signature
stringlengths 29
44.1k
| implementation
stringlengths 0
85.2k
|
---|---|
def collect ( * args , ** kwargs ) :
'''collect ( m1 , m2 , . . . ) yields a persistent map whose keys are the union of all keys in the given
maps m1 , m2 , etc . and whose values are tuples containing each of the given maps ( in provided
order ) that contain the given key . This function never evaluates the values in the maps so it
implicitly supports laziness .
The collect function fist passes its arguments to flatten _ maps , so it is fine to pass lists or
nested lists of maps to this function ; all will be collected .'''
|
args = flatten_maps ( args , ** kwargs )
if len ( args ) == 0 :
return ps . m ( )
m = { }
for arg in args :
for k in six . iterkeys ( arg ) :
if k in m :
m [ k ] . append ( arg )
else :
m [ k ] = [ arg ]
return ps . pmap ( { k : tuple ( v ) for ( k , v ) in six . iteritems ( m ) } )
|
def redactor ( blacklist : Dict [ Pattern , str ] ) -> Callable [ [ str ] , str ] :
"""Returns a function which transforms a str , replacing all matches for its replacement"""
|
def processor_wrapper ( msg : str ) -> str :
for regex , repl in blacklist . items ( ) :
if repl is None :
repl = '<redacted>'
msg = regex . sub ( repl , msg )
return msg
return processor_wrapper
|
def close ( self ) :
"""Close this session , and any open channels that are tied to it ."""
|
if not self . active :
return
self . stop_thread ( )
for chan in list ( self . _channels . values ( ) ) :
chan . _unlink ( )
self . sock . close ( )
|
def auto_repr ( obj : Any , with_addr : bool = False , sort_attrs : bool = True , joiner : str = COMMA_SPACE ) -> str :
"""Convenience function for : func : ` _ _ repr _ _ ` .
Works its way through the object ' s ` ` _ _ dict _ _ ` ` and reports accordingly .
Args :
obj : object to display
with _ addr : include the memory address of ` ` obj ` `
sort _ attrs : sort the attributes into alphabetical order ?
joiner : string with which to join the elements
Returns :
string : : func : ` repr ` - style representation"""
|
if sort_attrs :
keys = sorted ( obj . __dict__ . keys ( ) )
else :
keys = obj . __dict__ . keys ( )
elements = [ "{}={}" . format ( k , repr ( getattr ( obj , k ) ) ) for k in keys ]
return repr_result ( obj , elements , with_addr = with_addr , joiner = joiner )
|
def findViewWithAttributeOrRaise ( self , attr , val , root = "ROOT" ) :
'''Finds the View or raise a ViewNotFoundException .
@ return : the View found
@ raise ViewNotFoundException : raise the exception if View not found'''
|
view = self . findViewWithAttribute ( attr , val , root )
if view :
return view
else :
raise ViewNotFoundException ( attr , val , root )
|
def sort ( polylines ) :
"""sort points within polyline
p0 - p1 - p2 . . ."""
|
for n , c in enumerate ( polylines ) :
l = len ( c )
if l > 2 : # DEFINE FIRST AND LAST INDEX A THOSE TWO POINTS THAT
# HAVE THE BIGGEST DIFFERENCE FROM A MIDDLE :
mid = c . mean ( axis = 0 )
distV = ( c - mid )
dists = norm ( distV , axis = - 1 )
firstI = np . argmax ( dists )
sign = np . sign ( distV [ firstI ] )
dd = np . logical_or ( np . sign ( distV [ : , 0 ] ) != sign [ 0 ] , np . sign ( distV [ : , 1 ] ) != sign [ 1 ] )
dists [ ~ dd ] = 0
lastI = np . argmax ( dists )
ind = _sort ( c , firstI , lastI )
c = c [ ind ]
polylines [ n ] = c
|
def list_files ( start_path ) :
"""tree unix command replacement ."""
|
s = u'\n'
for root , dirs , files in os . walk ( start_path ) :
level = root . replace ( start_path , '' ) . count ( os . sep )
indent = ' ' * 4 * level
s += u'{}{}/\n' . format ( indent , os . path . basename ( root ) )
sub_indent = ' ' * 4 * ( level + 1 )
for f in files :
s += u'{}{}\n' . format ( sub_indent , f )
return s
|
def align_matrices ( m1 , m2 , dfun = 'sqrdiff' , verbose = False , H = 1e6 , Texp = 1 , T0 = 1e-3 , Hbrk = 10 ) :
'''This function aligns two matrices relative to one another by reordering
the nodes in M2 . The function uses a version of simulated annealing .
Parameters
M1 : NxN np . ndarray
first connection matrix
M2 : NxN np . ndarray
second connection matrix
dfun : str
distance metric to use for matching
' absdiff ' : absolute difference
' sqrdiff ' : squared difference ( default )
' cosang ' : cosine of vector angle
verbose : bool
print out cost at each iteration . Default False .
H : int
annealing parameter , default value 1e6
Texp : int
annealing parameter , default value 1 . Coefficient of H s . t .
Texp0 = 1 - Texp / H
T0 : float
annealing parameter , default value 1e - 3
Hbrk : int
annealing parameter , default value = 10 . Coefficient of H s . t .
Hbrk0 = H / Hkbr
Returns
Mreordered : NxN np . ndarray
reordered connection matrix M2
Mindices : Nx1 np . ndarray
reordered indices
cost : float
objective function distance between M1 and Mreordered
Notes
Connection matrices can be weighted or binary , directed or undirected .
They must have the same number of nodes . M1 can be entered in any
node ordering .
Note that in general , the outcome will depend on the initial condition
( the setting of the random number seed ) . Also , there is no good way to
determine optimal annealing parameters in advance - these parameters
will need to be adjusted " by hand " ( particularly H , Texp , T0 , and Hbrk ) .
For large and / or dense matrices , it is highly recommended to perform
exploratory runs varying the settings of ' H ' and ' Texp ' and then select
the best values .
Based on extensive testing , it appears that T0 and Hbrk can remain
unchanged in most cases . Texp may be varied from 1-1 / H to 1-10 / H , for
example . H is the most important parameter - set to larger values as
the problem size increases . Good solutions can be obtained for
matrices up to about 100 nodes . It is advisable to run this function
multiple times and select the solution ( s ) with the lowest ' cost ' .
If the two matrices are related it may be very helpful to pre - align them
by reordering along their largest eigenvectors :
[ v , ~ ] = eig ( M1 ) ; v1 = abs ( v ( : , end ) ) ; [ a1 , b1 ] = sort ( v1 ) ;
[ v , ~ ] = eig ( M2 ) ; v2 = abs ( v ( : , end ) ) ; [ a2 , b2 ] = sort ( v2 ) ;
[ a , b , c ] = overlapMAT2 ( M1 ( b1 , b1 ) , M2 ( b2 , b2 ) , ' dfun ' , 1 ) ;
Setting ' Texp ' to zero cancels annealing and uses a greedy algorithm
instead .'''
|
n = len ( m1 )
if n < 2 :
raise BCTParamError ( "align_matrix will infinite loop on a singleton " "or null matrix." )
# define maxcost ( greatest possible difference ) and lowcost
if dfun in ( 'absdiff' , 'absdff' ) :
maxcost = np . sum ( np . abs ( np . sort ( m1 . flat ) - np . sort ( m2 . flat ) [ : : - 1 ] ) )
lowcost = np . sum ( np . abs ( m1 - m2 ) ) / maxcost
elif dfun in ( 'sqrdiff' , 'sqrdff' ) :
maxcost = np . sum ( ( np . sort ( m1 . flat ) - np . sort ( m2 . flat ) [ : : - 1 ] ) ** 2 )
lowcost = np . sum ( ( m1 - m2 ) ** 2 ) / maxcost
elif dfun == 'cosang' :
maxcost = np . pi / 2
lowcost = np . arccos ( np . dot ( m1 . flat , m2 . flat ) / np . sqrt ( np . dot ( m1 . flat , m1 . flat ) * np . dot ( m2 . flat , m2 . flat ) ) ) / maxcost
else :
raise BCTParamError ( 'dfun must be absdiff or sqrdiff or cosang' )
mincost = lowcost
anew = np . arange ( n )
amin = np . arange ( n )
h = 0
hcnt = 0
# adjust annealing parameters from user provided coefficients
# H determines the maximal number of steps ( user - provided )
# Texp determines the steepness of the temperature gradient
Texp = 1 - Texp / H
# T0 sets the initial temperature and scales the energy term ( user provided )
# Hbrk sets a break point for the stimulation
Hbrk = H / Hbrk
while h < H :
h += 1
hcnt += 1
# terminate if no new mincost has been found for some time
if hcnt > Hbrk :
break
# current temperature
T = T0 * ( Texp ** h )
# choose two positions at random and flip them
atmp = anew . copy ( )
r1 , r2 = rng . randint ( n , size = ( 2 , ) )
while r1 == r2 :
r2 = rng . randint ( n )
atmp [ r1 ] = anew [ r2 ]
atmp [ r2 ] = anew [ r1 ]
m2atmp = m2 [ np . ix_ ( atmp , atmp ) ]
if dfun in ( 'absdiff' , 'absdff' ) :
costnew = np . sum ( np . abs ( m1 - m2atmp ) ) / maxcost
elif dfun in ( 'sqrdiff' , 'sqrdff' ) :
costnew = np . sum ( ( m1 - m2atmp ) ** 2 ) / maxcost
elif dfun == 'cosang' :
costnew = np . arccos ( np . dot ( m1 . flat , m2atmp . flat ) / np . sqrt ( np . dot ( m1 . flat , m1 . flat ) * np . dot ( m2 . flat , m2 . flat ) ) ) / maxcost
if costnew < lowcost or rng . random_sample ( ) < np . exp ( - ( costnew - lowcost ) / T ) :
anew = atmp
lowcost = costnew
# is this the absolute best ?
if lowcost < mincost :
amin = anew
mincost = lowcost
if verbose :
print ( 'step %i ... current lowest cost = %f' % ( h , mincost ) )
hcnt = 0
# if the cost is 0 we ' re done
if mincost == 0 :
break
if verbose :
print ( 'step %i ... final lowest cost = %f' % ( h , mincost ) )
M_reordered = m2 [ np . ix_ ( amin , amin ) ]
M_indices = amin
cost = mincost
return M_reordered , M_indices , cost
|
def flood ( im , regions = None , mode = 'max' ) :
r"""Floods / fills each region in an image with a single value based on the
specific values in that region . The ` ` mode ` ` argument is used to
determine how the value is calculated .
Parameters
im : array _ like
An ND image with isolated regions containing 0 ' s elsewhere .
regions : array _ like
An array the same shape as ` ` im ` ` with each region labeled . If None is
supplied ( default ) then ` ` scipy . ndimage . label ` ` is used with its
default arguments .
mode : string
Specifies how to determine which value should be used to flood each
region . Options are :
' max ' - Floods each region with the local maximum in that region
' min ' - Floods each region the local minimum in that region
' size ' - Floods each region with the size of that region
Returns
image : ND - array
A copy of ` ` im ` ` with new values placed in each forground voxel based
on the ` ` mode ` ` .
See Also
props _ to _ image"""
|
mask = im > 0
if regions is None :
labels , N = spim . label ( mask )
else :
labels = sp . copy ( regions )
N = labels . max ( )
I = im . flatten ( )
L = labels . flatten ( )
if mode . startswith ( 'max' ) :
V = sp . zeros ( shape = N + 1 , dtype = float )
for i in range ( len ( L ) ) :
if V [ L [ i ] ] < I [ i ] :
V [ L [ i ] ] = I [ i ]
elif mode . startswith ( 'min' ) :
V = sp . ones ( shape = N + 1 , dtype = float ) * sp . inf
for i in range ( len ( L ) ) :
if V [ L [ i ] ] > I [ i ] :
V [ L [ i ] ] = I [ i ]
elif mode . startswith ( 'size' ) :
V = sp . zeros ( shape = N + 1 , dtype = int )
for i in range ( len ( L ) ) :
V [ L [ i ] ] += 1
im_flooded = sp . reshape ( V [ labels ] , newshape = im . shape )
im_flooded = im_flooded * mask
return im_flooded
|
def get_argv_for_command ( self ) :
"""Returns stripped arguments that would be passed into the command ."""
|
argv = [ a for a in self . argv ]
argv . insert ( 0 , self . prog_name )
return argv
|
def flush_keys ( self , signed_prekey , prekeys , reboot_connection = False ) :
"""sends prekeys
: return :
: rtype :"""
|
preKeysDict = { }
for prekey in prekeys :
keyPair = prekey . getKeyPair ( )
preKeysDict [ self . adjustId ( prekey . getId ( ) ) ] = self . adjustArray ( keyPair . getPublicKey ( ) . serialize ( ) [ 1 : ] )
signedKeyTuple = ( self . adjustId ( signed_prekey . getId ( ) ) , self . adjustArray ( signed_prekey . getKeyPair ( ) . getPublicKey ( ) . serialize ( ) [ 1 : ] ) , self . adjustArray ( signed_prekey . getSignature ( ) ) )
setKeysIq = SetKeysIqProtocolEntity ( self . adjustArray ( self . manager . identity . getPublicKey ( ) . serialize ( ) [ 1 : ] ) , signedKeyTuple , preKeysDict , Curve . DJB_TYPE , self . adjustId ( self . manager . registration_id ) )
onResult = lambda _ , __ : self . on_keys_flushed ( prekeys , reboot_connection = reboot_connection )
self . _sendIq ( setKeysIq , onResult , self . onSentKeysError )
|
def collect_single_s3 ( self , path ) :
"""Collect single S3 artifact
: param : path string : S3 path"""
|
# The S3 folder contains the tokens needed to perform
# matching of project , gitref , etc .
folder = os . path . dirname ( path )
rinfo = re . findall ( r'(?P<tag>[^-]+)-(?P<val>.*?)__' , folder )
if rinfo is None or len ( rinfo ) == 0 : # print ( ' Incorrect folder / file name format for % s ' % folder )
return None
info = dict ( rinfo )
# Ignore AppVeyor Debug builds
if info . get ( 'bldtype' , '' ) . lower ( ) == 'debug' :
print ( 'Ignoring debug artifact %s' % folder )
return None
tag = info . get ( 'tag' , None )
if tag is not None and ( len ( tag ) == 0 or tag . startswith ( '$(' ) ) : # AppVeyor doesn ' t substite $ ( APPVEYOR _ REPO _ TAG _ NAME )
# with an empty value when not set , it leaves that token
# in the string - so translate that to no tag .
tag = None
sha = info . get ( 'sha' , None )
# Match tag or sha to gitref
if ( tag is not None and tag == self . gitref ) or ( sha is not None and sha . startswith ( self . gitref ) ) :
return Artifact ( self , path , info )
return None
|
def check ( self , action , page = None , lang = None , method = None ) :
"""Return ` ` True ` ` if the current user has permission on the page ."""
|
if self . user . is_superuser :
return True
if action == 'change' :
return self . has_change_permission ( page , lang , method )
if action == 'delete' :
if not self . delete_page ( ) :
return False
return True
if action == 'add' :
if not self . add_page ( ) :
return False
return True
if action == 'freeze' :
perm = self . user . has_perm ( 'pages.can_freeze' )
if perm :
return True
return False
if action == 'publish' :
perm = self . user . has_perm ( 'pages.can_publish' )
if perm :
return True
return False
return False
|
def get_lm_f0tau ( mass , spin , l , m , nmodes ) :
"""Return the f0 and the tau of each overtone for a given l , m mode .
Parameters
mass : float or array
Mass of the black hole ( in solar masses ) .
spin : float or array
Dimensionless spin of the final black hole .
l : int or array
l - index of the harmonic .
m : int or array
m - index of the harmonic .
nmodes : int
The number of overtones to generate .
Returns
f0 : float or array
The frequency of the QNM ( s ) , in Hz . If only a single mode is requested
( and mass , spin , l , and m are not arrays ) , this will be a float . If
multiple modes requested , will be an array with shape
` ` [ input shape x ] nmodes ` ` , where ` ` input shape ` ` is the broadcasted
shape of the inputs .
tau : float or array
The damping time of the QNM ( s ) , in seconds . Return type is same as f0."""
|
# convert to arrays
mass , spin , l , m , input_is_array = ensurearray ( mass , spin , l , m )
# we ' ll ravel the arrays so we can evaluate each parameter combination
# one at a a time
origshape = mass . shape
if nmodes < 1 :
raise ValueError ( "nmodes must be >= 1" )
if nmodes > 1 :
newshape = tuple ( list ( origshape ) + [ nmodes ] )
else :
newshape = origshape
f0s = numpy . zeros ( ( mass . size , nmodes ) )
taus = numpy . zeros ( ( mass . size , nmodes ) )
mass = mass . ravel ( )
spin = spin . ravel ( )
l = l . ravel ( )
m = m . ravel ( )
qnmfreq = None
modes = range ( nmodes )
for ii in range ( mass . size ) :
qnmfreq = _genqnmfreq ( mass [ ii ] , spin [ ii ] , l [ ii ] , m [ ii ] , nmodes , qnmfreq = qnmfreq )
f0s [ ii , : ] = [ qnmfreq . data [ n ] . real / ( 2 * numpy . pi ) for n in modes ]
taus [ ii , : ] = [ 1. / qnmfreq . data [ n ] . imag for n in modes ]
f0s = f0s . reshape ( newshape )
taus = taus . reshape ( newshape )
return ( formatreturn ( f0s , input_is_array ) , formatreturn ( taus , input_is_array ) )
|
def pid ( col , ignore_gaps = False ) :
"""Compute the percent identity of a an alignment column .
Define PID as the frequency of the most frequent nucleotide in the column .
: param col : an alignment column ; a dictionary where keys are seq .
names and values are the nucleotide in the column for
that sequence .
: param ignore _ gaps : if True , do not count gaps towards the total number of
sequences in the column ( i . e . the denominator of the
fraction ) .
: raise ValueError : if the column contains only gaps ."""
|
hist = { }
total = 0
found_non_gap = False
for v in col . values ( ) :
if v == sequence . GAP_CHAR :
if ignore_gaps :
continue
else :
total += 1
else :
found_non_gap = True
if v not in hist :
hist [ v ] = 0
hist [ v ] += 1
total += 1
if not found_non_gap :
raise ValueError ( "Cannot determine PID of column with only gaps" )
return max ( hist . values ( ) ) / float ( total )
|
def from_dict ( cls , d ) :
"""Reconstructs the VoronoiContainer object from a dict representation of the VoronoiContainer created using
the as _ dict method .
: param d : dict representation of the VoronoiContainer object
: return : VoronoiContainer object"""
|
structure = Structure . from_dict ( d [ 'structure' ] )
voronoi_list2 = from_bson_voronoi_list2 ( d [ 'bson_nb_voro_list2' ] , structure )
maximum_distance_factor = d [ 'maximum_distance_factor' ] if 'maximum_distance_factor' in d else None
minimum_angle_factor = d [ 'minimum_angle_factor' ] if 'minimum_angle_factor' in d else None
return cls ( structure = structure , voronoi_list2 = voronoi_list2 , # neighbors _ lists = neighbors _ lists ,
normalized_angle_tolerance = d [ 'normalized_angle_tolerance' ] , normalized_distance_tolerance = d [ 'normalized_distance_tolerance' ] , additional_conditions = d [ 'additional_conditions' ] , valences = d [ 'valences' ] , maximum_distance_factor = maximum_distance_factor , minimum_angle_factor = minimum_angle_factor )
|
def slice ( self , items ) :
'''Slice the sequence of all items to obtain them for current page .'''
|
if self . limit :
if self . page > self . pages_count :
return [ ]
if self . page == self . pages_count :
return items [ self . limit * ( self . page - 1 ) : ]
return items [ self . limit * ( self . page - 1 ) : self . limit * self . page ]
else :
return items [ : ]
|
def can_render ( self , partial_mimetype ) :
"""Given a partial mimetype ( such as ' json ' or ' html ' ) , return if the
view can render that type ."""
|
for mime in self . render_map . keys ( ) :
if mime == '*/*' :
return True
if partial_mimetype in mime :
return True
return False
|
def apps_upload_create ( self , data , ** kwargs ) :
"https : / / developer . zendesk . com / rest _ api / docs / core / apps # upload - app - package"
|
api_path = "/api/v2/apps/uploads.json"
return self . call ( api_path , method = "POST" , data = data , ** kwargs )
|
def get_mor_by_name ( si , obj_type , obj_name ) :
'''Get reference to an object of specified object type and name
si
ServiceInstance for the vSphere or ESXi server ( see get _ service _ instance )
obj _ type
Type of the object ( vim . StoragePod , vim . Datastore , etc )
obj _ name
Name of the object'''
|
inventory = get_inventory ( si )
container = inventory . viewManager . CreateContainerView ( inventory . rootFolder , [ obj_type ] , True )
for item in container . view :
if item . name == obj_name :
return item
return None
|
def main ( ) :
"""Function for PDA to CNF Operation
: type argv : list
: param argv : Parameters"""
|
if len ( argv ) < 3 :
print 'Usage for getting CFG: %s CFG_fileA CFG ' % argv [ 0 ]
print 'Usage for getting STR: %s CFG_fileA STR ' 'Optimize[0 or 1] splitstring[0 or 1] ' % argv [ 0 ]
print ''
print 'For example: python pdacnf.py grammar.y STR 1 0'
print ' python pdacnf.py grammar.y STR 1 1'
print ' python pdacnf.py grammar.y CFG'
return
alphabet = createalphabet ( )
mode = argv [ 2 ]
optimized = 0
splitstring = 0
if mode == 'STR' :
optimized = int ( argv [ 3 ] )
splitstring = int ( argv [ 4 ] )
cfgtopda = CfgPDA ( alphabet )
print '* Parsing Grammar:' ,
mma = cfgtopda . yyparse ( argv [ 1 ] )
print 'OK'
print ' - Total PDA states are ' + repr ( len ( mma . s ) )
print '* Simplify State IDs:' ,
simple_a = SimplifyStateIDs ( )
mma . s , biggestid , newaccepted = simple_a . get ( mma . s )
if newaccepted :
print 'OK'
else :
print 'OK'
print '* Eliminate READ states:' ,
replace = ReadReplace ( mma . s , biggestid )
mma . s = replace . replace_read ( )
print 'OK'
print ' - Total PDA states now are ' + repr ( len ( mma . s ) )
maxstate = replace . nextstate ( ) - 1
print '* Reduce PDA:' ,
simple_b = ReducePDA ( )
mma . s = simple_b . get ( mma . s )
print 'OK'
print ' - Total PDA states now are ' + repr ( len ( mma . s ) )
print '* PDA to CFG transformation:' ,
cnfgenerator = PdaCnf ( mma . s )
grammar = cnfgenerator . get_rules ( optimized )
print 'OK'
print ' - Total CFG rules generated: ' + repr ( len ( grammar ) )
if mode == 'STR' :
gen = CFGGenerator ( CNFGenerator ( grammar ) , optimized = optimized , splitstring = splitstring , maxstate = maxstate )
print gen . generate ( )
else :
print grammar
|
def validate_registration ( self ) :
'''Checks if the device + username have already been registered with the
bridge .'''
|
url = '/api/%s' % self . username
response = self . make_request ( 'GET' , url )
if 'error' in response :
return False
return True
|
def kill_window ( pymux , variables ) :
"Kill all panes in the current window ."
|
for pane in pymux . arrangement . get_active_window ( ) . panes :
pymux . kill_pane ( pane )
|
def pop ( self ) :
"""Pop a reading off of this virtual stream and return it ."""
|
if self . reading is None :
raise StreamEmptyError ( "Pop called on virtual stream walker without any data" , selector = self . selector )
reading = self . reading
# If we ' re not a constant stream , we just exhausted ourselves
if self . selector . match_type != DataStream . ConstantType :
self . reading = None
return reading
|
def checkState ( self , checkState ) :
"""Sets the data to given a Qt . CheckState ( Qt . Checked or Qt . Unchecked ) ."""
|
if checkState == Qt . Checked :
logger . debug ( "BoolCti.checkState setting to True" )
self . data = True
elif checkState == Qt . Unchecked :
logger . debug ( "BoolCti.checkState setting to False" )
self . data = False
else :
raise ValueError ( "Unexpected check state: {!r}" . format ( checkState ) )
|
def unregister_file ( self , file ) :
"""Unregisters given file in the * * file _ system _ events _ manager * * .
: param file : File .
: type file : unicode
: return : Method success .
: rtype : bool"""
|
self . __engine . file_system_events_manager . is_path_registered ( file ) and self . __engine . file_system_events_manager . unregister_path ( file )
return True
|
def cleanup ( first_I , first_Z ) :
"""cleans up unbalanced steps
failure can be from unbalanced final step , or from missing steps ,
this takes care of missing steps"""
|
cont = 0
Nmin = len ( first_I )
if len ( first_Z ) < Nmin :
Nmin = len ( first_Z )
for kk in range ( Nmin ) :
if first_I [ kk ] [ 0 ] != first_Z [ kk ] [ 0 ] :
print ( "\n WARNING: " )
if first_I [ kk ] < first_Z [ kk ] :
del first_I [ kk ]
else :
del first_Z [ kk ]
print ( "Unmatched step number: " , kk + 1 , ' ignored' )
cont = 1
if cont == 1 :
return first_I , first_Z , cont
return first_I , first_Z , cont
|
def lapjv ( i , j , costs , wants_dual_variables = False , augmenting_row_reductions = 2 ) :
'''Sparse linear assignment solution using Jonker - Volgenant algorithm
i , j - similarly - sized vectors that pair the object at index i [ n ] with
the object at index j [ j ]
costs - a vector of similar size to i and j that is the cost of pairing
i [ n ] with j [ n ] .
wants _ dual _ variables - the dual problem reduces the costs using two
vectors , u [ i ] and v [ j ] where the solution is the maximum value of
np . sum ( u ) + np . sum ( v ) where cost [ i , j ] - u [ i ] - v [ j ] > = 0.
Set wants _ dual _ variables to True to have u and v returned in
addition to the assignments .
augmenting _ row _ reductions - the authors suggest that augmenting row reduction
be performed twice to optimize the u and v before the augmenting
stage . The caller can choose a different number of reductions
by supplying a different value here .
All costs not appearing in i , j are taken as infinite . Each i in the range ,
0 to max ( i ) must appear at least once and similarly for j .
returns ( x , y ) , the pairs of assignments that represent the solution
or ( x , y , u , v ) if the dual variables are requested .'''
|
import os
i = np . atleast_1d ( i ) . astype ( int )
j = np . atleast_1d ( j ) . astype ( int )
costs = np . atleast_1d ( costs )
assert len ( i ) == len ( j ) , "i and j must be the same length"
assert len ( i ) == len ( costs ) , "costs must be the same length as i"
# Find the number of i with non - infinite cost for each j
j_count = np . bincount ( j )
assert not np . any ( j_count == 0 ) , "all j must be paired with at least one i"
# if you order anything by j , this is an index to the minimum for each j
j_index = np . hstack ( [ [ 0 ] , np . cumsum ( j_count [ : - 1 ] ) ] )
# Likewise for i
i_count = np . bincount ( i )
assert not np . any ( i_count == 0 ) , "all i must be paired with at least one j"
i_index = np . hstack ( [ [ 0 ] , np . cumsum ( i_count [ : - 1 ] ) ] )
n = len ( j_count )
# dimension of the square cost matrix
assert n == len ( i_count ) , "There must be the same number of unique i and j"
# Variable initialization :
# The output variables :
# x - for each i , the assigned j . - 1 indicates uninitialized
# y - for each j , the assigned i
# u , v - the dual variables
# A value of x = n or y = n means " unassigned "
x = np . ascontiguousarray ( np . ones ( n , np . uint32 ) * n )
y = np . ascontiguousarray ( np . ones ( n , np . uint32 ) * n , np . uint32 )
u = np . ascontiguousarray ( np . zeros ( n , np . float64 ) )
# Column reduction
# For a given j , find the i with the minimum cost .
order = np . lexsort ( ( - i , costs , j ) )
min_idx = order [ j_index ]
min_i = i [ min_idx ]
# v [ j ] is assigned to the minimum cost over all i
v = np . ascontiguousarray ( costs [ min_idx ] , np . float64 )
# Find the last j for which i was min _ i .
x [ min_i ] = np . arange ( n ) . astype ( np . uint32 )
y [ x [ x != n ] ] = np . arange ( n ) . astype ( np . uint32 ) [ x != n ]
# Three cases for i :
# i is not the minimum of any j - i goes on free list
# i is the minimum of one j - v [ j ] remains the same and y [ x [ j ] ] = i
# i is the minimum of more than one j , perform reduction transfer
assignment_count = np . bincount ( min_i [ min_i != n ] )
assignment_count = np . hstack ( ( assignment_count , np . zeros ( n - len ( assignment_count ) , int ) ) )
free_i = assignment_count == 0
one_i = assignment_count == 1
# order = np . lexsort ( ( costs , i ) ) Replace with this after all is done
order = np . lexsort ( ( j , i ) )
j = np . ascontiguousarray ( j [ order ] , np . uint32 )
costs = np . ascontiguousarray ( costs [ order ] , np . float64 )
i_index = np . ascontiguousarray ( i_index , np . uint32 )
i_count = np . ascontiguousarray ( i_count , np . uint32 )
if np . any ( one_i ) :
reduction_transfer ( np . ascontiguousarray ( np . argwhere ( one_i ) . flatten ( ) , np . uint32 ) , j , i_index , i_count , x , u , v , costs )
# Perform augmenting row reduction on unassigned i
ii = np . ascontiguousarray ( np . argwhere ( free_i ) . flatten ( ) , np . uint32 )
if len ( ii ) > 0 :
for iii in range ( augmenting_row_reductions ) :
ii = augmenting_row_reduction ( n , ii , j , i_index , i_count , x , y , u , v , costs )
augment ( n , ii , j , i_index , i_count , x , y , u , v , costs )
if wants_dual_variables :
return x , y , u , v
else :
return x , y
|
def find_replace ( self , node ) :
"""Try to find replace node for current node .
Parameters
node : docutil node
Node to find replacement for .
Returns
nodes : node or list of node
The replacement nodes of current node .
Returns None if no replacement can be found ."""
|
newnode = None
if isinstance ( node , nodes . Sequential ) :
newnode = self . auto_toc_tree ( node )
elif isinstance ( node , nodes . literal_block ) :
newnode = self . auto_code_block ( node )
elif isinstance ( node , nodes . literal ) :
newnode = self . auto_inline_code ( node )
return newnode
|
def accept ( self , f , * args ) :
"""Like ' match ' , but consume the token ( tokenizer advances . )"""
|
match = self . match ( f , * args )
if match is None :
return
self . tokenizer . skip ( len ( match . tokens ) )
return match
|
def get_item_bank_id_metadata ( self ) :
"""get the metadata for item bank"""
|
metadata = dict ( self . _item_bank_id_metadata )
metadata . update ( { 'existing_id_values' : self . my_osid_object_form . _my_map [ 'itemBankId' ] } )
return Metadata ( ** metadata )
|
def describe_formatted ( self , name , database = None ) :
"""Retrieve results of DESCRIBE FORMATTED command . See Impala
documentation for more .
Parameters
name : string
Table name . Can be fully qualified ( with database )
database : string , optional"""
|
from ibis . impala . metadata import parse_metadata
stmt = self . _table_command ( 'DESCRIBE FORMATTED' , name , database = database )
query = ImpalaQuery ( self , stmt )
result = query . execute ( )
# Leave formatting to pandas
for c in result . columns :
result [ c ] = result [ c ] . str . strip ( )
return parse_metadata ( result )
|
def do_blame ( self , subcmd , opts , * args ) :
"""Output the content of specified files or
URLs with revision and author information in - line .
usage :
blame TARGET . . .
$ { cmd _ option _ list }"""
|
print "'svn %s' opts: %s" % ( subcmd , opts )
print "'svn %s' args: %s" % ( subcmd , args )
|
def assoc ( self , index , value ) :
'''Return a new vector with value associated at index . The implicit
parameter is not modified .'''
|
newvec = ImmutableVector ( )
newvec . tree = self . tree . assoc ( index , value )
if index >= self . _length :
newvec . _length = index + 1
else :
newvec . _length = self . _length
return newvec
|
def mirror ( self , axes = 'x' ) :
"""Generates a symmetry of the Surface respect global axes .
: param axes : ' x ' , ' y ' , ' z ' , ' xy ' , ' xz ' , ' yz ' . . .
: type axes : str
: returns : ` ` pyny . Surface ` `"""
|
return Space ( Place ( self ) ) . mirror ( axes , inplace = False ) [ 0 ] . surface
|
def create_issue_comment ( self , body ) :
""": calls : ` POST / repos / : owner / : repo / issues / : number / comments < http : / / developer . github . com / v3 / issues / comments > ` _
: param body : string
: rtype : : class : ` github . IssueComment . IssueComment `"""
|
assert isinstance ( body , ( str , unicode ) ) , body
post_parameters = { "body" : body , }
headers , data = self . _requester . requestJsonAndCheck ( "POST" , self . issue_url + "/comments" , input = post_parameters )
return github . IssueComment . IssueComment ( self . _requester , headers , data , completed = True )
|
def get_grid ( self ) :
"""Standardize the layout of the table into grids"""
|
mentions , lines = _split_text_n_lines ( self . elems )
# Sort mentions in reading order where y values are snapped to half
# height - sized grid
mentions . sort ( key = lambda m : ( m . yc_grid , m . xc ) )
grid = Grid ( mentions , lines , self )
return grid
|
def build_backend ( tasks , default_host = ( '127.0.0.1' , DEFAULT_PORT ) , * args , ** kw ) :
"""Most of these args are passed directly to BackEnd ( ) . However , default _ host
is used a bit differently . It should be a ( host , port ) pair , and may be
overridden with cmdline args :
file . py localhost
file . py localhost 54545"""
|
host , port = default_host
if len ( sys . argv ) > 1 :
host = sys . argv [ 1 ]
if len ( sys . argv ) > 2 :
port = sys . argv [ 2 ]
return BackEnd ( tasks , host , port , * args , ** kw )
|
def _splitit ( self , line , isheader ) :
"""Split each element of line to fit the column width
Each element is turned into a list , result of the wrapping of the
string to the desired width"""
|
line_wrapped = [ ]
for cell , width in zip ( line , self . _width ) :
array = [ ]
for c in cell . split ( '\n' ) :
if c . strip ( ) == "" :
array . append ( "" )
else :
array . extend ( textwrapper ( c , width ) )
line_wrapped . append ( array )
max_cell_lines = reduce ( max , list ( map ( len , line_wrapped ) ) )
for cell , valign in zip ( line_wrapped , self . _valign ) :
if isheader :
valign = "t"
if valign == "m" :
missing = max_cell_lines - len ( cell )
cell [ : 0 ] = [ "" ] * int ( missing / 2 )
cell . extend ( [ "" ] * int ( missing / 2 + missing % 2 ) )
elif valign == "b" :
cell [ : 0 ] = [ "" ] * ( max_cell_lines - len ( cell ) )
else :
cell . extend ( [ "" ] * ( max_cell_lines - len ( cell ) ) )
return line_wrapped
|
def _parse_var_scalar ( self , X : scalar_type ) -> dict :
"""Unpack the numpy array and bind each column to one of the variables in self . var _ names
Returns inferred dict of variable : val pairs"""
|
arg_vars = { }
# there is only one var name , so this will run once and no sorting is required
for var_name in self . var_names :
arg_vars [ var_name ] = X
return arg_vars
|
def transform_index_to_physical_point ( image , index ) :
"""Get spatial point from index of an image .
ANTsR function : ` antsTransformIndexToPhysicalPoint `
Arguments
img : ANTsImage
image to get values from
index : list or tuple or numpy . ndarray
location in image
Returns
tuple
Example
> > > import ants
> > > import numpy as np
> > > img = ants . make _ image ( ( 10,10 ) , np . random . randn ( 100 ) )
> > > pt = ants . transform _ index _ to _ physical _ point ( img , ( 2,2 ) )"""
|
if not isinstance ( image , iio . ANTsImage ) :
raise ValueError ( 'image must be ANTsImage type' )
if isinstance ( index , np . ndarray ) :
index = index . tolist ( )
if not isinstance ( index , ( tuple , list ) ) :
raise ValueError ( 'index must be tuple or list' )
if len ( index ) != image . dimension :
raise ValueError ( 'len(index) != image.dimension' )
index = [ i + 1 for i in index ]
ndim = image . dimension
ptype = image . pixeltype
libfn = utils . get_lib_fn ( 'TransformIndexToPhysicalPoint%s%i' % ( utils . short_ptype ( ptype ) , ndim ) )
point = libfn ( image . pointer , [ list ( index ) ] )
return np . array ( point [ 0 ] )
|
def wfind ( self , tag_name , params = None , fn = None , case_sensitive = False ) :
"""This methods works same as : meth : ` find ` , but only in one level of the
: attr : ` childs ` .
This allows to chain : meth : ` wfind ` calls : :
> > > dom = dhtmlparser . parseString ( ' ' '
. . . < root >
. . . < some >
. . . < something >
. . . < xe id = " wanted xe " / >
. . . < / something >
. . . < something >
. . . asd
. . . < / something >
. . . < xe id = " another xe " / >
. . . < / some >
. . . < some >
. . . else
. . . < xe id = " yet another xe " / >
. . . < / some >
. . . < / root >
> > > xe = dom . wfind ( " root " ) . wfind ( " some " ) . wfind ( " something " ) . find ( " xe " )
> > > xe
[ < dhtmlparser . htmlelement . HTMLElement object at 0x8a979ac > ]
> > > str ( xe [ 0 ] )
' < xe id = " wanted xe " / > '
Args :
tag _ name ( str ) : Name of the tag you are looking for . Set to " " if
you wish to use only ` fn ` parameter .
params ( dict , default None ) : Parameters which have to be present
in tag to be considered matching .
fn ( function , default None ) : Use this function to match tags .
Function expects one parameter which is HTMLElement instance .
case _ sensitive ( bool , default False ) : Use case sensitive search .
Returns :
obj : Blank HTMLElement with all matches in : attr : ` childs ` property .
Note :
Returned element also have set : attr : ` _ container ` property to True ."""
|
childs = self . childs
if self . _container : # container object
childs = map ( lambda x : x . childs , filter ( lambda x : x . childs , self . childs ) )
childs = sum ( childs , [ ] )
# flattern the list
el = self . __class__ ( )
# HTMLElement ( )
el . _container = True
for child in childs :
if child . isEndTag ( ) :
continue
if child . isAlmostEqual ( tag_name , params , fn , case_sensitive ) :
el . childs . append ( child )
return el
|
def chmod ( target ) :
"""Recursively set the chmod for files to 0600 and 0700 for folders .
It ' s ok unless we need something more specific .
Args :
target ( str ) : Root file or folder"""
|
assert isinstance ( target , str )
assert os . path . exists ( target )
file_mode = stat . S_IRUSR | stat . S_IWUSR
folder_mode = stat . S_IRUSR | stat . S_IWUSR | stat . S_IXUSR
# Remove the immutable attribute recursively if there is one
remove_immutable_attribute ( target )
if os . path . isfile ( target ) :
os . chmod ( target , file_mode )
elif os . path . isdir ( target ) : # chmod the root item
os . chmod ( target , folder_mode )
# chmod recursively in the folder it it ' s one
for root , dirs , files in os . walk ( target ) :
for cur_dir in dirs :
os . chmod ( os . path . join ( root , cur_dir ) , folder_mode )
for cur_file in files :
os . chmod ( os . path . join ( root , cur_file ) , file_mode )
else :
raise ValueError ( "Unsupported file type: {}" . format ( target ) )
|
async def on_raw_notice ( self , message ) :
"""Modify NOTICE to redirect CTCP messages ."""
|
nick , metadata = self . _parse_user ( message . source )
target , msg = message . params
if is_ctcp ( msg ) :
self . _sync_user ( nick , metadata )
type , response = parse_ctcp ( msg )
# Find dedicated handler if it exists .
attr = 'on_ctcp_' + pydle . protocol . identifierify ( type ) + '_reply'
if hasattr ( self , attr ) :
await getattr ( self , attr ) ( user , target , response )
# Invoke global handler .
await self . on_ctcp_reply ( user , target , type , response )
else :
await super ( ) . on_raw_notice ( message )
|
def delete ( self ) :
"""Destructor ."""
|
if self . minisat :
pysolvers . minisat22_del ( self . minisat )
self . minisat = None
|
def Update ( self , env , args = None ) :
"""Update an environment with the option variables .
env - the environment to update ."""
|
values = { }
# first set the defaults :
for option in self . options :
if not option . default is None :
values [ option . key ] = option . default
# next set the value specified in the options file
for filename in self . files :
if os . path . exists ( filename ) :
dir = os . path . split ( os . path . abspath ( filename ) ) [ 0 ]
if dir :
sys . path . insert ( 0 , dir )
try :
values [ '__name__' ] = filename
with open ( filename , 'r' ) as f :
contents = f . read ( )
exec ( contents , { } , values )
finally :
if dir :
del sys . path [ 0 ]
del values [ '__name__' ]
# set the values specified on the command line
if args is None :
args = self . args
for arg , value in args . items ( ) :
added = False
for option in self . options :
if arg in list ( option . aliases ) + [ option . key ] :
values [ option . key ] = value
added = True
if not added :
self . unknown [ arg ] = value
# put the variables in the environment :
# ( don ' t copy over variables that are not declared as options )
for option in self . options :
try :
env [ option . key ] = values [ option . key ]
except KeyError :
pass
# Call the convert functions :
for option in self . options :
if option . converter and option . key in values :
value = env . subst ( '${%s}' % option . key )
try :
try :
env [ option . key ] = option . converter ( value )
except TypeError :
env [ option . key ] = option . converter ( value , env )
except ValueError as x :
raise SCons . Errors . UserError ( 'Error converting option: %s\n%s' % ( option . key , x ) )
# Finally validate the values :
for option in self . options :
if option . validator and option . key in values :
option . validator ( option . key , env . subst ( '${%s}' % option . key ) , env )
|
def get_output ( self , module_name ) :
"""Return the output of the named module . This will be a list ."""
|
output = [ ]
module_info = self . _get_module_info ( module_name )
if module_info :
output = module_info [ "module" ] . get_latest ( )
# we do a deep copy so that any user does not change the actual output
# of the module .
return deepcopy ( output )
|
def solve ( self , max_worlds = 10000 , silent = False ) :
"""find the best world to make people happy"""
|
self . num_worlds = 0
num_unhappy = 0
for tax_rate in range ( self . tax_range [ 0 ] , self . tax_range [ 1 ] ) :
for equity in range ( self . equity_range [ 0 ] , self . equity_range [ 1 ] ) :
for tradition in range ( self . tradition_range [ 0 ] , self . tradition_range [ 1 ] ) :
self . num_worlds += 1
if self . num_worlds > max_worlds :
break
w = World ( str ( self . num_worlds ) . zfill ( 6 ) , [ 5000 , tax_rate / 10 , tradition / 10 , equity / 10 ] )
world_happiness = 0
num_unhappy = 0
for person in self . all_people :
wh = Happiness ( person , w )
world_happiness += wh . rating
if wh . rating < 0 :
num_unhappy += 1
if world_happiness > self . net_happiness :
self . net_happiness = world_happiness
self . unhappy_people = num_unhappy
if not silent :
print ( 'found better world - ' + w . nme + ' = ' + str ( world_happiness ) + ' - total unhappy_people = ' + str ( self . unhappy_people ) )
|
def _create_h5_file ( in_paths , new_path ) :
"""Function to create a new . h5 file that contains the copy of the contents of the input file ( s ) .
in _ paths : str or list
If the input is a string , it is assumed that the two signals are in the same file , else , if the input is a list ,
it is assumed that the two signals are in different file ( the list should contain the paths to the two files ) .
new _ path : str
The path to create the new file . ( default : ' sync _ file . h5 ' )
Returns
new _ file : h5py Object
Object of the h5py package containing the new file containing the copy of the contents of the input file ( s ) ."""
|
if type ( in_paths ) == str :
in_paths = [ in_paths ]
new_file = File ( new_path , 'w' )
for i , in_path in enumerate ( in_paths ) :
with File ( in_path , 'r' ) as file :
for key in list ( file . keys ( ) ) :
file . copy ( source = file [ key ] , dest = new_file , name = key )
return new_file
|
def remove_authentication ( self , auth_name = None , organization = None ) :
"""Remove the current authentication or the one given by ` auth _ name `"""
|
if auth_name :
if organization :
url = '%s/authentications/org/%s/name/%s' % ( self . domain , organization , auth_name )
else :
url = '%s/authentications/name/%s' % ( self . domain , auth_name )
else :
url = '%s/authentications' % ( self . domain , )
res = self . session . delete ( url )
self . _check_response ( res , [ 201 ] )
|
def change_svc_notification_timeperiod ( self , service , notification_timeperiod ) :
"""Change service notification timeperiod
Format of the line that triggers function call : :
CHANGE _ SVC _ NOTIFICATION _ TIMEPERIOD ; < host _ name > ; < service _ description > ;
< notification _ timeperiod >
: param service : service to edit
: type service : alignak . objects . service . Service
: param notification _ timeperiod : timeperiod to set
: type notification _ timeperiod : alignak . objects . timeperiod . Timeperiod
: return : None"""
|
service . modified_attributes |= DICT_MODATTR [ "MODATTR_NOTIFICATION_TIMEPERIOD" ] . value
service . notification_period = notification_timeperiod
self . send_an_element ( service . get_update_status_brok ( ) )
|
def getServiceModuleName ( self ) :
'''return module name .'''
|
name = GetModuleBaseNameFromWSDL ( self . wsdl )
if not name :
raise WsdlGeneratorError , 'could not determine a service name'
if self . server_module_suffix is None :
return name
return '%s%s' % ( name , self . server_module_suffix )
|
def _bfd_tx ( self , ** kwargs ) :
"""Return the BFD minimum transmit interval XML .
You should not use this method .
You probably want ` BGP . bfd ` .
Args :
min _ tx ( str ) : BFD transmit interval in milliseconds ( 300 , 500 , etc )
delete ( bool ) : Remove the configuration if ` ` True ` ` .
Returns :
XML to be passed to the switch .
Raises :
None"""
|
int_type = kwargs [ 'int_type' ]
method_name = 'interface_%s_bfd_interval_min_tx' % int_type
bfd_tx = getattr ( self . _interface , method_name )
config = bfd_tx ( ** kwargs )
if kwargs [ 'delete' ] :
tag = 'min-tx'
config . find ( './/*%s' % tag ) . set ( 'operation' , 'delete' )
return config
|
def load_manifest_file ( client , bucket , schema , versioned , ifilters , key_info ) :
"""Given an inventory csv file , return an iterator over keys"""
|
# To avoid thundering herd downloads , we do an immediate yield for
# interspersed i / o
yield None
# Inline these values to avoid the local var lookup , they are constants
# rKey = schema [ ' Key ' ] # 1
# rIsLatest = schema [ ' IsLatest ' ] # 3
# rVersionId = schema [ ' VersionId ' ] # 2
with tempfile . NamedTemporaryFile ( ) as fh :
client . download_fileobj ( Bucket = bucket , Key = key_info [ 'key' ] , Fileobj = fh )
fh . seek ( 0 )
reader = csv . reader ( gzip . GzipFile ( fileobj = fh , mode = 'r' ) )
for key_set in chunks ( reader , 1000 ) :
keys = [ ]
for kr in key_set :
k = kr [ 1 ]
if inventory_filter ( ifilters , schema , kr ) :
continue
k = unquote_plus ( k )
if versioned :
if kr [ 3 ] == 'true' :
keys . append ( ( k , kr [ 2 ] , True ) )
else :
keys . append ( ( k , kr [ 2 ] ) )
else :
keys . append ( k )
yield keys
|
def linez ( self , lines ) :
"""Creates a POLYLINEZ shape .
Lines is a collection of lines , each made up of a list of xyzm values .
If the z ( elevation ) value is not included , it defaults to 0.
If the m ( measure ) value is not included , it defaults to None ( NoData ) ."""
|
shapeType = POLYLINEZ
self . _shapeparts ( parts = lines , shapeType = shapeType )
|
def main ( unused_argv ) :
"""Run an agent ."""
|
stopwatch . sw . enabled = FLAGS . profile or FLAGS . trace
stopwatch . sw . trace = FLAGS . trace
map_inst = maps . get ( FLAGS . map )
agent_classes = [ ]
players = [ ]
agent_module , agent_name = FLAGS . agent . rsplit ( "." , 1 )
agent_cls = getattr ( importlib . import_module ( agent_module ) , agent_name )
agent_classes . append ( agent_cls )
players . append ( sc2_env . Agent ( sc2_env . Race [ FLAGS . agent_race ] , FLAGS . agent_name or agent_name ) )
if map_inst . players >= 2 :
if FLAGS . agent2 == "Bot" :
players . append ( sc2_env . Bot ( sc2_env . Race [ FLAGS . agent2_race ] , sc2_env . Difficulty [ FLAGS . difficulty ] ) )
else :
agent_module , agent_name = FLAGS . agent2 . rsplit ( "." , 1 )
agent_cls = getattr ( importlib . import_module ( agent_module ) , agent_name )
agent_classes . append ( agent_cls )
players . append ( sc2_env . Agent ( sc2_env . Race [ FLAGS . agent2_race ] , FLAGS . agent2_name or agent_name ) )
threads = [ ]
for _ in range ( FLAGS . parallel - 1 ) :
t = threading . Thread ( target = run_thread , args = ( agent_classes , players , FLAGS . map , False ) )
threads . append ( t )
t . start ( )
run_thread ( agent_classes , players , FLAGS . map , FLAGS . render )
for t in threads :
t . join ( )
if FLAGS . profile :
print ( stopwatch . sw )
|
def save ( self , * args , ** kwargs ) :
"""Saves model and set initial state ."""
|
super ( ModelDiffMixin , self ) . save ( * args , ** kwargs )
self . __initial = self . _dict
|
def transform ( self , X ) :
"""Select continuous features and transform them using PCA .
Parameters
X : numpy ndarray , { n _ samples , n _ components }
New data , where n _ samples is the number of samples and n _ components is the number of components .
Returns
array - like , { n _ samples , n _ components }"""
|
selected = auto_select_categorical_features ( X , threshold = self . threshold )
_ , X_sel , n_selected , _ = _X_selected ( X , selected )
if n_selected == 0 : # No features selected .
raise ValueError ( 'No continuous feature was found!' )
else :
pca = PCA ( svd_solver = self . svd_solver , iterated_power = self . iterated_power , random_state = self . random_state )
return pca . fit_transform ( X_sel )
|
def _ttm_me_compute ( self , V , edims , sdims , transp ) :
"""Assume Y = T x _ i V _ i for i = 1 . . . n can fit into memory"""
|
shapeY = np . copy ( self . shape )
# Determine size of Y
for n in np . union1d ( edims , sdims ) :
shapeY [ n ] = V [ n ] . shape [ 1 ] if transp else V [ n ] . shape [ 0 ]
# Allocate Y ( final result ) and v ( vectors for elementwise computations )
Y = zeros ( shapeY )
shapeY = array ( shapeY )
v = [ None for _ in range ( len ( edims ) ) ]
for i in range ( np . prod ( shapeY [ edims ] ) ) :
rsubs = unravel_index ( shapeY [ edims ] , i )
|
def global_cmdline_values ( ) :
"""Returns a dictionary of global command line arguments ( computed with
: py : func : ` global _ cmdline _ args ` ) to their current values . The returnd dictionary is cached .
Example :
. . code - block : : python
global _ cmdline _ values ( )
# - > { " core _ local _ scheduler " : True }"""
|
global _global_cmdline_values
if _global_cmdline_values :
return _global_cmdline_values
luigi_parser = luigi . cmdline_parser . CmdlineParser . get_instance ( )
if not luigi_parser :
return None
# go through all actions of the full luigi parser and compare option strings
# with the global cmdline args
parser = full_parser ( )
global_args = global_cmdline_args ( )
_global_cmdline_values = { }
for action in parser . _actions :
if any ( arg in action . option_strings for arg in global_args ) :
_global_cmdline_values [ action . dest ] = getattr ( luigi_parser . known_args , action . dest )
return _global_cmdline_values
|
def validate_param_completion ( self , param , leftover_args ) :
"""validates that a param should be completed"""
|
# validates param starts with unfinished word
completes = self . validate_completion ( param )
# show parameter completions when started
full_param = self . unfinished_word . startswith ( "--" ) and param . startswith ( "--" )
char_param = self . unfinished_word . startswith ( "-" ) and not param . startswith ( "--" )
# show full parameters before any are used
new_param = not self . unfinished_word and not leftover_args and param . startswith ( "--" )
# checks for parameters already in the line as well as aliases
no_doubles = True
command_doubles = self . command_param_info . get ( self . current_command , { } )
for alias in command_doubles . get ( param , [ ] ) :
if alias in leftover_args :
no_doubles = False
return completes and no_doubles and any ( ( full_param , char_param , new_param ) )
|
def part_studio_stl ( self , did , wid , eid ) :
'''Exports STL export from a part studio
Args :
- did ( str ) : Document ID
- wid ( str ) : Workspace ID
- eid ( str ) : Element ID
Returns :
- requests . Response : Onshape response data'''
|
req_headers = { 'Accept' : 'application/vnd.onshape.v1+octet-stream' }
return self . _api . request ( 'get' , '/api/partstudios/d/' + did + '/w/' + wid + '/e/' + eid + '/stl' , headers = req_headers )
|
def RGB_to_HSL ( cobj , * args , ** kwargs ) :
"""Converts from RGB to HSL .
H values are in degrees and are 0 to 360.
S values are a percentage , 0.0 to 1.0.
L values are a percentage , 0.0 to 1.0."""
|
var_R = cobj . rgb_r
var_G = cobj . rgb_g
var_B = cobj . rgb_b
var_max = max ( var_R , var_G , var_B )
var_min = min ( var_R , var_G , var_B )
var_H = __RGB_to_Hue ( var_R , var_G , var_B , var_min , var_max )
var_L = 0.5 * ( var_max + var_min )
if var_max == var_min :
var_S = 0
elif var_L <= 0.5 :
var_S = ( var_max - var_min ) / ( 2.0 * var_L )
else :
var_S = ( var_max - var_min ) / ( 2.0 - ( 2.0 * var_L ) )
return HSLColor ( var_H , var_S , var_L )
|
def get_build_tool_version ( self ) :
"""Gets the build tool version to be used by zipalign from build . gradle file .
Returns :
A string containing the build tool version , default is 23.0.2."""
|
with open ( '%s/%s/build.gradle' % ( self . path , self . src_folder ) ) as f :
for line in f . readlines ( ) :
if 'buildToolsVersion' in line :
matches = re . findall ( r'buildToolsVersion \"(.+?)\"' , line )
if len ( matches ) == 1 :
return matches [ 0 ]
return config . build_tool_version
|
def fix_paths ( self , paths ) :
"""Fix the filenames in the iterable paths
Returns :
old2new : Mapping old _ path - - > new _ path"""
|
old2new , fixed_exts = { } , [ ]
for path in list_strings ( paths ) :
newpath , ext = self . _fix_path ( path )
if newpath is not None : # if ext not in fixed _ exts :
# if ext = = " 1WF " : continue
# raise ValueError ( " Unknown extension % s " % ext )
# print ( ext , path , fixed _ exts )
# if ext ! = ' 1WF ' :
# assert ext not in fixed _ exts
if ext not in fixed_exts :
if ext == "1WF" :
continue
raise ValueError ( "Unknown extension %s" % ext )
fixed_exts . append ( ext )
old2new [ path ] = newpath
return old2new
|
def pivot ( self , column_ ) :
"""增加对于多列的支持"""
|
if isinstance ( column_ , str ) :
try :
return self . data . reset_index ( ) . pivot ( index = 'datetime' , columns = 'code' , values = column_ )
except :
return self . data . reset_index ( ) . pivot ( index = 'date' , columns = 'code' , values = column_ )
elif isinstance ( column_ , list ) :
try :
return self . data . reset_index ( ) . pivot_table ( index = 'datetime' , columns = 'code' , values = column_ )
except :
return self . data . reset_index ( ) . pivot_table ( index = 'date' , columns = 'code' , values = column_ )
|
def find_path ( self , start , end , grid ) :
"""find a path from start to end node on grid by iterating over
all neighbors of a node ( see check _ neighbors )
: param start : start node
: param end : end node
: param grid : grid that stores all possible steps / tiles as 2D - list
: return :"""
|
self . start_time = time . time ( )
# execution time limitation
self . runs = 0
# count number of iterations
start . opened = True
open_list = [ start ]
while len ( open_list ) > 0 :
self . runs += 1
self . keep_running ( )
path = self . check_neighbors ( start , end , grid , open_list )
if path :
return path , self . runs
# failed to find path
return [ ] , self . runs
|
def drop_dims ( self , drop_dims ) :
"""Drop dimensions and associated variables from this dataset .
Parameters
drop _ dims : str or list
Dimension or dimensions to drop .
Returns
obj : Dataset
The dataset without the given dimensions ( or any variables
containing those dimensions )"""
|
if utils . is_scalar ( drop_dims ) :
drop_dims = [ drop_dims ]
missing_dimensions = [ d for d in drop_dims if d not in self . dims ]
if missing_dimensions :
raise ValueError ( 'Dataset does not contain the dimensions: %s' % missing_dimensions )
drop_vars = set ( k for k , v in self . _variables . items ( ) for d in v . dims if d in drop_dims )
variables = OrderedDict ( ( k , v ) for k , v in self . _variables . items ( ) if k not in drop_vars )
coord_names = set ( k for k in self . _coord_names if k in variables )
return self . _replace_with_new_dims ( variables , coord_names )
|
def find_output_at_time ( self , ifo , time ) :
'''Return File that covers the given time .
Parameters
ifo : string
Name of the ifo ( or ifos ) that the File should correspond to
time : int / float / LIGOGPStime
Return the Files that covers the supplied time . If no
File covers the time this will return None .
Returns
list of File classes
The Files that corresponds to the time .'''
|
# Get list of Files that overlap time , for given ifo
outFiles = [ i for i in self if ifo in i . ifo_list and time in i . segment_list ]
if len ( outFiles ) == 0 : # No OutFile at this time
return None
elif len ( outFiles ) == 1 : # 1 OutFile at this time ( good ! )
return outFiles
else : # Multiple output files . Currently this is valid , but we may want
# to demand exclusivity later , or in certain cases . Hence the
# separation .
return outFiles
|
def portrait_image ( model , request ) :
"""XXX : needs polishing . Return configured default portrait if not set
on user ."""
|
response = Response ( )
cfg = ugm_general ( model )
response . body = model . attrs [ cfg . attrs [ 'users_portrait_attr' ] ]
response . headers [ 'Content-Type' ] = 'image/jpeg'
response . headers [ 'Cache-Control' ] = 'max-age=0'
return response
|
def get_policy_version ( policy_name , version_id , region = None , key = None , keyid = None , profile = None ) :
'''Check to see if policy exists .
CLI Example :
. . code - block : : bash
salt myminion boto _ iam . instance _ profile _ exists myiprofile'''
|
conn = _get_conn ( region = region , key = key , keyid = keyid , profile = profile )
try :
ret = conn . get_policy_version ( _get_policy_arn ( policy_name , region = region , key = key , keyid = keyid , profile = profile ) , version_id )
retval = ret . get ( 'get_policy_version_response' , { } ) . get ( 'get_policy_version_result' , { } ) . get ( 'policy_version' , { } )
retval [ 'document' ] = _unquote ( retval . get ( 'document' ) )
return { 'policy_version' : retval }
except boto . exception . BotoServerError :
return None
|
def extend_shapes ( df_shapes , axis , distance ) :
'''Extend shape / polygon outline away from polygon center point by absolute
distance .'''
|
df_shapes_i = df_shapes . copy ( )
offsets = df_shapes_i [ axis + '_center_offset' ] . copy ( )
offsets [ offsets < 0 ] -= distance
offsets [ offsets >= 0 ] += distance
df_shapes_i [ axis ] = df_shapes_i [ axis + '_center' ] + offsets
return df_shapes_i
|
def start_subscribe ( self ) :
"""Create a new Subscription context manager ."""
|
if not self . conn :
raise ValueError ( 'Not connected' )
elif not self . pubsub_conn :
raise ValueError ( 'PubSub not enabled' )
# creates a new context manager
return Subscription ( self )
|
def request ( self , _cache_key , _cache_ignore , _cache_timeout , ** kwargs ) :
"""This is a wrapper function that handles the caching of the request .
See DefaultHandler . with _ cache for reference ."""
|
if _cache_key : # Pop the request ' s session cookies from the cache key .
# These appear to be unreliable and change with every
# request . Also , with the introduction of OAuth I don ' t think
# that cookies are being used to store anything that
# differentiates API requests anyways
url , items = _cache_key
_cache_key = ( url , ( items [ 0 ] , items [ 1 ] , items [ 3 ] , items [ 4 ] ) )
if kwargs [ 'request' ] . method != 'GET' : # I added this check for RTV , I have no idea why PRAW would ever
# want to cache POST / PUT / DELETE requests
_cache_ignore = True
if _cache_ignore :
return self . _request ( ** kwargs )
self . _clear_timeouts ( _cache_timeout )
if _cache_key in self . cache :
return self . cache [ _cache_key ]
result = self . _request ( ** kwargs )
# The handlers don ' t call ` raise _ for _ status ` so we need to ignore
# status codes that will result in an exception that should not be
# cached .
if result . status_code not in ( 200 , 302 ) :
return result
self . timeouts [ _cache_key ] = timer ( )
self . cache [ _cache_key ] = result
return result
|
def magicquil ( f ) :
"""Decorator to enable a more convenient syntax for writing quil programs . With this decorator there is no need to
keep track of a Program object and regular Python if / else branches can be used for classical control flow .
Example usage :
@ magicquil
def fast _ reset ( q1 ) :
reg1 = MEASURE ( q1 , None )
if reg1:
X ( q1)
else :
I ( q1)
my _ program = fast _ reset ( 0 ) # this will be a Program object"""
|
rewritten_function = _rewrite_function ( f )
@ functools . wraps ( f )
def wrapper ( * args , ** kwargs ) :
if _program_context . get ( None ) is not None :
rewritten_function ( * args , ** kwargs )
program = _program_context . get ( )
else :
token = _program_context . set ( Program ( ) )
rewritten_function ( * args , ** kwargs )
program = _program_context . get ( )
_program_context . reset ( token )
return program
return wrapper
|
def log_text ( self , text , ** kw ) :
"""Add a text entry to be logged during : meth : ` commit ` .
: type text : str
: param text : the text entry
: type kw : dict
: param kw : ( optional ) additional keyword arguments for the entry .
See : class : ` ~ google . cloud . logging . entries . LogEntry ` ."""
|
self . entries . append ( TextEntry ( payload = text , ** kw ) )
|
def init_app ( self , app = None ) :
"""Initialize application configuration"""
|
config = getattr ( app , 'config' , app )
self . team_id = config . get ( 'TEAM_ID' )
|
def insert ( self , index , value ) :
"""Insert an instance of User into the collection ."""
|
self . check ( value )
self . _user_list . insert ( index , value )
|
def _mark_candidate_indexes ( lines , candidate ) :
"""Mark candidate indexes with markers
Markers :
* c - line that could be a signature line
* l - long line
* d - line that starts with dashes but has other chars as well
> > > _ mark _ candidate _ lines ( [ ' Some text ' , ' ' , ' - ' , ' Bob ' ] , [ 0 , 2 , 3 ] )
' cdc '"""
|
# at first consider everything to be potential signature lines
markers = list ( 'c' * len ( candidate ) )
# mark lines starting from bottom up
for i , line_idx in reversed ( list ( enumerate ( candidate ) ) ) :
if len ( lines [ line_idx ] . strip ( ) ) > TOO_LONG_SIGNATURE_LINE :
markers [ i ] = 'l'
else :
line = lines [ line_idx ] . strip ( )
if line . startswith ( '-' ) and line . strip ( "-" ) :
markers [ i ] = 'd'
return "" . join ( markers )
|
def _get_env ( self , config ) :
"""Read environment variables based on the settings defined in
the defaults . These are expected to be upper - case versions of
the actual setting names , prefixed by ` ` SCRAPEKIT _ ` ` ."""
|
for option , value in config . items ( ) :
env_name = 'SCRAPEKIT_%s' % option . upper ( )
value = os . environ . get ( env_name , value )
config [ option ] = value
return config
|
def close ( self ) :
"""Close the pickle file , and the zip archive file . The single zip archive
file can now be shipped around to be loaded by the unpickler ."""
|
if self . file is None :
return
# Close the pickle file .
self . file . close ( )
self . file = None
for f in self . mark_for_delete :
error = [ False ]
def register_error ( * args ) :
error [ 0 ] = True
_shutil . rmtree ( f , onerror = register_error )
if error [ 0 ] :
_atexit . register ( _shutil . rmtree , f , ignore_errors = True )
|
def get_vhost_names ( self ) :
"""A convenience function for getting back only the vhost names instead of
the larger vhost dicts .
: returns list vhost _ names : A list of just the vhost names ."""
|
vhosts = self . get_all_vhosts ( )
vhost_names = [ i [ 'name' ] for i in vhosts ]
return vhost_names
|
def delete_file ( self , uri , purge = False ) :
"""Delete file .
uri - - MediaFire file URI
Keyword arguments :
purge - - delete the file without sending it to Trash ."""
|
try :
resource = self . get_resource_by_uri ( uri )
except ResourceNotFoundError : # Nothing to remove
return None
if not isinstance ( resource , File ) :
raise ValueError ( "File expected, got {}" . format ( type ( resource ) ) )
if purge :
func = self . api . file_purge
else :
func = self . api . file_delete
return func ( resource [ 'quickkey' ] )
|
def winapi ( context , names ) :
"""Query Win32 API declarations .
Windows database must be prepared before using this ."""
|
logging . info ( _ ( 'Entering winapi mode' ) )
sense = context . obj [ 'sense' ]
none = True
for name in names :
code = sense . query_args ( name )
if code :
none = False
print ( stylify_code ( code ) )
else :
logging . warning ( _ ( 'Function not found: %s' ) , name )
sys . exit ( 1 if none else 0 )
|
def _get ( self , * args , ** kwargs ) :
"""Wrapper around Requests for GET requests
Returns :
Response :
A Requests Response object"""
|
if 'timeout' not in kwargs :
kwargs [ 'timeout' ] = self . timeout
req = self . session . get ( * args , ** kwargs )
return req
|
def _expand_to_beam_size ( data , beam_size , batch_size , state_info = None ) :
"""Tile all the states to have batch _ size * beam _ size on the batch axis .
Parameters
data : A single NDArray / Symbol or nested container with NDArrays / Symbol
Each NDArray / Symbol should have shape ( N , . . . ) when state _ info is None ,
or same as the layout in state _ info when it ' s not None .
beam _ size : int
Beam size
batch _ size : int
Batch size
state _ info : Nested structure of dictionary , default None .
Descriptors for states , usually from decoder ' s ` ` state _ info ( ) ` ` .
When None , this method assumes that the batch axis is the first dimension .
Returns
new _ states : Object that contains NDArrays / Symbols
Each NDArray / Symbol should have shape batch _ size * beam _ size on the batch axis ."""
|
assert not state_info or isinstance ( state_info , ( type ( data ) , dict ) ) , 'data and state_info doesn\'t match, ' 'got: {} vs {}.' . format ( type ( state_info ) , type ( data ) )
if isinstance ( data , list ) :
if not state_info :
state_info = [ None ] * len ( data )
return [ _expand_to_beam_size ( d , beam_size , batch_size , s ) for d , s in zip ( data , state_info ) ]
elif isinstance ( data , tuple ) :
if not state_info :
state_info = [ None ] * len ( data )
state_info = tuple ( state_info )
return tuple ( _expand_to_beam_size ( d , beam_size , batch_size , s ) for d , s in zip ( data , state_info ) )
elif isinstance ( data , dict ) :
if not state_info :
state_info = { k : None for k in data . keys ( ) }
return { k : _expand_to_beam_size ( v , beam_size , batch_size , state_info [ k ] ) for k , v in data . items ( ) }
elif isinstance ( data , mx . nd . NDArray ) :
if not state_info :
batch_axis = 0
else :
batch_axis = state_info [ '__layout__' ] . find ( 'N' )
if data . shape [ batch_axis ] != batch_size :
raise ValueError ( 'The batch dimension of all the inner elements in states must be ' '{}, Found shape={}' . format ( batch_size , data . shape ) )
new_shape = list ( data . shape )
new_shape [ batch_axis ] = batch_size * beam_size
new_shape = tuple ( new_shape )
return data . expand_dims ( batch_axis + 1 ) . broadcast_axes ( axis = batch_axis + 1 , size = beam_size ) . reshape ( new_shape )
elif isinstance ( data , mx . sym . Symbol ) :
if not state_info :
batch_axis = 0
else :
batch_axis = state_info [ '__layout__' ] . find ( 'N' )
new_shape = ( 0 , ) * batch_axis + ( - 3 , - 2 )
return data . expand_dims ( batch_axis + 1 ) . broadcast_axes ( axis = batch_axis + 1 , size = beam_size ) . reshape ( new_shape )
else :
raise NotImplementedError
|
def _hasCredentials ( self ) :
"""Return True , if credentials is given"""
|
cred = self . options . get ( 'credentials' )
return ( cred and 'clientId' in cred and 'accessToken' in cred and cred [ 'clientId' ] and cred [ 'accessToken' ] )
|
def _add_path ( dir_name , payload_info_list ) :
"""Add a key with the path to each payload _ info _ dict ."""
|
for payload_info_dict in payload_info_list :
file_name = payload_info_dict [ 'filename' ] or payload_info_dict [ 'pid' ]
payload_info_dict [ 'path' ] = d1_common . utils . filesystem . gen_safe_path ( dir_name , 'data' , file_name )
|
def draw_to_notebook ( layers , ** kwargs ) :
"""Draws a network diagram in an IPython notebook
: parameters :
- layers : list or NeuralNet instance
List of layers or the neural net to draw .
- * * kwargs : see the docstring of make _ pydot _ graph for other options"""
|
from IPython . display import Image
layers = ( layers . get_all_layers ( ) if hasattr ( layers , 'get_all_layers' ) else layers )
dot = make_pydot_graph ( layers , ** kwargs )
return Image ( dot . create_png ( ) )
|
def _hdparm ( args , failhard = True ) :
'''Execute hdparm
Fail hard when required
return output when possible'''
|
cmd = 'hdparm {0}' . format ( args )
result = __salt__ [ 'cmd.run_all' ] ( cmd )
if result [ 'retcode' ] != 0 :
msg = '{0}: {1}' . format ( cmd , result [ 'stderr' ] )
if failhard :
raise CommandExecutionError ( msg )
else :
log . warning ( msg )
return result [ 'stdout' ]
|
def setDragData ( self , data , x = None , y = None ) :
"""Sets the drag data for this chart item to the inputed data .
: param data | < QMimeData > | | None"""
|
self . _dragData [ ( x , y ) ] = data
|
async def _process_ack ( self , msg ) :
"""Receives acks from the publishes via the _ STAN . acks subscription ."""
|
pub_ack = protocol . PubAck ( )
pub_ack . ParseFromString ( msg . data )
# Unblock pending acks queue if required .
if not self . _pending_pub_acks_queue . empty ( ) :
await self . _pending_pub_acks_queue . get ( )
try :
cb = self . _pub_ack_map [ pub_ack . guid ]
await cb ( pub_ack )
del self . _pub_ack_map [ pub_ack . guid ]
except KeyError : # Just skip the pub ack
return
except : # TODO : Check for protocol error
return
|
def construct_oauth_url ( self ) :
"""Constructs verifier OAuth URL"""
|
response = self . _requester ( requests . head , "{0}://{1}/" . format ( self . protocol , self . client . server ) , allow_redirects = False )
if response . is_redirect :
server = response . headers [ 'location' ]
else :
server = response . url
path = "oauth/authorize?oauth_token={token}" . format ( token = self . store [ "oauth-request-token" ] )
return "{server}{path}" . format ( server = server , path = path )
|
def find_water_flow ( self , world , water_path ) :
"""Find the flow direction for each cell in heightmap"""
|
# iterate through each cell
for x in range ( world . width - 1 ) :
for y in range ( world . height - 1 ) : # search around cell for a direction
path = self . find_quick_path ( [ x , y ] , world )
if path :
tx , ty = path
flow_dir = [ tx - x , ty - y ]
key = 0
for direction in DIR_NEIGHBORS_CENTER :
if direction == flow_dir :
water_path [ y , x ] = key
key += 1
|
def gpg_stash_key ( appname , key_bin , config_dir = None , gpghome = None ) :
"""Store a key locally to our app keyring .
Does NOT put it into a blockchain ID
Return the key ID on success
Return None on error"""
|
assert is_valid_appname ( appname )
key_bin = str ( key_bin )
assert len ( key_bin ) > 0
if gpghome is None :
config_dir = get_config_dir ( config_dir )
keydir = make_gpg_home ( appname , config_dir = config_dir )
else :
keydir = gpghome
gpg = gnupg . GPG ( homedir = keydir )
res = gpg . import_keys ( key_bin )
try :
assert res . count == 1 , "Failed to store key (%s)" % res
except AssertionError , e :
log . exception ( e )
log . error ( "Failed to store key to %s" % keydir )
log . debug ( "res: %s" % res . __dict__ )
log . debug ( "(%s)\n%s" % ( len ( key_bin ) , key_bin ) )
return None
return res . fingerprints [ 0 ]
|
def draw ( self , ** kwargs ) :
"""Renders the rfecv curve ."""
|
# Compute the curves
x = self . n_feature_subsets_
means = self . cv_scores_ . mean ( axis = 1 )
sigmas = self . cv_scores_ . std ( axis = 1 )
# Plot one standard deviation above and below the mean
self . ax . fill_between ( x , means - sigmas , means + sigmas , alpha = 0.25 )
# Plot the curve
self . ax . plot ( x , means , 'o-' )
# Plot the maximum number of features
self . ax . axvline ( self . n_features_ , c = 'k' , ls = '--' , label = "n_features = {}\nscore = {:0.3f}" . format ( self . n_features_ , self . cv_scores_ . mean ( axis = 1 ) . max ( ) ) )
return self . ax
|
def num_mutations ( self ) :
''': return : number of mutations in the container'''
|
self . _initialize ( )
res = super ( Container , self ) . num_mutations ( )
return res
|
def _special_dbkey_maps ( dbkey , ref_file ) :
"""Avoid duplicate VEP information for databases with chromosome differences like hg19 / GRCh37."""
|
remaps = { "hg19" : "GRCh37" , "hg38-noalt" : "hg38" }
if dbkey in remaps :
base_dir = os . path . normpath ( os . path . join ( os . path . dirname ( ref_file ) , os . pardir ) )
vep_dir = os . path . normpath ( os . path . join ( base_dir , "vep" ) )
other_dir = os . path . relpath ( os . path . normpath ( os . path . join ( base_dir , os . pardir , remaps [ dbkey ] , "vep" ) ) , base_dir )
if os . path . exists ( os . path . join ( base_dir , other_dir ) ) :
if not os . path . lexists ( vep_dir ) :
os . symlink ( other_dir , vep_dir )
return vep_dir
else :
return None
else :
return None
|
def set_default_proxy ( cls , value ) :
"""Default : None ( no proxy )
A string that will be used to tell each request must be sent through this proxy server .
Use the scheme : / / hostname : port form .
If you need to use a proxy , you can configure individual requests with the proxies argument to any request
method ."""
|
if value is None :
cls . DEFAULT_PROXY = None
else :
scheme , host , port = get_hostname_parameters_from_url ( value )
cls . DEFAULT_PROXY = "%s://%s:%s" % ( scheme , host , port )
|
def parse_magnitude ( self , magnitude_str ) :
"""Converts magnitude field to a float value , or ` ` None ` ` if GCVS does
not list the magnitude .
Returns a tuple ( magnitude , symbol ) , where symbol can be either an
empty string or a single character - one of ' < ' , ' > ' , ' ( ' ."""
|
symbol = magnitude_str [ 0 ] . strip ( )
magnitude = magnitude_str [ 1 : 6 ] . strip ( )
return float ( magnitude ) if magnitude else None , symbol
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.