drop(['b1', 'b3']) assert_array_equal(res, expected) res = arr2.drop(X.b['b1', 'b3']) assert_array_equal(res, expected) res = arr2.drop('b.i[1, 3]') assert_array_equal(res, expected) res = arr2.drop(X.b.i[1, 3]) assert_array_equal(res, expected) a = Axis('a=label0..label2') b = Axis('b=label0..label2') arr3 = ndtest((a, b)) res = arr3.drop('a[label1]') assert_array_equal(res, from_string(r""" a\b label0 label1 label2 label0 0 1 2 label2 6 7 8""")) # XXX: implement the following (#671)? # res = arr3.drop('0[label1]') res = arr3.drop(X[0]['label1']) assert_array_equal(res, from_string(r""" a\b label0 label1 label2 label0 0 1 2 label2 6 7 8""")) res = arr3.drop(a['label1']) assert_array_equal(res, from_string(r""" a\b label0 label1 label2 label0 0 1 2 label2 6 7 8""")) # the aim of this test is to drop the last value of an axis, but instead # of dropping the last axis tick/label, drop the first one. def test_shift_axis(small_array): sex, lipro = small_array.axes # TODO: check how awful the syntax is with an axis that is not last # or first l2 = Array(small_array[:, :'P14'], axes=[sex, Axis(lipro.labels[1:], 'lipro')]) l2 = Array(small_array[:, :'P14'], axes=[sex, lipro.subaxis(slice(1, None))]) # We can also modify the axis in-place (dangerous!) # lipro.labels = np.append(lipro.labels[1:], lipro.labels[0]) l2 = small_array[:, 'P02':] l2.axes.lipro.labels = lipro.labels[1:] def test_unique(): arr = Array([[[0, 2, 0, 0], [1, 1, 1, 0]], [[0, 2, 0, 0], [2, 1, 2, 0]]], 'a=a0,a1;b=b0,b1;c=c0..c3') assert_array_equal(arr.unique('a'), arr) assert_array_equal(arr.unique('b'), arr) assert_array_equal(arr.unique('c'), arr['c0,c1,c3']) expected = from_string("""\ a_b\\c c0 c1 c2 c3 a0_b0 0 2 0 0 a0_b1 1 1 1 0 a1_b1 2 1 2 0""") assert_array_equal(arr.unique(('a', 'b')), expected) def test_extend(small_array): sex, lipro = small_array.axes all_lipro = lipro[:] tail = small_array.sum(lipro=(all_lipro,)) small_array = small_array.extend(lipro, tail) assert small_array.shape == (2, 16) # test with a string axis small_array = small_array.extend('sex', small_array.sum(sex=(sex[:],))) assert small_array.shape == (3, 16) @needs_pytables def test_hdf_roundtrip(tmpdir, meta): a = ndtest((2, 3), meta=meta) fpath = tmp_path(tmpdir, 'test.h5') a.to_hdf(fpath, 'a') res = read_hdf(fpath, 'a') assert a.ndim == 2 assert a.shape == (2, 3) assert a.axes.names == ['a', 'b'] assert_array_equal(res, a) assert res.meta == a.meta # issue 72: int-like strings should not be parsed (should round-trip correctly) fpath = tmp_path(tmpdir, 'issue72.h5') a = from_lists([['axis', '10', '20'], ['', 0, 1]]) a.to_hdf(fpath, 'a') res = read_hdf(fpath, 'a') assert res.ndim == 1 axis = res.axes[0] assert axis.name == 'axis' assert_array_equal(axis.labels, ['10', '20']) # passing group as key to to_hdf a3 = ndtest((4, 3, 4)) fpath = tmp_path(tmpdir, 'test.h5') os.remove(fpath) # single element group for label in a3.a: a3[label].to_hdf(fpath, label) # unnamed group group = a3.c['c0,c2'] a3[group].to_hdf(fpath, group) # unnamed group + slice group = a3.c['c0::2'] a3[group].to_hdf(fpath, group) # named group group = a3.c['c0,c2'] >> 'even' a3[group].to_hdf(fpath, group) # group with name containing special characters (replaced by _) group = a3.c['c0,c2'] >> r':name?with*special/\[characters]' a3[group].to_hdf(fpath, group) # passing group as key to read_hdf for label in a3.a: subset = read_hdf(fpath, label) assert_array_equal(subset, a3[label]) # load Session from larray.core.session import Session s = Session(fpath) assert s.names == sorted(['a0', 'a1', 'a2', 'a3', 'c0,c2', 'c0::2', 'even', ':name?with*special__[characters]']) def test_from_string(): expected = ndtest("sex=M,F") res = from_string('''sex M F \t 0 1''') assert_array_equal(res, expected) res = from_string('''sex M F nan 0 1''') assert_array_equal(res, expected) res = from_string('''sex M F NaN 0 1''') assert_array_equal(res, expected) def test_read_csv(): res = read_csv(inputpath('test1d.csv')) assert_array_equal(res, io_1d) res = read_csv(inputpath('test2d.csv')) assert_array_equal(res, io_2d) res = read_csv(inputpath('test3d.csv')) assert_array_equal(res, io_3d) res = read_csv(inputpath('testint_labels.csv')) assert_array_equal(res, io_int_labels) res = read_csv(inputpath('test2d_classic.csv')) assert_array_equal(res, ndtest("a=a0..a2; b0..b2")) la = read_csv(inputpath('test1d_liam2.csv'), dialect='liam2') assert la.ndim == 1 assert la.shape == (3,) assert la.axes.names == ['time'] assert_array_equal(la, [3722, 3395, 3347]) la = read_csv(inputpath('test5d_liam2.csv'), dialect='liam2') assert la.ndim == 5 assert la.shape == (2, 5, 2, 2, 3) assert la.axes.names == ['arr', 'age', 'sex', 'nat', 'time'] assert_array_equal(la[X.arr[1], 0, 'F', X.nat[1], :], [3722, 3395, 3347]) # missing values res = read_csv(inputpath('testmissing_values.csv')) assert_array_nan_equal(res, io_missing_values) # test StringIO res = read_csv(StringIO('a,1,2\n,0,1\n')) assert_array_equal(res, ndtest('a=1,2')) # sort_columns=True res = read_csv(StringIO('a,a2,a0,a1\n,2,0,1\n'), sort_columns=True) assert_array_equal(res, ndtest(3)) ################# # narrow format # ################# res = read_csv(inputpath('test1d_narrow.csv'), wide=False) assert_array_equal(res, io_1d) res = read_csv(inputpath('test2d_narrow.csv'), wide=False) assert_array_equal(res, io_2d) res = read_csv(inputpath('test3d_narrow.csv'), wide=False) assert_array_equal(res, io_3d) # missing values res = read_csv(inputpath('testmissing_values_narrow.csv'), wide=False) assert_array_nan_equal(res, io_narrow_missing_values) # unsorted values res = read_csv(inputpath('testunsorted_narrow.csv'), wide=False) assert_array_equal(res, io_unsorted) def test_read_eurostat(): la = read_eurostat(inputpath('test5d_eurostat.csv')) assert la.ndim == 5 assert la.shape == (2, 5, 2, 2, 3) assert la.axes.names == ['arr', 'age', 'sex', 'nat', 'time'] # FIXME: integer labels should be parsed as such assert_array_equal(la[X.arr['1'], '0', 'F', X.nat['1'], :], [3722, 3395, 3347]) @needs_xlwings def test_read_excel_xlwings(): arr = read_excel(inputpath('test.xlsx'), '1d') assert_array_equal(arr, io_1d) arr = read_excel(inputpath('test.xlsx'), '2d') assert_array_equal(arr, io_2d) arr = read_excel(inputpath('test.xlsx'), '2d_classic') assert_array_equal(arr, ndtest("a=a0..a2; b0..b2")) arr = read_excel(inputpath('test.xlsx'), '2d_classic', nb_axes=2) assert_array_equal(arr, ndtest("a=a0..a2; b0..b2")) arr = read_excel(inputpath('test.xlsx'), '3d') assert_array_equal(arr, io_3d) # for > 2d, specifying nb_axes is required if there is no name for the horizontal axis arr = read_excel(inputpath('test.xlsx'), '3d_classic', nb_axes=3) assert_array_equal(arr, ndtest("a=1..3; b=b0,b1; c0..c2")) arr = read_excel(inputpath('test.xlsx'), 'int_labels') assert_array_equal(arr, io_int_labels) # passing a Group as sheet arg axis = Axis('dim=1d,2d,3d,5d') arr = read_excel(inputpath('test.xlsx'), axis['1d']) assert_array_equal(arr, io_1d) # missing rows, default fill_value arr = read_excel(inputpath('test.xlsx'), 'missing_values') expected = ndtest("a=1..3; b=b0,b1; c=c0..c2", dtype=float) expected[2, 'b0'] = nan expected[3, 'b1'] = nan assert_array_nan_equal(arr, expected) # missing rows + fill_value argument arr = read_excel(inputpath('test.xlsx'), 'missing_values', fill_value=42) expected = ndtest("a=1..3; b=b0,b1; c=c0..c2", dtype=float) expected[2, 'b0'] = 42 expected[3, 'b1'] = 42 assert_array_equal(arr, expected) # range arr = read_excel(inputpath('test.xlsx'), 'position', range='D3:H9') assert_array_equal(arr, io_3d) ################# # narrow format # ################# arr = read_excel(inputpath('test_narrow.xlsx'), '1d', wide=False) assert_array_equal(arr, io_1d) arr = read_excel(inputpath('test_narrow.xlsx'), '2d', wide=False) assert_array_equal(arr, io_2d) arr = read_excel(inputpath('test_narrow.xlsx'), '3d', wide=False) assert_array_equal(arr, io_3d) # missing rows + fill_value argument arr = read_excel(inputpath('test_narrow.xlsx'), 'missing_values', fill_value=42, wide=False) expected = io_narrow_missing_values.copy() expected[isnan(expected)] = 42 assert_array_equal(arr, expected) # unsorted values arr = read_excel(inputpath('test_narrow.xlsx'), 'unsorted', wide=False) assert_array_equal(arr, io_unsorted) # range arr = read_excel(inputpath('test_narrow.xlsx'), 'position', range='D3:G21', wide=False) assert_array_equal(arr, io_3d) ############################## # invalid keyword argument # ############################## with pytest.raises(TypeError, match="'dtype' is an invalid keyword argument for this function " "when using the xlwings backend"): read_excel(inputpath('test.xlsx'), engine='xlwings', dtype=float) ################# # blank cells # ################# # Excel sheet with blank cells on right/bottom border of the array to read fpath = inputpath('test_blank_cells.xlsx') good = read_excel(fpath, 'good') bad1 = read_excel(fpath, 'blanksafter_morerowsthancols') bad2 = read_excel(fpath, 'blanksafter_morecolsthanrows') assert_array_equal(bad1, good) assert_array_equal(bad2, good) # with additional empty column in the middle of the array to read good2 = ndtest('a=a0,a1;b=2003..2006').astype(object) good2[2005] = None good2 = good2.set_axes('b', Axis([2003, 2004, None, 2006], 'b')) bad3 = read_excel(fpath, 'middleblankcol') bad4 = read_excel(fpath, '16384col') assert_array_equal(bad3, good2) assert_array_equal(bad4, good2) @needs_xlrd def test_read_excel_pandas(): arr = read_excel(inputpath('test.xlsx'), '1d', engine='xlrd') assert_array_equal(arr, io_1d) arr = read_excel(inputpath('test.xlsx'), '2d', engine='xlrd') assert_array_equal(arr, io_2d) arr = read_excel(inputpath('test.xlsx'), '2d', nb_axes=2, engine='xlrd') assert_array_equal(arr, io_2d) arr = read_excel(inputpath('test.xlsx'), '2d_classic', engine='xlrd') assert_array_equal(arr, ndtest("a=a0..a2; b0..b2")) arr = read_excel(inputpath('test.xlsx'), '2d_classic', nb_axes=2, engine='xlrd') assert_array_equal(arr, ndtest("a=a0..a2; b0..b2")) arr = read_excel(inputpath('test.xlsx'), '3d', index_col=[0, 1], engine='xlrd') assert_array_equal(arr, io_3d) arr = read_excel(inputpath('test.xlsx'), '3d', engine='xlrd') assert_array_equal(arr, io_3d) # for > 2d, specifying nb_axes is required if there is no name for the horizontal axis arr = read_excel(inputpath('test.xlsx'), '3d_classic', nb_axes=3, engine='xlrd') assert_array_equal(arr, ndtest("a=1..3; b=b0,b1; c0..c2")) arr = read_excel(inputpath('test.xlsx'), 'int_labels', engine='xlrd') assert_array_equal(arr, io_int_labels) # passing a Group as sheet arg axis = Axis('dim=1d,2d,3d,5d') arr = read_excel(inputpath('test.xlsx'), axis['1d'], engine='xlrd') assert_array_equal(arr, io_1d) # missing rows + fill_value argument arr = read_excel(inputpath('test.xlsx'), 'missing_values', fill_value=42, engine='xlrd') expected = io_missing_values.copy() expected[isnan(expected)] = 42 assert_array_equal(arr, expected) ################# # narrow format # ################# arr = read_excel(inputpath('test_narrow.xlsx'), '1d', wide=False, engine='xlrd') assert_array_equal(arr, io_1d) arr = read_excel(inputpath('test_narrow.xlsx'), '2d', wide=False, engine='xlrd') assert_array_equal(arr, io_2d) arr = read_excel(inputpath('test_narrow.xlsx'), '3d', wide=False, engine='xlrd') assert_array_equal(arr, io_3d) # missing rows + fill_value argument arr = read_excel(inputpath('test_narrow.xlsx'), 'missing_values', fill_value=42, wide=False, engine='xlrd') expected = io_narrow_missing_values.copy() expected[isnan(expected)] = 42 assert_array_equal(arr, expected) # unsorted values arr = read_excel(inputpath('test_narrow.xlsx'), 'unsorted', wide=False, engine='xlrd') assert_array_equal(arr, io_unsorted) ################# # blank cells # ################# # Excel sheet with blank cells on right/bottom border of the array to read fpath = inputpath('test_blank_cells.xlsx') good1 = read_excel(fpath, 'good', engine='xlrd') bad1 = read_excel(fpath, 'blanksafter_morerowsthancols', engine='xlrd') bad2 = read_excel(fpath, 'blanksafter_morecolsthanrows', engine='xlrd') assert_array_equal(bad1, good1) assert_array_equal(bad2, good1) # with additional empty column in the middle of the array to read good2 = ndtest('a=a0,a1;b=2003..2006').astype(float) good2[2005] = nan good2 = good2.set_axes('b', Axis([2003, 2004, 'Unnamed: 3', 2006], 'b')) bad3 = read_excel(fpath, 'middleblankcol', engine='xlrd') bad4 = read_excel(fpath, '16384col', engine='xlrd') assert_array_nan_equal(bad3, good2) assert_array_nan_equal(bad4, good2) def test_from_lists(): simple_arr = ndtest((2, 2, 3)) # simple arr_list = [['a', 'b\\c', 'c0', 'c1', 'c2'], ['a0', 'b0', 0, 1, 2], ['a0', 'b1', 3, 4, 5], ['a1', 'b0', 6, 7, 8], ['a1', 'b1', 9, 10, 11]] res = from_lists(arr_list) assert_array_equal(res, simple_arr) # simple (using dump). This should be the same test than above. # We just make sure dump() and from_lists() round-trip correctly. arr_list = simple_arr.dump() res = from_lists(arr_list) assert_array_equal(res, simple_arr) # with anonymous axes arr_anon = simple_arr.rename({0: None, 1: None, 2: None}) arr_list = arr_anon.dump() assert arr_list == [[None, None, 'c0', 'c1', 'c2'], ['a0', 'b0', 0, 1, 2], ['a0', 'b1', 3, 4, 5], ['a1', 'b0', 6, 7, 8], ['a1', 'b1', 9, 10, 11]] res = from_lists(arr_list, nb_axes=3) assert_array_equal(res, arr_anon) # with empty ('') axes names arr_empty_names = simple_arr.rename({0: '', 1: '', 2: ''}) arr_list = arr_empty_names.dump() assert arr_list == [[ '', '', 'c0', 'c1', 'c2'], ['a0', 'b0', 0, 1, 2], ['a0', 'b1', 3, 4, 5], ['a1', 'b0', 6, 7, 8], ['a1', 'b1', 9, 10, 11]] res = from_lists(arr_list, nb_axes=3) # this is purposefully NOT arr_empty_names because from_lists (via df_asarray) transforms '' axes to None assert_array_equal(res, arr_anon) # sort_rows arr = from_lists([['sex', 'nat\\year', 1991, 1992, 1993], ['F', 'BE', 0, 0, 1], ['F', 'FO', 0, 0, 2], ['M', 'BE', 1, 0, 0], ['M', 'FO', 2, 0, 0]]) sorted_arr = from_lists([['sex', 'nat\\year', 1991, 1992, 1993], ['M', 'BE', 1, 0, 0], ['M', 'FO', 2, 0, 0], ['F', 'BE', 0, 0, 1], ['F', 'FO', 0, 0, 2]], sort_rows=True) assert_array_equal(sorted_arr, arr) # sort_columns arr = from_lists([['sex', 'nat\\year', 1991, 1992, 1993], ['M', 'BE', 1, 0, 0], ['M', 'FO', 2, 0, 0], ['F', 'BE', 0, 0, 1], ['F', 'FO', 0, 0, 2]]) sorted_arr = from_lists([['sex', 'nat\\year', 1992, 1991, 1993], ['M', 'BE', 0, 1, 0], ['M', 'FO', 0, 2, 0], ['F', 'BE', 0, 0, 1], ['F', 'FO', 0, 0, 2]], sort_columns=True) assert_array_equal(sorted_arr, arr) def test_from_series(): # Series with Index as index expected = ndtest(3) s = pd.Series([0, 1, 2], index=pd.Index(['a0', 'a1', 'a2'], name='a')) assert_array_equal(from_series(s), expected) s = pd.Series([2, 0, 1], index=pd.Index(['a2', 'a0', 'a1'], name='a')) assert_array_equal(from_series(s, sort_rows=True), expected) expected = ndtest(3)[['a2', 'a0', 'a1']] assert_array_equal(from_series(s), expected) # Series with MultiIndex as index age = Axis('age=0..3') gender = Axis('gender=M,F') time = Axis('time=2015..2017') expected = ndtest((age, gender, time)) index = pd.MultiIndex.from_product(expected.axes.labels, names=expected.axes.names) data = expected.data.flatten() s = pd.Series(data, index) res = from_series(s) assert_array_equal(res, expected) res = from_series(s, sort_rows=True) assert_array_equal(res, expected.sort_axes()) expected[0, 'F'] = -1 s = s.reset_index().drop([3, 4, 5]).set_index(['age', 'gender', 'time'])[0] res = from_series(s, fill_value=-1) assert_array_equal(res, expected) def test_from_frame(): # 1) data = scalar # ================ # Dataframe becomes 1D Array data = np.array([10]) index = ['i0'] columns = ['c0'] axis_index, axis_columns = Axis(index), Axis(columns) df = pd.DataFrame(data, index=index, columns=columns) assert df.index.name is None assert df.columns.name is None assert list(df.index.values) == index assert list(df.columns.values) == columns # anonymous indexes/columns # input dataframe: # ---------------- # c0 # i0 10 # output Array: # ------------- # {0}\{1} c0 # i0 10 la = from_frame(df) assert la.ndim == 2 assert la.shape == (1, 1) assert la.axes.names == [None, None] assert list(la.axes.labels[0]) == index assert list(la.axes.labels[1]) == columns expected_la = Array(data.reshape((1, 1)), [axis_index, axis_columns]) assert_array_equal(la, expected_la) # anonymous columns # input dataframe: # ---------------- # c0 # index # i0 10 # output Array: # ------------- # index\{1} c0 # i0 10 df.index.name, df.columns.name = 'index', None la = from_frame(df) assert la.ndim == 2 assert la.shape == (1, 1) assert la.axes.names == ['index', None] assert list(la.axes.labels[0]) == index assert list(la.axes.labels[1]) == columns expected_la = Array(data.reshape((1, 1)), [axis_index.rename('index'), axis_columns]) assert_array_equal(la, expected_la) # anonymous columns/non string row axis name # input dataframe: # ---------------- # c0 # 0 # i0 10 # output Array: # ------------- # 0\{1} c0 # i0 10 df = pd.DataFrame([10], index=pd.Index(['i0'], name=0), columns=['c0']) res = from_frame(df) expected = Array([[10]], [Axis(['i0'], name=0), Axis(['c0'])]) assert res.ndim == 2 assert res.shape == (1, 1) assert res.axes.names == [0, None] assert_array_equal(res, expected) # anonymous index # input dataframe: # ---------------- # columns c0 # i0 10 # output Array: # ------------- # {0}\columns c0 # i0 10 df.index.name, df.columns.name = None, 'columns' la = from_frame(df) assert la.ndim == 2 assert la.shape == (1, 1) assert la.axes.names == [None, 'columns'] assert list(la.axes.labels[0]) == index assert list(la.axes.labels[1]) == columns expected_la = Array(data.reshape((1, 1)), [axis_index, axis_columns.rename('columns')]) assert_array_equal(la, expected_la) # index and columns with name # input dataframe: # ---------------- # columns c0 # index # i0 10 # output Array: # ------------- # index\columns c0 # i0 10 df.index.name, df.columns.name = 'index', 'columns' la = from_frame(df) assert la.ndim == 2 assert la.shape == (1, 1) assert la.axes.names == ['index', 'columns'] assert list(la.axes.labels[0]) == index assert list(la.axes.labels[1]) == columns expected_la = Array(data.reshape((1, 1)), [axis_index.rename('index'), axis_columns.rename('columns')]) assert_array_equal(la, expected_la) # 2) data = vector # ================ size = 3 # 2A) data = horizontal vector (1 x N) # ==================================== # Dataframe becomes 1D Array data = np.arange(size) indexes = ['i0'] columns = ['c{}'.format(i) for i in range(size)] axis_index, axis_columns = Axis(indexes), Axis(columns) df = pd.DataFrame(data.reshape(1, size), index=indexes, columns=columns) assert df.index.name is None assert df.columns.name is None assert list(df.index.values) == indexes assert list(df.columns.values) == columns # anonymous indexes/columns # input dataframe: # ---------------- # c0 c1 c2 # i0 0 1 2 # output Array: # ------------- # {0}\{1} c0 c1 c2 # i0 0 1 2 la = from_frame(df) assert la.ndim == 2 assert la.shape == (1, size) assert la.axes.names == [None, None] assert list(la.axes.labels[0]) == index assert list(la.axes.labels[1]) == columns expected_la = Array(data.reshape((1, size)), [axis_index, axis_columns]) assert_array_equal(la, expected_la) # anonymous columns # input dataframe: # ---------------- # c0 c1 c2 # index # i0 0 1 2 # output Array: # ------------- # index\{1} c0 c1 c2 # i0 0 1 2 df.index.name, df.columns.name = 'index', None la = from_frame(df) assert la.ndim == 2 assert la.shape == (1, size) assert la.axes.names == ['index', None] assert list(la.axes.labels[0]) == index assert list(la.axes.labels[1]) == columns expected_la = Array(data.reshape((1, size)), [axis_index.rename('index'), axis_columns]) assert_array_equal(la, expected_la) # anonymous index # input dataframe: # ---------------- # columns c0 c1 c2 # i0 0 1 2 # output Array: # ------------- # {0}\columns c0 c1 c2 # i0 0 1 2 df.index.name, df.columns.name = None, 'columns' la = from_frame(df) assert la.ndim == 2 assert la.shape == (1, size) assert la.axes.names == [None, 'columns'] assert list(la.axes.labels[0]) == index assert list(la.axes.labels[1]) == columns expected_la = Array(data.reshape((1, size)), [axis_index, axis_columns.rename('columns')]) assert_array_equal(la, expected_la) # index and columns with name # input dataframe: # ---------------- # columns c0 c1 c2 # index # i0 0 1 2 # output Array: # ------------- # index\columns c0 c1 c2 # i0 0 1 2 df.index.name, df.columns.name = 'index', 'columns' la = from_frame(df) assert la.ndim == 2 assert la.shape == (1, size) assert la.axes.names == ['index', 'columns'] assert list(la.axes.labels[0]) == index assert list(la.axes.labels[1]) == columns expected_la = Array(data.reshape((1, size)), [axis_index.rename('index'), axis_columns.rename('columns')]) assert_array_equal(la, expected_la) # 2B) data = vertical vector (N x 1) # ================================== # Dataframe becomes 2D Array data = data.reshape(size, 1) indexes = ['i{}'.format(i) for i in range(size)] columns = ['c0'] axis_index, axis_columns = Axis(indexes), Axis(columns) df = pd.DataFrame(data, index=indexes, columns=columns) assert df.index.name is None assert df.columns.name is None assert list(df.index.values) == indexes assert list(df.columns.values) == columns # anonymous indexes/columns # input dataframe: # ---------------- # c0 # i0 0 # i1 1 # i2 2 # output Array: # ------------- # {0}\{1} c0 # i0 0 # i1 1 # i2 2 la = from_frame(df) assert la.ndim == 2 assert la.shape == (size, 1) assert la.axes.names == [None, None] assert list(la.axes.labels[0]) == indexes assert list(la.axes.labels[1]) == columns expected_la = Array(data, [axis_index, axis_columns]) assert_array_equal(la, expected_la) # anonymous columns # input dataframe: # ---------------- # c0 # index # i0 0 # i1 1 # i2 2 # output Array: # ------------- # index\{1} c0 # i0 0 # i1 1 # i2 2 df.index.name, df.columns.name = 'index', None la = from_frame(df) assert la.ndim == 2 assert la.shape == (size, 1) assert la.axes.names == ['index', None] assert list(la.axes.labels[0]) == indexes assert list(la.axes.labels[1]) == columns expected_la = Array(data, [axis_index.rename('index'), axis_columns]) assert_array_equal(la, expected_la) # anonymous index # input dataframe: # ---------------- # columns c0 # i0 0 # i1 1 # i2 2 # output Array: # ------------- # {0}\columns c0 # i0 0 # i1 1 # i2 2 df.index.name, df.columns.name = None, 'columns' la = from_frame(df) assert la.ndim == 2 assert la.shape == (size, 1) assert la.axes.names == [None, 'columns'] assert list(la.axes.labels[0]) == indexes assert list(la.axes.labels[1]) == columns expected_la = Array(data, [axis_index, axis_columns.rename('columns')]) assert_array_equal(la, expected_la) # index and columns with name # input dataframe: # ---------------- # columns c0 # index # i0 0 # i1 1 # i2 2 # output Array: # ------------- # {0}\columns c0 # i0 0 # i1 1 # i2 2 df.index.name, df.columns.name = 'index', 'columns' assert la.ndim == 2 assert la.shape == (size, 1) assert la.axes.names == [None, 'columns'] assert list(la.axes.labels[0]) == indexes assert list(la.axes.labels[1]) == columns expected_la = Array(data, [axis_index, axis_columns.rename('columns')]) assert_array_equal(la, expected_la) # 3) 3D array # =========== # 3A) Dataframe with 2 index columns # ================================== dt = [('age', int), ('sex', 'U1'), ('2007', int), ('2010', int), ('2013', int)] data = np.array([ (0, 'F', 3722, 3395, 3347), (0, 'M', 338, 316, 323), (1, 'F', 2878, 2791, 2822), (1, 'M', 1121, 1037, 976), (2, 'F', 4073, 4161, 4429), (2, 'M', 1561, 1463, 1467), (3, 'F', 3507, 3741, 3366), (3, 'M', 2052, 2052, 2118), ], dtype=dt) df = pd.DataFrame(data) df.set_index(['age', 'sex'], inplace=True) df.columns.name = 'time' la = from_frame(df) assert la.ndim == 3 assert la.shape == (4, 2, 3) assert la.axes.names == ['age', 'sex', 'time'] assert_array_equal(la[0, 'F', :], [3722, 3395, 3347]) # 3B) Dataframe with columns.name containing \\ # ============================================= dt = [('age', int), ('sex\\time', 'U1'), ('2007', int), ('2010', int), ('2013', int)] data = np.array([ (0, 'F', 3722, 3395, 3347), (0, 'M', 338, 316, 323), (1, 'F', 2878, 2791, 2822), (1, 'M', 1121, 1037, 976), (2, 'F', 4073, 4161, 4429), (2, 'M', 1561, 1463, 1467), (3, 'F', 3507, 3741, 3366), (3, 'M', 2052, 2052, 2118), ], dtype=dt) df = pd.DataFrame(data) df.set_index(['age', 'sex\\time'], inplace=True) la = from_frame(df, unfold_last_axis_name=True) assert la.ndim == 3 assert la.shape == (4, 2, 3) assert la.axes.names == ['age', 'sex', 'time'] assert_array_equal(la[0, 'F', :], [3722, 3395, 3347]) # 3C) Dataframe with no axe names (names are None) # =============================== arr_no_names = ndtest("a0,a1;b0..b2;c0..c3") df_no_names = arr_no_names.df res = from_frame(df_no_names) assert_array_equal(res, arr_no_names) # 3D) Dataframe with empty axe names (names are '') # ================================== arr_empty_names = ndtest("=a0,a1;=b0..b2;=c0..c3") assert arr_empty_names.axes.names == ['', '', ''] df_no_names = arr_empty_names.df res = from_frame(df_no_names) assert_array_equal(res, arr_empty_names) # 4) test sort_rows and sort_columns arguments # ============================================ age = Axis('age=2,0,1,3') gender = Axis('gender=M,F') time = Axis('time=2016,2015,2017') columns = pd.Index(time.labels, name=time.name) # df.index is an Index instance expected = ndtest((gender, time)) index = pd.Index(gender.labels, name=gender.name) data = expected.data df = pd.DataFrame(data, index=index, columns=columns) expected = expected.sort_axes() res = from_frame(df, sort_rows=True, sort_columns=True) assert_array_equal(res, expected) # df.index is a MultiIndex instance expected = ndtest((age, gender, time)) index = pd.MultiIndex.from_product(expected.axes[:-1].labels, names=expected.axes[:-1].names) data = expected.data.reshape(len(age) * len(gender), len(time)) df = pd.DataFrame(data, index=index, columns=columns) res = from_frame(df, sort_rows=True, sort_columns=True) assert_array_equal(res, expected.sort_axes()) # 5) test fill_value # ================== expected[0, 'F'] = -1 df = df.reset_index().drop([3]).set_index(['age', 'gender']) res = from_frame(df, fill_value=-1) assert_array_equal(res, expected) def test_to_csv(tmpdir): arr = io_3d.copy() arr.to_csv(tmp_path(tmpdir, 'out.csv')) result = ['a,b\\c,c0,c1,c2\n', '1,b0,0,1,2\n', '1,b1,3,4,5\n'] with open(tmp_path(tmpdir, 'out.csv')) as f: assert f.readlines()[:3] == result # stacked data (one column containing all the values and another column listing the context of the value) arr.to_csv(tmp_path(tmpdir, 'out.csv'), wide=False) result = ['a,b,c,value\n', '1,b0,c0,0\n', '1,b0,c1,1\n'] with open(tmp_path(tmpdir, 'out.csv')) as f: assert f.readlines()[:3] == result arr = io_1d.copy() arr.to_csv(tmp_path(tmpdir, 'test_out1d.csv')) result = ['a,a0,a1,a2\n', ',0,1,2\n'] with open(tmp_path(tmpdir, 'test_out1d.csv')) as f: assert f.readlines() == result @needs_xlsxwriter def test_to_excel_xlsxwriter(tmpdir): fpath = tmp_path(tmpdir, 'test_to_excel_xlsxwriter.xlsx') # 1D a1 = ndtest(3) # fpath/Sheet1/A1 a1.to_excel(fpath, overwrite_file=True, engine='xlsxwriter') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a1) # fpath/Sheet1/A1(transposed) a1.to_excel(fpath, transpose=True, engine='xlsxwriter') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a1) # fpath/Sheet1/A1 # stacked data (one column containing all the values and another column listing the context of the value) a1.to_excel(fpath, wide=False, engine='xlsxwriter') res = read_excel(fpath, engine='xlrd') stacked_a1 = a1.reshape([a1.a, Axis(['value'])]) assert_array_equal(res, stacked_a1) # 2D a2 = ndtest((2, 3)) # fpath/Sheet1/A1 a2.to_excel(fpath, overwrite_file=True, engine='xlsxwriter') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a2) # fpath/Sheet1/A10 # TODO: this is currently not supported (though we would only need to translate A10 to startrow=0 and startcol=0 # a2.to_excel('fpath', 'Sheet1', 'A10', engine='xlsxwriter') # res = read_excel('fpath', 'Sheet1', engine='xlrd', skiprows=9) # assert_array_equal(res, a2) # fpath/other/A1 a2.to_excel(fpath, 'other', engine='xlsxwriter') res = read_excel(fpath, 'other', engine='xlrd') assert_array_equal(res, a2) # 3D a3 = ndtest((2, 3, 4)) # fpath/Sheet1/A1 # FIXME: merge_cells=False should be the default (until Pandas is fixed to read its format) a3.to_excel(fpath, overwrite_file=True, engine='xlsxwriter', merge_cells=False) # a3.to_excel('fpath', overwrite_file=True, engine='openpyxl') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a3) # fpath/Sheet1/A20 # TODO: implement position (see above) # a3.to_excel('fpath', 'Sheet1', 'A20', engine='xlsxwriter', merge_cells=False) # res = read_excel('fpath', 'Sheet1', engine='xlrd', skiprows=19) # assert_array_equal(res, a3) # fpath/other/A1 a3.to_excel(fpath, 'other', engine='xlsxwriter', merge_cells=False) res = read_excel(fpath, 'other', engine='xlrd') assert_array_equal(res, a3) # 1D a1 = ndtest(3) # fpath/Sheet1/A1 a1.to_excel(fpath, overwrite_file=True, engine='xlsxwriter') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a1) # fpath/Sheet1/A1(transposed) a1.to_excel(fpath, transpose=True, engine='xlsxwriter') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a1) # fpath/Sheet1/A1 # stacked data (one column containing all the values and another column listing the context of the value) a1.to_excel(fpath, wide=False, engine='xlsxwriter') res = read_excel(fpath, engine='xlrd') stacked_a1 = a1.reshape([a1.a, Axis(['value'])]) assert_array_equal(res, stacked_a1) # 2D a2 = ndtest((2, 3)) # fpath/Sheet1/A1 a2.to_excel(fpath, overwrite_file=True, engine='xlsxwriter') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a2) # fpath/Sheet1/A10 # TODO: this is currently not supported (though we would only need to translate A10 to startrow=0 and startcol=0 # a2.to_excel(fpath, 'Sheet1', 'A10', engine='xlsxwriter') # res = read_excel('fpath', 'Sheet1', engine='xlrd', skiprows=9) # assert_array_equal(res, a2) # fpath/other/A1 a2.to_excel(fpath, 'other', engine='xlsxwriter') res = read_excel(fpath, 'other', engine='xlrd') assert_array_equal(res, a2) # 3D a3 = ndtest((2, 3, 4)) # fpath/Sheet1/A1 # FIXME: merge_cells=False should be the default (until Pandas is fixed to read its format) a3.to_excel(fpath, overwrite_file=True, engine='xlsxwriter', merge_cells=False) # a3.to_excel('fpath', overwrite_file=True, engine='openpyxl') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a3) # fpath/Sheet1/A20 # TODO: implement position (see above) # a3.to_excel('fpath', 'Sheet1', 'A20', engine='xlsxwriter', merge_cells=False) # res = read_excel('fpath', 'Sheet1', engine='xlrd', skiprows=19) # assert_array_equal(res, a3) # fpath/other/A1 a3.to_excel(fpath, 'other', engine='xlsxwriter', merge_cells=False) res = read_excel(fpath, 'other', engine='xlrd') assert_array_equal(res, a3) # passing group as sheet_name a3 = ndtest((4, 3, 4)) os.remove(fpath) # single element group for label in a3.a: a3[label].to_excel(fpath, label, engine='xlsxwriter') # unnamed group group = a3.c['c0,c2'] a3[group].to_excel(fpath, group, engine='xlsxwriter') # unnamed group + slice group = a3.c['c0::2'] a3[group].to_excel(fpath, group, engine='xlsxwriter') # named group group = a3.c['c0,c2'] >> 'even' a3[group].to_excel(fpath, group, engine='xlsxwriter') # group with name containing special characters (replaced by _) group = a3.c['c0,c2'] >> r':name?with*special/\[char]' a3[group].to_excel(fpath, group, engine='xlsxwriter') @needs_xlwings def test_to_excel_xlwings(tmpdir): fpath = tmp_path(tmpdir, 'test_to_excel_xlwings.xlsx') # 1D a1 = ndtest(3) # live book/Sheet1/A1 # a1.to_excel() # fpath/Sheet1/A1 (create a new file if does not exist) if os.path.isfile(fpath): os.remove(fpath) a1.to_excel(fpath, engine='xlwings') # we use xlrd to read back instead of xlwings even if that should work, to make the test faster res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a1) # fpath/Sheet1/A1(transposed) a1.to_excel(fpath, transpose=True, engine='xlwings') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a1) # fpath/Sheet1/A1 # stacked data (one column containing all the values and another column listing the context of the value) a1.to_excel(fpath, wide=False, engine='xlwings') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a1) # 2D a2 = ndtest((2, 3)) # fpath/Sheet1/A1 a2.to_excel(fpath, overwrite_file=True, engine='xlwings') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a2) # fpath/Sheet1/A10 a2.to_excel(fpath, 'Sheet1', 'A10', engine='xlwings') res = read_excel(fpath, 'Sheet1', engine='xlrd', skiprows=9) assert_array_equal(res, a2) # fpath/other/A1 a2.to_excel(fpath, 'other', engine='xlwings') res = read_excel(fpath, 'other', engine='xlrd') assert_array_equal(res, a2) # transpose a2.to_excel(fpath, 'transpose', transpose=True, engine='xlwings') res = read_excel(fpath, 'transpose', engine='xlrd') assert_array_equal(res, a2.T) # 3D a3 = ndtest((2, 3, 4)) # fpath/Sheet1/A1 a3.to_excel(fpath, overwrite_file=True, engine='xlwings') res = read_excel(fpath, engine='xlrd') assert_array_equal(res, a3) # fpath/Sheet1/A20 a3.to_excel(fpath, 'Sheet1', 'A20', engine='xlwings') res = read_excel(fpath, 'Sheet1', engine='xlrd', skiprows=19) assert_array_equal(res, a3) # fpath/other/A1 a3.to_excel(fpath, 'other', engine='xlwings') res = read_excel(fpath, 'other', engine='xlrd') assert_array_equal(res, a3) # passing group as sheet_name a3 = ndtest((4, 3, 4)) os.remove(fpath) # single element group for label in a3.a: a3[label].to_excel(fpath, label, engine='xlwings') # unnamed group group = a3.c['c0,c2'] a3[group].to_excel(fpath, group, engine='xlwings') # unnamed group + slice group = a3.c['c0::2'] a3[group].to_excel(fpath, group, engine='xlwings') # named group group = a3.c['c0,c2'] >> 'even' a3[group].to_excel(fpath, group, engine='xlwings') # group with name containing special characters (replaced by _) group = a3.c['c0,c2'] >> r':name?with*special/\[char]' a3[group].to_excel(fpath, group, engine='xlwings') # checks sheet names sheet_names = sorted(open_excel(fpath).sheet_names()) assert sheet_names == sorted(['a0', 'a1', 'a2', 'a3', 'c0,c2', 'c0__2', 'even', '_name_with_special___char_']) # sheet name of 31 characters (= maximum authorized length) a3.to_excel(fpath, "sheetname_of_exactly_31_chars__", engine='xlwings') # sheet name longer than 31 characters with pytest.raises(ValueError, match="Sheet names cannot exceed 31 characters"): a3.to_excel(fpath, "sheetname_longer_than_31_characters", engine='xlwings') def test_dump(): # narrow format res = list(ndtest(3).dump(wide=False, value_name='data')) assert res == [['a', 'data'], ['a0', 0], ['a1', 1], ['a2', 2]] # array with an anonymous axis and a wildcard axis arr = ndtest((Axis('a0,a1'), Axis(2, 'b'))) res = arr.dump() assert res == [['\\b', 0, 1], ['a0', 0, 1], ['a1', 2, 3]] res = arr.dump(_axes_display_names=True) assert res == [['{0}\\b*', 0, 1], ['a0', 0, 1], ['a1', 2, 3]] @needs_xlwings def test_open_excel(tmpdir): # 1) Create new file # ================== fpath = inputpath('should_not_exist.xlsx') # overwrite_file must be set to True to create a new file with pytest.raises(ValueError): open_excel(fpath) # 2) with headers # =============== with open_excel(visible=False) as wb: # 1D a1 = ndtest(3) # Sheet1/A1 wb['Sheet1'] = a1.dump() res = wb['Sheet1'].load() assert_array_equal(res, a1) wb[0] = a1.dump() res = wb[0].load() assert_array_equal(res, a1) # Sheet1/A1(transposed) # TODO: implement .options on Sheet so that one can write: # wb[0].options(transpose=True).value = a1.dump() wb[0]['A1'].options(transpose=True).value = a1.dump() # TODO: implement .options on Range so that you can write: # res = wb[0]['A1:B4'].options(transpose=True).load() # res = from_lists(wb[0]['A1:B4'].options(transpose=True).value) # assert_array_equal(res, a1) # 2D a2 = ndtest((2, 3)) # Sheet1/A1 wb[0] = a2.dump() res = wb[0].load() assert_array_equal(res, a2) # Sheet1/A10 wb[0]['A10'] = a2.dump() res = wb[0]['A10:D12'].load() assert_array_equal(res, a2) # other/A1 wb['other'] = a2.dump() res = wb['other'].load() assert_array_equal(res, a2) # new/A10 # we need to create the sheet first wb['new'] = '' wb['new']['A10'] = a2.dump() res = wb['new']['A10:D12'].load() assert_array_equal(res, a2) # new2/A10 # cannot store the return value of "add" because that's a raw xlwings Sheet wb.sheets.add('new2') wb['new2']['A10'] = a2.dump() res = wb['new2']['A10:D12'].load() assert_array_equal(res, a2) # 3D a3 = ndtest((2, 3, 4)) # 3D/A1 wb['3D'] = a3.dump() res = wb['3D'].load() assert_array_equal(res, a3) # 3D/A20 wb['3D']['A20'] = a3.dump() res = wb['3D']['A20:F26'].load() assert_array_equal(res, a3) # 3D/A20 without name for columns wb['3D']['A20'] = a3.dump() # assume we have no name for the columns axis (ie change b\c to b) wb['3D']['B20'] = 'b' res = wb['3D']['A20:F26'].load(nb_axes=3) assert_array_equal(res, a3.data) # the two first axes should be the same assert res.axes[:2] == a3.axes[:2] # the third axis should have the same labels (but not the same name obviously) assert_array_equal(res.axes[2].labels, a3.axes[2].labels) with open_excel(inputpath('test.xlsx')) as wb: expected = ndtest("a=a0..a2; b0..b2") res = wb['2d_classic'].load() assert_array_equal(res, expected) # 3) without headers # ================== with open_excel(visible=False) as wb: # 1D a1 = ndtest(3) # Sheet1/A1 wb['Sheet1'] = a1 res = wb['Sheet1'].load(header=False) assert_array_equal(res, a1.data) wb[0] = a1 res = wb[0].load(header=False) assert_array_equal(res, a1.data) # Sheet1/A1(transposed) # FIXME: we need to .dump(header=False) explicitly because otherwise we go via ArrayConverter which # includes labels. for consistency's sake we should either change ArrayConverter to not include # labels, or change wb[0] = a1 to include them (and use wb[0] = a1.data to avoid them?) but that # would be heavily backward incompatible and how would I load them back? # wb[0]['A1'].options(transpose=True).value = a1 wb[0]['A1'].options(transpose=True).value = a1.dump(header=False) res = wb[0]['A1:A3'].load(header=False) assert_array_equal(res, a1.data) # 2D a2 = ndtest((2, 3)) # Sheet1/A1 wb[0] = a2 res = wb[0].load(header=False) assert_array_equal(res, a2.data) # Sheet1/A10 wb[0]['A10'] = a2 res = wb[0]['A10:C11'].load(header=False) assert_array_equal(res, a2.data) # other/A1 wb['other'] = a2 res = wb['other'].load(header=False) assert_array_equal(res, a2.data) # new/A10 # we need to create the sheet first wb['new'] = '' wb['new']['A10'] = a2 res = wb['new']['A10:C11'].load(header=False) assert_array_equal(res, a2.data) # 3D a3 = ndtest((2, 3, 4)) # 3D/A1 wb['3D'] = a3 res = wb['3D'].load(header=False) assert_array_equal(res, a3.data.reshape((6, 4))) # 3D/A20 wb['3D']['A20'] = a3 res = wb['3D']['A20:D25'].load(header=False) assert_array_equal(res, a3.data.reshape((6, 4))) # 4) Blank cells # ============== # Excel sheet with blank cells on right/bottom border of the array to read fpath = inputpath('test_blank_cells.xlsx') with open_excel(fpath) as wb: good = wb['good'].load() bad1 = wb['blanksafter_morerowsthancols'].load() bad2 = wb['blanksafter_morecolsthanrows'].load() # with additional empty column in the middle of the array to read good2 = wb['middleblankcol']['A1:E3'].load() bad3 = wb['middleblankcol'].load() bad4 = wb['16384col'].load() assert_array_equal(bad1, good) assert_array_equal(bad2, good) assert_array_equal(bad3, good2) assert_array_equal(bad4, good2) # 5) anonymous and wilcard axes # ============================= arr = ndtest((Axis('a0,a1'), Axis(2, 'b'))) fpath = tmp_path(tmpdir, 'anonymous_and_wildcard_axes.xlsx') with open_excel(fpath, overwrite_file=True) as wb: wb[0] = arr.dump() res = wb[0].load() # the result should be identical to the original array except we lost the information about # the wildcard axis being a wildcard axis expected = arr.set_axes('b', Axis([0, 1], 'b')) assert_array_equal(res, expected) # 6) crash test # ============= arr = ndtest((2, 2)) fpath = tmp_path(tmpdir, 'temporary_test_file.xlsx') # create and save a test file with open_excel(fpath, overwrite_file=True) as wb: wb['arr'] = arr.dump() wb.save() # raise exception when the file is open try: with open_excel(fpath, overwrite_file=True) as wb: raise ValueError("") except ValueError: pass # check if file is still available with open_excel(fpath) as wb: assert wb.sheet_names() == ['arr'] assert_array_equal(wb['arr'].load(), arr) # remove file if os.path.exists(fpath): os.remove(fpath) def test_ufuncs(small_array): raw = small_array.data # simple one-argument ufunc assert_array_equal(exp(small_array), np.exp(raw)) # with out= la_out = zeros(small_array.axes) raw_out = np.zeros(raw.shape) la_out2 = exp(small_array, la_out) raw_out2 = np.exp(raw, raw_out) # FIXME: this is not the case currently # self.assertIs(la_out2, la_out) assert_array_equal(la_out2, la_out) assert raw_out2 is raw_out assert_array_equal(la_out, raw_out) # with out= and broadcasting # we need to put the 'a' axis first because array numpy only supports that la_out = zeros([Axis([0, 1, 2], 'a')] + list(small_array.axes)) raw_out = np.zeros((3,) + raw.shape) la_out2 = exp(small_array, la_out) raw_out2 = np.exp(raw, raw_out) # self.assertIs(la_out2, la_out) # XXX: why is la_out2 transposed? assert_array_equal(la_out2.transpose(X.a), la_out) assert raw_out2 is raw_out assert_array_equal(la_out, raw_out) sex, lipro = small_array.axes low = small_array.sum(sex) // 4 + 3 raw_low = raw.sum(0) // 4 + 3 high = small_array.sum(sex) // 4 + 13 raw_high = raw.sum(0) // 4 + 13 # LA + scalars assert_array_equal(small_array.clip(0, 10), raw.clip(0, 10)) assert_array_equal(clip(small_array, 0, 10), np.clip(raw, 0, 10)) # LA + LA (no broadcasting) assert_array_equal(clip(small_array, 21 - small_array, 9 + small_array // 2), np.clip(raw, 21 - raw, 9 + raw // 2)) # LA + LA (with broadcasting) assert_array_equal(clip(small_array, low, high), np.clip(raw, raw_low, raw_high)) # where (no broadcasting) assert_array_equal(where(small_array < 5, -5, small_array), np.where(raw < 5, -5, raw)) # where (transposed no broadcasting) assert_array_equal(where(small_array < 5, -5, small_array.T), np.where(raw < 5, -5, raw)) # where (with broadcasting) result = where(small_array['P01'] < 5, -5, small_array) assert result.axes.names == ['sex', 'lipro'] assert_array_equal(result, np.where(raw[:, [0]] < 5, -5, raw)) # round small_float = small_array + 0.6 rounded = round(small_float) assert_array_equal(rounded, np.round(raw + 0.6)) def test_diag(): # 2D -> 1D a = ndtest((3, 3)) d = diag(a) assert d.ndim == 1 assert d.i[0] == a.i[0, 0] assert d.i[1] == a.i[1, 1] assert d.i[2] == a.i[2, 2] # 1D -> 2D a2 = diag(d) assert a2.ndim == 2 assert a2.i[0, 0] == a.i[0, 0] assert a2.i[1, 1] == a.i[1, 1] assert a2.i[2, 2] == a.i[2, 2] # 3D -> 2D a = ndtest((3, 3, 3)) d = diag(a) assert d.ndim == 2 assert d.i[0, 0] == a.i[0, 0, 0] assert d.i[1, 1] == a.i[1, 1, 1] assert d.i[2, 2] == a.i[2, 2, 2] # 3D -> 1D d = diag(a, axes=(0, 1, 2)) assert d.ndim == 1 assert d.i[0] == a.i[0, 0, 0] assert d.i[1] == a.i[1, 1, 1] assert d.i[2] == a.i[2, 2, 2] # 1D (anon) -> 2D d_anon = d.rename(0, None).ignore_labels() a2 = diag(d_anon) assert a2.ndim == 2 # 1D (anon) -> 3D a3 = diag(d_anon, ndim=3) assert a2.ndim == 2 assert a3.i[0, 0, 0] == a.i[0, 0, 0] assert a3.i[1, 1, 1] == a.i[1, 1, 1] assert a3.i[2, 2, 2] == a.i[2, 2, 2] # using Axis object sex = Axis('sex=M,F') a = eye(sex) d = diag(a) assert d.ndim == 1 assert d.axes.names == ['sex_sex'] assert_array_equal(d.axes.labels, [['M_M', 'F_F']]) assert d.i[0] == 1.0 assert d.i[1] == 1.0 @needs_python35 def test_matmul(): # 2D / anonymous axes a1 = ndtest([Axis(3), Axis(3)]) a2 = eye(3, 3) * 2 # Note that we cannot use @ because that is an invalid syntax in Python 2 # Array value assert_array_equal(a1.__matmul__(a2), ndtest([Axis(3), Axis(3)]) * 2) # ndarray value assert_array_equal(a1.__matmul__(a2.data), ndtest([Axis(3), Axis(3)]) * 2) # non anonymous axes (N <= 2) arr1d = ndtest(3) arr2d = ndtest((3, 3)) # 1D @ 1D res = arr1d.__matmul__(arr1d) assert isinstance(res, np.integer) assert res == 5 # 1D @ 2D assert_array_equal(arr1d.__matmul__(arr2d), Array([15, 18, 21], 'b=b0..b2')) # 2D @ 1D assert_array_equal(arr2d.__matmul__(arr1d), Array([5, 14, 23], 'a=a0..a2')) # 2D(a,b) @ 2D(a,b) -> 2D(a,b) res = from_lists([['a\\b', 'b0', 'b1', 'b2'], ['a0', 15, 18, 21], ['a1', 42, 54, 66], ['a2', 69, 90, 111]]) assert_array_equal(arr2d.__matmul__(arr2d), res) # 2D(a,b) @ 2D(b,a) -> 2D(a,a) res = from_lists([['a\\a', 'a0', 'a1', 'a2'], ['a0', 5, 14, 23], ['a1', 14, 50, 86], ['a2', 23, 86, 149]]) assert_array_equal(arr2d.__matmul__(arr2d.T), res) # ndarray value assert_array_equal(arr1d.__matmul__(arr2d.data), Array([15, 18, 21])) assert_array_equal(arr2d.data.__matmul__(arr2d.T.data), res.data) # different axes a1 = ndtest('a=a0..a1;b=b0..b2') a2 = ndtest('b=b0..b2;c=c0..c3') res = from_lists([[r'a\c', 'c0', 'c1', 'c2', 'c3'], ['a0', 20, 23, 26, 29], ['a1', 56, 68, 80, 92]]) assert_array_equal(a1.__matmul__(a2), res) # non anonymous axes (N >= 2) arr2d = ndtest((2, 2)) arr3d = ndtest((2, 2, 2)) arr4d = ndtest((2, 2, 2, 2)) a, b, c, d = arr4d.axes e = Axis('e=e0,e1') f = Axis('f=f0,f1') # 4D(a, b, c, d) @ 3D(e, d, f) -> 5D(a, b, e, c, f) arr3d = arr3d.set_axes([e, d, f]) res = from_lists([['a', 'b', 'e', 'c\\f', 'f0', 'f1'], ['a0', 'b0', 'e0', 'c0', 2, 3], ['a0', 'b0', 'e0', 'c1', 6, 11], ['a0', 'b0', 'e1', 'c0', 6, 7], ['a0', 'b0', 'e1', 'c1', 26, 31], ['a0', 'b1', 'e0', 'c0', 10, 19], ['a0', 'b1', 'e0', 'c1', 14, 27], ['a0', 'b1', 'e1', 'c0', 46, 55], ['a0', 'b1', 'e1', 'c1', 66, 79], ['a1', 'b0', 'e0', 'c0', 18, 35], ['a1', 'b0', 'e0', 'c1', 22, 43], ['a1', 'b0', 'e1', 'c0', 86, 103], ['a1', 'b0', 'e1', 'c1', 106, 127], ['a1', 'b1', 'e0', 'c0', 26, 51], ['a1', 'b1', 'e0', 'c1', 30, 59], ['a1', 'b1', 'e1', 'c0', 126, 151], ['a1', 'b1', 'e1', 'c1', 146, 175]]) assert_array_equal(arr4d.__matmul__(arr3d), res) # 3D(e, d, f) @ 4D(a, b, c, d) -> 5D(e, a, b, d, d) res = from_lists([['e', 'a', 'b', 'd\\d', 'd0', 'd1'], ['e0', 'a0', 'b0', 'd0', 2, 3], ['e0', 'a0', 'b0', 'd1', 6, 11], ['e0', 'a0', 'b1', 'd0', 6, 7], ['e0', 'a0', 'b1', 'd1', 26, 31], ['e0', 'a1', 'b0', 'd0', 10, 11], ['e0', 'a1', 'b0', 'd1', 46, 51], ['e0', 'a1', 'b1', 'd0', 14, 15], ['e0', 'a1', 'b1', 'd1', 66, 71], ['e1', 'a0', 'b0', 'd0', 10, 19], ['e1', 'a0', 'b0', 'd1', 14, 27], ['e1', 'a0', 'b1', 'd0', 46, 55], ['e1', 'a0', 'b1', 'd1', 66, 79], ['e1', 'a1', 'b0', 'd0', 82, 91], ['e1', 'a1', 'b0', 'd1', 118, 131], ['e1', 'a1', 'b1', 'd0', 118, 127], ['e1', 'a1', 'b1', 'd1', 170, 183]]) assert_array_equal(arr3d.__matmul__(arr4d), res) # 4D(a, b, c, d) @ 3D(b, d, f) -> 4D(a, b, c, f) arr3d = arr3d.set_axes([b, d, f]) res = from_lists([['a', 'b', 'c\\f', 'f0', 'f1'], ['a0', 'b0', 'c0', 2, 3], ['a0', 'b0', 'c1', 6, 11], ['a0', 'b1', 'c0', 46, 55], ['a0', 'b1', 'c1', 66, 79], ['a1', 'b0', 'c0', 18, 35], ['a1', 'b0', 'c1', 22, 43], ['a1', 'b1', 'c0', 126, 151], ['a1', 'b1', 'c1', 146, 175]]) assert_array_equal(arr4d.__matmul__(arr3d), res) # 3D(b, d, f) @ 4D(a, b, c, d) -> 4D(b, a, d, d) res = from_lists([['b', 'a', 'd\\d', 'd0', 'd1'], ['b0', 'a0', 'd0', 2, 3], ['b0', 'a0', 'd1', 6, 11], ['b0', 'a1', 'd0', 10, 11], ['b0', 'a1', 'd1', 46, 51], ['b1', 'a0', 'd0', 46, 55], ['b1', 'a0', 'd1', 66, 79], ['b1', 'a1', 'd0', 118, 127], ['b1', 'a1', 'd1', 170, 183]]) assert_array_equal(arr3d.__matmul__(arr4d), res) # 4D(a, b, c, d) @ 2D(d, f) -> 5D(a, b, c, f) arr2d = arr2d.set_axes([d, f]) res = from_lists([['a', 'b', 'c\\f', 'f0', 'f1'], ['a0', 'b0', 'c0', 2, 3], ['a0', 'b0', 'c1', 6, 11], ['a0', 'b1', 'c0', 10, 19], ['a0', 'b1', 'c1', 14, 27], ['a1', 'b0', 'c0', 18, 35], ['a1', 'b0', 'c1', 22, 43], ['a1', 'b1', 'c0', 26, 51], ['a1', 'b1', 'c1', 30, 59]]) assert_array_equal(arr4d.__matmul__(arr2d), res) # 2D(d, f) @ 4D(a, b, c, d) -> 5D(a, b, d, d) res = from_lists([['a', 'b', 'd\\d', 'd0', 'd1'], ['a0', 'b0', 'd0', 2, 3], ['a0', 'b0', 'd1', 6, 11], ['a0', 'b1', 'd0', 6, 7], ['a0', 'b1', 'd1', 26, 31], ['a1', 'b0', 'd0', 10, 11], ['a1', 'b0', 'd1', 46, 51], ['a1', 'b1', 'd0', 14, 15], ['a1', 'b1', 'd1', 66, 71]]) assert_array_equal(arr2d.__matmul__(arr4d), res) @needs_python35 def test_rmatmul(): a1 = eye(3) * 2 a2 = ndtest([Axis(3), Axis(3)]) # equivalent to a1.data @ a2 res = a2.__rmatmul__(a1.data) assert isinstance(res, Array) assert_array_equal(res, ndtest([Axis(3), Axis(3)]) * 2) def test_broadcast_with(): a1 = ndtest((3, 2)) a2 = ndtest(3) b = a2.broadcast_with(a1) assert b.ndim == a1.ndim assert b.shape == (3, 1) assert_array_equal(b.i[:, 0], a2) # anonymous axes a1 = ndtest([Axis(3), Axis(2)]) a2 = ndtest(Axis(3)) b = a2.broadcast_with(a1) assert b.ndim == a1.ndim assert b.shape == (3, 1) assert_array_equal(b.i[:, 0], a2) a1 = ndtest([Axis(1), Axis(3)]) a2 = ndtest([Axis(3), Axis(1)]) b = a2.broadcast_with(a1) assert b.ndim == 2 # common axes are reordered according to target (a1 in this case) assert b.shape == (1, 3) assert_larray_equiv(b, a2) a1 = ndtest([Axis(2), Axis(3)]) a2 = ndtest([Axis(3), Axis(2)]) b = a2.broadcast_with(a1) assert b.ndim == 2 assert b.shape == (2, 3) assert_larray_equiv(b, a2) def test_plot(): pass # small_h = small['M'] # small_h.plot(kind='bar') # small_h.plot() # small_h.hist() # large_data = np.random.randn(1000) # tick_v = np.random.randint(ord('a'), ord('z'), size=1000) # ticks = [chr(c) for c in tick_v] # large_axis = Axis('large', ticks) # large = Array(large_data, axes=[large_axis]) # large.plot() # large.hist() def test_combine_axes(): # combine N axes into 1 # ===================== arr = ndtest((2, 3, 4, 5)) res = arr.combine_axes((X.a, X.b)) assert res.axes.names == ['a_b', 'c', 'd'] assert res.size == arr.size assert res.shape == (2 * 3, 4, 5) assert_array_equal(res.axes.a_b.labels[:2], ['a0_b0', 'a0_b1']) assert_array_equal(res['a1_b0'], arr['a1', 'b0']) res = arr.combine_axes((X.a, X.c)) assert res.axes.names == ['a_c', 'b', 'd'] assert res.size == arr.size assert res.shape == (2 * 4, 3, 5) assert_array_equal(res.axes.a_c.labels[:2], ['a0_c0', 'a0_c1']) assert_array_equal(res['a1_c0'], arr['a1', 'c0']) res = arr.combine_axes((X.b, X.d)) assert res.axes.names == ['a', 'b_d', 'c'] assert res.size == arr.size assert res.shape == (2, 3 * 5, 4) assert_array_equal(res.axes.b_d.labels[:2], ['b0_d0', 'b0_d1']) assert_array_equal(res['b1_d0'], arr['b1', 'd0']) # combine M axes into N # ===================== arr = ndtest((2, 3, 4, 4, 3, 2)) # using a list of tuples res = arr.combine_axes([('a', 'c'), ('b', 'f'), ('d', 'e')]) assert res.axes.names == ['a_c', 'b_f', 'd_e'] assert res.size == arr.size assert res.shape == (2 * 4, 3 * 2, 4 * 3) assert list(res.axes.a_c.labels[:2]) == ['a0_c0', 'a0_c1'] assert list(res.axes.b_f.labels[:2]) == ['b0_f0', 'b0_f1'] assert list(res.axes.d_e.labels[:2]) == ['d0_e0', 'd0_e1'] assert res['a0_c2', 'b1_f1', 'd3_e2'] == arr['a0', 'b1', 'c2', 'd3', 'e2', 'f1'] res = arr.combine_axes([('a', 'c'), ('b', 'e', 'f')]) assert res.axes.names == ['a_c', 'b_e_f', 'd'] assert res.size == arr.size assert res.shape == (2 * 4, 3 * 3 * 2, 4) assert list(res.axes.b_e_f.labels[:4]) == ['b0_e0_f0', 'b0_e0_f1', 'b0_e1_f0', 'b0_e1_f1'] assert_array_equal(res['a0_c2', 'b1_e2_f1'], arr['a0', 'b1', 'c2', 'e2', 'f1']) # using a dict (-> user defined axes names) res = arr.combine_axes({('a', 'c'): 'AC', ('b', 'f'): 'BF', ('d', 'e'): 'DE'}) assert res.axes.names == ['AC', 'BF', 'DE'] assert res.size == arr.size assert res.shape == (2 * 4, 3 * 2, 4 * 3) res = arr.combine_axes({('a', 'c'): 'AC', ('b', 'e', 'f'): 'BEF'}) assert res.axes.names == ['AC', 'BEF', 'd'] assert res.size == arr.size assert res.shape == (2 * 4, 3 * 3 * 2, 4) # combine with wildcard=True arr = ndtest((2, 3)) res = arr.combine_axes(wildcard=True) assert res.axes.names == ['a_b'] assert res.size == arr.size assert res.shape == (6,) assert_array_equal(res.axes[0].labels, np.arange(6)) def test_split_axes(): # split one axis # ============== # default sep arr = ndtest((2, 3, 4, 5)) combined = arr.combine_axes(('b', 'd')) assert combined.axes.names == ['a', 'b_d', 'c'] res = combined.split_axes('b_d') assert res.axes.names == ['a', 'b', 'd', 'c'] assert res.shape == (2, 3, 5, 4) assert_array_equal(res.transpose('a', 'b', 'c', 'd'), arr) # with specified names res = combined.rename(b_d='bd').split_axes('bd', names=('b', 'd')) assert res.axes.names == ['a', 'b', 'd', 'c'] assert res.shape == (2, 3, 5, 4) assert_array_equal(res.transpose('a', 'b', 'c', 'd'), arr) # regex res = combined.split_axes('b_d', names=['b', 'd'], regex=r'(\w+)_(\w+)') assert res.axes.names == ['a', 'b', 'd', 'c'] assert res.shape == (2, 3, 5, 4) assert_array_equal(res.transpose('a', 'b', 'c', 'd'), arr) # custom sep combined = ndtest('a|b=a0|b0,a0|b1') res = combined.split_axes(sep='|') assert_array_equal(res, ndtest('a=a0;b=b0,b1')) # split several axes at once # ========================== arr = ndtest('a_b=a0_b0..a1_b2; c=c0..c3; d=d0..d3; e_f=e0_f0..e2_f1') # using a list of tuples res = arr.split_axes(['a_b', 'e_f']) assert res.axes.names == ['a', 'b', 'c', 'd', 'e', 'f'] assert res.size == arr.size assert res.shape == (2, 3, 4, 4, 3, 2) assert list(res.axes.a.labels) == ['a0', 'a1'] assert list(res.axes.b.labels) == ['b0', 'b1', 'b2'] assert list(res.axes.e.labels) == ['e0', 'e1', 'e2'] assert list(res.axes.f.labels) == ['f0', 'f1'] assert res['a0', 'b1', 'c2', 'd3', 'e2', 'f1'] == arr['a0_b1', 'c2', 'd3', 'e2_f1'] # default to all axes with name containing the delimiter _ assert_array_equal(arr.split_axes(), res) # using a dict (-> user defined axes names) res = arr.split_axes({'a_b': ('A', 'B'), 'e_f': ('E', 'F')}) assert res.axes.names == ['A', 'B', 'c', 'd', 'E', 'F'] assert res.size == arr.size assert res.shape == (2, 3, 4, 4, 3, 2) # split an axis in more than 2 axes arr = ndtest('a_b_c=a0_b0_c0..a1_b2_c3; d=d0..d3; e_f=e0_f0..e2_f1') res = arr.split_axes(['a_b_c', 'e_f']) assert res.axes.names == ['a', 'b', 'c', 'd', 'e', 'f'] assert res.size == arr.size assert res.shape == (2, 3, 4, 4, 3, 2) assert list(res.axes.a.labels) == ['a0', 'a1'] assert list(res.axes.b.labels) == ['b0', 'b1', 'b2'] assert list(res.axes.e.labels) == ['e0', 'e1', 'e2'] assert list(res.axes.f.labels) == ['f0', 'f1'] assert res['a0', 'b1', 'c2', 'd3', 'e2', 'f1'] == arr['a0_b1_c2', 'd3', 'e2_f1'] # split an axis in more than 2 axes + passing a dict res = arr.split_axes({'a_b_c': ('A', 'B', 'C'), 'e_f': ('E', 'F')}) assert res.axes.names == ['A', 'B', 'C', 'd', 'E', 'F'] assert res.size == arr.size assert res.shape == (2, 3, 4, 4, 3, 2) # using regex arr = ndtest('ab=a0b0..a1b2; c=c0..c3; d=d0..d3; ef=e0f0..e2f1') res = arr.split_axes({'ab': ('a', 'b'), 'ef': ('e', 'f')}, regex=r'(\w{2})(\w{2})') assert res.axes.names == ['a', 'b', 'c', 'd', 'e', 'f'] assert res.size == arr.size assert res.shape == (2, 3, 4, 4, 3, 2) assert list(res.axes.a.labels) == ['a0', 'a1'] assert list(res.axes.b.labels) == ['b0', 'b1', 'b2'] assert list(res.axes.e.labels) == ['e0', 'e1', 'e2'] assert list(res.axes.f.labels) == ['f0', 'f1'] assert res['a0', 'b1', 'c2', 'd3', 'e2', 'f1'] == arr['a0b1', 'c2', 'd3', 'e2f1'] # labels with object dtype arr = ndtest((2, 2, 2)).combine_axes(('a', 'b')) arr = arr.set_axes([Axis(a.labels.astype(object), a.name) for a in arr.axes]) res = arr.split_axes() expected_kind = 'U' if sys.version_info[0] >= 3 else 'S' assert res.a.labels.dtype.kind == expected_kind assert res.b.labels.dtype.kind == expected_kind assert res.c.labels.dtype.kind == 'O' assert_array_equal(res, ndtest((2, 2, 2))) # not sorted by first part then second part (issue #364) arr = ndtest((2, 3)) combined = arr.combine_axes()['a0_b0, a1_b0, a0_b1, a1_b1, a0_b2, a1_b2'] assert_array_equal(combined.split_axes('a_b'), arr) # another weirdly sorted test combined = arr.combine_axes()['a0_b1, a0_b0, a0_b2, a1_b1, a1_b0, a1_b2'] assert_array_equal(combined.split_axes('a_b'), arr['b1,b0,b2']) # combined does not contain all combinations of labels (issue #369) combined_partial = combined[['a0_b0', 'a0_b1', 'a1_b1', 'a0_b2', 'a1_b2']] expected = arr.astype(float) expected['a1', 'b0'] = nan assert_array_nan_equal(combined_partial.split_axes('a_b'), expected) # split labels are ambiguous (issue #485) combined = ndtest('a_b=a0_b0..a1_b1;c_d=a0_b0..a1_b1') expected = ndtest('a=a0,a1;b=b0,b1;c=a0,a1;d=b0,b1') assert_array_equal(combined.split_axes(('a_b', 'c_d')), expected) # anonymous axes combined = ndtest('a0_b0,a0_b1,a0_b2,a1_b0,a1_b1,a1_b2') expected = ndtest('a0,a1;b0,b1,b2') assert_array_equal(combined.split_axes(0), expected) # when no axis is specified and no axis contains the sep, split_axes is a no-op. assert_array_equal(combined.split_axes(), combined) def test_stack(): # stack along a single axis # ========================= # simple a = Axis('a=a0,a1,a2') b = Axis('b=b0,b1') arr0 = ndtest(a) arr1 = ndtest(a, start=-1) res = stack((arr0, arr1), b) expected = Array([[0, -1], [1, 0], [2, 1]], [a, b]) assert_array_equal(res, expected) # same but using a group as the stacking axis larger_b = Axis('b=b0..b3') res = stack((arr0, arr1), larger_b[:'b1']) assert_array_equal(res, expected) # simple with anonymous axis axis0 = Axis(3) arr0 = ndtest(axis0) arr1 = ndtest(axis0, start=-1) res = stack((arr0, arr1), b) expected = Array([[0, -1], [1, 0], [2, 1]], [axis0, b]) assert_array_equal(res, expected) # using res_axes res = stack({'b0': 0, 'b1': 1}, axes=b, res_axes=(a, b)) expected = Array([[0, 1], [0, 1], [0, 1]], [a, b]) assert_array_equal(res, expected) # giving elements as on Array containing Arrays sex = Axis('sex=M,F') # not using the same length for nat and type, otherwise numpy gets confused :( arr1 = ones('nat=BE, FO') arr2 = zeros('type=1..3') array_of_arrays = Array([arr1, arr2], sex) res = stack(array_of_arrays, sex) expected = from_string(r"""nat type\sex M F BE 1 1.0 0.0 BE 2 1.0 0.0 BE 3 1.0 0.0 FO 1 1.0 0.0 FO 2 1.0 0.0 FO 3 1.0 0.0""") assert_array_equal(res, expected) # non scalar/non Array res = stack(([1, 2, 3], [4, 5, 6])) expected = Array([[1, 4], [2, 5], [3, 6]]) assert_array_equal(res, expected) # stack along multiple axes # ========================= # a) simple res = stack({('a0', 'b0'): 0, ('a0', 'b1'): 1, ('a1', 'b0'): 2, ('a1', 'b1'): 3, ('a2', 'b0'): 4, ('a2', 'b1'): 5}, (a, b)) expected = ndtest((a, b)) assert_array_equal(res, expected) # b) keys not given in axes iteration order res = stack({('a0', 'b0'): 0, ('a1', 'b0'): 2, ('a2', 'b0'): 4, ('a0', 'b1'): 1, ('a1', 'b1'): 3, ('a2', 'b1'): 5}, (a, b)) expected = ndtest((a, b)) assert_array_equal(res, expected) # c) key parts not given in the order of axes (ie key part for b before key part for a) res = stack({('a0', 'b0'): 0, ('a1', 'b0'): 1, ('a2', 'b0'): 2, ('a0', 'b1'): 3, ('a1', 'b1'): 4, ('a2', 'b1'): 5}, (b, a)) expected = ndtest((b, a)) assert_array_equal(res, expected) # d) same as c) but with a key-value sequence res = stack([(('a0', 'b0'), 0), (('a1', 'b0'), 1), (('a2', 'b0'), 2), (('a0', 'b1'), 3), (('a1', 'b1'), 4), (('a2', 'b1'), 5)], (b, a)) expected = ndtest((b, a)) assert_array_equal(res, expected) @needs_python36 def test_stack_kwargs_no_axis_labels(): # these tests rely on kwargs ordering, hence python 3.6 # 1) using scalars # ---------------- # a) with an axis name res = stack(a0=0, a1=1, axes='a') expected = Array([0, 1], 'a=a0,a1') assert_array_equal(res, expected) # b) without an axis name res = stack(a0=0, a1=1) expected = Array([0, 1], 'a0,a1') assert_array_equal(res, expected) # 2) dict of arrays # ----------------- a = Axis('a=a0,a1,a2') arr0 = ndtest(a) arr1 = ndtest(a, start=-1) # a) with an axis name res = stack(b0=arr0, b1=arr1, axes='b') expected = Array([[0, -1], [1, 0], [2, 1]], [a, 'b=b0,b1']) assert_array_equal(res, expected) # b) without an axis name res = stack(b0=arr0, b1=arr1) expected = Array([[0, -1], [1, 0], [2, 1]], [a, 'b0,b1']) assert_array_equal(res, expected) @needs_python37 def test_stack_dict_no_axis_labels(): # these tests rely on dict ordering, hence python 3.7 # 1) dict of scalars # ------------------ # a) with an axis name res = stack({'a0': 0, 'a1': 1}, 'a') expected = Array([0, 1], 'a=a0,a1') assert_array_equal(res, expected) # b) without an axis name res = stack({'a0': 0, 'a1': 1}) expected = Array([0, 1], 'a0,a1') assert_array_equal(res, expected) # 2) dict of arrays # ----------------- a = Axis('a=a0,a1,a2') arr0 = ndtest(a) arr1 = ndtest(a, start=-1) # a) with an axis name res = stack({'b0': arr0, 'b1': arr1}, 'b') expected = Array([[0, -1], [1, 0], [2, 1]], [a, 'b=b0,b1']) assert_array_equal(res, expected) # b) without an axis name res = stack({'b0': arr0, 'b1': arr1}) expected = Array([[0, -1], [1, 0], [2, 1]], [a, 'b0,b1']) assert_array_equal(res, expected) def test_0darray_convert(): int_arr = Array(1) assert int(int_arr) == 1 assert float(int_arr) == 1.0 assert int_arr.__index__() == 1 float_arr = Array(1.0) assert int(float_arr) == 1 assert float(float_arr) == 1.0 with pytest.raises(TypeError) as e_info: float_arr.__index__() msg = e_info.value.args[0] expected_np11 = "only integer arrays with one element can be converted to an index" expected_np12 = "only integer scalar arrays can be converted to a scalar index" assert msg in {expected_np11, expected_np12} def test_deprecated_methods(): with pytest.warns(FutureWarning) as caught_warnings: ndtest((2, 2)).with_axes('a', 'd=d0,d1') assert len(caught_warnings) == 1 assert caught_warnings[0].message.args[0] == "with_axes() is deprecated. Use set_axes() instead." assert caught_warnings[0].filename == __file__ with pytest.warns(FutureWarning) as caught_warnings: ndtest((2, 2)).combine_axes().split_axis() assert len(caught_warnings) == 1 assert caught_warnings[0].message.args[0] == "split_axis() is deprecated. Use split_axes() instead." assert caught_warnings[0].filename == __file__ def test_eq(): a = ndtest((2, 3, 4)) ao = a.astype(object) assert_array_equal(ao.eq(ao['c0'], nans_equal=True), a == a['c0']) if __name__ == "__main__": # import doctest # import unittest # from larray import core # doctest.testmod(core) # unittest.main() pytest.main()
gpl-3.0
Fireblend/scikit-learn
examples/linear_model/plot_sgd_penalties.py
249
1563
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) plt.plot(xs, l1(xs), "r-", label="L1") plt.plot(xs, -1.0 * l1(xs), "r-") plt.plot(-1 * xs, l1(xs), "r-") plt.plot(-1 * xs, -1.0 * l1(xs), "r-") plt.plot(xs, l2(xs), "b-", label="L2") plt.plot(xs, -1.0 * l2(xs), "b-") plt.plot(-1 * xs, l2(xs), "b-") plt.plot(-1 * xs, -1.0 * l2(xs), "b-") plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net") plt.plot(xs, -1.0 * el(xs, alpha), "y-") plt.plot(-1 * xs, el(xs, alpha), "y-") plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-") plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
rokuz/omim
tools/python/booking_hotels_quality.py
20
2632
#!/usr/bin/env python # coding: utf8 from __future__ import print_function from collections import namedtuple, defaultdict from datetime import datetime from sklearn import metrics import argparse import base64 import json import logging import matplotlib.pyplot as plt import os import pickle import time import urllib2 import re # init logging logging.basicConfig(level=logging.DEBUG, format='[%(asctime)s] %(levelname)s: %(message)s') def load_binary_list(path): """Loads reference binary classifier output. """ bits = [] with open(path, 'r') as fd: for line in fd: if (not line.strip()) or line.startswith('#'): continue bits.append(1 if line.startswith('y') else 0) return bits def load_score_list(path): """Loads list of matching scores. """ scores = [] with open(path, 'r') as fd: for line in fd: if (not line.strip()) or line.startswith('#'): continue scores.append(float(re.search(r'result score: (\d*\.\d+)', line).group(1))) return scores def process_options(): # TODO(mgsergio): Fix description. parser = argparse.ArgumentParser(description="Download and process booking hotels.") parser.add_argument("-v", "--verbose", action="store_true", dest="verbose") parser.add_argument("-q", "--quiet", action="store_false", dest="verbose") parser.add_argument("--reference_list", dest="reference_list", help="Path to data files") parser.add_argument("--sample_list", dest="sample_list", help="Name and destination for output file") parser.add_argument("--show", dest="show", default=False, action="store_true", help="Show graph for precision and recall") options = parser.parse_args() if not options.reference_list or not options.sample_list: parser.print_help() exit() return options def main(): options = process_options() reference = load_binary_list(options.reference_list) sample = load_score_list(options.sample_list) precision, recall, threshold = metrics.precision_recall_curve(reference, sample) aa = zip(precision, recall, threshold) max_by_hmean = max(aa, key=lambda (p, r, t): p*r/(p+r)) print("Optimal threshold: {2} for precision: {0} and recall: {1}".format(*max_by_hmean)) print("AUC: {0}".format(metrics.roc_auc_score(reference, sample))) if options.show: plt.plot(recall, precision) plt.title("Precision/Recall") plt.ylabel("Precision") plt.xlabel("Recall") plt.show() if __name__ == "__main__": main()
apache-2.0
Sentient07/scikit-learn
examples/decomposition/plot_image_denoising.py
70
6249
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np import scipy as sp from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d from sklearn.utils.testing import SkipTest from sklearn.utils.fixes import sp_version if sp_version < (0, 12): raise SkipTest("Skipping because SciPy version earlier than 0.12.0 and " "thus does not include the scipy.misc.face() image.") ############################################################################### try: from scipy import misc face = misc.face(gray=True) except AttributeError: # Old versions of scipy have face in the top level package face = sp.face(gray=True) # Convert from uint8 representation with values between 0 and 255 to # a floating point representation with values between 0 and 1. face = face / 255 # downsample for higher speed face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2] face /= 4.0 height, width = face.shape # Distort the right half of the image print('Distorting image...') distorted = face.copy() distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :width // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from face patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, face, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, width // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = face.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d( patches, (height, width // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], face, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
drummonds/pySage50
setup.py
1
4088
# -*- coding: utf-8 -*- from __future__ import print_function import os import sys import imp import subprocess import platform from setuptools import setup, find_packages, Command from setuptools.command.test import test as TestCommand class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass to py.test")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = [] def finalize_options(self): TestCommand.finalize_options(self) # self.test_args = [] # self.test_suite = True def run_tests(self): import pytest errno = pytest.main(self.pytest_args) sys.exit(errno) # Add the current directory to the module search path. sys.path.append('.') # # Constants CODE_DIRECTORY = 'pysage50' # DOCS_DIRECTORY = 'docs' TESTS_DIRECTORY = 'tests' #DATA_DIRECTORY = 'gnucash_books' PYTEST_FLAGS = ['--doctest-modules'] # define install_requires for specific Python versions python_version_specific_requires = [] def read(filename): """Return the contents of a file. :param filename: file path :type filename: :class:`str` :return: the file's content :rtype: :class:`str` """ with open(os.path.join(os.path.dirname(__file__), filename)) as f: return f.read() # Import metadata. Normally this would just be: # # from luca import metadata # # However, when we do this, we also import `luca/__init__.py'. If this # imports names from some other modules and these modules have third-party # dependencies that need installing (which happens after this file is run), the # script will crash. What we do instead is to load the metadata module by path # instead, effectively side-stepping the dependency problem. Please make sure # metadata has no dependencies, otherwise they will need to be added to # the setup_requires keyword. metadata = imp.load_source( 'metadata', os.path.join(CODE_DIRECTORY, 'metadata.py')) # as of Python >= 2.7 and >= 3.2, the argparse module is maintained within # the Python standard library, otherwise we install it as a separate package # if sys.version_info < (2, 7) or (3, 0) <= sys.version_info < (3, 3): # python_version_specific_requires.append('argparse') # See here for more options: # <http://pythonhosted.org/setuptools/setuptools.html> setup_dict = dict( name=metadata.package, version=metadata.version, author=metadata.authors[0], author_email=metadata.emails[0], maintainer=metadata.authors[0], maintainer_email=metadata.emails[0], url=metadata.url, description=metadata.description, long_description=read('README.md'), keywords=['Sage', 'python', 'binding', 'interface', ], license='MIT', platforms='any', # Find a list of classifiers here: # <http://pypi.python.org/pypi?%3Aaction=list_classifiers> classifiers=[ 'Development Status :: 3 - pre Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Financial and Insurance Industry', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.5', 'Topic :: Office/Business', 'Topic :: Office/Business :: Financial', 'Topic :: Office/Business :: Financial :: Accounting', 'Topic :: Software Development :: Libraries :: Python Modules', ], packages=find_packages(exclude=(TESTS_DIRECTORY, )), install_requires=[ # 'sqlite3', # 'pandas', ] + python_version_specific_requires, # Allow tests to be run with `python setup.py test'. tests_require=[ 'pytest', 'py', ], # console=['scripts/piecash_ledger.py','scripts/piecash_toqif.py'], scripts=[], cmdclass = {'test': PyTest}, test_suite="tests", zip_safe=False, # don't use eggs ) def main(): setup(**setup_dict) if __name__ == '__main__': main()
mit
klim-/pyplane
core/Toolbar.py
1
1723
# -*- coding: utf-8 -*- # Copyright (C) 2013 # by Klemens Fritzsche, pyplane@leckstrom.de # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. __author__ = 'Klemens Fritzsche' from PyQt4 import QtGui from matplotlib.backend_bases import NavigationToolbar2 as NavigationToolbar from matplotlib.backends.backend_qt4 import cursord class Toolbar(NavigationToolbar): """ This class hides the functionality of NavigationToolbar, and only provides the necessary functions (only zooming at the moment) """ def _init_toolbar(self): pass def draw_rubberband(self, event, x0, y0, x1, y1): height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 w = abs(x1 - x0) h = abs(y1 - y0) rect = [int(val) for val in min(x0, x1), min(y0, y1), w, h] self.canvas.drawRectangle(rect) def set_cursor(self, cursor): QtGui.QApplication.restoreOverrideCursor() QtGui.QApplication.setOverrideCursor(QtGui.QCursor(cursord[cursor])) if __package__ is None: __package__ = "core.toolbar"
gpl-3.0
kevin-intel/scikit-learn
sklearn/preprocessing/tests/test_discretization.py
3
12009
import pytest import numpy as np import scipy.sparse as sp import warnings from sklearn.preprocessing import KBinsDiscretizer from sklearn.preprocessing import OneHotEncoder from sklearn.utils._testing import ( assert_array_almost_equal, assert_array_equal, assert_allclose_dense_sparse ) X = [[-2, 1.5, -4, -1], [-1, 2.5, -3, -0.5], [0, 3.5, -2, 0.5], [1, 4.5, -1, 2]] @pytest.mark.parametrize( 'strategy, expected', [('uniform', [[0, 0, 0, 0], [1, 1, 1, 0], [2, 2, 2, 1], [2, 2, 2, 2]]), ('kmeans', [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]]), ('quantile', [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]])]) def test_fit_transform(strategy, expected): est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy=strategy) est.fit(X) assert_array_equal(expected, est.transform(X)) def test_valid_n_bins(): KBinsDiscretizer(n_bins=2).fit_transform(X) KBinsDiscretizer(n_bins=np.array([2])[0]).fit_transform(X) assert KBinsDiscretizer(n_bins=2).fit(X).n_bins_.dtype == np.dtype(int) def test_invalid_n_bins(): est = KBinsDiscretizer(n_bins=1) err_msg = ("KBinsDiscretizer received an invalid " "number of bins. Received 1, expected at least 2.") with pytest.raises(ValueError, match=err_msg): est.fit_transform(X) est = KBinsDiscretizer(n_bins=1.1) err_msg = ("KBinsDiscretizer received an invalid " "n_bins type. Received float, expected int.") with pytest.raises(ValueError, match=err_msg): est.fit_transform(X) def test_invalid_n_bins_array(): # Bad shape n_bins = np.full((2, 4), 2.) est = KBinsDiscretizer(n_bins=n_bins) err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)." with pytest.raises(ValueError, match=err_msg): est.fit_transform(X) # Incorrect number of features n_bins = [1, 2, 2] est = KBinsDiscretizer(n_bins=n_bins) err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)." with pytest.raises(ValueError, match=err_msg): est.fit_transform(X) # Bad bin values n_bins = [1, 2, 2, 1] est = KBinsDiscretizer(n_bins=n_bins) err_msg = ("KBinsDiscretizer received an invalid number of bins " "at indices 0, 3. Number of bins must be at least 2, " "and must be an int.") with pytest.raises(ValueError, match=err_msg): est.fit_transform(X) # Float bin values n_bins = [2.1, 2, 2.1, 2] est = KBinsDiscretizer(n_bins=n_bins) err_msg = ("KBinsDiscretizer received an invalid number of bins " "at indices 0, 2. Number of bins must be at least 2, " "and must be an int.") with pytest.raises(ValueError, match=err_msg): est.fit_transform(X) @pytest.mark.parametrize( 'strategy, expected', [('uniform', [[0, 0, 0, 0], [0, 1, 1, 0], [1, 2, 2, 1], [1, 2, 2, 2]]), ('kmeans', [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 2, 2, 2]]), ('quantile', [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]])]) def test_fit_transform_n_bins_array(strategy, expected): est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode='ordinal', strategy=strategy).fit(X) assert_array_equal(expected, est.transform(X)) # test the shape of bin_edges_ n_features = np.array(X).shape[1] assert est.bin_edges_.shape == (n_features, ) for bin_edges, n_bins in zip(est.bin_edges_, est.n_bins_): assert bin_edges.shape == (n_bins + 1, ) @pytest.mark.parametrize('strategy', ['uniform', 'kmeans', 'quantile']) def test_same_min_max(strategy): warnings.simplefilter("always") X = np.array([[1, -2], [1, -1], [1, 0], [1, 1]]) est = KBinsDiscretizer(strategy=strategy, n_bins=3, encode='ordinal') warning_message = ("Feature 0 is constant and will be replaced " "with 0.") with pytest.warns(UserWarning, match=warning_message): est.fit(X) assert est.n_bins_[0] == 1 # replace the feature with zeros Xt = est.transform(X) assert_array_equal(Xt[:, 0], np.zeros(X.shape[0])) def test_transform_1d_behavior(): X = np.arange(4) est = KBinsDiscretizer(n_bins=2) with pytest.raises(ValueError): est.fit(X) est = KBinsDiscretizer(n_bins=2) est.fit(X.reshape(-1, 1)) with pytest.raises(ValueError): est.transform(X) @pytest.mark.parametrize('i', range(1, 9)) def test_numeric_stability(i): X_init = np.array([2., 4., 6., 8., 10.]).reshape(-1, 1) Xt_expected = np.array([0, 0, 1, 1, 1]).reshape(-1, 1) # Test up to discretizing nano units X = X_init / 10**i Xt = KBinsDiscretizer(n_bins=2, encode='ordinal').fit_transform(X) assert_array_equal(Xt_expected, Xt) def test_invalid_encode_option(): est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode='invalid-encode') err_msg = (r"Valid options for 'encode' are " r"\('onehot', 'onehot-dense', 'ordinal'\). " r"Got encode='invalid-encode' instead.") with pytest.raises(ValueError, match=err_msg): est.fit(X) def test_encode_options(): est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode='ordinal').fit(X) Xt_1 = est.transform(X) est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode='onehot-dense').fit(X) Xt_2 = est.transform(X) assert not sp.issparse(Xt_2) assert_array_equal(OneHotEncoder( categories=[np.arange(i) for i in [2, 3, 3, 3]], sparse=False) .fit_transform(Xt_1), Xt_2) est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode='onehot').fit(X) Xt_3 = est.transform(X) assert sp.issparse(Xt_3) assert_array_equal(OneHotEncoder( categories=[np.arange(i) for i in [2, 3, 3, 3]], sparse=True) .fit_transform(Xt_1).toarray(), Xt_3.toarray()) def test_invalid_strategy_option(): est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], strategy='invalid-strategy') err_msg = (r"Valid options for 'strategy' are " r"\('uniform', 'quantile', 'kmeans'\). " r"Got strategy='invalid-strategy' instead.") with pytest.raises(ValueError, match=err_msg): est.fit(X) @pytest.mark.parametrize( 'strategy, expected_2bins, expected_3bins, expected_5bins', [('uniform', [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 2, 2], [0, 0, 1, 1, 4, 4]), ('kmeans', [0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 2, 2], [0, 0, 1, 2, 3, 4]), ('quantile', [0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 2, 2], [0, 1, 2, 3, 4, 4])]) def test_nonuniform_strategies( strategy, expected_2bins, expected_3bins, expected_5bins): X = np.array([0, 0.5, 2, 3, 9, 10]).reshape(-1, 1) # with 2 bins est = KBinsDiscretizer(n_bins=2, strategy=strategy, encode='ordinal') Xt = est.fit_transform(X) assert_array_equal(expected_2bins, Xt.ravel()) # with 3 bins est = KBinsDiscretizer(n_bins=3, strategy=strategy, encode='ordinal') Xt = est.fit_transform(X) assert_array_equal(expected_3bins, Xt.ravel()) # with 5 bins est = KBinsDiscretizer(n_bins=5, strategy=strategy, encode='ordinal') Xt = est.fit_transform(X) assert_array_equal(expected_5bins, Xt.ravel()) @pytest.mark.parametrize( 'strategy, expected_inv', [('uniform', [[-1.5, 2., -3.5, -0.5], [-0.5, 3., -2.5, -0.5], [0.5, 4., -1.5, 0.5], [0.5, 4., -1.5, 1.5]]), ('kmeans', [[-1.375, 2.125, -3.375, -0.5625], [-1.375, 2.125, -3.375, -0.5625], [-0.125, 3.375, -2.125, 0.5625], [0.75, 4.25, -1.25, 1.625]]), ('quantile', [[-1.5, 2., -3.5, -0.75], [-0.5, 3., -2.5, 0.], [0.5, 4., -1.5, 1.25], [0.5, 4., -1.5, 1.25]])]) @pytest.mark.parametrize('encode', ['ordinal', 'onehot', 'onehot-dense']) def test_inverse_transform(strategy, encode, expected_inv): kbd = KBinsDiscretizer(n_bins=3, strategy=strategy, encode=encode) Xt = kbd.fit_transform(X) Xinv = kbd.inverse_transform(Xt) assert_array_almost_equal(expected_inv, Xinv) @pytest.mark.parametrize('strategy', ['uniform', 'kmeans', 'quantile']) def test_transform_outside_fit_range(strategy): X = np.array([0, 1, 2, 3])[:, None] kbd = KBinsDiscretizer(n_bins=4, strategy=strategy, encode='ordinal') kbd.fit(X) X2 = np.array([-2, 5])[:, None] X2t = kbd.transform(X2) assert_array_equal(X2t.max(axis=0) + 1, kbd.n_bins_) assert_array_equal(X2t.min(axis=0), [0]) def test_overwrite(): X = np.array([0, 1, 2, 3])[:, None] X_before = X.copy() est = KBinsDiscretizer(n_bins=3, encode="ordinal") Xt = est.fit_transform(X) assert_array_equal(X, X_before) Xt_before = Xt.copy() Xinv = est.inverse_transform(Xt) assert_array_equal(Xt, Xt_before) assert_array_equal(Xinv, np.array([[0.5], [1.5], [2.5], [2.5]])) @pytest.mark.parametrize( 'strategy, expected_bin_edges', [('quantile', [0, 1, 3]), ('kmeans', [0, 1.5, 3])]) def test_redundant_bins(strategy, expected_bin_edges): X = [[0], [0], [0], [0], [3], [3]] kbd = KBinsDiscretizer(n_bins=3, strategy=strategy) warning_message = ("Consider decreasing the number of bins.") with pytest.warns(UserWarning, match=warning_message): kbd.fit(X) assert_array_almost_equal(kbd.bin_edges_[0], expected_bin_edges) def test_percentile_numeric_stability(): X = np.array([0.05, 0.05, 0.95]).reshape(-1, 1) bin_edges = np.array([0.05, 0.23, 0.41, 0.59, 0.77, 0.95]) Xt = np.array([0, 0, 4]).reshape(-1, 1) kbd = KBinsDiscretizer(n_bins=10, encode='ordinal', strategy='quantile') warning_message = ("Consider decreasing the number of bins.") with pytest.warns(UserWarning, match=warning_message): kbd.fit(X) assert_array_almost_equal(kbd.bin_edges_[0], bin_edges) assert_array_almost_equal(kbd.transform(X), Xt) @pytest.mark.parametrize("in_dtype", [np.float16, np.float32, np.float64]) @pytest.mark.parametrize("out_dtype", [None, np.float16, np.float32, np.float64]) @pytest.mark.parametrize('encode', ['ordinal', 'onehot', 'onehot-dense']) def test_consistent_dtype(in_dtype, out_dtype, encode): X_input = np.array(X, dtype=in_dtype) kbd = KBinsDiscretizer(n_bins=3, encode=encode, dtype=out_dtype) # a error is raised if a wrong dtype is define for the model if out_dtype not in [None, np.float32, np.float64]: with pytest.raises(ValueError, match="Valid options for 'dtype' are"): kbd.fit(X_input) else: kbd.fit(X_input) # test output dtype if out_dtype is not None: expected_dtype = out_dtype elif out_dtype is None and X_input.dtype == np.float16: # wrong numeric input dtype are cast in np.float64 expected_dtype = np.float64 else: expected_dtype = X_input.dtype Xt = kbd.transform(X_input) assert Xt.dtype == expected_dtype @pytest.mark.parametrize('input_dtype', [np.float16, np.float32, np.float64]) @pytest.mark.parametrize('encode', ['ordinal', 'onehot', 'onehot-dense']) def test_32_equal_64(input_dtype, encode): # TODO this check is redundant with common checks and can be removed # once #16290 is merged X_input = np.array(X, dtype=input_dtype) # 32 bit output kbd_32 = KBinsDiscretizer(n_bins=3, encode=encode, dtype=np.float32) kbd_32.fit(X_input) Xt_32 = kbd_32.transform(X_input) # 64 bit output kbd_64 = KBinsDiscretizer(n_bins=3, encode=encode, dtype=np.float64) kbd_64.fit(X_input) Xt_64 = kbd_64.transform(X_input) assert_allclose_dense_sparse(Xt_32, Xt_64)
bsd-3-clause
robin-lai/scikit-learn
sklearn/neighbors/unsupervised.py
117
4755
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Affects only :meth:`k_neighbors` and :meth:`kneighbors_graph` methods. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False) >>> np.asarray(nbrs[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs)
bsd-3-clause
russel1237/scikit-learn
sklearn/cluster/setup.py
263
1449
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration cblas_libs, blas_info = get_blas_info() libraries = [] if os.name == 'posix': cblas_libs.append('m') libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_dbscan_inner', sources=['_dbscan_inner.cpp'], include_dirs=[numpy.get_include()], language="c++") config.add_extension('_hierarchical', sources=['_hierarchical.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension( '_k_means', libraries=cblas_libs, sources=['_k_means.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info ) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
omerwe/PCGCs
deprecated/pcgcs_direct.py
1
39643
from __future__ import division import numpy as np import scipy.stats as stats import scipy.linalg as la import sys import random import time import os import os.path import pandas as pd import itertools np.set_printoptions(precision=4, linewidth=200) from sklearn.linear_model import LinearRegression, LogisticRegression import pcgcs_utils from pcgcs_utils import print_memory_usage # def print_memory(): # import psutil # process = psutil.Process(os.getpid()) # print 'memory usage:', process.memory_info().rss def print_sumstats(cov1, u1_0, u1_1, var_t1, cov2, u2_0=None, u2_1=None, var_t2=None, s1=None, sum_s1=None, sum_s1_sqr=None, s2=None, sum_s2=None, sum_s2_sqr=None): if (cov1 is None and cov2 is None and sum_s1 is None and sum_s2 is None): return print print print 'summary statistics for subsequent estimation:' print '-----------------------------------' if (cov1 is not None): print 'mean Q for study 1 (mean_Q1): %0.4f'%(np.mean((u1_0 + u1_1)**2)) print 'liability variance explained by covariates (var_t1): %0.4f'%(var_t1) if (cov2 is not None): print 'mean Q for study 2 (mean_Q2): %0.4f'%(np.mean((u2_0 + u2_1)**2)) print 'liability variance explained by covariates (var_t2): %0.4f'%(var_t2) if (sum_s1 is not None): print 'study 1 genotypes deflation factor (geno1_factor): %0.6f'%((sum_s1 - s1.sum()) / sum_s1) print 'study 1 squared genotypes deflation factor (sqr_geno1_factor): %0.6f'%((sum_s1_sqr - np.sum(s1**2)) / sum_s1_sqr) if (sum_s2 is not None): print 'study 2 genotypes deflation factor (geno2_factor): %0.6f'%((sum_s2 - s2.sum()) / sum_s2) print 'study 2 squared genotypes deflation factor (sqr_geno2_factor): %0.6f'%((sum_s2_sqr - np.sum(s2**2)) / sum_s2_sqr) print print def pcgc_jackknife_sig2g(X, y, numer_sig2g, denom_sig2g, pcgc_coeff=1.0, u0=None, u1=None, window_size=1000): if (u0 is not None): u_sqr = (u0 + u1)**2 qy = y * (u0+u1) else: qy = y if (window_size is None or window_size<0): window_size = X.shape[0] estimators_arr = np.empty(X.shape[0]) for i in xrange(0, X.shape[0], window_size): X_i = X[i:i+window_size] G_i = X_i.dot(X.T) / X.shape[1] indices0 = np.arange(G_i.shape[0]) G_i[indices0, i+indices0]=0 for j in xrange(G_i.shape[0]): numer_sig2g_i = numer_sig2g - 2*G_i[j].dot(qy[i+j]*qy) if (u0 is None): denom_sig2g_i = denom_sig2g - 2*G_i[j].dot(G_i[j]) else: denom_sig2g_i = denom_sig2g - 2*G_i[j].dot(G_i[j] * u_sqr[i+j]*u_sqr) estimators_arr[i+j] = numer_sig2g_i / denom_sig2g_i estimators_arr /= pcgc_coeff sig2g_var = (X.shape[0]-1)/float(X.shape[0]) * np.sum((estimators_arr - estimators_arr.mean())**2) return np.sqrt(sig2g_var) def pcgc_jackknife_corr(X1, X2, y1, y2, numer_sig2g1, denom_sig2g1, numer_sig2g2, denom_sig2g2, numer_rho, denom_rho, pcgc_coeff1=1.0, pcgc_coeff2=1.0, pcgc_coeff12=1.0, u1_0=None, u1_1=None, u2_0=None, u2_1=None, is_same=None, window_size=1000): if (window_size is None or window_size<0): window_size = X1.shape[0] if (u1_0 is not None): u1_sqr = (u1_0 + u1_1)**2 u2_sqr = (u2_0 + u2_1)**2 qy1 = y1 * (u1_0+u1_1) qy2 = y2 * (u2_0+u2_1) else: qy1 = y1 qy2 = y2 sig2g1_estimators_arr = np.empty(X1.shape[0]) sig2g2_estimators_arr = np.empty(X2.shape[0]) rho_estimators_arr = np.empty(X1.shape[0] + X2.shape[0]) #exclude individuals from study 1 for i in xrange(0, X1.shape[0], window_size): X1_i = X1[i:i+window_size] G_i = X1_i.dot(X1.T) / X1.shape[1] indices0 = np.arange(G_i.shape[0]) G_i[indices0, i+indices0]=0 for j in xrange(G_i.shape[0]): numer_sig2g1_i = numer_sig2g1 - 2*G_i[j].dot(qy1[i+j]*qy1) if (u1_0 is None): denom_sig2g1_i = denom_sig2g1 - 2*G_i[j].dot(G_i[j]) else: denom_sig2g1_i = denom_sig2g1 - 2*G_i[j].dot(G_i[j] * u1_sqr[i+j]*u1_sqr) sig2g1_estimators_arr[i+j] = numer_sig2g1_i / denom_sig2g1_i G_i = X1_i.dot(X2.T) / X1.shape[1] G_i[is_same[i:i+window_size]]=0 for j in xrange(G_i.shape[0]): numer_rho_i = numer_rho - G_i[j].dot(qy1[i+j]*qy2) if (u1_0 is None): denom_rho_i = denom_rho - G_i[j].dot(G_i[j]) else: denom_rho_i = denom_rho - G_i[j].dot(G_i[j] * u1_sqr[i+j]*u2_sqr) rho_estimators_arr[i+j] = numer_rho_i / denom_rho_i #exclude individuals from study 2 for i in xrange(0, X2.shape[0], window_size): X2_i = X2[i:i+window_size] G_i = X2_i.dot(X2.T) / X1.shape[1] indices0 = np.arange(G_i.shape[0]) G_i[indices0, i+indices0]=0 for j in xrange(G_i.shape[0]): numer_sig2g2_i = numer_sig2g2 - G_i[j].dot(qy2[i+j]*qy2) if (u2_0 is None): denom_sig2g2_i = denom_sig2g2 - 2*G_i[j].dot(G_i[j]) else: denom_sig2g2_i = denom_sig2g2 - 2*G_i[j].dot(G_i[j] * u2_sqr[i+j]*u2_sqr) sig2g2_estimators_arr[i+j] = numer_sig2g2_i / denom_sig2g2_i G_i = X2_i.dot(X1.T) / X1.shape[1] G_i[is_same.T[i:i+window_size]]=0 for j in xrange(G_i.shape[0]): numer_rho_i = numer_rho - G_i[j].dot(qy1[i+j]*qy2) if (u1_0 is None): denom_rho_i = denom_rho - G_i[j].dot(G_i[j]) else: denom_rho_i = denom_rho - G_i[j].dot(G_i[j] * u2_sqr[i+j]*u1_sqr) rho_estimators_arr[X1.shape[0]+i+j] = numer_rho_i / denom_rho_i sig2g1_estimators_arr /= pcgc_coeff1 sig2g2_estimators_arr /= pcgc_coeff2 rho_estimators_arr /= pcgc_coeff12 sig2g1_var = (X1.shape[0]-1)/float(X1.shape[0]) * np.sum((sig2g1_estimators_arr - sig2g1_estimators_arr.mean())**2) sig2g2_var = (X2.shape[0]-1)/float(X2.shape[0]) * np.sum((sig2g2_estimators_arr - sig2g2_estimators_arr.mean())**2) rho_var = (rho_estimators_arr.shape[0]-1)/float(rho_estimators_arr.shape[0]) * np.sum((rho_estimators_arr - rho_estimators_arr.mean())**2) #compute genetic correlation pseudo-values sig2g1 = numer_sig2g1 / denom_sig2g1 / pcgc_coeff1 sig2g2 = numer_sig2g2 / denom_sig2g2 / pcgc_coeff2 sig2g1_estimators_arr = np.concatenate((sig2g1_estimators_arr, np.ones(X2.shape[0])*sig2g1)) sig2g2_estimators_arr = np.concatenate((np.ones(X1.shape[0])*sig2g2, sig2g2_estimators_arr)) corr_estimators_arr = rho_estimators_arr / np.sqrt(sig2g1_estimators_arr * sig2g2_estimators_arr) corr_var = (corr_estimators_arr.shape[0]-1)/float(corr_estimators_arr.shape[0]) * np.sum((corr_estimators_arr - corr_estimators_arr.mean())**2) return np.sqrt(sig2g1_var), np.sqrt(sig2g2_var), np.sqrt(rho_var), np.sqrt(corr_var) # # # def permutation_test(G, yyT, is_same, num_perms=10000): # # # x = G.reshape(-1) # # # y = yyT.reshape(-1) # # # x = x[~(is_same.reshape(-1))] # # # y = y[~(is_same.reshape(-1))] # # # real_stat = x.dot(y) # # # null_stats = np.empty(num_perms) # # # for i in xrange(num_perms): # # # if (i>0 and i % 100 == 0): print 'finished %d/%d permutations'%(i, num_perms) # # # np.random.shuffle(y) # # # null_stats[i] = x.dot(y) # # # pvalue = np.mean(np.abs(null_stats) > np.abs(real_stat)) # # # if (pvalue < 1.0/num_perms): pvalue = 1.0/num_perms # # # return pvalue def permutation_test2(X1, y1, X2, y2, G12_issame, is_same1, is_same2, num_perms=10000): has_same = (G12_issame.shape[0] > 0) c = float(X1.shape[1]) y1 = y1.copy() y2 = y2.copy() null_stats = np.empty(num_perms) z1 = y1.dot(X1) z2 = y2.dot(X2) real_stat = z1.dot(z2) / c if has_same: real_stat -= G12_issame.dot(y1[is_same1] * y2[is_same2]) for i in xrange(num_perms): if (i>0 and i % 100 == 0): print 'finished %d/%d permutations'%(i, num_perms) np.random.shuffle(y1) np.random.shuffle(y2) z1 = y1.dot(X1) z2 = y2.dot(X2) null_stats[i] = z1.dot(z2) / c if has_same: null_stats[i] -= G12_issame.dot(y1[is_same1] * y2[is_same2]) pvalue = np.mean(np.abs(null_stats) > np.abs(real_stat)) if (pvalue < 1.0/num_perms): pvalue = 1.0/num_perms return pvalue def permutation_test_heritability(X, y, G_diag, num_perms=10000): c = float(X.shape[1]) y = y.copy() null_stats = np.empty(num_perms) z = y.dot(X) real_stat = z.dot(z) / c real_stat -= G_diag.dot(y**2) for i in xrange(num_perms): if (i>0 and i % 100 == 0): print 'finished %d/%d permutations'%(i, num_perms) np.random.shuffle(y) z = y.dot(X) null_stats[i] = z.dot(z) / c null_stats[i] -= G_diag.dot(y**2) pvalue = np.mean(np.abs(null_stats) > np.abs(real_stat)) if (pvalue < 1.0/num_perms): pvalue = 1.0/num_perms return pvalue #compute the PCGC denominator with limited memory, by only storing matrices of size (window_size x sample_size) def pcgc_denom_lowmem(X1, X2, u1_0, u1_1, u2_0, u2_1, is_same=None, window_size=1000): print_memory_usage(7) denom=0 if (window_size is None or window_size<0): window_size = X1.shape[0] for i in xrange(0, X1.shape[0], window_size): G_i = X1[i:i+window_size].dot(X2.T) if (is_same is None): indices0 = np.arange(G_i.shape[0]) G_i[indices0, i+indices0]=0 else: G_i[is_same[i:i+window_size]] = 0 u1_0_i = u1_0[i:i+window_size] u1_1_i = u1_1[i:i+window_size] denom += np.einsum('ij,ij,i,j',G_i,G_i,u1_0_i**2,u2_0**2) + np.einsum('ij,ij,i,j',G_i,G_i,u1_0_i**2,u2_1**2) + np.einsum('ij,ij,i,j',G_i,G_i,u1_1_i**2,u2_0**2) + np.einsum('ij,ij,i,j',G_i,G_i,u1_1_i**2,u2_1**2) denom += 2 * ( np.einsum('ij,ij,i,j->', G_i, G_i, u1_0_i**2,u2_0*u2_1) + np.einsum('ij,ij,i,j->', G_i, G_i, u1_0_i*u1_1_i,u2_0**2) + np.einsum('ij,ij,i,j->', G_i, G_i, u1_0_i*u1_1_i,u2_0*u2_1) + np.einsum('ij,ij,i,j->', G_i, G_i, u1_0_i*u1_1_i,u2_1*u2_0) + np.einsum('ij,ij,i,j->', G_i, G_i, u1_0_i*u1_1_i,u2_1**2) + np.einsum('ij,ij,i,j->', G_i, G_i, u1_1_i**2, u2_1*u2_0) ) denom /= X1.shape[1]**2 return denom #compute the PCGC denominator with limited memory, by only storing matrices of size (window_size x sample_size), without covariates def pcgc_denom_lowmem_nocov(X1, X2, is_same=None, window_size=1000): print_memory_usage(6) denom=0 if (window_size is None or window_size<0): window_size = X1.shape[0] for i in xrange(0, X1.shape[0], window_size): G_i = X1[i:i+window_size].dot(X2.T) if (is_same is None): indices0 = np.arange(G_i.shape[0]) G_i[indices0, i+indices0]=0 else: G_i[is_same[i:i+window_size]] = 0 denom += np.einsum('ij,ij',G_i,G_i) denom /= X1.shape[1]**2 return denom def write_sumstats(z, n, snpNames, out_file, compute_p=True): #Compute p-values t = z / np.sqrt(n) t[t>1.0] = 1.0 t[t<-1.0] = -1.0 degrees_f = n-2 TINY = 1.0e-20 stat = t * np.sqrt(degrees_f / ((1.0-t+TINY) * (1.0+t+TINY))) pvals = stats.t.sf(np.abs(stat), degrees_f)*2 if not compute_p: pvals[:] = np.zeros(pvals.shape[0]) + np.nan df = pd.DataFrame(snpNames, columns=['snpid']) df['a1'] = ['1']*len(pvals) df['a2'] = ['2']*len(pvals) df['N'] = [n]*len(pvals) df['P'] = pvals df['Z'] = z if (len(out_file) < 4 or out_file[-5:] != '.gzip' or out_file[-3:] != '.gz'): out_file += '.gz' df.to_csv(out_file, sep='\t', index=False, float_format='%0.6e', compression='gzip', na_rep='NA') def print_preamble(): print '*********************************************************************' print '* PCGC-direct for heritability and genetic correlation estimates' print '* Version 1.0.0' print '* (C) 2018 Omer Weissbrod' print '* Technion - Israel Institute of Technology' print '*********************************************************************' print #compute liability variance due to covariates def varLiab_covar(prev, tau_i, phe): var_E_t_given_y = prev * (1-prev) * (tau_i[phe>phe.mean()].mean() - tau_i[phe<phe.mean()].mean())**2 E_var_t_given_y = prev * np.var(tau_i[phe>phe.mean()]) + (1-prev) * np.var(tau_i[phe<phe.mean()]) var_t = var_E_t_given_y + E_var_t_given_y return var_t def my_linreg(X,y): R = X.T.dot(X) XTy = X.T.dot(y) L = la.cho_factor(R) coef = la.cho_solve(L, XTy) return coef #initial computations required for PCGC def regress_given_PCs(X, cov, PC_indices): assert np.all(PC_indices <= cov.shape[1]), 'given PC number cannot be larger than %d'%(cov.shape[1]) assert np.all(PC_indices > 0) assert np.all(~np.isnan(cov)) assert np.all(~np.isnan(X)) coef = my_linreg(cov[:, PC_indices-1], X) X -= cov[:, PC_indices-1].dot(coef) # linreg = LinearRegression(fit_intercept=False) # linreg.fit(cov[:, PC_indices-1], X) # X -= linreg.predict(cov[:, PC_indices-1]) return X if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() #parameters for exact computations parser.add_argument('--sumstats_only', metavar='sumstats_only', type=int, default=0, help='If set to 1, PCGC-s will only compute summary statistics and print them to files, without estimating variance components (default 0)') parser.add_argument('--bfile1', metavar='bfile1', required=True, help='plink file for study 1') parser.add_argument('--bfile2', metavar='bfile2', default=None, help='plink file for study 2') parser.add_argument('--pheno1', metavar='pheno1', required=True, help='phenotypes file for study 1') parser.add_argument('--pheno2', metavar='pheno2', default=None, help='phenotypes file for study 2') parser.add_argument('--covar1', metavar='covar1', default=None, help='covariates file for study 1') parser.add_argument('--covar2', metavar='covar2', default=None, help='covariates file for study 2') parser.add_argument('--prev1', metavar='prev1', type=float, required=True, help='population prevalence of study 1') parser.add_argument('--prev2', metavar='prev2', type=float, default=None, help='population prevalence of study 2') parser.add_argument('--extract', metavar='extract', default=None, help='file with list of SNPs to use') parser.add_argument('--keep1', metavar='keep1', default=None, help='file with list of individuals to use in study 1') parser.add_argument('--keep2', metavar='keep2', default=None, help='file with list of individuals to use in study 2') parser.add_argument('--norm', metavar='norm', default=None, help='SNPs normalization method (see help file)') parser.add_argument('--maf', metavar='maf', default=None, help='MAFs file (to be used with "--norm maf" option)') parser.add_argument('--numPCs1', metavar='numPCs1', type=int, default=0, help='#PCs to regress out of dataset 1') parser.add_argument('--numPCs2', metavar='numPCs2', type=int, default=0, help='#PCs to regress out of dataset 2') parser.add_argument('--chr', metavar='chr', type=int, default=None, help='use only SNPs from a specific chromosome') parser.add_argument('--missingPhenotype', metavar='missingPhenotype', default='-9', help='identifier for missing values (default: -9)') parser.add_argument('--center', metavar='center', type=int, default=1, help='whether to center SNPs prior to computing kinship (0 or 1, default 1)') parser.add_argument('--mem_size', metavar='mem_size', type=int, default=1000, help='The maximum number of rows in each kinship matrix to be computed. Larger values will improve run-time take up more memory') parser.add_argument('--jackknife', metavar='jackknife', type=int, default=0, help='Whether jackknife-based standard errors will be computed (0 or 1, default 1)') parser.add_argument('--num_perms', metavar='num_perms', type=int, default=0, help='number of permutation testing iterations') parser.add_argument('--z1_nocov_out', metavar='z1_nocov_out', default=None, help='output file for Z-score statistics for study 1 without covariates') parser.add_argument('--z2_nocov_out', metavar='z2_nocov_out', default=None, help='output file for Z-score statistics for study 2 without covariates') parser.add_argument('--z1_cov_out', metavar='z1_cov_out', default=None, help='output file for Z-score statistics for study 1 with covariates') parser.add_argument('--z2_cov_out', metavar='z2_cov_out', default=None, help='output file for Z-score statistics for study 2 with covariates') parser.add_argument('--Gty1_nocov_out', metavar='Gty1_nocov_out', default=None, help='output file for covariate-less summary information for individuals in study 1') parser.add_argument('--Gty2_nocov_out', metavar='Gty2_nocov_out', default=None, help='output file for covariate-less summary information for individuals in study 2') parser.add_argument('--Gty1_cov_out', metavar='Gty1_cov_out', default=None, help='output file for covariates-summary information for individuals in study 1') parser.add_argument('--Gty2_cov_out', metavar='Gty2_cov_out', default=None, help='output file for covariates-summary information for individuals in study 2') parser.add_argument('--PC1', metavar='PC1', default=None, help='comma-separated indices of covariates that are PCs in covar1 (starting from 1)') parser.add_argument('--PC2', metavar='PC2', default=None, help='comma-separated indices of covariates that are PCs in covar2 (starting from 1)') parser.add_argument('--snp1', metavar='snp1', default=None, type=int, help='read only a subset of SNPs starting from snp1, starting from 1 (must be specified with snp2)') parser.add_argument('--snp2', metavar='snp1', default=None, type=int, help='read only a subset of SNPs ending with snp2, starting from 1 (must be specified with snp1)') parser.add_argument('--snp_weights', metavar='snp_weights', default=None, help='snp weights file (two columns: snp name, weight)') args = parser.parse_args() print_preamble() #validate command line arguments ##################################################################################### if (args.bfile2 is not None): assert args.pheno2 is not None, '--pheno2 must be specified with --bfile2' assert args.prev2 is not None, '--prev2 must be specified with --bfile2' if (args.bfile2 is None): assert args.keep2 is None, '--keep2 cannot be specified without --bfile2' assert args.covar2 is None, '--covar2 cannot be specified without --bfile2' assert args.prev2 is None, '--prev2 cannot be specified without --bfile2' assert args.pheno2 is None, '--pheno2 cannot be specified without --bfile2' assert args.z2_nocov_out is None, '--z2_nocov_out cannot be specified without --bfile2' assert args.z2_cov_out is None, '--z2_cov_out cannot be specified without --bfile2' assert args.numPCs2==0, '--numPCs2 cannot be specified without --bfile2' assert args.PC2 is None, '--PC2 cannot be specified without --bfile2' if (args.numPCs1>0): assert args.PC1 is None, 'PC1 cannot be specified with numPCs1' if (args.numPCs2>0): assert args.PC2 is None, 'PC2 cannot be specified with numPCs2' if (args.PC1 is not None): assert args.covar1 is not None, '--PC1 cannot be specified without --covar1' args.PC1 = np.array(args.PC1.split(','), dtype=np.int) assert np.all(args.PC1 >= 1), '--PC1 numbers must be >=1' if (args.PC2 is not None): assert args.covar2 is not None, '--PC2 cannot be specified without --covar2' args.PC2 = np.array(args.PC2.split(','), dtype=np.int) assert np.all(args.PC2 >= 1), '--PC2 numbers must be >=1' if (args.snp1 is not None): assert args.snp1>=1, '--snp1 must be >=1' assert args.snp2 is not None, '--snp1 must be specified with --snp2' assert args.bfile2 is None, '--snp1 cannot be specified when two bfiles are provided' assert args.Gty1_nocov_out is None, 'Gty1_nocov_out cannot be specified when --snp1 is set' assert args.Gty1_cov_out is None, 'Gty1_cov_out cannot be specified when --snp1 is set' if (args.snp2 is not None): assert args.snp1 is not None, '--snp2 must be specified with --snp1' if (args.maf is not None): assert args.norm=='maf', '--maf option can only be used when "--norm maf" option is invoked' if (args.norm == 'maf'): assert args.maf is not None, 'maf file must be provided to use "--norm maf"' if (args.covar1 is None): assert args.z1_cov_out is None, 'z1_cov_out cannor be specified without covar1' assert args.Gty1_cov_out is None, 'Gty1_out cannor be specified without covar1' if (args.covar2 is None): assert args.z2_cov_out is None, 'z2_cov_out cannor be specified without covar1' assert args.Gty2_cov_out is None, 'Gty2_out cannor be specified without covar1' if (args.sumstats_only > 0): assert args.z1_nocov_out is not None or args.z1_cov_out is not None, 'z1_nocov_out or z1_cov_out must be defined when sumstats_only=1' assert args.num_perms==0, 'permutation testing can not be used when sumstats_only=1' ##################################################################################### #read and preprocess the data X1, bed1, phe1, cov1, X2, bed2, phe2, cov2 = pcgcs_utils.read_SNPs(bfile1=args.bfile1, pheno1=args.pheno1, prev1=args.prev1, covar1=args.covar1, keep1=args.keep1, bfile2=args.bfile2, pheno2=args.pheno2, prev2=args.prev2, covar2=args.covar2, keep2=args.keep2, extract=args.extract, missingPhenotype=args.missingPhenotype, chr=args.chr, norm=args.norm, maf=args.maf, center=args.center>0, snp1=args.snp1, snp2=args.snp2) assert np.all(~np.isnan(X1)) if (cov1 is not None): assert np.all(~np.isnan(cov1)) #regress out PCs s1, sum_s1, sum_s1_sqr = None, None, None if (args.PC1 is not None): print 'regressing given PCs out of bfile1' X1 = regress_given_PCs(X1, cov1, args.PC1) elif (args.numPCs1>0): print 'Regressing top %d PCs out of bfile 1'%(args.numPCs1) X1, U1, s1, sum_s1, sum_s1_sqr = pcgcs_utils.regress_PCs(X1, args.numPCs1) print 'done' if (cov1 is None): cov1 = U1 else: cov1 = np.concatenate((cov1, U1), axis=1) s2, sum_s2, sum_s2_sqr = None, None, None if (args.PC2 is not None): print 'regressing given PCs out of bfile2' X2 = regress_given_PCs(X2, cov2, args.PC2) elif (args.numPCs2>0): print 'Regressing top %d PCs out of bfile 2'%(args.numPCs2) X2, U2, s2, sum_s2, sum_s2_sqr = pcgcs_utils.regress_PCs(X2, args.numPCs2) print 'done' if (cov2 is None): cov2 = U2 else: cov2 = np.concatenate((cov2, U2), axis=1) #apply weights if (args.snp_weights is not None): print 'weighting SNPs...' df_weights = pd.read_csv(args.snp_weights, names=['snp', 'weigt'], delim_whitespace=True, header=None, index_col='snp', squeeze=True) ###import ipdb; ipdb.set_trace() assert np.all(np.isin(bed1.sid, df_weights.index)), 'not all SNPs have weights' df_weights = df_weights.loc[bed1.sid] assert df_weights.shape[0] == len(bed1.sid) snp_weights = df_weights.values assert np.all(snp_weights>=0) X1 *= np.sqrt(snp_weights * X1.shape[1]/snp_weights.sum()) if (bed2 is not None): X2 *= np.sqrt(snp_weights * X2.shape[1]/snp_weights.sum()) #print plink file sizes print_memory_usage(3.1) print 'bfile1: %d cases, %d controls, %d SNPs'%(np.sum(phe1>phe1.mean()), np.sum(phe1<=phe1.mean()), bed1.sid.shape[0]) print_memory_usage(3.2) if (args.sumstats_only==0 or args.Gty1_nocov_out is not None or args.Gty1_cov_out is not None): G1_diag = np.einsum('ij,ij->i', X1,X1) / float(X1.shape[1]) ###print 'G1_diag:', G1_diag[:10] print_memory_usage(3.3) if (bed2 is not None): if (args.sumstats_only==0 or args.Gty2_nocov_out is not None or args.Gty2_cov_out is not None): G2_diag = np.einsum('ij,ij->i', X2,X2) / float(X2.shape[1]) print 'bfile2: %d cases, %d controls, %d SNPs'%(np.sum(phe2>phe2.mean()), np.sum(phe2<=phe2.mean()), bed2.sid.shape[0]) print_memory_usage(4) #PCGC initial computations y1_norm, tau_i_1, pcgc_coeff1, ty1, u1_0, u1_1 = pcgcs_utils.prepare_PCGC(phe1, args.prev1, cov1) if (cov1 is not None): var_t1 = varLiab_covar(args.prev1, tau_i_1, phe1) else: var_t1=0 if (bed2 is None): u2_0, u2_1, var_t2 = None, None, None else: y2_norm, tau_i_2, pcgc_coeff2, ty2, u2_0, u2_1 = pcgcs_utils.prepare_PCGC(phe2, args.prev2, cov2) if (cov2 is not None): var_t2 = varLiab_covar(args.prev2, tau_i_2, phe2) else: var_t2=0 pcgc_coeff12 = np.sqrt(pcgc_coeff1 * pcgc_coeff2) #compute z-scores z1_nocov = y1_norm.dot(X1) / np.sqrt(len(phe1)) z1_withcov = (ty1 * (u1_0+u1_1)).dot(X1) if (bed2 is not None): z2_nocov = y2_norm.dot(X2) / np.sqrt(len(phe2)) z2_withcov = (ty2 * (u2_0+u2_1)).dot(X2) #write z-scores if required if (args.z1_nocov_out is not None): write_sumstats(z1_nocov, len(phe1), bed1.sid, args.z1_nocov_out) if (args.z1_cov_out is not None): write_sumstats(z1_withcov, len(phe1), bed1.sid, args.z1_cov_out, compute_p=False) if (args.z2_nocov_out is not None): write_sumstats(z2_nocov, len(phe2), bed2.sid, args.z2_nocov_out) if (args.z2_cov_out is not None): write_sumstats(z2_withcov, len(phe2), bed2.sid, args.z2_cov_out, compute_p=False) print_memory_usage(5) #write Gty files if (args.Gty1_nocov_out is not None): Gty1 = np.sqrt(G1_diag) * y1_norm df = pd.DataFrame(bed1.iid, columns=['fid', 'iid']) df['Gty1'] = Gty1 df.to_csv(args.Gty1_nocov_out, sep='\t', index=False, float_format='%0.6e', header=None) if (args.Gty2_nocov_out is not None): Gty2 = np.sqrt(G2_diag) * y2_norm df = pd.DataFrame(bed2.iid, columns=['fid', 'iid']) df['Gty2'] = Gty2 df.to_csv(args.Gty2_nocov_out, sep='\t', index=False, float_format='%0.6e', header=None) if (args.Gty1_cov_out is not None): Gty1 = np.sqrt(G1_diag) * ty1 * (u1_0 + u1_1) df = pd.DataFrame(bed1.iid, columns=['fid', 'iid']) df['Gty1'] = Gty1 df.to_csv(args.Gty1_cov_out, sep='\t', index=False, float_format='%0.6e', header=None) if (args.Gty2_cov_out is not None): Gty2 = np.sqrt(G2_diag) * ty2 * (u2_0 + u2_1) df = pd.DataFrame(bed2.iid, columns=['fid', 'iid']) df['Gty2'] = Gty2 df.to_csv(args.Gty2_cov_out, sep='\t', index=False, float_format='%0.6e', header=None) if (args.sumstats_only > 0): print_sumstats(cov1, u1_0, u1_1, var_t1, cov2, u2_0, u2_1, var_t2, s1, sum_s1, sum_s1_sqr, s2, sum_s2, sum_s2_sqr) sys.exit(0) #find overlapping individuals if (bed2 is not None): print 'marking correlations between overlapping individuals...' is_same = np.zeros((X1.shape[0], X2.shape[0]), dtype=np.bool) is_same1 = np.zeros(X1.shape[0], dtype=np.bool) is_same2 = np.zeros(X2.shape[0], dtype=np.bool) num_overlap=0 for i1, ind1 in enumerate(bed1.iid[:,1]): for i2, ind2 in enumerate(bed2.iid[:,1]): if (ind1 == ind2): is_same[i1,i2] = True is_same1[i1] = True is_same2[i2] = True num_overlap+=1 print 'found %d overlapping individuals'%(num_overlap) #G12_issame = np.mean(X1[is_same1] * X2[is_same2], axis=1) G12_issame = np.einsum('ij,ij->i', X1[is_same1], X2[is_same2]) / float(X1.shape[1]) #Compute PCGC estimates, ignore covariates #sig2g_1_nocov_old = np.sum(np.outer(y1_norm, y1_norm) * G1) / np.sum(G1**2) / pcgc_coeff1 sig2g1_numer = z1_nocov.dot(z1_nocov) * len(phe1) / float(X1.shape[1]) - G1_diag.dot(y1_norm**2) print 'computing PCGC denominator without covariates...' t0 = time.time() sig2g1_denom = pcgc_denom_lowmem_nocov(X1,X1, window_size=args.mem_size) print 'done in %0.2f seconds'%(time.time() - t0) sig2g_1_nocov = sig2g1_numer / sig2g1_denom / pcgc_coeff1 if (bed2 is not None): #sig2g_2_nocov_old = np.sum(np.outer(y2_norm, y2_norm) * G2) / np.sum(G2**2) / pcgc_coeff2 sig2g2_numer = z2_nocov.dot(z2_nocov) * len(phe2) / float(X2.shape[1]) - G2_diag.dot(y2_norm**2) sig2g2_denom = pcgc_denom_lowmem_nocov(X2,X2, window_size=args.mem_size) sig2g_2_nocov = sig2g2_numer / sig2g2_denom / pcgc_coeff2 #rho_nocov_old = np.sum(np.outer(y1_norm, y2_norm) * G12) / np.sum(G12**2) / pcgc_coeff12 rho_numer = z1_nocov.dot(z2_nocov) * np.sqrt(len(phe1) * len(phe2)) / float(X2.shape[1]) - np.sum(G12_issame * y1_norm[is_same1] * y2_norm[is_same2]) rho_denom = pcgc_denom_lowmem_nocov(X1, X2, is_same=is_same, window_size=args.mem_size) rho_nocov = rho_numer / rho_denom / pcgc_coeff12 #perform jackknife computations if (args.jackknife > 0): print 'Computing jackknife standard errors with omitted covariates...' t0 = time.time() if (bed2 is None): sig2g1_se_nocov = pcgc_jackknife_sig2g(X1, y1_norm, sig2g1_numer, sig2g1_denom, pcgc_coeff1, window_size=args.mem_size) else: sig2g1_se_nocov, sig2g2_se_nocov, rho_se_nocov, corr_se_nocov = pcgc_jackknife_corr(X1, X2, y1_norm, y2_norm, sig2g1_numer, sig2g1_denom, sig2g2_numer, sig2g2_denom, rho_numer, rho_denom, pcgc_coeff1, pcgc_coeff2, pcgc_coeff12, is_same=is_same, window_size=args.mem_size) print 'done in %0.2f seconds'%(time.time() - t0) print print 'Results when excluding covariates' print '---------------------------------' print 'study 1 h2: %0.4f'%(sig2g_1_nocov), if (args.jackknife>0): print '(%0.4f)'%(sig2g1_se_nocov), print if (bed2 is not None): print 'study 2 h2: %0.4f'%(sig2g_2_nocov), if (args.jackknife>0): print '(%0.4f)'%(sig2g2_se_nocov), print print 'genetic covariance: %0.4f'%(rho_nocov), if (args.jackknife>0): print '(%0.4f)'%(rho_se_nocov), print print 'genetic correlation: %0.4f'%(rho_nocov / np.sqrt(sig2g_1_nocov * sig2g_2_nocov)), if (args.jackknife>0): print '(%0.4f)'%(corr_se_nocov), print #permutation testing code if (args.num_perms > 0): print print 'Performing covariate-less permutation testing for heritability of study 1 with %d permutations...'%(args.num_perms) t0 = time.time() rho_pvalue_nocov = permutation_test_heritability(X1, y1_norm, G1_diag, num_perms=args.num_perms) print 'done in %0.2f seconds'%(time.time()-t0) print 'study 1 h2 p-value (excluding covariates): %0.5e'%(rho_pvalue_nocov) if (rho_pvalue_nocov < 100.0/args.num_perms): print 'WARNING: p-value is close to the possible limit due to the number of permutations. Please increase the number of permutations to obtain a more accurate result' if (bed2 is not None and args.num_perms > 0): print print 'Performing covariate-less permutation testing for heritability of study 2 with %d permutations...'%(args.num_perms) t0 = time.time() rho_pvalue_nocov = permutation_test_heritability(X2, y2_norm, G2_diag, num_perms=args.num_perms) print 'done in %0.2f seconds'%(time.time()-t0) print 'study 2 h2 p-value (excluding covariates): %0.5e'%(rho_pvalue_nocov) if (rho_pvalue_nocov < 100.0/args.num_perms): print 'WARNING: p-value is close to the possible limit due to the number of permutations. Please increase the number of permutations to obtain a more accurate result' print print 'Performing covariate-less permutation testing for genetic correlation with %d permutations...'%(args.num_perms) t0 = time.time() rho_pvalue_nocov = permutation_test2(X1, y1_norm, X2, y2_norm, G12_issame, is_same1, is_same2, num_perms=args.num_perms) print 'done in %0.2f seconds'%(time.time()-t0) print 'genetic correlation p-value (excluding covariates): %0.5e'%(rho_pvalue_nocov) if (rho_pvalue_nocov < 100.0/args.num_perms): print 'WARNING: p-value is close to the possible limit due to the number of permutations. Please increase the number of permutations to obtain a more accurate result' print print if (cov1 is not None or cov2 is not None): qty1 = ty1 * (u1_0 + u1_1) if (bed2 is not None): qty2 = ty2 * (u2_0 + u2_1) #Compute PCGC estimates, include covariates #sig2g_1_withcov_old = np.sum(np.outer(ty1, ty1)*G1*Q1) / np.sum((G1*Q1)**2) numer_sig2g1 = z1_withcov.dot(z1_withcov) / X1.shape[1] - G1_diag.dot(qty1**2) denom_sig2g1 = pcgc_denom_lowmem(X1, X1, u1_0, u1_1, u1_0, u1_1, window_size=args.mem_size) sig2g_1_withcov = numer_sig2g1 / denom_sig2g1 h2_1_withcov = sig2g_1_withcov / (1 + var_t1) if (bed2 is not None): #sig2g_2_withcov_old = np.sum(np.outer(ty2, ty2)*G2*Q2) / np.sum((G2*Q2)**2) numer_sig2g2 = z2_withcov.dot(z2_withcov) / X2.shape[1] - G2_diag.dot(qty2**2) denom_sig2g2 = pcgc_denom_lowmem(X2, X2, u2_0, u2_1, u2_0, u2_1, window_size=args.mem_size) sig2g_2_withcov = numer_sig2g2 / denom_sig2g2 h2_2_withcov = sig2g_2_withcov / (1 + var_t2) #rho_withcov_old = np.sum(np.outer(ty1, ty2)*G12*Q12) / np.sum((G12*Q12)**2) numer_rho = z1_withcov.dot(z2_withcov) / X2.shape[1] - np.sum(G12_issame * qty1[is_same1] * qty2[is_same2]) denom_rho = pcgc_denom_lowmem(X1, X2, u1_0, u1_1, u2_0, u2_1, is_same, window_size=args.mem_size) rho_withcov = numer_rho / denom_rho if (args.jackknife > 0): print 'Computing jackknife standard errors with covariates...' t0 = time.time() if (bed2 is None): sig2g1_se_withcov = pcgc_jackknife_sig2g(X1, ty1, numer_sig2g1, denom_sig2g1, u0=u1_0, u1=u1_1, window_size=args.mem_size) else: sig2g1_se_withcov, sig2g2_se_withcov, rho_se_withcov, corr_se_withcov = pcgc_jackknife_corr(X1, X2, ty1, ty2, numer_sig2g1, denom_sig2g1, numer_sig2g2, denom_sig2g2, numer_rho, denom_rho, u1_0=u1_0, u1_1=u1_1, u2_0=u2_0, u2_1=u2_1, is_same=is_same, window_size=args.mem_size) print 'done in %0.2f seconds'%(time.time()-t0) print print 'Results when including covariates' print '---------------------------------' if (args.jackknife==0): print 'study 1 h2: %0.4f (genetic variance: %0.4f)'%(h2_1_withcov, sig2g_1_withcov) else: print 'study 1 h2: %0.4f (%0.4f) (genetic variance: %0.4f (%0.4f))'%(h2_1_withcov, sig2g1_se_withcov/(1+var_t1), sig2g_1_withcov, sig2g1_se_withcov) if (bed2 is not None): if (args.jackknife==0): print 'study 2 h2: %0.4f (genetic variance: %0.4f)'%(h2_2_withcov, sig2g_2_withcov) print 'genetic covariance: %0.4f'%(rho_withcov) print 'genetic correlation: %0.4f'%(rho_withcov / np.sqrt(sig2g_1_withcov * sig2g_2_withcov)) else: print 'study 2 h2: %0.4f (%0.4f) (genetic variance: %0.4f (%0.4f))'%(h2_2_withcov, sig2g2_se_withcov/(1+var_t2), sig2g_2_withcov, sig2g2_se_withcov) print 'genetic covariance: %0.4f (%0.4f)'%(rho_withcov, rho_se_withcov) print 'genetic correlation: %0.4f (%0.4f)'%(rho_withcov / np.sqrt(sig2g_1_withcov * sig2g_2_withcov), corr_se_withcov) #permutation testing code if (args.num_perms > 0): print print 'Performing covariate-aware permutation testing for heritability of study 1 with %d permutations...'%(args.num_perms) t0 = time.time() rho_pvalue_cov = permutation_test_heritability(X1, qty1, G1_diag, num_perms=args.num_perms) print 'done in %0.2f seconds'%(time.time()-t0) print 'study 1 h2 p-value (including covariates): %0.5e'%(rho_pvalue_cov) if (rho_pvalue_cov < 100.0/args.num_perms): print 'WARNING: p-value is close to the possible limit due to the number of permutations. Please increase the number of permutations to obtain a more accurate result' if (args.covar2 is not None and args.num_perms > 0): print print 'Performing covariate-aware permutation testing for heritability of study 2 with %d permutations...'%(args.num_perms) t0 = time.time() rho_pvalue_cov = permutation_test_heritability(X2, qty2, G2_diag, num_perms=args.num_perms) print 'done in %0.2f seconds'%(time.time()-t0) print 'study 2 h2 p-value (including covariates): %0.5e'%(rho_pvalue_cov) if (rho_pvalue_cov < 100.0/args.num_perms): print 'WARNING: p-value is close to the possible limit due to the number of permutations. Please increase the number of permutations to obtain a more accurate result' print print 'Performing covariate-aware permutation testing for genetic correlation with %d permutations...'%(args.num_perms) t0 = time.time() rho_pvalue_cov = permutation_test2(X1, qty1, X2, qty2, G12_issame, is_same1, is_same2, num_perms=args.num_perms) print 'done in %0.2f seconds'%(time.time()-t0) print 'genetic correlation p-value (including covariates): %0.5e'%(rho_pvalue_cov) if (rho_pvalue_cov < 100.0/args.num_perms): print 'WARNING: p-value is close to the possible limit due to the number of permutations. Please increase the number of permutations to obtain a more accurate result' print_sumstats(cov1, u1_0, u1_1, var_t1, cov2, u2_0, u2_1, var_t2, s1, sum_s1, sum_s1_sqr, s2, sum_s2, sum_s2_sqr)
mit
joshloyal/scikit-learn
examples/plot_kernel_approximation.py
26
8069
""" ================================================== Explicit feature map approximation for RBF kernels ================================================== An example illustrating the approximation of the feature map of an RBF kernel. .. currentmodule:: sklearn.kernel_approximation It shows how to use :class:`RBFSampler` and :class:`Nystroem` to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo samplings (in the case of :class:`RBFSampler`, which uses random Fourier features) and different sized subsets of the training set (for :class:`Nystroem`) for the approximate mapping are shown. Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is still reasonably fast. Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via :class:`sklearn.linear_model.SGDClassifier`. This is not easily possible for the case of the kernelized SVM. The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage of :class:`RBFSampler` and :class:`Nystroem` is described in detail in :ref:`kernel_approximation`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Andreas Mueller <amueller@ais.uni-bonn.de> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt import numpy as np from time import time # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, pipeline from sklearn.kernel_approximation import (RBFSampler, Nystroem) from sklearn.decomposition import PCA # The digits dataset digits = datasets.load_digits(n_class=9) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.data) data = digits.data / 16. data -= data.mean(axis=0) # We learn the digits on the first half of the digits data_train, targets_train = (data[:n_samples // 2], digits.target[:n_samples // 2]) # Now predict the value of the digit on the second half: data_test, targets_test = (data[n_samples // 2:], digits.target[n_samples // 2:]) # data_test = scaler.transform(data_test) # Create a classifier: a support vector classifier kernel_svm = svm.SVC(gamma=.2) linear_svm = svm.LinearSVC() # create pipeline from kernel approximation # and linear svm feature_map_fourier = RBFSampler(gamma=.2, random_state=1) feature_map_nystroem = Nystroem(gamma=.2, random_state=1) fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), ("svm", svm.LinearSVC())]) nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), ("svm", svm.LinearSVC())]) # fit and predict using linear and kernel svm: kernel_svm_time = time() kernel_svm.fit(data_train, targets_train) kernel_svm_score = kernel_svm.score(data_test, targets_test) kernel_svm_time = time() - kernel_svm_time linear_svm_time = time() linear_svm.fit(data_train, targets_train) linear_svm_score = linear_svm.score(data_test, targets_test) linear_svm_time = time() - linear_svm_time sample_sizes = 30 * np.arange(1, 10) fourier_scores = [] nystroem_scores = [] fourier_times = [] nystroem_times = [] for D in sample_sizes: fourier_approx_svm.set_params(feature_map__n_components=D) nystroem_approx_svm.set_params(feature_map__n_components=D) start = time() nystroem_approx_svm.fit(data_train, targets_train) nystroem_times.append(time() - start) start = time() fourier_approx_svm.fit(data_train, targets_train) fourier_times.append(time() - start) fourier_score = fourier_approx_svm.score(data_test, targets_test) nystroem_score = nystroem_approx_svm.score(data_test, targets_test) nystroem_scores.append(nystroem_score) fourier_scores.append(fourier_score) # plot the results: plt.figure(figsize=(8, 8)) accuracy = plt.subplot(211) # second y axis for timeings timescale = plt.subplot(212) accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel") timescale.plot(sample_sizes, nystroem_times, '--', label='Nystroem approx. kernel') accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel") timescale.plot(sample_sizes, fourier_times, '--', label='Fourier approx. kernel') # horizontal lines for exact rbf and linear kernels: accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score, linear_svm_score], label="linear svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time, linear_svm_time], '--', label='linear svm') accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score, kernel_svm_score], label="rbf svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time, kernel_svm_time], '--', label='rbf svm') # vertical line for dataset dimensionality = 64 accuracy.plot([64, 64], [0.7, 1], label="n_features") # legends and labels accuracy.set_title("Classification accuracy") timescale.set_title("Training times") accuracy.set_xlim(sample_sizes[0], sample_sizes[-1]) accuracy.set_xticks(()) accuracy.set_ylim(np.min(fourier_scores), 1) timescale.set_xlabel("Sampling steps = transformed feature dimension") accuracy.set_ylabel("Classification accuracy") timescale.set_ylabel("Training time in seconds") accuracy.legend(loc='best') timescale.legend(loc='best') # visualize the decision surface, projected down to the first # two principal components of the dataset pca = PCA(n_components=8).fit(data_train) X = pca.transform(data_train) # Generate grid along first two principal components multiples = np.arange(-2, 2, 0.1) # steps along first component first = multiples[:, np.newaxis] * pca.components_[0, :] # steps along second component second = multiples[:, np.newaxis] * pca.components_[1, :] # combine grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] flat_grid = grid.reshape(-1, data.shape[1]) # title for the plots titles = ['SVC with rbf kernel', 'SVC (linear kernel)\n with Fourier rbf feature map\n' 'n_components=100', 'SVC (linear kernel)\n with Nystroem rbf feature map\n' 'n_components=100'] plt.tight_layout() plt.figure(figsize=(12, 5)) # predict and plot for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. plt.subplot(1, 3, i + 1) Z = clf.predict(flat_grid) # Put the result into a color plot Z = Z.reshape(grid.shape[:-1]) plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired) plt.title(titles[i]) plt.tight_layout() plt.show()
bsd-3-clause
Winand/pandas
pandas/tests/io/msgpack/test_case.py
13
2740
# coding: utf-8 from pandas.io.msgpack import packb, unpackb def check(length, obj): v = packb(obj) assert len(v) == length, \ "%r length should be %r but get %r" % (obj, length, len(v)) assert unpackb(v, use_list=0) == obj def test_1(): for o in [None, True, False, 0, 1, (1 << 6), (1 << 7) - 1, -1, -((1 << 5) - 1), -(1 << 5)]: check(1, o) def test_2(): for o in [1 << 7, (1 << 8) - 1, -((1 << 5) + 1), -(1 << 7)]: check(2, o) def test_3(): for o in [1 << 8, (1 << 16) - 1, -((1 << 7) + 1), -(1 << 15)]: check(3, o) def test_5(): for o in [1 << 16, (1 << 32) - 1, -((1 << 15) + 1), -(1 << 31)]: check(5, o) def test_9(): for o in [1 << 32, (1 << 64) - 1, -((1 << 31) + 1), -(1 << 63), 1.0, 0.1, -0.1, -1.0]: check(9, o) def check_raw(overhead, num): check(num + overhead, b" " * num) def test_fixraw(): check_raw(1, 0) check_raw(1, (1 << 5) - 1) def test_raw16(): check_raw(3, 1 << 5) check_raw(3, (1 << 16) - 1) def test_raw32(): check_raw(5, 1 << 16) def check_array(overhead, num): check(num + overhead, (None, ) * num) def test_fixarray(): check_array(1, 0) check_array(1, (1 << 4) - 1) def test_array16(): check_array(3, 1 << 4) check_array(3, (1 << 16) - 1) def test_array32(): check_array(5, (1 << 16)) def match(obj, buf): assert packb(obj) == buf assert unpackb(buf, use_list=0) == obj def test_match(): cases = [ (None, b'\xc0'), (False, b'\xc2'), (True, b'\xc3'), (0, b'\x00'), (127, b'\x7f'), (128, b'\xcc\x80'), (256, b'\xcd\x01\x00'), (-1, b'\xff'), (-33, b'\xd0\xdf'), (-129, b'\xd1\xff\x7f'), ({1: 1}, b'\x81\x01\x01'), (1.0, b"\xcb\x3f\xf0\x00\x00\x00\x00\x00\x00"), ((), b'\x90'), (tuple(range(15)), (b"\x9f\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09" b"\x0a\x0b\x0c\x0d\x0e")), (tuple(range(16)), (b"\xdc\x00\x10\x00\x01\x02\x03\x04\x05\x06\x07" b"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f")), ({}, b'\x80'), (dict([(x, x) for x in range(15)]), (b'\x8f\x00\x00\x01\x01\x02\x02\x03\x03\x04\x04\x05\x05\x06\x06\x07' b'\x07\x08\x08\t\t\n\n\x0b\x0b\x0c\x0c\r\r\x0e\x0e')), (dict([(x, x) for x in range(16)]), (b'\xde\x00\x10\x00\x00\x01\x01\x02\x02\x03\x03\x04\x04\x05\x05\x06' b'\x06\x07\x07\x08\x08\t\t\n\n\x0b\x0b\x0c\x0c\r\r\x0e\x0e' b'\x0f\x0f')), ] for v, p in cases: match(v, p) def test_unicode(): assert unpackb(packb('foobar'), use_list=1) == b'foobar'
bsd-3-clause
tongwang01/tensorflow
tensorflow/python/client/notebook.py
33
4608
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Notebook front-end to TensorFlow. When you run this binary, you'll see something like below, which indicates the serving URL of the notebook: The IPython Notebook is running at: http://127.0.0.1:8888/ Press "Shift+Enter" to execute a cell Press "Enter" on a cell to go into edit mode. Press "Escape" to go back into command mode and use arrow keys to navigate. Press "a" in command mode to insert cell above or "b" to insert cell below. Your root notebooks directory is FLAGS.notebook_dir """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import socket import sys # pylint: disable=g-import-not-at-top # Official recommended way of turning on fast protocol buffers as of 10/21/14 os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "cpp" os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION"] = "2" from tensorflow.python.platform import app from tensorflow.python.platform import flags FLAGS = flags.FLAGS flags.DEFINE_string( "password", None, "Password to require. If set, the server will allow public access." " Only used if notebook config file does not exist.") flags.DEFINE_string("notebook_dir", "experimental/brain/notebooks", "root location where to store notebooks") ORIG_ARGV = sys.argv # Main notebook process calls itself with argv[1]="kernel" to start kernel # subprocesses. IS_KERNEL = len(sys.argv) > 1 and sys.argv[1] == "kernel" def main(unused_argv): sys.argv = ORIG_ARGV if not IS_KERNEL: # Drop all flags. sys.argv = [sys.argv[0]] # NOTE(sadovsky): For some reason, putting this import at the top level # breaks inline plotting. It's probably a bug in the stone-age version of # matplotlib. from IPython.html.notebookapp import NotebookApp # pylint: disable=g-import-not-at-top notebookapp = NotebookApp.instance() notebookapp.open_browser = True # password functionality adopted from quality/ranklab/main/tools/notebook.py # add options to run with "password" if FLAGS.password: from IPython.lib import passwd # pylint: disable=g-import-not-at-top notebookapp.ip = "0.0.0.0" notebookapp.password = passwd(FLAGS.password) else: print ("\nNo password specified; Notebook server will only be available" " on the local machine.\n") notebookapp.initialize(argv=["--notebook-dir", FLAGS.notebook_dir]) if notebookapp.ip == "0.0.0.0": proto = "https" if notebookapp.certfile else "http" url = "%s://%s:%d%s" % (proto, socket.gethostname(), notebookapp.port, notebookapp.base_project_url) print("\nNotebook server will be publicly available at: %s\n" % url) notebookapp.start() return # Drop the --flagfile flag so that notebook doesn't complain about an # "unrecognized alias" when parsing sys.argv. sys.argv = ([sys.argv[0]] + [z for z in sys.argv[1:] if not z.startswith("--flagfile")]) from IPython.kernel.zmq.kernelapp import IPKernelApp # pylint: disable=g-import-not-at-top kernelapp = IPKernelApp.instance() kernelapp.initialize() # Enable inline plotting. Equivalent to running "%matplotlib inline". ipshell = kernelapp.shell ipshell.enable_matplotlib("inline") kernelapp.start() if __name__ == "__main__": # When the user starts the main notebook process, we don't touch sys.argv. # When the main process launches kernel subprocesses, it writes all flags # to a tmpfile and sets --flagfile to that tmpfile, so for kernel # subprocesses here we drop all flags *except* --flagfile, then call # app.run(), and then (in main) restore all flags before starting the # kernel app. if IS_KERNEL: # Drop everything except --flagfile. sys.argv = ([sys.argv[0]] + [x for x in sys.argv[1:] if x.startswith("--flagfile")]) app.run()
apache-2.0
mhogg/scipy
scipy/signal/waveforms.py
64
14818
# Author: Travis Oliphant # 2003 # # Feb. 2010: Updated by Warren Weckesser: # Rewrote much of chirp() # Added sweep_poly() from __future__ import division, print_function, absolute_import import numpy as np from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \ exp, cos, sin, polyval, polyint __all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly'] def sawtooth(t, width=1): """ Return a periodic sawtooth or triangle waveform. The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval ``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1]. Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum. Parameters ---------- t : array_like Time. width : array_like, optional Width of the rising ramp as a proportion of the total cycle. Default is 1, producing a rising ramp, while 0 produces a falling ramp. `width` = 0.5 produces a triangle wave. If an array, causes wave shape to change over time, and must be the same length as t. Returns ------- y : ndarray Output array containing the sawtooth waveform. Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500) >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t)) """ t, w = asarray(t), asarray(width) w = asarray(w + (t - t)) t = asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y, mask1, nan) # take t modulo 2*pi tmod = mod(t, 2 * pi) # on the interval 0 to width*2*pi function is # tmod / (pi*w) - 1 mask2 = (1 - mask1) & (tmod < w * 2 * pi) tsub = extract(mask2, tmod) wsub = extract(mask2, w) place(y, mask2, tsub / (pi * wsub) - 1) # on the interval width*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) tsub = extract(mask3, tmod) wsub = extract(mask3, w) place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub))) return y def square(t, duty=0.5): """ Return a periodic square-wave waveform. The square wave has a period ``2*pi``, has value +1 from 0 to ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in the interval [0,1]. Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum. Parameters ---------- t : array_like The input time array. duty : array_like, optional Duty cycle. Default is 0.5 (50% duty cycle). If an array, causes wave shape to change over time, and must be the same length as t. Returns ------- y : ndarray Output array containing the square waveform. Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500, endpoint=False) >>> plt.plot(t, signal.square(2 * np.pi * 5 * t)) >>> plt.ylim(-2, 2) A pulse-width modulated sine wave: >>> plt.figure() >>> sig = np.sin(2 * np.pi * t) >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2) >>> plt.subplot(2, 1, 1) >>> plt.plot(t, sig) >>> plt.subplot(2, 1, 2) >>> plt.plot(t, pwm) >>> plt.ylim(-1.5, 1.5) """ t, w = asarray(t), asarray(duty) w = asarray(w + (t - t)) t = asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y, mask1, nan) # on the interval 0 to duty*2*pi function is 1 tmod = mod(t, 2 * pi) mask2 = (1 - mask1) & (tmod < w * 2 * pi) place(y, mask2, 1) # on the interval duty*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) place(y, mask3, -1) return y def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False): """ Return a Gaussian modulated sinusoid: ``exp(-a t^2) exp(1j*2*pi*fc*t).`` If `retquad` is True, then return the real and imaginary parts (in-phase and quadrature). If `retenv` is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid. Parameters ---------- t : ndarray or the string 'cutoff' Input array. fc : int, optional Center frequency (e.g. Hz). Default is 1000. bw : float, optional Fractional bandwidth in frequency domain of pulse (e.g. Hz). Default is 0.5. bwr : float, optional Reference level at which fractional bandwidth is calculated (dB). Default is -6. tpr : float, optional If `t` is 'cutoff', then the function returns the cutoff time for when the pulse amplitude falls below `tpr` (in dB). Default is -60. retquad : bool, optional If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False. retenv : bool, optional If True, return the envelope of the signal. Default is False. Returns ------- yI : ndarray Real part of signal. Always returned. yQ : ndarray Imaginary part of signal. Only returned if `retquad` is True. yenv : ndarray Envelope of signal. Only returned if `retenv` is True. See Also -------- scipy.signal.morlet Examples -------- Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False) >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True) >>> plt.plot(t, i, t, q, t, e, '--') """ if fc < 0: raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc) if bw <= 0: raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw) if bwr >= 0: raise ValueError("Reference level for bandwidth (bwr=%.2f) must " "be < 0 dB" % bwr) # exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f) ref = pow(10.0, bwr / 20.0) # fdel = fc*bw/2: g(fdel) = ref --- solve this for a # # pi^2/a * fc^2 * bw^2 /4=-log(ref) a = -(pi * fc * bw) ** 2 / (4.0 * log(ref)) if t == 'cutoff': # compute cut_off point # Solve exp(-a tc**2) = tref for tc # tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20) if tpr >= 0: raise ValueError("Reference level for time cutoff must be < 0 dB") tref = pow(10.0, tpr / 20.0) return sqrt(-log(tref) / a) yenv = exp(-a * t * t) yI = yenv * cos(2 * pi * fc * t) yQ = yenv * sin(2 * pi * fc * t) if not retquad and not retenv: return yI if not retquad and retenv: return yI, yenv if retquad and not retenv: return yI, yQ if retquad and retenv: return yI, yQ, yenv def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True): """Frequency-swept cosine generator. In the following, 'Hz' should be interpreted as 'cycles per unit'; there is no requirement here that the unit is one second. The important distinction is that the units of rotation are cycles, not radians. Likewise, `t` could be a measurement of space instead of time. Parameters ---------- t : array_like Times at which to evaluate the waveform. f0 : float Frequency (e.g. Hz) at time t=0. t1 : float Time at which `f1` is specified. f1 : float Frequency (e.g. Hz) of the waveform at time `t1`. method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional Kind of frequency sweep. If not given, `linear` is assumed. See Notes below for more details. phi : float, optional Phase offset, in degrees. Default is 0. vertex_zero : bool, optional This parameter is only used when `method` is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1. Returns ------- y : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below. See Also -------- sweep_poly Notes ----- There are four options for the `method`. The following formulas give the instantaneous frequency (in Hz) of the signal generated by `chirp()`. For convenience, the shorter names shown below may also be used. linear, lin, li: ``f(t) = f0 + (f1 - f0) * t / t1`` quadratic, quad, q: The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola is at (0, f0). If `vertex_zero` is False, then the vertex is at (t1, f1). The formula is: if vertex_zero is True: ``f(t) = f0 + (f1 - f0) * t**2 / t1**2`` else: ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2`` To use a more general quadratic function, or an arbitrary polynomial, use the function `scipy.signal.waveforms.sweep_poly`. logarithmic, log, lo: ``f(t) = f0 * (f1/f0)**(t/t1)`` f0 and f1 must be nonzero and have the same sign. This signal is also known as a geometric or exponential chirp. hyperbolic, hyp: ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)`` f0 and f1 must be nonzero. """ # 'phase' is computed in _chirp_phase, to make testing easier. phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) # Convert phi to radians. phi *= pi / 180 return cos(phase + phi) def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True): """ Calculate the phase used by chirp_phase to generate its output. See `chirp_phase` for a description of the arguments. """ t = asarray(t) f0 = float(f0) t1 = float(t1) f1 = float(f1) if method in ['linear', 'lin', 'li']: beta = (f1 - f0) / t1 phase = 2 * pi * (f0 * t + 0.5 * beta * t * t) elif method in ['quadratic', 'quad', 'q']: beta = (f1 - f0) / (t1 ** 2) if vertex_zero: phase = 2 * pi * (f0 * t + beta * t ** 3 / 3) else: phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3) elif method in ['logarithmic', 'log', 'lo']: if f0 * f1 <= 0.0: raise ValueError("For a logarithmic chirp, f0 and f1 must be " "nonzero and have the same sign.") if f0 == f1: phase = 2 * pi * f0 * t else: beta = t1 / log(f1 / f0) phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0) elif method in ['hyperbolic', 'hyp']: if f0 == 0 or f1 == 0: raise ValueError("For a hyperbolic chirp, f0 and f1 must be " "nonzero.") if f0 == f1: # Degenerate case: constant frequency. phase = 2 * pi * f0 * t else: # Singular point: the instantaneous frequency blows up # when t == sing. sing = -f1 * t1 / (f0 - f1) phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing)) else: raise ValueError("method must be 'linear', 'quadratic', 'logarithmic'," " or 'hyperbolic', but a value of %r was given." % method) return phase def sweep_poly(t, poly, phi=0): """ Frequency-swept cosine generator, with a time-dependent frequency. This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time `t` is given by the polynomial `poly`. Parameters ---------- t : ndarray Times at which to evaluate the waveform. poly : 1-D array_like or instance of numpy.poly1d The desired frequency expressed as a polynomial. If `poly` is a list or ndarray of length n, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of numpy.poly1d, then the instantaneous frequency is ``f(t) = poly(t)`` phi : float, optional Phase offset, in degrees, Default: 0. Returns ------- sweep_poly : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above. See Also -------- chirp Notes ----- .. versionadded:: 0.8.0 If `poly` is a list or ndarray of length `n`, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is: ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of `numpy.poly1d`, then the instantaneous frequency is: ``f(t) = poly(t)`` Finally, the output `s` is: ``cos(phase + (pi/180)*phi)`` where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``, ``f(t)`` as defined above. """ # 'phase' is computed in _sweep_poly_phase, to make testing easier. phase = _sweep_poly_phase(t, poly) # Convert to radians. phi *= pi / 180 return cos(phase + phi) def _sweep_poly_phase(t, poly): """ Calculate the phase used by sweep_poly to generate its output. See `sweep_poly` for a description of the arguments. """ # polyint handles lists, ndarrays and instances of poly1d automatically. intpoly = polyint(poly) phase = 2 * pi * polyval(intpoly, t) return phase
bsd-3-clause
renhaocui/adPlatform
caseStudy.py
2
26683
__author__ = 'rencui' from afinn import Afinn from sklearn.externals import joblib import numpy import json from textstat.textstat import textstat from nltk.stem.porter import * from tokenizer import simpleTokenize import logging from scipy.sparse import hstack, csr_matrix from sklearn import svm stemmer = PorterStemmer() logging.basicConfig() def mapMention(inputFile): mentionFile = open(inputFile, 'r') outputMapper = {} for line in mentionFile: mention = json.loads(line.strip()) if mention['verified'] == 'true': verify = 1 else: verify = 0 outputMapper[mention['screen_name']] = (verify, mention['followers_count']) mentionFile.close() return outputMapper def stemContent(input): words = simpleTokenize(input) out = '' for word in words: temp = stemmer.stem(word) out += temp + ' ' return out.strip() def POSRatio(inputList): out = [] temp = [] for item in inputList: temp.append(float(item)) if sum(temp) == 0: out = [0.0, 0.0, 0.0] else: for item in temp: out.append(item / sum(temp)) return out def longestLength(input): outputLength = 0 for key, value in input.items(): length = 0 if value != '-1' and value != '_': length += 1 if value == '0': if length > outputLength: outputLength = length continue nextNode = value while nextNode != '-1' and nextNode != '_' and nextNode != '0': length += 1 nextNode = input[nextNode] if length > outputLength: outputLength = length return outputLength def POSRatio(inputList): out = [] temp = [] for item in inputList: temp.append(float(item)) if sum(temp) == 0: out = [0.0, 0.0, 0.0] else: for item in temp: out.append(item / sum(temp)) return out def outputHeads(input): output = '' for key, value in input.items(): if value[1] == 0: output += value[0] + '/' + value[2] + ' ' return output.strip() def run(group, groupTitle, outputFile='result.output'): resultFile = open(outputFile, 'a') mentionMapper = mapMention('adData/analysis/ranked/mention.json') print groupTitle resultFile.write(groupTitle + '\n') print 'group: ' + str(group) resultFile.write('group: ' + str(group) + '\n') afinn = Afinn() posFile = open('adData/analysis/groups/' + groupTitle + '/group' + str(group) + '.pos', 'r') negFile = open('adData/analysis/groups/' + groupTitle + '/group' + str(group) + '.neg', 'r') posParseLengthFile = open('adData/analysis/groups/' + groupTitle + '/parserLength' + str(group) + '.pos', 'r') negParseLengthFile = open('adData/analysis/groups/' + groupTitle + '/parserLength' + str(group) + '.neg', 'r') posHeadCountFile = open('adData/analysis/groups/' + groupTitle + '/parserHeadCount' + str(group) + '.pos', 'r') negHeadCountFile = open('adData/analysis/groups/' + groupTitle + '/parserHeadCount' + str(group) + '.neg', 'r') posPOSCountFile = open('adData/analysis/groups/' + groupTitle + '/parserPOSCount' + str(group) + '.pos', 'r') negPOSCountFile = open('adData/analysis/groups/' + groupTitle + '/parserPOSCount' + str(group) + '.neg', 'r') ids = [] contents = [] scores = [] labels = [] parseLength = [] headCount = [] usernames = [] POScounts = [] print 'loading...' for line in posFile: seg = line.strip().split(' :: ') text = seg[3] username = seg[7].split(';') score = float(seg[0]) ids.append(seg[5]) usernames.append(username) contents.append(text) scores.append(score) labels.append(1) for line in negFile: seg = line.strip().split(' :: ') text = seg[3] username = seg[7].split(';') score = float(seg[0]) ids.append(seg[5]) usernames.append(username) contents.append(text) scores.append(score) labels.append(0) for line in posParseLengthFile: parseLength.append(int(line.strip(' :: ')[0])) for line in negParseLengthFile: parseLength.append(int(line.strip(' :: ')[0])) for line in posHeadCountFile: headCount.append(int(line.strip(' :: ')[0])) for line in negHeadCountFile: headCount.append(int(line.strip(' :: ')[0])) for line in posPOSCountFile: POScounts.append(POSRatio(line.strip().split(' :: ')[0].split(' '))) for line in negPOSCountFile: POScounts.append(POSRatio(line.strip().split(' :: ')[0].split(' '))) posHeadCountFile.close() negHeadCountFile.close() posParseLengthFile.close() negParseLengthFile.close() posPOSCountFile.close() negPOSCountFile.close() posFile.close() negFile.close() semanticFeatures_train = [] semanticFeatures_test = [] classes_train = [] classes_test = [] index_test = [] for index, content in enumerate(contents): temp = [] words = simpleTokenize(content) twLen = float(len(words)) sentiScore = afinn.score(stemContent(content)) readScore = textstat.coleman_liau_index(content) temp.append(twLen) if content.count('URRL') > 0: temp.append(1) else: temp.append(0) if content.count('HHTTG') > 0: temp.append(1) else: temp.append(0) if content.count('USSERNM') > 0: temp.append(1) else: temp.append(0) temp.append(sentiScore / twLen) temp.append(readScore) temp.append(parseLength[index] / twLen) temp.append(headCount[index] / twLen) temp += POScounts[index] if content.count('!') > 0: temp.append(1) else: temp.append(0) if content.count('?') > 0: temp.append(1) else: temp.append(0) mentionFlag = 0 mentionFollowers = 0 userCount = 0.0 for user in usernames[index]: if user in mentionMapper: userCount += 1 if mentionMapper[user][0] == 1: mentionFlag = 1 mentionFollowers += mentionMapper[user][1] temp.append(mentionFlag) if userCount == 0: temp.append(0.0) else: temp.append(mentionFollowers / userCount) if index % 5 == 0: semanticFeatures_test.append(numpy.array(temp)) classes_test.append(labels[index]) index_test.append(index) else: semanticFeatures_train.append(numpy.array(temp)) classes_train.append(labels[index]) feature_train = csr_matrix(numpy.array(semanticFeatures_train)) feature_test = csr_matrix(numpy.array(semanticFeatures_test)) resultFile.flush() model = svm.SVC() model.fit(feature_train, classes_train) predictions = model.predict(feature_test) if len(predictions) != len(classes_test): print 'inference error!' for index, label in enumerate(predictions): if label == 0 and classes_test[index] == 1: print ids[index_test[index]] print contents[index_test[index]] resultFile.flush() resultFile.write('\n') resultFile.flush() resultFile.close() def run2(group, groupTitle, outputFile='result.output'): resultFile = open(outputFile, 'a') mentionMapper = mapMention('adData/analysis/ranked/mention.json') tempListFile = open('results/temp.list', 'r') excludeList = [] for line in tempListFile: excludeList.append(line.strip()) print groupTitle resultFile.write(groupTitle + '\n') print 'group: ' + str(group) resultFile.write('group: ' + str(group) + '\n') afinn = Afinn() posFile = open('adData/analysis/groups/' + groupTitle + '/group' + str(group) + '.pos', 'r') negFile = open('adData/analysis/groups/' + groupTitle + '/group' + str(group) + '.neg', 'r') posParseLengthFile = open('adData/analysis/groups/' + groupTitle + '/parserLength' + str(group) + '.pos', 'r') negParseLengthFile = open('adData/analysis/groups/' + groupTitle + '/parserLength' + str(group) + '.neg', 'r') posHeadCountFile = open('adData/analysis/groups/' + groupTitle + '/parserHeadCount' + str(group) + '.pos', 'r') negHeadCountFile = open('adData/analysis/groups/' + groupTitle + '/parserHeadCount' + str(group) + '.neg', 'r') posPOSCountFile = open('adData/analysis/groups/' + groupTitle + '/parserPOSCount' + str(group) + '.pos', 'r') negPOSCountFile = open('adData/analysis/groups/' + groupTitle + '/parserPOSCount' + str(group) + '.neg', 'r') ids = [] contents = [] scores = [] labels = [] parseLength = [] headCount = [] usernames = [] POScounts = [] print 'loading...' for line in posFile: seg = line.strip().split(' :: ') text = seg[3] username = seg[7].split(';') score = float(seg[0]) ids.append(seg[5]) usernames.append(username) contents.append(text) scores.append(score) labels.append(1) for line in negFile: seg = line.strip().split(' :: ') text = seg[3] username = seg[7].split(';') score = float(seg[0]) ids.append(seg[5]) usernames.append(username) contents.append(text) scores.append(score) labels.append(0) for line in posParseLengthFile: parseLength.append(int(line.strip(' :: ')[0])) for line in negParseLengthFile: parseLength.append(int(line.strip(' :: ')[0])) for line in posHeadCountFile: headCount.append(int(line.strip(' :: ')[0])) for line in negHeadCountFile: headCount.append(int(line.strip(' :: ')[0])) for line in posPOSCountFile: POScounts.append(POSRatio(line.strip().split(' :: ')[0].split(' '))) for line in negPOSCountFile: POScounts.append(POSRatio(line.strip().split(' :: ')[0].split(' '))) posHeadCountFile.close() negHeadCountFile.close() posParseLengthFile.close() negParseLengthFile.close() posPOSCountFile.close() negPOSCountFile.close() posFile.close() negFile.close() semanticFeatures_train = [] semanticFeatures_test = [] classes_train = [] classes_test = [] index_test = [] for index, content in enumerate(contents): temp = [] words = simpleTokenize(content) twLen = float(len(words)) sentiScore = afinn.score(stemContent(content)) readScore = textstat.coleman_liau_index(content) temp.append(twLen) if content.count('URRL') > 0: temp.append(1) else: temp.append(0) if content.count('HHTTG') > 0: temp.append(1) else: temp.append(0) if content.count('USSERNM') > 0: temp.append(1) else: temp.append(0) temp.append(sentiScore / twLen) temp.append(readScore) temp.append(parseLength[index] / twLen) temp.append(headCount[index] / twLen) temp += POScounts[index] if content.count('!') > 0: temp.append(1) else: temp.append(0) if content.count('?') > 0: temp.append(1) else: temp.append(0) mentionFlag = 0 mentionFollowers = 0 userCount = 0.0 for user in usernames[index]: if user in mentionMapper: userCount += 1 if mentionMapper[user][0] == 1: mentionFlag = 1 mentionFollowers += mentionMapper[user][1] temp.append(mentionFlag) if userCount == 0: temp.append(0.0) else: temp.append(mentionFollowers / userCount) if index % 5 == 0: semanticFeatures_test.append(numpy.array(temp)) classes_test.append(labels[index]) index_test.append(index) else: semanticFeatures_train.append(numpy.array(temp)) classes_train.append(labels[index]) feature_train = csr_matrix(numpy.array(semanticFeatures_train)) feature_test = csr_matrix(numpy.array(semanticFeatures_test)) resultFile.flush() model = svm.SVC() model.fit(feature_train, classes_train) # joblib.dump(model, 'results/full.pkl') # model = joblib.load('results/full.pkl') predictions = model.predict(feature_test) if len(predictions) != len(classes_test): print 'inference error!' for index, label in enumerate(predictions): # tempListFile.write(ids[index_test[index]]+'\n') if label == 1 and classes_test[index] == 1: print ids[index_test[index]] print contents[index_test[index]] resultFile.flush() resultFile.write('\n') resultFile.flush() tempListFile.close() resultFile.close() def run3(): mentionMapper = mapMention('adData/analysis/ranked/mention.json') tempListFile = open('results/temp.list', 'r') excludeList = [] for line in tempListFile: excludeList.append(line.strip()) groupTitle = 'totalGroup' group = 0 afinn = Afinn() posFile = open('adData/analysis/groups/' + groupTitle + '/group' + str(group) + '.pos', 'r') negFile = open('adData/analysis/groups/' + groupTitle + '/group' + str(group) + '.neg', 'r') posParseLengthFile = open('adData/analysis/groups/' + groupTitle + '/parserLength' + str(group) + '.pos', 'r') negParseLengthFile = open('adData/analysis/groups/' + groupTitle + '/parserLength' + str(group) + '.neg', 'r') posHeadCountFile = open('adData/analysis/groups/' + groupTitle + '/parserHeadCount' + str(group) + '.pos', 'r') negHeadCountFile = open('adData/analysis/groups/' + groupTitle + '/parserHeadCount' + str(group) + '.neg', 'r') posPOSCountFile = open('adData/analysis/groups/' + groupTitle + '/parserPOSCount' + str(group) + '.pos', 'r') negPOSCountFile = open('adData/analysis/groups/' + groupTitle + '/parserPOSCount' + str(group) + '.neg', 'r') ids = [] contents = [] scores = [] labels = [] parseLength = [] headCount = [] usernames = [] POScounts = [] print 'loading...' for line in posFile: seg = line.strip().split(' :: ') text = seg[3] username = seg[7].split(';') score = float(seg[0]) ids.append(seg[5]) usernames.append(username) contents.append(text) scores.append(score) labels.append(1) for line in negFile: seg = line.strip().split(' :: ') text = seg[3] username = seg[7].split(';') score = float(seg[0]) ids.append(seg[5]) usernames.append(username) contents.append(text) scores.append(score) labels.append(0) for line in posParseLengthFile: parseLength.append(int(line.strip(' :: ')[0])) for line in negParseLengthFile: parseLength.append(int(line.strip(' :: ')[0])) for line in posHeadCountFile: headCount.append(int(line.strip(' :: ')[0])) for line in negHeadCountFile: headCount.append(int(line.strip(' :: ')[0])) for line in posPOSCountFile: POScounts.append(POSRatio(line.strip().split(' :: ')[0].split(' '))) for line in negPOSCountFile: POScounts.append(POSRatio(line.strip().split(' :: ')[0].split(' '))) posHeadCountFile.close() negHeadCountFile.close() posParseLengthFile.close() negParseLengthFile.close() posPOSCountFile.close() negPOSCountFile.close() posFile.close() negFile.close() semanticFeatures_train = [] semanticFeatures_test = [] classes_train = [] classes_test = [] index_test = [] for index, content in enumerate(contents): temp = [] words = simpleTokenize(content) twLen = float(len(words)) sentiScore = afinn.score(stemContent(content)) readScore = textstat.coleman_liau_index(content) temp.append(twLen) if content.count('URRL') > 0: temp.append(1) else: temp.append(0) if content.count('HHTTG') > 0: temp.append(1) else: temp.append(0) if content.count('USSERNM') > 0: temp.append(1) else: temp.append(0) temp.append(sentiScore / twLen) temp.append(readScore) temp.append(parseLength[index] / twLen) temp.append(headCount[index] / twLen) temp += POScounts[index] if content.count('!') > 0: temp.append(1) else: temp.append(0) if content.count('?') > 0: temp.append(1) else: temp.append(0) mentionFlag = 0 mentionFollowers = 0 userCount = 0.0 for user in usernames[index]: if user in mentionMapper: userCount += 1 if mentionMapper[user][0] == 1: mentionFlag = 1 mentionFollowers += mentionMapper[user][1] temp.append(mentionFlag) if userCount == 0: temp.append(0.0) else: temp.append(mentionFollowers / userCount) if ids[index] not in excludeList: semanticFeatures_train.append(numpy.array(temp)) classes_train.append(labels[index]) else: semanticFeatures_test.append(numpy.array(temp)) classes_test.append(labels[index]) print ids[index] + '\t' + contents[index] + '\t' + str(usernames[index]) feature_train = csr_matrix(numpy.array(semanticFeatures_train)) feature_test = csr_matrix(numpy.array(semanticFeatures_test)) model = svm.SVC() model.fit(feature_train, classes_train) # joblib.dump(model, 'results/full.pkl') # model = joblib.load('results/full.pkl') predictions = model.predict(feature_test) score = model.decision_function(feature_test) print classes_test print predictions print score tempListFile.close() def trainModel(groupTitle): print 'loading...' mentionMapper = mapMention('adData/analysis/ranked/mention.json') group = 0 afinn = Afinn() posFile = open('adData/analysis/groups/' + groupTitle + '/group' + str(group) + '.pos', 'r') negFile = open('adData/analysis/groups/' + groupTitle + '/group' + str(group) + '.neg', 'r') posParseLengthFile = open('adData/analysis/groups/' + groupTitle + '/parserLength' + str(group) + '.pos', 'r') negParseLengthFile = open('adData/analysis/groups/' + groupTitle + '/parserLength' + str(group) + '.neg', 'r') posHeadCountFile = open('adData/analysis/groups/' + groupTitle + '/parserHeadCount' + str(group) + '.pos', 'r') negHeadCountFile = open('adData/analysis/groups/' + groupTitle + '/parserHeadCount' + str(group) + '.neg', 'r') posPOSCountFile = open('adData/analysis/groups/' + groupTitle + '/parserPOSCount' + str(group) + '.pos', 'r') negPOSCountFile = open('adData/analysis/groups/' + groupTitle + '/parserPOSCount' + str(group) + '.neg', 'r') ids = [] contents = [] scores = [] labels = [] parseLength = [] headCount = [] usernames = [] POScounts = [] for line in posFile: seg = line.strip().split(' :: ') text = seg[3] username = seg[7].split(';') score = float(seg[0]) ids.append(seg[5]) usernames.append(username) contents.append(text) scores.append(score) labels.append(1) for line in negFile: seg = line.strip().split(' :: ') text = seg[3] username = seg[7].split(';') score = float(seg[0]) ids.append(seg[5]) usernames.append(username) contents.append(text) scores.append(score) labels.append(0) for line in posParseLengthFile: parseLength.append(int(line.strip(' :: ')[0])) for line in negParseLengthFile: parseLength.append(int(line.strip(' :: ')[0])) for line in posHeadCountFile: headCount.append(int(line.strip(' :: ')[0])) for line in negHeadCountFile: headCount.append(int(line.strip(' :: ')[0])) for line in posPOSCountFile: POScounts.append(POSRatio(line.strip().split(' :: ')[0].split(' '))) for line in negPOSCountFile: POScounts.append(POSRatio(line.strip().split(' :: ')[0].split(' '))) posHeadCountFile.close() negHeadCountFile.close() posParseLengthFile.close() negParseLengthFile.close() posPOSCountFile.close() negPOSCountFile.close() posFile.close() negFile.close() semanticFeatures_train = [] classes_train = [] for index, content in enumerate(contents): temp = [] words = simpleTokenize(content) twLen = float(len(words)) sentiScore = afinn.score(stemContent(content)) readScore = textstat.coleman_liau_index(content) temp.append(twLen) if content.count('URRL') > 0: temp.append(1) else: temp.append(0) if content.count('HHTTG') > 0: temp.append(1) else: temp.append(0) if content.count('USSERNM') > 0: temp.append(1) else: temp.append(0) temp.append(sentiScore / twLen) temp.append(readScore) temp.append(parseLength[index] / twLen) temp.append(headCount[index] / twLen) temp += POScounts[index] if content.count('!') > 0: temp.append(1) else: temp.append(0) if content.count('?') > 0: temp.append(1) else: temp.append(0) mentionFlag = 0 mentionFollowers = 0 userCount = 0.0 for user in usernames[index]: if user in mentionMapper: userCount += 1 if mentionMapper[user][0] == 1: mentionFlag = 1 mentionFollowers += mentionMapper[user][1] temp.append(mentionFlag) if userCount == 0: temp.append(0.0) else: temp.append(mentionFollowers / userCount) semanticFeatures_train.append(numpy.array(temp)) classes_train.append(labels[index]) feature_train = csr_matrix(numpy.array(semanticFeatures_train)) model = svm.SVC() model.fit(feature_train, classes_train) joblib.dump(model, 'models/full.pkl') def extractor(): inputFile = open('infer/test.predict', 'r') tempData = {} tempOutput = {} posCount = {'N': 0, 'V': 0, 'A': 0} lengthOutput = [] headOutput = [] posOutput = [] for line in inputFile: if line.strip() != '': words = line.strip().split() tempData[words[0]] = words[6] tempOutput[int(words[0])] = (words[1], int(words[6]), words[4]) if words[4] in ['N', '^']: posCount['N'] += 1 elif words[4] == 'V': posCount['V'] += 1 elif words[4] in ['A', 'R']: posCount['A'] += 1 else: longLen = longestLength(tempData) lengthOutput.append(longLen) headOutput.append(len(outputHeads(tempOutput).split())) posOutput.append((posCount['N'], posCount['V'], posCount['A'])) tempData = {} tempOutput = {} posCount = {'N': 0, 'V': 0, 'A': 0} inputFile.close() return lengthOutput, headOutput, posOutput def infer(): print 'loading...' mentionMapper = mapMention('adData/analysis/ranked/mention.json') afinn = Afinn() mentionFile = open('infer/mention.input', 'r') inputFile = open('infer/test', 'r') contents = [] usernames = [] for line in inputFile: text = line.strip() contents.append(text) for i in range(len(contents)): usernames.append([]) for line in mentionFile: items = line.strip().split(';') if len(items) == 0: usernames.append([]) else: usernames.append(items) parseLength, headCount, POSoutput = extractor() inputFile.close() mentionFile.close() semanticFeatures_test = [] for index, content in enumerate(contents): temp = [] words = simpleTokenize(content) twLen = float(len(words)) sentiScore = afinn.score(stemContent(content)) readScore = textstat.coleman_liau_index(content) temp.append(twLen) if content.count('URRL') > 0: temp.append(1) else: temp.append(0) if content.count('HHTTG') > 0: temp.append(1) else: temp.append(0) if content.count('USSERNM') > 0: temp.append(1) else: temp.append(0) temp.append(sentiScore / twLen) temp.append(readScore) temp.append(parseLength[index] / twLen) temp.append(headCount[index] / twLen) temp += POSRatio(POSoutput[index]) if content.count('!') > 0: temp.append(1) else: temp.append(0) if content.count('?') > 0: temp.append(1) else: temp.append(0) mentionFlag = 0 mentionFollowers = 0 userCount = 0.0 for user in usernames[index]: if user in mentionMapper: userCount += 1 if mentionMapper[user][0] == 1: mentionFlag = 1 mentionFollowers += mentionMapper[user][1] temp.append(mentionFlag) if userCount == 0: temp.append(0.0) else: temp.append(mentionFollowers / userCount) semanticFeatures_test.append(numpy.array(temp)) feature_test = csr_matrix(numpy.array(semanticFeatures_test)) model = joblib.load('models/full.pkl') predictions = model.predict(feature_test) score = model.decision_function(feature_test) #print classes_test #print predictions #print numpy.count_nonzero(predictions) for index, pred in enumerate(predictions): #print pred print score[index] #print score infer() # trainModel('totalGroup') # run3() # outputFilename = 'results/test.result' # run2(3, 'simGroup', outputFile=outputFilename)
mit
shyamalschandra/scikit-learn
sklearn/utils/random.py
234
10510
# Author: Hamzeh Alsalhi <ha258@cornell.edu> # # License: BSD 3 clause from __future__ import division import numpy as np import scipy.sparse as sp import operator import array from sklearn.utils import check_random_state from sklearn.utils.fixes import astype from ._random import sample_without_replacement __all__ = ['sample_without_replacement', 'choice'] # This is a backport of np.random.choice from numpy 1.7 # The function can be removed when we bump the requirements to >=1.7 def choice(a, size=None, replace=True, p=None, random_state=None): """ choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n) size : int or tuple of ints, optional Output shape. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribtion over all entries in a. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns -------- samples : 1-D ndarray, shape (size,) The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) # doctest: +SKIP array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) # doctest: +SKIP array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) ... # doctest: +SKIP array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) ... # doctest: +SKIP array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') """ random_state = check_random_state(random_state) # Format and Verify input a = np.array(a, copy=False) if a.ndim == 0: try: # __index__ must return an integer by python rules. pop_size = operator.index(a.item()) except TypeError: raise ValueError("a must be 1-dimensional or an integer") if pop_size <= 0: raise ValueError("a must be greater than 0") elif a.ndim != 1: raise ValueError("a must be 1-dimensional") else: pop_size = a.shape[0] if pop_size is 0: raise ValueError("a must be non-empty") if None != p: p = np.array(p, dtype=np.double, ndmin=1, copy=False) if p.ndim != 1: raise ValueError("p must be 1-dimensional") if p.size != pop_size: raise ValueError("a and p must have same size") if np.any(p < 0): raise ValueError("probabilities are not non-negative") if not np.allclose(p.sum(), 1): raise ValueError("probabilities do not sum to 1") shape = size if shape is not None: size = np.prod(shape, dtype=np.intp) else: size = 1 # Actual sampling if replace: if None != p: cdf = p.cumsum() cdf /= cdf[-1] uniform_samples = random_state.random_sample(shape) idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar idx = np.array(idx, copy=False) else: idx = random_state.randint(0, pop_size, size=shape) else: if size > pop_size: raise ValueError("Cannot take a larger sample than " "population when 'replace=False'") if None != p: if np.sum(p > 0) < size: raise ValueError("Fewer non-zero entries in p than size") n_uniq = 0 p = p.copy() found = np.zeros(shape, dtype=np.int) flat_found = found.ravel() while n_uniq < size: x = random_state.rand(size - n_uniq) if n_uniq > 0: p[flat_found[0:n_uniq]] = 0 cdf = np.cumsum(p) cdf /= cdf[-1] new = cdf.searchsorted(x, side='right') _, unique_indices = np.unique(new, return_index=True) unique_indices.sort() new = new.take(unique_indices) flat_found[n_uniq:n_uniq + new.size] = new n_uniq += new.size idx = found else: idx = random_state.permutation(pop_size)[:size] if shape is not None: idx.shape = shape if shape is None and isinstance(idx, np.ndarray): # In most cases a scalar will have been made an array idx = idx.item(0) # Use samples as indices for a if a is array-like if a.ndim == 0: return idx if shape is not None and idx.ndim == 0: # If size == () then the user requested a 0-d array as opposed to # a scalar object when size is None. However a[idx] is always a # scalar and not an array. So this makes sure the result is an # array, taking into account that np.array(item) may not work # for object arrays. res = np.empty((), dtype=a.dtype) res[()] = a[idx] return res return a[idx] def random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of size (n_classes,) Optional (default=None). Class distribution of each column. If None the uniform distribution is assumed. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array('i') indices = array.array('i') indptr = array.array('i', [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != 'i': raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = astype(classes[j], np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if np.sum(class_prob_j) != 1.0: raise ValueError("Probability array at index {0} does not sum to " "one".format(j)) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError("classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format(j, classes[j].shape[0], class_prob_j.shape[0])) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement(n_population=n_samples, n_samples=nnz, random_state=random_state) indices.extend(ind_sample) # Normalize probabilites for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = (class_probability_nz / np.sum(class_probability_nz)) classes_ind = np.searchsorted(class_probability_nz_norm.cumsum(), rng.rand(nnz)) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
bsd-3-clause
erelsgl/economics
double-auction-simulations/main.AAAI18-submission.py
1
15070
#!python3 """ Simulation of single-type multi-unit double-auction mechanisms. Author: Erel Segal-Halevi Since : 2017-07 """ import numpy as np import pandas as pd from pandas import DataFrame from pandas.tools import plotting import matplotlib.pyplot as plt import math import os import random from doubleauction import MUDA,WALRAS,walrasianEquilibrium,randomTradeWithExogeneousPrice import torq_datasets_read as torq from random_datasets import randomAuctions COLUMNS=( 'Total buyers', 'Total sellers', 'Total traders', 'Min total traders', 'Total units', 'Max units per trader', 'Min units per trader', 'Normalized max units per trader', 'stddev', 'Optimal buyers', 'Optimal sellers', 'Optimal units', 'Optimal gain', 'MUDA-lottery gain', 'MUDA-Vickrey traders gain', 'MUDA-Vickrey total gain') def replicaAuctions(replicaNums:list, auctions:list): """ INPUT: auctions - list of m auctions; replicaNums - list of n integers. OUTPUT: generator of m*n auctions, where in each auction, each agent is replicated i times. """ for auctionID,auctionTraders in auctions: for replicas in replicaNums: traders = replicas * auctionTraders yield auctionID,traders def sampleAuctions(agentNums:list, auctions:list): """ INPUT: auctions - list of m auctions; agentNums - list of n integers. OUTPUT: generator of m*n auctions, where in each auction, i agents are sampled from the empirical distribution """ for auctionID,auctionTraders in auctions: for agentNum in agentNums: traders = [random.choice(auctionTraders) for i in range(agentNum)] yield auctionID,traders def simulateAuctions(auctions:list, resultsFilename:str, keyColumns:list): """ Simulate the auctions in the given generator. """ columns = keyColumns+COLUMNS results = DataFrame(columns=columns) print("\t{}".format(columns)) resultsFilenameTemp = resultsFilename+".temp" for auctionID,traders in auctions: if not traders: raise ValueError("traders for auction {} is empty", auctionID) print("Simulating auction {} with {} traders".format(auctionID,len(traders))) totalBuyers = sum([t.isBuyer for t in traders]) totalSellers = len(traders)-totalBuyers unitsPerTrader = [t.totalUnits() for t in traders] maxUnitsPerTrader = max(unitsPerTrader) minUnitsPerTrader = min(unitsPerTrader) stddev = np.sqrt(sum([t.totalUnits()**2 for t in traders])) (buyersWALRAS, sellersWALRAS, sizeWALRAS, gainWALRAS) = WALRAS(traders) (sizeMUDALottery, gainMUDALottery, gainMUDALottery, sizeMUDAVickrey, tradersGainMUDAVickrey, totalGainMUDAVickrey) = MUDA(traders, Lottery=True, Vickrey=True) resultsRow = [ *auctionID, totalBuyers, totalSellers, totalBuyers+totalSellers, min(totalBuyers,totalSellers), sum(unitsPerTrader), maxUnitsPerTrader, minUnitsPerTrader, maxUnitsPerTrader/max(1,minUnitsPerTrader), stddev, buyersWALRAS, sellersWALRAS, sizeWALRAS, gainWALRAS, gainMUDALottery, tradersGainMUDAVickrey, totalGainMUDAVickrey] print("\t{}".format(resultsRow)) results.loc[len(results)] = resultsRow results.to_csv(resultsFilenameTemp) results.to_csv(resultsFilename) os.remove(resultsFilenameTemp) return results def torqSimulationBySymbolDate(filename, combineByOrderDate=False, replicaNums=[1]): """ Treat each (symbol,date) combination as a separate auction. """ datasetFilename = "datasets/"+filename+".CSV" resultsFilename = "results/"+filename+("-combined" if combineByOrderDate else "")+"-x"+str(max(replicaNums))+".csv" return simulateAuctions(replicaAuctions(replicaNums, torq.auctionsBySymbolDate(datasetFilename, combineByOrderDate)), resultsFilename, keyColumns=("symbol","date")) def torqSimulateBySymbol(filename, combineByOrderDate=False, agentNums=[100]): """ Treat all bidders for the same symbol, in ALL dates, as a distribution of values for that symbol. """ datasetFilename = "datasets/"+filename+".CSV" resultsFilename = "results/"+filename+("-combined" if combineByOrderDate else "")+"-s"+str(max(agentNums))+".csv" return simulateAuctions(sampleAuctions(agentNums, torq.auctionsBySymbol(datasetFilename, combineByOrderDate)), resultsFilename, keyColumns=("symbol",)) ### PLOTS ### YLABEL = 'MUDA GFT divided by maximum GFT' YLIM = [0,1.05] titleFontSize = 20 legendFontSize = 20 axesFontSize = 20 markerSize = 14 def plotTorq(filename, resultsFilename=None, combineByOrderDate=False, replicaNums=None, agentNums=None, numOfBins=10, ax=None, title=None, xColumn = 'Optimal units'): if resultsFilename: pass elif replicaNums: resultsFilename = "results/"+\ filename+\ ("-combined" if combineByOrderDate else "")+\ "-x"+str(max(replicaNums))+\ ".csv" elif agentNums: resultsFilename = "results/"+\ filename+\ ("-combined" if combineByOrderDate else "")+\ "-s"+str(max(agentNums))+\ ".csv" else: raise(Error("cannot calculate resultsFilename")) plotResults(resultsFilename, xColumn=xColumn, numOfBins=numOfBins, ax=ax, title=title) def plotResults(resultsFilename=None, xColumn='Min total traders', numOfBins=10, ax=None, title=None): if not ax: ax = plt.subplot(1, 1, 1) if not title: title = resultsFilename print("plotting",resultsFilename) results = pd.read_csv(resultsFilename) results['Optimal market size'] = (results['Optimal buyers']+results['Optimal sellers']) / 2 results['Normalized market size'] = results['Optimal units'] / (results['Max units per trader']) results['log10(M)'] = np.log(results['Max units per trader'])/np.log(10) print(len(results), " auctions") results = results[results['Optimal gain']>0] print(len(results), " auctions with positive optimal gain") for field in ['MUDA-lottery', 'MUDA-Vickrey traders', 'MUDA-Vickrey total']: results[field+' ratio'] = results[field+' gain'] / results['Optimal gain'] if numOfBins: results_bins = results.groupby(pd.cut(results[xColumn],numOfBins)).mean() else: results_bins = results.groupby(results[xColumn]).mean() results_bins.plot(x=xColumn, y='MUDA-Vickrey total ratio', style=['b^-'], ax=ax, markersize=markerSize) results_bins.plot(x=xColumn, y='MUDA-Vickrey traders ratio', style=['gv-'], ax=ax, markersize=markerSize) results_bins.plot(x=xColumn, y='MUDA-lottery ratio', style=['ro-'], ax=ax, markersize=markerSize) #plt.legend(loc=0,prop={'size':legendFontSize}) ax.legend_.remove() ax.set_title(title, fontsize= titleFontSize, weight='bold') ax.set_ylabel(YLABEL, fontsize= axesFontSize) ax.tick_params(axis='both', which='major', labelsize=axesFontSize) ax.tick_params(axis='both', which='minor', labelsize=axesFontSize) ax.set_ylim(YLIM) ### MAIN PROGRAM ### MUDA.LOG = randomTradeWithExogeneousPrice.LOG = False def torqSimulation(): numOfBins = 100 numOfTraderss=list(range(10,1000,10))*1 filename = "901101-910131-SOD" #"910121-910121-IBM-SOD" # "901101-910131-SOD" # "901101-910131- SOD-NORM" # if createResults: torqSimulateBySymbol(filename, combineByOrderDate=True, agentNums=numOfTraderss) torqSimulateBySymbol(filename, combineByOrderDate=False, agentNums=numOfTraderss) #torqSimulateBySymbol(filename+"-NORM", combineByOrderDate=False, agentNums=numOfTraderss) #torqSimulateBySymbol(filename+"-NORM", combineByOrderDate=True, agentNums=numOfTraderss) #plotTorq(filename=filename, combineByOrderDate=False, agentNums=numOfTraderss, numOfBins=numOfBins) # plotTorq(filename=filename, combineByOrderDate=True, agentNums=numOfTraderss, numOfBins=numOfBins, # ax = plt.subplot(1,1,1), title="Auctions based on TORQ database", xColumn="Optimal units") # plt.xlabel('Optimal #units (k)') ax = plt.subplot(1,2,2) plotTorq(filename=filename, combineByOrderDate=True, agentNums=numOfTraderss, numOfBins=numOfBins, ax=ax, title="TORQ; combined", xColumn="Total traders") ax.set_xlabel('Total #traders', fontsize=axesFontSize) ax.set_xlim([0,1000]) ax.set_ylabel("") ax = plt.subplot(1,2,1, sharey=None) plotTorq(filename=filename, combineByOrderDate=False, agentNums=numOfTraderss, numOfBins=numOfBins, ax=ax, title="TORQ; additive", xColumn="Total traders") ax.set_xlabel('Total #traders', fontsize=axesFontSize) ax.set_xlim([0,1000]) plt.show() # ax = plt.subplot(1,2,2) # plotTorq(filename=filename+"-NORM", combineByOrderDate=True, agentNums=numOfTraderss, numOfBins=numOfBins, # ax=ax, title="TORQ; normalized, combined", xColumn="Total traders") # ax.set_xlabel('Total #traders', fontsize=axesFontSize) # ax.set_xlim([0,1000]) # ax = plt.subplot(1,2,1, sharey=ax) # plotTorq(filename=filename+"-NORM", combineByOrderDate=False, agentNums=numOfTraderss, numOfBins=numOfBins, ax=ax, title="TORQ; normalized, additive", xColumn="Total traders") # ax.set_xlabel('Total #traders', fontsize=axesFontSize) # ax.set_xlim([0,1000]) # plt.show() # plotTorq(filename=filename+"-NORM", combineByOrderDate=True, agentNums=numOfTraderss, numOfBins=numOfBins, # ax = plt.subplot(2,1,2)) # plt.show() def randomSimulation(numOfAuctions = 100): numOfTraderss = range(2000000, 42000000, 2000000) minNumOfUnitsPerTrader = 10 maxNumOfUnitsPerTraders = [100,1000,10000,1000000,10000000,100000000,100000] meanValue = 500 maxNoiseSizes = [50,100,150,200,300,350,400,450,500,250] numOfBins = 20 # general filenameTraders = "results/random-traders-{}units-{}noise.csv".format(maxNumOfUnitsPerTraders[-1],maxNoiseSizes[-1]) filenameUnitsFixedTraders = "results/random-units-{}traders-{}noise.csv".format(numOfTraderss[-1],maxNoiseSizes[-1]) filenameUnitsFixedVirtual = "results/random-units-{}virtual-{}noise.csv".format(numOfTraderss[-1],maxNoiseSizes[-1]) filenameNoise = "results/random-noise-{}traders-{}units.csv".format(numOfTraderss[-1],maxNumOfUnitsPerTraders[3]) # additive filenameTradersAdd = "results/random-traders-{}units-{}noise-additive.csv".format(maxNumOfUnitsPerTraders[3],maxNoiseSizes[-1]) filenameUnitsAdd = "results/random-units-{}traders-{}noise-additive.csv".format(numOfTraderss[-1],maxNoiseSizes[-1]) filenameNoiseAdd = "results/random-noise-{}traders-{}units-additive.csv".format(numOfTraderss[-1],maxNumOfUnitsPerTraders[3]) if createResults: keyColumns=("numOfTraders","minNumOfUnitsPerTrader","maxNumOfUnitsPerTrader","maxNoiseSize") ### non-additive simulateAuctions(randomAuctions( ### as function of #traders numOfAuctions, numOfTraderss, minNumOfUnitsPerTrader, maxNumOfUnitsPerTraders[-1:], meanValue, maxNoiseSizes[-1:], fixedNumOfVirtualTraders=True), filenameTraders, keyColumns=keyColumns) simulateAuctions(randomAuctions( ### as function of m - fixed total units numOfAuctions, numOfTraderss[-1:], minNumOfUnitsPerTrader, maxNumOfUnitsPerTraders, meanValue, maxNoiseSizes[-1:], fixedNumOfVirtualTraders=True), filenameUnitsFixedVirtual, keyColumns=keyColumns) # simulateAuctions(randomAuctions( ### as function of m - fixed total traders - TOO LONG # numOfAuctions, [100], minNumOfUnitsPerTrader, maxNumOfUnitsPerTraders, meanValue, maxNoiseSizes[-1:], fixedNumOfVirtualTraders=False), # filenameUnitsFixedTraders, keyColumns=keyColumns) simulateAuctions(randomAuctions( ### as function of noise numOfAuctions, numOfTraderss[-1:], minNumOfUnitsPerTrader, maxNumOfUnitsPerTraders[-1:], meanValue, maxNoiseSizes, fixedNumOfVirtualTraders=True), filenameNoise, keyColumns=keyColumns) ### additive # simulateAuctions(randomAuctions( ### as function of #traders # numOfAuctions, numOfTraderss, maxNumOfUnitsPerTraders[3], maxNumOfUnitsPerTraders[-1:], meanValue, maxNoiseSizes[-1:], fixedNumOfVirtualTraders=True), # filenameTradersAdd, keyColumns=keyColumns) # # simulateAuctions(randomAuctions( ### as function of m - fixed total units # # numOfAuctions, numOfTraderss[-1:], maxNumOfUnitsPerTraders, meanValue, maxNoiseSizes[-1:],isAdditive=True, fixedNumOfVirtualTraders=True), # # filenameUnitsAdd, keyColumns=keyColumns) # simulateAuctions(randomAuctions( ### as function of noise # numOfAuctions, numOfTraderss[-1:], maxNumOfUnitsPerTraders[3], maxNumOfUnitsPerTraders[-1:], meanValue, maxNoiseSizes, fixedNumOfVirtualTraders=True), # filenameNoiseAdd, keyColumns=keyColumns) # # simulateAuctions(randomAuctions( ### as function of m - fixed total traders # # numOfAuctions, [100], maxNumOfUnitsPerTraders, meanValue, maxNoiseSizes[-1:], isAdditive=True, fixedNumOfVirtualTraders=False), # # filenameUnitsFixedTraders, keyColumns=keyColumns) TITLESTART = ""# "Uniform; " ### non-additive ax=plt.subplot(1,2,1) plotResults(filenameTraders,"Total traders",numOfBins, ax, title= TITLESTART+"m={},M={},noise={}".format(minNumOfUnitsPerTrader,maxNumOfUnitsPerTraders[-1],maxNoiseSizes[-1])) ax.set_xlabel('Total #traders', fontsize=axesFontSize) ax.set_xlim([0,1000]) # ax=plt.subplot(1,1,1) # plotResults(filenameTraders,"Optimal units",numOfBins, ax, title= # TITLESTART+"m={},M={},noise={}".format(minNumOfUnitsPerTrader,maxNumOfUnitsPerTraders[3],maxNoiseSizes[-1])) # plt.xlabel('Optimal #units (k)') # plt.show() ax=plt.subplot(1,2,2, sharey=None) plotResults(filenameUnitsFixedVirtual,"log10(M)",numOfBins=None, ax=ax, title=TITLESTART+"m={},units={},noise={}".format(minNumOfUnitsPerTrader,numOfTraderss[-1],maxNoiseSizes[-1])) #labels = [""]+["{:.0e}".format(t) for t in sorted(maxNumOfUnitsPerTraders)] ax.set_xlim([1,8]) ax.set_xticklabels(["","100","1e3","1e4","1e5","1e6","1e7","1e8"]) ax.set_xlabel('Max #units per trader (M)', fontsize=axesFontSize) ax.set_ylabel("") plt.show() # plotResults(filenameUnitsFixedTraders,"maxNumOfUnitsPerTrader",numOfBins, plt.subplot(1,1,1), # title="traders={}, noise={}".format(numOfTraderss[-1],maxNoiseSizes[-1])) # plt.xlabel('#units per trader (M)') # plt.show() # plotResults(filenameNoise,"maxNoiseSize",numOfBins, plt.subplot(1,1,1), # title=TITLESTART+"units={},m={},M={}".format(numOfTraderss[-1],minNumOfUnitsPerTrader,maxNumOfUnitsPerTraders[3])) # plt.xlabel('Max noise size (A)', fontsize=axesFontSize) # plt.show() ### additive # # plotResults(filenameTradersAdd,"numOfTraders",numOfBins, plt.subplot(1,1,1), title=TITLESTART+"m={},M={},n oise={}, additive".format(minNumOfUnitsPerTrader,maxNumOfUnitsPerTraders[3],maxNoiseSizes[-1])) # # plt.xlabel('total #units') # plotResults(filenameTradersAdd,"Optimal units",numOfBins, plt.subplot(1,1,1), # title=TITLESTART+"m={},M={},noise={},additive".format(minNumOfUnitsPerTrader, maxNumOfUnitsPerTraders[3],maxNoiseSizes[-1])) # plt.xlabel('optimal #units (k)') # plt.show() # # # plotResults(filenameUnitsAdd,"maxNumOfUnitsPerTrader",numOfBins, plt.subplot(1,1,1), # # title=TITLESTART+"traders={},noise={},additive".format(numOfTraderss[-1],maxNoiseSizes[-1])) # # plt.ylabel('') # plotResults(filenameNoiseAdd,"maxNoiseSize",numOfBins, plt.subplot(1,1,1), # title=TITLESTART+"traders={},m={},M={},additive".format(numOfTraderss[-1],minNumOfUnitsPerTrader, maxNumOfUnitsPerTraders[3])) # plt.xlabel('Max noise size (A)') # plt.show() createResults = False # True # torqSimulation() randomSimulation(numOfAuctions = 10)
lgpl-2.1
jhamrick/cogsci-proceedings-analysis
scraper.py
1
2997
import urllib2 import pandas as pd from bs4 import BeautifulSoup, element def load_html(url): response = urllib2.urlopen(url) html = response.read().replace("&nbsp;", "") return html def get_papers_table(year): url = "https://mindmodeling.org/cogsci{}/".format(year) soup = BeautifulSoup(load_html(url)) tables = soup.find_all("table") tds = tables[5].find_all("td") tds = [td for td in tds if len(td.contents) > 0] paper_type = None papers = [] paper = {} for td in tds: elem = td.contents[0] if isinstance(elem, element.NavigableString): paper['authors'] = unicode(elem) paper['year'] = year paper['section'] = paper_type papers.append(paper) paper = {} elif elem.name == 'a': href = url + elem.attrs['href'] title = "".join(elem.contents) paper['url'] = href paper['title'] = title elif elem.name == 'h2': section_name, = elem.contents paper_type = section_name.strip() return pd.DataFrame(papers) def get_papers_list(year): url = "https://mindmodeling.org/cogsci{}/".format(year) html = load_html(url) html = html.replace("<li>", "").replace("<li id=session>", "") soup = BeautifulSoup(html) papers = [] paper = {} paper_type = None for elem in soup.findAll("a"): if not isinstance(elem.contents[0], element.NavigableString): continue sibling = elem.findNextSibling() if not hasattr(sibling, "name"): continue if sibling.name != "ul": continue toplevel = elem.findParent().findParent() break for section in toplevel.contents: if isinstance(section, element.NavigableString): paper_type = section.strip() continue for elem in section.find_all("a"): href = url + elem.attrs['href'] try: title = "".join(elem.contents) except TypeError: continue paper = {} paper['year'] = year paper['url'] = href paper['title'] = title paper['section'] = paper_type sibling = elem.findNextSibling() authors, = sibling.contents paper['authors'] = unicode(authors) papers.append(paper) return pd.DataFrame(papers) def get_papers(): papers = pd.concat([ get_papers_table(2014), get_papers_list(2013), get_papers_list(2012), get_papers_list(2011), get_papers_list(2010) ]) papers = papers\ .set_index('url')\ .sort() if papers.isnull().any().any(): raise RuntimeError("some entries are null") return papers if __name__ == "__main__": pathname = "cogsci_proceedings_raw.csv" papers = get_papers() papers.to_csv(pathname, encoding='utf-8')
mit
Azeret/galIMF
plot_stellar_yield_table.py
1
38495
import time import math import matplotlib.pyplot as plt import numpy as np from scipy import interpolate import element_abundances_solar reference_name = 'Anders1989' H_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'H') # He_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'He') C_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'C') # N_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'N') O_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'O') Mg_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'Mg') Fe_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'Fe') Si_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'Si') Ca_abundances_solar = element_abundances_solar.function_solar_element_abundances(reference_name, 'Ca') def plot_lifetime_and_finalmass(): Z2_list = [0.0004, 0.004, 0.008, 0.012] file = open('yield_tables/rearranged/setllar_final_mass_from_portinari98/portinari98_Z=0.004.txt', 'r') data = file.readlines() file.close() list2 = str.split(data[3]) list_ini_mass = [] for j in list2: list_ini_mass.append(math.log(float(j), 10)) list_fin_mass = [] i = len(Z2_list) - 1 while i > -1: file = open('yield_tables/rearranged/setllar_final_mass_from_portinari98/portinari98_Z={}.txt'.format(Z2_list[i]), 'r') data = file.readlines() file.close() list2 = str.split(data[5]) list3 = [] for j in list2: list3.append(math.log(float(j), 10)) list = [float(data[1]), list3] list_fin_mass.append(list) (i) = (i - 1) color_list_ = [] for i in range(len(list_fin_mass)): ZZZ = list_fin_mass[i][0] Z_box = math.log(ZZZ, 10) - math.log(0.01886, 10) color_list_.append(round(((Z_box+7)**4.001 - (-6.001 + 7) ** 4.001) / ((1 + 7) ** 4.001 - (-6.001 + 7) ** 4.001) * 1000)) colors = plt.cm.hsv_r(np.linspace(0, 1, 1000)) # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(21, figsize=(4, 3.5)) # plt.xlim(-1.5, 2.5) # plt.ylim(-1.5, 1.5) # i = len(Z2_list) - 1 # while i > -1: # plt.plot(list_ini_mass, list_fin_mass[i][1], label='Z={}'.format(list_fin_mass[i][0])) # (i) = (i - 1) # plt.plot([-2, 3], [-2, 3], ls='dashed', c='k', lw=0.7) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$ [$M_\odot$])') # plt.ylabel(r'log$_{10}$($M_{\rm *, final}$ [$M_\odot$])') # plt.tight_layout() # plt.savefig('Interpolated_stellar_final_mass.pdf', dpi=250) list_lifetime = [] i = len(Z2_list) - 1 while i > -1: file = open( 'yield_tables/rearranged/setllar_lifetime_from_portinari98/portinari98_Z={}.txt'.format(Z2_list[i]), 'r') data = file.readlines() file.close() list2 = str.split(data[5]) list3 = [] for j in list2: list3.append(math.log(float(j), 10)) list = [float(data[1]), list3] list_lifetime.append(list) (i) = (i - 1) # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(22, figsize=(4, 3.5)) # plt.xlim(-1.5, 2.5) # plt.ylim(6, 15) # i = len(Z2_list) - 1 # while i > -1: # plt.plot(list_ini_mass, list_lifetime[i][1], label='Z={}'.format(list_fin_mass[i][0])) # (i) = (i - 1) # # plt.plot([-2, 3], [-2, 3], ls='dashed', c='k', lw=0.7) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$ [$M_\odot$])') # plt.ylabel(r'log$_{10}$(life time [yr])') # plt.tight_layout() # plt.savefig('Interpolated_stellar_lifetime.pdf', dpi=250) ########## Metallicity_origen = [0.008, 0.02] Age_origen = [ [6.47E+10, 3.54E+10, 2.09E+10, 1.30E+10, 8.46E+09, 5.72E+09, 4.12E+09, 2.92E+09, 2.36E+09, 2.18E+09, 1.82E+09, 1.58E+09, 1.41E+09, 1.25E+09, 1.23E+09, 6.86E+08, 4.12E+08, 1.93E+08, 1.15E+08, 7.71E+07, 5.59E+07, 3.44E+07, 2.10E+07, 1.49E+07, 1.01E+07, 6.65E+06, 5.30E+06, 4.15E+06, 3.44E+06, 3.32E+06], [7.92E+10, 4.45E+10, 2.61E+10, 1.59E+10, 1.03E+10, 6.89E+09, 4.73E+09, 3.59E+09, 2.87E+09, 2.64E+09, 2.18E+09, 1.84E+09, 1.59E+09, 1.38E+09, 1.21E+09, 7.64E+08, 4.56E+08, 2.03E+08, 1.15E+08, 7.45E+07, 5.31E+07, 3.17E+07, 1.89E+07, 1.33E+07, 9.15E+06, 6.13E+06, 5.12E+06, 4.12E+06, 3.39E+06, 3.23E+06]] Age_012 = [] for i in range(len(Age_origen[0])): Age_012.append((Age_origen[0][i]*2+Age_origen[1][i])/3) Remnant_mass_origen = [ [1.35, 1.48, 1.84, 2.04, 6.9, 12.5, 5.69, 9.89], [1.31, 1.44, 1.87, 2.11, 7.18, 2.06, 2.09, 2.11] ] Remnant_mass_012 = [] for i in range(len(Remnant_mass_origen[0])): Remnant_mass_012.append((Remnant_mass_origen[0][i]*2+Remnant_mass_origen[1][i])/3) Mass = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 12., 15., 20., 30., 40., 60., 100, 120] Metallicity = [0.0004, 0.004, 0.008, 0.12] Age = [ [4.28E+10, 2.37E+10, 1.41E+10, 8.97E+09, 6.03E+09, 4.23E+09, 3.08E+09, 2.34E+09, 1.92E+09, 1.66E+09, 1.39E+09, 1.18E+09, 1.11E+09, 9.66E+08, 8.33E+08, 4.64E+08, 3.03E+08, 1.61E+08, 1.01E+08, 7.15E+07, 5.33E+07, 3.42E+07, 2.13E+07, 1.54E+07, 1.06E+07, 6.90E+06, 5.45E+06, 4.20E+06, 3.32E+06, 3.11E+06], [5.35E+10, 2.95E+10, 1.73E+10, 1.09E+10, 7.13E+09, 4.93E+09, 3.52E+09, 2.64E+09, 2.39E+09, 1.95E+09, 1.63E+09, 1.28E+09, 1.25E+09, 1.23E+09, 1.08E+09, 5.98E+08, 3.67E+08, 1.82E+08, 1.11E+08, 7.62E+07, 5.61E+07, 3.51E+07, 2.14E+07, 1.52E+07, 1.05E+07, 6.85E+06, 5.44E+06, 4.19E+06, 3.38E+06, 3.23E+06], [6.47E+10, 3.54E+10, 2.09E+10, 1.30E+10, 8.46E+09, 5.72E+09, 4.12E+09, 2.92E+09, 2.36E+09, 2.18E+09, 1.82E+09, 1.58E+09, 1.41E+09, 1.25E+09, 1.23E+09, 6.86E+08, 4.12E+08, 1.93E+08, 1.15E+08, 7.71E+07, 5.59E+07, 3.44E+07, 2.10E+07, 1.49E+07, 1.01E+07, 6.65E+06, 5.30E+06, 4.15E+06, 3.44E+06, 3.32E+06], Age_012] len_mass = len(Mass) log_Mass = [] for i in range(len_mass): log_Mass.append(math.log(Mass[i], 10)) len_metal = len(Metallicity) log_Metallicity = [] for i in range(len_metal): log_Metallicity.append(math.log(Metallicity[i], 10)) log_Age = [] for i in range(len_metal): log_Age.append([]) for j in range(len_mass): log_Age[i].append(math.log(Age[i][j], 10)) fig, axs = plt.subplots(2, 1, sharex=True, figsize=(4, 4)) i = 0 while i < len(Z2_list): ZZZ = list_fin_mass[i][0] Z_box = round(math.log(ZZZ, 10)-math.log(0.01886, 10), 2) axs[0].plot(list_ini_mass, list_lifetime[i][1], lw=(6-i)/2, label='Z={}, [Z]={}'.format(ZZZ, Z_box), color=colors[color_list_[i]]) (i) = (i + 1) i = len_metal-1 # while i > -1: # axs[0].scatter(log_Mass, log_Age[i], s=3, marker='*', edgecolors='w', linewidth='0.1', zorder=10) # (i) = (i - 1) axs[0].plot([-1, 2], [7, 7]) axs[0].plot([math.log(17, 10), math.log(17, 10)], [6, 15]) # axs[0].set_yticks(np.arange(6, 16, 2)) axs[0].set_ylim(6, 15) axs[0].set_ylabel(r'log$_{10}$(life time [yr])') axs[0].legend(prop={'size': 6}, loc='best') Mass = [ [9, 12, 15, 20, 30, 40, 60, 100, 120], [9, 12, 15, 20, 30, 40, 100, 120], [9, 12, 15, 20, 30, 40, 60, 120], [9, 12, 15, 20, 30, 40, 60, 120] ] Metallicity = [0.0004, 0.004, 0.008, 0.12] Remnant_mass = [ [1.35, 1.5, 1.8, 2.07, 6.98, 14.91, 24.58, 32.06, 30.6], [1.35, 1.5, 1.82, 2.04, 6.98, 12.6, 36.7, 35.2], [1.35, 1.48, 1.84, 2.04, 6.9, 12.5, 5.69, 9.89], Remnant_mass_012 ] ################################################################# # WW95_solar = 0.01886 # Metallicity_WW95 = [0, WW95_solar*10**-4, WW95_solar*0.01, WW95_solar*0.1, WW95_solar] # Mass_WW95 = [12, 13, 15, 18, 20, 22, 25, 30, 35, 40] # Remnant_mass_WW95_B = [ # [1.32, 1.46, 1.43, 1.76, 2.06, 2.02, 2.07, 1.94, 3.86, 5.45], # [1.38, 1.31, 1.49, 1.69, 1.97, 2.12, 1.99, 2.01, 3.39, 4.45], # [1.40, 1.44, 1.56, 1.58, 1.98, 2.04, 1.87, 2.21, 2.42, 4.42], # [1.28, 1.44, 1.63, 1.61, 1.97, 2.01, 1.87, 2.08, 3.03, 4.09], # [1.35, 1.28, 1.53, 3.40, 4.12, 1.49, 1.90, 1.54, 7.62, 12.2] # ] # Interpolation_remnant_mass_WW95_B = interpolate.interp2d(Mass_WW95, Metallicity_WW95, Remnant_mass_WW95_B) # Remnant_mass_WW95_B_new = [] # for i in range(len(Metallicity)): # Remnant_mass_WW95_B_new.append([]) # for j in range(len(Mass_WW95)): # Remnant_mass_WW95_B_new[i].append(Interpolation_remnant_mass_WW95_B(Mass_WW95[j], Metallicity[i])) # # log_Remnant_mass_WW95_B = [] # for i in range(len_metal): # log_Remnant_mass_WW95_B.append([]) # for j in range(len(Remnant_mass_WW95_B[i])): # log_Remnant_mass_WW95_B[i].append(math.log(Remnant_mass_WW95_B[i][j], 10)) # # log_mass_WW95 = [] # for i in range(len(Mass_WW95)): # log_mass_WW95.append(math.log(Mass_WW95[i], 10)) ################################################################# len_metal = len(Metallicity) log_Metallicity = [] for i in range(len_metal): log_Metallicity.append(math.log(Metallicity[i], 10)) log_Remnant_mass = [] for i in range(len_metal): log_Remnant_mass.append([]) for j in range(len(Remnant_mass[i])): log_Remnant_mass[i].append(math.log(Remnant_mass[i][j], 10)) log_mass = [] for i in range(len_metal): log_mass.append([]) for j in range(len(Mass[i])): log_mass[i].append(math.log(Mass[i][j], 10)) # print(log_mass) # print(len(log_mass[0])) # print(len(log_mass)) # print(len(log_Remnant_mass[0])) i = 0 while i < len(Z2_list): axs[1].plot(list_ini_mass, list_fin_mass[i][1], lw=(6-i)/2, label='Z={}'.format(list_fin_mass[i][0]), color=colors[color_list_[i]]) (i) = (i + 1) i = len_metal-1 # while i > -1: # axs[1].scatter(log_mass[i], log_Remnant_mass[i], s=10, marker='*', edgecolors='w', linewidth='0.1', zorder=10) # (i) = (i - 1) # i = len_metal-1 # # while i > -1: # # axs[1].scatter(log_mass_WW95, log_Remnant_mass_WW95_B[i], s=10, marker='^', edgecolors='w', linewidth='0.1', zorder=10) # # (i) = (i - 1) axs[1].set_yticks(np.arange(-2, 2, 1)) axs[1].set_ylim(-1.5, 1.5) axs[1].set_ylabel(r'log$_{10}(M_{\rm *, final}$ [$M_\odot$])') axs[1].set_xlabel(r'log$_{10}(M_{\rm *, initial}$ [$M_\odot$])') plt.tight_layout() # Remove horizontal space between axes fig.subplots_adjust(hspace=0) plt.savefig('Interpolated_stellar_lifetime_final_mass.pdf', dpi=250) plt.show() return def function_read_file(yield_table_name): #################### ### read in file ### #################### if yield_table_name == "portinari98": file_yield = open( 'yield_tables/agb_and_massive_stars_portinari98_marigo01_gce_totalyields.txt', 'r') # 'yield_tables/agb_and_massive_stars_portinari98_marigo01.txt', 'r') # Use net yields of Portinari and Marigo # Net yields with masses up to 7Msun are from Marigo, above those of Portinari are taken. # Only isotopes are selected which are available in both yield sets and go up to Fe. # Initial masses go from the lowest mass available up to 100Msun. # Yield set ID M01P98 in Ritter et al. 2017. # References: Marigo et al. 2001, http://ukads.nottingham.ac.uk/abs/2001A%26A...370..194M # Portinari et al. 1998, http://ukads.nottingham.ac.uk/abs/1998A%26A...334..505P data = file_yield.readlines() file_yield.close() elif yield_table_name == "Kobayashi06": file_yield = open( 'yield_tables/agb_and_massive_stars_Kobayashi06_marigo01_gce_totalyields.txt', 'r') # Use net yields of Woosley S. E., Weaver T. A., 1995, ApJS, 101, 181 (WW95) # Use WW95 model B which has the highest [Mg/Fe]. data = file_yield.readlines() file_yield.close() elif yield_table_name == "WW95": file_yield = open( 'yield_tables/massive_stars_WW95_totalyields.txt', 'r') # Use net yields of Woosley S. E., Weaver T. A., 1995, ApJS, 101, 181 (WW95) # Use WW95 model B which has the highest [Mg/Fe]. data = file_yield.readlines() file_yield.close() elif yield_table_name == "marigo01": file_yield = open( 'yield_tables/agb_marigo01_totalyields.txt', 'r') data = file_yield.readlines() file_yield.close() ########################### ### extract information ### ########################### # H_relative_line_number = function_get_element_line_number(data, 'H-1') He_relative_line_number = function_get_element_line_number(data, 'He-4') C_relative_line_number = function_get_element_line_number(data, 'C-12') N_relative_line_number = function_get_element_line_number(data, 'N-14') O_relative_line_number = function_get_element_line_number(data, 'O-16') Ne_relative_line_number = function_get_element_line_number(data, 'Ne-20') Mg_relative_line_number = function_get_element_line_number(data, 'Mg-24') Si_relative_line_number = function_get_element_line_number(data, 'Si-28') S_relative_line_number = function_get_element_line_number(data, 'S-32') Ca_relative_line_number = function_get_element_line_number(data, 'Ca-40') Fe_relative_line_number = function_get_element_line_number(data, 'Fe-56') # global M_list, Z_list, eject_mass_list, H_eject_mass_list, He_eject_mass_list, C_eject_mass_list, \ N_eject_mass_list, O_eject_mass_list, Ne_eject_mass_list, Mg_eject_mass_list, Si_eject_mass_list, \ S_eject_mass_list, Ca_eject_mass_list, Fe_eject_mass_list, Metal_eject_mass_list global O_over_Mg_list, Mg_over_Fe_list, Ca_over_Fe_list, Si_over_Fe_list, C_over_H_list, Mg_over_H_list, \ Si_over_H_list, Fe_over_H_list, O_over_H_list, Z_over_H_list, \ Z_over_X_list, Z_over_Z0_list, XXX_list, YYY_list, ZZZ_list, O_over_Fe_list # i = len(data)-1 while i > -1: line_i = str.split(data[i]) if line_i[1] == 'Table:': line_H = str.split(data[i + H_relative_line_number]) line_He = str.split(data[i + He_relative_line_number]) line_C = str.split(data[i + C_relative_line_number]) line_N = str.split(data[i + N_relative_line_number]) line_O = str.split(data[i + O_relative_line_number]) line_Ne = str.split(data[i + Ne_relative_line_number]) line_Mg = str.split(data[i + Mg_relative_line_number]) line_Si = str.split(data[i + Si_relative_line_number]) line_S = str.split(data[i + S_relative_line_number]) line_Ca = str.split(data[i + Ca_relative_line_number]) line_Fe = str.split(data[i + Fe_relative_line_number]) line_Mfinal = str.split(data[i + 2]) (Z, M) = function_get_Z_M(line_i[2]) # metallicity and mass of the star ejecta_mass = round((M - function_get_Mfinal(line_Mfinal[2])), 5) #################### H_mass = function_get_element_mass(line_H[1]) He_mass = function_get_element_mass(line_He[1]) C_mass = function_get_element_mass(line_C[1]) N_mass = function_get_element_mass(line_N[1]) O_mass = function_get_element_mass(line_O[1]) Ne_mass = function_get_element_mass(line_Ne[1]) Mg_mass = function_get_element_mass(line_Mg[1]) Si_mass = function_get_element_mass(line_Si[1]) S_mass = function_get_element_mass(line_S[1]) Ca_mass = function_get_element_mass(line_Ca[1]) Fe_mass = function_get_element_mass(line_Fe[1]) H_num = H_mass/1.0079 C_num = C_mass/12.011 N_num = N_mass/14.007 O_num = O_mass/15.9994 Ne_num = Ne_mass/20.18 Mg_num = Mg_mass/24.305 Si_num = Si_mass/28.085 S_num = S_mass/32.06 Ca_num = Ca_mass/40.078 Fe_num = Fe_mass/55.845 Metal_num = C_num+N_num+O_num+Ne_num+Mg_num+Si_num+S_num+Ca_num+Fe_num O_over_Mg = math.log(O_num/Mg_num, 10) - O_abundances_solar + Mg_abundances_solar Mg_over_H = math.log(Mg_num/H_num, 10) - Mg_abundances_solar + H_abundances_solar Si_over_H = math.log(Si_num/H_num, 10) - Si_abundances_solar + H_abundances_solar C_over_H = math.log(C_num/H_num, 10) - C_abundances_solar + H_abundances_solar Fe_over_H = math.log(Fe_num/H_num, 10) - Fe_abundances_solar + H_abundances_solar O_over_H = math.log(O_num/H_num, 10) - O_abundances_solar + H_abundances_solar Mg_over_Fe = math.log(Mg_num/Fe_num, 10) - Mg_abundances_solar + Fe_abundances_solar Ca_over_Fe = math.log(Ca_num/Fe_num, 10) - Ca_abundances_solar + Fe_abundances_solar Si_over_Fe = math.log(Si_num/Fe_num, 10) - Si_abundances_solar + Fe_abundances_solar O_over_Fe = math.log(O_num/Fe_num, 10) - O_abundances_solar + Fe_abundances_solar Metal_mass = round((ejecta_mass - H_mass - He_mass), 5) #################### # Metal_mass = round((C_mass+N_mass+O_mass+Ne_mass+Mg_mass+Si_mass+S_mass+Ca_mass+Fe_mass), 5) ###### the same ###### if Metal_mass<0: print("Warning: Metal_mass=", Metal_mass, "<0") print("check stellar yield table with metallicity and mass being:", Z, "&", M) Metal_mass = 0 Z_over_X = math.log(Metal_mass / H_mass, 10) - math.log(0.01886 / 0.7381, 10) Z_over_Z0 = math.log(Metal_mass / ejecta_mass, 10) - math.log(0.01886, 10) Z_over_H = math.log(Metal_num / H_num, 10) - math.log(0.01886 / 18 / 0.7381, 10) # where 18 is the estimated average atomic weight over the weight of hydrogen. XXX = H_mass / ejecta_mass YYY = He_mass / ejecta_mass ZZZ = Metal_mass / ejecta_mass if len(Z_list) == 0: Z_list.append(Z) Z_n = 0 M_list.append([]) eject_mass_list.append([]) H_eject_mass_list.append([]) He_eject_mass_list.append([]) C_eject_mass_list.append([]) N_eject_mass_list.append([]) O_eject_mass_list.append([]) Ne_eject_mass_list.append([]) Mg_eject_mass_list.append([]) Si_eject_mass_list.append([]) S_eject_mass_list.append([]) Ca_eject_mass_list.append([]) Fe_eject_mass_list.append([]) Metal_eject_mass_list.append([]) Z_over_H_list.append([]) Z_over_X_list.append([]) Z_over_Z0_list.append([]) XXX_list.append([]) YYY_list.append([]) ZZZ_list.append([]) O_over_Mg_list.append([]) Mg_over_Fe_list.append([]) Si_over_Fe_list.append([]) Ca_over_Fe_list.append([]) Mg_over_H_list.append([]) Si_over_H_list.append([]) C_over_H_list.append([]) Fe_over_H_list.append([]) O_over_H_list.append([]) O_over_Fe_list.append([]) if Z != Z_list[-1]: Z_list.append(Z) Z_n += 1 M_list.append([]) eject_mass_list.append([]) H_eject_mass_list.append([]) He_eject_mass_list.append([]) C_eject_mass_list.append([]) N_eject_mass_list.append([]) O_eject_mass_list.append([]) Ne_eject_mass_list.append([]) Mg_eject_mass_list.append([]) Si_eject_mass_list.append([]) S_eject_mass_list.append([]) Ca_eject_mass_list.append([]) Fe_eject_mass_list.append([]) Metal_eject_mass_list.append([]) O_over_Mg_list.append([]) Mg_over_Fe_list.append([]) Ca_over_Fe_list.append([]) Si_over_Fe_list.append([]) Mg_over_H_list.append([]) Si_over_H_list.append([]) C_over_H_list.append([]) Fe_over_H_list.append([]) O_over_H_list.append([]) Z_over_H_list.append([]) Z_over_X_list.append([]) Z_over_Z0_list.append([]) XXX_list.append([]) YYY_list.append([]) ZZZ_list.append([]) O_over_Fe_list.append([]) M_list[Z_n].append(M) eject_mass_list[Z_n].append(ejecta_mass) H_eject_mass_list[Z_n].append(H_mass) He_eject_mass_list[Z_n].append(He_mass) C_eject_mass_list[Z_n].append(C_mass) N_eject_mass_list[Z_n].append(N_mass) O_eject_mass_list[Z_n].append(O_mass) Ne_eject_mass_list[Z_n].append(Ne_mass) Mg_eject_mass_list[Z_n].append(Mg_mass) Si_eject_mass_list[Z_n].append(Si_mass) S_eject_mass_list[Z_n].append(S_mass) Ca_eject_mass_list[Z_n].append(Ca_mass) Fe_eject_mass_list[Z_n].append(Fe_mass) Metal_eject_mass_list[Z_n].append(Metal_mass) O_over_Mg_list[Z_n].append(O_over_Mg) Mg_over_Fe_list[Z_n].append(Mg_over_Fe) Ca_over_Fe_list[Z_n].append(Ca_over_Fe) Si_over_Fe_list[Z_n].append(Si_over_Fe) Mg_over_H_list[Z_n].append(Mg_over_H) Si_over_H_list[Z_n].append(Si_over_H) C_over_H_list[Z_n].append(C_over_H) O_over_H_list[Z_n].append(O_over_H) Z_over_H_list[Z_n].append(Z_over_H) Z_over_X_list[Z_n].append(Z_over_X) Z_over_Z0_list[Z_n].append(Z_over_Z0) XXX_list[Z_n].append(XXX) YYY_list[Z_n].append(YYY) ZZZ_list[Z_n].append(ZZZ) Fe_over_H_list[Z_n].append(Fe_over_H) O_over_Fe_list[Z_n].append(O_over_Fe) (i) = (i - 1) return def function_get_Mfinal(Mfinal_string): i_end = len(Mfinal_string) i = 0 mass_str = '' while i < i_end: mass_str += Mfinal_string[i] (i) = (i + 1) mass = float(mass_str) return mass def function_get_element_mass(element_mass_string): i_end = len(element_mass_string) i = 1 mass_str = '' while i < i_end: mass_str += element_mass_string[i] (i) = (i + 1) mass = float(mass_str) return mass def function_get_element_line_number(data, element): i = 0 while i < len(data): line_i = str.split(data[i]) if line_i[1] == 'Table:': start = i j = 0 while j < 100: line_j = str.split(data[j]) if line_j[0] == '&'+element: end = j element_relative_line_number = j - i break (j) = (j+1) break (i) = (i + 1) return element_relative_line_number def function_get_Z_M(M_Z_string): i = 0 i_M_start = 0 i_M_end = 0 i_Z_start = 0 i_Z_end = 0 while i < len(M_Z_string): if M_Z_string[i] == 'M': i_M_start = i+2 if M_Z_string[i] == ',': i_M_end = i i_Z_start = i+3 if M_Z_string[i] == ')': i_Z_end = i (i) = (i+1) i = i_Z_start Z_str = '' while i < i_Z_end: Z_str += M_Z_string[i] (i) = (i + 1) Z = float(Z_str) i = i_M_start M_str = '' while i < i_M_end: M_str += M_Z_string[i] (i) = (i + 1) M = float(M_str) return (Z, M) def funtion_plot_yields(): global O_over_Mg_list, Mg_over_Fe_list, C_over_H_list, Mg_over_H_list, Si_over_H_list, Fe_over_H_list, O_over_H_list, Z_over_X_list, Z_over_Z0_list, \ Z_over_H_list, O_over_Fe_list, M_list, Z_list, XXX_list, YYY_list, ZZZ_list color_list_ = [] for i in range(len(Z_list)): ZZZ = Z_list[i] if ZZZ > 0: Z_box = math.log(ZZZ, 10) - math.log(0.01886, 10) else: Z_box = -6 color_list_.append(round(((Z_box+7)**4.001 - (-6.001 + 7) ** 4.001) / ((1 + 7) ** 4.001 - (-6.001 + 7) ** 4.001) * 1000)) colors = plt.cm.hsv_r(np.linspace(0, 1, 1000)) j = 0 while j < len(M_list): i = 0 while i < len(M_list[j]): M_list[j][i] = math.log(M_list[j][i], 10) (i) = (i+1) (j) = (j+1) # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(1, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # # plt.ylim(0, 2) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], O_over_Mg_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # O_mass_eject_SNIa = 0.148 # TNH93 0.148 i99CDD1 0.09, i99CDD2 0.06, i99W7 0.14, ivo12/13 0.09-0.1, t03 0.14, t86 0.13 # Mg_mass_eject_SNIa = 0.009 # TNH93 0.009 i99CDD1 0.0077, i99CDD2 0.0042, i99W7 0.0085, ivo12/13 0.015-0.029, t03 0.013, t86 0.016 # O_num = O_mass_eject_SNIa / 15.9994 # Mg_num = Mg_mass_eject_SNIa / 24.305 # O_over_Mg_SNIa = math.log(O_num / Mg_num, 10) - O_abundances_solar + Mg_abundances_solar # plt.plot([-0.3, 0.9], [O_over_Mg_SNIa, O_over_Mg_SNIa], ls="--", lw=2, label="SNIa") # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[O/Mg]') # plt.tight_layout() # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(2, figsize=(4, 3.5)) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], Mg_over_Fe_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) Mg_mass_eject_SNIa = 0.0158 # TNH93 0.148 i99CDD1 0.09, i99CDD2 0.06, i99W7 0.14, ivo12/13 0.09-0.1, t03 0.14, t86 0.13 Fe_mass_eject_SNIa = 0.68 #0.63 # Recchi2009 halfed to 0.372 # TNH93 0.744 i99CDD1 0.56, i99CDD2 0.76, i99W7 0.63, ivo12/13 0.62-0.67, t03 0.74, t86 0.63 Ca_mass_eject_SNIa = 0.0181 Si_mass_eject_SNIa = 0.142 Ca_num = Ca_mass_eject_SNIa / 40.078 Si_num = Si_mass_eject_SNIa / 28.085 Mg_num = Mg_mass_eject_SNIa / 24.305 Fe_num = Fe_mass_eject_SNIa / 55.845 Mg_over_Fe_SNIa = math.log(Mg_num / Fe_num, 10) - Mg_abundances_solar + Fe_abundances_solar Si_over_Fe_SNIa = math.log(Si_num / Fe_num, 10) - Si_abundances_solar + Fe_abundances_solar Ca_over_Fe_SNIa = math.log(Ca_num / Fe_num, 10) - Ca_abundances_solar + Fe_abundances_solar # plt.plot([-0.3, 0.9], [Mg_over_Fe_SNIa, Mg_over_Fe_SNIa], ls="--", lw=2, label="SNIa") # plt.plot([-2, 3], [0, 0], lw=0.5, ls='dotted') # plt.xlim(-0.5, 2.2) # plt.ylim(-2, 3.5) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$ [$M_\odot$])') # plt.ylabel(r'[Mg/Fe]') # plt.tight_layout() # plt.savefig('steller_yield_Mg_over_Fe.pdf', dpi=250) # # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(3, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # plt.ylim(-2, 7) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], O_over_Fe_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # O_over_Fe_SNIa = math.log(O_num / Fe_num, 10) - O_abundances_solar + Fe_abundances_solar # plt.plot([-0.3, 0.9], [O_over_Fe_SNIa, O_over_Fe_SNIa], ls="--", lw=2, label="SNIa") # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[O/Fe]') # plt.tight_layout() # # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(4, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # plt.ylim(-2, 2) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], Mg_over_H_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # plt.plot([-2, 3], [0, 0], lw=0.1) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[Mg/H]') # plt.tight_layout() # # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(42, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # plt.ylim(-2, 2) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], Si_over_H_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # plt.plot([-2, 3], [0, 0], lw=0.1) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[Si/H]') # plt.tight_layout() # # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(41, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # # plt.ylim(-2, 2) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], C_over_H_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # plt.plot([-2, 3], [0, 0], lw=0.1) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[C/H]') # plt.tight_layout() # plt.savefig('steller_yield_Mg.pdf', dpi=250) # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(5, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # plt.ylim(-2, 2) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], O_over_H_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # plt.plot([-2, 3], [0, 0], lw=0.1) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[O/H]') # plt.tight_layout() # # plt.savefig('steller_yield_O.pdf', dpi=250) # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(6, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # plt.ylim(-2, 2) # i = len(M_list)-1 # while i > -1: # plt.plot(M_list[i], Fe_over_H_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # plt.plot([-2, 3], [0, 0], lw=0.1) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[Fe/H]') # plt.tight_layout() # # plt.savefig('steller_yield_Fe.pdf', dpi=250) # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(7, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # plt.ylim(-2, 2) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], Z_over_H_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # plt.plot([-2, 3], [0, 0], lw=0.1) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[Z/H]') # plt.title("Number ratio") # plt.tight_layout() # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(8, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # plt.ylim(-2, 2) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], Z_over_X_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # plt.plot([-2, 3], [0, 0], lw=0.1) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel(r'[Z/X]') # plt.title("Mass ratio") # plt.tight_layout() # # plt.rc('font', family='serif') # plt.rc('xtick', labelsize='x-small') # plt.rc('ytick', labelsize='x-small') # fig = plt.figure(11, figsize=(4, 3.5)) # plt.xlim(-0.5, 2.2) # plt.ylim(0.23, 0.6) # i = len(M_list) - 1 # while i > -1: # plt.plot(M_list[i], YYY_list[i], label='Z={}'.format(Z_list[i])) # (i) = (i - 1) # # plt.plot([-2, 3], [0.25, 0.25], lw=0.5) # plt.legend(prop={'size': 6}, loc='best') # plt.xlabel(r'log$_{10}$($M_{\rm *, initial}$/[$M_\odot$])') # plt.ylabel('Y') # plt.tight_layout() # # plt.savefig('steller_yield_Y.pdf', dpi=250) ########## fig, axs = plt.subplots(3, 1, sharex=True, figsize=(3, 4)) # i = len(M_list) - 1 # while i > -1: # axs[0].plot(M_list[i], Z_over_Z0_list[i], lw=(i+2)/2, color=colors[color_list_[i]]) # (i) = (i - 1) # axs[0].plot([-2, 3], [0, 0], lw=0.7, ls='dotted') # # axs[0].set_yticks(np.arange(-1, 2.1, 1)) # axs[0].set_ylim(-2, 1.6) # axs[0].set_ylabel(r'[Z]') # # i = len(M_list) - 1 # while i > -1: # # axs[1].plot(M_list[i], XXX_list[i], lw=(i+2)/2, color=colors[color_list_[i]]) # axs[1].plot(M_list[i], YYY_list[i], lw=(i+2)/2, color=colors[color_list_[i]]) # # axs[1].plot(M_list[i], ZZZ_list[i], lw=(i+2)/2, color=colors[color_list_[i]]) # (i) = (i - 1) # axs[1].plot([-2, 3], [0.273, 0.273], lw=0.7, ls='dotted') # # axs[1].set_yticks(np.arange(0.2, 0.61, 0.1)) # axs[1].set_ylim(0.24, 0.605) # axs[1].set_xlim(-0.5, 2.2) # axs[1].set_ylabel('Y') # axs[0].plot([1.3073, 1.3073], [-0.1, 1.7], lw=0.2) axs[0].axvspan(1.3073, 3, alpha=0.2, color='red') i = len(M_list) - 1 while i > -1: ZZZ = Z_list[i] if ZZZ > 0: Z_box = round(math.log(ZZZ, 10) - math.log(0.01886, 10), 2) else: Z_box = -6 M_list[i].insert(0, math.log(150, 10)) Mg_over_Fe_list[i].insert(0, Mg_over_Fe_list[i][0]) axs[0].plot(M_list[i], Mg_over_Fe_list[i], lw=2**i*0.7, label=r'$Z={}$'.format(ZZZ), color='k', ls=['-', 'dashed', 'dotted'][i]) (i) = (i - 1) # axs[0].plot([-0.3, 0.9], [Mg_over_Fe_SNIa, Mg_over_Fe_SNIa], ls="--", lw=1, label="SNIa", c='k') # axs[0].plot([-2, 3], [0, 0], lw=0.7, ls='dotted') # axs[0].set_yticks(np.arange(-2, 2.1, 2)) axs[0].set_xlim(0.7, 1.7) axs[0].set_ylim(-0.1, 1.7) axs[0].set_ylabel(r'[Mg/Fe]') axs[0].set_xlabel(r'log$_{10}(M_{\rm *, initial}$ [$M_\odot$])') axs[0].legend(prop={'size': 6}, loc='best') axs[1].axvspan(1.3073, 3, alpha=0.2, color='red') i = len(M_list) - 1 while i > -1: Si_over_Fe_list[i].insert(0, Si_over_Fe_list[i][0]) axs[1].plot(M_list[i], Si_over_Fe_list[i], lw=2**i*0.7, label=r'$Z={}$'.format(ZZZ), color='k', ls=['-', 'dashed', 'dotted'][i]) (i) = (i - 1) # axs[1].plot([-0.3, 0.9], [Si_over_Fe_SNIa, Si_over_Fe_SNIa], ls="--", lw=1, label="SNIa", c='k') # axs[1].plot([-2, 3], [0, 0], lw=0.7, ls='dotted') # axs[1].set_yticks(np.arange(-2, 2.1, 2)) axs[1].set_ylim(-0.1, 1.7) axs[1].set_ylabel(r'[Si/Fe]') axs[1].set_xlabel(r'log$_{10}(M_{\rm *, initial}$ [$M_\odot$])') # axs[1].legend(prop={'size': 6}, loc='best') axs[2].axvspan(1.3073, 3, alpha=0.2, color='red') i = len(M_list) - 1 while i > -1: Ca_over_Fe_list[i].insert(0, Ca_over_Fe_list[i][0]) axs[2].plot(M_list[i], Ca_over_Fe_list[i], lw=2**i*0.7, label=r'$Z={}$'.format(ZZZ), color='k', ls=['-', 'dashed', 'dotted'][i]) (i) = (i - 1) # axs[2].plot([-0.3, 0.9], [Ca_over_Fe_SNIa, Ca_over_Fe_SNIa], ls="--", lw=1, label="SNIa", c='k') # axs[2].plot([-2, 3], [0, 0], lw=0.7, ls='dotted') # axs[2].set_yticks(np.arange(-2, 2.1, 2)) axs[2].set_ylim(-0.1, 1.7) axs[2].set_ylabel(r'[Ca/Fe]') axs[2].set_xlabel(r'log$_{10}(M_{\rm *, initial}$ [$M_\odot$])') # axs[2].legend(prop={'size': 6}, loc='best') plt.tight_layout() # Remove horizontal space between axes fig.subplots_adjust(hspace=0) plt.savefig('stellar_yields.pdf', dpi=250) plt.show() return if __name__ == '__main__': start_time = time.time() Z_list = [] M_list = [] eject_mass_list = [] H_eject_mass_list = [] He_eject_mass_list = [] C_eject_mass_list = [] N_eject_mass_list = [] O_eject_mass_list = [] Ne_eject_mass_list = [] Mg_eject_mass_list = [] Si_eject_mass_list = [] S_eject_mass_list = [] Ca_eject_mass_list = [] Fe_eject_mass_list = [] Metal_eject_mass_list = [] O_over_Mg_list = [] Mg_over_H_list = [] Si_over_H_list = [] C_over_H_list = [] Fe_over_H_list = [] O_over_H_list = [] Z_over_H_list = [] Z_over_X_list = [] Z_over_Z0_list = [] XXX_list = [] YYY_list = [] ZZZ_list = [] Mg_over_Fe_list = [] Si_over_Fe_list = [] Ca_over_Fe_list = [] O_over_Fe_list = [] yield_table_name = "Kobayashi06" # being "WW95" or "portinari98" or "marigo01" function_read_file(yield_table_name) funtion_plot_yields() plot_lifetime_and_finalmass() print(" - Run time: %s -" % round((time.time() - start_time), 2))
gpl-3.0
sangwook236/SWDT
sw_dev/python/ext/test/high_performance_computing/spark/pyspark_database.py
2
5564
#!/usr/bin/env python from pyspark.sql import SparkSession import pyspark.sql.types as types import pyspark.sql.functions as func import traceback, sys # REF [site] >> https://spark.apache.org/docs/latest/sql-programming-guide.html#jdbc-to-other-databases def sqlite_jdbc(): spark = SparkSession.builder.appName('sqlite-jdbc') \ .config('spark.jars.packages', 'org.xerial:sqlite-jdbc:3.23.1') \ .getOrCreate() #spark = SparkSession.builder.appName('sqlite-jdbc') \ # .config('spark.jars', 'sqlite-jdbc-3.23.1.jar') \ # .getOrCreate() spark.sparkContext.setLogLevel('WARN') # REF [site] >> https://spark.apache.org/docs/latest/sql-programming-guide.html#pyspark-usage-guide-for-pandas-with-apache-arrow # Enable Arrow-based columnar data transfers. spark.conf.set('spark.sql.execution.arrow.enabled', 'true') if False: #db_url = 'jdbc:sqlite:/path/to/dbfile' # File DB. df = spark.read \ .format('jdbc') \ .option('url', 'jdbc:sqlite:iris.db') \ .option('driver', 'org.sqlite.JDBC') \ .option('dbtable', 'iris') \ .load() elif False: # REF [site] >> https://www.sqlite.org/inmemorydb.html #db_url = 'jdbc:sqlite::memory:' # In-memory DB. db_url = 'jdbc:sqlite::memory:?cache=shared' # Shared in-memory DB. #db_url = 'jdbc:sqlite:dbname?mode=memory&cache=shared' # Named, shared in-memory DB. # NOTE [error] >> Requirement failed: Option 'dbtable' is required. # NOTE [error] >> SQL error or missing database (no such table: test123). df = spark.read \ .format('jdbc') \ .option('url', db_url) \ .option('driver', 'org.sqlite.JDBC') \ .option('dbtable', 'test123') \ .load() else: rdd = spark.sparkContext.parallelize([ (123, 'Katie', 19, 'brown'), (234, 'Michael', 22, 'green'), (345, 'Simone', 23, 'blue') ]) # Specify schema. schema = types.StructType([ types.StructField('id', types.LongType(), True), types.StructField('name', types.StringType(), True), types.StructField('age', types.LongType(), True), types.StructField('eyeColor', types.StringType(), True) ]) df = spark.createDataFrame(rdd, schema) df.show() # NOTE [info] >> It seems that only file DB of SQLite can be used in Spark. db_url = 'jdbc:sqlite:test.sqlite' # File DB. # Isolation level: NONE, READ_COMMITTED, READ_UNCOMMITTED, REPEATABLE_READ, SERIALIZABLE. # REF [site] >> https://stackoverflow.com/questions/16162357/transaction-isolation-levels-relation-with-locks-on-table df.write \ .format('jdbc') \ .mode('overwrite') \ .option('url', db_url) \ .option('driver', 'org.sqlite.JDBC') \ .option('dbtable', 'swimmers') \ .option('isolationLevel', 'NONE') \ .save() #df.write.jdbc(url=db_url, table='test', mode='overwrite', properties={'driver': 'org.sqlite.JDBC'}) df1 = df.withColumn('gender', func.lit(0)) df2 = spark.createDataFrame( [(13, 'Lucy', 12, 'brown'), (37, 'Brian', 47, 'black')], ('id', 'name', 'age', 'eyeColor') ) df2.write \ .format('jdbc') \ .mode('append') \ .option('url', db_url) \ .option('driver', 'org.sqlite.JDBC') \ .option('dbtable', 'swimmers') \ .option('isolationLevel', 'NONE') \ .save() def mysql_jdbc(): spark = SparkSession.builder.appName('mysql-jdbc') \ .config('spark.jars.packages', 'mysql:mysql-connector-java:8.0.12') \ .getOrCreate() #spark = SparkSession.builder.appName('mysql-jdbc') \ # .config('spark.jars', 'mysql-connector-java-8.0.12-bin.jar') \ # .getOrCreate() spark.sparkContext.setLogLevel('WARN') # REF [site] >> https://spark.apache.org/docs/latest/sql-programming-guide.html#pyspark-usage-guide-for-pandas-with-apache-arrow # Enable Arrow-based columnar data transfers. spark.conf.set('spark.sql.execution.arrow.enabled', 'true') df = spark.read \ .format('jdbc') \ .option('url', 'jdbc:mysql://host:3306/dbname?characterEncoding=UTF-8&serverTimezone=UTC') \ .option('driver', 'com.mysql.cj.jdbc.Driver') \ .option('dbtable', 'tablename') \ .option('user', 'username') \ .option('password', 'password') \ .load() df.show() def sql_basic(): spark = SparkSession.builder.appName('dataframe-operation').getOrCreate() spark.sparkContext.setLogLevel('WARN') df = spark.createDataFrame( [(123, 'Katie', 19, 'brown'), (234, 'Michael', 22, 'green'), (345, 'Simone', 23, 'blue')], ('id', 'name', 'age', 'eyeColor') ) #df.printSchema() #df.cache() df.createOrReplaceTempView('swimmers') # DataFrame -> SQL. #df1 = spark.sql('select * from swimmers') # SQL -> DataFrame. spark.sql('select * from swimmers where age >= 20').show() #spark.catalog.dropTempView('swimmers') def main(): #sqlite_jdbc() #mysql_jdbc() sql_basic() #%%------------------------------------------------------------------ # Usage: # python pyspark_database.py # spark-submit --packages mysql:mysql-connector-java:8.0.12,org.xerial:sqlite-jdbc:3.23.1 pyspark_database.py # spark-submit --master local[4] --packages mysql:mysql-connector-java:8.0.12,org.xerial:sqlite-jdbc:3.23.1 pyspark_database.py # spark-submit --master spark://host:7077 --packages mysql:mysql-connector-java:8.0.12,org.xerial:sqlite-jdbc:3.23.1 --executor-memory 10g pyspark_database.py if '__main__' == __name__: try: main() except: #ex = sys.exc_info() # (type, exception object, traceback). ##print('{} raised: {}.'.format(ex[0], ex[1])) #print('{} raised: {}.'.format(ex[0].__name__, ex[1])) #traceback.print_tb(ex[2], limit=None, file=sys.stdout) #traceback.print_exception(*sys.exc_info(), limit=None, file=sys.stdout) traceback.print_exc(limit=None, file=sys.stdout)
gpl-3.0
Encesat/LumexData
LumexData.py
1
17585
#!/usr/bin/python2 #LumexData.py import datetime as dt import numpy as np import scipy.optimize as opt import matplotlib.pyplot as plt omitFlagged = True def storeAsDatetime(date, time): day = int(date.split(".")[0]) month = int(date.split(".")[1]) year = int(date.split(".")[2]) hour = int(time.split(":")[0]) minute = int(time.split(":")[1]) second = int(time.split(":")[2]) return dt.datetime(year, month, day, hour, minute, second) #Calculate the passed days of the year (including leap year) def month(mon, yea): if(mon == 1): days = 0 elif(mon == 2):#January 31 days days = 31 elif(mon == 3):#February 28 days days = 59 elif(mon == 4):#March 31 days days = 90 elif(mon == 5):#April 30 days days = 120 elif(mon == 6):#May 31 days days = 151 elif(mon == 7):#June 30 days days = 181 elif(mon == 8):#July 31 days days = 212 elif(mon == 9):#August 31 days days = 243 elif(mon == 10):#September 30 days days = 273 elif(mon == 11):#October 31 days days = 304 elif(mon == 12):#November 30 days days = 334 if(yea % 4 == 0 and yea % 100 != 0 or yea % 400 == 0): days = days + 1 return days def calcDays(date): years = 365*(date.year) months = month(date.month, date.year) days = date.day return years+months+days def calcDatetime(days): pass ## # # This program contains the class LumexData. This class # # - stores the content of the calibration file (__init__) # - flags the data (flagging) (Not implemented, because no flagging criteria are available) # - arranges the accepted and flagged data in columns of time and concentration (storeTimeConc) # - calculates the number of accepted measurements per day and calculates the daily means of the data set (length & averaging) # - creates a column with date and the daiyly means, and flags the daily means of which the number of accepted measurements is smaller than 216 (averaing) class LumexData: ## Constructor of LumexData # # Reads the content of the calibrationfile. Stores as a list of hashmaps def __init__(self, calibrationfile="none", filedescriptor="none"): self.__lumexdata = [] self.averaged = False #Open the calibrationfile and read the content. #The file should be stored as a plain text format if(calibrationfile != "none"): f = open(calibrationfile, "r") calibration = f.readlines() elif(filedescriptor != "none"): calibration = filedescriptor.readlines() for line in calibration: if(len(line.split(" ")) != 7): continue #Store date and time as datetime x = storeAsDatetime(line.split(" ")[0], line.split(" ")[1]) self.__lumexdata.append({"date": x, "time_dec": float(line.split(" ")[2]), "zero_span": float(line.split(" ")[3]), \ "calib_factor": float(line.split(" ")[4]), "temperature": float(line.split(" ")[5]), \ "concentration": float(line.split(" ")[6]), "flag": -1, "standarddeviation": 0, "counter": 0}) return #END OF __init__() ## Helpfunction of LumexData # # Explains the class LumexData def help(self): f = open("README", "r") cont = f.readlines() for element in cont: print(element) return #END OF help() ## Getter of LumexData # # Return the data of __lumexdata def get(self, elementnumber, key): if(type(elementnumber) is str): output = [] try: start = int(elementnumber.split(":")[0]) end = int(elementnumber.split(":")[1]) except AttributeError: pass raw_keys = key.split(",") keys = [] for element in raw_keys: keys.append(element) for i in range(start, end): for element in keys: output.append(self.__lumexdata[i][element]) return output elif(elementnumber != -1 and key != "all"): return self.__lumexdata[elementnumber][key] elif(elementnumber != -1 and key == "all"): return self.__lumexdata[elementnumber] elif(elementnumber == -1 and key != "all"): output = [] for i in range(len(self.__lumexdata)): output.append(self.__lumexdata[i][key]) return output elif(elementnumber == -1 and key == "all"): output = [] for i in range(len(self.__lumexdata)): output.append(self.__lumexdata[i]) return output return #END OF get() ## Length of LumexData.__lumexdate # # Return the number of values in the object def length(self): return len(self.__lumexdata) #END OF length() ## Save the data to a txt-file # # Stores the time and the concentration def storeTimeConc(self, filename, ran="all"): f = open(filename, "w") g = open("flagged_"+filename,"w") if(ran != "all"): start = int(ran.split(":")[0]) end = int(ran.split(":")[1]) else: start = 0 end = len(self.__lumexdata) f.write("1. Date\n2. Time in decimal\n3. Concentration\n") for i in range(len(self.__lumexdata)): if(i >= start and i < end): if(self.__lumexdata[i]["flag"] == -1): f.write("{} {}\t{}\n".format(self.__lumexdata[i]["date"], self.__lumexdata[i]["time_dec"], self.__lumexdata[i]["concentration"])) else: g.write("{} {}\t{}\t{}\n".format(self.__lumexdata[i]["date"], self.__lumexdata[i]["time_dec"], self.__lumexdata[i]["concentration"], self.__lumexdata[i]["flag"])) f.close() return ## Flag the data # # Flags the data by the given criteria. criteria has to be a textfile def flagging(self, filename="Flagged.dat", criteria=None): f = open(filename, "w") flag = [0 for x in range(len(self.__lumexdata))] #Here flag the data by the given criteria for line in self.__lumexdata: f.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(line["date"], line["time_dec"], line["zero_span"], line["calib_factor"], line["temperature"], line["concentration"], line["flag"])) f.close() for i in range(len(self.__lumexdata)): self.__lumexdata[i]["flag"] = flag[i] return ## Averaging the data # # Group the data for each day and calculate the mean, print them to a file (and return the output to the calling function) def averaging(self, ran="all", overwrite=False): f = open("averagedOutput.txt", "w") givendate = calcDays(self.__lumexdata[0]["date"]) print(givendate) #givendate = 365*(self.__lumexdata[0]["date"].year - 1900) + month(self.__lumexdata[0]["date"].month, self.__lumexdata[0]["date"].year) + self.__lumexdata[0]["date"].day dummylist = [] averaged = [] errors = [] dates = [] flag = [] counter = 0 if(ran != "all"): start = int(ran.split(":")[0]) end = int(ran.split(":")[1]) else: start = 0 end = len(self.__lumexdata) i = start #for i in range(start, end): #Iterate over the whole data while(i < end): #mydate = 365*(self.__lumexdata[i]["date"].year - 1900) + month(self.__lumexdata[i]["date"].month, self.__lumexdata[i]["date"].year) + self.__lumexdata[i]["date"].day mydate = calcDays(self.__lumexdata[i]["date"]) #print(mydate) if(mydate == givendate): #Omit the flagged data (if any) if(omitFlagged and self.__lumexdata[i]["flag"] == -1): dummylist.append(self.__lumexdata[i]["concentration"]) counter = counter + 1 else: date = "{}.{}.{}".format(self.__lumexdata[i-1]["date"].day, self.__lumexdata[i-1]["date"].month, self.__lumexdata[i-1]["date"].year) if(counter >= 216): f.write("{}\t{}\t{}\t{}\n".format(date, np.mean(dummylist), np.std(dummylist), counter)) else: f.write("{}\t{}\t{}\t{}\t###\n".format(date, np.mean(dummylist), np.std(dummylist), counter)) givendate = mydate averaged.append(np.mean(dummylist)) errors.append(np.std(dummylist)) dates.append(dt.datetime.strptime(date, "%d.%m.%Y")) flag.append(0 if counter <= 216 else -1) if(omitFlagged and self.__lumexdata[i]["flag"] == -1): dummylist = [self.__lumexdata[i]["concentration"]] counter = 1 i = i + 1 if(counter != 0): date = "{}.{}.{}".format(self.__lumexdata[end-1]["date"].day, self.__lumexdata[end-1]["date"].month, self.__lumexdata[end-1]["date"].year) if(counter >= 216): f.write("{}\t{}\t{}\t{}\n".format(date, np.mean(dummylist), np.std(dummylist), counter)) else: f.write("{}\t{}\t{}\t{}\t###\n".format(date, np.mean(dummylist), np.std(dummylist), counter)) averaged.append(np.mean(dummylist)) errors.append(np.std(dummylist)) dates.append(dt.datetime.strptime(date, "%d.%m.%Y")) flag.append(0 if counter <= 216 else -1) dummylist = [] counter = 0 f.close() #Overwrite the content of lumexdata if(overwrite): f = open("averagedOutput.txt", "r") content = f.readlines() f.close() self.__lumexdata = [dict([("date", 0), ("concentration", 0), ("standarddeviation", 0), ("counter", 0), ("flag", 0)]) for x in range(len(content))] for i in range(len(content)): self.__lumexdata[i]["date"] = dt.datetime(int(content[i].split("\t")[0].split(".")[2]), int(content[i].split("\t")[0].split(".")[1]), int(content[i].split("\t")[0].split(".")[0])) self.__lumexdata[i]["concentration"] = float(content[i].split("\t")[1]) self.__lumexdata[i]["standarddeviation"] = float(content[i].split("\t")[2]) self.__lumexdata[i]["counter"] = int(content[i].split("\t")[3]) self.__lumexdata[i]["flag"] = 99 if int(content[i].split("\t")[3]) < 216 else -1 self.averaged = True return [averaged, errors, dates, flag] #END OF average() #Calculate fit using scipy.optimize.leastsq. The x-axis is the number of measurements. Fit as #sinusoidal function #linear #polynomial (2 - 6) #exponential #logarithm #gauss #Parameter has to be a list with initial parameters def __fitting(self, parameter, daily=False, ran="all", typ="trig", averaged=0, errors=0, av_date=0, flag=0): dates = [] conc = [] standarddeviation = [] if(ran != "all"): begin = ran.split(":")[0] end = ran.split(":")[1] begin = dt.datetime(int(begin.split(".")[2]), int(begin.split(".")[1]), int(begin.split(".")[0])) end = dt.datetime(int(end.split(".")[2]), int(end.split(".")[1]), int(end.split(".")[0])) else: begin = self.__lumexdata[0]["date"] end = self.__lumexdata[-1]["date"] if(averaged == 0): for i in range(len(self.__lumexdata)): if(self.__lumexdata[i]["date"] >= begin and self.__lumexdata[i]["date"] < end or ran == "all"): if(self.__lumexdata[i]["flag"] == -1): dates.append(self.__lumexdata[i]["date"]) conc.append(self.__lumexdata[i]["concentration"]) else: #[averaged, errors, av_date, flag] = self.averaging() standarddeviation = [] for i in range(len(averaged)): if(av_date[i] >= begin and av_date[i] < end or ran == "all"): if(flag[i] == -1): dates.append(av_date[i]) conc.append(averaged[i]) standarddeviation.append(errors[i]) array = np.linspace(0,len(dates)-1,len(dates)) #FITTING if(typ == "trig"): fitfunc = lambda parameter, x: parameter[0] * np.cos(2*np.pi / parameter[1]*x + parameter[2]) + parameter[3]*x elif(typ == "lin"): fitfunc = lambda parameter, x: parameter[0] * x + parameter[1] elif(typ == "poly2"): fitfunc = lambda parameter, x: parameter[0] * x**2 + parameter[1] * x + parameter[2] elif(typ == "poly3"): fitfunc = lambda parameter, x: parameter[0] * x**3 + parameter[1] * x**2 + parameter[2] * x + parameter[3] elif(typ == "poly4"): fitfunc = lambda parameter, x: parameter[0] * x**4 + parameter[1] * x**3 + parameter[2] * x**2 + parameter[3] * x + parameter[4] elif(typ == "poly5"): fitfunc = lambda parameter, x: parameter[0] * x**5 + parameter[1] * x**4 + parameter[2] * x**3 + parameter[3] * x**2 + parameter[4] * x + parameter[5] elif(typ == "poly6"): fitfunc = lambda parameter, x: parameter[0] * x**6 + parameter[1] * x**5 + parameter[2] * x**4 + parameter[3] * x**3 + parameter[4] * x**2 + parameter[5] * x + parameter[6] elif(typ == "exp"): fitfunc = lambda parameter, x: parameter[0] * np.exp(parameter[1] * x + parameter[2]) + parameter[3] * x + parameter[4] elif(typ == "log"): fitfunc = lambda parameter, x: parameter[0] * np.log(x) / np.log(parameter[1]) + parameter[2] * x + parameter[3] elif(typ == "gauss"): fitfunc = lambda parameter, x: 1 / (parameter[0] * np.sqrt(2 * np.pi)) * np.exp(-0.5 * ((x - parameter[1])/(parameter[0]))**2) errfunc = lambda parameter, x, y: fitfunc(parameter,x) - y p1, success = opt.leastsq(errfunc, parameter[:], args=(array, conc)) return [fitfunc, p1, array] #Plotting without fit. If daily=True, use the daily mean, otherwise use all unflagged data def plotting(self, title="Default", xlabel="x-Axis", ylabel="y-Axis", daily=False, ran="all", axessize=10, fsize=10, msize=10, colour="#000000", markerstyle="h", leastsq=False, typ="lin", parameter=[1,1], averaged=0, errors=0, av_date=0, flag=[]): dates = [] conc = [] if(ran != "all"): begin = ran.split(":")[0] end = ran.split(":")[1] begin = dt.datetime(int(begin.split(".")[2]), int(begin.split(".")[1]), int(begin.split(".")[0])) end = dt.datetime(int(end.split(".")[2]), int(end.split(".")[1]), int(end.split(".")[0])) else: begin = self.__lumexdata[0]["date"] end = self.__lumexdata[-1]["date"] if(averaged == 0): for i in range(len(self.__lumexdata)): if(self.__lumexdata[i]["date"] >= begin and self.__lumexdata[i]["date"] < end or ran == "all"): if(self.__lumexdata[i]["flag"] == -1): dates.append(self.__lumexdata[i]["date"]) conc.append(self.__lumexdata[i]["concentration"]) else: standarddeviation = [] for i in range(len(averaged)): if(av_date[i] >= begin and av_date[i] < end or ran == "all"): if(flag[i] == -1): dates.append(av_date[i]) conc.append(averaged[i]) standarddeviation.append(errors[i]) fig = plt.figure() #NotForUsing, (sp1) = plt.subplots(1, 1, sharey=False) #sp1.set_title(title, fontsize=fsize) plt.title(title, fontsize=fsize) if(averaged == 0): plt.plot(dates, conc, ls=".", marker=markerstyle, markersize=msize, color=colour) # sp1.plot(dates, conc, ls=".", marker=markerstyle, markersize=msize, color=colour) else: plt.errorbar(dates, conc, yerr=standarddeviation, fmt=markerstyle, markersize=msize, color=colour) # sp1.errorbar(dates, conc, yerr=standarddeviation, fmt=markerstyle, markersize=msize, color=colour) if(leastsq): [fitfunc, p1, array] = self.__fitting(parameter, daily, ran, typ=typ, averaged=averaged, errors=errors, av_date=av_date, flag=flag) #Write fitparameters to a file f = open("fitparams.txt", "w") for i in range(len(p1)): f.write("p{} = {}\n".format(i, p1[i])) f.close() plt.plot(dates, fitfunc(p1, array)) # sp1.plot(dates, fitfunc(p1, array)) #sp1.tick_params(labelsize=axessize) plt.tick_params(labelsize=axessize) plt.xlabel(xlabel, fontsize=fsize) plt.ylabel(ylabel, fontsize=fsize) #sp1.set_xlabel(xlabel, fontsize=fsize) #sp1.set_ylabel(ylabel, fontsize=fsize) #sp1.grid(True) plt.grid(True) plt.show()
mit
chrsrds/scikit-learn
examples/applications/wikipedia_principal_eigenvector.py
10
7724
""" =============================== Wikipedia principal eigenvector =============================== A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality score: https://en.wikipedia.org/wiki/Eigenvector_centrality On the graph of webpages and links those values are called the PageRank scores by Google. The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance according to this eigenvector centrality. The traditional way to compute the principal eigenvector is to use the power iteration method: https://en.wikipedia.org/wiki/Power_iteration Here the computation is achieved thanks to Martinsson's Randomized SVD algorithm implemented in scikit-learn. The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the Wikipedia content. """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause from bz2 import BZ2File import os from datetime import datetime from pprint import pprint from time import time import numpy as np from scipy import sparse from joblib import Memory from sklearn.decomposition import randomized_svd from urllib.request import urlopen print(__doc__) # ############################################################################# # Where to download the data, if not already on disk redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2" redirects_filename = redirects_url.rsplit("/", 1)[1] page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2" page_links_filename = page_links_url.rsplit("/", 1)[1] resources = [ (redirects_url, redirects_filename), (page_links_url, page_links_filename), ] for url, filename in resources: if not os.path.exists(filename): print("Downloading data from '%s', please wait..." % url) opener = urlopen(url) open(filename, 'wb').write(opener.read()) print() # ############################################################################# # Loading the redirect files memory = Memory(cachedir=".") def index(redirects, index_map, k): """Find the index of an article name after redirect resolution""" k = redirects.get(k, k) return index_map.setdefault(k, len(index_map)) DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/") SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1) def short_name(nt_uri): """Remove the < and > URI markers and the common URI prefix""" return nt_uri[SHORTNAME_SLICE] def get_redirects(redirects_filename): """Parse the redirections and build a transitively closed map out of it""" redirects = {} print("Parsing the NT redirect file") for l, line in enumerate(BZ2File(redirects_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue redirects[short_name(split[0])] = short_name(split[2]) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) # compute the transitive closure print("Computing the transitive closure of the redirect relation") for l, source in enumerate(redirects.keys()): transitive_target = None target = redirects[source] seen = {source} while True: transitive_target = target target = redirects.get(target) if target is None or target in seen: break seen.add(target) redirects[source] = transitive_target if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) return redirects # disabling joblib as the pickling of large dicts seems much too slow #@memory.cache def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None): """Extract the adjacency graph as a scipy sparse matrix Redirects are resolved first. Returns X, the scipy sparse adjacency matrix, redirects as python dict from article names to article names and index_map a python dict from article names to python int (article indexes). """ print("Computing the redirect map") redirects = get_redirects(redirects_filename) print("Computing the integer index map") index_map = dict() links = list() for l, line in enumerate(BZ2File(page_links_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue i = index(redirects, index_map, short_name(split[0])) j = index(redirects, index_map, short_name(split[2])) links.append((i, j)) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) if limit is not None and l >= limit - 1: break print("Computing the adjacency matrix") X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32) for i, j in links: X[i, j] = 1.0 del links print("Converting to CSR representation") X = X.tocsr() print("CSR conversion done") return X, redirects, index_map # stop after 5M links to make it possible to work in RAM X, redirects, index_map = get_adjacency_matrix( redirects_filename, page_links_filename, limit=5000000) names = {i: name for name, i in index_map.items()} print("Computing the principal singular vectors using randomized_svd") t0 = time() U, s, V = randomized_svd(X, 5, n_iter=3) print("done in %0.3fs" % (time() - t0)) # print the names of the wikipedia related strongest components of the # principal singular vector which should be similar to the highest eigenvector print("Top wikipedia pages according to principal singular vectors") pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]]) pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]]) def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10): """Power iteration computation of the principal eigenvector This method is also known as Google PageRank and the implementation is based on the one from the NetworkX project (BSD licensed too) with copyrights by: Aric Hagberg <hagberg@lanl.gov> Dan Schult <dschult@colgate.edu> Pieter Swart <swart@lanl.gov> """ n = X.shape[0] X = X.copy() incoming_counts = np.asarray(X.sum(axis=1)).ravel() print("Normalizing the graph") for i in incoming_counts.nonzero()[0]: X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i] dangle = np.asarray(np.where(np.isclose(X.sum(axis=1), 0), 1.0 / n, 0)).ravel() scores = np.full(n, 1. / n, dtype=np.float32) # initial guess for i in range(max_iter): print("power iteration #%d" % i) prev_scores = scores scores = (alpha * (scores * X + np.dot(dangle, prev_scores)) + (1 - alpha) * prev_scores.sum() / n) # check convergence: normalized l_inf norm scores_max = np.abs(scores).max() if scores_max == 0.0: scores_max = 1.0 err = np.abs(scores - prev_scores).max() / scores_max print("error: %0.6f" % err) if err < n * tol: return scores return scores print("Computing principal eigenvector score using a power iteration method") t0 = time() scores = centrality_scores(X, max_iter=100, tol=1e-10) print("done in %0.3fs" % (time() - t0)) pprint([names[i] for i in np.abs(scores).argsort()[-10:]])
bsd-3-clause
emon10005/scikit-image
setup.py
11
4995
#! /usr/bin/env python descr = """Image Processing SciKit Image processing algorithms for SciPy, including IO, morphology, filtering, warping, color manipulation, object detection, etc. Please refer to the online documentation at http://scikit-image.org/ """ DISTNAME = 'scikit-image' DESCRIPTION = 'Image processing routines for SciPy' LONG_DESCRIPTION = descr MAINTAINER = 'Stefan van der Walt' MAINTAINER_EMAIL = 'stefan@sun.ac.za' URL = 'http://scikit-image.org' LICENSE = 'Modified BSD' DOWNLOAD_URL = 'http://github.com/scikit-image/scikit-image' import os import sys import setuptools from distutils.command.build_py import build_py if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # This is a bit (!) hackish: we are setting a global variable so that the main # skimage __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by scikit-image to recursively # build the compiled extensions in sub-packages is based on the Python import # machinery. builtins.__SKIMAGE_SETUP__ = True with open('skimage/__init__.py') as fid: for line in fid: if line.startswith('__version__'): VERSION = line.strip().split()[-1][1:-1] break with open('requirements.txt') as fid: INSTALL_REQUIRES = [l.strip() for l in fid.readlines() if l] # requirements for those browsing PyPI REQUIRES = [r.replace('>=', ' (>= ') + ')' for r in INSTALL_REQUIRES] REQUIRES = [r.replace('==', ' (== ') for r in REQUIRES] REQUIRES = [r.replace('[array]', '') for r in REQUIRES] def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) config.set_options( ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('skimage') config.add_data_dir('skimage/data') return config if __name__ == "__main__": try: from numpy.distutils.core import setup extra = {'configuration': configuration} # Do not try and upgrade larger dependencies for lib in ['scipy', 'numpy', 'matplotlib', 'pillow']: try: __import__(lib) INSTALL_REQUIRES = [i for i in INSTALL_REQUIRES if lib not in i] except ImportError: pass except ImportError: if len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean')): # For these actions, NumPy is not required. # # They are required to succeed without Numpy for example when # pip is used to install scikit-image when Numpy is not yet # present in the system. pass else: print('To install scikit-image from source, you will need numpy.\n' + 'Install numpy with pip:\n' + 'pip install numpy\n' 'Or use your operating system package manager. For more\n' + 'details, see http://scikit-image.org/docs/stable/install.html') sys.exit(1) setup( name=DISTNAME, description=DESCRIPTION, long_description=LONG_DESCRIPTION, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, url=URL, license=LICENSE, download_url=DOWNLOAD_URL, version=VERSION, classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: C', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', ], install_requires=INSTALL_REQUIRES, # install cython when running setup.py (source install) setup_requires=['cython>=0.21'], requires=REQUIRES, packages=setuptools.find_packages(exclude=['doc']), include_package_data=True, zip_safe=False, # the package can run out of an .egg file entry_points={ 'console_scripts': ['skivi = skimage.scripts.skivi:main'], }, cmdclass={'build_py': build_py}, **extra )
bsd-3-clause
francis-liberty/kaggle
Titanic/Benchmarks/myfirstforest.py
3
3926
""" Writing my first randomforest code. Author : AstroDave Date : 23rd September, 2012 please see packages.python.org/milk/randomforests.html for more """ import numpy as np import csv as csv from sklearn.ensemble import RandomForestClassifier csv_file_object = csv.reader(open('train.csv', 'rb')) #Load in the training csv file header = csv_file_object.next() #Skip the fist line as it is a header train_data=[] #Creat a variable called 'train_data' for row in csv_file_object: #Skip through each row in the csv file train_data.append(row[1:]) #adding each row to the data variable train_data = np.array(train_data) #Then convert from a list to an array #I need to convert all strings to integer classifiers: #Male = 1, female = 0: train_data[train_data[0::,3]=='male',3] = 1 train_data[train_data[0::,3]=='female',3] = 0 #embark c=0, s=1, q=2 train_data[train_data[0::,10] =='C',10] = 0 train_data[train_data[0::,10] =='S',10] = 1 train_data[train_data[0::,10] =='Q',10] = 2 #I need to fill in the gaps of the data and make it complete. #So where there is no price, I will assume price on median of that class #Where there is no age I will give median of all ages #All the ages with no data make the median of the data train_data[train_data[0::,4] == '',4] = np.median(train_data[train_data[0::,4]\ != '',4].astype(np.float)) #All missing ebmbarks just make them embark from most common place train_data[train_data[0::,10] == '',10] = np.round(np.mean(train_data[train_data[0::,10]\ != '',10].astype(np.float))) train_data = np.delete(train_data,[2,7,9],1) #remove the name data, cabin and ticket #I need to do the same with the test data now so that the columns are in the same #as the training data test_file_object = csv.reader(open('test.csv', 'rb')) #Load in the test csv file header = test_file_object.next() #Skip the fist line as it is a header test_data=[] #Creat a variable called 'test_data' ids = [] for row in test_file_object: #Skip through each row in the csv file ids.append(row[0]) test_data.append(row[1:]) #adding each row to the data variable test_data = np.array(test_data) #Then convert from a list to an array #I need to convert all strings to integer classifiers: #Male = 1, female = 0: test_data[test_data[0::,2]=='male',2] = 1 test_data[test_data[0::,2]=='female',2] = 0 #ebark c=0, s=1, q=2 test_data[test_data[0::,9] =='C',9] = 0 #Note this is not ideal, in more complex 3 is not 3 tmes better than 1 than 2 is 2 times better than 1 test_data[test_data[0::,9] =='S',9] = 1 test_data[test_data[0::,9] =='Q',9] = 2 #All the ages with no data make the median of the data test_data[test_data[0::,3] == '',3] = np.median(test_data[test_data[0::,3]\ != '',3].astype(np.float)) #All missing ebmbarks just make them embark from most common place test_data[test_data[0::,9] == '',9] = np.round(np.mean(test_data[test_data[0::,9]\ != '',9].astype(np.float))) #All the missing prices assume median of their respectice class for i in xrange(np.size(test_data[0::,0])): if test_data[i,7] == '': test_data[i,7] = np.median(test_data[(test_data[0::,7] != '') &\ (test_data[0::,0] == test_data[i,0])\ ,7].astype(np.float)) test_data = np.delete(test_data,[1,6,8],1) #remove the name data, cabin and ticket #The data is now ready to go. So lets train then test! print 'Training ' forest = RandomForestClassifier(n_estimators=100) forest = forest.fit(train_data[0::,1::],\ train_data[0::,0]) print 'Predicting' output = forest.predict(test_data) open_file_object = csv.writer(open("myfirstforest.csv", "wb")) open_file_object.writerow(["PassengerId","Survived"]) open_file_object.writerows(zip(ids, output))
gpl-2.0
pypot/scikit-learn
sklearn/decomposition/nmf.py
16
19101
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <L.J.Buitinck@uva.nl> # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (original Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numpy as np import scipy.sparse as sp from scipy.optimize import nnls from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.validation import check_is_fitted def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def check_non_negative(X, whom): X = X.data if sp.issparse(X) else X if (X < 0).any(): raise ValueError("Negative values in data passed to %s" % whom) def _initialize_nmf(X, n_components, variant=None, eps=1e-6, random_state=None): """NNDSVD algorithm for NMF initialization. Computes a good initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array, [n_samples, n_features] The data matrix to be decomposed. n_components : array, [n_components, n_features] The number of components desired in the approximation. variant : None | 'a' | 'ar' The variant of the NNDSVD algorithm. Accepts None, 'a', 'ar' None: leaves the zero entries as zero 'a': Fills the zero entries with the average of X 'ar': Fills the zero entries with standard normal random variates. Default: None eps: float Truncate all values less then this in output to zero. random_state : numpy.RandomState | int, optional The generator used to fill in the zeros, when using variant='ar' Default: numpy.random Returns ------- (W, H) : Initial guesses for solving X ~= WH such that the number of columns in W is n_components. References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") if variant not in (None, 'a', 'ar'): raise ValueError("Invalid variant name") U, S, V = randomized_svd(X, n_components) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if variant == "a": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif variant == "ar": random_state = check_random_state(random_state) avg = X.mean() W[W == 0] = abs(avg * random_state.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * random_state.randn(len(H[H == 0])) / 100) return W, H def _nls_subproblem(V, W, H, tol, max_iter, sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. min || WH - V ||_2 Parameters ---------- V, W : array-like Constant matrices. H : array-like Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like Solution to the non-negative least squares problem. grad : array-like The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = np.dot(W.T, W) # values justified in the paper alpha = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(19): # Gradient step. Hn = H - alpha * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_alpha = not suff_decr if decr_alpha: if suff_decr: H = Hn break else: alpha *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: alpha /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter class ProjectedGradientNMF(BaseEstimator, TransformerMixin): """Non-Negative matrix factorization by Projected Gradient (NMF) Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all components are kept init : 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'random' Method used to initialize the procedure. Default: 'nndsvd' if n_components < n_features, otherwise random. Valid options:: 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'random': non-negative random matrices sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : int, default: 200 Number of iterations to compute. nls_max_iter : int, default: 2000 Number of iterations in NLS subproblem. random_state : int or RandomState Random number generator seed control. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init='random', ... random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness=None, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, ... sparseness='components', init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness='components', tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [ 0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... References ---------- This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ def __init__(self, n_components=None, init=None, sparseness=None, beta=1, eta=0.1, tol=1e-4, max_iter=200, nls_max_iter=2000, random_state=None): self.n_components = n_components self.init = init self.tol = tol if sparseness not in (None, 'data', 'components'): raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, (None, 'data', 'components'))) self.sparseness = sparseness self.beta = beta self.eta = eta self.max_iter = max_iter self.nls_max_iter = nls_max_iter self.random_state = random_state def _init(self, X): n_samples, n_features = X.shape init = self.init if init is None: if self.n_components_ < n_features: init = 'nndsvd' else: init = 'random' random_state = self.random_state if init == 'nndsvd': W, H = _initialize_nmf(X, self.n_components_) elif init == 'nndsvda': W, H = _initialize_nmf(X, self.n_components_, variant='a') elif init == 'nndsvdar': W, H = _initialize_nmf(X, self.n_components_, variant='ar') elif init == "random": rng = check_random_state(random_state) W = rng.randn(n_samples, self.n_components_) # we do not write np.abs(W, out=W) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(W, W) H = rng.randn(self.n_components_, n_features) np.abs(H, H) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))) return W, H def _update_W(self, X, H, W, tolW): n_samples, n_features = X.shape if self.sparseness is None: W, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, self.nls_max_iter) elif self.sparseness == 'data': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), W.T, tolW, self.nls_max_iter) elif self.sparseness == 'components': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((self.n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(self.eta) * np.eye(self.n_components_)]), W.T, tolW, self.nls_max_iter) return W.T, gradW.T, iterW def _update_H(self, X, H, W, tolH): n_samples, n_features = X.shape if self.sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, self.nls_max_iter) elif self.sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((self.n_components_, n_features))]), safe_vstack([W, np.sqrt(self.eta) * np.eye(self.n_components_)]), H, tolH, self.nls_max_iter) elif self.sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), H, tolH, self.nls_max_iter) return H, gradH, iterH def fit_transform(self, X, y=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- data: array, [n_samples, n_components] Transformed data """ X = check_array(X, accept_sparse='csr') check_non_negative(X, "NMF.fit") n_samples, n_features = X.shape if not self.n_components: self.n_components_ = n_features else: self.n_components_ = self.n_components W, H = self._init(X) gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = norm(np.r_[gradW, gradH.T]) tolW = max(0.001, self.tol) * init_grad # why max? tolH = tolW tol = self.tol * init_grad for n_iter in range(1, self.max_iter + 1): # stopping condition # as discussed in paper proj_norm = norm(np.r_[gradW[np.logical_or(gradW < 0, W > 0)], gradH[np.logical_or(gradH < 0, H > 0)]]) if proj_norm < tol: break # update W W, gradW, iterW = self._update_W(X, H, W, tolW) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = self._update_H(X, H, W, tolH) if iterH == 1: tolH = 0.1 * tolH if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: sqnorm_X = np.dot(X.data, X.data) norm_WHT = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(sqnorm_X + norm_WHT - 2. * cross_prod) self.reconstruction_err_ = error self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) H[H == 0] = 0 # fix up negative zeros self.components_ = H if n_iter == self.max_iter: warnings.warn("Iteration limit reached during fit. Solving for W exactly.") return self.transform(X) self.n_iter_ = n_iter return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be transformed by the model Returns ------- data: array, [n_samples, n_components] Transformed data """ check_is_fitted(self, 'n_components_') X = check_array(X, accept_sparse='csc') Wt = np.zeros((self.n_components_, X.shape[0])) check_non_negative(X, "ProjectedGradientNMF.transform") if sp.issparse(X): Wt, _, _ = _nls_subproblem(X.T, self.components_.T, Wt, tol=self.tol, max_iter=self.nls_max_iter) else: for j in range(0, X.shape[0]): Wt[:, j], _ = nnls(self.components_.T, X[j, :]) return Wt.T class NMF(ProjectedGradientNMF): __doc__ = ProjectedGradientNMF.__doc__ pass
bsd-3-clause
rohit21122012/DCASE2013
runs/2016/baseline2016_mfcc_21/src/evaluation.py
56
43426
#!/usr/bin/env python # -*- coding: utf-8 -*- import math import numpy import sys from sklearn import metrics class DCASE2016_SceneClassification_Metrics(): """DCASE 2016 scene classification metrics Examples -------- >>> dcase2016_scene_metric = DCASE2016_SceneClassification_Metrics(class_list=dataset.scene_labels) >>> for fold in dataset.folds(mode=dataset_evaluation_mode): >>> results = [] >>> result_filename = get_result_filename(fold=fold, path=result_path) >>> >>> if os.path.isfile(result_filename): >>> with open(result_filename, 'rt') as f: >>> for row in csv.reader(f, delimiter='\t'): >>> results.append(row) >>> >>> y_true = [] >>> y_pred = [] >>> for result in results: >>> y_true.append(dataset.file_meta(result[0])[0]['scene_label']) >>> y_pred.append(result[1]) >>> >>> dcase2016_scene_metric.evaluate(system_output=y_pred, annotated_ground_truth=y_true) >>> >>> results = dcase2016_scene_metric.results() """ def __init__(self, class_list): """__init__ method. Parameters ---------- class_list : list Evaluated scene labels in the list """ self.accuracies_per_class = None self.Nsys = None self.Nref = None self.class_list = class_list self.eps = numpy.spacing(1) def __enter__(self): return self def __exit__(self, type, value, traceback): return self.results() def accuracies(self, y_true, y_pred, labels): """Calculate accuracy Parameters ---------- y_true : numpy.array Ground truth array, list of scene labels y_pred : numpy.array System output array, list of scene labels labels : list list of scene labels Returns ------- array : numpy.array [shape=(number of scene labels,)] Accuracy per scene label class """ confusion_matrix = metrics.confusion_matrix(y_true=y_true, y_pred=y_pred, labels=labels).astype(float) return numpy.divide(numpy.diag(confusion_matrix), numpy.sum(confusion_matrix, 1) + self.eps) def evaluate(self, annotated_ground_truth, system_output): """Evaluate system output and annotated ground truth pair. Use results method to get results. Parameters ---------- annotated_ground_truth : numpy.array Ground truth array, list of scene labels system_output : numpy.array System output array, list of scene labels Returns ------- nothing """ accuracies_per_class = self.accuracies(y_pred=system_output, y_true=annotated_ground_truth, labels=self.class_list) if self.accuracies_per_class is None: self.accuracies_per_class = accuracies_per_class else: self.accuracies_per_class = numpy.vstack((self.accuracies_per_class, accuracies_per_class)) Nref = numpy.zeros(len(self.class_list)) Nsys = numpy.zeros(len(self.class_list)) for class_id, class_label in enumerate(self.class_list): for item in system_output: if item == class_label: Nsys[class_id] += 1 for item in annotated_ground_truth: if item == class_label: Nref[class_id] += 1 if self.Nref is None: self.Nref = Nref else: self.Nref = numpy.vstack((self.Nref, Nref)) if self.Nsys is None: self.Nsys = Nsys else: self.Nsys = numpy.vstack((self.Nsys, Nsys)) def results(self): """Get results Outputs results in dict, format: { 'class_wise_data': { 'office': { 'Nsys': 10, 'Nref': 7, }, } 'class_wise_accuracy': { 'office': 0.6, 'home': 0.4, } 'overall_accuracy': numpy.mean(self.accuracies_per_class) 'Nsys': 100, 'Nref': 100, } Parameters ---------- nothing Returns ------- results : dict Results dict """ results = { 'class_wise_data': {}, 'class_wise_accuracy': {}, 'overall_accuracy': numpy.mean(self.accuracies_per_class) } if len(self.Nsys.shape) == 2: results['Nsys'] = int(sum(sum(self.Nsys))) results['Nref'] = int(sum(sum(self.Nref))) else: results['Nsys'] = int(sum(self.Nsys)) results['Nref'] = int(sum(self.Nref)) for class_id, class_label in enumerate(self.class_list): if len(self.accuracies_per_class.shape) == 2: results['class_wise_accuracy'][class_label] = numpy.mean(self.accuracies_per_class[:, class_id]) results['class_wise_data'][class_label] = { 'Nsys': int(sum(self.Nsys[:, class_id])), 'Nref': int(sum(self.Nref[:, class_id])), } else: results['class_wise_accuracy'][class_label] = numpy.mean(self.accuracies_per_class[class_id]) results['class_wise_data'][class_label] = { 'Nsys': int(self.Nsys[class_id]), 'Nref': int(self.Nref[class_id]), } return results class EventDetectionMetrics(object): """Baseclass for sound event metric classes. """ def __init__(self, class_list): """__init__ method. Parameters ---------- class_list : list List of class labels to be evaluated. """ self.class_list = class_list self.eps = numpy.spacing(1) def max_event_offset(self, data): """Get maximum event offset from event list Parameters ---------- data : list Event list, list of event dicts Returns ------- max : float > 0 Maximum event offset """ max = 0 for event in data: if event['event_offset'] > max: max = event['event_offset'] return max def list_to_roll(self, data, time_resolution=0.01): """Convert event list into event roll. Event roll is binary matrix indicating event activity withing time segment defined by time_resolution. Parameters ---------- data : list Event list, list of event dicts time_resolution : float > 0 Time resolution used when converting event into event roll. Returns ------- event_roll : numpy.ndarray [shape=(math.ceil(data_length * 1 / time_resolution) + 1, amount of classes)] Event roll """ # Initialize data_length = self.max_event_offset(data) event_roll = numpy.zeros((math.ceil(data_length * 1 / time_resolution) + 1, len(self.class_list))) # Fill-in event_roll for event in data: pos = self.class_list.index(event['event_label'].rstrip()) onset = math.floor(event['event_onset'] * 1 / time_resolution) offset = math.ceil(event['event_offset'] * 1 / time_resolution) + 1 event_roll[onset:offset, pos] = 1 return event_roll class DCASE2016_EventDetection_SegmentBasedMetrics(EventDetectionMetrics): """DCASE2016 Segment based metrics for sound event detection Supported metrics: - Overall - Error rate (ER), Substitutions (S), Insertions (I), Deletions (D) - F-score (F1) - Class-wise - Error rate (ER), Insertions (I), Deletions (D) - F-score (F1) Examples -------- >>> overall_metrics_per_scene = {} >>> for scene_id, scene_label in enumerate(dataset.scene_labels): >>> dcase2016_segment_based_metric = DCASE2016_EventDetection_SegmentBasedMetrics(class_list=dataset.event_labels(scene_label=scene_label)) >>> for fold in dataset.folds(mode=dataset_evaluation_mode): >>> results = [] >>> result_filename = get_result_filename(fold=fold, scene_label=scene_label, path=result_path) >>> >>> if os.path.isfile(result_filename): >>> with open(result_filename, 'rt') as f: >>> for row in csv.reader(f, delimiter='\t'): >>> results.append(row) >>> >>> for file_id, item in enumerate(dataset.test(fold,scene_label=scene_label)): >>> current_file_results = [] >>> for result_line in results: >>> if result_line[0] == dataset.absolute_to_relative(item['file']): >>> current_file_results.append( >>> {'file': result_line[0], >>> 'event_onset': float(result_line[1]), >>> 'event_offset': float(result_line[2]), >>> 'event_label': result_line[3] >>> } >>> ) >>> meta = dataset.file_meta(dataset.absolute_to_relative(item['file'])) >>> dcase2016_segment_based_metric.evaluate(system_output=current_file_results, annotated_ground_truth=meta) >>> overall_metrics_per_scene[scene_label]['segment_based_metrics'] = dcase2016_segment_based_metric.results() """ def __init__(self, class_list, time_resolution=1.0): """__init__ method. Parameters ---------- class_list : list List of class labels to be evaluated. time_resolution : float > 0 Time resolution used when converting event into event roll. (Default value = 1.0) """ self.time_resolution = time_resolution self.overall = { 'Ntp': 0.0, 'Ntn': 0.0, 'Nfp': 0.0, 'Nfn': 0.0, 'Nref': 0.0, 'Nsys': 0.0, 'ER': 0.0, 'S': 0.0, 'D': 0.0, 'I': 0.0, } self.class_wise = {} for class_label in class_list: self.class_wise[class_label] = { 'Ntp': 0.0, 'Ntn': 0.0, 'Nfp': 0.0, 'Nfn': 0.0, 'Nref': 0.0, 'Nsys': 0.0, } EventDetectionMetrics.__init__(self, class_list=class_list) def __enter__(self): # Initialize class and return it return self def __exit__(self, type, value, traceback): # Finalize evaluation and return results return self.results() def evaluate(self, annotated_ground_truth, system_output): """Evaluate system output and annotated ground truth pair. Use results method to get results. Parameters ---------- annotated_ground_truth : numpy.array Ground truth array, list of scene labels system_output : numpy.array System output array, list of scene labels Returns ------- nothing """ # Convert event list into frame-based representation system_event_roll = self.list_to_roll(data=system_output, time_resolution=self.time_resolution) annotated_event_roll = self.list_to_roll(data=annotated_ground_truth, time_resolution=self.time_resolution) # Fix durations of both event_rolls to be equal if annotated_event_roll.shape[0] > system_event_roll.shape[0]: padding = numpy.zeros((annotated_event_roll.shape[0] - system_event_roll.shape[0], len(self.class_list))) system_event_roll = numpy.vstack((system_event_roll, padding)) if system_event_roll.shape[0] > annotated_event_roll.shape[0]: padding = numpy.zeros((system_event_roll.shape[0] - annotated_event_roll.shape[0], len(self.class_list))) annotated_event_roll = numpy.vstack((annotated_event_roll, padding)) # Compute segment-based overall metrics for segment_id in range(0, annotated_event_roll.shape[0]): annotated_segment = annotated_event_roll[segment_id, :] system_segment = system_event_roll[segment_id, :] Ntp = sum(system_segment + annotated_segment > 1) Ntn = sum(system_segment + annotated_segment == 0) Nfp = sum(system_segment - annotated_segment > 0) Nfn = sum(annotated_segment - system_segment > 0) Nref = sum(annotated_segment) Nsys = sum(system_segment) S = min(Nref, Nsys) - Ntp D = max(0, Nref - Nsys) I = max(0, Nsys - Nref) ER = max(Nref, Nsys) - Ntp self.overall['Ntp'] += Ntp self.overall['Ntn'] += Ntn self.overall['Nfp'] += Nfp self.overall['Nfn'] += Nfn self.overall['Nref'] += Nref self.overall['Nsys'] += Nsys self.overall['S'] += S self.overall['D'] += D self.overall['I'] += I self.overall['ER'] += ER for class_id, class_label in enumerate(self.class_list): annotated_segment = annotated_event_roll[:, class_id] system_segment = system_event_roll[:, class_id] Ntp = sum(system_segment + annotated_segment > 1) Ntn = sum(system_segment + annotated_segment == 0) Nfp = sum(system_segment - annotated_segment > 0) Nfn = sum(annotated_segment - system_segment > 0) Nref = sum(annotated_segment) Nsys = sum(system_segment) self.class_wise[class_label]['Ntp'] += Ntp self.class_wise[class_label]['Ntn'] += Ntn self.class_wise[class_label]['Nfp'] += Nfp self.class_wise[class_label]['Nfn'] += Nfn self.class_wise[class_label]['Nref'] += Nref self.class_wise[class_label]['Nsys'] += Nsys return self def results(self): """Get results Outputs results in dict, format: { 'overall': { 'Pre': 'Rec': 'F': 'ER': 'S': 'D': 'I': } 'class_wise': { 'office': { 'Pre': 'Rec': 'F': 'ER': 'D': 'I': 'Nref': 'Nsys': 'Ntp': 'Nfn': 'Nfp': }, } 'class_wise_average': { 'F': 'ER': } } Parameters ---------- nothing Returns ------- results : dict Results dict """ results = {'overall': {}, 'class_wise': {}, 'class_wise_average': {}, } # Overall metrics results['overall']['Pre'] = self.overall['Ntp'] / (self.overall['Nsys'] + self.eps) results['overall']['Rec'] = self.overall['Ntp'] / self.overall['Nref'] results['overall']['F'] = 2 * ((results['overall']['Pre'] * results['overall']['Rec']) / ( results['overall']['Pre'] + results['overall']['Rec'] + self.eps)) results['overall']['ER'] = self.overall['ER'] / self.overall['Nref'] results['overall']['S'] = self.overall['S'] / self.overall['Nref'] results['overall']['D'] = self.overall['D'] / self.overall['Nref'] results['overall']['I'] = self.overall['I'] / self.overall['Nref'] # Class-wise metrics class_wise_F = [] class_wise_ER = [] for class_id, class_label in enumerate(self.class_list): if class_label not in results['class_wise']: results['class_wise'][class_label] = {} results['class_wise'][class_label]['Pre'] = self.class_wise[class_label]['Ntp'] / ( self.class_wise[class_label]['Nsys'] + self.eps) results['class_wise'][class_label]['Rec'] = self.class_wise[class_label]['Ntp'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['F'] = 2 * ( (results['class_wise'][class_label]['Pre'] * results['class_wise'][class_label]['Rec']) / ( results['class_wise'][class_label]['Pre'] + results['class_wise'][class_label]['Rec'] + self.eps)) results['class_wise'][class_label]['ER'] = (self.class_wise[class_label]['Nfn'] + self.class_wise[class_label]['Nfp']) / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['D'] = self.class_wise[class_label]['Nfn'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['I'] = self.class_wise[class_label]['Nfp'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['Nref'] = self.class_wise[class_label]['Nref'] results['class_wise'][class_label]['Nsys'] = self.class_wise[class_label]['Nsys'] results['class_wise'][class_label]['Ntp'] = self.class_wise[class_label]['Ntp'] results['class_wise'][class_label]['Nfn'] = self.class_wise[class_label]['Nfn'] results['class_wise'][class_label]['Nfp'] = self.class_wise[class_label]['Nfp'] class_wise_F.append(results['class_wise'][class_label]['F']) class_wise_ER.append(results['class_wise'][class_label]['ER']) results['class_wise_average']['F'] = numpy.mean(class_wise_F) results['class_wise_average']['ER'] = numpy.mean(class_wise_ER) return results class DCASE2016_EventDetection_EventBasedMetrics(EventDetectionMetrics): """DCASE2016 Event based metrics for sound event detection Supported metrics: - Overall - Error rate (ER), Substitutions (S), Insertions (I), Deletions (D) - F-score (F1) - Class-wise - Error rate (ER), Insertions (I), Deletions (D) - F-score (F1) Examples -------- >>> overall_metrics_per_scene = {} >>> for scene_id, scene_label in enumerate(dataset.scene_labels): >>> dcase2016_event_based_metric = DCASE2016_EventDetection_EventBasedMetrics(class_list=dataset.event_labels(scene_label=scene_label)) >>> for fold in dataset.folds(mode=dataset_evaluation_mode): >>> results = [] >>> result_filename = get_result_filename(fold=fold, scene_label=scene_label, path=result_path) >>> >>> if os.path.isfile(result_filename): >>> with open(result_filename, 'rt') as f: >>> for row in csv.reader(f, delimiter='\t'): >>> results.append(row) >>> >>> for file_id, item in enumerate(dataset.test(fold,scene_label=scene_label)): >>> current_file_results = [] >>> for result_line in results: >>> if result_line[0] == dataset.absolute_to_relative(item['file']): >>> current_file_results.append( >>> {'file': result_line[0], >>> 'event_onset': float(result_line[1]), >>> 'event_offset': float(result_line[2]), >>> 'event_label': result_line[3] >>> } >>> ) >>> meta = dataset.file_meta(dataset.absolute_to_relative(item['file'])) >>> dcase2016_event_based_metric.evaluate(system_output=current_file_results, annotated_ground_truth=meta) >>> overall_metrics_per_scene[scene_label]['event_based_metrics'] = dcase2016_event_based_metric.results() """ def __init__(self, class_list, time_resolution=1.0, t_collar=0.2): """__init__ method. Parameters ---------- class_list : list List of class labels to be evaluated. time_resolution : float > 0 Time resolution used when converting event into event roll. (Default value = 1.0) t_collar : float > 0 Time collar for event onset and offset condition (Default value = 0.2) """ self.time_resolution = time_resolution self.t_collar = t_collar self.overall = { 'Nref': 0.0, 'Nsys': 0.0, 'Nsubs': 0.0, 'Ntp': 0.0, 'Nfp': 0.0, 'Nfn': 0.0, } self.class_wise = {} for class_label in class_list: self.class_wise[class_label] = { 'Nref': 0.0, 'Nsys': 0.0, 'Ntp': 0.0, 'Ntn': 0.0, 'Nfp': 0.0, 'Nfn': 0.0, } EventDetectionMetrics.__init__(self, class_list=class_list) def __enter__(self): # Initialize class and return it return self def __exit__(self, type, value, traceback): # Finalize evaluation and return results return self.results() def evaluate(self, annotated_ground_truth, system_output): """Evaluate system output and annotated ground truth pair. Use results method to get results. Parameters ---------- annotated_ground_truth : numpy.array Ground truth array, list of scene labels system_output : numpy.array System output array, list of scene labels Returns ------- nothing """ # Overall metrics # Total number of detected and reference events Nsys = len(system_output) Nref = len(annotated_ground_truth) sys_correct = numpy.zeros(Nsys, dtype=bool) ref_correct = numpy.zeros(Nref, dtype=bool) # Number of correctly transcribed events, onset/offset within a t_collar range for j in range(0, len(annotated_ground_truth)): for i in range(0, len(system_output)): label_condition = annotated_ground_truth[j]['event_label'] == system_output[i]['event_label'] onset_condition = self.onset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) offset_condition = self.offset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) if label_condition and onset_condition and offset_condition: ref_correct[j] = True sys_correct[i] = True break Ntp = numpy.sum(sys_correct) sys_leftover = numpy.nonzero(numpy.negative(sys_correct))[0] ref_leftover = numpy.nonzero(numpy.negative(ref_correct))[0] # Substitutions Nsubs = 0 for j in ref_leftover: for i in sys_leftover: onset_condition = self.onset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) offset_condition = self.offset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) if onset_condition and offset_condition: Nsubs += 1 break Nfp = Nsys - Ntp - Nsubs Nfn = Nref - Ntp - Nsubs self.overall['Nref'] += Nref self.overall['Nsys'] += Nsys self.overall['Ntp'] += Ntp self.overall['Nsubs'] += Nsubs self.overall['Nfp'] += Nfp self.overall['Nfn'] += Nfn # Class-wise metrics for class_id, class_label in enumerate(self.class_list): Nref = 0.0 Nsys = 0.0 Ntp = 0.0 # Count event frequencies in the ground truth for i in range(0, len(annotated_ground_truth)): if annotated_ground_truth[i]['event_label'] == class_label: Nref += 1 # Count event frequencies in the system output for i in range(0, len(system_output)): if system_output[i]['event_label'] == class_label: Nsys += 1 for j in range(0, len(annotated_ground_truth)): for i in range(0, len(system_output)): if annotated_ground_truth[j]['event_label'] == class_label and system_output[i][ 'event_label'] == class_label: onset_condition = self.onset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) offset_condition = self.offset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) if onset_condition and offset_condition: Ntp += 1 break Nfp = Nsys - Ntp Nfn = Nref - Ntp self.class_wise[class_label]['Nref'] += Nref self.class_wise[class_label]['Nsys'] += Nsys self.class_wise[class_label]['Ntp'] += Ntp self.class_wise[class_label]['Nfp'] += Nfp self.class_wise[class_label]['Nfn'] += Nfn def onset_condition(self, annotated_event, system_event, t_collar=0.200): """Onset condition, checked does the event pair fulfill condition Condition: - event onsets are within t_collar each other Parameters ---------- annotated_event : dict Event dict system_event : dict Event dict t_collar : float > 0 Defines how close event onsets have to be in order to be considered match. In seconds. (Default value = 0.2) Returns ------- result : bool Condition result """ return math.fabs(annotated_event['event_onset'] - system_event['event_onset']) <= t_collar def offset_condition(self, annotated_event, system_event, t_collar=0.200, percentage_of_length=0.5): """Offset condition, checking does the event pair fulfill condition Condition: - event offsets are within t_collar each other or - system event offset is within the percentage_of_length*annotated event_length Parameters ---------- annotated_event : dict Event dict system_event : dict Event dict t_collar : float > 0 Defines how close event onsets have to be in order to be considered match. In seconds. (Default value = 0.2) percentage_of_length : float [0-1] Returns ------- result : bool Condition result """ annotated_length = annotated_event['event_offset'] - annotated_event['event_onset'] return math.fabs(annotated_event['event_offset'] - system_event['event_offset']) <= max(t_collar, percentage_of_length * annotated_length) def results(self): """Get results Outputs results in dict, format: { 'overall': { 'Pre': 'Rec': 'F': 'ER': 'S': 'D': 'I': } 'class_wise': { 'office': { 'Pre': 'Rec': 'F': 'ER': 'D': 'I': 'Nref': 'Nsys': 'Ntp': 'Nfn': 'Nfp': }, } 'class_wise_average': { 'F': 'ER': } } Parameters ---------- nothing Returns ------- results : dict Results dict """ results = { 'overall': {}, 'class_wise': {}, 'class_wise_average': {}, } # Overall metrics results['overall']['Pre'] = self.overall['Ntp'] / (self.overall['Nsys'] + self.eps) results['overall']['Rec'] = self.overall['Ntp'] / self.overall['Nref'] results['overall']['F'] = 2 * ((results['overall']['Pre'] * results['overall']['Rec']) / ( results['overall']['Pre'] + results['overall']['Rec'] + self.eps)) results['overall']['ER'] = (self.overall['Nfn'] + self.overall['Nfp'] + self.overall['Nsubs']) / self.overall[ 'Nref'] results['overall']['S'] = self.overall['Nsubs'] / self.overall['Nref'] results['overall']['D'] = self.overall['Nfn'] / self.overall['Nref'] results['overall']['I'] = self.overall['Nfp'] / self.overall['Nref'] # Class-wise metrics class_wise_F = [] class_wise_ER = [] for class_label in self.class_list: if class_label not in results['class_wise']: results['class_wise'][class_label] = {} results['class_wise'][class_label]['Pre'] = self.class_wise[class_label]['Ntp'] / ( self.class_wise[class_label]['Nsys'] + self.eps) results['class_wise'][class_label]['Rec'] = self.class_wise[class_label]['Ntp'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['F'] = 2 * ( (results['class_wise'][class_label]['Pre'] * results['class_wise'][class_label]['Rec']) / ( results['class_wise'][class_label]['Pre'] + results['class_wise'][class_label]['Rec'] + self.eps)) results['class_wise'][class_label]['ER'] = (self.class_wise[class_label]['Nfn'] + self.class_wise[class_label]['Nfp']) / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['D'] = self.class_wise[class_label]['Nfn'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['I'] = self.class_wise[class_label]['Nfp'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['Nref'] = self.class_wise[class_label]['Nref'] results['class_wise'][class_label]['Nsys'] = self.class_wise[class_label]['Nsys'] results['class_wise'][class_label]['Ntp'] = self.class_wise[class_label]['Ntp'] results['class_wise'][class_label]['Nfn'] = self.class_wise[class_label]['Nfn'] results['class_wise'][class_label]['Nfp'] = self.class_wise[class_label]['Nfp'] class_wise_F.append(results['class_wise'][class_label]['F']) class_wise_ER.append(results['class_wise'][class_label]['ER']) # Class-wise average results['class_wise_average']['F'] = numpy.mean(class_wise_F) results['class_wise_average']['ER'] = numpy.mean(class_wise_ER) return results class DCASE2013_EventDetection_Metrics(EventDetectionMetrics): """Lecagy DCASE2013 metrics, converted from the provided Matlab implementation Supported metrics: - Frame based - F-score (F) - AEER - Event based - Onset - F-Score (F) - AEER - Onset-offset - F-Score (F) - AEER - Class based - Onset - F-Score (F) - AEER - Onset-offset - F-Score (F) - AEER """ # def frame_based(self, annotated_ground_truth, system_output, resolution=0.01): # Convert event list into frame-based representation system_event_roll = self.list_to_roll(data=system_output, time_resolution=resolution) annotated_event_roll = self.list_to_roll(data=annotated_ground_truth, time_resolution=resolution) # Fix durations of both event_rolls to be equal if annotated_event_roll.shape[0] > system_event_roll.shape[0]: padding = numpy.zeros((annotated_event_roll.shape[0] - system_event_roll.shape[0], len(self.class_list))) system_event_roll = numpy.vstack((system_event_roll, padding)) if system_event_roll.shape[0] > annotated_event_roll.shape[0]: padding = numpy.zeros((system_event_roll.shape[0] - annotated_event_roll.shape[0], len(self.class_list))) annotated_event_roll = numpy.vstack((annotated_event_roll, padding)) # Compute frame-based metrics Nref = sum(sum(annotated_event_roll)) Ntot = sum(sum(system_event_roll)) Ntp = sum(sum(system_event_roll + annotated_event_roll > 1)) Nfp = sum(sum(system_event_roll - annotated_event_roll > 0)) Nfn = sum(sum(annotated_event_roll - system_event_roll > 0)) Nsubs = min(Nfp, Nfn) eps = numpy.spacing(1) results = dict() results['Rec'] = Ntp / (Nref + eps) results['Pre'] = Ntp / (Ntot + eps) results['F'] = 2 * ((results['Pre'] * results['Rec']) / (results['Pre'] + results['Rec'] + eps)) results['AEER'] = (Nfn + Nfp + Nsubs) / (Nref + eps) return results def event_based(self, annotated_ground_truth, system_output): # Event-based evaluation for event detection task # outputFile: the output of the event detection system # GTFile: the ground truth list of events # Total number of detected and reference events Ntot = len(system_output) Nref = len(annotated_ground_truth) # Number of correctly transcribed events, onset within a +/-100 ms range Ncorr = 0 NcorrOff = 0 for j in range(0, len(annotated_ground_truth)): for i in range(0, len(system_output)): if annotated_ground_truth[j]['event_label'] == system_output[i]['event_label'] and ( math.fabs(annotated_ground_truth[j]['event_onset'] - system_output[i]['event_onset']) <= 0.1): Ncorr += 1 # If offset within a +/-100 ms range or within 50% of ground-truth event's duration if math.fabs(annotated_ground_truth[j]['event_offset'] - system_output[i]['event_offset']) <= max( 0.1, 0.5 * ( annotated_ground_truth[j]['event_offset'] - annotated_ground_truth[j]['event_onset'])): NcorrOff += 1 break # In order to not evaluate duplicates # Compute onset-only event-based metrics eps = numpy.spacing(1) results = { 'onset': {}, 'onset-offset': {}, } Nfp = Ntot - Ncorr Nfn = Nref - Ncorr Nsubs = min(Nfp, Nfn) results['onset']['Rec'] = Ncorr / (Nref + eps) results['onset']['Pre'] = Ncorr / (Ntot + eps) results['onset']['F'] = 2 * ( (results['onset']['Pre'] * results['onset']['Rec']) / ( results['onset']['Pre'] + results['onset']['Rec'] + eps)) results['onset']['AEER'] = (Nfn + Nfp + Nsubs) / (Nref + eps) # Compute onset-offset event-based metrics NfpOff = Ntot - NcorrOff NfnOff = Nref - NcorrOff NsubsOff = min(NfpOff, NfnOff) results['onset-offset']['Rec'] = NcorrOff / (Nref + eps) results['onset-offset']['Pre'] = NcorrOff / (Ntot + eps) results['onset-offset']['F'] = 2 * ((results['onset-offset']['Pre'] * results['onset-offset']['Rec']) / ( results['onset-offset']['Pre'] + results['onset-offset']['Rec'] + eps)) results['onset-offset']['AEER'] = (NfnOff + NfpOff + NsubsOff) / (Nref + eps) return results def class_based(self, annotated_ground_truth, system_output): # Class-wise event-based evaluation for event detection task # outputFile: the output of the event detection system # GTFile: the ground truth list of events # Total number of detected and reference events per class Ntot = numpy.zeros((len(self.class_list), 1)) for event in system_output: pos = self.class_list.index(event['event_label']) Ntot[pos] += 1 Nref = numpy.zeros((len(self.class_list), 1)) for event in annotated_ground_truth: pos = self.class_list.index(event['event_label']) Nref[pos] += 1 I = (Nref > 0).nonzero()[0] # index for classes present in ground-truth # Number of correctly transcribed events per class, onset within a +/-100 ms range Ncorr = numpy.zeros((len(self.class_list), 1)) NcorrOff = numpy.zeros((len(self.class_list), 1)) for j in range(0, len(annotated_ground_truth)): for i in range(0, len(system_output)): if annotated_ground_truth[j]['event_label'] == system_output[i]['event_label'] and ( math.fabs( annotated_ground_truth[j]['event_onset'] - system_output[i]['event_onset']) <= 0.1): pos = self.class_list.index(system_output[i]['event_label']) Ncorr[pos] += 1 # If offset within a +/-100 ms range or within 50% of ground-truth event's duration if math.fabs(annotated_ground_truth[j]['event_offset'] - system_output[i]['event_offset']) <= max( 0.1, 0.5 * ( annotated_ground_truth[j]['event_offset'] - annotated_ground_truth[j][ 'event_onset'])): pos = self.class_list.index(system_output[i]['event_label']) NcorrOff[pos] += 1 break # In order to not evaluate duplicates # Compute onset-only class-wise event-based metrics eps = numpy.spacing(1) results = { 'onset': {}, 'onset-offset': {}, } Nfp = Ntot - Ncorr Nfn = Nref - Ncorr Nsubs = numpy.minimum(Nfp, Nfn) tempRec = Ncorr[I] / (Nref[I] + eps) tempPre = Ncorr[I] / (Ntot[I] + eps) results['onset']['Rec'] = numpy.mean(tempRec) results['onset']['Pre'] = numpy.mean(tempPre) tempF = 2 * ((tempPre * tempRec) / (tempPre + tempRec + eps)) results['onset']['F'] = numpy.mean(tempF) tempAEER = (Nfn[I] + Nfp[I] + Nsubs[I]) / (Nref[I] + eps) results['onset']['AEER'] = numpy.mean(tempAEER) # Compute onset-offset class-wise event-based metrics NfpOff = Ntot - NcorrOff NfnOff = Nref - NcorrOff NsubsOff = numpy.minimum(NfpOff, NfnOff) tempRecOff = NcorrOff[I] / (Nref[I] + eps) tempPreOff = NcorrOff[I] / (Ntot[I] + eps) results['onset-offset']['Rec'] = numpy.mean(tempRecOff) results['onset-offset']['Pre'] = numpy.mean(tempPreOff) tempFOff = 2 * ((tempPreOff * tempRecOff) / (tempPreOff + tempRecOff + eps)) results['onset-offset']['F'] = numpy.mean(tempFOff) tempAEEROff = (NfnOff[I] + NfpOff[I] + NsubsOff[I]) / (Nref[I] + eps) results['onset-offset']['AEER'] = numpy.mean(tempAEEROff) return results def main(argv): # Examples to show usage and required data structures class_list = ['class1', 'class2', 'class3'] system_output = [ { 'event_label': 'class1', 'event_onset': 0.1, 'event_offset': 1.0 }, { 'event_label': 'class2', 'event_onset': 4.1, 'event_offset': 4.7 }, { 'event_label': 'class3', 'event_onset': 5.5, 'event_offset': 6.7 } ] annotated_groundtruth = [ { 'event_label': 'class1', 'event_onset': 0.1, 'event_offset': 1.0 }, { 'event_label': 'class2', 'event_onset': 4.2, 'event_offset': 5.4 }, { 'event_label': 'class3', 'event_onset': 5.5, 'event_offset': 6.7 } ] dcase2013metric = DCASE2013_EventDetection_Metrics(class_list=class_list) print 'DCASE2013' print 'Frame-based:', dcase2013metric.frame_based(system_output=system_output, annotated_ground_truth=annotated_groundtruth) print 'Event-based:', dcase2013metric.event_based(system_output=system_output, annotated_ground_truth=annotated_groundtruth) print 'Class-based:', dcase2013metric.class_based(system_output=system_output, annotated_ground_truth=annotated_groundtruth) dcase2016_metric = DCASE2016_EventDetection_SegmentBasedMetrics(class_list=class_list) print 'DCASE2016' print dcase2016_metric.evaluate(system_output=system_output, annotated_ground_truth=annotated_groundtruth).results() if __name__ == "__main__": sys.exit(main(sys.argv))
mit
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
mit
bhargav/scikit-learn
sklearn/ensemble/tests/test_forest.py
26
41675
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import skip_if_32bit from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also make a hastie_10_2 dataset hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1) hastie_X = hastie_X.astype(np.float32) FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", )): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(name, criterion, X, y): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) # XXX: Remove this test in 0.19 after transform support to estimators # is removed. X_new = assert_warns( DeprecationWarning, est.transform, X, threshold="mean") assert_less(0 < X_new.shape[1], X.shape[1]) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) @skip_if_32bit def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, name, criterion, X, y for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse"]): yield check_importances, name, criterion, X, y def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name): X, y = hastie_X, hastie_y # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name def check_min_samples_split(name): X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=0).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=1.1).fit, X, y) est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) def test_min_samples_split(): for name in FOREST_ESTIMATORS: yield check_min_samples_split, name def check_min_samples_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_leaf=0).fit, X, y) est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), len(X) * 0.25 - 1, "Failed with {0}".format(name)) def test_min_samples_leaf(): for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name def check_min_weight_fraction_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, n_estimators=1, random_state=0) if "RandomForest" in name: est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(n_estimators=1, random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for subsample and balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight='subsample', random_state=0) ignore_warnings(clf.fit)(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='auto', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y) def check_decision_path(name): X, y = hastie_X, hastie_y n_samples = X.shape[0] ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) indicator, n_nodes_ptr = est.decision_path(X) assert_equal(indicator.shape[1], n_nodes_ptr[-1]) assert_equal(indicator.shape[0], n_samples) assert_array_equal(np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]) # Assert that leaves index are correct leaves = est.apply(X) for est_id in range(leaves.shape[1]): leave_indicator = [indicator[i, n_nodes_ptr[est_id] + j] for i, j in enumerate(leaves[:, est_id])] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) def test_decision_path(): for name in FOREST_CLASSIFIERS: yield check_decision_path, name for name in FOREST_REGRESSORS: yield check_decision_path, name
bsd-3-clause
MadsJensen/agency_connectivity
phase_analysis_wide.py
1
5708
# -*- coding: utf-8 -*- """ @author: mje @emai: mads@cnru.dk """ import numpy as np # import mne import matplotlib.pyplot as plt import pandas as pd from my_settings import * plt.style.use("ggplot") b_df = pd.read_csv( "/Users/au194693/projects/agency_connectivity/data/behavioural_results.csv") def calc_ISPC_time_between(data, chan_1=52, chan_2=1): result = np.empty([data.shape[0]]) for i in range(data.shape[0]): result[i] = np.abs( np.mean( np.exp(1j * (np.angle(data[i, chan_1, window_start:window_end]) - np.angle(data[i, chan_2, window_start: window_end]))))) return result label_dict = {"ba_1_4_r": [1, 52], "ba_1_4_l": [0, 51], "ba_4_4": [51, 52], "ba_1_1": [0, 1]} # "ba_4_39_l": [49, 51], # "ba_4_39_r": [50, 52], # "ba_39_39": [49, 50]} # bands = ["delta", "theta", "alpha", "beta", "gamma1", "gamma2"] bands = ["beta"] # subjects = ["p9"] labels = list(np.load(data_path + "label_names.npy")) times = np.arange(-2000, 2001, 1.95325) times = times / 1000. window_length = 153 step_length = 15 results_all = pd.DataFrame() for subject in subjects: print("Working on: " + subject) # ht_vol = np.load(tf_folder + "/%s_vol_HT-comp.npy" % # subject) ht_testing = np.load(tf_folder + "%s_inv_HT-comp.npy" % subject) b_tmp = b_df[(b_df.subject == subject) & (b_df.condition == "invol" )].reset_index() b_tmp = b_tmp[-89:] for k, band in enumerate(bands): k = 3 # results_testing = {} ht_testing_band = ht_testing[-89:, :, :, k] step = 1 j = 768 # times index to start while times[window_length + j] < times[1040]: window_start = j window_end = j + window_length res = pd.DataFrame( calc_ISPC_time_between( ht_testing_band, chan_1=label_dict["ba_1_4_r"][0], chan_2=label_dict["ba_1_4_r"][1]), columns=["ba_1_4_r"]) res["step"] = step res["subject"] = subject res["binding"] = b_tmp.binding.get_values() res["trial_status"] = b_tmp.trial_status.get_values() res["condition"] = "testing" res["band"] = band # res["trial_nr"] = np.arange(1, 90, 1) res["ba_1_4_l"] = calc_ISPC_time_between( ht_testing_band, chan_1=label_dict["ba_1_4_l"][0], chan_2=label_dict["ba_1_4_l"][1]) res["ba_1_1"] = calc_ISPC_time_between( ht_testing_band, chan_1=label_dict["ba_1_1"][0], chan_2=label_dict["ba_1_1"][1]) res["ba_4_4"] = calc_ISPC_time_between( ht_testing_band, chan_1=label_dict["ba_4_4"][0], chan_2=label_dict["ba_4_4"][1]) results_all = results_all.append(res) j += step_length step += 1 print("Working on: " + subject) # ht_vol = np.load(tf_folder + "/%s_vol_HT-comp.npy" % # subject) ht_learning = np.load(tf_folder + "%s_vol_HT-comp.npy" % subject) b_tmp = b_df[(b_df.subject == subject) & (b_df.condition == "vol" )].reset_index() b_tmp = b_tmp[-89:] for k, band in enumerate(bands): k = 3 # Results_learning = {} ht_learning_band = ht_learning[-89:, :, :, k] j = 768 # times index to start step = 1 while times[window_length + j] < times[1040]: window_start = j window_end = j + window_length res = pd.DataFrame( calc_ISPC_time_between( ht_learning_band, chan_1=label_dict["ba_1_4_r"][0], chan_2=label_dict["ba_1_4_r"][1]), columns=["ba_1_4_r"]) res["step"] = step res["subject"] = subject res["binding"] = b_tmp.binding.get_values() res["trial_status"] = b_tmp.trial_status.get_values() res["condition"] = "learning" res["band"] = band # res["trial_nr"] = np.arange(1, 90, 1) res["ba_1_4_l"] = calc_ISPC_time_between( ht_learning_band, chan_1=label_dict["ba_1_4_l"][0], chan_2=label_dict["ba_1_4_l"][1]) res["ba_1_1"] = calc_ISPC_time_between( ht_learning_band, chan_1=label_dict["ba_1_1"][0], chan_2=label_dict["ba_1_1"][1]) res["ba_4_4"] = calc_ISPC_time_between( ht_learning_band, chan_1=label_dict["ba_4_4"][0], chan_2=label_dict["ba_4_4"][1]) results_all = results_all.append(res) j += step_length step += 1 # combine condition to predict testing from learning res_testing = results_all[results_all.condition == "testing"] res_learning = results_all[results_all.condition == "learning"] res_combined = res_testing.copy() res_combined["ba_1_1_learning"] = res_learning["ba_1_1"] res_combined["ba_4_4_learning"] = res_learning["ba_4_4"] res_combined["ba_1_4_l_learning"] = res_learning["ba_1_4_l"] res_combined["ba_1_4_r_learning"] = res_learning["ba_1_4_r"] tmp = res_combined[res_combined.step == 8] X = tmp[["ba_1_1", "ba_4_4", "ba_1_4_l", "ba_1_4_r", "ba_1_1_learning", "ba_4_4_learning", "ba_1_4_l_learning", "ba_1_4_r_learning"]].get_values() y = tmp[["binding"]]
bsd-3-clause
LFPy/LFPy
LFPy/cell.py
1
106760
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright (C) 2012 Computational Neuroscience Group, NMBU. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. """ import os import neuron from neuron import units import numpy as np import scipy.stats import sys import posixpath from warnings import warn import pickle from .run_simulation import _run_simulation_with_probes from .run_simulation import _collect_geometry_neuron from .alias_method import alias_method # check neuron version: try: try: assert neuron.version >= '7.7.2' except AttributeError: warn('Could not read NEURON version info. v7.7.2 or newer required') except TypeError: # workaround for doc build neuron Mock module pass except AssertionError: warn('LFPy requires NEURON v7.7.2 or newer. Found v{}'.format( neuron.version)) class Cell(object): """ The main cell class used in LFPy. Parameters ---------- morphology: str or neuron.h.SectionList File path of morphology on format that NEURON can understand (w. file ending .hoc, .asc, .swc or .xml), or neuron.h.SectionList instance filled with references to neuron.h.Section instances. v_init: float Initial membrane potential. Defaults to -70 mV. Ra: float or None Axial resistance. Defaults to None (unit Ohm*cm) cm: float Membrane capacitance. Defaults to None (unit uF/cm2) passive: bool Passive mechanisms are initialized if True. Defaults to False passive_parameters: dict parameter dictionary with values for the passive membrane mechanism in NEURON ('pas'). The dictionary must contain keys 'g_pas' [S/cm^2] and 'e_pas' [mV], like the default: passive_parameters=dict(g_pas=0.001, e_pas=-70) extracellular: bool Switch for NEURON's extracellular mechanism. Defaults to False dt: float simulation timestep. Defaults to 2^-4 ms tstart: float Initialization time for simulation <= 0 ms. Defaults to 0. tstop: float Stop time for simulation > 0 ms. Defaults to 100 ms. nsegs_method: 'lambda100' or 'lambda_f' or 'fixed_length' or None nseg rule, used by NEURON to determine number of compartments. Defaults to 'lambda100' max_nsegs_length: float or None Maximum segment length for method 'fixed_length'. Defaults to None lambda_f: int AC frequency for method 'lambda_f'. Defaults to 100 d_lambda: float Parameter for d_lambda rule. Defaults to 0.1 delete_sections: bool Delete pre-existing section-references. Defaults to True custom_code: list or None List of model-specific code files ([.py/.hoc]). Defaults to None custom_fun: list or None List of model-specific functions with args. Defaults to None custom_fun_args: list or None List of args passed to custom_fun functions. Defaults to None pt3d: bool Use pt3d-info of the cell geometries switch. Defaults to False celsius: float or None Temperature in celsius. If nothing is specified here or in custom code it is 6.3 celcius verbose: bool Verbose output switch. Defaults to False Examples -------- Simple example of how to use the Cell class with a passive-circuit morphology (modify morphology path accordingly): >>> import os >>> import LFPy >>> cellParameters = { >>> 'morphology': os.path.join('examples', 'morphologies', >>> 'L5_Mainen96_LFPy.hoc'), >>> 'v_init': -65., >>> 'cm': 1.0, >>> 'Ra': 150, >>> 'passive': True, >>> 'passive_parameters': {'g_pas': 1./30000, 'e_pas': -65}, >>> 'dt': 2**-3, >>> 'tstart': 0, >>> 'tstop': 50, >>> } >>> cell = LFPy.Cell(**cellParameters) >>> cell.simulate() >>> print(cell.somav) See also -------- TemplateCell NetworkCell """ def __init__(self, morphology, v_init=-70., Ra=None, cm=None, passive=False, passive_parameters=None, extracellular=False, tstart=0., tstop=100., dt=2**-4, nsegs_method='lambda100', lambda_f=100, d_lambda=0.1, max_nsegs_length=None, delete_sections=True, custom_code=None, custom_fun=None, custom_fun_args=None, pt3d=False, celsius=None, verbose=False, **kwargs): self.verbose = verbose self.pt3d = pt3d if passive_parameters is None: passive_parameters = dict(g_pas=0.001, e_pas=-70.) # check if there are un-used keyword arguments present in kwargs for key, value in kwargs.items(): raise ValueError('keyword/argument {}={}'.format(key, value), 'is invalid input to class LFPy.Cell') if passive: assert isinstance(passive_parameters, dict), \ 'passive_parameters must be a dictionary' for key in ['g_pas', 'e_pas']: assert key in passive_parameters.keys(), \ 'key {} not found in passive_parameters'.format(key) if not hasattr(neuron.h, 'd_lambda'): neuron.h.load_file('stdlib.hoc') # NEURON std. library neuron.h.load_file('import3d.hoc') # import 3D morphology lib if not hasattr(neuron.h, 'continuerun'): neuron.h.load_file('stdrun.hoc') # NEURON stdrun library if delete_sections: if not isinstance(morphology, type(neuron.h.SectionList)): if self.verbose: print('%s existing sections deleted from memory' % sum(1 for sec in neuron.h.allsec())) neuron.h('forall delete_section()') else: if not isinstance(morphology, type(neuron.h.SectionList)): mssg = "%s sections detected! " % sum( 1 for sec in neuron.h.allsec()) \ + "Consider setting 'delete_sections=True'" warn(mssg) # load morphology assert morphology is not None, \ ('deprecated keyword argument morphology==None, value must be ' + 'a file path or neuron.h.SectionList instance with ' + 'neuron.h.Section instances') if "win32" in sys.platform and isinstance(morphology, str): # fix Path on windows morphology = morphology.replace(os.sep, posixpath.sep) self.morphology = morphology if isinstance(self.morphology, str): if os.path.isfile(self.morphology): self._load_geometry() else: raise Exception('non-existent file %s' % self.morphology) else: assert isinstance(self.morphology, type(neuron.h.SectionList)), \ ("Could not recognize Cell keyword argument morphology as " + "neuron.h.SectionList instance") # instantiate 3D geometry of all sections neuron.h.define_shape() # set some additional attributes self._create_sectionlists() # Some parameters and lists initialised assert tstart <= 0, 'tstart must be <= 0.' try: assert dt in 2.**np.arange(-16, -1) except AssertionError: if tstart == 0.: if self.verbose: print('int(1./dt) not factorizable in base 2. cell.tvec ' 'errors may occur, continuing initialization.') elif tstart < 0: raise AssertionError( 'int(1./dt) must be factorizable in base 2 if tstart < 0.') self.dt = dt self.tstart = tstart self.tstop = tstop self.synapses = [] self.synidx = [] self.pointprocesses = [] self.pointprocess_idx = [] self.v_init = v_init self.default_rotation = self.__get_rotation() # Set axial resistance and membrane capacitance self.Ra = Ra self.cm = cm self.__set_ra_and_cm() # Set passive properties, insert passive on all segments self.passive_parameters = passive_parameters if passive: self.__set_passive() else: if self.verbose: print('No passive properties added') # run user specified code and functions if argument given if custom_code is not None or custom_fun is not None: self.__run_custom_codes(custom_code, custom_fun, custom_fun_args) # Insert extracellular mech on all segments self.extracellular = extracellular if self.extracellular: self.__set_extracellular() else: if self.verbose: print("no extracellular mechanism inserted") # set number of segments accd to rule, and calculate the number self.__set_negs(nsegs_method, lambda_f, d_lambda, max_nsegs_length) self.totnsegs = self.__calc_totnsegs() if self.verbose: print("Total number of segments: %i" % self.totnsegs) # extract pt3d info from NEURON, and set these with the same rotation # and position in space as in our simulations, assuming RH rule, which # NEURON do NOT use in shape plot if self.pt3d: self.x3d, self.y3d, self.z3d, self.diam3d = self._collect_pt3d() # Gather geometry, set position and rotation of morphology if self.pt3d: self._update_pt3d() else: # self._update_pt3d makes a call to self._collect_geometry() self._collect_geometry() if hasattr(self, 'somapos'): self.set_pos() else: if self.verbose: print('no soma, using the midpoint if initial segment.') self.set_rotation(**self.default_rotation) if celsius is not None: if neuron.h.celsius != 6.3: print("Changing temperature %1.2f to %1.2f" % (neuron.h.celsius, celsius)) neuron.h.celsius = celsius # initialize membrane voltage in all segments. neuron.h.finitialize(self.v_init * units.mV) self._neuron_tvec = None def __del__(self): """Cell finalizer""" self.strip_hoc_objects() def strip_hoc_objects(self): """Destroy any NEURON hoc objects in the cell object""" if not (isinstance(neuron, type(None)) or isinstance(neuron.nrn, type(None))): nrntypes = (neuron.nrn.Segment, neuron.nrn.Section, neuron.nrn.Mechanism, type(neuron.h.List())) for key in self.__dict__.keys(): if isinstance(getattr(self, key), nrntypes): setattr(self, key, None) if self.verbose: print('{}.{} = None'.format(self.__name__, key)) def _load_geometry(self): """Load the morphology-file in NEURON""" # import the morphology, try and determine format fileEnding = self.morphology.split('.')[-1] if fileEnding == 'hoc' or fileEnding == 'HOC': neuron.h.load_file(1, self.morphology) else: neuron.h('objref this') if fileEnding == 'asc' or fileEnding == 'ASC': Import = neuron.h.Import3d_Neurolucida3() if not self.verbose: Import.quiet = 1 elif fileEnding == 'swc' or fileEnding == 'SWC': Import = neuron.h.Import3d_SWC_read() elif fileEnding == 'xml' or fileEnding == 'XML': Import = neuron.h.Import3d_MorphML() else: raise ValueError('%s not a recognised morphology file format' % self.morphology).with_traceback( 'Should be either .hoc, .asc, .swc, .xml') # assuming now that morphologies file is the correct format try: Import.input(self.morphology) except BaseException: if not hasattr(neuron, 'neuroml'): raise Exception('Can not import, try and copy the ' 'nrn/share/lib/python/neuron/neuroml ' 'folder into %s' % neuron.__path__[0]) else: raise Exception('something wrong with file, see output') try: imprt = neuron.h.Import3d_GUI(Import, 0) except BaseException: raise Exception('See output, try to correct the file') imprt.instantiate(neuron.h.this) neuron.h.define_shape() self._create_sectionlists() def __run_custom_codes(self, custom_code, custom_fun, custom_fun_args): """Execute custom model code and functions with arguments""" # load custom codes if custom_code is not None: for code in custom_code: if "win32" in sys.platform: code = code.replace(os.sep, posixpath.sep) if code.split('.')[-1] == 'hoc': try: neuron.h.xopen(code) except RuntimeError: ERRMSG = '\n'.join( [ '', 'Could not load custom model code (%s)' % code, 'while creating a Cell object.', 'One possible cause is NEURON mechanisms have', 'not been compiled, ', 'try running nrnivmodl or mknrndll (Windows) ', 'in the .mod-file containing folder. ', ]) raise Exception(ERRMSG) elif code.split('.')[-1] == 'py': exec(code) else: raise Exception('%s not a .hoc- nor .py-file' % code) # run custom functions with arguments i = 0 if custom_fun is not None: for fun in custom_fun: fun(self, **custom_fun_args[i]) i += 1 # recreate sectionlists in case something changed neuron.h.define_shape() self._create_sectionlists() def __set_negs(self, nsegs_method, lambda_f, d_lambda, max_nsegs_length): """Set number of segments per section according to the lambda-rule, or according to maximum length of segments""" if nsegs_method == 'lambda100': self.__set_nsegs_lambda100(d_lambda) elif nsegs_method == 'lambda_f': self.__set_nsegs_lambda_f(lambda_f, d_lambda) elif nsegs_method == 'fixed_length': self.__set_nsegs_fixed_length(max_nsegs_length) else: if self.verbose: print('No nsegs_method applied (%s)' % nsegs_method) def __get_rotation(self): """Check if there exists a corresponding file with rotation angles""" if isinstance(self.morphology, str): base = os.path.splitext(self.morphology)[0] if os.path.isfile(base + '.rot'): rotation_file = base + '.rot' rotation_data = open(rotation_file) rotation = {} for line in rotation_data: var, val = line.split('=') val = val.strip() val = float(str(val)) rotation[var] = val else: rotation = {} else: rotation = {} return rotation def _create_sectionlists(self): """Create section lists for different kinds of sections""" # list with all sections self.allsecnames = [] if not isinstance(self.morphology, type(neuron.h.SectionList)): self.allseclist = neuron.h.SectionList() for sec in neuron.h.allsec(): self.allsecnames.append(sec.name()) self.allseclist.append(sec=sec) else: self.allseclist = self.morphology for sec in neuron.h.allsec(): self.allsecnames.append(sec.name()) # list of soma sections, assuming it is named on the format "soma*" self.nsomasec = 0 self.somalist = neuron.h.SectionList() for sec in neuron.h.allsec(): if sec.name().find('soma') >= 0: self.somalist.append(sec=sec) self.nsomasec += 1 def __get_idx(self, seclist): """Return boolean vector which indexes where segments in seclist matches segments in neuron.h.allsec(), rewritten from LFPy.hoc function get_idx()""" if neuron.h.allsec() == seclist: return np.ones(self.totnsegs, dtype=bool) else: idxvec = np.zeros(self.totnsegs, dtype=bool) # get sectionnames from seclist seclistnames = [] for sec in seclist: seclistnames.append(sec.name()) seclistnames = np.array(seclistnames, dtype='|S128') segnames = np.empty(self.totnsegs, dtype='|S128') i = 0 for sec in self.allseclist: secname = sec.name() for seg in sec: segnames[i] = secname i += 1 for name in seclistnames: idxvec[segnames == name] = True return idxvec def __set_nsegs_lambda_f(self, frequency=100, d_lambda=0.1): """Set the number of segments for section according to the d_lambda-rule for a given input frequency Parameters ---------- frequency: float frequency at which AC length constant is computed d_lambda: float """ neuron.h.pop_section() # dirty fix, see NEURON doc for sec in self.allseclist: sec.nseg = int( (sec.L / (d_lambda * neuron.h.lambda_f(frequency, sec=sec)) + .9) / 2) * 2 + 1 if self.verbose: print("set nsegs using lambda-rule with frequency %i." % frequency) def __set_nsegs_lambda100(self, d_lambda=0.1): """Set the numbers of segments using d_lambda(100)""" self.__set_nsegs_lambda_f(frequency=100, d_lambda=d_lambda) def __set_nsegs_fixed_length(self, maxlength): """Set nseg for sections so that every segment L < maxlength""" for sec in self.allseclist: sec.nseg = int(sec.L / maxlength) + 1 def __calc_totnsegs(self): """Calculate the number of segments in the allseclist""" i = 0 for sec in self.allseclist: i += sec.nseg return i def __check_currents(self): """Check that the sum of all membrane and electrode currents over all segments is sufficiently close to zero""" raise NotImplementedError('this function need to be written') def __set_ra_and_cm(self): """Insert ra and cm on all segments""" for sec in self.allseclist: if self.Ra is not None: sec.Ra = self.Ra if self.cm is not None: sec.cm = self.cm def __set_passive(self): """Insert passive mechanism on all segments""" for sec in self.allseclist: sec.insert('pas') sec.g_pas = self.passive_parameters['g_pas'] sec.e_pas = self.passive_parameters['e_pas'] def __set_extracellular(self): """Insert extracellular mechanism on all sections to set an external potential V_ext as boundary condition. """ for sec in self.allseclist: sec.insert('extracellular') self.extracellular = True def set_synapse(self, idx, syntype, record_current=False, record_potential=False, weight=None, **kwargs): """Insert synapse on cell segment Parameters ---------- idx: int Index of compartment where synapse is inserted syntype: str Type of synapse. Built-in types in NEURON: ExpSyn, Exp2Syn record_current: bool If True, record synapse current record_potential: bool If True, record postsynaptic potential seen by the synapse weight: float Strength of synapse kwargs arguments passed on from class Synapse Returns ------- int index of synapse object on cell """ if not hasattr(self, '_hoc_synlist'): self._hoc_synlist = neuron.h.List() if not hasattr(self, '_synitorecord'): self._synitorecord = [] if not hasattr(self, '_synvtorecord'): self._synvtorecord = [] if not hasattr(self, '_hoc_netstimlist'): self._hoc_netstimlist = neuron.h.List() if not hasattr(self, '_hoc_netconlist'): self._hoc_netconlist = neuron.h.List() if not hasattr(self, '_sptimeslist'): self._sptimeslist = [] # need to append w. one empty array per synapse self._sptimeslist.append(np.array([])) i = 0 cmd = 'neuron.h.{}(seg.x, sec=sec)' for sec in self.allseclist: for seg in sec: if i == idx: command = cmd.format(syntype) syn = eval(command, locals(), globals()) for param in list(kwargs.keys()): try: setattr(syn, param, kwargs[param]) except BaseException: pass self._hoc_synlist.append(syn) # create NetStim (generator) and NetCon (connection) # objects self._hoc_netstimlist.append(neuron.h.NetStim(0.5)) self._hoc_netstimlist[-1].number = 0 nc = neuron.h.NetCon(self._hoc_netstimlist[-1], syn) nc.weight[0] = weight self._hoc_netconlist.append(nc) # record current if record_current: self._synitorecord.append( self._hoc_synlist.count() - 1) # record potential if record_potential: self._synvtorecord.append( self._hoc_synlist.count() - 1) i += 1 return self._hoc_synlist.count() - 1 def set_point_process(self, idx, pptype, record_current=False, record_potential=False, **kwargs): """Insert pptype-electrode type pointprocess on segment numbered idx on cell object Parameters ---------- idx: int Index of compartment where point process is inserted pptype: str Type of pointprocess. Examples: SEClamp, VClamp, IClamp, SinIClamp, ChirpIClamp record_current: bool Decides if current is stored kwargs Parameters passed on from class StimIntElectrode Returns ------- int index of point process on cell """ if not hasattr(self, '_hoc_stimlist'): self._hoc_stimlist = neuron.h.List() if not hasattr(self, '_stimitorecord'): self._stimitorecord = [] if not hasattr(self, '_stimvtorecord'): self._stimvtorecord = [] i = 0 cmd1 = 'neuron.h.' cmd2 = '(seg.x, sec=sec)' ppset = False for sec in self.allseclist: for seg in sec: if i == idx: command = cmd1 + pptype + cmd2 stim = eval(command, locals(), globals()) for key, value in kwargs.items(): try: itr = enumerate(iter(value)) except TypeError: setattr(stim, key, value) else: for i, v in itr: getattr(stim, key)[i] = v self._hoc_stimlist.append(stim) # record current if record_current: self._stimitorecord.append( self._hoc_stimlist.count() - 1) # record potential if record_potential: self._stimvtorecord.append( self._hoc_stimlist.count() - 1) ppset = True break i += 1 if ppset: break return self._hoc_stimlist.count() - 1 def _collect_geometry(self): """Collects x, y, z-coordinates from NEURON""" # None-type some attributes if they do not exist: if not hasattr(self, 'x'): self.x = None self.y = None self.z = None self.area = None self.d = None self.length = None _collect_geometry_neuron(self) self.somaidx = self.get_idx(section='soma') if self.somaidx.size > 1: xmids = self.x[self.somaidx].mean(axis=-1) ymids = self.y[self.somaidx].mean(axis=-1) zmids = self.z[self.somaidx].mean(axis=-1) self.somapos = np.zeros(3) self.somapos[0] = xmids.mean() self.somapos[1] = ymids.mean() self.somapos[2] = zmids.mean() elif self.somaidx.size == 1: self.somapos = np.zeros(3) self.somapos[0] = self.x[self.somaidx].mean() self.somapos[1] = self.y[self.somaidx].mean() self.somapos[2] = self.z[self.somaidx].mean() elif self.somaidx.size == 0: if self.verbose: warn("There is no soma!" + "Using first segment as root point") self.somaidx = np.array([0]) self.somapos = np.zeros(3) self.somapos[0] = self.x[self.somaidx].mean() self.somapos[1] = self.y[self.somaidx].mean() self.somapos[2] = self.z[self.somaidx].mean() else: raise Exception('Huh?!') def get_idx(self, section='allsec', z_min=-np.inf, z_max=np.inf): """ Returns compartment idx of segments from sections with names that match the pattern defined in input section on interval [z_min, z_max]. Parameters ---------- section: str Any entry in cell.allsecnames or just 'allsec'. z_min: float Depth filter. Specify minimum z-position z_max: float Depth filter. Specify maximum z-position Returns ------- ndarray, dtype=int segment indices Examples -------- >>> idx = cell.get_idx(section='allsec') >>> print(idx) >>> idx = cell.get_idx(section=['soma', 'dend', 'apic']) >>> print(idx) """ if section == 'allsec': seclist = neuron.h.allsec() else: seclist = neuron.h.SectionList() if isinstance(section, str): for sec in self.allseclist: if sec.name().find(section) >= 0: seclist.append(sec=sec) elif isinstance(section, list): for secname in section: for sec in self.allseclist: if sec.name().find(secname) >= 0: seclist.append(sec=sec) else: if self.verbose: print('%s did not match any section name' % str(section)) idx = self.__get_idx(seclist) sel_z_idx = ( self.z[idx].mean( axis=- 1) > z_min) & ( self.z[idx].mean( axis=- 1) < z_max) return np.arange(self.totnsegs)[idx][sel_z_idx] def get_closest_idx(self, x=0., y=0., z=0., section='allsec'): """Get the index number of a segment in specified section which midpoint is closest to the coordinates defined by the user Parameters ---------- x: float x-coordinate y: float y-coordinate z: float z-coordinate section: str String matching a section-name. Defaults to 'allsec'. Returns ------- int segment index """ idx = self.get_idx(section) dist = ((self.x[idx].mean(axis=-1) - x)**2 + (self.y[idx].mean(axis=-1) - y)**2 + (self.z[idx].mean(axis=-1) - z)**2) return idx[np.argmin(dist)] def get_rand_idx_area_norm(self, section='allsec', nidx=1, z_min=-1E6, z_max=1E6): """Return nidx segment indices in section with random probability normalized to the membrane area of segment on interval [z_min, z_max] Parameters ---------- section: str String matching a section-name nidx: int Number of random indices z_min: float Depth filter z_max: float Depth filter Returns ------- ndarray, dtype=int segment indices """ poss_idx = self.get_idx(section=section, z_min=z_min, z_max=z_max) if nidx < 1: print('nidx < 1, returning empty array') return np.array([]) elif poss_idx.size == 0: print('No possible segment idx match quiery - returning ' 'empty array') return np.array([]) else: area = self.area[poss_idx] area /= area.sum() return alias_method(poss_idx, area, nidx) def get_rand_idx_area_and_distribution_norm(self, section='allsec', nidx=1, z_min=-1E6, z_max=1E6, fun=scipy.stats.norm, funargs=dict(loc=0, scale=100), funweights=None): """ Return nidx segment indices in section with random probability normalized to the membrane area of each segment multiplied by the value of the probability density function of "fun", a function in the scipy.stats module with corresponding function arguments in "funargs" on the interval [z_min, z_max] Parameters ---------- section: str string matching a section name nidx: int number of random indices z_min: float lower depth interval z_max: float upper depth interval fun: function or str, or iterable of function or str if function a scipy.stats method, if str, must be method in scipy.stats module with the same name (like 'norm'), if iterable (list, tuple, numpy.array) of function or str some probability distribution in scipy.stats module funargs: dict or iterable iterable (list, tuple, numpy.array) of dict, arguments to fun.pdf method (e.g., w. keys 'loc' and 'scale') funweights: None or iterable iterable (list, tuple, numpy.array) of floats, scaling of each individual fun (i.e., introduces layer specificity) Examples -------- >>> import LFPy >>> import numpy as np >>> import scipy.stats as ss >>> import matplotlib.pyplot as plt >>> from os.path import join >>> cell = LFPy.Cell(morphology=join('cells', 'cells', 'j4a.hoc')) >>> cell.set_rotation(x=4.99, y=-4.33, z=3.14) >>> idx = cell.get_rand_idx_area_and_distribution_norm( nidx=10000, fun=ss.norm, funargs=dict(loc=0, scale=200)) >>> bins = np.arange(-30, 120)*10 >>> plt.hist(cell.zmid[idx], bins=bins, alpha=0.5) >>> plt.show() """ poss_idx = self.get_idx(section=section, z_min=z_min, z_max=z_max) if nidx < 1: print('nidx < 1, returning empty array') return np.array([]) elif poss_idx.size == 0: print('No possible segment idx match query - returning ' 'empty array') return np.array([]) else: p = self.area[poss_idx] # scale with density function if type(fun) in [list, tuple, np.ndarray]: assert type(funargs) in [list, tuple, np.ndarray] assert type(funweights) in [list, tuple, np.ndarray] assert len(fun) == len(funargs) & len(fun) == len(funweights) mod = np.zeros(poss_idx.shape) for f, args, scl in zip(fun, funargs, funweights): if isinstance(f, str) and f in dir(scipy.stats): f = getattr(scipy.stats, f) df = f(**args) mod += df.pdf(x=self.z[poss_idx].mean(axis=-1)) * scl p *= mod else: if isinstance(fun, str) and fun in dir(scipy.stats): fun = getattr(scipy.stats, fun) df = fun(**funargs) p *= df.pdf(x=self.z[poss_idx].mean(axis=-1)) # normalize p /= p.sum() return alias_method(poss_idx, p, nidx) def enable_extracellular_stimulation( self, electrode, t_ext=None, n=1, model='inf'): r""" Enable extracellular stimulation with 'extracellular' mechanism. Extracellular potentials are computed from the electrode currents using the pointsource approximation. If 'model' is 'inf' (default), potentials are computed as (:math:`r_i` is the position of a comparment i, :math:`r_e` is the position of an elextrode e, :math:`\sigma` is the conductivity of the medium): .. math:: V_e(r_i) = \sum_n \frac{I_n}{4 \pi \sigma |r_i - r_n|} If model is 'semi', the method of images is used: .. math:: V_e(r_i) = \sum_n \frac{I_n}{2 \pi \sigma |r_i - r_n|} Parameters ---------- electrode: RecExtElectrode Electrode object with stimulating currents t_ext: np.ndarray or list Time im ms corrisponding to step changes in the provided currents. If None, currents are assumed to have the same time steps as NEURON simulation. n: int Points per electrode to compute spatial averaging model: str 'inf' or 'semi'. If 'inf' the medium is assumed to be infinite and homogeneous. If 'semi', the method of images is used. Returns ------- v_ext: np.ndarray Computed extracellular potentials at cell mid points """ # access electrode object and append mapping if electrode is not None: # put electrode argument in list if needed if isinstance(electrode, list): electrodes = electrode else: electrodes = [electrode] else: print("'electrode' is None") return assert model in ['inf', 'semi'], "'model' can be 'inf' or 'semi'" # extracellular stimulation if np.any([np.any(el.probe.currents != 0) for el in electrodes]): cell_mid_points = np.array([self.x.mean(axis=-1), self.y.mean(axis=-1), self.z.mean(axis=-1)]).T n_tsteps = int(self.tstop / self.dt + 1) t_cell = np.arange(n_tsteps) * self.dt if t_ext is None: print("Assuming t_ext is the same as simulation time") t_ext = t_cell for electrode in electrodes: assert electrode.probe.currents.shape[1] == len(t_cell), \ ("Discrepancy between t_ext and cell simulation time" + "steps. Provide the 't_ext' argument") else: assert len(t_ext) < len(t_cell), \ "Stimulation time steps greater than cell simulation steps" v_ext = np.zeros((self.totnsegs, len(t_ext))) for electrode in electrodes: if np.any(np.any(electrode.probe.currents != 0)): electrode.probe.points_per_electrode = int(n) electrode.probe.model = model ve = electrode.probe.compute_field(cell_mid_points) if len(electrode.probe.currents.shape) == 1: ve = ve[:, np.newaxis] v_ext += ve self.__set_extracellular() self.insert_v_ext(v_ext, np.array(t_ext)) else: v_ext = None return v_ext def simulate(self, probes=None, rec_imem=False, rec_vmem=False, rec_ipas=False, rec_icap=False, rec_variables=[], variable_dt=False, atol=0.001, rtol=0., to_memory=True, to_file=False, file_name=None, **kwargs): """ This is the main function running the simulation of the NEURON model. Start NEURON simulation and record variables specified by arguments. Parameters ---------- probes: list of :obj:, optional None or list of LFPykit.RecExtElectrode like object instances that each have a public method `get_transformation_matrix` returning a matrix that linearly maps each compartments' transmembrane current to corresponding measurement as .. math:: \\mathbf{P} = \\mathbf{M} \\mathbf{I} rec_imem: bool If true, segment membrane currents will be recorded If no electrode argument is given, it is necessary to set rec_imem=True in order to make predictions later on. Units of (nA). rec_vmem: bool Record segment membrane voltages (mV) rec_ipas: bool Record passive segment membrane currents (nA) rec_icap: bool Record capacitive segment membrane currents (nA) rec_variables: list List of segment state variables to record, e.g. arg=['cai', ] variable_dt: bool Use NEURON's variable timestep method atol: float Absolute local error tolerance for NEURON variable timestep method rtol: float Relative local error tolerance for NEURON variable timestep method to_memory: bool Only valid with probes=[:obj:], store measurements as `:obj:.data` to_file: bool Only valid with probes, save simulated data in hdf5 file format file_name: str Name of hdf5 file, '.h5' is appended if it doesnt exist """ for key in kwargs.keys(): if key in ['electrode', 'rec_current_dipole_moment', 'dotprodcoeffs', 'rec_isyn', 'rec_vmemsyn', 'rec_istim', 'rec_vmemstim']: warn('Cell.simulate parameter {} is deprecated.'.format(key)) # set up integrator, use the CVode().fast_imem method by default # as it doesn't hurt sim speeds much if at all. cvode = neuron.h.CVode() try: cvode.use_fast_imem(1) except AttributeError: raise Exception('neuron.h.CVode().use_fast_imem() method not ' 'found. Update NEURON to v.7.4 or newer') if not variable_dt: dt = self.dt else: dt = None self._set_soma_volt_recorder(dt) if rec_imem: self._set_imem_recorders(dt) if rec_vmem: self._set_voltage_recorders(dt) if rec_ipas: self._set_ipas_recorders(dt) if rec_icap: self._set_icap_recorders(dt) if len(rec_variables) > 0: self._set_variable_recorders(rec_variables, dt) if hasattr(self, '_stimitorecord'): if len(self._stimitorecord) > 0: self.__set_ipointprocess_recorders(dt) if hasattr(self, '_stimvtorecord'): if len(self._stimvtorecord) > 0: self.__set_vpointprocess_recorders(dt) if hasattr(self, '_synitorecord'): if len(self._synitorecord) > 0: self.__set_isyn_recorders(dt) if hasattr(self, '_synvtorecord'): if len(self._synvtorecord) > 0: self.__set_vsyn_recorders(dt) # set time recorder from NEURON self.__set_time_recorders(dt) # run fadvance until t >= tstop, and calculate LFP if asked for if probes is None or len(probes) == 0: if not rec_imem and self.verbose: print("rec_imem = %s, membrane currents will not be recorded!" % str(rec_imem)) self.__run_simulation(cvode, variable_dt, atol, rtol) else: # simulate with probes saving to memory and/or file: _run_simulation_with_probes(self, cvode, probes, variable_dt, atol, rtol, to_memory, to_file, file_name) # somatic trace if self.nsomasec >= 1: self.somav = np.array(self.somav) self.__collect_tvec() if rec_imem: self._calc_imem() if rec_ipas: self._calc_ipas() if rec_icap: self._calc_icap() if rec_vmem: self._collect_vmem() if hasattr(self, '_hoc_stimireclist'): self._collect_istim() if hasattr(self, '_hoc_stimvreclist'): self.__collect_vstim() if hasattr(self, '_hoc_synireclist'): self._collect_isyn() if hasattr(self, '_hoc_synvreclist'): self._collect_vsyn() if len(rec_variables) > 0: self._collect_rec_variables(rec_variables) if hasattr(self, '_hoc_netstimlist'): self._hoc_netstimlist = None del self._hoc_netstimlist self.__purge_hoc_pointprocesses() def __purge_hoc_pointprocesses(self): """ Empty lists which may store point process objects in `hoc` name space. This is needed to avoid "Segmentation Fault 11" """ if hasattr(self, '_hoc_synlist'): self._hoc_synlist.remove_all() if hasattr(self, '__hoc_stimlist'): self._hoc_stimlist.remove_all() def __run_simulation(self, cvode, variable_dt=False, atol=0.001, rtol=0.): """ Running the actual simulation in NEURON, simulations in NEURON is now interruptable. """ neuron.h.dt = self.dt # variable dt method if variable_dt: cvode.active(1) cvode.atol(atol) cvode.rtol(rtol) else: cvode.active(0) # re-initialize state neuron.h.finitialize(self.v_init * units.mV) # initialize current- and record if cvode.active(): cvode.re_init() else: neuron.h.fcurrent() neuron.h.frecord_init() # Starting simulation at t != 0 neuron.h.t = self.tstart self._load_spikes() # advance simulation until tstop neuron.h.continuerun(self.tstop * units.ms) # for consistency with 'old' behaviour where tstop is included in tvec: if neuron.h.t < self.tstop: neuron.h.fadvance() def __collect_tvec(self): """ Set the tvec to be a monotonically increasing numpy array after sim. """ self.tvec = np.array(self._neuron_tvec.to_python()) self._neuron_tvec = None del self._neuron_tvec def _calc_imem(self): """ Fetch the vectors from the memireclist and calculate self.imem containing all the membrane currents. """ self.imem = np.array(self._hoc_memireclist) self._hoc_memireclist = None del self._hoc_memireclist def _calc_ipas(self): """ Get the passive currents """ self.ipas = np.array(self._hoc_memipasreclist) for i in range(self.ipas.shape[0]): self.ipas[i, ] *= self.area[i] * 1E-2 self._hoc_memipasreclist = None del self._hoc_memipasreclist def _calc_icap(self): """ Get the capacitive currents """ self.icap = np.array(self._hoc_memicapreclist) for i in range(self.icap.shape[0]): self.icap[i, ] *= self.area[i] * 1E-2 self._hoc_memicapreclist = None del self._hoc_memicapreclist def _collect_vmem(self): """ Get the membrane currents """ self.vmem = np.array(self._hoc_memvreclist) self._hoc_memvreclist = None del self._hoc_memvreclist def _collect_isyn(self): """ Get the synaptic currents """ for syn in self.synapses: if syn.record_current: syn.collect_current(self) self._hoc_synireclist = None del self._hoc_synireclist def _collect_vsyn(self): """ Collect the membrane voltage of segments with synapses """ for syn in self.synapses: if syn.record_potential: syn.collect_potential(self) self._hoc_synvreclist = None del self._hoc_synvreclist def _collect_istim(self): """ Get the pointprocess currents """ for pp in self.pointprocesses: if pp.record_current: pp.collect_current(self) self._hoc_stimireclist = None del self._hoc_stimireclist def __collect_vstim(self): """ Collect the membrane voltage of segments with stimulus """ for pp in self.pointprocesses: if pp.record_potential: pp.collect_potential(self) self._hoc_stimvreclist = None del self._hoc_stimvreclist def _collect_rec_variables(self, rec_variables): """ Create dict of np.arrays from recorded variables, each dictionary element named as the corresponding recorded variable name, i.e 'cai' """ self.rec_variables = {} i = 0 for values in self._hoc_recvariablesreclist: self.rec_variables.update({rec_variables[i]: np.array(values)}) if self.verbose: print('collected recorded variable %s' % rec_variables[i]) i += 1 del self._hoc_recvariablesreclist def _load_spikes(self): """ Initialize spiketimes from netcon if they exist """ if hasattr(self, '_hoc_synlist'): if len(self._hoc_synlist) == len(self._sptimeslist): for i in range(int(self._hoc_synlist.count())): for spt in self._sptimeslist[i]: self._hoc_netconlist.o(i).event(spt) def _set_soma_volt_recorder(self, dt): """Record somatic membrane potential""" if self.nsomasec == 0: if self.verbose: warn('Cell instance appears to have no somatic section. ' 'No somav attribute will be set.') elif self.nsomasec == 1: if dt is not None: self.somav = neuron.h.Vector(int(self.tstop / self.dt + 1)) for sec in self.somalist: self.somav.record(sec(0.5)._ref_v, self.dt) else: self.somav = neuron.h.Vector() for sec in self.somalist: self.somav.record(sec(0.5)._ref_v) elif self.nsomasec > 1: if dt is not None: self.somav = neuron.h.Vector(int(self.tstop / self.dt + 1)) nseg = self.get_idx('soma').size i, j = divmod(nseg, 2) k = 1 for sec in self.somalist: for seg in sec: if nseg == 2 and k == 1: # if 2 segments, record from the first one: self.somav.record(seg._ref_v, self.dt) else: if k == i * 2: # record from one of the middle segments: self.somav.record(seg._ref_v, self.dt) k += 1 else: self.somav = neuron.h.Vector() nseg = self.get_idx('soma').size i, j = divmod(nseg, 2) k = 1 for sec in self.somalist: for seg in sec: if nseg == 2 and k == 1: # if 2 segments, record from the first one: self.somav.record(seg._ref_v) else: if k == i * 2: # record from one of the middle segments: self.somav.record(seg._ref_v) k += 1 def _set_imem_recorders(self, dt): """ Record membrane currents for all segments """ self._hoc_memireclist = neuron.h.List() for sec in self.allseclist: for seg in sec: if dt is not None: memirec = neuron.h.Vector(int(self.tstop / self.dt + 1)) memirec.record(seg._ref_i_membrane_, self.dt) else: memirec = neuron.h.Vector() memirec.record(seg._ref_i_membrane_) self._hoc_memireclist.append(memirec) def __set_time_recorders(self, dt): """ Record time of simulation """ if dt is not None: self._neuron_tvec = neuron.h.Vector(int(self.tstop / self.dt + 1)) self._neuron_tvec.record(neuron.h._ref_t, self.dt) else: self._neuron_tvec = neuron.h.Vector() self._neuron_tvec.record(neuron.h._ref_t) def _set_ipas_recorders(self, dt): """ Record passive membrane currents for all segments """ self._hoc_memipasreclist = neuron.h.List() for sec in self.allseclist: for seg in sec: if dt is not None: memipasrec = neuron.h.Vector(int(self.tstop / self.dt + 1)) memipasrec.record(seg._ref_i_pas, self.dt) else: memipasrec = neuron.h.Vector() memipasrec.record(seg._ref_i_pas) self._hoc_memipasreclist.append(memipasrec) def _set_icap_recorders(self, dt): """ Record capacitive membrane currents for all segments """ self._hoc_memicapreclist = neuron.h.List() for sec in self.allseclist: for seg in sec: if dt is not None: memicaprec = neuron.h.Vector(int(self.tstop / self.dt + 1)) memicaprec.record(seg._ref_i_cap, self.dt) else: memicaprec = neuron.h.Vector() memicaprec.record(seg._ref_i_cap) self._hoc_memicapreclist.append(memicaprec) def __set_ipointprocess_recorders(self, dt): """ Record point process current """ self._hoc_stimireclist = neuron.h.List() for idx, pp in enumerate(self.pointprocesses): if idx in self._stimitorecord: stim = self._hoc_stimlist[idx] if dt is not None: stimirec = neuron.h.Vector(int(self.tstop / self.dt + 1)) stimirec.record(stim._ref_i, self.dt) else: stimirec = neuron.h.Vector() stimirec.record(stim._ref_i) else: stimirec = neuron.h.Vector(0) self._hoc_stimireclist.append(stimirec) def __set_vpointprocess_recorders(self, dt): """ Record point process membrane """ self._hoc_stimvreclist = neuron.h.List() for idx, pp in enumerate(self.pointprocesses): if idx in self._stimvtorecord: stim = self._hoc_stimlist[idx] seg = stim.get_segment() if dt is not None: stimvrec = neuron.h.Vector(int(self.tstop / self.dt + 1)) stimvrec.record(seg._ref_v, self.dt) else: stimvrec = neuron.h.Vector() stimvrec.record(seg._ref_v) else: stimvrec = neuron.h.Vector(0) self._hoc_stimvreclist.append(stimvrec) def __set_isyn_recorders(self, dt): """ Record point process current """ self._hoc_synireclist = neuron.h.List() for idx, pp in enumerate(self.synapses): if idx in self._synitorecord: syn = self._hoc_synlist[idx] if dt is not None: synirec = neuron.h.Vector(int(self.tstop / self.dt + 1)) synirec.record(syn._ref_i, self.dt) else: synirec = neuron.h.Vector() synirec.record(syn._ref_i) else: synirec = neuron.h.Vector(0) self._hoc_synireclist.append(synirec) def __set_vsyn_recorders(self, dt): """ Record point process membrane """ self._hoc_synvreclist = neuron.h.List() for idx, pp in enumerate(self.synapses): if idx in self._synvtorecord: syn = self._hoc_synlist[idx] seg = syn.get_segment() if dt is not None: synvrec = neuron.h.Vector(int(self.tstop / self.dt + 1)) synvrec.record(seg._ref_v, self.dt) else: synvrec = neuron.h.Vector() synvrec.record(seg._ref_v) else: synvrec = neuron.h.Vector(0) self._hoc_synvreclist.append(synvrec) def _set_voltage_recorders(self, dt): """ Record membrane potentials for all segments """ self._hoc_memvreclist = neuron.h.List() for sec in self.allseclist: for seg in sec: if dt is not None: memvrec = neuron.h.Vector(int(self.tstop / self.dt + 1)) memvrec.record(seg._ref_v, self.dt) else: memvrec = neuron.h.Vector() memvrec.record(seg._ref_v) self._hoc_memvreclist.append(memvrec) def __set_current_dipole_moment_array(self, dt): """ Creates container for current dipole moment, an empty n_timesteps x 3 `numpy.ndarray` that will be filled with values during the course of each simulation """ if dt is not None: self.current_dipole_moment = np.zeros( (int(self.tstop / self.dt + 1), 3)) else: self.current_dipole_moment = [] def _set_variable_recorders(self, rec_variables, dt): """ Create a recorder for each variable name in list rec_variables Variables is stored in nested list self._hoc_recvariablesreclist """ self._hoc_recvariablesreclist = neuron.h.List() for variable in rec_variables: variablereclist = neuron.h.List() self._hoc_recvariablesreclist.append(variablereclist) for sec in self.allseclist: for seg in sec: if dt is not None: recvector = neuron.h.Vector( int(self.tstop / self.dt + 1)) else: recvector = neuron.h.Vector() try: if dt is not None: recvector.record( getattr( seg, '_ref_%s' % variable), self.dt) else: recvector.record( getattr( seg, '_ref_%s' % variable)) except(NameError, AttributeError): print('non-existing variable %s, section %s.%f' % (variable, sec.name(), seg.x)) variablereclist.append(recvector) def set_pos(self, x=0., y=0., z=0.): """Set the cell position. Move the cell geometry so that midpoint of soma section is in (x, y, z). If no soma pos, use the first segment Parameters ---------- x: float x position defaults to 0.0 y: float y position defaults to 0.0 z: float z position defaults to 0.0 """ diffx = x - self.somapos[0] diffy = y - self.somapos[1] diffz = z - self.somapos[2] # also update the pt3d_pos: if self.pt3d and hasattr(self, 'x3d'): self._set_pt3d_pos(diffx, diffy, diffz) else: self.somapos[0] = x self.somapos[1] = y self.somapos[2] = z self.x[:, 0] += diffx self.y[:, 0] += diffy self.z[:, 0] += diffz self.x[:, -1] += diffx self.y[:, -1] += diffy self.z[:, -1] += diffz self.__update_synapse_positions() def cellpickler(self, filename, pickler=pickle.dump): """Save data in cell to filename, using cPickle. It will however destroy any ``neuron.h`` objects upon saving, as c-objects cannot be pickled Parameters ---------- filename: str Where to save cell Examples -------- >>> # To save a cell, issue: >>> cell.cellpickler('cell.cpickle') >>> # To load this cell again in another session: >>> import cPickle >>> with file('cell.cpickle', 'rb') as f: >>> cell = cPickle.load(f) Returns ------- None or pickle """ self.strip_hoc_objects() if pickler == pickle.dump: filen = open(filename, 'wb') pickler(self, filen, protocol=2) filen.close() return None elif pickler == pickle.dumps: return pickle.dumps(self) def __update_synapse_positions(self): """ Update synapse positions after rotation of morphology """ for i in range(len(self.synapses)): self.synapses[i].update_pos(self) def set_rotation(self, x=None, y=None, z=None, rotation_order='xyz'): """ Rotate geometry of cell object around the x-, y-, z-axis in the order described by rotation_order parameter. Parameters ---------- x: float or None rotation angle in radians. Default: None y: float or None rotation angle in radians. Default: None z: float or None rotation angle in radians. Default: None rotation_order: str string with 3 elements containing x, y and z e.g. 'xyz', 'zyx'. Default: 'xyz' Examples -------- >>> cell = LFPy.Cell(**kwargs) >>> rotation = {'x': 1.233, 'y': 0.236, 'z': np.pi} >>> cell.set_rotation(**rotation) """ if not isinstance(rotation_order, str): raise AttributeError('rotation_order must be a string') elif not np.all([u in rotation_order for u in 'xyz']): raise AttributeError("'x', 'y', and 'z' must be in rotation_order") elif len(rotation_order) != 3: raise AttributeError( "rotation_order should have 3 elements (e.g. 'zyx')") for ax in rotation_order: if ax == 'x' and x is not None: theta = -x rotation_x = np.array([[1, 0, 0], [0, np.cos(theta), -np.sin(theta)], [0, np.sin(theta), np.cos(theta)]]) rel_start, rel_end = self._rel_positions() rel_start = np.dot(rel_start, rotation_x) rel_end = np.dot(rel_end, rotation_x) self._real_positions(rel_start, rel_end) if self.verbose: print( 'Rotated geometry %g radians around x-axis' % (-theta)) else: if self.verbose: print('Geometry not rotated around x-axis') if ax == 'y' and y is not None: phi = -y rotation_y = np.array([[np.cos(phi), 0, np.sin(phi)], [0, 1, 0], [-np.sin(phi), 0, np.cos(phi)]]) rel_start, rel_end = self._rel_positions() rel_start = np.dot(rel_start, rotation_y) rel_end = np.dot(rel_end, rotation_y) self._real_positions(rel_start, rel_end) if self.verbose: print('Rotated geometry %g radians around y-axis' % (-phi)) else: if self.verbose: print('Geometry not rotated around y-axis') if ax == 'z' and z is not None: gamma = -z rotation_z = np.array([[np.cos(gamma), -np.sin(gamma), 0], [np.sin(gamma), np.cos(gamma), 0], [0, 0, 1]]) rel_start, rel_end = self._rel_positions() rel_start = np.dot(rel_start, rotation_z) rel_end = np.dot(rel_end, rotation_z) self._real_positions(rel_start, rel_end) if self.verbose: print( 'Rotated geometry %g radians around z-axis' % (-gamma)) else: if self.verbose: print('Geometry not rotated around z-axis') # rotate the pt3d geometry accordingly if self.pt3d and hasattr(self, 'x3d'): self._set_pt3d_rotation(x, y, z, rotation_order) def chiral_morphology(self, axis='x'): """ Mirror the morphology around given axis, (default x-axis), useful to introduce more heterogeneouties in morphology shapes Parameters ---------- axis: str 'x' or 'y' or 'z' """ # morphology relative to soma-position rel_start, rel_end = self._rel_positions() if axis == 'x': rel_start[:, 0] = -rel_start[:, 0] rel_end[:, 0] = -rel_end[:, 0] elif axis == 'y': rel_start[:, 1] = -rel_start[:, 1] rel_end[:, 1] = -rel_end[:, 1] elif axis == 'z': rel_start[:, 2] = -rel_start[:, 2] rel_end[:, 2] = -rel_end[:, 2] else: raise Exception("axis must be either 'x', 'y' or 'z'") if self.verbose: print('morphology mirrored across %s-axis' % axis) # set the proper 3D positions self._real_positions(rel_start, rel_end) def _rel_positions(self): """ Morphology relative to soma position """ rel_start = np.array([self.x[:, 0] - self.somapos[0], self.y[:, 0] - self.somapos[1], self.z[:, 0] - self.somapos[2]]).T rel_end = np.array([self.x[:, -1] - self.somapos[0], self.y[:, -1] - self.somapos[1], self.z[:, -1] - self.somapos[2]]).T return rel_start, rel_end def _real_positions(self, rel_start, rel_end): """ Morphology coordinates relative to Origo """ self.x[:, 0] = rel_start[:, 0] + self.somapos[0] self.y[:, 0] = rel_start[:, 1] + self.somapos[1] self.z[:, 0] = rel_start[:, 2] + self.somapos[2] self.x[:, -1] = rel_end[:, 0] + self.somapos[0] self.y[:, -1] = rel_end[:, 1] + self.somapos[1] self.z[:, -1] = rel_end[:, 2] + self.somapos[2] self.__update_synapse_positions() def get_rand_prob_area_norm(self, section='allsec', z_min=-10000, z_max=10000): """ Return the probability (0-1) for synaptic coupling on segments in section sum(prob)=1 over all segments in section. Probability normalized by area. Parameters ---------- section: str string matching a section-name. Defaults to 'allsec' z_min: float depth filter z_max: float depth filter Returns ------- ndarray, dtype=float """ idx = self.get_idx(section=section, z_min=z_min, z_max=z_max) prob = self.area[idx] / sum(self.area[idx]) return prob def get_rand_prob_area_norm_from_idx(self, idx=np.array([0])): """ Return the normalized probability (0-1) for synaptic coupling on segments in idx-array. Normalised probability determined by area of segments. Parameters ---------- idx: ndarray, dtype=int. array of segment indices Returns ------- ndarray, dtype=float """ prob = self.area[idx] / sum(self.area[idx]) return prob def get_intersegment_vector(self, idx0=0, idx1=0): """Return the distance between midpoints of two segments with index idx0 and idx1. The argument returned is a list [x, y, z], where x = self.x[idx1].mean(axis=-1) - self.x[idx0].mean(axis=-1) etc. Parameters ---------- idx0: int idx1: int Returns ------- list of floats distance between midpoints along x,y,z axis in µm """ vector = [] try: if idx1 < 0 or idx0 < 0: raise Exception('idx0 < 0 or idx1 < 0') vector.append( self.x[idx1].mean(axis=-1) - self.x[idx0].mean(axis=-1)) vector.append( self.y[idx1].mean(axis=-1) - self.y[idx0].mean(axis=-1)) vector.append( self.z[idx1].mean(axis=-1) - self.z[idx0].mean(axis=-1)) return vector except BaseException: ERRMSG = 'idx0 and idx1 must be ints on [0, %i]' % self.totnsegs raise ValueError(ERRMSG) def get_intersegment_distance(self, idx0=0, idx1=0): """ Return the Euclidean distance between midpoints of two segments. Parameters ---------- idx0: int idx1: int Returns ------- float distance (µm). """ try: vector = np.array(self.get_intersegment_vector(idx0, idx1)) return np.sqrt((vector**2).sum()) except BaseException: ERRMSG = 'idx0 and idx1 must be ints on [0, %i]' % self.totnsegs raise ValueError(ERRMSG) def get_idx_children(self, parent="soma[0]"): """Get the idx of parent's children sections, i.e. compartments ids of sections connected to parent-argument Parameters ---------- parent: str name-pattern matching a sectionname. Defaults to "soma[0]" Returns ------- ndarray, dtype=int """ idxvec = np.zeros(self.totnsegs) secnamelist = [] childseclist = [] # filling list of sectionnames for all sections, one entry per segment for sec in self.allseclist: for seg in sec: secnamelist.append(sec.name()) if parent in secnamelist: # filling list of children section-names for sec in self.allseclist: if sec.name() == parent: sref = neuron.h.SectionRef(sec=sec) break assert sec.name() == parent == sref.sec.name() for sec in sref.child: childseclist.append(sec.name()) # idxvec=1 where both coincide i = 0 for sec in secnamelist: for childsec in childseclist: if sec == childsec: idxvec[i] += 1 i += 1 [idx] = np.where(idxvec) return idx else: return np.array([]) def get_idx_parent_children(self, parent="soma[0]"): """ Get all idx of segments of parent and children sections, i.e. segment idx of sections connected to parent-argument, and also of the parent segments Parameters ---------- parent: str name-pattern matching a sectionname. Defaults to "soma[0]" Returns ------- ndarray, dtype=int """ seclist = [parent] for sec in self.allseclist: if sec.name() == parent: sref = neuron.h.SectionRef(sec=sec) break assert sref.sec.name() == parent for sec in sref.child: seclist.append(sec.name()) return self.get_idx(section=seclist) def get_idx_name(self, idx=np.array([0], dtype=int)): ''' Return NEURON convention name of segments with index idx. The returned argument is an array of tuples with corresponding segment idx, section name, and position along the section, like; [(0, 'neuron.h.soma[0]', 0.5),] Parameters ---------- idx: ndarray, dtype int segment indices, must be between 0 and cell.totnsegs Returns ------- ndarray, dtype=object tuples with section names of segments ''' # ensure idx is array-like, or convert if isinstance(idx, int) or np.int64: idx = np.array([idx]) elif len(idx) == 0: return else: idx = np.array(idx).astype(int) # ensure all idx are valid if np.any(idx >= self.totnsegs): wrongidx = idx[np.where(idx >= self.totnsegs)] raise Exception('idx %s >= number of compartments' % str(wrongidx)) # create list of seg names: allsegnames = [] segidx = 0 for sec in self.allseclist: for seg in sec: allsegnames.append((segidx, '%s' % sec.name(), seg.x)) segidx += 1 return np.array(allsegnames, dtype=object)[idx][0] def _collect_pt3d(self): """collect the pt3d info, for each section""" x = [] y = [] z = [] d = [] for sec in self.allseclist: n3d = int(neuron.h.n3d(sec=sec)) x_i, y_i, z_i = np.zeros(n3d), np.zeros(n3d), np.zeros(n3d), d_i = np.zeros(n3d) for i in range(n3d): x_i[i] = neuron.h.x3d(i, sec=sec) y_i[i] = neuron.h.y3d(i, sec=sec) z_i[i] = neuron.h.z3d(i, sec=sec) d_i[i] = neuron.h.diam3d(i, sec=sec) x.append(x_i) y.append(y_i) z.append(z_i) d.append(d_i) # remove offsets which may be present if soma is centred in Origo if len(x) > 1: xoff = x[0].mean() yoff = y[0].mean() zoff = z[0].mean() for i in range(len(x)): x[i] -= xoff y[i] -= yoff z[i] -= zoff return x, y, z, d def _update_pt3d(self): """ update the locations in neuron.hoc.space using neuron.h.pt3dchange() """ for i, sec in enumerate(self.allseclist): n3d = int(neuron.h.n3d(sec=sec)) for n in range(n3d): neuron.h.pt3dchange(n, self.x3d[i][n], self.y3d[i][n], self.z3d[i][n], self.diam3d[i][n], sec=sec) # let NEURON know about the changes we just did: neuron.h.define_shape() # must recollect the geometry, otherwise we get roundoff errors! self._collect_geometry() def _set_pt3d_pos(self, diffx=0, diffy=0, diffz=0): """ Offset pt3d geometry with differential displacement indicated in Cell.set_pos() """ for i in range(len(self.x3d)): self.x3d[i] += diffx self.y3d[i] += diffy self.z3d[i] += diffz self._update_pt3d() def _set_pt3d_rotation(self, x=None, y=None, z=None, rotation_order='xyz'): """ Rotate pt3d geometry of cell object around the x-, y-, z-axis in the order described by rotation_order parameter. rotation_order should be a string with 3 elements containing x, y and z e.g. 'xyz', 'zyx' Input should be angles in radians. using rotation matrices, takes dict with rot. angles, where x, y, z are the rotation angles around respective axes. All rotation angles are optional. Parameters ---------- x: float rotation angle in radians y: float rotation angle in radians z: float rotation angle in radians rotation_order: str rotation order, default: 'xyz' Examples -------- >>> cell = LFPy.Cell(**kwargs) >>> rotation = {'x': 1.233, 'y': 0.236, 'z': np.pi} >>> cell.set_pt3d_rotation(**rotation) """ for ax in rotation_order: if ax == 'x' and x is not None: theta = -x rotation_x = np.array([[1, 0, 0], [0, np.cos(theta), -np.sin(theta)], [0, np.sin(theta), np.cos(theta)]]) for i in range(len(self.x3d)): rel_pos = self._rel_pt3d_positions( self.x3d[i], self.y3d[i], self.z3d[i]) rel_pos = np.dot(rel_pos, rotation_x) self.x3d[i], self.y3d[i], self.z3d[i] = \ self._real_pt3d_positions(rel_pos) if self.verbose: print(('Rotated geometry %g radians around x-axis' % (-theta))) else: if self.verbose: print('Geometry not rotated around x-axis') if ax == 'y' and y is not None: phi = -y rotation_y = np.array([[np.cos(phi), 0, np.sin(phi)], [0, 1, 0], [-np.sin(phi), 0, np.cos(phi)]]) for i in range(len(self.x3d)): rel_pos = self._rel_pt3d_positions( self.x3d[i], self.y3d[i], self.z3d[i]) rel_pos = np.dot(rel_pos, rotation_y) self.x3d[i], self.y3d[i], self.z3d[i] = \ self._real_pt3d_positions(rel_pos) if self.verbose: print('Rotated geometry %g radians around y-axis' % (-phi)) else: if self.verbose: print('Geometry not rotated around y-axis') if ax == 'z' and z is not None: gamma = -z rotation_z = np.array([[np.cos(gamma), -np.sin(gamma), 0], [np.sin(gamma), np.cos(gamma), 0], [0, 0, 1]]) for i in range(len(self.x3d)): rel_pos = self._rel_pt3d_positions( self.x3d[i], self.y3d[i], self.z3d[i]) rel_pos = np.dot(rel_pos, rotation_z) self.x3d[i], self.y3d[i], self.z3d[i] = \ self._real_pt3d_positions(rel_pos) if self.verbose: print( 'Rotated geometry %g radians around z-axis' % (-gamma)) else: if self.verbose: print('Geometry not rotated around z-axis') self._update_pt3d() def _rel_pt3d_positions(self, x, y, z): """Morphology relative to soma position """ rel_pos = np.transpose(np.array([x - self.somapos[0], y - self.somapos[1], z - self.somapos[2]])) return rel_pos def _real_pt3d_positions(self, rel_pos): """Morphology coordinates relative to Origo """ x = rel_pos[:, 0] + self.somapos[0] y = rel_pos[:, 1] + self.somapos[1] z = rel_pos[:, 2] + self.somapos[2] x = np.array(x).flatten() y = np.array(y).flatten() z = np.array(z).flatten() return x, y, z def _create_polygon(self, i, projection=('x', 'z')): """create a polygon to fill for each section""" x = getattr(self, projection[0] + '3d')[i] y = getattr(self, projection[1] + '3d')[i] # x = self.x3d[i] # z = self.z3d[i] d = self.diam3d[i] # calculate angles dx = np.diff(x) dy = np.diff(y) theta = np.arctan2(dy, dx) x = np.r_[x, x[::-1]] y = np.r_[y, y[::-1]] theta = np.r_[theta, theta[::-1]] d = np.r_[d, d[::-1]] # 1st corner: x[0] -= 0.5 * d[0] * np.sin(theta[0]) y[0] += 0.5 * d[0] * np.cos(theta[0]) # pt3d points between start and end of section, first side x[1:dx.size] -= 0.25 * d[1:dx.size] * ( np.sin(theta[:dx.size - 1]) + np.sin(theta[1:dx.size])) y[1:dy.size] += 0.25 * d[1:dy.size] * ( np.cos(theta[:dy.size - 1]) + np.cos(theta[1:dx.size])) # end of section, first side x[dx.size] -= 0.5 * d[dx.size] * np.sin(theta[dx.size]) y[dy.size] += 0.5 * d[dy.size] * np.cos(theta[dy.size]) # other side # end of section, second side x[dx.size + 1] += 0.5 * d[dx.size + 1] * np.sin(theta[dx.size]) y[dy.size + 1] -= 0.5 * d[dy.size + 1] * np.cos(theta[dy.size]) # pt3d points between start and end of section, second side x[::-1][1:dx.size] += 0.25 * d[::-1][1:dx.size] * ( np.sin(theta[::-1][:dx.size - 1]) + np.sin(theta[::-1][1:dx.size])) y[::-1][1:dy.size] -= 0.25 * d[::-1][1:dy.size] * ( np.cos(theta[::-1][:dy.size - 1]) + np.cos(theta[::-1][1:dx.size])) # last corner: x[-1] += 0.5 * d[-1] * np.sin(theta[-1]) y[-1] -= 0.5 * d[-1] * np.cos(theta[-1]) return x, y def get_pt3d_polygons(self, projection=('x', 'z')): """For each section create a polygon in the plane determined by keyword argument projection=('x', 'z'), that can be visualized using e.g., plt.fill() Parameters ---------- projection: tuple of strings Determining projection. Defaults to ('x', 'z') Returns ------- list list of (x, z) tuples giving the trajectory of each section that can be plotted using PolyCollection Examples -------- >>> from matplotlib.collections import PolyCollection >>> import matplotlib.pyplot as plt >>> cell = LFPy.Cell(morphology='PATH/TO/MORPHOLOGY') >>> zips = [] >>> for x, z in cell.get_pt3d_polygons(projection=('x', 'z')): >>> zips.append(list(zip(x, z))) >>> polycol = PolyCollection(zips, >>> edgecolors='none', >>> facecolors='gray') >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.add_collection(polycol) >>> ax.axis(ax.axis('equal')) >>> plt.show() """ if len(projection) != 2: raise ValueError("projection arg be a tuple like ('x', 'y')") if 'x' in projection and 'y' in projection: pass elif 'x' in projection and 'z' in projection: pass elif 'y' in projection and 'z' in projection: pass else: mssg = "projection must be a length 2 tuple of 'x', 'y' or 'z'!" raise ValueError(mssg) assert self.pt3d is True, 'Cell keyword argument pt3d != True' polygons = [] for i in range(len(self.x3d)): polygons.append(self._create_polygon(i, projection)) return polygons def _create_segment_polygon(self, i, projection=('x', 'z')): """Create a polygon to fill for segment i, in the plane determined by kwarg projection""" x = getattr(self, projection[0])[i] z = getattr(self, projection[1])[i] d = self.d[i] # calculate angles dx = np.diff(x) dz = np.diff(z) theta = np.arctan2(dz, dx) x = np.r_[x, x[::-1]] z = np.r_[z, z[::-1]] # 1st corner: x[0] -= 0.5 * d * np.sin(theta) z[0] += 0.5 * d * np.cos(theta) # end of section, first side x[1] -= 0.5 * d * np.sin(theta) z[1] += 0.5 * d * np.cos(theta) # other side # end of section, second side x[2] += 0.5 * d * np.sin(theta) z[2] -= 0.5 * d * np.cos(theta) # last corner: x[3] += 0.5 * d * np.sin(theta) z[3] -= 0.5 * d * np.cos(theta) return x, z def get_idx_polygons(self, projection=('x', 'z')): """For each segment idx in cell create a polygon in the plane determined by the projection kwarg (default ('x', 'z')), that can be visualized using plt.fill() or mpl.collections.PolyCollection Parameters ---------- projection: tuple of strings Determining projection. Defaults to ('x', 'z') Returns ------- polygons: list list of (ndarray, ndarray) tuples giving the trajectory of each section Examples -------- >>> from matplotlib.collections import PolyCollection >>> import matplotlib.pyplot as plt >>> cell = LFPy.Cell(morphology='PATH/TO/MORPHOLOGY') >>> zips = [] >>> for x, z in cell.get_idx_polygons(projection=('x', 'z')): >>> zips.append(list(zip(x, z))) >>> polycol = PolyCollection(zips, >>> edgecolors='none', >>> facecolors='gray') >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.add_collection(polycol) >>> ax.axis(ax.axis('equal')) >>> plt.show() """ if len(projection) != 2: raise ValueError("projection arg be a tuple like ('x', 'y')") if 'x' in projection and 'y' in projection: pass elif 'x' in projection and 'z' in projection: pass elif 'y' in projection and 'z' in projection: pass else: mssg = "projection must be a length 2 tuple of 'x', 'y' or 'z'!" raise ValueError(mssg) polygons = [] for i in np.arange(self.totnsegs): polygons.append(self._create_segment_polygon(i, projection)) return polygons def insert_v_ext(self, v_ext, t_ext): """Set external extracellular potential around cell. Playback of some extracellular potential v_ext on each cell.totnseg compartments. Assumes that the "extracellular"-mechanism is inserted on each compartment. Can be used to study ephaptic effects and similar The inputs will be copied and attached to the cell object as cell.v_ext, cell.t_ext, and converted to (list of) neuron.h.Vector types, to allow playback into each compartment e_extracellular reference. Can not be deleted prior to running cell.simulate() Parameters ---------- v_ext: ndarray Numpy array of size cell.totnsegs x t_ext.size, unit mV t_ext: ndarray Time vector of v_ext in ms Examples -------- >>> import LFPy >>> import numpy as np >>> import matplotlib.pyplot as plt >>> #create cell >>> cell = LFPy.Cell(morphology='morphologies/example_morphology.hoc', >>> passive=True) >>> #time vector and extracellular field for every segment: >>> t_ext = np.arange(cell.tstop / cell.dt+ 1) * cell.dt >>> v_ext = np.random.rand(cell.totnsegs, t_ext.size)-0.5 >>> #insert potentials and record response: >>> cell.insert_v_ext(v_ext, t_ext) >>> cell.simulate(rec_imem=True, rec_vmem=True) >>> fig = plt.figure() >>> ax1 = fig.add_subplot(311) >>> ax2 = fig.add_subplot(312) >>> ax3 = fig.add_subplot(313) >>> eim = ax1.matshow(np.array(cell.v_ext), cmap='spectral') >>> cb1 = fig.colorbar(eim, ax=ax1) >>> cb1.set_label('v_ext') >>> ax1.axis(ax1.axis('tight')) >>> iim = ax2.matshow(cell.imem, cmap='spectral') >>> cb2 = fig.colorbar(iim, ax=ax2) >>> cb2.set_label('imem') >>> ax2.axis(ax2.axis('tight')) >>> vim = ax3.matshow(cell.vmem, cmap='spectral') >>> ax3.axis(ax3.axis('tight')) >>> cb3 = fig.colorbar(vim, ax=ax3) >>> cb3.set_label('vmem') >>> ax3.set_xlabel('tstep') >>> plt.show() """ # test dimensions of input try: if v_ext.shape[0] != self.totnsegs: raise ValueError("v_ext.shape[0] != cell.totnsegs") if v_ext.shape[1] != t_ext.size: raise ValueError('v_ext.shape[1] != t_ext.size') except BaseException: raise ValueError('v_ext, t_ext must both be np.array types') if not self.extracellular: raise Exception('LFPy.Cell arg extracellular != True') # create list of extracellular potentials on each segment, time vector self.t_ext = neuron.h.Vector(t_ext) self.v_ext = [] for v in v_ext: self.v_ext.append(neuron.h.Vector(v)) # play v_ext into e_extracellular reference i = 0 for sec in self.allseclist: for seg in sec: self.v_ext[i].play(seg._ref_e_extracellular, self.t_ext) i += 1 return def get_axial_currents_from_vmem(self, timepoints=None): """Compute axial currents from cell sim: get current magnitude, distance vectors and position vectors. Parameters ---------- timepoints: ndarray, dtype=int array of timepoints in simulation at which you want to compute the axial currents. Defaults to False. If not given, all simulation timesteps will be included. Returns ------- i_axial: ndarray, dtype=float Shape ((cell.totnsegs-1)*2, len(timepoints)) array of axial current magnitudes I in units of (nA) in cell at all timesteps in timepoints, or at all timesteps of the simulation if timepoints=None. Contains two current magnitudes per segment, (except for the root segment): 1) the current from the mid point of the segment to the segment start point, and 2) the current from the segment start point to the mid point of the parent segment. d_vectors: ndarray, dtype=float Shape (3, (cell.totnsegs-1)*2) array of distance vectors traveled by each axial current in i_axial in units of (µm). The indices of the first axis, correspond to the first axis of i_axial and pos_vectors. pos_vectors: ndarray, dtype=float Shape ((cell.totnsegs-1)*2, 3) array of position vectors pointing to the mid point of each axial current in i_axial in units of (µm). The indices of the first axis, correspond to the first axis of i_axial and d_vectors. Raises ------ AttributeError Raises an exeption if the cell.vmem attribute cannot be found """ if not hasattr(self, 'vmem'): raise AttributeError('no vmem, run cell.simulate(rec_vmem=True)') self._ri_list = self.get_axial_resistance() i_axial = [] d_vectors = [] pos_vectors = [] dseg = np.c_[self.x.mean(axis=-1) - self.x[:, 0], self.y.mean(axis=-1) - self.y[:, 0], self.z.mean(axis=-1) - self.z[:, 0]] dpar = np.c_[self.x[:, -1] - self.x.mean(axis=-1), self.y[:, -1] - self.y.mean(axis=-1), self.z[:, -1] - self.z.mean(axis=-1)] # children_dict = self.get_dict_of_children_idx() for sec in self.allseclist: if not neuron.h.SectionRef(sec=sec).has_parent(): if sec.nseg == 1: # skip soma, since soma is an orphan continue else: # the first segment has more than one segment, # need to compute axial currents within this section. seg_idx = 1 parent_idx = 0 bottom_seg = False first_sec = True branch = False parentsec = None children_dict = None connection_dict = None conn_point = 1 else: # section has parent section first_sec = False bottom_seg = True secref = neuron.h.SectionRef(sec=sec) parentseg = secref.parent() parentsec = parentseg.sec children_dict = self.get_dict_of_children_idx() branch = len(children_dict[parentsec.name()]) > 1 connection_dict = self.get_dict_parent_connections() conn_point = connection_dict[sec.name()] # find parent index if conn_point == 1 or parentsec.nseg == 1: internal_parent_idx = -1 # last seg in sec elif conn_point == 0: internal_parent_idx = 0 # first seg in sec else: # if parentseg is not first or last seg in parentsec segment_xlist = np.array( [segment.x for segment in parentsec]) internal_parent_idx = np.abs( segment_xlist - conn_point).argmin() parent_idx = self.get_idx(section=parentsec.name())[ internal_parent_idx] # find segment index seg_idx = self.get_idx(section=sec.name())[0] for _ in sec: if first_sec: first_sec = False continue iseg, ipar = self._parent_and_segment_current(seg_idx, parent_idx, bottom_seg, branch, parentsec, children_dict, connection_dict, conn_point, timepoints, sec ) if bottom_seg: # if a seg is connected to soma, it is # connected to the middle of soma, # and dpar needs to be altered. par_dist = np.array([(self.x[seg_idx, 0] - self.x[parent_idx].mean(axis=-1)), (self.y[seg_idx, 0] - self.y[parent_idx].mean(axis=-1)), (self.z[seg_idx, 0] - self.z[parent_idx].mean(axis=-1))]) else: par_dist = dpar[parent_idx] d_vectors.append(par_dist) d_vectors.append(dseg[seg_idx]) i_axial.append(ipar) i_axial.append(iseg) pos_par = np.array([self.x[seg_idx, 0], self.y[seg_idx, 0], self.z[seg_idx, 0]]) - 0.5 * par_dist pos_seg = np.array([self.x[seg_idx].mean(axis=-1), self.y[seg_idx].mean(axis=-1), self.z[seg_idx].mean(axis=-1)]) pos_seg -= 0.5 * dseg[seg_idx] pos_vectors.append(pos_par) pos_vectors.append(pos_seg) parent_idx = seg_idx seg_idx += 1 branch = False bottom_seg = False return np.array(i_axial), np.array(d_vectors).T, np.array(pos_vectors) def get_axial_resistance(self): """ Return NEURON axial resistance for all cell compartments. Returns ------- ri_list: ndarray, dtype=float Shape (cell.totnsegs, ) array containing neuron.h.ri(seg.x) in units of (MOhm) for all segments in cell calculated using the neuron.h.ri(seg.x) method. neuron.h.ri(seg.x) returns the axial resistance from the middle of the segment to the middle of the parent segment. Note: If seg is the first segment in a section, i.e. the parent segment belongs to a different section or there is no parent section, then neuron.h.ri(seg.x) returns the axial resistance from the middle of the segment to the node connecting the segment to the parent section (or a ghost node if there is no parent) """ ri_list = np.zeros(self.totnsegs) comp = 0 for sec in self.allseclist: for seg in sec: ri_list[comp] = neuron.h.ri(seg.x, sec=sec) comp += 1 return ri_list def get_dict_of_children_idx(self): """ Return dictionary with children segment indices for all sections. Returns ------- children_dict: dictionary Dictionary containing a list for each section, with the segment index of all the section's children. The dictionary is needed to find the sibling of a segment. """ children_dict = {} for sec in self.allseclist: children_dict[sec.name()] = [] for child in neuron.h.SectionRef(sec=sec).child: # add index of first segment of each child children_dict[sec.name()].append(int(self.get_idx( section=child.name())[0])) return children_dict def get_dict_parent_connections(self): """ Return dictionary with parent connection point for all sections. Returns ------- connection_dict: dictionary Dictionary containing a float in range [0, 1] for each section in cell. The float gives the location on the parent segment to which the section is connected. The dictionary is needed for computing axial currents. """ connection_dict = {} for i, sec in enumerate(self.allseclist): connection_dict[sec.name()] = neuron.h.parent_connection(sec=sec) return connection_dict def _parent_and_segment_current(self, seg_idx, parent_idx, bottom_seg, branch=False, parentsec=None, children_dict=None, connection_dict=None, conn_point=1, timepoints=None, sec=None): """ Return axial current from segment (seg_idx) mid to segment start, and current from parent segment (parent_idx) end to parent segment mid. Parameters ---------- seg_idx: int Segment index parent_idx: int Parent index bottom_seg: boolean branch: boolean parentsec: neuron.Section object parent section children_dict: dict or None Default None connection_dict: dict or None Default None conn_point: float relative connection point on section in the interval [0, 1]. Defaults to 1 timepoints: ndarray, dtype=int array of timepoints in simulation at which you want to compute the axial currents. Defaults to None. If not given, the axial currents. Defaults to None. If not given, all simulation timesteps will be included. sec: neuron.Section object current section needed in new NEURON version Returns ------- iseg: dtype=float Axial current in units of (nA) from segment mid point to segment start point. ipar: dtype=float Axial current in units of (nA) from parent segment end point to parent segment mid point. """ # axial resistance between segment mid and parent node seg_ri = self._ri_list[seg_idx] vmem = self.vmem if timepoints is not None: vmem = self.vmem[:, timepoints] vpar = vmem[parent_idx] vseg = vmem[seg_idx] # if segment is the first in its section and it is connected to # top or bottom of parent section, we need to find parent_ri explicitly if bottom_seg and (conn_point == 0 or conn_point == 1): if conn_point == 0: parent_ri = self._ri_list[parent_idx] else: parent_ri = neuron.h.ri(0, sec=sec) if not branch: ri = parent_ri + seg_ri iseg = (vpar - vseg) / ri ipar = iseg else: # if branch, need to compute iseg and ipar separately [sib_idcs] = np.take(children_dict[parentsec.name()], np.where(children_dict[parentsec.name()] != seg_idx)) sibs = [self.get_idx_name(sib_idcs)[i][1] for i in range(len(sib_idcs))] # compute potential in branch point between parent and siblings v_branch_num = vpar / parent_ri + vseg / seg_ri v_branch_denom = 1. / parent_ri + 1. / seg_ri for sib_idx, sib in zip(sib_idcs, sibs): sib_conn_point = connection_dict[sib] if sib_conn_point == conn_point: v_branch_num += vmem[sib_idx] / self._ri_list[sib_idx] v_branch_denom += 1. / self._ri_list[sib_idx] v_branch = v_branch_num / v_branch_denom iseg = (v_branch - vseg) / seg_ri # set ipar=iseg # only fraction of total current into parent is added per # sibling ipar = iseg else: iseg = (vpar - vseg) / seg_ri ipar = iseg return iseg, ipar def distort_geometry(self, factor=0., axis='z', nu=0.0): """ Distorts cellular morphology with a relative factor along a chosen axis preserving Poisson's ratio. A ratio nu=0.5 assumes uncompressible and isotropic media that embeds the cell. A ratio nu=0 will only affect geometry along the chosen axis. A ratio nu=-1 will isometrically scale the neuron geometry along each axis. This method does not affect the underlying cable properties of the cell, only predictions of extracellular measurements (by affecting the relative locations of sources representing the compartments). Parameters ---------- factor: float relative compression/stretching factor of morphology. Default is 0 (no compression/stretching). Positive values implies a compression along the chosen axis. axis: str which axis to apply compression/stretching. Default is "z". nu: float Poisson's ratio. Ratio between axial and transversal compression/stretching. Default is 0. """ assert abs(factor) < 1., 'abs(factor) >= 1, factor must be in <-1, 1>' assert axis in ['x', 'y', 'z'], \ 'axis={} not "x", "y" or "z"'.format(axis) for pos, dir_ in zip(self.somapos, 'xyz'): geometry = np.c_[getattr(self, dir_)[:, 0], getattr(self, dir_)[:, -1]] if dir_ == axis: geometry -= pos geometry *= (1. - factor) geometry += pos else: geometry -= pos geometry *= (1. + factor * nu) geometry += pos setattr(self, dir_, geometry) # recompute length of each segment self._set_length() def _set_length(self): '''callable method to (re)set length attribute''' self.length = np.sqrt(np.diff(self.x, axis=-1)**2 + np.diff(self.y, axis=-1)**2 + np.diff(self.z, axis=-1)**2).flatten() def _set_area(self): '''callable method to (re)set area attribute''' if self.d.ndim == 1: self.area = self.length * np.pi * self.d else: # Surface area of conical frusta # A = pi*(r1+r2)*sqrt((r1-r2)^2 + h^2) self.area = np.pi * self.d.sum(axis=-1) * \ np.sqrt(np.diff(self.d, axis=-1)**2 + self.length**2) def get_multi_current_dipole_moments(self, timepoints=None): ''' Return 3D current dipole moment vector and middle position vector from each axial current in space. Parameters ---------- timepoints: ndarray, dtype=int or None array of timepoints at which you want to compute the current dipole moments. Defaults to None. If not given, all simulation timesteps will be included. Returns ------- multi_dipoles: ndarray, dtype = float Shape (n_axial_currents, 3, n_timepoints) array containing the x-,y-,z-components of the current dipole moment from each axial current in cell, at all timepoints. The number of axial currents, n_axial_currents = (cell.totnsegs-1) * 2 and the number of timepoints, n_timepoints = cell.tvec.size. The current dipole moments are given in units of (nA µm). pos_axial: ndarray, dtype = float Shape (n_axial_currents, 3) array containing the x-, y-, and z-components giving the mid position in space of each multi_dipole in units of (µm). Examples -------- Get all current dipole moments and positions from all axial currents in a single neuron simulation: >>> import LFPy >>> import numpy as np >>> cell = LFPy.Cell('PATH/TO/MORPHOLOGY', extracellular=False) >>> syn = LFPy.Synapse(cell, idx=cell.get_closest_idx(0,0,1000), >>> syntype='ExpSyn', e=0., tau=1., weight=0.001) >>> syn.set_spike_times(np.mgrid[20:100:20]) >>> cell.simulate(rec_vmem=True, rec_imem=False) >>> timepoints = np.array([1,2,3,4]) >>> multi_dipoles, dipole_locs = cell.get_multi_current_dipole_moments( >>> timepoints=timepoints) ''' i_axial, d_axial, pos_axial = self.get_axial_currents_from_vmem( timepoints=timepoints) Ni, Nt = i_axial.shape multi_dipoles = np.zeros((Ni, 3, Nt)) for i in range(Ni): multi_dipoles[i, ] = (i_axial[i][:, np.newaxis] * d_axial[:, i]).T return multi_dipoles, pos_axial
gpl-3.0
mblondel/scikit-learn
sklearn/setup.py
24
2991
import os from os.path import join import warnings def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration from numpy.distutils.system_info import get_info, BlasNotFoundError import numpy libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('sklearn', parent_package, top_path) config.add_subpackage('__check_build') config.add_subpackage('svm') config.add_subpackage('datasets') config.add_subpackage('datasets/tests') config.add_subpackage('feature_extraction') config.add_subpackage('feature_extraction/tests') config.add_subpackage('cluster') config.add_subpackage('cluster/tests') config.add_subpackage('covariance') config.add_subpackage('covariance/tests') config.add_subpackage('cross_decomposition') config.add_subpackage('decomposition') config.add_subpackage('decomposition/tests') config.add_subpackage("ensemble") config.add_subpackage("ensemble/tests") config.add_subpackage('feature_selection') config.add_subpackage('feature_selection/tests') config.add_subpackage('utils') config.add_subpackage('utils/tests') config.add_subpackage('externals') config.add_subpackage('mixture') config.add_subpackage('mixture/tests') config.add_subpackage('gaussian_process') config.add_subpackage('gaussian_process/tests') config.add_subpackage('neighbors') config.add_subpackage('neural_network') config.add_subpackage('preprocessing') config.add_subpackage('manifold') config.add_subpackage('metrics') config.add_subpackage('semi_supervised') config.add_subpackage("tree") config.add_subpackage("tree/tests") config.add_subpackage('metrics/tests') config.add_subpackage('metrics/cluster') config.add_subpackage('metrics/cluster/tests') # add cython extension module for hmm config.add_extension( '_hmmc', sources=['_hmmc.c'], include_dirs=[numpy.get_include()], libraries=libraries, ) config.add_extension( '_isotonic', sources=['_isotonic.c'], include_dirs=[numpy.get_include()], libraries=libraries, ) # some libs needs cblas, fortran-compiled BLAS will not be sufficient blas_info = get_info('blas_opt', 0) if (not blas_info) or ( ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', [])): config.add_library('cblas', sources=[join('src', 'cblas', '*.c')]) warnings.warn(BlasNotFoundError.__doc__) # the following packages depend on cblas, so they have to be build # after the above. config.add_subpackage('linear_model') config.add_subpackage('utils') # add the test directory config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
NunoEdgarGub1/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/projections/__init__.py
69
2179
from geo import AitoffAxes, HammerAxes, LambertAxes from polar import PolarAxes from matplotlib import axes class ProjectionRegistry(object): """ Manages the set of projections available to the system. """ def __init__(self): self._all_projection_types = {} def register(self, *projections): """ Register a new set of projection(s). """ for projection in projections: name = projection.name self._all_projection_types[name] = projection def get_projection_class(self, name): """ Get a projection class from its *name*. """ return self._all_projection_types[name] def get_projection_names(self): """ Get a list of the names of all projections currently registered. """ names = self._all_projection_types.keys() names.sort() return names projection_registry = ProjectionRegistry() projection_registry.register( axes.Axes, PolarAxes, AitoffAxes, HammerAxes, LambertAxes) def register_projection(cls): projection_registry.register(cls) def get_projection_class(projection=None): """ Get a projection class from its name. If *projection* is None, a standard rectilinear projection is returned. """ if projection is None: projection = 'rectilinear' try: return projection_registry.get_projection_class(projection) except KeyError: raise ValueError("Unknown projection '%s'" % projection) def projection_factory(projection, figure, rect, **kwargs): """ Get a new projection instance. *projection* is a projection name. *figure* is a figure to add the axes to. *rect* is a :class:`~matplotlib.transforms.Bbox` object specifying the location of the axes within the figure. Any other kwargs are passed along to the specific projection constructor being used. """ return get_projection_class(projection)(figure, rect, **kwargs) def get_projection_names(): """ Get a list of acceptable projection names. """ return projection_registry.get_projection_names()
gpl-3.0
simonsfoundation/inferelator_ng
inferelator_ng/tests/test_mi_R.py
3
4576
import unittest, os import pandas as pd import numpy as np from .. import mi_R my_dir = os.path.dirname(__file__) class TestMI(unittest.TestCase): """ Superclass for common methods """ cores = bins = 10 def calculate_mi(self): driver = mi_R.MIDriver() target = driver.target_directory = os.path.join(my_dir, "artifacts") if not os.path.exists(target): os.makedirs(target) driver.cores = self.cores driver.bins = self.bins (self.clr_matrix, self.mi_matrix) = driver.run(self.x_dataframe, self.y_dataframe) def print_results(self): print("\nx") print(self.x_dataframe) print("y") print(self.y_dataframe) print("mi") print(self.mi_matrix) print("clr") print(self.clr_matrix) class Test2By2(TestMI): def test_12_34_identical(self): "Compute mi for identical arrays [[1, 2], [2, 4]]." L = [[1, 2], [3, 4]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(np.array(L)) self.calculate_mi() #self.print_results() expected = np.array([[0, 1], [1, 0]]) np.testing.assert_almost_equal(self.clr_matrix.as_matrix(), expected) def test_12_34_minus(self): "Compute mi for identical arrays [[1, 2], [2, 4]]." L = [[1, 2], [3, 4]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(-np.array(L)) self.calculate_mi() #self.print_results() expected = np.array([[0, 1], [1, 0]]) np.testing.assert_almost_equal(self.clr_matrix.as_matrix(), expected) def test_12_34_times_pi(self): "Compute mi for identical arrays [[1, 2], [2, 4]]." L = [[1, 2], [3, 4]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(np.pi * np.array(L)) self.calculate_mi() #self.print_results() expected = np.array([[0, 1], [1, 0]]) np.testing.assert_almost_equal(self.clr_matrix.as_matrix(), expected) def test_12_34_swapped(self): "Compute mi for identical arrays [[1, 2], [2, 4]]." L = [[1, 2], [3, 4]] L2 = [[3, 4], [2, 1]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(np.array(L2)) self.calculate_mi() expected = np.array([[0, 1], [1, 0]]) np.testing.assert_almost_equal(self.clr_matrix.as_matrix(), expected) def test_12_34_transposed(self): "Compute mi for identical arrays [[1, 2], [2, 4]]." L = [[1, 2], [3, 4]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(np.array(L).transpose()) self.calculate_mi() #self.print_results() expected = np.array([[0, 1], [1, 0]]) np.testing.assert_almost_equal(self.clr_matrix.as_matrix(), expected) def test_12_34_and_zeros(self): "Compute mi for identical arrays [[1, 2], [2, 4]]." L = [[1, 2], [3, 4]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(np.zeros((2,2))) self.calculate_mi() #self.print_results() # the entire clr matrix is NAN self.assertTrue(np.isnan(self.clr_matrix.as_matrix()).all()) def test_12_34_and_ones(self): "Compute mi for identical arrays [[1, 2], [2, 4]]." L = [[1, 2], [3, 4]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(np.ones((2,2))) self.calculate_mi() #self.print_results() self.assertTrue(np.isnan(self.clr_matrix.as_matrix()).all()) class Test2By3(TestMI): def test_12_34_identical(self): "Compute mi for identical arrays [[1, 2, 1], [2, 4, 6]]." L = [[1, 2, 1], [3, 4, 6]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(np.array(L)) self.calculate_mi() #self.print_results() expected = np.array([[0, 1], [1, 0]]) np.testing.assert_almost_equal(self.clr_matrix.as_matrix(), expected) def test_mixed(self): "Compute mi for mixed arrays." L = [[1, 2, 1], [3, 4, 6]] L2 = [[3, 7, 1], [9, 0, 2]] self.x_dataframe = pd.DataFrame(np.array(L)) self.y_dataframe = pd.DataFrame(np.array(L2)) self.calculate_mi() self.print_results() expected = np.array([[0, 1], [1, 0]]) #np.testing.assert_almost_equal(self.clr_matrix.as_matrix(), expected)
bsd-2-clause
yyjiang/scikit-learn
sklearn/preprocessing/data.py
113
56747
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Eric Martin <eric@ericmart.in> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, min_max_axis, inplace_row_scale) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) std_ = _handle_zeros_in_scale(std_) else: std_ = None return mean_, std_ def _handle_zeros_in_scale(scale): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == 0: scale = 1. elif isinstance(scale, np.ndarray): scale[scale == 0.0] = 1.0 scale[~np.isfinite(scale)] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: Xr /= std_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # std_ is very small so that mean_2 = mean_1/std_ > 0, even if # mean_1 was close to zero. The problem is thus essentially due # to the lack of precision of mean_. A solution is then to # substract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min data_range = _handle_zeros_in_scale(data_range) self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. std_ : array of floats with shape [n_features] The standard deviation for each feature in the training set. Set to one if the standard deviation is zero for a given feature. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_array(X, accept_sparse='csr', copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis(X, axis=0)[1] self.std_ = np.sqrt(var) self.std_ = _handle_zeros_in_scale(self.std_) else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, copy=True): self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) scales = np.maximum(np.abs(mins), np.abs(maxs)) else: scales = np.abs(X).max(axis=0) scales = np.array(scales) scales = scales.reshape(-1) self.scale_ = _handle_zeros_in_scale(scales) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : array-like or CSR matrix. The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) else: inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MaxAbsScaler(copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) elif self.axis == 0: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like. The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0, 0, 1], [ 1, 2, 3, 4, 6, 9], [ 1, 4, 5, 16, 20, 25]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0], [ 1, 2, 3, 6], [ 1, 4, 5, 20]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array with shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms) X /= norms[:, np.newaxis] if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo']) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : maximum value for all features. - array : maximum value per feature. categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'float'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those catgorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
vrtsystems/pyhaystack
pyhaystack/client/ops/his.py
1
31373
#!/usr/bin/env python # -*- coding: utf-8 -*- """ High-level history functions. These wrap the basic his_read function to allow some alternate representations of the historical data. """ import hszinc import fysom import pytz from copy import deepcopy from datetime import tzinfo from six import string_types from ...util import state from ...util.asyncexc import AsynchronousException try: from pandas import Series, DataFrame HAVE_PANDAS = True except ImportError: # pragma: no cover # Not covered, since we'll always have 'pandas' available during tests. HAVE_PANDAS = False def _resolve_tz(tz): """ Resolve a given timestamp. """ if (tz is None) or isinstance(tz, tzinfo): return tz if isinstance(tz, string_types): if '/' in tz: # Olson database name return pytz.timezone(tz) else: return hszinc.zoneinfo.timezone(tz) class HisReadSeriesOperation(state.HaystackOperation): """ Read the series data from a 'point' entity and present it in a concise format. """ FORMAT_LIST = 'list' # [(ts1, value1), (ts2, value2), ...] FORMAT_DICT = 'dict' # {ts1: value1, ts2: value2, ...} FORMAT_SERIES = 'series' # pandas.Series def __init__(self, session, point, rng, tz, series_format): """ Read the series data and return it. :param session: Haystack HTTP session object. :param point: ID of historical 'point' object to read. :param rng: Range to read from 'point' :param tz: Timezone to translate timezones to. May be None. :param series_format: What format to present the series in. """ super(HisReadSeriesOperation, self).__init__() if series_format not in (self.FORMAT_LIST, self.FORMAT_DICT, self.FORMAT_SERIES): raise ValueError('Unrecognised series_format %s' % series_format) if (series_format == self.FORMAT_SERIES) and (not HAVE_PANDAS): raise NotImplementedError('pandas not available.') if isinstance(rng, slice): rng = ','.join([ hszinc.dump_scalar(p, mode=hszinc.MODE_ZINC) for p in (rng.start, rng.stop) ]) self._session = session self._point = point self._range = hszinc.dump_scalar(rng, mode=hszinc.MODE_ZINC) self._tz = _resolve_tz(tz) self._series_format = series_format self._state_machine = fysom.Fysom( initial='init', final='done', events=[ # Event Current State New State ('go', 'init', 'read'), ('read_done', 'read', 'done'), ('exception', '*', 'done'), ], callbacks={ 'onenterread': self._do_read, 'onenterdone': self._do_done, }) def go(self): self._state_machine.go() def _do_read(self, event): """ Request the data from the server. """ self._session.his_read(point=self._point, rng=self._range, callback=self._on_read) def _on_read(self, operation, **kwargs): """ Process the grid, format it into the requested format. """ try: # See if the read succeeded. grid = operation.result if self._tz is None: conv_ts = lambda ts : ts else: conv_ts = lambda ts : ts.astimezone(self._tz) # Convert grid to list of tuples data = [(conv_ts(row['ts']), row['val']) for row in grid] if self._series_format == self.FORMAT_DICT: data = dict(data) elif self._series_format == self.FORMAT_SERIES: # Split into index and data. try: (index, data) = zip(*data) if isinstance(data[0], hszinc.Quantity): values = [each.value for each in data] units = data[0].unit else: values = data units = '' except ValueError: values = [] index = [] units = '' #ser = Series(data=data[0].value, index=index) meta_serie = MetaSeries(data=values, index=index) meta_serie.add_meta('units', units) meta_serie.add_meta('point', self._point) self._state_machine.read_done(result=meta_serie) except: # Catch all exceptions to pass to caller. self._state_machine.exception(result=AsynchronousException()) def _do_done(self, event): """ Return the result from the state machine. """ self._done(event.result) class HisReadFrameOperation(state.HaystackOperation): """ Read the series data from several 'point' entities and present them in a concise format. """ FORMAT_LIST = 'list' # [{'ts': ts1, 'col1': val1, ...}, {...}, ...] FORMAT_DICT = 'dict' # {ts1: {'col1': val1, ...}, ts2: ...} FORMAT_FRAME = 'frame' # pandas.DataFrame def __init__(self, session, columns, rng, tz, frame_format): """ Read the series data and return it. :param session: Haystack HTTP session object. :param columns: IDs of historical point objects to read. :param rng: Range to read from 'point' :param tz: Timezone to translate timezones to. May be None. :param frame_format: What format to present the frame in. """ super(HisReadFrameOperation, self).__init__() self._log = session._log.getChild('his_read_frame') if frame_format not in (self.FORMAT_LIST, self.FORMAT_DICT, self.FORMAT_FRAME): raise ValueError('Unrecognised frame_format %s' % frame_format) if (frame_format == self.FORMAT_FRAME) and (not HAVE_PANDAS): raise NotImplementedError('pandas not available.') if isinstance(rng, slice): rng = ','.join([ hszinc.dump_scalar(p, mode=hszinc.MODE_ZINC) for p in (rng.start, rng.stop) ]) # Convert the columns to a list of tuples. strip_ref = lambda r : r.name if isinstance(r, hszinc.Ref) else r if isinstance(columns, dict): # Ensure all are strings to references columns = [(str(c),strip_ref(r)) for c, r in columns.items()] else: # Translate to a dict: columns = [(strip_ref(c), c) for c in columns] self._session = session self._columns = columns self._range = hszinc.dump_scalar(rng, mode=hszinc.MODE_ZINC) self._tz = _resolve_tz(tz) self._frame_format = frame_format self._data_by_ts = {} self._todo = set([c[0] for c in columns]) self._state_machine = fysom.Fysom( initial='init', final='done', events=[ # Event Current State New State ('probe_multi', 'init', 'probing'), ('do_multi_read', 'probing', 'multi_read'), ('all_read_done', 'multi_read', 'postprocess'), ('do_single_read', 'probing', 'single_read'), ('all_read_done', 'single_read', 'postprocess'), ('process_done', 'postprocess', 'done'), ('exception', '*', 'done'), ], callbacks={ 'onenterprobing': self._do_probe_multi, 'onentermulti_read': self._do_multi_read, 'onentersingle_read': self._do_single_read, 'onenterpostprocess': self._do_postprocess, 'onenterdone': self._do_done, }) def go(self): self._state_machine.probe_multi() def _do_probe_multi(self, event): self._log.debug('Probing for multi-his-read support') self._session.has_features([self._session.FEATURE_HISREAD_MULTI], callback=self._on_probe_multi) def _on_probe_multi(self, operation, **kwargs): try: result = operation.result except: # Catch all exceptions to pass to caller. self._state_machine.exception(result=AsynchronousException()) return if result.get(self._session.FEATURE_HISREAD_MULTI): # Session object supports multi-his-read self._log.debug('Using multi-his-read support') self._state_machine.do_multi_read() else: # Emulate multi-his-read with separate self._log.debug('No multi-his-read support, emulating') self._state_machine.do_single_read() def _get_ts_rec(self, ts): try: return self._data_by_ts[ts] except KeyError: rec = {} self._data_by_ts[ts] = rec return rec def _do_multi_read(self, event): """ Request the data from the server as a single multi-read request. """ self._session.multi_his_read(points=[c[1] for c in self._columns], rng=self._range, callback=self._on_multi_read) def _on_multi_read(self, operation, **kwargs): """ Handle the multi-valued grid. """ try: grid = operation.result if self._tz is None: conv_ts = lambda ts : ts else: conv_ts = lambda ts : ts.astimezone(self._tz) for row in grid: ts = conv_ts(row['ts']) rec = self._get_ts_rec(ts) for (col_idx, (col, _)) in enumerate(self._columns): val = row.get('v%d' % col_idx) if (val is not None) or \ (self._frame_format != self.FORMAT_FRAME): rec[col] = val self._state_machine.all_read_done() except: # Catch all exceptions to pass to caller. self._log.debug('Hit exception', exc_info=1) self._state_machine.exception(result=AsynchronousException()) def _do_single_read(self, event): """ Request the data from the server as multiple single-read requests. """ for col, point in self._columns: self._log.debug('Column %s point %s', col, point) self._session.his_read(point, self._range, lambda operation, **kw : self._on_single_read(operation, col=col)) def _on_single_read(self, operation, col, **kwargs): """ Handle the multi-valued grid. """ self._log.debug('Response back for column %s', col) try: grid = operation.result #print(grid) #print('===========') if self._tz is None: conv_ts = lambda ts : ts else: conv_ts = lambda ts : ts.astimezone(self._tz) self._log.debug('%d records for %s: %s', len(grid), col, grid) for row in grid: ts = conv_ts(row['ts']) if self._tz is None: self._tz = ts.tzinfo rec = self._get_ts_rec(ts) val = row.get('val') if (val is not None) or \ (self._frame_format != self.FORMAT_FRAME): rec[col] = val self._todo.discard(col) self._log.debug('Still waiting for: %s', self._todo) if not self._todo: # No more to read self._state_machine.all_read_done() except: # Catch all exceptions to pass to caller. self._log.debug('Hit exception', exc_info=1) self._state_machine.exception(result=AsynchronousException()) def _do_postprocess(self, event): """ Convert the dict-of-dicts to the desired frame format. """ self._log.debug('Post-processing') try: if self._frame_format == self.FORMAT_LIST: def _merge_ts(item): rec = item[1].copy() rec['ts'] = item[0] return rec data = list(map(_merge_ts, list(self._data_by_ts.items()))) #print(data) elif self._frame_format == self.FORMAT_FRAME: # Build from dict data = MetaDataFrame.from_dict(self._data_by_ts, orient='index') def convert_quantity(val): """ If value is Quantity, convert to value """ if isinstance(val,hszinc.Quantity): return val.value else: return val def get_units(serie): try: first_element = serie.dropna()[0] except IndexError: # needed for empty results return '' if isinstance(first_element, hszinc.Quantity): return first_element.unit else: return '' for name, serie in data.iteritems(): """ Convert Quantity and put unit in metadata """ data.add_meta(name,get_units(serie)) data[name] = data[name].apply(convert_quantity) else: data = self._data_by_ts self._state_machine.process_done(result=data) except: # Catch all exceptions to pass to caller. self._log.debug('Hit exception', exc_info=1) self._state_machine.exception(result=AsynchronousException()) def _do_done(self, event): """ Return the result from the state machine. """ self._done(event.result) class HisWriteSeriesOperation(state.HaystackOperation): """ Write the series data to a 'point' entity. """ def __init__(self, session, point, series, tz): """ Write the series data to the point. :param session: Haystack HTTP session object. :param point: ID of historical 'point' object to write. :param series: Series data to be written to the point. :param tz: If not None, a datetime.tzinfo instance for this write. """ super(HisWriteSeriesOperation, self).__init__() # We've either been given an Entity instance or a string/reference # giving the name of an entity. if isinstance(point, string_types) or isinstance(point, hszinc.Ref): # We have the name of an entity, we'll need to fetch it. self._entity_id = point self._point = None else: # We have an entity. self._point = point self._entity_id = point.id self._session = session self._series = series self._tz = _resolve_tz(tz) self._state_machine = fysom.Fysom( initial='init', final='done', events=[ # Event Current State New State ('have_tz', 'init', 'write'), ('have_point', 'init', 'get_point_tz'), ('need_point', 'init', 'get_point'), ('have_point', 'get_point', 'get_point_tz'), ('have_tz', 'get_point_tz', 'write'), ('need_equip', 'get_point_tz', 'get_equip'), ('have_equip', 'get_equip', 'get_equip_tz'), ('have_tz', 'get_equip_tz', 'write'), ('need_site', 'get_equip_tz', 'get_site'), ('have_site', 'get_site', 'get_site_tz'), ('have_tz', 'get_site_tz', 'write'), ('write_done', 'write', 'done'), ('exception', '*', 'done'), ], callbacks={ 'onenterget_point': self._do_get_point, 'onenterget_point_tz': self._do_get_point_tz, 'onenterget_equip': self._do_get_equip, 'onenterget_equip_tz': self._do_get_equip_tz, 'onenterget_site': self._do_get_site, 'onenterget_site_tz': self._do_get_site_tz, 'onenterwrite': self._do_write, 'onenterdone': self._do_done, }) def go(self): if self._tz is not None: # Do we have a timezone? # We do! self._state_machine.have_tz() elif self._point is not None: # Nope, do we have the point? # We do! self._state_machine.have_point() else: # We need to fetch the point to get its timezone. self._state_machine.need_point() def _do_get_point(self, event): """ Retrieve the point entity. """ self._session.get_entity(self._entity_id, single=True, callback=self._got_point) def _got_point(self, operation, **kwargs): """ Process the return value from get_entity """ try: self._point = operation.result self._state_machine.have_point() except: self._state_machine.exception(result=AsynchronousException()) def _do_get_point_tz(self, event): """ See if the point has a timezone? """ if hasattr(self._point, 'tz') and isinstance(self._point.tz, tzinfo): # We have our timezone. self._tz = self._point.tz self._state_machine.have_tz() else: # Nope, look at the equip then. self._state_machine.need_equip() def _do_get_equip(self, event): """ Retrieve the equip entity. """ self._point.get_equip(callback=self._got_equip) def _got_equip(self, operation, **kwargs): """ Process the return value from get_entity """ try: equip = operation.result self._state_machine.have_equip(equip=equip) except: self._state_machine.exception(result=AsynchronousException()) def _do_get_equip_tz(self, event): """ See if the equip has a timezone? """ equip = event.equip if hasattr(equip, 'tz') and isinstance(equip.tz, tzinfo): # We have our timezone. self._tz = equip.tz self._state_machine.have_tz() else: # Nope, look at the site then. self._state_machine.need_site() def _do_get_site(self, event): """ Retrieve the site entity. """ self._point.get_site(callback=self._got_site) def _got_site(self, operation, **kwargs): """ Process the return value from get_entity """ try: site = operation.result self._state_machine.have_site(site=site) except: self._state_machine.exception(result=AsynchronousException()) def _do_get_site_tz(self, event): """ See if the site has a timezone? """ site = event.site if hasattr(site, 'tz') and isinstance(site.tz, tzinfo): # We have our timezone. self._tz = site.tz self._state_machine.have_tz() else: try: # Nope, no idea then. raise ValueError('No timezone specified for operation, '\ 'point, equip or site.') except: self._state_machine.exception(result=AsynchronousException()) def _do_write(self, event): """ Push the data to the server. """ try: # Process the timestamp records into an appropriate format. if hasattr(self._series, 'to_dict'): records = self._series.to_dict() elif not isinstance(self._series, dict): records = dict(self._series) else: records = self._series if not bool(records): # No data, skip writing this series. self._state_machine.write_done(result=None) return # Time-shift the records. if hasattr(self._tz, 'localize'): localise = lambda ts : self._tz.localize(ts) \ if ts.tzinfo is None else ts.astimezone(self._tz) else: localise = lambda ts : ts.replace(tzinfo=self._tz) \ if ts.tzinfo is None else ts.astimezone(self._tz) records = dict([(localise(ts), val) \ for ts, val in records.items()]) # Write the data self._session.his_write(point=self._entity_id, timestamp_records=records, callback=self._on_write) except: self._state_machine.exception(result=AsynchronousException()) def _on_write(self, operation, **kwargs): """ Handle the write error, if any. """ try: # See if the write succeeded. grid = operation.result if not isinstance(grid, hszinc.Grid): raise TypeError('Unexpected result: %r' % grid) # Move to the done state. self._state_machine.write_done(result=None) except: # Catch all exceptions to pass to caller. self._state_machine.exception(result=AsynchronousException()) def _do_done(self, event): """ Return the result from the state machine. """ self._done(event.result) class HisWriteFrameOperation(state.HaystackOperation): """ Write the series data to several 'point' entities. """ def __init__(self, session, columns, frame, tz): """ Write the series data. :param session: Haystack HTTP session object. :param columns: IDs of historical point objects to read. :param frame: Range to read from 'point' :param tz: Timezone to translate timezones to. """ super(HisWriteFrameOperation, self).__init__() self._log = session._log.getChild('his_write_frame') tz = _resolve_tz(tz) if tz is None: tz = pytz.utc if hasattr(tz, 'localize'): localise = lambda ts : tz.localize(ts) \ if ts.tzinfo is None else ts.astimezone(tz) else: localise = lambda ts : ts.replace(tzinfo=tz) \ if ts.tzinfo is None else ts.astimezone(tz) # Convert frame to list of records. if HAVE_PANDAS: # Convert Pandas frame to dict of dicts form. if isinstance(frame, DataFrame): self._log.debug('Convert from Pandas DataFrame') raw_frame = frame.to_dict(orient='dict') frame = {} for col, col_data in raw_frame.items(): for ts, val in col_data.items(): try: frame_rec = frame[ts] except KeyError: frame_rec = {} frame[ts] = frame_rec frame[col] = val # Convert dict of dicts to records, de-referencing column names. if isinstance(frame, dict): if columns is None: def _to_rec(item): (ts, raw_record) = item record = raw_record.copy() record['ts'] = ts return record else: def _to_rec(item): (ts, raw_record) = item record = {} for col, val in raw_record.items(): entity = columns[col] if hasattr(entity, 'id'): entity = entity.id if isinstance(entity, hszinc.Ref): entity = entity.name record[entity] = val record['ts'] = ts return record frame = list(map(_to_rec, list(frame.items()))) elif columns is not None: # Columns are aliased. De-alias the column names. frame = deepcopy(frame) for row in frame: ts = row.pop('ts') raw = row.copy() row.clear() row['ts'] = ts for column, point in columns.items(): try: value = raw.pop(column) except KeyError: self._log.debug('At %s missing column %s (for %s): %s', ts, column, point, raw) continue row[session._obj_to_ref(point).name] = value # Localise all timestamps, extract columns: columns = set() def _localise_rec(r): r['ts'] = localise(r['ts']) columns.update(set(r.keys()) - set(['ts'])) return r frame = list(map(_localise_rec, frame)) self._session = session self._frame = frame self._columns = columns self._todo = columns.copy() self._tz = _resolve_tz(tz) self._state_machine = fysom.Fysom( initial='init', final='done', events=[ # Event Current State New State ('probe_multi', 'init', 'probing'), ('no_data', 'init', 'done'), ('do_multi_write', 'probing', 'multi_write'), ('all_write_done', 'multi_write', 'done'), ('do_single_write', 'probing', 'single_write'), ('all_write_done', 'single_write', 'done'), ('exception', '*', 'done'), ], callbacks={ 'onenterprobing': self._do_probe_multi, 'onentermulti_write': self._do_multi_write, 'onentersingle_write': self._do_single_write, 'onenterdone': self._do_done, }) def go(self): if not bool(self._columns): self._log.debug('No data to write') self._state_machine.no_data(result=None) else: self._state_machine.probe_multi() def _do_probe_multi(self, event): self._log.debug('Probing for multi-his-write support') self._session.has_features([self._session.FEATURE_HISWRITE_MULTI], callback=self._on_probe_multi) def _on_probe_multi(self, operation, **kwargs): try: result = operation.result except: # Catch all exceptions to pass to caller. self._log.warning('Unable to probe multi-his-write support', exc_info=1) self._state_machine.exception(result=AsynchronousException()) result = {} return self._log.debug('Got result: %s', result) if result.get(self._session.FEATURE_HISWRITE_MULTI): # Session object supports multi-his-write self._log.debug('Using multi-his-write support') self._state_machine.do_multi_write() else: # Emulate multi-his-write with separate self._log.debug('No multi-his-write support, emulating') self._state_machine.do_single_write() def _do_multi_write(self, event): """ Request the data from the server as a single multi-read request. """ self._session.multi_his_write(self._frame, callback=self._on_multi_write) def _on_multi_write(self, operation, **kwargs): """ Handle the multi-valued grid. """ try: grid = operation.result if not isinstance(grid, hszinc.Grid): raise ValueError('Unexpected result %r' % grid) self._state_machine.all_write_done(result=None) except: # Catch all exceptions to pass to caller. self._log.debug('Hit exception', exc_info=1) self._state_machine.exception(result=AsynchronousException()) def _do_single_write(self, event): """ Submit the data in single write requests. """ for point in self._columns: self._log.debug('Point %s', point) # Extract a series for this column series = dict([(r['ts'], r[point]) for r in \ filter(lambda r : r.get(point) is not None, self._frame)]) self._session.his_write_series(point, series, callback=lambda operation, **kw : \ self._on_single_write(operation, point=point)) def _on_single_write(self, operation, point, **kwargs): """ Handle the single write. """ self._log.debug('Response back for point %s', point) try: res = operation.result if res is not None: raise ValueError('Unexpected result %r' % res) self._todo.discard(point) self._log.debug('Still waiting for: %s', self._todo) if not self._todo: # No more to read self._state_machine.all_write_done(result=None) except: # Catch all exceptions to pass to caller. self._log.debug('Hit exception', exc_info=1) self._state_machine.exception(result=AsynchronousException()) def _do_done(self, event): """ Return the result from the state machine. """ self._done(event.result) if HAVE_PANDAS: class MetaSeries(Series): """ Custom Pandas Serie with meta data """ meta = {} @property def _constructor(self): return MetaSeries def add_meta(self, key, value): self.meta[key] = value class MetaDataFrame(DataFrame): """ Custom Pandas Dataframe with meta data Made from MetaSeries """ meta = {} def __init__(self, *args, **kw): super(MetaDataFrame, self).__init__(*args, **kw) @property def _constructor(self): return MetaDataFrame _constructor_sliced = MetaSeries def add_meta(self, key, value): self.meta[key] = value
apache-2.0
ngoix/OCRF
benchmarks/bench_isolation_forest.py
1
4472
""" ========================================== IsolationForest benchmark ========================================== A test of IsolationForest on classical anomaly detection datasets. """ print(__doc__) from time import time import numpy as np # import matplotlib.pyplot as plt # for the cluster to save the fig: import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from sklearn.ensemble import IsolationForest from sklearn.metrics import roc_curve, precision_recall_curve, auc from sklearn.datasets import one_class_data from sklearn.utils import shuffle as sh from scipy.interpolate import interp1d from sklearn.utils import timeout, max_time, TimeoutError np.random.seed(1) nb_exp = 10 # XXXXXXX Launch without pythonpath (with python) on MASTER (after built) # # datasets available: # datasets = ['http', 'smtp', 'SA', 'SF', 'shuttle', 'forestcover', # 'ionosphere', 'spambase', 'annthyroid', 'arrhythmia', # 'pendigits', 'pima', 'wilt','internet_ads', 'adult'] # continuous datasets: datasets = ['http', 'smtp', 'shuttle', 'forestcover', 'ionosphere', 'spambase', 'annthyroid', 'arrhythmia', 'pendigits', 'pima', 'wilt', 'adult'] # # new datasets: # datasets = ['ionosphere', 'spambase', 'annthyroid', 'arrhythmia', # 'pendigits', 'pima', 'wilt', 'adult'] # datasets = ['ionosphere'] plt.figure(figsize=(25, 17)) for dat in datasets: # loading and vectorization X, y = one_class_data(dat) n_samples, n_features = np.shape(X) n_samples_train = n_samples // 2 n_samples_test = n_samples - n_samples_train n_axis = 1000 x_axis = np.linspace(0, 1, n_axis) tpr = np.zeros(n_axis) precision = np.zeros(n_axis) fit_time = 0 predict_time = 0 try: for ne in range(nb_exp): print 'exp num:', ne X, y = sh(X, y) # indices = np.arange(X.shape[0]) # np.random.shuffle(indices) # shuffle the dataset # X = X[indices] # y = y[indices] X_train = X[:n_samples_train, :] X_test = X[n_samples_train:, :] y_train = y[:n_samples_train] y_test = y[n_samples_train:] # # training only on normal data: # X_train = X_train[y_train == 0] # y_train = y_train[y_train == 0] print('IsolationForest processing...') model = IsolationForest() tstart = time() model.fit(X_train) fit_time += time() - tstart tstart = time() scoring = -model.decision_function(X_test) # the lower,the more normal predict_time += time() - tstart fpr_, tpr_, thresholds_ = roc_curve(y_test, scoring) if predict_time + fit_time > max_time: raise TimeoutError f = interp1d(fpr_, tpr_) tpr += f(x_axis) tpr[0] = 0. precision_, recall_ = precision_recall_curve(y_test, scoring)[:2] # cluster: old version of scipy -> interpol1d needs sorted x_input arg_sorted = recall_.argsort() recall_ = recall_[arg_sorted] precision_ = precision_[arg_sorted] f = interp1d(recall_, precision_) precision += f(x_axis) except TimeoutError: continue tpr /= float(nb_exp) fit_time /= float(nb_exp) predict_time /= float(nb_exp) AUC = auc(x_axis, tpr) precision /= float(nb_exp) precision[0] = 1. AUPR = auc(x_axis, precision) plt.subplot(121) plt.plot(x_axis, tpr, lw=1, label='%s (area = %0.3f, train-time: %0.2fs, test-time: %0.2fs)' % (dat, AUC, fit_time, predict_time)) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate', fontsize=25) plt.ylabel('True Positive Rate', fontsize=25) plt.title('Receiver operating characteristic for IsolationForest', fontsize=25) plt.legend(loc="lower right", prop={'size': 15}) plt.subplot(122) plt.plot(x_axis, precision, lw=1, label='%s (area = %0.3f)' % (dat, AUPR)) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('Recall', fontsize=25) plt.ylabel('Precision', fontsize=25) plt.title('Precision-Recall curve', fontsize=25) plt.legend(loc="lower right", prop={'size': 15}) plt.savefig('results_ocrf/bench_iforest_roc_pr_unsupervised_factorized')
bsd-3-clause
altairpearl/scikit-learn
examples/bicluster/bicluster_newsgroups.py
142
7183
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. Output:: Vectorizing... Coclustering... Done in 9.53s. V-measure: 0.4455 MiniBatchKMeans... Done in 12.00s. V-measure: 0.3309 Best biclusters: ---------------- bicluster 0 : 1951 documents, 4373 words categories : 23% talk.politics.guns, 19% talk.politics.misc, 14% sci.med words : gun, guns, geb, banks, firearms, drugs, gordon, clinton, cdt, amendment bicluster 1 : 1165 documents, 3304 words categories : 29% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism words : god, jesus, christians, atheists, kent, sin, morality, belief, resurrection, marriage bicluster 2 : 2219 documents, 2830 words categories : 18% comp.sys.mac.hardware, 16% comp.sys.ibm.pc.hardware, 16% comp.graphics words : voltage, dsp, board, receiver, circuit, shipping, packages, stereo, compression, package bicluster 3 : 1860 documents, 2745 words categories : 26% rec.motorcycles, 23% rec.autos, 13% misc.forsale words : bike, car, dod, engine, motorcycle, ride, honda, cars, bmw, bikes bicluster 4 : 12 documents, 155 words categories : 100% rec.sport.hockey words : scorer, unassisted, reichel, semak, sweeney, kovalenko, ricci, audette, momesso, nedved """ from __future__ import print_function print(__doc__) from collections import defaultdict import operator import re from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score def number_aware_tokenizer(doc): """ Tokenizer that maps all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b') tokens = token_pattern.findall(doc) tokens = ["#NUMBER" if token[0] in "0123456789_" else token for token in tokens] return tokens # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = TfidfVectorizer(stop_words='english', min_df=5, tokenizer=number_aware_tokenizer) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] # Note: the following is identical to X[rows[:, np.newaxis], cols].sum() but # much faster in scipy <= 0.16 weight = X[rows][:, cols].sum() cut = (X[row_complement][:, cols].sum() + X[rows][:, col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
MadsJensen/CAA
hilbert_preprocessing.py
1
3552
import mne from my_settings import * import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') n_jobs = 3 for subject in [subjects_select[-1]]: raw = mne.io.Raw(save_folder + "%s_filtered_ica_mc_raw_tsss.fif" % subject, preload=True) raw.resample(250, n_jobs=n_jobs, verbose=True) raw.filter(8, 12, n_jobs=n_jobs, verbose=True) include = [] picks = mne.pick_types(raw.info, meg=True, eeg=True, stim=False, eog=False, include=include, exclude='bads') raw.apply_hilbert(picks, n_jobs=n_jobs, verbose=True) raw.save(save_folder + "%s_hilbert_ica_mc_raw_tsss.fif" % subject, overwrite=True) tmin, tmax = -0.5, 1.5 # Epoch time # All the behavioral results results = pd.read_csv(log_folder + "results_all.csv") # select only the relevant subject log_tmp = results[results.subject == int(subject)].reset_index() raw.del_proj(0) # Select events to extract epochs from. event_id = {"all_trials": 99} # Setup for reading the raw data events = mne.find_events(raw, min_duration=0.015) events = mne.event.merge_events(events, [1, 2, 4, 8], 99, replace_events=True) event_id = {} epoch_ids = [] for i, row in log_tmp.iterrows(): if row.condition_type == "ctl": epoch_name = "ctl" epoch_id = "1" elif row.condition_type == "ent": epoch_name = "ent" epoch_id = "2" if row.condition_side == "left": epoch_name = epoch_name + "/" + "left" epoch_id = epoch_id + "1" elif row.condition_side == "right": epoch_name = epoch_name + "/" + "right" epoch_id = epoch_id + "0" if row.congruent is True: epoch_name = epoch_name + "/" + "cong" epoch_id = epoch_id + "1" elif row.congruent is False: epoch_name = epoch_name + "/" + "incong" epoch_id = epoch_id + "0" if row.correct is True: epoch_name = epoch_name + "/" + "correct" epoch_id = epoch_id + "1" elif row.correct is False: epoch_name = epoch_name + "/" + "incorrect" epoch_id = epoch_id + "0" if row.in_phase is True: epoch_name = epoch_name + "/" + "in_phase" epoch_id = epoch_id + "1" elif row.in_phase is False: epoch_name = epoch_name + "/" + "out_phase" epoch_id = epoch_id + "0" epoch_name = epoch_name + "/" + str(row.PAS) epoch_id = epoch_id + str(row.PAS) epoch_ids.append(int(epoch_id)) if epoch_name is not event_id: event_id[str(epoch_name)] = int(epoch_id) idx = np.arange(0, len(events), 4) for i in range(len(events[idx])): events[idx[i]][2] = epoch_ids[i] # picks = mne.pick_types(raw.info, meg=True, eeg=True, stim=False, # eog=False, # include=include, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, -0.2), reject=reject_params, add_eeg_ref=True, preload=False) epochs.drop_bad_epochs(reject_params) fig = epochs.plot_drop_log(subject=subject, show=False) fig.savefig(epochs_folder + "pics/hilbert_%s_drop_log.png" % subject) epochs.save(epochs_folder + "%s_hilbert_trial_start-epo.fif" % subject)
bsd-3-clause
mweisman/QGIS
python/plugins/processing/algs/RasterLayerHistogram.py
6
3219
# -*- coding: utf-8 -*- """ *************************************************************************** RasterLayerHistogram.py --------------------- Date : January 2013 Copyright : (C) 2013 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'January 2013' __copyright__ = '(C) 2013, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import matplotlib.pyplot as plt import matplotlib.pylab as lab from PyQt4.QtCore import * from qgis.core import * from processing.core.GeoAlgorithm import GeoAlgorithm from processing.parameters.ParameterNumber import ParameterNumber from processing.parameters.ParameterRaster import ParameterRaster from processing.outputs.OutputTable import OutputTable from processing.outputs.OutputHTML import OutputHTML from processing.tools import dataobjects from processing.tools import raster class RasterLayerHistogram(GeoAlgorithm): INPUT = 'INPUT' PLOT = 'PLOT' TABLE = 'TABLE' BINS = 'BINS' def processAlgorithm(self, progress): uri = self.getParameterValue(self.INPUT) layer = dataobjects.getObjectFromUri(uri) outputplot = self.getOutputValue(self.PLOT) outputtable = self.getOutputFromName(self.TABLE) values = raster.scanraster(layer, progress) nbins = self.getParameterValue(self.BINS) # ALERT: this is potentially blocking if the layer is too big plt.close() valueslist = [] for v in values: if v is not None: valueslist.append(v) (n, bins, values) = plt.hist(valueslist, nbins) fields = [QgsField('CENTER_VALUE', QVariant.Double), QgsField('NUM_ELEM', QVariant.Double)] writer = outputtable.getTableWriter(fields) for i in xrange(len(values)): writer.addRecord([str(bins[i]) + '-' + str(bins[i + 1]), n[i]]) plotFilename = outputplot + '.png' lab.savefig(plotFilename) f = open(outputplot, 'w') f.write('<img src="' + plotFilename + '"/>') f.close() def defineCharacteristics(self): self.name = 'Raster layer histogram' self.group = 'Graphics' self.addParameter(ParameterRaster(self.INPUT, 'Input layer')) self.addParameter(ParameterNumber(self.BINS, 'Number of bins', 2, None, 10)) self.addOutput(OutputHTML(self.PLOT, 'Output plot')) self.addOutput(OutputTable(self.TABLE, 'Output table'))
gpl-2.0
jseabold/statsmodels
statsmodels/examples/ex_generic_mle.py
5
14932
from functools import partial import numpy as np from scipy import stats import statsmodels.api as sm from statsmodels.base.model import GenericLikelihoodModel from statsmodels.tools.numdiff import approx_fprime, approx_hess data = sm.datasets.spector.load(as_pandas=False) data.exog = sm.add_constant(data.exog, prepend=False) # in this dir probit_mod = sm.Probit(data.endog, data.exog) probit_res = probit_mod.fit() loglike = probit_mod.loglike score = probit_mod.score mod = GenericLikelihoodModel(data.endog, data.exog*2, loglike, score) res = mod.fit(method="nm", maxiter = 500) def probitloglike(params, endog, exog): """ Log likelihood for the probit """ q = 2*endog - 1 X = exog return np.add.reduce(stats.norm.logcdf(q*np.dot(X,params))) model_loglike = partial(probitloglike, endog=data.endog, exog=data.exog) mod = GenericLikelihoodModel(data.endog, data.exog, loglike=model_loglike) res = mod.fit(method="nm", maxiter=500) print(res) np.allclose(res.params, probit_res.params, rtol=1e-4) print(res.params, probit_res.params) #datal = sm.datasets.longley.load(as_pandas=False) datal = sm.datasets.ccard.load(as_pandas=False) datal.exog = sm.add_constant(datal.exog, prepend=False) # Instance of GenericLikelihood model does not work directly, because loglike # cannot get access to data in self.endog, self.exog nobs = 5000 rvs = np.random.randn(nobs,6) datal.exog = rvs[:,:-1] datal.exog = sm.add_constant(datal.exog, prepend=False) datal.endog = 1 + rvs.sum(1) show_error = False show_error2 = 1#False if show_error: def loglike_norm_xb(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma) mod_norm = GenericLikelihoodModel(datal.endog, datal.exog, loglike_norm_xb) res_norm = mod_norm.fit(method="nm", maxiter = 500) print(res_norm.params) if show_error2: def loglike_norm_xb(params, endog, exog): beta = params[:-1] sigma = params[-1] #print exog.shape, beta.shape xb = np.dot(exog, beta) #print xb.shape, stats.norm.logpdf(endog, loc=xb, scale=sigma).shape return stats.norm.logpdf(endog, loc=xb, scale=sigma).sum() model_loglike3 = partial(loglike_norm_xb, endog=datal.endog, exog=datal.exog) mod_norm = GenericLikelihoodModel(datal.endog, datal.exog, model_loglike3) res_norm = mod_norm.fit(start_params=np.ones(datal.exog.shape[1]+1), method="nm", maxiter = 5000) print(res_norm.params) class MygMLE(GenericLikelihoodModel): # just for testing def loglike(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma).sum() def loglikeobs(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma) mod_norm2 = MygMLE(datal.endog, datal.exog) #res_norm = mod_norm.fit(start_params=np.ones(datal.exog.shape[1]+1), method="nm", maxiter = 500) res_norm2 = mod_norm2.fit(start_params=[1.]*datal.exog.shape[1]+[1], method="nm", maxiter = 500) np.allclose(res_norm.params, res_norm2.params) print(res_norm2.params) res2 = sm.OLS(datal.endog, datal.exog).fit() start_params = np.hstack((res2.params, np.sqrt(res2.mse_resid))) res_norm3 = mod_norm2.fit(start_params=start_params, method="nm", maxiter = 500, retall=0) print(start_params) print(res_norm3.params) print(res2.bse) print(res_norm3.bse) print('llf', res2.llf, res_norm3.llf) bse = np.sqrt(np.diag(np.linalg.inv(res_norm3.model.hessian(res_norm3.params)))) res_norm3.model.score(res_norm3.params) #fprime in fit option cannot be overwritten, set to None, when score is defined # exception is fixed, but I do not think score was supposed to be called res_bfgs = mod_norm2.fit(start_params=start_params, method="bfgs", fprime=None, maxiter=500, retall=0) hb=-approx_hess(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) hf=-approx_hess(res_norm3.params, mod_norm2.loglike, epsilon=1e-4) hh = (hf+hb)/2. print(np.linalg.eigh(hh)) grad = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) print(grad) gradb = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) gradf = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=1e-4) print((gradb+gradf)/2.) print(res_norm3.model.score(res_norm3.params)) print(res_norm3.model.score(start_params)) mod_norm2.loglike(start_params/2.) print(np.linalg.inv(-1*mod_norm2.hessian(res_norm3.params))) print(np.sqrt(np.diag(res_bfgs.cov_params()))) print(res_norm3.bse) print("MLE - OLS parameter estimates") print(res_norm3.params[:-1] - res2.params) print("bse diff in percent") print((res_norm3.bse[:-1] / res2.bse)*100. - 100) ''' Optimization terminated successfully. Current function value: 12.818804 Iterations 6 Optimization terminated successfully. Current function value: 12.818804 Iterations: 439 Function evaluations: 735 Optimization terminated successfully. Current function value: 12.818804 Iterations: 439 Function evaluations: 735 <statsmodels.model.LikelihoodModelResults object at 0x02131290> [ 1.6258006 0.05172931 1.42632252 -7.45229732] [ 1.62581004 0.05172895 1.42633234 -7.45231965] Warning: Maximum number of function evaluations has been exceeded. [ -1.18109149 246.94438535 -16.21235536 24.05282629 -324.80867176 274.07378453] Warning: Maximum number of iterations has been exceeded [ 17.57107 -149.87528787 19.89079376 -72.49810777 -50.06067953 306.14170418] Optimization terminated successfully. Current function value: 506.488765 Iterations: 339 Function evaluations: 550 [ -3.08181404 234.34702702 -14.99684418 27.94090839 -237.1465136 284.75079529] [ -3.08181304 234.34701361 -14.99684381 27.94088692 -237.14649571 274.6857294 ] [ 5.51471653 80.36595035 7.46933695 82.92232357 199.35166485] llf -506.488764864 -506.488764864 Optimization terminated successfully. Current function value: 506.488765 Iterations: 9 Function evaluations: 13 Gradient evaluations: 13 (array([ 2.41772580e-05, 1.62492628e-04, 2.79438138e-04, 1.90996240e-03, 2.07117946e-01, 1.28747174e+00]), array([[ 1.52225754e-02, 2.01838216e-02, 6.90127235e-02, -2.57002471e-04, -5.25941060e-01, -8.47339404e-01], [ 2.39797491e-01, -2.32325602e-01, -9.36235262e-01, 3.02434938e-03, 3.95614029e-02, -1.02035585e-01], [ -2.11381471e-02, 3.01074776e-02, 7.97208277e-02, -2.94955832e-04, 8.49402362e-01, -5.20391053e-01], [ -1.55821981e-01, -9.66926643e-01, 2.01517298e-01, 1.52397702e-03, 4.13805882e-03, -1.19878714e-02], [ -9.57881586e-01, 9.87911166e-02, -2.67819451e-01, 1.55192932e-03, -1.78717579e-02, -2.55757014e-02], [ -9.96486655e-04, -2.03697290e-03, -2.98130314e-03, -9.99992985e-01, -1.71500426e-05, 4.70854949e-06]])) [[ -4.91007768e-05 -7.28732630e-07 -2.51941401e-05 -2.50111043e-08 -4.77484718e-08 -9.72022463e-08]] [[ -1.64845915e-08 -2.87059265e-08 -2.88764568e-07 -6.82121026e-09 2.84217094e-10 -1.70530257e-09]] [ -4.90678076e-05 -6.71320777e-07 -2.46166110e-05 -1.13686838e-08 -4.83169060e-08 -9.37916411e-08] [ -4.56753924e-05 -6.50857146e-07 -2.31756303e-05 -1.70530257e-08 -4.43378667e-08 -1.75592936e-02] [[ 2.99386348e+01 -1.24442928e+02 9.67254672e+00 -1.58968536e+02 -5.91960010e+02 -2.48738183e+00] [ -1.24442928e+02 5.62972166e+03 -5.00079203e+02 -7.13057475e+02 -7.82440674e+03 -1.05126925e+01] [ 9.67254672e+00 -5.00079203e+02 4.87472259e+01 3.37373299e+00 6.96960872e+02 7.69866589e-01] [ -1.58968536e+02 -7.13057475e+02 3.37373299e+00 6.82417837e+03 4.84485862e+03 3.21440021e+01] [ -5.91960010e+02 -7.82440674e+03 6.96960872e+02 4.84485862e+03 3.43753691e+04 9.37524459e+01] [ -2.48738183e+00 -1.05126925e+01 7.69866589e-01 3.21440021e+01 9.37524459e+01 5.23915258e+02]] >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> print res_norm3.model.score(res_norm3.params) [ -4.90678076e-05 -6.71320777e-07 -2.46166110e-05 -1.13686838e-08 -4.83169060e-08 -9.37916411e-08] >>> print res_norm3.model.score(start_params) [ -4.56753924e-05 -6.50857146e-07 -2.31756303e-05 -1.70530257e-08 -4.43378667e-08 -1.75592936e-02] >>> mod_norm2.loglike(start_params/2.) -598.56178102781314 >>> print np.linalg.inv(-1*mod_norm2.hessian(res_norm3.params)) [[ 2.99386348e+01 -1.24442928e+02 9.67254672e+00 -1.58968536e+02 -5.91960010e+02 -2.48738183e+00] [ -1.24442928e+02 5.62972166e+03 -5.00079203e+02 -7.13057475e+02 -7.82440674e+03 -1.05126925e+01] [ 9.67254672e+00 -5.00079203e+02 4.87472259e+01 3.37373299e+00 6.96960872e+02 7.69866589e-01] [ -1.58968536e+02 -7.13057475e+02 3.37373299e+00 6.82417837e+03 4.84485862e+03 3.21440021e+01] [ -5.91960010e+02 -7.82440674e+03 6.96960872e+02 4.84485862e+03 3.43753691e+04 9.37524459e+01] [ -2.48738183e+00 -1.05126925e+01 7.69866589e-01 3.21440021e+01 9.37524459e+01 5.23915258e+02]] >>> print np.sqrt(np.diag(res_bfgs.cov_params())) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] >>> print res_norm3.bse [ 5.47162086 75.03147114 6.98192136 82.60858536 185.40595756 22.88919522] >>> res_norm3.conf_int <bound method LikelihoodModelResults.conf_int of <statsmodels.model.LikelihoodModelResults object at 0x021317F0>> >>> res_norm3.conf_int() array([[0.96421437, 1.01999835], [0.99251725, 1.04863332], [0.95721328, 1.01246222], [0.97134549, 1.02695393], [0.97050081, 1.02660988], [0.97773434, 1.03290028], [0.97529207, 1.01428874]]) >>> res_norm3.params array([ -3.08181304, 234.34701361, -14.99684381, 27.94088692, -237.14649571, 274.6857294 ]) >>> res2.params array([ -3.08181404, 234.34702702, -14.99684418, 27.94090839, -237.1465136 ]) >>> >>> res_norm3.params - res2.params Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: shape mismatch: objects cannot be broadcast to a single shape >>> res_norm3.params[:-1] - res2.params array([ 9.96859735e-07, -1.34122981e-05, 3.72278400e-07, -2.14645839e-05, 1.78919019e-05]) >>> >>> res_norm3.bse[:-1] - res2.bse array([ -0.04309567, -5.33447922, -0.48741559, -0.31373822, -13.94570729]) >>> (res_norm3.bse[:-1] / res2.bse) - 1 array([-0.00781467, -0.06637735, -0.06525554, -0.00378352, -0.06995531]) >>> (res_norm3.bse[:-1] / res2.bse)*100. - 100 array([-0.7814667 , -6.6377355 , -6.52555369, -0.37835193, -6.99553089]) >>> np.sqrt(np.diag(np.linalg.inv(res_norm3.model.hessian(res_bfgs.params)))) array([ NaN, NaN, NaN, NaN, NaN, NaN]) >>> np.sqrt(np.diag(np.linalg.inv(-res_norm3.model.hessian(res_bfgs.params)))) array([ 5.10032831, 74.34988912, 6.96522122, 76.7091604 , 169.8117832 , 22.91695494]) >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> res2.bse array([ 5.51471653, 80.36595035, 7.46933695, 82.92232357, 199.35166485]) >>> >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(-res_norm3.model.hessian(res_bfgs.params)))) >>> (bse_bfgs[:-1] / res2.bse)*100. - 100 array([ -7.51422527, -7.4858335 , -6.74913633, -7.49275094, -14.8179759 ]) >>> hb=-approx_hess(res_bfgs.params, mod_norm2.loglike, epsilon=-1e-4) >>> hf=-approx_hess(res_bfgs.params, mod_norm2.loglike, epsilon=1e-4) >>> hh = (hf+hb)/2. >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(-hh))) >>> bse_bfgs array([ NaN, NaN, NaN, NaN, NaN, NaN]) >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(hh))) >>> np.diag(hh) array([ 9.81680159e-01, 1.39920076e-02, 4.98101826e-01, 3.60955710e-04, 9.57811608e-04, 1.90709670e-03]) >>> np.diag(np.inv(hh)) Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'module' object has no attribute 'inv' >>> np.diag(np.linalg.inv(hh)) array([ 2.64875153e+01, 5.91578496e+03, 5.13279911e+01, 6.11533345e+03, 3.33775960e+04, 5.24357391e+02]) >>> res2.bse**2 array([ 3.04120984e+01, 6.45868598e+03, 5.57909945e+01, 6.87611175e+03, 3.97410863e+04]) >>> bse_bfgs array([ 5.14660231, 76.91414015, 7.1643556 , 78.20059751, 182.69536402, 22.89885131]) >>> bse_bfgs - res_norm3.bse array([-0.32501855, 1.88266901, 0.18243424, -4.40798785, -2.71059354, 0.00965609]) >>> (bse_bfgs[:-1] / res2.bse)*100. - 100 array([-6.67512508, -4.29511526, -4.0831115 , -5.69415552, -8.35523538]) >>> (res_norm3.bse[:-1] / res2.bse)*100. - 100 array([-0.7814667 , -6.6377355 , -6.52555369, -0.37835193, -6.99553089]) >>> (bse_bfgs / res_norm3.bse)*100. - 100 array([-5.94007812, 2.50917247, 2.61295176, -5.33599242, -1.46197759, 0.04218624]) >>> bse_bfgs array([ 5.14660231, 76.91414015, 7.1643556 , 78.20059751, 182.69536402, 22.89885131]) >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> res2.bse array([ 5.51471653, 80.36595035, 7.46933695, 82.92232357, 199.35166485]) >>> dir(res_bfgs) ['__class__', '__delattr__', '__dict__', '__doc__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str__', '__weakref__', 'bse', 'conf_int', 'cov_params', 'f_test', 'initialize', 'llf', 'mle_retvals', 'mle_settings', 'model', 'normalized_cov_params', 'params', 'scale', 't', 't_test'] >>> res_bfgs.scale 1.0 >>> res2.scale 81083.015420213851 >>> res2.mse_resid 81083.015420213851 >>> print np.sqrt(np.diag(np.linalg.inv(-1*mod_norm2.hessian(res_bfgs.params)))) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] >>> print np.sqrt(np.diag(np.linalg.inv(-1*res_bfgs.model.hessian(res_bfgs.params)))) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] Is scale a misnomer, actually scale squared, i.e. variance of error term ? ''' print(res_norm3.model.score_obs(res_norm3.params).shape) jac = res_norm3.model.score_obs(res_norm3.params) print(np.sqrt(np.diag(np.dot(jac.T, jac)))/start_params) jac2 = res_norm3.model.score_obs(res_norm3.params, centered=True) print(np.sqrt(np.diag(np.linalg.inv(np.dot(jac.T, jac))))) print(res_norm3.bse) print(res2.bse)
bsd-3-clause
M4573R/BuildingMachineLearningSystemsWithPython
ch10/chapter.py
20
4997
import numpy as np import mahotas as mh image = mh.imread('scene00.jpg') from matplotlib import pyplot as plt plt.imshow(image) plt.show() image = mh.colors.rgb2grey(image, dtype=np.uint8) plt.imshow(image) # Display the image plt.gray() thresh = mh.thresholding.otsu(image) print('Otsu threshold is {}.'.format(thresh)) # Otsu threshold is 138. plt.imshow(image > thresh) im16 = mh.gaussian_filter(image,16) im = mh.demos.load('lenna') r,g,b = im.transpose(2,0,1) r12 = mh.gaussian_filter(r, 12.) g12 = mh.gaussian_filter(g, 12.) b12 = mh.gaussian_filter(b, 12.) im12 = mh.as_rgb(r12,g12,b12) h, w = r.shape # height and width Y, X = np.mgrid[:h,:w] Y = Y-h/2. # center at h/2 Y = Y / Y.max() # normalize to -1 .. +1 X = X-w/2. X = X / X.max() C = np.exp(-2.*(X**2+ Y**2)) # Normalize again to 0..1 C = C - C.min() C = C / C.ptp() C = C[:,:,None] # This adds a dummy third dimension to C ringed = mh.stretch(im*C + (1-C)*im12) haralick_features = mh.features.haralick(image) haralick_features_mean = np.mean(haralick_features, axis=0) haralick_features_all = np.ravel(haralick_features) from glob import glob images = glob('../SimpleImageDataset/*.jpg') features = [] labels = [] for im in images: labels.append(im[:-len('00.jpg')]) im = mh.imread(im) im = mh.colors.rgb2gray(im, dtype=np.uint8) features.append(mh.features.haralick(im).ravel()) features = np.array(features) labels = np.array(labels) from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression clf = Pipeline([('preproc', StandardScaler()), ('classifier', LogisticRegression())]) from sklearn import cross_validation cv = cross_validation.LeaveOneOut(len(images)) scores = cross_validation.cross_val_score( clf, features, labels, cv=cv) print('Accuracy: {:.1%}'.format(scores.mean())) # Accuracy: 81.1% def chist(im): im = im // 64 r,g,b = im.transpose((2,0,1)) pixels = 1 * r + 4 * b + 16 * g hist = np.bincount(pixels.ravel(), minlength=64) hist = hist.astype(float) hist = np.log1p(hist) return hist features = [] for im in images: im = mh.imread(im) features.append(chist(im)) features = [] for im in images: imcolor = mh.imread(im) im = mh.colors.rgb2gray(imcolor, dtype=np.uint8) features.append(np.concatenate([ mh.features.haralick(im).ravel(), chist(imcolor), ])) scores = cross_validation.cross_val_score( clf, features, labels, cv=cv) print('Accuracy: {:.1%}'.format(scores.mean())) # Accuracy: 95.6% features = [] for im in images: imcolor = mh.imread(im) # Ignore everything in the 200 pixels close to the borders imcolor = imcolor[200:-200, 200:-200] im = mh.colors.rgb2gray(imcolor, dtype=np.uint8) features.append(np.concatenate([ mh.features.haralick(im).ravel(), chist(imcolor), ])) sc = StandardScaler() features = sc.fit_transform(features) from scipy.spatial import distance dists = distance.squareform(distance.pdist(features)) fig, axes = plt.subplots(2, 9) for ci,i in enumerate(range(0,90,10)): left = images[i] dists_left = dists[i] right = dists_left.argsort() # right[0] is the same as left[i], so pick the next closest element right = right[1] right = images[right] left = mh.imread(left) right = mh.imread(right) axes[0, ci].imshow(left) axes[1, ci].imshow(right) from sklearn.grid_search import GridSearchCV C_range = 10.0 ** np.arange(-4, 3) grid = GridSearchCV(LogisticRegression(), param_grid={'C' : C_range}) clf = Pipeline([('preproc', StandardScaler()), ('classifier', grid)]) cv = cross_validation.KFold(len(features), 5, shuffle=True, random_state=123) scores = cross_validation.cross_val_score( clf, features, labels, cv=cv) print('Accuracy: {:.1%}'.format(scores.mean())) from mahotas.features import surf image = mh.demos.load('lena') image = mh.colors.rgb2gray(image, dtype=np.uint8) descriptors = surf.surf(image, descriptor_only=True) from mahotas.features import surf descriptors = surf.dense(image, spacing=16) alldescriptors = [] for im in images: im = mh.imread(im, as_grey=True) im = im.astype(np.uint8) alldescriptors.append(surf.dense(image, spacing=16)) # get all descriptors into a single array concatenated = np.concatenate(alldescriptors) print('Number of descriptors: {}'.format( len(concatenated))) # use only every 64th vector concatenated = concatenated[::64] from sklearn.cluster import KMeans # FIXME CAPITALIZATION k = 256 km = KMeans(k) km.fit(concatenated) features = [] for d in alldescriptors: c = km.predict(d) features.append( np.array([np.sum(c == ci) for ci in range(k)]) ) # build single array and convert to float features = np.array(features, dtype=float) scores = cross_validation.cross_val_score( clf, features, labels, cv=cv) print('Accuracy: {:.1%}'.format(scores.mean())) # Accuracy: 62.6%
mit
roryyorke/python-control
examples/pvtol-lqr.py
3
6908
# pvtol_lqr.m - LQR design for vectored thrust aircraft # RMM, 14 Jan 03 # # This file works through an LQR based design problem, using the # planar vertical takeoff and landing (PVTOL) aircraft example from # Astrom and Murray, Chapter 5. It is intended to demonstrate the # basic functionality of the python-control package. # import os import numpy as np import matplotlib.pyplot as plt # MATLAB plotting functions from control.matlab import * # MATLAB-like functions # # System dynamics # # These are the dynamics for the PVTOL system, written in state space # form. # # System parameters m = 4 # mass of aircraft J = 0.0475 # inertia around pitch axis r = 0.25 # distance to center of force g = 9.8 # gravitational constant c = 0.05 # damping factor (estimated) # State space dynamics xe = [0, 0, 0, 0, 0, 0] # equilibrium point of interest ue = [0, m*g] # (note these are lists, not matrices) # TODO: The following objects need converting from np.matrix to np.array # This will involve re-working the subsequent equations as the shapes # See below. # Dynamics matrix (use matrix type so that * works for multiplication) A = np.matrix( [[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, (-ue[0]*np.sin(xe[2]) - ue[1]*np.cos(xe[2]))/m, -c/m, 0, 0], [0, 0, (ue[0]*np.cos(xe[2]) - ue[1]*np.sin(xe[2]))/m, 0, -c/m, 0], [0, 0, 0, 0, 0, 0]] ) # Input matrix B = np.matrix( [[0, 0], [0, 0], [0, 0], [np.cos(xe[2])/m, -np.sin(xe[2])/m], [np.sin(xe[2])/m, np.cos(xe[2])/m], [r/J, 0]] ) # Output matrix C = np.matrix([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]]) D = np.matrix([[0, 0], [0, 0]]) # # Construct inputs and outputs corresponding to steps in xy position # # The vectors xd and yd correspond to the states that are the desired # equilibrium states for the system. The matrices Cx and Cy are the # corresponding outputs. # # The way these vectors are used is to compute the closed loop system # dynamics as # # xdot = Ax + B u => xdot = (A-BK)x + K xd # u = -K(x - xd) y = Cx # # The closed loop dynamics can be simulated using the "step" command, # with K*xd as the input vector (assumes that the "input" is unit size, # so that xd corresponds to the desired steady state. # xd = np.matrix([[1], [0], [0], [0], [0], [0]]) yd = np.matrix([[0], [1], [0], [0], [0], [0]]) # # Extract the relevant dynamics for use with SISO library # # The current python-control library only supports SISO transfer # functions, so we have to modify some parts of the original MATLAB # code to extract out SISO systems. To do this, we define the 'lat' and # 'alt' index vectors to consist of the states that are are relevant # to the lateral (x) and vertical (y) dynamics. # # Indices for the parts of the state that we want lat = (0, 2, 3, 5) alt = (1, 4) # Decoupled dynamics Ax = (A[lat, :])[:, lat] # ! not sure why I have to do it this way Bx = B[lat, 0] Cx = C[0, lat] Dx = D[0, 0] Ay = (A[alt, :])[:, alt] # ! not sure why I have to do it this way By = B[alt, 1] Cy = C[1, alt] Dy = D[1, 1] # Label the plot plt.clf() plt.suptitle("LQR controllers for vectored thrust aircraft (pvtol-lqr)") # # LQR design # # Start with a diagonal weighting Qx1 = np.diag([1, 1, 1, 1, 1, 1]) Qu1a = np.diag([1, 1]) K, X, E = lqr(A, B, Qx1, Qu1a) K1a = np.matrix(K) # Close the loop: xdot = Ax - B K (x-xd) # Note: python-control requires we do this 1 input at a time # H1a = ss(A-B*K1a, B*K1a*concatenate((xd, yd), axis=1), C, D); # (T, Y) = step(H1a, T=np.linspace(0,10,100)); # TODO: The following equations will need modifying when converting from np.matrix to np.array # because the results and even intermediate calculations will be different with numpy arrays # For example: # Bx = B[lat, 0] # Will need to be changed to: # Bx = B[lat, 0].reshape(-1, 1) # (if we want it to have the same shape as before) # For reference, here is a list of the correct shapes of these objects: # A: (6, 6) # B: (6, 2) # C: (2, 6) # D: (2, 2) # xd: (6, 1) # yd: (6, 1) # Ax: (4, 4) # Bx: (4, 1) # Cx: (1, 4) # Dx: () # Ay: (2, 2) # By: (2, 1) # Cy: (1, 2) # Step response for the first input H1ax = ss(Ax - Bx*K1a[0, lat], Bx*K1a[0, lat]*xd[lat, :], Cx, Dx) Yx, Tx = step(H1ax, T=np.linspace(0, 10, 100)) # Step response for the second input H1ay = ss(Ay - By*K1a[1, alt], By*K1a[1, alt]*yd[alt, :], Cy, Dy) Yy, Ty = step(H1ay, T=np.linspace(0, 10, 100)) plt.subplot(221) plt.title("Identity weights") # plt.plot(T, Y[:,1, 1], '-', T, Y[:,2, 2], '--') plt.plot(Tx.T, Yx.T, '-', Ty.T, Yy.T, '--') plt.plot([0, 10], [1, 1], 'k-') plt.axis([0, 10, -0.1, 1.4]) plt.ylabel('position') plt.legend(('x', 'y'), loc='lower right') # Look at different input weightings Qu1a = np.diag([1, 1]) K1a, X, E = lqr(A, B, Qx1, Qu1a) H1ax = ss(Ax - Bx*K1a[0, lat], Bx*K1a[0, lat]*xd[lat, :], Cx, Dx) Qu1b = (40 ** 2)*np.diag([1, 1]) K1b, X, E = lqr(A, B, Qx1, Qu1b) H1bx = ss(Ax - Bx*K1b[0, lat], Bx*K1b[0, lat]*xd[lat, :], Cx, Dx) Qu1c = (200 ** 2)*np.diag([1, 1]) K1c, X, E = lqr(A, B, Qx1, Qu1c) H1cx = ss(Ax - Bx*K1c[0, lat], Bx*K1c[0, lat]*xd[lat, :], Cx, Dx) [Y1, T1] = step(H1ax, T=np.linspace(0, 10, 100)) [Y2, T2] = step(H1bx, T=np.linspace(0, 10, 100)) [Y3, T3] = step(H1cx, T=np.linspace(0, 10, 100)) plt.subplot(222) plt.title("Effect of input weights") plt.plot(T1.T, Y1.T, 'b-') plt.plot(T2.T, Y2.T, 'b-') plt.plot(T3.T, Y3.T, 'b-') plt.plot([0, 10], [1, 1], 'k-') plt.axis([0, 10, -0.1, 1.4]) # arcarrow([1.3, 0.8], [5, 0.45], -6) plt.text(5.3, 0.4, 'rho') # Output weighting - change Qx to use outputs Qx2 = C.T*C Qu2 = 0.1*np.diag([1, 1]) K, X, E = lqr(A, B, Qx2, Qu2) K2 = np.matrix(K) H2x = ss(Ax - Bx*K2[0, lat], Bx*K2[0, lat]*xd[lat, :], Cx, Dx) H2y = ss(Ay - By*K2[1, alt], By*K2[1, alt]*yd[alt, :], Cy, Dy) plt.subplot(223) plt.title("Output weighting") [Y2x, T2x] = step(H2x, T=np.linspace(0, 10, 100)) [Y2y, T2y] = step(H2y, T=np.linspace(0, 10, 100)) plt.plot(T2x.T, Y2x.T, T2y.T, Y2y.T) plt.ylabel('position') plt.xlabel('time') plt.ylabel('position') plt.legend(('x', 'y'), loc='lower right') # # Physically motivated weighting # # Shoot for 1 cm error in x, 10 cm error in y. Try to keep the angle # less than 5 degrees in making the adjustments. Penalize side forces # due to loss in efficiency. # Qx3 = np.diag([100, 10, 2*np.pi/5, 0, 0, 0]) Qu3 = 0.1*np.diag([1, 10]) (K, X, E) = lqr(A, B, Qx3, Qu3) K3 = np.matrix(K) H3x = ss(Ax - Bx*K3[0, lat], Bx*K3[0, lat]*xd[lat, :], Cx, Dx) H3y = ss(Ay - By*K3[1, alt], By*K3[1, alt]*yd[alt, :], Cy, Dy) plt.subplot(224) # step(H3x, H3y, 10) [Y3x, T3x] = step(H3x, T=np.linspace(0, 10, 100)) [Y3y, T3y] = step(H3y, T=np.linspace(0, 10, 100)) plt.plot(T3x.T, Y3x.T, T3y.T, Y3y.T) plt.title("Physically motivated weights") plt.xlabel('time') plt.legend(('x', 'y'), loc='lower right') if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: plt.show()
bsd-3-clause
anielsen001/scipy
scipy/cluster/hierarchy.py
2
96514
""" ======================================================== Hierarchical clustering (:mod:`scipy.cluster.hierarchy`) ======================================================== .. currentmodule:: scipy.cluster.hierarchy These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing the flat cluster ids of each observation. .. autosummary:: :toctree: generated/ fcluster fclusterdata leaders These are routines for agglomerative clustering. .. autosummary:: :toctree: generated/ linkage single complete average weighted centroid median ward These routines compute statistics on hierarchies. .. autosummary:: :toctree: generated/ cophenet from_mlab_linkage inconsistent maxinconsts maxdists maxRstat to_mlab_linkage Routines for visualizing flat clusters. .. autosummary:: :toctree: generated/ dendrogram These are data structures and routines for representing hierarchies as tree objects. .. autosummary:: :toctree: generated/ ClusterNode leaves_list to_tree cut_tree These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism of two flat cluster assignments. .. autosummary:: :toctree: generated/ is_valid_im is_valid_linkage is_isomorphic is_monotonic correspond num_obs_linkage Utility routines for plotting: .. autosummary:: :toctree: generated/ set_link_color_palette References ---------- .. [1] "Statistics toolbox." API Reference Documentation. The MathWorks. http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007. .. [2] "Hierarchical clustering." API Reference Documentation. The Wolfram Research, Inc. http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/ HierarchicalClustering.html. Accessed October 1, 2007. .. [3] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage Cluster Analysis." Applied Statistics. 18(1): pp. 54--64. 1969. .. [4] Ward Jr, JH. "Hierarchical grouping to optimize an objective function." Journal of the American Statistical Association. 58(301): pp. 236--44. 1963. .. [5] Johnson, SC. "Hierarchical clustering schemes." Psychometrika. 32(2): pp. 241--54. 1966. .. [6] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp. 855--60. 1962. .. [7] Batagelj, V. "Comparing resemblance measures." Journal of Classification. 12: pp. 73--90. 1995. .. [8] Sokal, RR and Michener, CD. "A statistical method for evaluating systematic relationships." Scientific Bulletins. 38(22): pp. 1409--38. 1958. .. [9] Edelbrock, C. "Mixture model tests of hierarchical clustering algorithms: the problem of classifying everybody." Multivariate Behavioral Research. 14: pp. 367--84. 1979. .. [10] Jain, A., and Dubes, R., "Algorithms for Clustering Data." Prentice-Hall. Englewood Cliffs, NJ. 1988. .. [11] Fisher, RA "The use of multiple measurements in taxonomic problems." Annals of Eugenics, 7(2): 179-188. 1936 * MATLAB and MathWorks are registered trademarks of The MathWorks, Inc. * Mathematica is a registered trademark of The Wolfram Research, Inc. """ from __future__ import division, print_function, absolute_import # Copyright (C) Damian Eads, 2007-2008. New BSD License. # hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com) # # Author: Damian Eads # Date: September 22, 2007 # # Copyright (c) 2007, 2008, Damian Eads # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # - Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # - Neither the name of the author nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import warnings import bisect from collections import deque import numpy as np from . import _hierarchy import scipy.spatial.distance as distance from scipy._lib.six import string_types from scipy._lib.six import xrange _LINKAGE_METHODS = {'single': 0, 'complete': 1, 'average': 2, 'centroid': 3, 'median': 4, 'ward': 5, 'weighted': 6} _EUCLIDEAN_METHODS = ('centroid', 'median', 'ward') __all__ = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet', 'correspond', 'cut_tree', 'dendrogram', 'fcluster', 'fclusterdata', 'from_mlab_linkage', 'inconsistent', 'is_isomorphic', 'is_monotonic', 'is_valid_im', 'is_valid_linkage', 'leaders', 'leaves_list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts', 'median', 'num_obs_linkage', 'set_link_color_palette', 'single', 'to_mlab_linkage', 'to_tree', 'ward', 'weighted', 'distance'] class ClusterWarning(UserWarning): pass def _warning(s): warnings.warn('scipy.cluster: %s' % s, ClusterWarning, stacklevel=3) def _copy_array_if_base_present(a): """ Copies the array if its base points to a parent array. """ if a.base is not None: return a.copy() elif np.issubsctype(a, np.float32): return np.array(a, dtype=np.double) else: return a def _copy_arrays_if_base_present(T): """ Accepts a tuple of arrays T. Copies the array T[i] if its base array points to an actual array. Otherwise, the reference is just copied. This is useful if the arrays are being passed to a C function that does not do proper striding. """ l = [_copy_array_if_base_present(a) for a in T] return l def _randdm(pnts): """ Generates a random distance matrix stored in condensed form. A pnts * (pnts - 1) / 2 sized vector is returned. """ if pnts >= 2: D = np.random.rand(pnts * (pnts - 1) / 2) else: raise ValueError("The number of points in the distance matrix " "must be at least 2.") return D def single(y): """ Performs single/min/nearest linkage on the condensed distance matrix ``y`` Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray The linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='single', metric='euclidean') def complete(y): """ Performs complete/max/farthest point linkage on a condensed distance matrix Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage """ return linkage(y, method='complete', metric='euclidean') def average(y): """ Performs average/UPGMA linkage on a condensed distance matrix Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='average', metric='euclidean') def weighted(y): """ Performs weighted/WPGMA linkage on the condensed distance matrix. See ``linkage`` for more information on the return structure and algorithm. Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage : for advanced creation of hierarchical clusterings. """ return linkage(y, method='weighted', metric='euclidean') def centroid(y): """ Performs centroid/UPGMC linkage. See ``linkage`` for more information on the input matrix, return structure, and algorithm. The following are common calling conventions: 1. ``Z = centroid(y)`` Performs centroid/UPGMC linkage on the condensed distance matrix ``y``. See ``linkage`` for more information on the return structure and algorithm. 2. ``Z = centroid(X)`` Performs centroid/UPGMC linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See ``linkage`` for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='centroid', metric='euclidean') def median(y): """ Performs median/WPGMC linkage. See ``linkage`` for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = median(y)`` Performs median/WPGMC linkage on the condensed distance matrix ``y``. See ``linkage`` for more information on the return structure and algorithm. 2. ``Z = median(X)`` Performs median/WPGMC linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='median', metric='euclidean') def ward(y): """ Performs Ward's linkage on a condensed distance matrix. See linkage for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = ward(y)`` Performs Ward's linkage on the condensed distance matrix ``Z``. See linkage for more information on the return structure and algorithm. 2. ``Z = ward(X)`` Performs Ward's linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='ward', metric='euclidean') def linkage(y, method='single', metric='euclidean'): """ Performs hierarchical/agglomerative clustering. The input y may be either a 1d compressed distance matrix or a 2d array of observation vectors. If y is a 1d compressed distance matrix, then y must be a :math:`{n \\choose 2}` sized vector where n is the number of original observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage function. A :math:`(n-1)` by 4 matrix ``Z`` is returned. At the :math:`i`-th iteration, clusters with indices ``Z[i, 0]`` and ``Z[i, 1]`` are combined to form cluster :math:`n + i`. A cluster with an index less than :math:`n` corresponds to one of the :math:`n` original observations. The distance between clusters ``Z[i, 0]`` and ``Z[i, 1]`` is given by ``Z[i, 2]``. The fourth value ``Z[i, 3]`` represents the number of original observations in the newly formed cluster. The following linkage methods are used to compute the distance :math:`d(s, t)` between two clusters :math:`s` and :math:`t`. The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters :math:`s` and :math:`t` from this forest are combined into a single cluster :math:`u`, :math:`s` and :math:`t` are removed from the forest, and :math:`u` is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root. A distance matrix is maintained at each iteration. The ``d[i,j]`` entry corresponds to the distance between cluster :math:`i` and :math:`j` in the original forest. At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster u with the remaining clusters in the forest. Suppose there are :math:`|u|` original observations :math:`u[0], \\ldots, u[|u|-1]` in cluster :math:`u` and :math:`|v|` original objects :math:`v[0], \\ldots, v[|v|-1]` in cluster :math:`v`. Recall :math:`s` and :math:`t` are combined to form cluster :math:`u`. Let :math:`v` be any remaining cluster in the forest that is not :math:`u`. The following are methods for calculating the distance between the newly formed cluster :math:`u` and each :math:`v`. * method='single' assigns .. math:: d(u,v) = \\min(dist(u[i],v[j])) for all points :math:`i` in cluster :math:`u` and :math:`j` in cluster :math:`v`. This is also known as the Nearest Point Algorithm. * method='complete' assigns .. math:: d(u, v) = \\max(dist(u[i],v[j])) for all points :math:`i` in cluster u and :math:`j` in cluster :math:`v`. This is also known by the Farthest Point Algorithm or Voor Hees Algorithm. * method='average' assigns .. math:: d(u,v) = \\sum_{ij} \\frac{d(u[i], v[j])} {(|u|*|v|)} for all points :math:`i` and :math:`j` where :math:`|u|` and :math:`|v|` are the cardinalities of clusters :math:`u` and :math:`v`, respectively. This is also called the UPGMA algorithm. * method='weighted' assigns .. math:: d(u,v) = (dist(s,v) + dist(t,v))/2 where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also called WPGMA) * method='centroid' assigns .. math:: dist(s,t) = ||c_s-c_t||_2 where :math:`c_s` and :math:`c_t` are the centroids of clusters :math:`s` and :math:`t`, respectively. When two clusters :math:`s` and :math:`t` are combined into a new cluster :math:`u`, the new centroid is computed over all the original objects in clusters :math:`s` and :math:`t`. The distance then becomes the Euclidean distance between the centroid of :math:`u` and the centroid of a remaining cluster :math:`v` in the forest. This is also known as the UPGMC algorithm. * method='median' assigns :math:`d(s,t)` like the ``centroid`` method. When two clusters :math:`s` and :math:`t` are combined into a new cluster :math:`u`, the average of centroids s and t give the new centroid :math:`u`. This is also known as the WPGMC algorithm. * method='ward' uses the Ward variance minimization algorithm. The new entry :math:`d(u,v)` is computed as follows, .. math:: d(u,v) = \\sqrt{\\frac{|v|+|s|} {T}d(v,s)^2 + \\frac{|v|+|t|} {T}d(v,t)^2 - \\frac{|v|} {T}d(s,t)^2} where :math:`u` is the newly joined cluster consisting of clusters :math:`s` and :math:`t`, :math:`v` is an unused cluster in the forest, :math:`T=|v|+|s|+|t|`, and :math:`|*|` is the cardinality of its argument. This is also known as the incremental algorithm. Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same minimum distance. This implementation may chose a different minimum than the MATLAB version. Parameters ---------- y : ndarray A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of :math:`m` observation vectors in n dimensions may be passed as an :math:`m` by :math:`n` array. All elements of `y` must be finite, i.e. no NaNs or infs. method : str, optional The linkage algorithm to use. See the ``Linkage Methods`` section below for full descriptions. metric : str or function, optional The distance metric to use in the case that y is a collection of observation vectors; ignored otherwise. See the ``distance.pdist`` function for a list of valid distance metrics. A custom distance function can also be used. See the ``distance.pdist`` function for details. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. Notes ----- 1. For method 'single' an optimized algorithm called SLINK is implemented, which has :math:`O(n^2)` time complexity. For methods 'complete', 'average', 'weighted' and 'ward' an algorithm called nearest-neighbors chain is implemented, which too has time complexity :math:`O(n^2)`. For other methods a naive algorithm is implemented with :math:`O(n^3)` time complexity. All algorithms use :math:`O(n^2)` memory. Refer to [1]_ for details about the algorithms. 2. Methods 'centroid', 'median' and 'ward' are correctly defined only if Euclidean pairwise metric is used. If `y` is passed as precomputed pairwise distances, then it is a user responsibility to assure that these distances are in fact Euclidean, otherwise the produced result will be incorrect. References ---------- .. [1] Daniel Mullner, "Modern hierarchical, agglomerative clustering algorithms", `arXiv:1109.2378v1 <http://arxiv.org/abs/1109.2378v1>`_ , 2011. """ if method not in _LINKAGE_METHODS: raise ValueError("Invalid method: {0}".format(method)) y = _convert_to_double(np.asarray(y, order='c')) if y.ndim == 1: distance.is_valid_y(y, throw=True, name='y') [y] = _copy_arrays_if_base_present([y]) elif y.ndim == 2: if method in _EUCLIDEAN_METHODS and metric != 'euclidean': raise ValueError("Method '{0}' requires the distance metric " "to be Euclidean".format(method)) if y.shape[0] == y.shape[1] and np.allclose(np.diag(y), 0): if np.all(y >= 0) and np.allclose(y, y.T): _warning('The symmetric non-negative hollow observation ' 'matrix looks suspiciously like an uncondensed ' 'distance matrix') y = distance.pdist(y, metric) else: raise ValueError("`y` must be 1 or 2 dimensional.") if not np.all(np.isfinite(y)): raise ValueError("`y` must contain only finite values.") n = int(distance.num_obs_y(y)) method_code = _LINKAGE_METHODS[method] if method == 'single': return _hierarchy.slink(y, n) elif method in ['complete', 'average', 'weighted', 'ward']: return _hierarchy.nn_chain(y, n, method_code) else: return _hierarchy.linkage(y, n, method_code) class ClusterNode: """ A tree node class for representing a cluster. Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters. The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation. See Also -------- to_tree : for converting a linkage matrix ``Z`` into a tree object. """ def __init__(self, id, left=None, right=None, dist=0, count=1): if id < 0: raise ValueError('The id must be non-negative.') if dist < 0: raise ValueError('The distance must be non-negative.') if (left is None and right is not None) or \ (left is not None and right is None): raise ValueError('Only full or proper binary trees are permitted.' ' This node has one child.') if count < 1: raise ValueError('A cluster must contain at least one original ' 'observation.') self.id = id self.left = left self.right = right self.dist = dist if self.left is None: self.count = count else: self.count = left.count + right.count def __lt__(self, node): if not isinstance(node, ClusterNode): raise ValueError("Can't compare ClusterNode " "to type {}".format(type(node))) return self.dist < node.dist def __gt__(self, node): if not isinstance(node, ClusterNode): raise ValueError("Can't compare ClusterNode " "to type {}".format(type(node))) return self.dist > node.dist def __eq__(self, node): if not isinstance(node, ClusterNode): raise ValueError("Can't compare ClusterNode " "to type {}".format(type(node))) return self.dist == node.dist def get_id(self): """ The identifier of the target node. For ``0 <= i < n``, `i` corresponds to original observation i. For ``n <= i < 2n-1``, `i` corresponds to non-singleton cluster formed at iteration ``i-n``. Returns ------- id : int The identifier of the target node. """ return self.id def get_count(self): """ The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a leaf, 1 is returned. Returns ------- get_count : int The number of leaf nodes below the target node. """ return self.count def get_left(self): """ Return a reference to the left child tree object. Returns ------- left : ClusterNode The left child of the target node. If the node is a leaf, None is returned. """ return self.left def get_right(self): """ Returns a reference to the right child tree object. Returns ------- right : ClusterNode The left child of the target node. If the node is a leaf, None is returned. """ return self.right def is_leaf(self): """ Returns True if the target node is a leaf. Returns ------- leafness : bool True if the target node is a leaf node. """ return self.left is None def pre_order(self, func=(lambda x: x.id)): """ Performs pre-order traversal without recursive function calls. When a leaf node is first encountered, ``func`` is called with the leaf node as its argument, and its result is appended to the list. For example, the statement:: ids = root.pre_order(lambda x: x.id) returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right. Parameters ---------- func : function Applied to each leaf ClusterNode object in the pre-order traversal. Given the i'th leaf node in the pre-ordeR traversal ``n[i]``, the result of func(n[i]) is stored in L[i]. If not provided, the index of the original observation to which the node corresponds is used. Returns ------- L : list The pre-order traversal. """ # Do a preorder traversal, caching the result. To avoid having to do # recursion, we'll store the previous index we've visited in a vector. n = self.count curNode = [None] * (2 * n) lvisited = set() rvisited = set() curNode[0] = self k = 0 preorder = [] while k >= 0: nd = curNode[k] ndid = nd.id if nd.is_leaf(): preorder.append(func(nd)) k = k - 1 else: if ndid not in lvisited: curNode[k + 1] = nd.left lvisited.add(ndid) k = k + 1 elif ndid not in rvisited: curNode[k + 1] = nd.right rvisited.add(ndid) k = k + 1 # If we've visited the left and right of this non-leaf # node already, go up in the tree. else: k = k - 1 return preorder _cnode_bare = ClusterNode(0) _cnode_type = type(ClusterNode) def _order_cluster_tree(Z): """ Returns clustering nodes in bottom-up order by distance. Parameters ---------- Z : scipy.cluster.linkage array The linkage matrix. Returns ------- nodes : list A list of ClusterNode objects. """ q = deque() tree = to_tree(Z) q.append(tree) nodes = [] while q: node = q.popleft() if not node.is_leaf(): bisect.insort_left(nodes, node) q.append(node.get_right()) q.append(node.get_left()) return nodes def cut_tree(Z, n_clusters=None, height=None): """ Given a linkage matrix Z, return the cut tree. Parameters ---------- Z : scipy.cluster.linkage array The linkage matrix. n_clusters : array_like, optional Number of clusters in the tree at the cut point. height : array_like, optional The height at which to cut the tree. Only possible for ultrametric trees. Returns ------- cutree : array An array indicating group membership at each agglomeration step. I.e., for a full cut tree, in the first column each data point is in its own cluster. At the next step, two nodes are merged. Finally all singleton and non-singleton clusters are in one group. If `n_clusters` or `height` is given, the columns correspond to the columns of `n_clusters` or `height`. Examples -------- >>> from scipy import cluster >>> np.random.seed(23) >>> X = np.random.randn(50, 4) >>> Z = cluster.hierarchy.ward(X) >>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10]) >>> cutree[:10] array([[0, 0], [1, 1], [2, 2], [3, 3], [3, 4], [2, 2], [0, 0], [1, 5], [3, 6], [4, 7]]) """ nobs = num_obs_linkage(Z) nodes = _order_cluster_tree(Z) if height is not None and n_clusters is not None: raise ValueError("At least one of either height or n_clusters " "must be None") elif height is None and n_clusters is None: # return the full cut tree cols_idx = np.arange(nobs) elif height is not None: heights = np.array([x.dist for x in nodes]) cols_idx = np.searchsorted(heights, height) else: cols_idx = nobs - np.searchsorted(np.arange(nobs), n_clusters) try: n_cols = len(cols_idx) except TypeError: # scalar n_cols = 1 cols_idx = np.array([cols_idx]) groups = np.zeros((n_cols, nobs), dtype=int) last_group = np.arange(nobs) if 0 in cols_idx: groups[0] = last_group for i, node in enumerate(nodes): idx = node.pre_order() this_group = last_group.copy() this_group[idx] = last_group[idx].min() this_group[this_group > last_group[idx].max()] -= 1 if i + 1 in cols_idx: groups[np.where(i + 1 == cols_idx)[0]] = this_group last_group = this_group return groups.T def to_tree(Z, rd=False): """ Converts a hierarchical clustering encoded in the matrix ``Z`` (by linkage) into an easy-to-use tree object. The reference r to the root ClusterNode object is returned. Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object is a leaf node, its count must be 1, and its distance is meaningless but set to 0. Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to any of the functions in this library. Parameters ---------- Z : ndarray The linkage matrix in proper form (see the ``linkage`` function documentation). rd : bool, optional When False, a reference to the root ClusterNode object is returned. Otherwise, a tuple (r,d) is returned. ``r`` is a reference to the root node while ``d`` is a dictionary mapping cluster ids to ClusterNode references. If a cluster id is less than n, then it corresponds to a singleton cluster (leaf node). See ``linkage`` for more information on the assignment of cluster ids to clusters. Returns ------- L : list The pre-order traversal. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') # Number of original objects is equal to the number of rows minus 1. n = Z.shape[0] + 1 # Create a list full of None's to store the node objects d = [None] * (n * 2 - 1) # Create the nodes corresponding to the n original objects. for i in xrange(0, n): d[i] = ClusterNode(i) nd = None for i in xrange(0, n - 1): fi = int(Z[i, 0]) fj = int(Z[i, 1]) if fi > i + n: raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' 'is used before it is formed. See row %d, ' 'column 0') % fi) if fj > i + n: raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' 'is used before it is formed. See row %d, ' 'column 1') % fj) nd = ClusterNode(i + n, d[fi], d[fj], Z[i, 2]) # ^ id ^ left ^ right ^ dist if Z[i, 3] != nd.count: raise ValueError(('Corrupt matrix Z. The count Z[%d,3] is ' 'incorrect.') % i) d[n + i] = nd if rd: return (nd, d) else: return nd def _convert_to_bool(X): if X.dtype != bool: X = X.astype(bool) if not X.flags.contiguous: X = X.copy() return X def _convert_to_double(X): if X.dtype != np.double: X = X.astype(np.double) if not X.flags.contiguous: X = X.copy() return X def cophenet(Z, Y=None): """ Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the linkage ``Z``. Suppose ``p`` and ``q`` are original observations in disjoint clusters ``s`` and ``t``, respectively and ``s`` and ``t`` are joined by a direct parent cluster ``u``. The cophenetic distance between observations ``i`` and ``j`` is simply the distance between clusters ``s`` and ``t``. Parameters ---------- Z : ndarray The hierarchical clustering encoded as an array (see `linkage` function). Y : ndarray (optional) Calculates the cophenetic correlation coefficient ``c`` of a hierarchical clustering defined by the linkage matrix `Z` of a set of :math:`n` observations in :math:`m` dimensions. `Y` is the condensed distance matrix from which `Z` was generated. Returns ------- c : ndarray The cophentic correlation distance (if ``y`` is passed). d : ndarray The cophenetic distance matrix in condensed form. The :math:`ij` th entry is the cophenetic distance between original observations :math:`i` and :math:`j`. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') Zs = Z.shape n = Zs[0] + 1 zz = np.zeros((n * (n-1)) // 2, dtype=np.double) # Since the C code does not support striding using strides. # The dimensions are used instead. Z = _convert_to_double(Z) _hierarchy.cophenetic_distances(Z, zz, int(n)) if Y is None: return zz Y = np.asarray(Y, order='c') distance.is_valid_y(Y, throw=True, name='Y') z = zz.mean() y = Y.mean() Yy = Y - y Zz = zz - z numerator = (Yy * Zz) denomA = Yy**2 denomB = Zz**2 c = numerator.sum() / np.sqrt((denomA.sum() * denomB.sum())) return (c, zz) def inconsistent(Z, d=2): r""" Calculates inconsistency statistics on a linkage. Note: This function behaves similarly to the MATLAB(TM) inconsistent function. Parameters ---------- Z : ndarray The :math:`(n-1)` by 4 matrix encoding the linkage (hierarchical clustering). See `linkage` documentation for more information on its form. d : int, optional The number of links up to `d` levels below each non-singleton cluster. Returns ------- R : ndarray A :math:`(n-1)` by 5 matrix where the ``i``'th row contains the link statistics for the non-singleton cluster ``i``. The link statistics are computed over the link heights for links :math:`d` levels below the cluster ``i``. ``R[i,0]`` and ``R[i,1]`` are the mean and standard deviation of the link heights, respectively; ``R[i,2]`` is the number of links included in the calculation; and ``R[i,3]`` is the inconsistency coefficient, .. math:: \frac{\mathtt{Z[i,2]} - \mathtt{R[i,0]}} {R[i,1]} """ Z = np.asarray(Z, order='c') Zs = Z.shape is_valid_linkage(Z, throw=True, name='Z') if (not d == np.floor(d)) or d < 0: raise ValueError('The second argument d must be a nonnegative ' 'integer value.') # Since the C code does not support striding using strides. # The dimensions are used instead. [Z] = _copy_arrays_if_base_present([Z]) n = Zs[0] + 1 R = np.zeros((n - 1, 4), dtype=np.double) _hierarchy.inconsistent(Z, R, int(n), int(d)) return R def from_mlab_linkage(Z): """ Converts a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module. The conversion does two things: * the indices are converted from ``1..N`` to ``0..(N-1)`` form, and * a fourth column Z[:,3] is added where Z[i,3] is represents the number of original observations (leaves) in the non-singleton cluster i. This function is useful when loading in linkages from legacy data files generated by MATLAB. Parameters ---------- Z : ndarray A linkage matrix generated by MATLAB(TM). Returns ------- ZS : ndarray A linkage matrix compatible with this library. """ Z = np.asarray(Z, dtype=np.double, order='c') Zs = Z.shape # If it's empty, return it. if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): return Z.copy() if len(Zs) != 2: raise ValueError("The linkage array must be rectangular.") # If it contains no rows, return it. if Zs[0] == 0: return Z.copy() Zpart = Z.copy() if Zpart[:, 0:2].min() != 1.0 and Zpart[:, 0:2].max() != 2 * Zs[0]: raise ValueError('The format of the indices is not 1..N') Zpart[:, 0:2] -= 1.0 CS = np.zeros((Zs[0],), dtype=np.double) _hierarchy.calculate_cluster_sizes(Zpart, CS, int(Zs[0]) + 1) return np.hstack([Zpart, CS.reshape(Zs[0], 1)]) def to_mlab_linkage(Z): """ Converts a linkage matrix to a MATLAB(TM) compatible one. Converts a linkage matrix ``Z`` generated by the linkage function of this module to a MATLAB(TM) compatible one. The return linkage matrix has the last column removed and the cluster indices are converted to ``1..N`` indexing. Parameters ---------- Z : ndarray A linkage matrix generated by this library. Returns ------- to_mlab_linkage : ndarray A linkage matrix compatible with MATLAB(TM)'s hierarchical clustering functions. The return linkage matrix has the last column removed and the cluster indices are converted to ``1..N`` indexing. """ Z = np.asarray(Z, order='c', dtype=np.double) Zs = Z.shape if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): return Z.copy() is_valid_linkage(Z, throw=True, name='Z') ZP = Z[:, 0:3].copy() ZP[:, 0:2] += 1.0 return ZP def is_monotonic(Z): """ Returns True if the linkage passed is monotonic. The linkage is monotonic if for every cluster :math:`s` and :math:`t` joined, the distance between them is no less than the distance between any previously joined clusters. Parameters ---------- Z : ndarray The linkage matrix to check for monotonicity. Returns ------- b : bool A boolean indicating whether the linkage is monotonic. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') # We expect the i'th value to be greater than its successor. return (Z[1:, 2] >= Z[:-1, 2]).all() def is_valid_im(R, warning=False, throw=False, name=None): """Returns True if the inconsistency matrix passed is valid. It must be a :math:`n` by 4 numpy array of doubles. The standard deviations ``R[:,1]`` must be nonnegative. The link counts ``R[:,2]`` must be positive and no greater than :math:`n-1`. Parameters ---------- R : ndarray The inconsistency matrix to check for validity. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True if the inconsistency matrix is valid. """ R = np.asarray(R, order='c') valid = True name_str = "%r " % name if name else '' try: if type(R) != np.ndarray: raise TypeError('Variable %spassed as inconsistency matrix is not ' 'a numpy array.' % name_str) if R.dtype != np.double: raise TypeError('Inconsistency matrix %smust contain doubles ' '(double).' % name_str) if len(R.shape) != 2: raise ValueError('Inconsistency matrix %smust have shape=2 (i.e. ' 'be two-dimensional).' % name_str) if R.shape[1] != 4: raise ValueError('Inconsistency matrix %smust have 4 columns.' % name_str) if R.shape[0] < 1: raise ValueError('Inconsistency matrix %smust have at least one ' 'row.' % name_str) if (R[:, 0] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'height means.' % name_str) if (R[:, 1] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'height standard deviations.' % name_str) if (R[:, 2] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'counts.' % name_str) except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid def is_valid_linkage(Z, warning=False, throw=False, name=None): """ Checks the validity of a linkage matrix. A linkage matrix is valid if it is a two dimensional array (type double) with :math:`n` rows and 4 columns. The first two columns must contain indices between 0 and :math:`2n-1`. For a given row ``i``, the following two expressions have to hold: .. math:: 0 \\leq \\mathtt{Z[i,0]} \\leq i+n-1 0 \\leq Z[i,1] \\leq i+n-1 I.e. a cluster cannot join another cluster unless the cluster being joined has been generated. Parameters ---------- Z : array_like Linkage matrix. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True if the inconsistency matrix is valid. """ Z = np.asarray(Z, order='c') valid = True name_str = "%r " % name if name else '' try: if type(Z) != np.ndarray: raise TypeError('Passed linkage argument %sis not a valid array.' % name_str) if Z.dtype != np.double: raise TypeError('Linkage matrix %smust contain doubles.' % name_str) if len(Z.shape) != 2: raise ValueError('Linkage matrix %smust have shape=2 (i.e. be ' 'two-dimensional).' % name_str) if Z.shape[1] != 4: raise ValueError('Linkage matrix %smust have 4 columns.' % name_str) if Z.shape[0] == 0: raise ValueError('Linkage must be computed on at least two ' 'observations.') n = Z.shape[0] if n > 1: if ((Z[:, 0] < 0).any() or (Z[:, 1] < 0).any()): raise ValueError('Linkage %scontains negative indices.' % name_str) if (Z[:, 2] < 0).any(): raise ValueError('Linkage %scontains negative distances.' % name_str) if (Z[:, 3] < 0).any(): raise ValueError('Linkage %scontains negative counts.' % name_str) if _check_hierarchy_uses_cluster_before_formed(Z): raise ValueError('Linkage %suses non-singleton cluster before ' 'it is formed.' % name_str) if _check_hierarchy_uses_cluster_more_than_once(Z): raise ValueError('Linkage %suses the same cluster more than once.' % name_str) except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid def _check_hierarchy_uses_cluster_before_formed(Z): n = Z.shape[0] + 1 for i in xrange(0, n - 1): if Z[i, 0] >= n + i or Z[i, 1] >= n + i: return True return False def _check_hierarchy_uses_cluster_more_than_once(Z): n = Z.shape[0] + 1 chosen = set([]) for i in xrange(0, n - 1): if (Z[i, 0] in chosen) or (Z[i, 1] in chosen) or Z[i, 0] == Z[i, 1]: return True chosen.add(Z[i, 0]) chosen.add(Z[i, 1]) return False def _check_hierarchy_not_all_clusters_used(Z): n = Z.shape[0] + 1 chosen = set([]) for i in xrange(0, n - 1): chosen.add(int(Z[i, 0])) chosen.add(int(Z[i, 1])) must_chosen = set(range(0, 2 * n - 2)) return len(must_chosen.difference(chosen)) > 0 def num_obs_linkage(Z): """ Returns the number of original observations of the linkage matrix passed. Parameters ---------- Z : ndarray The linkage matrix on which to perform the operation. Returns ------- n : int The number of original observations in the linkage. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') return (Z.shape[0] + 1) def correspond(Z, Y): """ Checks for correspondence between linkage and condensed distance matrices They must have the same number of original observations for the check to succeed. This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that must correspond to the same set of original observations. Parameters ---------- Z : array_like The linkage matrix to check for correspondence. Y : array_like The condensed distance matrix to check for correspondence. Returns ------- b : bool A boolean indicating whether the linkage matrix and distance matrix could possibly correspond to one another. """ is_valid_linkage(Z, throw=True) distance.is_valid_y(Y, throw=True) Z = np.asarray(Z, order='c') Y = np.asarray(Y, order='c') return distance.num_obs_y(Y) == num_obs_linkage(Z) def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None): """ Forms flat clusters from the hierarchical clustering defined by the linkage matrix ``Z``. Parameters ---------- Z : ndarray The hierarchical clustering encoded with the matrix returned by the `linkage` function. t : float The threshold to apply when forming flat clusters. criterion : str, optional The criterion to use in forming flat clusters. This can be any of the following values: ``inconsistent`` : If a cluster node and all its descendants have an inconsistent value less than or equal to `t` then all its leaf descendants belong to the same flat cluster. When no non-singleton cluster meets this criterion, every node is assigned to its own cluster. (Default) ``distance`` : Forms flat clusters so that the original observations in each flat cluster have no greater a cophenetic distance than `t`. ``maxclust`` : Finds a minimum threshold ``r`` so that the cophenetic distance between any two original observations in the same flat cluster is no more than ``r`` and no more than `t` flat clusters are formed. ``monocrit`` : Forms a flat cluster from a cluster node c with index i when ``monocrit[j] <= t``. For example, to threshold on the maximum mean distance as computed in the inconsistency matrix R with a threshold of 0.8 do:: MR = maxRstat(Z, R, 3) cluster(Z, t=0.8, criterion='monocrit', monocrit=MR) ``maxclust_monocrit`` : Forms a flat cluster from a non-singleton cluster node ``c`` when ``monocrit[i] <= r`` for all cluster indices ``i`` below and including ``c``. ``r`` is minimized such that no more than ``t`` flat clusters are formed. monocrit must be monotonic. For example, to minimize the threshold t on maximum inconsistency values so that no more than 3 flat clusters are formed, do:: MI = maxinconsts(Z, R) cluster(Z, t=3, criterion='maxclust_monocrit', monocrit=MI) depth : int, optional The maximum depth to perform the inconsistency calculation. It has no meaning for the other criteria. Default is 2. R : ndarray, optional The inconsistency matrix to use for the 'inconsistent' criterion. This matrix is computed if not provided. monocrit : ndarray, optional An array of length n-1. `monocrit[i]` is the statistics upon which non-singleton i is thresholded. The monocrit vector must be monotonic, i.e. given a node c with index i, for all node indices j corresponding to nodes below c, ``monocrit[i] >= monocrit[j]``. Returns ------- fcluster : ndarray An array of length n. T[i] is the flat cluster number to which original observation i belongs. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 T = np.zeros((n,), dtype='i') # Since the C code does not support striding using strides. # The dimensions are used instead. [Z] = _copy_arrays_if_base_present([Z]) if criterion == 'inconsistent': if R is None: R = inconsistent(Z, depth) else: R = np.asarray(R, order='c') is_valid_im(R, throw=True, name='R') # Since the C code does not support striding using strides. # The dimensions are used instead. [R] = _copy_arrays_if_base_present([R]) _hierarchy.cluster_in(Z, R, T, float(t), int(n)) elif criterion == 'distance': _hierarchy.cluster_dist(Z, T, float(t), int(n)) elif criterion == 'maxclust': _hierarchy.cluster_maxclust_dist(Z, T, int(n), int(t)) elif criterion == 'monocrit': [monocrit] = _copy_arrays_if_base_present([monocrit]) _hierarchy.cluster_monocrit(Z, monocrit, T, float(t), int(n)) elif criterion == 'maxclust_monocrit': [monocrit] = _copy_arrays_if_base_present([monocrit]) _hierarchy.cluster_maxclust_monocrit(Z, monocrit, T, int(n), int(t)) else: raise ValueError('Invalid cluster formation criterion: %s' % str(criterion)) return T def fclusterdata(X, t, criterion='inconsistent', metric='euclidean', depth=2, method='single', R=None): """ Cluster observation data using a given metric. Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the euclidean distance metric to calculate distances between original observations, performs hierarchical clustering using the single linkage algorithm, and forms flat clusters using the inconsistency method with `t` as the cut-off threshold. A one-dimensional array T of length n is returned. T[i] is the index of the flat cluster to which the original observation i belongs. Parameters ---------- X : (N, M) ndarray N by M data matrix with N observations in M dimensions. t : float The threshold to apply when forming flat clusters. criterion : str, optional Specifies the criterion for forming flat clusters. Valid values are 'inconsistent' (default), 'distance', or 'maxclust' cluster formation algorithms. See `fcluster` for descriptions. metric : str, optional The distance metric for calculating pairwise distances. See `distance.pdist` for descriptions and linkage to verify compatibility with the linkage method. depth : int, optional The maximum depth for the inconsistency calculation. See `inconsistent` for more information. method : str, optional The linkage method to use (single, complete, average, weighted, median centroid, ward). See `linkage` for more information. Default is "single". R : ndarray, optional The inconsistency matrix. It will be computed if necessary if it is not passed. Returns ------- fclusterdata : ndarray A vector of length n. T[i] is the flat cluster number to which original observation i belongs. Notes ----- This function is similar to the MATLAB function clusterdata. """ X = np.asarray(X, order='c', dtype=np.double) if type(X) != np.ndarray or len(X.shape) != 2: raise TypeError('The observation matrix X must be an n by m numpy ' 'array.') Y = distance.pdist(X, metric=metric) Z = linkage(Y, method=method) if R is None: R = inconsistent(Z, d=depth) else: R = np.asarray(R, order='c') T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t) return T def leaves_list(Z): """ Returns a list of leaf node ids The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage matrix. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. `Z` is a linkage matrix. See ``linkage`` for more information. Returns ------- leaves_list : ndarray The list of leaf node ids. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 ML = np.zeros((n,), dtype='i') [Z] = _copy_arrays_if_base_present([Z]) _hierarchy.prelist(Z, ML, int(n)) return ML # Maps number of leaves to text size. # # p <= 20, size="12" # 20 < p <= 30, size="10" # 30 < p <= 50, size="8" # 50 < p <= np.inf, size="6" _dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5} _drotation = {20: 0, 40: 45, np.inf: 90} _dtextsortedkeys = list(_dtextsizes.keys()) _dtextsortedkeys.sort() _drotationsortedkeys = list(_drotation.keys()) _drotationsortedkeys.sort() def _remove_dups(L): """ Removes duplicates AND preserves the original order of the elements. The set class is not guaranteed to do this. """ seen_before = set([]) L2 = [] for i in L: if i not in seen_before: seen_before.add(i) L2.append(i) return L2 def _get_tick_text_size(p): for k in _dtextsortedkeys: if p <= k: return _dtextsizes[k] def _get_tick_rotation(p): for k in _drotationsortedkeys: if p <= k: return _drotation[k] def _plot_dendrogram(icoords, dcoords, ivl, p, n, mh, orientation, no_labels, color_list, leaf_font_size=None, leaf_rotation=None, contraction_marks=None, ax=None, above_threshold_color='b'): # Import matplotlib here so that it's not imported unless dendrograms # are plotted. Raise an informative error if importing fails. try: # if an axis is provided, don't use pylab at all if ax is None: import matplotlib.pylab import matplotlib.patches import matplotlib.collections except ImportError: raise ImportError("You must install the matplotlib library to plot " "the dendrogram. Use no_plot=True to calculate the " "dendrogram without plotting.") if ax is None: ax = matplotlib.pylab.gca() # if we're using pylab, we want to trigger a draw at the end trigger_redraw = True else: trigger_redraw = False # Independent variable plot width ivw = len(ivl) * 10 # Dependent variable plot height dvw = mh + mh * 0.05 iv_ticks = np.arange(5, len(ivl) * 10 + 5, 10) if orientation in ('top', 'bottom'): if orientation == 'top': ax.set_ylim([0, dvw]) ax.set_xlim([0, ivw]) else: ax.set_ylim([dvw, 0]) ax.set_xlim([0, ivw]) xlines = icoords ylines = dcoords if no_labels: ax.set_xticks([]) ax.set_xticklabels([]) else: ax.set_xticks(iv_ticks) if orientation == 'top': ax.xaxis.set_ticks_position('bottom') else: ax.xaxis.set_ticks_position('top') # Make the tick marks invisible because they cover up the links for line in ax.get_xticklines(): line.set_visible(False) leaf_rot = float(_get_tick_rotation(len(ivl))) if ( leaf_rotation is None) else leaf_rotation leaf_font = float(_get_tick_text_size(len(ivl))) if ( leaf_font_size is None) else leaf_font_size ax.set_xticklabels(ivl, rotation=leaf_rot, size=leaf_font) elif orientation in ('left', 'right'): if orientation == 'left': ax.set_xlim([dvw, 0]) ax.set_ylim([0, ivw]) else: ax.set_xlim([0, dvw]) ax.set_ylim([0, ivw]) xlines = dcoords ylines = icoords if no_labels: ax.set_yticks([]) ax.set_yticklabels([]) else: ax.set_yticks(iv_ticks) if orientation == 'left': ax.yaxis.set_ticks_position('right') else: ax.yaxis.set_ticks_position('left') # Make the tick marks invisible because they cover up the links for line in ax.get_yticklines(): line.set_visible(False) leaf_font = float(_get_tick_text_size(len(ivl))) if ( leaf_font_size is None) else leaf_font_size if leaf_rotation is not None: ax.set_yticklabels(ivl, rotation=leaf_rotation, size=leaf_font) else: ax.set_yticklabels(ivl, size=leaf_font) # Let's use collections instead. This way there is a separate legend item # for each tree grouping, rather than stupidly one for each line segment. colors_used = _remove_dups(color_list) color_to_lines = {} for color in colors_used: color_to_lines[color] = [] for (xline, yline, color) in zip(xlines, ylines, color_list): color_to_lines[color].append(list(zip(xline, yline))) colors_to_collections = {} # Construct the collections. for color in colors_used: coll = matplotlib.collections.LineCollection(color_to_lines[color], colors=(color,)) colors_to_collections[color] = coll # Add all the groupings below the color threshold. for color in colors_used: if color != above_threshold_color: ax.add_collection(colors_to_collections[color]) # If there's a grouping of links above the color threshold, it goes last. if above_threshold_color in colors_to_collections: ax.add_collection(colors_to_collections[above_threshold_color]) if contraction_marks is not None: Ellipse = matplotlib.patches.Ellipse for (x, y) in contraction_marks: if orientation in ('left', 'right'): e = Ellipse((y, x), width=dvw / 100, height=1.0) else: e = Ellipse((x, y), width=1.0, height=dvw / 100) ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(0.5) e.set_facecolor('k') if trigger_redraw: matplotlib.pylab.draw_if_interactive() _link_line_colors = ['g', 'r', 'c', 'm', 'y', 'k'] def set_link_color_palette(palette): """ Set list of matplotlib color codes for use by dendrogram. Note that this palette is global (i.e. setting it once changes the colors for all subsequent calls to `dendrogram`) and that it affects only the the colors below ``color_threshold``. Note that `dendrogram` also accepts a custom coloring function through its ``link_color_func`` keyword, which is more flexible and non-global. Parameters ---------- palette : list of str or None A list of matplotlib color codes. The order of the color codes is the order in which the colors are cycled through when color thresholding in the dendrogram. If ``None``, resets the palette to its default (which is ``['g', 'r', 'c', 'm', 'y', 'k']``). Returns ------- None See Also -------- dendrogram Notes ----- Ability to reset the palette with ``None`` added in Scipy 0.17.0. Examples -------- >>> from scipy.cluster import hierarchy >>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268., 400., ... 754., 564., 138., 219., 869., 669.]) >>> Z = hierarchy.linkage(ytdist, 'single') >>> dn = hierarchy.dendrogram(Z, no_plot=True) >>> dn['color_list'] ['g', 'b', 'b', 'b', 'b'] >>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k']) >>> dn = hierarchy.dendrogram(Z, no_plot=True) >>> dn['color_list'] ['c', 'b', 'b', 'b', 'b'] >>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267, ... above_threshold_color='k') >>> dn['color_list'] ['c', 'm', 'm', 'k', 'k'] Now reset the color palette to its default: >>> hierarchy.set_link_color_palette(None) """ if palette is None: # reset to its default palette = ['g', 'r', 'c', 'm', 'y', 'k'] elif type(palette) not in (list, tuple): raise TypeError("palette must be a list or tuple") _ptypes = [isinstance(p, string_types) for p in palette] if False in _ptypes: raise TypeError("all palette list elements must be color strings") for i in list(_link_line_colors): _link_line_colors.remove(i) _link_line_colors.extend(list(palette)) def dendrogram(Z, p=30, truncate_mode=None, color_threshold=None, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=True, no_plot=False, no_labels=False, leaf_font_size=None, leaf_rotation=None, leaf_label_func=None, show_contracted=False, link_color_func=None, ax=None, above_threshold_color='b'): """ Plots the hierarchical clustering as a dendrogram. The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton cluster and its children. The height of the top of the U-link is the distance between its children clusters. It is also the cophenetic distance between original observations in the two children clusters. It is expected that the distances in Z[:,2] be monotonic, otherwise crossings appear in the dendrogram. Parameters ---------- Z : ndarray The linkage matrix encoding the hierarchical clustering to render as a dendrogram. See the ``linkage`` function for more information on the format of ``Z``. p : int, optional The ``p`` parameter for ``truncate_mode``. truncate_mode : str, optional The dendrogram can be hard to read when the original observation matrix from which the linkage is derived is large. Truncation is used to condense the dendrogram. There are several modes: ``None/'none'`` No truncation is performed (Default). ``'lastp'`` The last ``p`` non-singleton formed in the linkage are the only non-leaf nodes in the linkage; they correspond to rows ``Z[n-p-2:end]`` in ``Z``. All other non-singleton clusters are contracted into leaf nodes. ``'mlab'`` This corresponds to MATLAB(TM) behavior. (not implemented yet) ``'level'/'mtica'`` No more than ``p`` levels of the dendrogram tree are displayed. This corresponds to Mathematica(TM) behavior. color_threshold : double, optional For brevity, let :math:`t` be the ``color_threshold``. Colors all the descendent links below a cluster node :math:`k` the same color if :math:`k` is the first node below the cut threshold :math:`t`. All links connecting nodes with distances greater than or equal to the threshold are colored blue. If :math:`t` is less than or equal to zero, all nodes are colored blue. If ``color_threshold`` is None or 'default', corresponding with MATLAB(TM) behavior, the threshold is set to ``0.7*max(Z[:,2])``. get_leaves : bool, optional Includes a list ``R['leaves']=H`` in the result dictionary. For each :math:`i`, ``H[i] == j``, cluster node ``j`` appears in position ``i`` in the left-to-right traversal of the leaves, where :math:`j < 2n-1` and :math:`i < n`. orientation : str, optional The direction to plot the dendrogram, which can be any of the following strings: ``'top'`` Plots the root at the top, and plot descendent links going downwards. (default). ``'bottom'`` Plots the root at the bottom, and plot descendent links going upwards. ``'left'`` Plots the root at the left, and plot descendent links going right. ``'right'`` Plots the root at the right, and plot descendent links going left. labels : ndarray, optional By default ``labels`` is None so the index of the original observation is used to label the leaf nodes. Otherwise, this is an :math:`n` -sized list (or tuple). The ``labels[i]`` value is the text to put under the :math:`i` th leaf node only if it corresponds to an original observation and not a non-singleton cluster. count_sort : str or bool, optional For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values: ``False`` Nothing is done. ``'ascending'`` or ``True`` The child with the minimum number of original objects in its cluster is plotted first. ``'descendent'`` The child with the maximum number of original objects in its cluster is plotted first. Note ``distance_sort`` and ``count_sort`` cannot both be True. distance_sort : str or bool, optional For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values: ``False`` Nothing is done. ``'ascending'`` or ``True`` The child with the minimum distance between its direct descendents is plotted first. ``'descending'`` The child with the maximum distance between its direct descendents is plotted first. Note ``distance_sort`` and ``count_sort`` cannot both be True. show_leaf_counts : bool, optional When True, leaf nodes representing :math:`k>1` original observation are labeled with the number of observations they contain in parentheses. no_plot : bool, optional When True, the final rendering is not performed. This is useful if only the data structures computed for the rendering are needed or if matplotlib is not available. no_labels : bool, optional When True, no labels appear next to the leaf nodes in the rendering of the dendrogram. leaf_rotation : double, optional Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation is based on the number of nodes in the dendrogram (default is 0). leaf_font_size : int, optional Specifies the font size (in points) of the leaf labels. When unspecified, the size based on the number of nodes in the dendrogram. leaf_label_func : lambda or function, optional When leaf_label_func is a callable function, for each leaf with cluster index :math:`k < 2n-1`. The function is expected to return a string with the label for the leaf. Indices :math:`k < n` correspond to original observations while indices :math:`k \\geq n` correspond to non-singleton clusters. For example, to label singletons with their node id and non-singletons with their id, count, and inconsistency coefficient, simply do:: # First define the leaf label function. def llf(id): if id < n: return str(id) else: return '[%d %d %1.2f]' % (id, count, R[n-id,3]) # The text for the leaf nodes is going to be big so force # a rotation of 90 degrees. dendrogram(Z, leaf_label_func=llf, leaf_rotation=90) show_contracted : bool, optional When True the heights of non-singleton nodes contracted into a leaf node are plotted as crosses along the link connecting that leaf node. This really is only useful when truncation is used (see ``truncate_mode`` parameter). link_color_func : callable, optional If given, `link_color_function` is called with each non-singleton id corresponding to each U-shaped link it will paint. The function is expected to return the color to paint the link, encoded as a matplotlib color string code. For example:: dendrogram(Z, link_color_func=lambda k: colors[k]) colors the direct links below each untruncated non-singleton node ``k`` using ``colors[k]``. ax : matplotlib Axes instance, optional If None and `no_plot` is not True, the dendrogram will be plotted on the current axes. Otherwise if `no_plot` is not True the dendrogram will be plotted on the given ``Axes`` instance. This can be useful if the dendrogram is part of a more complex figure. above_threshold_color : str, optional This matplotlib color string sets the color of the links above the color_threshold. The default is 'b'. Returns ------- R : dict A dictionary of data structures computed to render the dendrogram. Its has the following keys: ``'color_list'`` A list of color names. The k'th element represents the color of the k'th link. ``'icoord'`` and ``'dcoord'`` Each of them is a list of lists. Let ``icoord = [I1, I2, ..., Ip]`` where ``Ik = [xk1, xk2, xk3, xk4]`` and ``dcoord = [D1, D2, ..., Dp]`` where ``Dk = [yk1, yk2, yk3, yk4]``, then the k'th link painted is ``(xk1, yk1)`` - ``(xk2, yk2)`` - ``(xk3, yk3)`` - ``(xk4, yk4)``. ``'ivl'`` A list of labels corresponding to the leaf nodes. ``'leaves'`` For each i, ``H[i] == j``, cluster node ``j`` appears in position ``i`` in the left-to-right traversal of the leaves, where :math:`j < 2n-1` and :math:`i < n`. If ``j`` is less than ``n``, the ``i``-th leaf node corresponds to an original observation. Otherwise, it corresponds to a non-singleton cluster. See Also -------- linkage, set_link_color_palette Examples -------- >>> from scipy.cluster import hierarchy >>> import matplotlib.pyplot as plt A very basic example: >>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268., ... 400., 754., 564., 138., 219., 869., 669.]) >>> Z = hierarchy.linkage(ytdist, 'single') >>> plt.figure() >>> dn = hierarchy.dendrogram(Z) Now plot in given axes, improve the color scheme and use both vertical and horizontal orientations: >>> hierarchy.set_link_color_palette(['m', 'c', 'y', 'k']) >>> fig, axes = plt.subplots(1, 2, figsize=(8, 3)) >>> dn1 = hierarchy.dendrogram(Z, ax=axes[0], above_threshold_color='y', ... orientation='top') >>> dn2 = hierarchy.dendrogram(Z, ax=axes[1], above_threshold_color='#bcbddc', ... orientation='right') >>> hierarchy.set_link_color_palette(None) # reset to default after use >>> plt.show() """ # This feature was thought about but never implemented (still useful?): # # ... = dendrogram(..., leaves_order=None) # # Plots the leaves in the order specified by a vector of # original observation indices. If the vector contains duplicates # or results in a crossing, an exception will be thrown. Passing # None orders leaf nodes based on the order they appear in the # pre-order traversal. Z = np.asarray(Z, order='c') if orientation not in ["top", "left", "bottom", "right"]: raise ValueError("orientation must be one of 'top', 'left', " "'bottom', or 'right'") is_valid_linkage(Z, throw=True, name='Z') Zs = Z.shape n = Zs[0] + 1 if type(p) in (int, float): p = int(p) else: raise TypeError('The second argument must be a number') if truncate_mode not in ('lastp', 'mlab', 'mtica', 'level', 'none', None): raise ValueError('Invalid truncation mode.') if truncate_mode == 'lastp' or truncate_mode == 'mlab': if p > n or p == 0: p = n if truncate_mode == 'mtica' or truncate_mode == 'level': if p <= 0: p = np.inf if get_leaves: lvs = [] else: lvs = None icoord_list = [] dcoord_list = [] color_list = [] current_color = [0] currently_below_threshold = [False] ivl = [] # list of leaves if color_threshold is None or (isinstance(color_threshold, string_types) and color_threshold == 'default'): color_threshold = max(Z[:, 2]) * 0.7 R = {'icoord': icoord_list, 'dcoord': dcoord_list, 'ivl': ivl, 'leaves': lvs, 'color_list': color_list} # Empty list will be filled in _dendrogram_calculate_info contraction_marks = [] if show_contracted else None _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=2*n - 2, iv=0.0, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) if not no_plot: mh = max(Z[:, 2]) _plot_dendrogram(icoord_list, dcoord_list, ivl, p, n, mh, orientation, no_labels, color_list, leaf_font_size=leaf_font_size, leaf_rotation=leaf_rotation, contraction_marks=contraction_marks, ax=ax, above_threshold_color=above_threshold_color) return R def _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels): # If the leaf id structure is not None and is a list then the caller # to dendrogram has indicated that cluster id's corresponding to the # leaf nodes should be recorded. if lvs is not None: lvs.append(int(i)) # If leaf node labels are to be displayed... if ivl is not None: # If a leaf_label_func has been provided, the label comes from the # string returned from the leaf_label_func, which is a function # passed to dendrogram. if leaf_label_func: ivl.append(leaf_label_func(int(i))) else: # Otherwise, if the dendrogram caller has passed a labels list # for the leaf nodes, use it. if labels is not None: ivl.append(labels[int(i - n)]) else: # Otherwise, use the id as the label for the leaf.x ivl.append(str(int(i))) def _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts): # If the leaf id structure is not None and is a list then the caller # to dendrogram has indicated that cluster id's corresponding to the # leaf nodes should be recorded. if lvs is not None: lvs.append(int(i)) if ivl is not None: if leaf_label_func: ivl.append(leaf_label_func(int(i))) else: if show_leaf_counts: ivl.append("(" + str(int(Z[i - n, 3])) + ")") else: ivl.append("") def _append_contraction_marks(Z, iv, i, n, contraction_marks): _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks) def _append_contraction_marks_sub(Z, iv, i, n, contraction_marks): if i >= n: contraction_marks.append((iv, Z[i - n, 2])) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks) def _dendrogram_calculate_info(Z, p, truncate_mode, color_threshold=np.inf, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=False, i=-1, iv=0.0, ivl=[], n=0, icoord_list=[], dcoord_list=[], lvs=None, mhr=False, current_color=[], color_list=[], currently_below_threshold=[], leaf_label_func=None, level=0, contraction_marks=None, link_color_func=None, above_threshold_color='b'): """ Calculates the endpoints of the links as well as the labels for the the dendrogram rooted at the node with index i. iv is the independent variable value to plot the left-most leaf node below the root node i (if orientation='top', this would be the left-most x value where the plotting of this root node i and its descendents should begin). ivl is a list to store the labels of the leaf nodes. The leaf_label_func is called whenever ivl != None, labels == None, and leaf_label_func != None. When ivl != None and labels != None, the labels list is used only for labeling the leaf nodes. When ivl == None, no labels are generated for leaf nodes. When get_leaves==True, a list of leaves is built as they are visited in the dendrogram. Returns a tuple with l being the independent variable coordinate that corresponds to the midpoint of cluster to the left of cluster i if i is non-singleton, otherwise the independent coordinate of the leaf node if i is a leaf node. Returns ------- A tuple (left, w, h, md), where: * left is the independent variable coordinate of the center of the the U of the subtree * w is the amount of space used for the subtree (in independent variable units) * h is the height of the subtree in dependent variable units * md is the ``max(Z[*,2]``) for all nodes ``*`` below and including the target node. """ if n == 0: raise ValueError("Invalid singleton cluster count n.") if i == -1: raise ValueError("Invalid root cluster index i.") if truncate_mode == 'lastp': # If the node is a leaf node but corresponds to a non-single cluster, # its label is either the empty string or the number of original # observations belonging to cluster i. if 2 * n - p > i >= n: d = Z[i - n, 2] _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts) if contraction_marks is not None: _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks) return (iv + 5.0, 10.0, 0.0, d) elif i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) elif truncate_mode in ('mtica', 'level'): if i > n and level > p: d = Z[i - n, 2] _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts) if contraction_marks is not None: _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks) return (iv + 5.0, 10.0, 0.0, d) elif i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) elif truncate_mode in ('mlab',): pass # Otherwise, only truncate if we have a leaf node. # # If the truncate_mode is mlab, the linkage has been modified # with the truncated tree. # # Only place leaves if they correspond to original observations. if i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) # !!! Otherwise, we don't have a leaf node, so work on plotting a # non-leaf node. # Actual indices of a and b aa = int(Z[i - n, 0]) ab = int(Z[i - n, 1]) if aa > n: # The number of singletons below cluster a na = Z[aa - n, 3] # The distance between a's two direct children. da = Z[aa - n, 2] else: na = 1 da = 0.0 if ab > n: nb = Z[ab - n, 3] db = Z[ab - n, 2] else: nb = 1 db = 0.0 if count_sort == 'ascending' or count_sort == True: # If a has a count greater than b, it and its descendents should # be drawn to the right. Otherwise, to the left. if na > nb: # The cluster index to draw to the left (ua) will be ab # and the one to draw to the right (ub) will be aa ua = ab ub = aa else: ua = aa ub = ab elif count_sort == 'descending': # If a has a count less than or equal to b, it and its # descendents should be drawn to the left. Otherwise, to # the right. if na > nb: ua = aa ub = ab else: ua = ab ub = aa elif distance_sort == 'ascending' or distance_sort == True: # If a has a distance greater than b, it and its descendents should # be drawn to the right. Otherwise, to the left. if da > db: ua = ab ub = aa else: ua = aa ub = ab elif distance_sort == 'descending': # If a has a distance less than or equal to b, it and its # descendents should be drawn to the left. Otherwise, to # the right. if da > db: ua = aa ub = ab else: ua = ab ub = aa else: ua = aa ub = ab # Updated iv variable and the amount of space used. (uiva, uwa, uah, uamd) = \ _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=ua, iv=iv, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, level=level + 1, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) h = Z[i - n, 2] if h >= color_threshold or color_threshold <= 0: c = above_threshold_color if currently_below_threshold[0]: current_color[0] = (current_color[0] + 1) % len(_link_line_colors) currently_below_threshold[0] = False else: currently_below_threshold[0] = True c = _link_line_colors[current_color[0]] (uivb, uwb, ubh, ubmd) = \ _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=ub, iv=iv + uwa, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, level=level + 1, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) max_dist = max(uamd, ubmd, h) icoord_list.append([uiva, uiva, uivb, uivb]) dcoord_list.append([uah, h, h, ubh]) if link_color_func is not None: v = link_color_func(int(i)) if not isinstance(v, string_types): raise TypeError("link_color_func must return a matplotlib " "color string!") color_list.append(v) else: color_list.append(c) return (((uiva + uivb) / 2), uwa + uwb, h, max_dist) def is_isomorphic(T1, T2): """ Determines if two different cluster assignments are equivalent. Parameters ---------- T1 : array_like An assignment of singleton cluster ids to flat cluster ids. T2 : array_like An assignment of singleton cluster ids to flat cluster ids. Returns ------- b : bool Whether the flat cluster assignments `T1` and `T2` are equivalent. """ T1 = np.asarray(T1, order='c') T2 = np.asarray(T2, order='c') if type(T1) != np.ndarray: raise TypeError('T1 must be a numpy array.') if type(T2) != np.ndarray: raise TypeError('T2 must be a numpy array.') T1S = T1.shape T2S = T2.shape if len(T1S) != 1: raise ValueError('T1 must be one-dimensional.') if len(T2S) != 1: raise ValueError('T2 must be one-dimensional.') if T1S[0] != T2S[0]: raise ValueError('T1 and T2 must have the same number of elements.') n = T1S[0] d = {} for i in xrange(0, n): if T1[i] in d: if d[T1[i]] != T2[i]: return False else: d[T1[i]] = T2[i] return True def maxdists(Z): """ Returns the maximum distance between any non-singleton cluster. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. Returns ------- maxdists : ndarray A ``(n-1)`` sized numpy array of doubles; ``MD[i]`` represents the maximum distance between any cluster (including singletons) below and including the node with index i. More specifically, ``MD[i] = Z[Q(i)-n, 2].max()`` where ``Q(i)`` is the set of all node indices below and including node i. """ Z = np.asarray(Z, order='c', dtype=np.double) is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 MD = np.zeros((n - 1,)) [Z] = _copy_arrays_if_base_present([Z]) _hierarchy.get_max_dist_for_each_cluster(Z, MD, int(n)) return MD def maxinconsts(Z, R): """ Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. R : ndarray The inconsistency matrix. Returns ------- MI : ndarray A monotonic ``(n-1)``-sized numpy array of doubles. """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') n = Z.shape[0] + 1 if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") MI = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MI, int(n), 3) return MI def maxRstat(Z, R, i): """ Returns the maximum statistic for each non-singleton cluster and its descendents. Parameters ---------- Z : array_like The hierarchical clustering encoded as a matrix. See `linkage` for more information. R : array_like The inconsistency matrix. i : int The column of `R` to use as the statistic. Returns ------- MR : ndarray Calculates the maximum statistic for the i'th column of the inconsistency matrix `R` for each non-singleton cluster node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]`` where ``Q(j)`` the set of all node ids corresponding to nodes below and including ``j``. """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') if type(i) is not int: raise TypeError('The third argument must be an integer.') if i < 0 or i > 3: raise ValueError('i must be an integer between 0 and 3 inclusive.') if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") n = Z.shape[0] + 1 MR = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i) return MR def leaders(Z, T): """ Returns the root nodes in a hierarchical clustering. Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector ``T``. See the ``fcluster`` function for more information on the format of ``T``. For each flat cluster :math:`j` of the :math:`k` flat clusters represented in the n-sized flat cluster assignment vector ``T``, this function finds the lowest cluster node :math:`i` in the linkage tree Z such that: * leaf descendents belong only to flat cluster j (i.e. ``T[p]==j`` for all :math:`p` in :math:`S(i)` where :math:`S(i)` is the set of leaf ids of leaf nodes descendent with cluster node :math:`i`) * there does not exist a leaf that is not descendent with :math:`i` that also belongs to cluster :math:`j` (i.e. ``T[q]!=j`` for all :math:`q` not in :math:`S(i)`). If this condition is violated, ``T`` is not a valid cluster assignment vector, and an exception will be thrown. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. T : ndarray The flat cluster assignment vector. Returns ------- L : ndarray The leader linkage node id's stored as a k-element 1-D array where ``k`` is the number of flat clusters found in ``T``. ``L[j]=i`` is the linkage cluster node id that is the leader of flat cluster with id M[j]. If ``i < n``, ``i`` corresponds to an original observation, otherwise it corresponds to a non-singleton cluster. For example: if ``L[3]=2`` and ``M[3]=8``, the flat cluster with id 8's leader is linkage node 2. M : ndarray The leader linkage node id's stored as a k-element 1-D array where ``k`` is the number of flat clusters found in ``T``. This allows the set of flat cluster ids to be any arbitrary set of ``k`` integers. """ Z = np.asarray(Z, order='c') T = np.asarray(T, order='c') if type(T) != np.ndarray or T.dtype != 'i': raise TypeError('T must be a one-dimensional numpy array of integers.') is_valid_linkage(Z, throw=True, name='Z') if len(T) != Z.shape[0] + 1: raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.') Cl = np.unique(T) kk = len(Cl) L = np.zeros((kk,), dtype='i') M = np.zeros((kk,), dtype='i') n = Z.shape[0] + 1 [Z, T] = _copy_arrays_if_base_present([Z, T]) s = _hierarchy.leaders(Z, T, L, M, int(kk), int(n)) if s >= 0: raise ValueError(('T is not a valid assignment vector. Error found ' 'when examining linkage node %d (< 2n-1).') % s) return (L, M)
bsd-3-clause