signature
stringlengths 29
44.1k
| implementation
stringlengths 0
85.2k
|
---|---|
def init_from_wave_file ( wavpath ) :
"""Init a sonic visualiser environment structure based the analysis
of the main audio file . The audio file have to be encoded in wave
Args :
wavpath ( str ) : the full path to the wavfile"""
|
try :
samplerate , data = SW . read ( wavpath )
nframes = data . shape [ 0 ]
except : # scipy cannot handle 24 bit wav files
# and wave cannot handle 32 bit wav files
try :
w = wave . open ( wavpath )
samplerate = w . getframerate ( )
nframes = w . getnframes ( )
except :
raise Exception ( 'Cannot decode wavefile ' + wavpath )
return SVEnv ( samplerate , nframes , wavpath )
|
def _format_exception_message ( e ) :
"""Formats the specified exception ."""
|
# Prevent duplication of " AppError " in places that print " AppError "
# and then this formatted string
if isinstance ( e , dxpy . AppError ) :
return _safe_unicode ( e )
if USING_PYTHON2 :
return unicode ( e . __class__ . __name__ , 'utf-8' ) + ": " + _safe_unicode ( e )
else :
return e . __class__ . __name__ + ": " + _safe_unicode ( e )
|
def clean_scope ( self ) :
"""The scope is assembled by combining all the set flags into a single
integer value which we can later check again for set bits .
If * no * scope is set , we return the default scope which is the first
defined scope in : attr : ` provider . constants . SCOPES ` ."""
|
default = SCOPES [ 0 ] [ 0 ]
flags = self . cleaned_data . get ( 'scope' , [ ] )
return scope . to_int ( default = default , * flags )
|
def chmod_native ( path , mode_expression , recursive = False ) :
"""This is ugly and will only work on POSIX , but the built - in Python os . chmod support
is very minimal , and neither supports fast recursive chmod nor " + X " type expressions ,
both of which are slow for large trees . So just shell out ."""
|
popenargs = [ "chmod" ]
if recursive :
popenargs . append ( "-R" )
popenargs . append ( mode_expression )
popenargs . append ( path )
subprocess . check_call ( popenargs )
|
def get_content_type ( self ) :
"""Returns the Content Type to serve from either the extension or the
Accept headers . Uses the : attr : ` EXTENSION _ MAP ` list for all the
configured MIME types ."""
|
extension = self . path_params . get ( '_extension' )
for ext , mime in self . EXTENSION_MAP :
if ext == extension :
return mime
# Else : use the Accept headers
if self . response . vary is None :
self . response . vary = [ 'Accept' ]
else :
self . response . vary . append ( 'Accept' )
types = [ mime for ext , mime in self . EXTENSION_MAP ]
ct = self . request . accept . best_match ( types )
# No best match found . The specification allows us to either return a
# 406 or just use another format in this case .
# We pick the default format , though that may become a configurable
# behavior in the future .
if not ct :
ct = types [ 0 ]
return ct
|
def install_os_snaps ( snaps , refresh = False ) :
"""Install OpenStack snaps from channel and with mode
@ param snaps : Dictionary of snaps with channels and modes of the form :
{ ' snap _ name ' : { ' channel ' : ' snap _ channel ' ,
' mode ' : ' snap _ mode ' } }
Where channel is a snapstore channel and mode is - - classic , - - devmode
or - - jailmode .
@ param post _ snap _ install : Callback function to run after snaps have been
installed"""
|
def _ensure_flag ( flag ) :
if flag . startswith ( '--' ) :
return flag
return '--{}' . format ( flag )
if refresh :
for snap in snaps . keys ( ) :
snap_refresh ( snap , _ensure_flag ( snaps [ snap ] [ 'channel' ] ) , _ensure_flag ( snaps [ snap ] [ 'mode' ] ) )
else :
for snap in snaps . keys ( ) :
snap_install ( snap , _ensure_flag ( snaps [ snap ] [ 'channel' ] ) , _ensure_flag ( snaps [ snap ] [ 'mode' ] ) )
|
def to_dict ( self ) :
"""Get a dictionary of the attributes of this Language object , which
can be useful for constructing a similar object ."""
|
if self . _dict is not None :
return self . _dict
result = { }
for key in self . ATTRIBUTES :
value = getattr ( self , key )
if value :
result [ key ] = value
self . _dict = result
return result
|
def wet_records_from_file_obj ( f , take_ownership = False ) :
"""Iterate through records in WET file object ."""
|
while True :
record = WETRecord . read ( f )
if record is None :
break
if not record . url :
continue
yield record
if take_ownership :
f . close ( )
|
def get_object ( self , * args , ** kwargs ) :
"""Should memoize the object to avoid multiple query if get _ object is used many times in the view"""
|
self . category_instance = get_object_or_404 ( Category , slug = self . kwargs [ 'category_slug' ] )
return get_object_or_404 ( Post , thread__id = self . kwargs [ 'thread_id' ] , thread__category = self . category_instance , pk = self . kwargs [ 'post_id' ] )
|
def predict ( self , timeseriesX , n , m ) :
"""Calculates the dependent timeseries Y for the given parameters
and independent timeseries . ( y = m * x + n )
: param TimeSeries timeseriesX : the independent Timeseries .
: param float n : The interception with the x access
that has been calculated during regression
: param float m : The slope of the function
that has been calculated during regression
: return TimeSeries timeseries _ y : the predicted values for the
dependent TimeSeries . Its length and first dimension will
equal to timeseriesX ."""
|
new_entries = [ ]
for entry in timeseriesX :
predicted_value = m * entry [ 1 ] + n
new_entries . append ( [ entry [ 0 ] , predicted_value ] )
return TimeSeries . from_twodim_list ( new_entries )
|
def update_translation ( self , context_id , translation_id , static_ip = None , remote_ip = None , notes = None ) :
"""Updates an address translation entry using the given values .
: param int context _ id : The id - value representing the context instance .
: param dict template : A key - value mapping of translation properties .
: param string static _ ip : The static IP address value to update .
: param string remote _ ip : The remote IP address value to update .
: param string notes : The notes value to update .
: return bool : True if the update was successful ."""
|
translation = self . get_translation ( context_id , translation_id )
if static_ip is not None :
translation [ 'internalIpAddress' ] = static_ip
translation . pop ( 'internalIpAddressId' , None )
if remote_ip is not None :
translation [ 'customerIpAddress' ] = remote_ip
translation . pop ( 'customerIpAddressId' , None )
if notes is not None :
translation [ 'notes' ] = notes
self . context . editAddressTranslation ( translation , id = context_id )
return True
|
def repack_archive ( archive , archive_new , verbosity = 0 , interactive = True ) :
"""Repack archive to different file and / or format ."""
|
util . check_existing_filename ( archive )
util . check_new_filename ( archive_new )
if verbosity >= 0 :
util . log_info ( "Repacking %s to %s ..." % ( archive , archive_new ) )
res = _repack_archive ( archive , archive_new , verbosity = verbosity , interactive = interactive )
if verbosity >= 0 :
util . log_info ( "... repacking successful." )
return res
|
def get_extended_summaryf ( self , * args , ** kwargs ) :
"""Extract the extended summary from a function docstring
This function can be used as a decorator to extract the extended
summary of a function docstring ( similar to : meth : ` get _ sectionsf ` ) .
Parameters
` ` * args ` ` and ` ` * * kwargs ` `
See the : meth : ` get _ extended _ summary ` method . Note , that the first
argument will be the docstring of the specified function
Returns
function
Wrapper that takes a function as input and registers its summary
via the : meth : ` get _ extended _ summary ` method"""
|
def func ( f ) :
doc = f . __doc__
self . get_extended_summary ( doc or '' , * args , ** kwargs )
return f
return func
|
def get_user_home ( self , user ) :
"""Returns the default URL for a particular user .
This method can be used to customize where a user is sent when
they log in , etc . By default it returns the value of
: meth : ` get _ absolute _ url ` .
An alternative function can be supplied to customize this behavior
by specifying a either a URL or a function which returns a URL via
the ` ` " user _ home " ` ` key in ` ` HORIZON _ CONFIG ` ` . Each of these
would be valid : :
{ " user _ home " : " / home " , } # A URL
{ " user _ home " : " my _ module . get _ user _ home " , } # Path to a function
{ " user _ home " : lambda user : " / " + user . name , } # A function
{ " user _ home " : None , } # Will always return the default dashboard
This can be useful if the default dashboard may not be accessible
to all users . When user _ home is missing from HORIZON _ CONFIG ,
it will default to the settings . LOGIN _ REDIRECT _ URL value ."""
|
user_home = self . _conf [ 'user_home' ]
if user_home :
if callable ( user_home ) :
return user_home ( user )
elif isinstance ( user_home , six . string_types ) : # Assume we ' ve got a URL if there ' s a slash in it
if '/' in user_home :
return user_home
else :
mod , func = user_home . rsplit ( "." , 1 )
return getattr ( import_module ( mod ) , func ) ( user )
# If it ' s not callable and not a string , it ' s wrong .
raise ValueError ( 'The user_home setting must be either a string ' 'or a callable object (e.g. a function).' )
else :
return self . get_absolute_url ( )
|
def docgen ( ) :
"""Build documentation ."""
|
hitchpylibrarytoolkit . docgen ( _storybook ( { } ) , DIR . project , DIR . key / "story" , DIR . gen )
|
def status ( self ) :
"""Collects the instances state and returns a list .
. . important : :
Molecule assumes all instances were created successfully by
Ansible , otherwise Ansible would return an error on create . This
may prove to be a bad assumption . However , configuring Molecule ' s
driver to match the options passed to the playbook may prove
difficult . Especially in cases where the user is provisioning
instances off localhost .
: returns : list"""
|
status_list = [ ]
for platform in self . _config . platforms . instances :
instance_name = platform [ 'name' ]
driver_name = self . name
provisioner_name = self . _config . provisioner . name
scenario_name = self . _config . scenario . name
status_list . append ( Status ( instance_name = instance_name , driver_name = driver_name , provisioner_name = provisioner_name , scenario_name = scenario_name , created = self . _created ( ) , converged = self . _converged ( ) , ) )
return status_list
|
def outbound_message_filter ( f ) :
"""Register the decorated function as a service - level outbound message filter .
: raise TypeError : if the decorated object is a coroutine function
. . seealso : :
: class : ` StanzaStream `
for important remarks regarding the use of stanza filters ."""
|
if asyncio . iscoroutinefunction ( f ) :
raise TypeError ( "outbound_message_filter must not be a coroutine function" )
add_handler_spec ( f , HandlerSpec ( ( _apply_outbound_message_filter , ( ) ) ) , )
return f
|
def _from_dict ( cls , _dict ) :
"""Initialize a ToneCategory object from a json dictionary ."""
|
args = { }
if 'tones' in _dict :
args [ 'tones' ] = [ ToneScore . _from_dict ( x ) for x in ( _dict . get ( 'tones' ) ) ]
else :
raise ValueError ( 'Required property \'tones\' not present in ToneCategory JSON' )
if 'category_id' in _dict :
args [ 'category_id' ] = _dict . get ( 'category_id' )
else :
raise ValueError ( 'Required property \'category_id\' not present in ToneCategory JSON' )
if 'category_name' in _dict :
args [ 'category_name' ] = _dict . get ( 'category_name' )
else :
raise ValueError ( 'Required property \'category_name\' not present in ToneCategory JSON' )
return cls ( ** args )
|
def ResolveHostnameToIP ( host , port ) :
"""Resolves a hostname to an IP address ."""
|
ip_addrs = socket . getaddrinfo ( host , port , socket . AF_UNSPEC , 0 , socket . IPPROTO_TCP )
# getaddrinfo returns tuples ( family , socktype , proto , canonname , sockaddr ) .
# We are interested in sockaddr which is in turn a tuple
# ( address , port ) for IPv4 or ( address , port , flow info , scope id )
# for IPv6 . In both cases , we want the first element , the address .
result = ip_addrs [ 0 ] [ 4 ] [ 0 ]
# TODO : In Python 2 , this value is a byte string instead of UTF - 8
# string . To ensure type correctness until support for Python 2 is dropped ,
# we always decode this value .
if compatibility . PY2 :
result = result . decode ( "ascii" )
return result
|
def scalar ( name , data , step = None , description = None ) :
"""Write a scalar summary .
Arguments :
name : A name for this summary . The summary tag used for TensorBoard will
be this name prefixed by any active name scopes .
data : A real numeric scalar value , convertible to a ` float32 ` Tensor .
step : Explicit ` int64 ` - castable monotonic step value for this summary . If
omitted , this defaults to ` tf . summary . experimental . get _ step ( ) ` , which must
not be None .
description : Optional long - form description for this summary , as a
constant ` str ` . Markdown is supported . Defaults to empty .
Returns :
True on success , or false if no summary was written because no default
summary writer was available .
Raises :
ValueError : if a default writer exists , but no step was provided and
` tf . summary . experimental . get _ step ( ) ` is None ."""
|
summary_metadata = metadata . create_summary_metadata ( display_name = None , description = description )
# TODO ( https : / / github . com / tensorflow / tensorboard / issues / 2109 ) : remove fallback
summary_scope = ( getattr ( tf . summary . experimental , 'summary_scope' , None ) or tf . summary . summary_scope )
with summary_scope ( name , 'scalar_summary' , values = [ data , step ] ) as ( tag , _ ) :
tf . debugging . assert_scalar ( data )
return tf . summary . write ( tag = tag , tensor = tf . cast ( data , tf . float32 ) , step = step , metadata = summary_metadata )
|
def _open_sheet ( self ) :
"""Read the sheet , get value the header , get number columns and rows
: return :"""
|
if self . sheet_name and not self . header :
self . _sheet = self . _file . worksheet ( self . sheet_name . title )
self . ncols = self . _sheet . col_count
self . nrows = self . _sheet . row_count
for i in range ( 1 , self . ncols + 1 ) :
self . header = self . header + [ self . _sheet . cell ( 1 , i ) . value ]
|
def deploy ( self , environment , target_name , stream_output = None ) :
"""Return True if deployment was successful"""
|
try :
remote_server_command ( [ "rsync" , "-lrv" , "--safe-links" , "--munge-links" , "--delete" , "--inplace" , "--chmod=ugo=rwX" , "--exclude=.datacats-environment" , "--exclude=.git" , "/project/." , environment . deploy_target + ':' + target_name ] , environment , self , include_project_dir = True , stream_output = stream_output , clean_up = True , )
except WebCommandError as e :
raise DatacatsError ( "Unable to deploy `{0}` to remote server for some reason:\n" " datacats was not able to copy data to the remote server" . format ( ( target_name , ) ) , parent_exception = e )
try :
remote_server_command ( [ "ssh" , environment . deploy_target , "install" , target_name , ] , environment , self , clean_up = True , )
return True
except WebCommandError as e :
raise DatacatsError ( "Unable to deploy `{0}` to remote server for some reason:\n" "datacats copied data to the server but failed to register\n" "(or `install`) the new catalog" . format ( ( target_name , ) ) , parent_exception = e )
|
def _agg_bake ( cls , vertices , color , closed = False ) :
"""Bake a list of 2D vertices for rendering them as thick line . Each line
segment must have its own vertices because of antialias ( this means no
vertex sharing between two adjacent line segments ) ."""
|
n = len ( vertices )
P = np . array ( vertices ) . reshape ( n , 2 ) . astype ( float )
idx = np . arange ( n )
# used to eventually tile the color array
dx , dy = P [ 0 ] - P [ - 1 ]
d = np . sqrt ( dx * dx + dy * dy )
# If closed , make sure first vertex = last vertex ( + / - epsilon = 1e - 10)
if closed and d > 1e-10 :
P = np . append ( P , P [ 0 ] ) . reshape ( n + 1 , 2 )
idx = np . append ( idx , idx [ - 1 ] )
n += 1
V = np . zeros ( len ( P ) , dtype = cls . _agg_vtype )
V [ 'a_position' ] = P
# Tangents & norms
T = P [ 1 : ] - P [ : - 1 ]
N = np . sqrt ( T [ : , 0 ] ** 2 + T [ : , 1 ] ** 2 )
# T / = N . reshape ( len ( T ) , 1)
V [ 'a_tangents' ] [ + 1 : , : 2 ] = T
V [ 'a_tangents' ] [ 0 , : 2 ] = T [ - 1 ] if closed else T [ 0 ]
V [ 'a_tangents' ] [ : - 1 , 2 : ] = T
V [ 'a_tangents' ] [ - 1 , 2 : ] = T [ 0 ] if closed else T [ - 1 ]
# Angles
T1 = V [ 'a_tangents' ] [ : , : 2 ]
T2 = V [ 'a_tangents' ] [ : , 2 : ]
A = np . arctan2 ( T1 [ : , 0 ] * T2 [ : , 1 ] - T1 [ : , 1 ] * T2 [ : , 0 ] , T1 [ : , 0 ] * T2 [ : , 0 ] + T1 [ : , 1 ] * T2 [ : , 1 ] )
V [ 'a_angles' ] [ : - 1 , 0 ] = A [ : - 1 ]
V [ 'a_angles' ] [ : - 1 , 1 ] = A [ + 1 : ]
# Segment
L = np . cumsum ( N )
V [ 'a_segment' ] [ + 1 : , 0 ] = L
V [ 'a_segment' ] [ : - 1 , 1 ] = L
# V [ ' a _ lengths ' ] [ : , 2 ] = L [ - 1]
# Step 1 : A - - B - - C = > A - - B , B ' - - C
V = np . repeat ( V , 2 , axis = 0 ) [ 1 : - 1 ]
V [ 'a_segment' ] [ 1 : ] = V [ 'a_segment' ] [ : - 1 ]
V [ 'a_angles' ] [ 1 : ] = V [ 'a_angles' ] [ : - 1 ]
V [ 'a_texcoord' ] [ 0 : : 2 ] = - 1
V [ 'a_texcoord' ] [ 1 : : 2 ] = + 1
idx = np . repeat ( idx , 2 ) [ 1 : - 1 ]
# Step 2 : A - - B , B ' - - C - > A0 / A1 - - B0 / B1 , B ' 0 / B ' 1 - - C0 / C1
V = np . repeat ( V , 2 , axis = 0 )
V [ 'a_texcoord' ] [ 0 : : 2 , 1 ] = - 1
V [ 'a_texcoord' ] [ 1 : : 2 , 1 ] = + 1
idx = np . repeat ( idx , 2 )
I = np . resize ( np . array ( [ 0 , 1 , 2 , 1 , 2 , 3 ] , dtype = np . uint32 ) , ( n - 1 ) * ( 2 * 3 ) )
I += np . repeat ( 4 * np . arange ( n - 1 , dtype = np . uint32 ) , 6 )
# Length
V [ 'alength' ] = L [ - 1 ] * np . ones ( len ( V ) )
# Color
if color . ndim == 1 :
color = np . tile ( color , ( len ( V ) , 1 ) )
elif color . ndim == 2 and len ( color ) == n :
color = color [ idx ]
else :
raise ValueError ( 'Color length %s does not match number of ' 'vertices %s' % ( len ( color ) , n ) )
V [ 'color' ] = color
return V , I
|
def get_filenames ( root , prefix = u'' , suffix = u'' ) :
"""Function for listing filenames with given prefix and suffix in the root directory .
Parameters
prefix : str
The prefix of the required files .
suffix : str
The suffix of the required files
Returns
list of str
List of filenames matching the prefix and suffix criteria ."""
|
return [ fnm for fnm in os . listdir ( root ) if fnm . startswith ( prefix ) and fnm . endswith ( suffix ) ]
|
def _init_structures ( self , data , subjects ) :
"""Initializes data structures for SRM and preprocess the data .
Parameters
data : list of 2D arrays , element i has shape = [ voxels _ i , samples ]
Each element in the list contains the fMRI data of one subject .
subjects : int
The total number of subjects in ` data ` .
Returns
x : list of array , element i has shape = [ voxels _ i , samples ]
Demeaned data for each subject .
mu : list of array , element i has shape = [ voxels _ i ]
Voxel means over samples , per subject .
rho2 : array , shape = [ subjects ]
Noise variance : math : ` \\ rho ^ 2 ` per subject .
trace _ xtx : array , shape = [ subjects ]
The squared Frobenius norm of the demeaned data in ` x ` ."""
|
x = [ ]
mu = [ ]
rho2 = np . zeros ( subjects )
trace_xtx = np . zeros ( subjects )
for subject in range ( subjects ) :
mu . append ( np . mean ( data [ subject ] , 1 ) )
rho2 [ subject ] = 1
trace_xtx [ subject ] = np . sum ( data [ subject ] ** 2 )
x . append ( data [ subject ] - mu [ subject ] [ : , np . newaxis ] )
return x , mu , rho2 , trace_xtx
|
def nan_empty ( self , col : str ) :
"""Fill empty values with NaN values
: param col : name of the colum
: type col : str
: example : ` ` ds . nan _ empty ( " mycol " ) ` `"""
|
try :
self . df [ col ] = self . df [ col ] . replace ( '' , nan )
self . ok ( "Filled empty values with nan in column " + col )
except Exception as e :
self . err ( e , "Can not fill empty values with nan" )
|
def args ( self ) :
"""Parse args if they have not already been parsed and return the Namespace for args .
. . Note : : Accessing args should only be done directly in the App .
Returns :
( namespace ) : ArgParser parsed arguments ."""
|
if not self . _parsed : # only resolve once
self . _default_args , unknown = self . parser . parse_known_args ( )
# when running locally retrieve any args from the results . tc file . when running in
# platform this is done automatically .
self . _results_tc_args ( )
# log unknown arguments only once
self . _unknown_args ( unknown )
# set parsed bool to ensure args are only parsed once
self . _parsed = True
# update args with value from config data or configuration file
self . args_update ( )
return self . _default_args
|
def _mean_image_subtraction ( image , means , num_channels ) :
"""Subtracts the given means from each image channel .
For example :
means = [ 123.68 , 116.779 , 103.939]
image = _ mean _ image _ subtraction ( image , means )
Note that the rank of ` image ` must be known .
Args :
image : a tensor of size [ height , width , C ] .
means : a C - vector of values to subtract from each channel .
num _ channels : number of color channels in the image that will be distorted .
Returns :
the centered image .
Raises :
ValueError : If the rank of ` image ` is unknown , if ` image ` has a rank other
than three or if the number of channels in ` image ` doesn ' t match the
number of values in ` means ` ."""
|
if image . get_shape ( ) . ndims != 3 :
raise ValueError ( 'Input must be of size [height, width, C>0]' )
if len ( means ) != num_channels :
raise ValueError ( 'len(means) must match the number of channels' )
mlperf_log . resnet_print ( key = mlperf_log . INPUT_MEAN_SUBTRACTION , value = means )
# We have a 1 - D tensor of means ; convert to 3 - D .
means = tf . expand_dims ( tf . expand_dims ( means , 0 ) , 0 )
return image - means
|
def lF_oneway ( * lists ) :
"""Performs a 1 - way ANOVA , returning an F - value and probability given
any number of groups . From Heiman , pp . 394-7.
Usage : F _ oneway ( * lists ) where * lists is any number of lists , one per
treatment group
Returns : F value , one - tailed p - value"""
|
a = len ( lists )
# ANOVA on ' a ' groups , each in it ' s own list
means = [ 0 ] * a
vars = [ 0 ] * a
ns = [ 0 ] * a
alldata = [ ]
tmp = [ N . array ( _ ) for _ in lists ]
means = [ amean ( _ ) for _ in tmp ]
vars = [ avar ( _ ) for _ in tmp ]
ns = [ len ( _ ) for _ in lists ]
for i in range ( len ( lists ) ) :
alldata = alldata + lists [ i ]
alldata = N . array ( alldata )
bign = len ( alldata )
sstot = ass ( alldata ) - ( asquare_of_sums ( alldata ) / float ( bign ) )
ssbn = 0
for list in lists :
ssbn = ssbn + asquare_of_sums ( N . array ( list ) ) / float ( len ( list ) )
ssbn = ssbn - ( asquare_of_sums ( alldata ) / float ( bign ) )
sswn = sstot - ssbn
dfbn = a - 1
dfwn = bign - a
msb = ssbn / float ( dfbn )
msw = sswn / float ( dfwn )
f = msb / msw
prob = fprob ( dfbn , dfwn , f )
return f , prob
|
def parameter_distribution ( self , parameter , bp , bins = 30 , merge = False , merge_method = 'mean' , masked = False ) :
"""To get the parameter distribution of either a specific base - pair / step or a DNA segment over the MD simulation .
parameters
parameter : str
Name of a base - pair or base - step or helical parameter
For details about accepted keywords , see ` ` parameter ` ` in the method
: meth : ` DNA . get _ parameters ` .
bp : 1D list or array
base - pairs to analyze
Example : : :
bp = [ 6 ] # merge = False
bp = [ 4,15 ] # merge = True
bins int
Number of bins to calculate histogram
merge : bool
` ` Default = False ` ` : As shown above , if ` ` True ` ` , bp should a list of
range otherwise a list of single value . If ` ` bp = True ` ` , the
parameter for the respective DNA segment could be merged or
calculated by ` ` merge _ method ` ` .
merge _ method : str
Method to calculate the parameter of a DNA segment from local
parameters of all base - pairs / steps that are between the range given
through ` ` bp ` ` .
Currently accepted keywords are as follows :
* ` ` merge _ method = mean ` ` : Average of local parameters
* ` ` merge _ method = sum ` ` : Sum of local parameters
masked : bool
` ` Default = False ` ` . To skip specific frames / snapshots .
` ` DNA . mask ` ` array should be set to use this functionality .
This array contains boolean ( either ` ` True ` ` or ` ` False ` ` ) value
for each frame to mask the frames . Presently , mask array is
automatically generated during : meth : ` DNA . generate _ smooth _ axis ` to
skip those frames where 3D fitting curve was not successful within
the given criteria .
Returns
values : 1D array
Array containing parameter values
density : 1D array
Array containing density for respective parameter values"""
|
if not ( isinstance ( bp , list ) or isinstance ( bp , np . ndarray ) ) :
raise AssertionError ( "type %s is not list or np.ndarray" % type ( bp ) )
if ( len ( bp ) > 1 ) and ( merge == False ) :
raise AssertionError ( "bp %s contains more than two values, whereas merge=False. Use either one value in bp or merge=True" % bp )
exit ( 1 )
if len ( bp ) == 1 :
merge = False
if ( merge == True ) and not ( ( merge_method == 'mean' ) or ( merge_method == 'sum' ) ) :
raise AssertionError ( "merge method %s is not available." % merge_method )
exit ( 1 )
if len ( bp ) == 1 :
param_value , bp_idx = self . get_parameters ( parameter , bp , bp_range = False , masked = masked )
else :
param_value , bp_idx = self . get_parameters ( parameter , bp , bp_range = True , masked = masked )
if ( merge == True ) and ( merge_method == 'mean' ) :
param_value = np . mean ( param_value , axis = 0 )
elif ( merge == True ) and ( merge_method == 'sum' ) :
param_value = np . sum ( param_value , axis = 0 )
else :
param_value = param_value [ 0 ]
density , bin_edges = np . histogram ( param_value , bins = bins , density = True )
bin_width = bin_edges [ 1 ] - bin_edges [ 0 ]
density = np . insert ( density , 0 , 0.0 )
density = np . append ( density , 0.0 )
values = [ ]
for i in range ( len ( bin_edges ) - 1 ) :
values . append ( ( bin_edges [ i ] + bin_edges [ i + 1 ] ) / 2 )
values = np . asarray ( values )
values = np . append ( values , values [ - 1 ] + bin_width )
values = np . insert ( values , 0 , values [ 0 ] - bin_width )
return np . array ( values ) , density
|
async def find_movie ( self , query ) :
"""Retrieve movie data by search query .
Arguments :
query ( : py : class : ` str ` ) : Query to search for .
Returns :
: py : class : ` list ` : Possible matches ."""
|
params = OrderedDict ( [ ( 'query' , query ) , ( 'include_adult' , False ) , ] )
url = self . url_builder ( 'search/movie' , { } , params )
data = await self . get_data ( url )
if data is None :
return
return [ Movie . from_json ( item , self . config [ 'data' ] . get ( 'images' ) ) for item in data . get ( 'results' , [ ] ) ]
|
def purview_state ( self , direction ) :
"""The state of the purview when we are computing coefficients in
` ` direction ` ` .
For example , if we are computing the cause coefficient of a mechanism
in ` ` after _ state ` ` , the direction is ` ` CAUSE ` ` and the ` ` purview _ state ` `
is ` ` before _ state ` ` ."""
|
return { Direction . CAUSE : self . before_state , Direction . EFFECT : self . after_state } [ direction ]
|
def _get_instance_repo ( self , namespace ) :
"""Returns the instance repository for the specified CIM namespace
within the mock repository . This is the original instance variable ,
so any modifications will change the mock repository .
Validates that the namespace exists in the mock repository .
If the instance repository does not contain the namespace yet , it is
added .
Parameters :
namespace ( : term : ` string ` ) : Namespace name . Must not be ` None ` .
Returns :
list of CIMInstance : Instance repository .
Raises :
: exc : ` ~ pywbem . CIMError ` : CIM _ ERR _ INVALID _ NAMESPACE : Namespace does
not exist ."""
|
self . _validate_namespace ( namespace )
if namespace not in self . instances :
self . instances [ namespace ] = [ ]
return self . instances [ namespace ]
|
def mul ( x , y , context = None ) :
"""Return ` ` x ` ` times ` ` y ` ` ."""
|
return _apply_function_in_current_context ( BigFloat , mpfr . mpfr_mul , ( BigFloat . _implicit_convert ( x ) , BigFloat . _implicit_convert ( y ) , ) , context , )
|
def checkArgs ( args ) :
"""Checks the arguments and options .
: param args : a object containing the options of the program .
: type args : argparse . Namespace
: returns : ` ` True ` ` if everything was OK .
If there is a problem with an option , an exception is raised using the
: py : class : ` ProgramError ` class , a message is printed to the
: class : ` sys . stderr ` and the program exists with code 1."""
|
# Check if we have the tped and the tfam files
required_file_extensions = { ".tfam" , ".tped" }
if args . is_bfile :
required_file_extensions = { ".bed" , ".bim" , ".fam" }
for fileName in [ args . ifile + i for i in required_file_extensions ] :
if not os . path . isfile ( fileName ) :
msg = "{}: no such file" . format ( fileName )
raise ProgramError ( msg )
# Check the mind option ( between 0 and 1 , inclusive )
if ( args . mind < 0 ) or ( args . mind > 1 ) :
msg = "mind=%f: must be between 0 and 1 (inclusive)" % args . mind
raise ProgramError ( msg )
return True
|
def disable_component ( self , component ) :
"""Force a component to be disabled .
: param component : can be a class or an instance ."""
|
if not isinstance ( component , type ) :
component = component . __class__
self . enabled [ component ] = False
self . components [ component ] = None
|
def get_ancestors ( self , limit : int , header : BlockHeader ) -> Tuple [ BaseBlock , ... ] :
"""Return ` limit ` number of ancestor blocks from the current canonical head ."""
|
ancestor_count = min ( header . block_number , limit )
# We construct a temporary block object
vm_class = self . get_vm_class_for_block_number ( header . block_number )
block_class = vm_class . get_block_class ( )
block = block_class ( header = header , uncles = [ ] )
ancestor_generator = iterate ( compose ( self . get_block_by_hash , operator . attrgetter ( 'parent_hash' ) , operator . attrgetter ( 'header' ) , ) , block )
# we peel off the first element from the iterator which will be the
# temporary block object we constructed .
next ( ancestor_generator )
return tuple ( take ( ancestor_count , ancestor_generator ) )
|
def read ( self , size = - 1 ) :
"""Read up to size uncompressed bytes from the file .
If size is negative or omitted , read until EOF is reached .
Returns b " " if the file is already at EOF ."""
|
self . _check_can_read ( )
if size is None : # This is not needed on Python 3 where the comparison to zeo
# will fail with a TypeError .
raise TypeError ( "Read size should be an integer, not None" )
if self . _mode == _MODE_READ_EOF or size == 0 :
return b""
elif size < 0 :
return self . _read_all ( )
else :
return self . _read_block ( size )
|
def hyperparameters ( self ) :
"""Return hyperparameters used by your custom TensorFlow code during model training ."""
|
hyperparameters = super ( RLEstimator , self ) . hyperparameters ( )
additional_hyperparameters = { SAGEMAKER_OUTPUT_LOCATION : self . output_path , # TODO : can be applied to all other estimators
SAGEMAKER_ESTIMATOR : SAGEMAKER_ESTIMATOR_VALUE }
hyperparameters . update ( Framework . _json_encode_hyperparameters ( additional_hyperparameters ) )
return hyperparameters
|
def wrap_udf ( hdfs_file , inputs , output , so_symbol , name = None ) :
"""Creates a callable scalar function object . Must be created in Impala to be
used
Parameters
hdfs _ file : . so file that contains relevant UDF
inputs : list of strings or sig . TypeSignature
Input types to UDF
output : string
Ibis data type
so _ symbol : string , C + + function name for relevant UDF
name : string ( optional ) . Used internally to track function
Returns
container : UDF object"""
|
func = ImpalaUDF ( inputs , output , so_symbol , name = name , lib_path = hdfs_file )
return func
|
def set_tag ( self , tag ) :
'''Sets the tag .
If the Entity belongs to the world it will check for tag conflicts .'''
|
if self . _world :
if self . _world . get_entity_by_tag ( tag ) :
raise NonUniqueTagError ( tag )
self . _tag = tag
|
def pov ( self , color : chess . Color ) -> "Score" :
"""Get the score from the point of view of the given * color * ."""
|
return self . relative if self . turn == color else - self . relative
|
def availability_sets_list_available_sizes ( name , resource_group , ** kwargs ) : # pylint : disable = invalid - name
'''. . versionadded : : 2019.2.0
List all available virtual machine sizes that can be used to
to create a new virtual machine in an existing availability set .
: param name : The availability set name to list available
virtual machine sizes within .
: param resource _ group : The resource group name to list available
availability set sizes within .
CLI Example :
. . code - block : : bash
salt - call azurearm _ compute . availability _ sets _ list _ available _ sizes testset testgroup'''
|
result = { }
compconn = __utils__ [ 'azurearm.get_client' ] ( 'compute' , ** kwargs )
try :
sizes = __utils__ [ 'azurearm.paged_object_to_list' ] ( compconn . availability_sets . list_available_sizes ( resource_group_name = resource_group , availability_set_name = name ) )
for size in sizes :
result [ size [ 'name' ] ] = size
except CloudError as exc :
__utils__ [ 'azurearm.log_cloud_error' ] ( 'compute' , str ( exc ) , ** kwargs )
result = { 'error' : str ( exc ) }
return result
|
def exists_orm ( session : Session , ormclass : DeclarativeMeta , * criteria : Any ) -> bool :
"""Detects whether a database record exists for the specified ` ` ormclass ` `
and ` ` criteria ` ` .
Example usage :
. . code - block : : python
bool _ exists = exists _ orm ( session , MyClass , MyClass . myfield = = value )"""
|
# http : / / docs . sqlalchemy . org / en / latest / orm / query . html
q = session . query ( ormclass )
for criterion in criteria :
q = q . filter ( criterion )
exists_clause = q . exists ( )
return bool_from_exists_clause ( session = session , exists_clause = exists_clause )
|
def add_user_invitation ( self , ** kwargs ) :
"""Add a UserInvitation object , with properties specified in ` ` * * kwargs ` ` ."""
|
user_invitation = self . UserInvitationClass ( ** kwargs )
self . db_adapter . add_object ( user_invitation )
return user_invitation
|
async def close ( self ) -> None :
"""Complete queued queries / cursors and close the connection ."""
|
await self . _execute ( self . _conn . close )
self . _running = False
self . _connection = None
|
def _convert ( self , value ) :
"""Returns a PasswordHash from the given string .
PasswordHash instances or None values will return unchanged .
Strings will be hashed and the resulting PasswordHash returned .
Any other input will result in a TypeError ."""
|
if isinstance ( value , PasswordHash ) :
return value
elif isinstance ( value , str ) :
value = value . encode ( 'utf-8' )
return PasswordHash . new ( value , self . rounds )
elif value is not None :
raise TypeError ( 'Cannot convert {} to a PasswordHash' . format ( type ( value ) ) )
|
def takeexactly ( iterable , size ) :
"""Yield blocks from ` iterable ` until exactly len ( size ) have been returned .
Args :
iterable ( iterable ) : Any iterable that yields sliceable objects that
have length .
size ( int ) : How much data to consume
Yields :
blocks from ` iterable ` such that
sum ( len ( block ) for block in takeexactly ( iterable , size ) ) = = size
Raises :
ValueError if there is less than ` size ` data in ` iterable `"""
|
total = 0
for block in iterable :
n = min ( len ( block ) , size - total )
block = block [ : n ]
if block :
yield block
total += len ( block )
if total >= size :
break
if total < size :
raise ValueError ( 'not enough data (yielded {} of {})' )
# sanity check ; this should never happen
if total != size : # pragma : no cover
raise ValueError ( 'yielded too much data' )
|
def tree ( ) :
"""Return a tree of tuples representing the logger layout .
Each tuple looks like ` ` ( ' logger - name ' , < Logger > , [ . . . ] ) ` ` where the
third element is a list of zero or more child tuples that share the
same layout ."""
|
root = ( '' , logging . root , [ ] )
nodes = { }
items = list ( logging . root . manager . loggerDict . items ( ) )
# for Python 2 and 3
items . sort ( )
for name , logger in items :
nodes [ name ] = node = ( name , logger , [ ] )
i = name . rfind ( '.' , 0 , len ( name ) - 1 )
# same formula used in ` logging `
if i == - 1 :
parent = root
else :
parent = nodes [ name [ : i ] ]
parent [ 2 ] . append ( node )
return root
|
def update_remote_ids ( self , remote_folder ) :
"""Set remote id based on remote _ folder and check children against this folder ' s children .
: param remote _ folder : RemoteFolder to compare against"""
|
self . remote_id = remote_folder . id
_update_remote_children ( remote_folder , self . children )
|
def begin_span ( self , name , span_type , context = None , leaf = False , tags = None ) :
"""Begin a new span
: param name : name of the span
: param span _ type : type of the span
: param context : a context dict
: param leaf : True if this is a leaf span
: param tags : a flat string / string dict of tags
: return : the Span object"""
|
return self . _begin_span ( name , span_type , context = context , leaf = leaf , tags = tags , parent_span_id = None )
|
def do_create ( marfile , files , compress , productversion = None , channel = None , signing_key = None , signing_algorithm = None ) :
"""Create a new MAR file ."""
|
with open ( marfile , 'w+b' ) as f :
with MarWriter ( f , productversion = productversion , channel = channel , signing_key = signing_key , signing_algorithm = signing_algorithm , ) as m :
for f in files :
m . add ( f , compress = compress )
|
def evaluate_service_changes ( services , envs , repo_root , func ) :
"""Given a dict of services , and a list of environments , apply the diff
function to evaluate the differences between the target environments
and the rendered templates .
Sub - services ( names with ' . ' in them ) are skipped ."""
|
for service_name , service in services . iteritems ( ) :
for env_category in service [ 'environments' ] :
if env_category not in get_env_categories ( envs ) :
logger . debug ( 'Skipping not-included environment `%s` for service `%s`' , env_category , service_name )
continue
environment = generate_test_environment_name ( env_category )
cf_client = get_cloudformation_client ( service_name , environment )
func ( service_name , service , environment , cf_client , repo_root )
|
def compile ( self , node , * args , ** kwargs ) :
"""Parse a WhereNode to a LDAP filter string ."""
|
if isinstance ( node , WhereNode ) :
return where_node_as_ldap ( node , self , self . connection )
return super ( SQLCompiler , self ) . compile ( node , * args , ** kwargs )
|
def parse_on_event ( self , node ) :
"""Parses < OnEvent >
@ param node : Node containing the < OnEvent > element
@ type node : xml . etree . Element"""
|
try :
port = node . lattrib [ 'port' ]
except :
self . raise_error ( '<OnEvent> must specify a port.' )
event_handler = OnEvent ( port )
self . current_regime . add_event_handler ( event_handler )
self . current_event_handler = event_handler
self . process_nested_tags ( node )
self . current_event_handler = None
|
def _action_remove ( self , ids ) :
"""Remove IDs from the group
Parameters
ids : { list , set , tuple , generator } of str
The IDs to remove
Returns
list of dict
The details of the removed jobs"""
|
return self . _action_get ( ( self . unlisten_to_node ( id_ ) for id_ in ids ) )
|
def get_qr ( self , filename = None ) :
"""Get pairing QR code from client"""
|
if "Click to reload QR code" in self . driver . page_source :
self . reload_qr ( )
qr = self . driver . find_element_by_css_selector ( self . _SELECTORS [ 'qrCode' ] )
if filename is None :
fd , fn_png = tempfile . mkstemp ( prefix = self . username , suffix = '.png' )
else :
fd = os . open ( filename , os . O_RDWR | os . O_CREAT )
fn_png = os . path . abspath ( filename )
self . logger . debug ( "QRcode image saved at %s" % fn_png )
qr . screenshot ( fn_png )
os . close ( fd )
return fn_png
|
def send_email_message ( self , recipient , subject , html_message , text_message , sender_email , sender_name ) :
"""Send email message via Flask - Mail .
Args :
recipient : Email address or tuple of ( Name , Email - address ) .
subject : Subject line .
html _ message : The message body in HTML .
text _ message : The message body in plain text ."""
|
# Construct sender from sender _ name and sender _ email
sender = '"%s" <%s>' % ( sender_name , sender_email ) if sender_name else sender_email
# Send email via SMTP except when we ' re testing
if not current_app . testing : # pragma : no cover
try : # Prepare email message
from flask_mail import Message
message = Message ( subject , sender = sender , recipients = [ recipient ] , html = html_message , body = text_message )
# Send email message
self . mail . send ( message )
# Print helpful error messages on exceptions
except ( socket . gaierror , socket . error ) as e :
raise EmailError ( 'SMTP Connection error: Check your MAIL_SERVER and MAIL_PORT settings.' )
except smtplib . SMTPAuthenticationError :
raise EmailError ( 'SMTP Authentication error: Check your MAIL_USERNAME and MAIL_PASSWORD settings.' )
|
def pack ( self , value = None ) :
"""Pack the struct in a binary representation .
Merge some fields to ensure correct packing .
Returns :
bytes : Binary representation of this instance ."""
|
# Set the correct IHL based on options size
if self . options :
self . ihl += int ( len ( self . options ) / 4 )
# Set the correct packet length based on header length and data
self . length = int ( self . ihl * 4 + len ( self . data ) )
self . _version_ihl = self . version << 4 | self . ihl
self . _dscp_ecn = self . dscp << 2 | self . ecn
self . _flags_offset = self . flags << 13 | self . offset
# Set the checksum field before packing
self . _update_checksum ( )
return super ( ) . pack ( )
|
def DbPutClassProperty ( self , argin ) :
"""Create / Update class property ( ies )
: param argin : Str [ 0 ] = Tango class name
Str [ 1 ] = Property number
Str [ 2 ] = Property name
Str [ 3 ] = Property value number
Str [ 4 ] = Property value 1
Str [ n ] = Property value n
: type : tango . DevVarStringArray
: return :
: rtype : tango . DevVoid"""
|
self . _log . debug ( "In DbPutClassProperty()" )
class_name = argin [ 0 ]
nb_properties = int ( argin [ 1 ] )
self . db . put_class_property ( class_name , nb_properties , argin [ 2 : ] )
|
def right_click ( self , x , y , n = 1 , pre_dl = None , post_dl = None ) :
"""Right click at ` ` ( x , y ) ` ` on screen for ` ` n ` ` times .
at begin .
* * 中文文档 * *
在屏幕的 ` ` ( x , y ) ` ` 坐标处右键单击 ` ` n ` ` 次 。"""
|
self . delay ( pre_dl )
self . m . click ( x , y , 2 , n )
self . delay ( post_dl )
|
async def exit_rescue_mode ( self , wait : bool = False , wait_interval : int = 5 ) :
"""Exit rescue mode .
: param wait : If specified , wait until the deploy is complete .
: param wait _ interval : How often to poll , defaults to 5 seconds"""
|
try :
self . _data = await self . _handler . exit_rescue_mode ( system_id = self . system_id )
except CallError as error :
if error . status == HTTPStatus . FORBIDDEN :
message = "Not allowed to exit rescue mode."
raise OperationNotAllowed ( message ) from error
else :
raise
if not wait :
return self
else : # Wait for machine to finish exiting rescue mode
while self . status == NodeStatus . EXITING_RESCUE_MODE :
await asyncio . sleep ( wait_interval )
self . _data = await self . _handler . read ( system_id = self . system_id )
if self . status == NodeStatus . FAILED_EXITING_RESCUE_MODE :
msg = "{hostname} failed to exit rescue mode." . format ( hostname = self . hostname )
raise RescueModeFailure ( msg , self )
return self
|
def get_cands_uri ( field , ccd , version = 'p' , ext = 'measure3.cands.astrom' , prefix = None , block = None ) :
"""return the nominal URI for a candidate file .
@ param field : the OSSOS field name
@ param ccd : which CCD are the candidates on
@ param version : either the ' p ' , or ' s ' ( scrambled ) candidates .
@ param ext : Perhaps we ' ll change this one day .
@ param prefix : if this is a ' fake ' dataset then add ' fk '
@ param block : Which BLOCK of the field are we looking at ? eg . 15BS + 1 + 1
@ return :"""
|
if prefix is None :
prefix = ""
if len ( prefix ) > 0 :
prefix += "_"
if len ( field ) > 0 :
field += "_"
if ext is None :
ext = ""
if len ( ext ) > 0 and ext [ 0 ] != "." :
ext = ".{}" . format ( ext )
measure3_dir = MEASURE3
if block is not None :
measure3_dir + "/{}" . format ( block )
return "{}/{}{}{}{}{}" . format ( measure3_dir , prefix , field , version , ccd , ext )
|
def accept ( self ) :
"""accept ( ) - > ( socket object , address info )
Wait for an incoming connection . Return a new socket
representing the connection , and the address of the client .
For IP sockets , the address info is a pair ( hostaddr , port ) ."""
|
fd , addr = self . _accept ( )
sock = socket ( self . family , self . type , self . proto , fileno = fd )
# Issue # 7995 : if no default timeout is set and the listening
# socket had a ( non - zero ) timeout , force the new socket in blocking
# mode to override platform - specific socket flags inheritance .
if getdefaulttimeout ( ) is None and self . gettimeout ( ) :
sock . setblocking ( True )
return sock , addr
|
def version ( self ) :
"""Returns the node ' s RPC version
: raises : : py : exc : ` nano . rpc . RPCException `
> > > rpc . version ( )
" rpc _ version " : 1,
" store _ version " : 10,
" node _ vendor " : " RaiBlocks 9.0" """
|
resp = self . call ( 'version' )
for key in ( 'rpc_version' , 'store_version' ) :
resp [ key ] = int ( resp [ key ] )
return resp
|
def _find_relations ( self ) :
"""Find all relevant relation elements and return them in a list ."""
|
# Get all extractions
extractions = list ( self . tree . execute ( "$.extractions[(@.@type is 'Extraction')]" ) )
# Get relations from extractions
relations = [ ]
for e in extractions :
label_set = set ( e . get ( 'labels' , [ ] ) )
# If this is a DirectedRelation
if 'DirectedRelation' in label_set :
self . relation_dict [ e [ '@id' ] ] = e
subtype = e . get ( 'subtype' )
if any ( t in subtype for t in polarities . keys ( ) ) :
relations . append ( ( subtype , e ) )
# If this is an Event or an Entity
if { 'Event' , 'Entity' } & label_set :
self . concept_dict [ e [ '@id' ] ] = e
if not relations and not self . relation_dict :
logger . info ( "No relations found." )
else :
logger . info ( '%d relations of types %s found' % ( len ( relations ) , ', ' . join ( polarities . keys ( ) ) ) )
logger . info ( '%d relations in dict.' % len ( self . relation_dict ) )
logger . info ( '%d concepts found.' % len ( self . concept_dict ) )
return relations
|
def read_packet ( self , size = MTU ) :
"""return a single packet read from the file
bytes , ( sec , # timestamp seconds
usec , # timestamp microseconds
wirelen ) # actual length of packet
returns None when no more packets are available"""
|
hdr = self . f . read ( 16 )
if len ( hdr ) < 16 :
return None
sec , usec , caplen , wirelen = struct . unpack ( self . endian + "IIII" , hdr )
s = self . f . read ( caplen ) [ : MTU ]
return s , 0 , ( sec , usec , wirelen )
|
def IntraField ( config = { } ) :
"""Intra field interlace to sequential converter .
This uses a vertical filter with an aperture of 8 lines , generated
by
: py : class : ` ~ pyctools . components . interp . filtergenerator . FilterGenerator ` .
The aperture ( and other parameters ) can be adjusted after the
: py : class : ` IntraField ` component is created ."""
|
return Compound ( config = config , deint = SimpleDeinterlace ( ) , interp = Resize ( ) , filgen = FilterGenerator ( yaperture = 8 , ycut = 50 ) , gain = Arithmetic ( func = 'data * pt_float(2)' ) , linkages = { ( 'self' , 'input' ) : [ ( 'deint' , 'input' ) ] , ( 'deint' , 'output' ) : [ ( 'interp' , 'input' ) ] , ( 'interp' , 'output' ) : [ ( 'self' , 'output' ) ] , ( 'filgen' , 'output' ) : [ ( 'gain' , 'input' ) ] , ( 'gain' , 'output' ) : [ ( 'interp' , 'filter' ) ] , } )
|
def copy_root_log_to_file ( filename : str , fmt : str = LOG_FORMAT , datefmt : str = LOG_DATEFMT ) -> None :
"""Copy all currently configured logs to the specified file .
Should ONLY be called from the ` ` if _ _ name _ _ = = ' main ' ` ` script ;
see https : / / docs . python . org / 3.4 / howto / logging . html # library - config ."""
|
fh = logging . FileHandler ( filename )
# default file mode is ' a ' for append
formatter = logging . Formatter ( fmt = fmt , datefmt = datefmt )
fh . setFormatter ( formatter )
apply_handler_to_root_log ( fh )
|
def delete_forwarding_address ( payment_id , coin_symbol = 'btc' , api_key = None ) :
'''Delete a forwarding address on a specific blockchain , using its
payment id'''
|
assert payment_id , 'payment_id required'
assert is_valid_coin_symbol ( coin_symbol )
assert api_key , 'api_key required'
params = { 'token' : api_key }
url = make_url ( ** dict ( payments = payment_id ) )
r = requests . delete ( url , params = params , verify = True , timeout = TIMEOUT_IN_SECONDS )
return get_valid_json ( r , allow_204 = True )
|
def _move_bee ( self , bee , new_values ) :
'''Moves a bee to a new position if new fitness score is better than
the bee ' s current fitness score
Args :
bee ( EmployerBee ) : bee to move
new _ values ( tuple ) : ( new score , new values , new fitness function
return value )'''
|
score = np . nan_to_num ( new_values [ 0 ] )
if bee . score > score :
bee . failed_trials += 1
else :
bee . values = new_values [ 1 ]
bee . score = score
bee . error = new_values [ 2 ]
bee . failed_trials = 0
self . _logger . log ( 'debug' , 'Bee assigned to new merged position' )
|
def plot_eval_results ( eval_results , metric = None , xaxislabel = None , yaxislabel = None , title = None , title_fontsize = 'x-large' , axes_title_fontsize = 'large' , show_metric_direction = True , metric_direction_font_size = 'large' , subplots_opts = None , subplots_adjust_opts = None , figsize = 'auto' , ** fig_kwargs ) :
"""Plot the evaluation results from ` eval _ results ` . ` eval _ results ` must be a sequence containing ` ( param , values ) `
tuples , where ` param ` is the parameter value to appear on the x axis and ` values ` can be a dict structure
containing the metric values . ` eval _ results ` can be created using the ` results _ by _ parameter ` function from the
` topicmod . common ` module .
Set ` metric ` to plot only a specific metric .
Set ` xaxislabel ` for a label on the x - axis .
Set ` yaxislabel ` for a label on the y - axis .
Set ` title ` for a plot title .
Options in a dict ` subplots _ opts ` will be passed to ` plt . subplots ( . . . ) ` .
Options in a dict ` subplots _ adjust _ opts ` will be passed to ` fig . subplots _ adjust ( . . . ) ` .
` figsize ` can be set to a tuple ` ( width , height ) ` or to ` " auto " ` ( default ) which will set the size to
` ( 8 , 2 * < num . of metrics > ) ` ."""
|
if type ( eval_results ) not in ( list , tuple ) or not eval_results :
raise ValueError ( '`eval_results` must be a list or tuple with at least one element' )
if type ( eval_results [ 0 ] ) not in ( list , tuple ) or len ( eval_results [ 0 ] ) != 2 :
raise ValueError ( '`eval_results` must be a list or tuple containing a (param, values) tuple. ' 'Maybe `eval_results` must be converted with `results_by_parameter`.' )
if metric is not None and type ( metric ) not in ( list , tuple ) :
metric = [ metric ]
elif metric is None : # remove special evaluation result ' model ' : the calculated model itself
metric = list ( set ( next ( iter ( eval_results ) ) [ 1 ] . keys ( ) ) - { 'model' } )
metric = sorted ( metric )
metric_direction = [ ]
for m in metric :
if m == 'perplexity' :
metric_direction . append ( 'minimize' )
else :
m_fn_name = 'metric_%s' % ( m [ : 16 ] if m . startswith ( 'coherence_gensim' ) else m )
m_fn = getattr ( evaluate , m_fn_name , None )
if m_fn :
metric_direction . append ( getattr ( m_fn , 'direction' , 'unknown' ) )
else :
metric_direction . append ( 'unknown' )
n_metrics = len ( metric )
assert n_metrics == len ( metric_direction )
metrics_ordered = [ ]
for m_dir in sorted ( set ( metric_direction ) , reverse = True ) :
metrics_ordered . extend ( [ ( m , d ) for m , d in zip ( metric , metric_direction ) if d == m_dir ] )
assert n_metrics == len ( metrics_ordered )
# get figure and subplots ( axes )
if figsize == 'auto' :
figsize = ( 8 , 2 * n_metrics )
subplots_kwargs = dict ( nrows = n_metrics , ncols = 1 , sharex = True , constrained_layout = True , figsize = figsize )
subplots_kwargs . update ( subplots_opts or { } )
subplots_kwargs . update ( fig_kwargs )
fig , axes = plt . subplots ( ** subplots_kwargs )
# set title
if title :
fig . suptitle ( title , fontsize = title_fontsize )
x = list ( zip ( * eval_results ) ) [ 0 ]
# set adjustments
if title :
subplots_adjust_kwargs = dict ( top = 0.9 , hspace = 0.3 )
else :
subplots_adjust_kwargs = { }
subplots_adjust_kwargs . update ( subplots_adjust_opts or { } )
if subplots_adjust_kwargs :
fig . subplots_adjust ( ** subplots_adjust_kwargs )
# draw subplot for each metric
axes_pos_per_dir = defaultdict ( list )
for i , ( ax , ( m , m_dir ) ) in enumerate ( zip ( axes . flatten ( ) , metrics_ordered ) ) :
if show_metric_direction :
axes_pos_per_dir [ m_dir ] . append ( ax . get_position ( ) )
y = [ metric_res [ m ] for _ , metric_res in eval_results ]
ax . plot ( x , y , label = m )
ax . set_title ( m , fontsize = axes_title_fontsize )
# set axis labels
if xaxislabel and i == len ( metric ) - 1 :
ax . set_xlabel ( xaxislabel )
if yaxislabel :
ax . set_ylabel ( yaxislabel )
# show grouped metric direction on the left
if axes_pos_per_dir : # = if show _ metric _ direction
left_xs = [ ]
ys = [ ]
for m_dir , bboxes in axes_pos_per_dir . items ( ) :
left_xs . append ( min ( bb . x0 for bb in bboxes ) )
min_y = min ( bb . y0 for bb in bboxes )
max_y = max ( bb . y1 for bb in bboxes )
ys . append ( ( min_y , max_y ) )
left_x = min ( left_xs ) / 2.5
fig . lines = [ ]
for ( min_y , max_y ) , m_dir in zip ( ys , axes_pos_per_dir . keys ( ) ) :
center_y = min_y + ( max_y - min_y ) / 2
fig . lines . append ( Line2D ( ( left_x , left_x ) , ( min_y , max_y ) , transform = fig . transFigure , linewidth = 5 , color = 'lightgray' ) )
fig . text ( left_x / 1.5 , center_y , m_dir , fontsize = metric_direction_font_size , rotation = 'vertical' , horizontalalignment = 'right' , verticalalignment = 'center' )
return fig , axes
|
def _get_call_names_helper ( node ) :
"""Recursively finds all function names ."""
|
if isinstance ( node , ast . Name ) :
if node . id not in BLACK_LISTED_CALL_NAMES :
yield node . id
elif isinstance ( node , ast . Subscript ) :
yield from _get_call_names_helper ( node . value )
elif isinstance ( node , ast . Str ) :
yield node . s
elif isinstance ( node , ast . Attribute ) :
yield node . attr
yield from _get_call_names_helper ( node . value )
|
def specimens_results_magic ( infile = 'pmag_specimens.txt' , measfile = 'magic_measurements.txt' , sampfile = 'er_samples.txt' , sitefile = 'er_sites.txt' , agefile = 'er_ages.txt' , specout = 'er_specimens.txt' , sampout = 'pmag_samples.txt' , siteout = 'pmag_sites.txt' , resout = 'pmag_results.txt' , critout = 'pmag_criteria.txt' , instout = 'magic_instruments.txt' , plotsites = False , fmt = 'svg' , dir_path = '.' , cors = [ ] , priorities = [ 'DA-AC-ARM' , 'DA-AC-TRM' ] , coord = 'g' , user = '' , vgps_level = 'site' , do_site_intensity = True , DefaultAge = [ "none" ] , avg_directions_by_sample = False , avg_intensities_by_sample = False , avg_all_components = False , avg_by_polarity = False , skip_directions = False , skip_intensities = False , use_sample_latitude = False , use_paleolatitude = False , use_criteria = 'default' ) :
"""Writes magic _ instruments , er _ specimens , pmag _ samples , pmag _ sites , pmag _ criteria , and pmag _ results . The data used to write this is obtained by reading a pmag _ speciemns , a magic _ measurements , a er _ samples , a er _ sites , a er _ ages .
@ param - > infile : path from the WD to the pmag speciemns table
@ param - > measfile : path from the WD to the magic measurement file
@ param - > sampfile : path from the WD to the er sample file
@ param - > sitefile : path from the WD to the er sites data file
@ param - > agefile : path from the WD to the er ages data file
@ param - > specout : path from the WD to the place to write the er specimens data file
@ param - > sampout : path from the WD to the place to write the pmag samples data file
@ param - > siteout : path from the WD to the place to write the pmag sites data file
@ param - > resout : path from the WD to the place to write the pmag results data file
@ param - > critout : path from the WD to the place to write the pmag criteria file
@ param - > instout : path from th WD to the place to write the magic instruments file
@ param - > documentation incomplete if you know more about the purpose of the parameters in this function and it ' s side effects please extend and complete this string"""
|
# initialize some variables
plotsites = False
# cannot use draw _ figs from within ipmag
Comps = [ ]
# list of components
version_num = pmag . get_version ( )
args = sys . argv
model_lat_file = ""
Dcrit , Icrit , nocrit = 0 , 0 , 0
corrections = [ ]
nocorrection = [ 'DA-NL' , 'DA-AC' , 'DA-CR' ]
# do some data adjustments
for cor in cors :
nocorrection . remove ( 'DA-' + cor )
corrections . append ( 'DA-' + cor )
for p in priorities :
if not p . startswith ( 'DA-AC-' ) :
p = 'DA-AC-' + p
# translate coord into coords
if coord == 's' :
coords = [ '-1' ]
if coord == 'g' :
coords = [ '0' ]
if coord == 't' :
coords = [ '100' ]
if coord == 'b' :
coords = [ '0' , '100' ]
if vgps_level == 'sample' :
vgps = 1
# save sample level VGPS / VADMs
else :
vgps = 0
# site level
if do_site_intensity :
nositeints = 0
else :
nositeints = 1
# chagne these all to True / False instead of 1/0
if not skip_intensities : # set model lat and
if use_sample_latitude and use_paleolatitude :
print ( "you should set a paleolatitude file OR use present day lat - not both" )
return False
elif use_sample_latitude :
get_model_lat = 1
elif use_paleolatitude :
get_model_lat = 2
try :
model_lat_file = dir_path + '/' + args [ ind + 1 ]
get_model_lat = 2
mlat = open ( model_lat_file , 'r' )
ModelLats = [ ]
for line in mlat . readlines ( ) :
ModelLat = { }
tmp = line . split ( )
ModelLat [ "er_site_name" ] = tmp [ 0 ]
ModelLat [ "site_model_lat" ] = tmp [ 1 ]
ModelLat [ "er_sample_name" ] = tmp [ 0 ]
ModelLat [ "sample_lat" ] = tmp [ 1 ]
ModelLats . append ( ModelLat )
mlat . clos ( )
except :
print ( "use_paleolatitude option requires a valid paleolatitude file" )
else :
get_model_lat = 0
# skips VADM calculation entirely
if plotsites and not skip_directions : # plot by site - set up plot window
EQ = { }
EQ [ 'eqarea' ] = 1
# define figure 1 as equal area projection
pmagplotlib . plot_init ( EQ [ 'eqarea' ] , 5 , 5 )
# I don ' t know why this has to be here , but otherwise the first plot
# never plots . . .
pmagplotlib . plot_net ( EQ [ 'eqarea' ] )
pmagplotlib . draw_figs ( EQ )
infile = os . path . join ( dir_path , infile )
measfile = os . path . join ( dir_path , measfile )
instout = os . path . join ( dir_path , instout )
sampfile = os . path . join ( dir_path , sampfile )
sitefile = os . path . join ( dir_path , sitefile )
agefile = os . path . join ( dir_path , agefile )
specout = os . path . join ( dir_path , specout )
sampout = os . path . join ( dir_path , sampout )
siteout = os . path . join ( dir_path , siteout )
resout = os . path . join ( dir_path , resout )
critout = os . path . join ( dir_path , critout )
if use_criteria == 'none' :
Dcrit , Icrit , nocrit = 1 , 1 , 1
# no selection criteria
crit_data = pmag . default_criteria ( nocrit )
elif use_criteria == 'default' :
crit_data = pmag . default_criteria ( nocrit )
# use default criteria
elif use_criteria == 'existing' :
crit_data , file_type = pmag . magic_read ( critout )
# use pmag _ criteria file
print ( "Acceptance criteria read in from " , critout )
accept = { }
for critrec in crit_data :
for key in list ( critrec . keys ( ) ) : # need to migrate specimen _ dang to specimen _ int _ dang for intensity
# data using old format
if 'IE-SPEC' in list ( critrec . keys ( ) ) and 'specimen_dang' in list ( critrec . keys ( ) ) and 'specimen_int_dang' not in list ( critrec . keys ( ) ) :
critrec [ 'specimen_int_dang' ] = critrec [ 'specimen_dang' ]
del critrec [ 'specimen_dang' ]
# need to get rid of ron shaars sample _ int _ sigma _ uT
if 'sample_int_sigma_uT' in list ( critrec . keys ( ) ) :
critrec [ 'sample_int_sigma' ] = '%10.3e' % ( eval ( critrec [ 'sample_int_sigma_uT' ] ) * 1e-6 )
if key not in list ( accept . keys ( ) ) and critrec [ key ] != '' :
accept [ key ] = critrec [ key ]
if use_criteria == 'default' :
pmag . magic_write ( critout , [ accept ] , 'pmag_criteria' )
print ( "\n Pmag Criteria stored in " , critout , '\n' )
# now we ' re done slow dancing
# read in site data - has the lats and lons
SiteNFO , file_type = pmag . magic_read ( sitefile )
# read in site data - has the lats and lons
SampNFO , file_type = pmag . magic_read ( sampfile )
# find all the sites with height info .
height_nfo = pmag . get_dictitem ( SiteNFO , 'site_height' , '' , 'F' )
if agefile :
AgeNFO , file_type = pmag . magic_read ( agefile )
# read in the age information
# read in specimen interpretations
Data , file_type = pmag . magic_read ( infile )
# retrieve specimens with intensity data
IntData = pmag . get_dictitem ( Data , 'specimen_int' , '' , 'F' )
comment , orient = "" , [ ]
samples , sites = [ ] , [ ]
for rec in Data : # run through the data filling in missing keys and finding all components , coordinates available
# fill in missing fields , collect unique sample and site names
if 'er_sample_name' not in list ( rec . keys ( ) ) :
rec [ 'er_sample_name' ] = ""
elif rec [ 'er_sample_name' ] not in samples :
samples . append ( rec [ 'er_sample_name' ] )
if 'er_site_name' not in list ( rec . keys ( ) ) :
rec [ 'er_site_name' ] = ""
elif rec [ 'er_site_name' ] not in sites :
sites . append ( rec [ 'er_site_name' ] )
if 'specimen_int' not in list ( rec . keys ( ) ) :
rec [ 'specimen_int' ] = ''
if 'specimen_comp_name' not in list ( rec . keys ( ) ) or rec [ 'specimen_comp_name' ] == "" :
rec [ 'specimen_comp_name' ] = 'A'
if rec [ 'specimen_comp_name' ] not in Comps :
Comps . append ( rec [ 'specimen_comp_name' ] )
rec [ 'specimen_tilt_correction' ] = rec [ 'specimen_tilt_correction' ] . strip ( '\n' )
if "specimen_tilt_correction" not in list ( rec . keys ( ) ) :
rec [ "specimen_tilt_correction" ] = "-1"
# assume sample coordinates
if rec [ "specimen_tilt_correction" ] not in orient : # collect available coordinate systems
orient . append ( rec [ "specimen_tilt_correction" ] )
if "specimen_direction_type" not in list ( rec . keys ( ) ) : # assume direction is line - not plane
rec [ "specimen_direction_type" ] = 'l'
if "specimen_dec" not in list ( rec . keys ( ) ) : # if no declination , set direction type to blank
rec [ "specimen_direction_type" ] = ''
if "specimen_n" not in list ( rec . keys ( ) ) :
rec [ "specimen_n" ] = ''
# put in n
if "specimen_alpha95" not in list ( rec . keys ( ) ) :
rec [ "specimen_alpha95" ] = ''
# put in alpha95
if "magic_method_codes" not in list ( rec . keys ( ) ) :
rec [ "magic_method_codes" ] = ''
# start parsing data into SpecDirs , SpecPlanes , SpecInts
SpecInts , SpecDirs , SpecPlanes = [ ] , [ ] , [ ]
samples . sort ( )
# get sorted list of samples and sites
sites . sort ( )
if not skip_intensities : # don ' t skip intensities
# retrieve specimens with intensity data
IntData = pmag . get_dictitem ( Data , 'specimen_int' , '' , 'F' )
if nocrit == 0 : # use selection criteria
for rec in IntData : # do selection criteria
kill = pmag . grade ( rec , accept , 'specimen_int' )
if len ( kill ) == 0 : # intensity record to be included in sample , site
# calculations
SpecInts . append ( rec )
else :
SpecInts = IntData [ : ]
# take everything - no selection criteria
# check for required data adjustments
if len ( corrections ) > 0 and len ( SpecInts ) > 0 :
for cor in corrections : # only take specimens with the required corrections
SpecInts = pmag . get_dictitem ( SpecInts , 'magic_method_codes' , cor , 'has' )
if len ( nocorrection ) > 0 and len ( SpecInts ) > 0 :
for cor in nocorrection : # exclude the corrections not specified for inclusion
SpecInts = pmag . get_dictitem ( SpecInts , 'magic_method_codes' , cor , 'not' )
# take top priority specimen of its name in remaining specimens ( only one
# per customer )
PrioritySpecInts = [ ]
specimens = pmag . get_specs ( SpecInts )
# get list of uniq specimen names
for spec in specimens : # all the records for this specimen
ThisSpecRecs = pmag . get_dictitem ( SpecInts , 'er_specimen_name' , spec , 'T' )
if len ( ThisSpecRecs ) == 1 :
PrioritySpecInts . append ( ThisSpecRecs [ 0 ] )
elif len ( ThisSpecRecs ) > 1 : # more than one
prec = [ ]
for p in priorities : # all the records for this specimen
ThisSpecRecs = pmag . get_dictitem ( SpecInts , 'magic_method_codes' , p , 'has' )
if len ( ThisSpecRecs ) > 0 :
prec . append ( ThisSpecRecs [ 0 ] )
PrioritySpecInts . append ( prec [ 0 ] )
# take the best one
SpecInts = PrioritySpecInts
# this has the first specimen record
if not skip_directions : # don ' t skip directions
# retrieve specimens with directed lines and planes
AllDirs = pmag . get_dictitem ( Data , 'specimen_direction_type' , '' , 'F' )
# get all specimens with specimen _ n information
Ns = pmag . get_dictitem ( AllDirs , 'specimen_n' , '' , 'F' )
if nocrit != 1 : # use selection criteria
for rec in Ns : # look through everything with specimen _ n for " good " data
kill = pmag . grade ( rec , accept , 'specimen_dir' )
if len ( kill ) == 0 : # nothing killed it
SpecDirs . append ( rec )
else : # no criteria
SpecDirs = AllDirs [ : ]
# take them all
# SpecDirs is now the list of all specimen directions ( lines and planes )
# that pass muster
# list of all sample data and list of those that pass the DE - SAMP criteria
PmagSamps , SampDirs = [ ] , [ ]
PmagSites , PmagResults = [ ] , [ ]
# list of all site data and selected results
SampInts = [ ]
for samp in samples : # run through the sample names
if avg_directions_by_sample : # average by sample if desired
# get all the directional data for this sample
SampDir = pmag . get_dictitem ( SpecDirs , 'er_sample_name' , samp , 'T' )
if len ( SampDir ) > 0 : # there are some directions
for coord in coords : # step through desired coordinate systems
# get all the directions for this sample
CoordDir = pmag . get_dictitem ( SampDir , 'specimen_tilt_correction' , coord , 'T' )
if len ( CoordDir ) > 0 : # there are some with this coordinate system
if not avg_all_components : # look component by component
for comp in Comps : # get all directions from this component
CompDir = pmag . get_dictitem ( CoordDir , 'specimen_comp_name' , comp , 'T' )
if len ( CompDir ) > 0 : # there are some
# get a sample average from all specimens
PmagSampRec = pmag . lnpbykey ( CompDir , 'sample' , 'specimen' )
# decorate the sample record
PmagSampRec [ "er_location_name" ] = CompDir [ 0 ] [ 'er_location_name' ]
PmagSampRec [ "er_site_name" ] = CompDir [ 0 ] [ 'er_site_name' ]
PmagSampRec [ "er_sample_name" ] = samp
PmagSampRec [ "er_citation_names" ] = "This study"
PmagSampRec [ "er_analyst_mail_names" ] = user
PmagSampRec [ 'magic_software_packages' ] = version_num
if CompDir [ 0 ] [ 'specimen_flag' ] == 'g' :
PmagSampRec [ 'sample_flag' ] = 'g'
else :
PmagSampRec [ 'sample_flag' ] = 'b'
if nocrit != 1 :
PmagSampRec [ 'pmag_criteria_codes' ] = "ACCEPT"
if agefile != "" :
PmagSampRec = pmag . get_age ( PmagSampRec , "er_site_name" , "sample_inferred_" , AgeNFO , DefaultAge )
site_height = pmag . get_dictitem ( height_nfo , 'er_site_name' , PmagSampRec [ 'er_site_name' ] , 'T' )
if len ( site_height ) > 0 : # add in height if available
PmagSampRec [ "sample_height" ] = site_height [ 0 ] [ 'site_height' ]
PmagSampRec [ 'sample_comp_name' ] = comp
PmagSampRec [ 'sample_tilt_correction' ] = coord
PmagSampRec [ 'er_specimen_names' ] = pmag . get_list ( CompDir , 'er_specimen_name' )
# get a list of the specimen names used
PmagSampRec [ 'magic_method_codes' ] = pmag . get_list ( CompDir , 'magic_method_codes' )
# get a list of the methods used
if nocrit != 1 : # apply selection criteria
kill = pmag . grade ( PmagSampRec , accept , 'sample_dir' )
else :
kill = [ ]
if len ( kill ) == 0 :
SampDirs . append ( PmagSampRec )
if vgps == 1 : # if sample level VGP info desired , do that now
PmagResRec = pmag . getsampVGP ( PmagSampRec , SiteNFO )
if PmagResRec != "" :
PmagResults . append ( PmagResRec )
# print ( PmagSampRec )
PmagSamps . append ( PmagSampRec )
if avg_all_components : # average all components together basically same as above
PmagSampRec = pmag . lnpbykey ( CoordDir , 'sample' , 'specimen' )
PmagSampRec [ "er_location_name" ] = CoordDir [ 0 ] [ 'er_location_name' ]
PmagSampRec [ "er_site_name" ] = CoordDir [ 0 ] [ 'er_site_name' ]
PmagSampRec [ "er_sample_name" ] = samp
PmagSampRec [ "er_citation_names" ] = "This study"
PmagSampRec [ "er_analyst_mail_names" ] = user
PmagSampRec [ 'magic_software_packages' ] = version_num
if all ( i [ 'specimen_flag' ] == 'g' for i in CoordDir ) :
PmagSampRec [ 'sample_flag' ] = 'g'
else :
PmagSampRec [ 'sample_flag' ] = 'b'
if nocrit != 1 :
PmagSampRec [ 'pmag_criteria_codes' ] = ""
if agefile != "" :
PmagSampRec = pmag . get_age ( PmagSampRec , "er_site_name" , "sample_inferred_" , AgeNFO , DefaultAge )
site_height = pmag . get_dictitem ( height_nfo , 'er_site_name' , site , 'T' )
if len ( site_height ) > 0 : # add in height if available
PmagSampRec [ "sample_height" ] = site_height [ 0 ] [ 'site_height' ]
PmagSampRec [ 'sample_tilt_correction' ] = coord
PmagSampRec [ 'sample_comp_name' ] = pmag . get_list ( CoordDir , 'specimen_comp_name' )
# get components used
PmagSampRec [ 'er_specimen_names' ] = pmag . get_list ( CoordDir , 'er_specimen_name' )
# get specimne names averaged
PmagSampRec [ 'magic_method_codes' ] = pmag . get_list ( CoordDir , 'magic_method_codes' )
# assemble method codes
if nocrit != 1 : # apply selection criteria
kill = pmag . grade ( PmagSampRec , accept , 'sample_dir' )
if len ( kill ) == 0 : # passes the mustard
SampDirs . append ( PmagSampRec )
if vgps == 1 :
PmagResRec = pmag . getsampVGP ( PmagSampRec , SiteNFO )
if PmagResRec != "" :
PmagResults . append ( PmagResRec )
else : # take everything
SampDirs . append ( PmagSampRec )
if vgps == 1 :
PmagResRec = pmag . getsampVGP ( PmagSampRec , SiteNFO )
if PmagResRec != "" :
PmagResults . append ( PmagResRec )
PmagSamps . append ( PmagSampRec )
if avg_intensities_by_sample : # average by sample if desired
# get all the intensity data for this sample
SampI = pmag . get_dictitem ( SpecInts , 'er_sample_name' , samp , 'T' )
if len ( SampI ) > 0 : # there are some
# get average intensity stuff
PmagSampRec = pmag . average_int ( SampI , 'specimen' , 'sample' )
# decorate sample record
PmagSampRec [ "sample_description" ] = "sample intensity"
PmagSampRec [ "sample_direction_type" ] = ""
PmagSampRec [ 'er_site_name' ] = SampI [ 0 ] [ "er_site_name" ]
PmagSampRec [ 'er_sample_name' ] = samp
PmagSampRec [ 'er_location_name' ] = SampI [ 0 ] [ "er_location_name" ]
PmagSampRec [ "er_citation_names" ] = "This study"
PmagSampRec [ "er_analyst_mail_names" ] = user
if agefile != "" :
PmagSampRec = pmag . get_age ( PmagSampRec , "er_site_name" , "sample_inferred_" , AgeNFO , DefaultAge )
site_height = pmag . get_dictitem ( height_nfo , 'er_site_name' , PmagSampRec [ 'er_site_name' ] , 'T' )
if len ( site_height ) > 0 : # add in height if available
PmagSampRec [ "sample_height" ] = site_height [ 0 ] [ 'site_height' ]
PmagSampRec [ 'er_specimen_names' ] = pmag . get_list ( SampI , 'er_specimen_name' )
PmagSampRec [ 'magic_method_codes' ] = pmag . get_list ( SampI , 'magic_method_codes' )
if nocrit != 1 : # apply criteria !
kill = pmag . grade ( PmagSampRec , accept , 'sample_int' )
if len ( kill ) == 0 :
PmagSampRec [ 'pmag_criteria_codes' ] = "ACCEPT"
SampInts . append ( PmagSampRec )
PmagSamps . append ( PmagSampRec )
else :
PmagSampRec = { }
# sample rejected
else : # no criteria
SampInts . append ( PmagSampRec )
PmagSamps . append ( PmagSampRec )
PmagSampRec [ 'pmag_criteria_codes' ] = ""
if vgps == 1 and get_model_lat != 0 and PmagSampRec != { } :
if get_model_lat == 1 : # use sample latitude
PmagResRec = pmag . getsampVDM ( PmagSampRec , SampNFO )
# get rid of the model lat key
del ( PmagResRec [ 'model_lat' ] )
elif get_model_lat == 2 : # use model latitude
PmagResRec = pmag . getsampVDM ( PmagSampRec , ModelLats )
if PmagResRec != { } :
PmagResRec [ 'magic_method_codes' ] = PmagResRec [ 'magic_method_codes' ] + ":IE-MLAT"
if PmagResRec != { } :
PmagResRec [ 'er_specimen_names' ] = PmagSampRec [ 'er_specimen_names' ]
PmagResRec [ 'er_sample_names' ] = PmagSampRec [ 'er_sample_name' ]
PmagResRec [ 'pmag_criteria_codes' ] = 'ACCEPT'
PmagResRec [ 'average_int_sigma_perc' ] = PmagSampRec [ 'sample_int_sigma_perc' ]
PmagResRec [ 'average_int_sigma' ] = PmagSampRec [ 'sample_int_sigma' ]
PmagResRec [ 'average_int_n' ] = PmagSampRec [ 'sample_int_n' ]
PmagResRec [ 'vadm_n' ] = PmagSampRec [ 'sample_int_n' ]
PmagResRec [ 'data_type' ] = 'i'
PmagResults . append ( PmagResRec )
if len ( PmagSamps ) > 0 : # fill in missing keys from different types of records
TmpSamps , keylist = pmag . fillkeys ( PmagSamps )
# save in sample output file
pmag . magic_write ( sampout , TmpSamps , 'pmag_samples' )
print ( ' sample averages written to ' , sampout )
# create site averages from specimens or samples as specified
for site in sites :
for coord in coords :
if not avg_directions_by_sample :
key , dirlist = 'specimen' , SpecDirs
# if specimen averages at site level desired
if avg_directions_by_sample :
key , dirlist = 'sample' , SampDirs
# if sample averages at site level desired
# get all the sites with directions
tmp = pmag . get_dictitem ( dirlist , 'er_site_name' , site , 'T' )
# use only the last coordinate if avg _ all _ components = = False
tmp1 = pmag . get_dictitem ( tmp , key + '_tilt_correction' , coord , 'T' )
# fish out site information ( lat / lon , etc . )
sd = pmag . get_dictitem ( SiteNFO , 'er_site_name' , site , 'T' )
if len ( sd ) > 0 :
sitedat = sd [ 0 ]
if not avg_all_components : # do component wise averaging
for comp in Comps : # get all components comp
siteD = pmag . get_dictitem ( tmp1 , key + '_comp_name' , comp , 'T' )
# remove bad data from means
quality_siteD = [ ]
# remove any records for which specimen _ flag or sample _ flag are ' b '
# assume ' g ' if flag is not provided
for rec in siteD :
spec_quality = rec . get ( 'specimen_flag' , 'g' )
samp_quality = rec . get ( 'sample_flag' , 'g' )
if ( spec_quality == 'g' ) and ( samp_quality == 'g' ) :
quality_siteD . append ( rec )
siteD = quality_siteD
if len ( siteD ) > 0 : # there are some for this site and component name
# get an average for this site
PmagSiteRec = pmag . lnpbykey ( siteD , 'site' , key )
# decorate the site record
PmagSiteRec [ 'site_comp_name' ] = comp
PmagSiteRec [ "er_location_name" ] = siteD [ 0 ] [ 'er_location_name' ]
PmagSiteRec [ "er_site_name" ] = siteD [ 0 ] [ 'er_site_name' ]
PmagSiteRec [ 'site_tilt_correction' ] = coord
PmagSiteRec [ 'site_comp_name' ] = pmag . get_list ( siteD , key + '_comp_name' )
if avg_directions_by_sample :
PmagSiteRec [ 'er_sample_names' ] = pmag . get_list ( siteD , 'er_sample_name' )
else :
PmagSiteRec [ 'er_specimen_names' ] = pmag . get_list ( siteD , 'er_specimen_name' )
# determine the demagnetization code ( DC3,4 or 5 ) for this site
AFnum = len ( pmag . get_dictitem ( siteD , 'magic_method_codes' , 'LP-DIR-AF' , 'has' ) )
Tnum = len ( pmag . get_dictitem ( siteD , 'magic_method_codes' , 'LP-DIR-T' , 'has' ) )
DC = 3
if AFnum > 0 :
DC += 1
if Tnum > 0 :
DC += 1
PmagSiteRec [ 'magic_method_codes' ] = pmag . get_list ( siteD , 'magic_method_codes' ) + ':' + 'LP-DC' + str ( DC )
PmagSiteRec [ 'magic_method_codes' ] . strip ( ":" )
if plotsites :
print ( PmagSiteRec [ 'er_site_name' ] )
# plot and list the data
pmagplotlib . plot_site ( EQ [ 'eqarea' ] , PmagSiteRec , siteD , key )
pmagplotlib . draw_figs ( EQ )
PmagSites . append ( PmagSiteRec )
else : # last component only
# get the last orientation system specified
siteD = tmp1 [ : ]
if len ( siteD ) > 0 : # there are some
# get the average for this site
PmagSiteRec = pmag . lnpbykey ( siteD , 'site' , key )
# decorate the record
PmagSiteRec [ "er_location_name" ] = siteD [ 0 ] [ 'er_location_name' ]
PmagSiteRec [ "er_site_name" ] = siteD [ 0 ] [ 'er_site_name' ]
PmagSiteRec [ 'site_comp_name' ] = comp
PmagSiteRec [ 'site_tilt_correction' ] = coord
PmagSiteRec [ 'site_comp_name' ] = pmag . get_list ( siteD , key + '_comp_name' )
PmagSiteRec [ 'er_specimen_names' ] = pmag . get_list ( siteD , 'er_specimen_name' )
PmagSiteRec [ 'er_sample_names' ] = pmag . get_list ( siteD , 'er_sample_name' )
AFnum = len ( pmag . get_dictitem ( siteD , 'magic_method_codes' , 'LP-DIR-AF' , 'has' ) )
Tnum = len ( pmag . get_dictitem ( siteD , 'magic_method_codes' , 'LP-DIR-T' , 'has' ) )
DC = 3
if AFnum > 0 :
DC += 1
if Tnum > 0 :
DC += 1
PmagSiteRec [ 'magic_method_codes' ] = pmag . get_list ( siteD , 'magic_method_codes' ) + ':' + 'LP-DC' + str ( DC )
PmagSiteRec [ 'magic_method_codes' ] . strip ( ":" )
if not avg_directions_by_sample :
PmagSiteRec [ 'site_comp_name' ] = pmag . get_list ( siteD , key + '_comp_name' )
if plotsites :
pmagplotlib . plot_site ( EQ [ 'eqarea' ] , PmagSiteRec , siteD , key )
pmagplotlib . draw_figs ( EQ )
PmagSites . append ( PmagSiteRec )
else :
print ( 'site information not found in er_sites for site, ' , site , ' site will be skipped' )
for PmagSiteRec in PmagSites : # now decorate each dictionary some more , and calculate VGPs etc . for results table
PmagSiteRec [ "er_citation_names" ] = "This study"
PmagSiteRec [ "er_analyst_mail_names" ] = user
PmagSiteRec [ 'magic_software_packages' ] = version_num
if agefile != "" :
PmagSiteRec = pmag . get_age ( PmagSiteRec , "er_site_name" , "site_inferred_" , AgeNFO , DefaultAge )
PmagSiteRec [ 'pmag_criteria_codes' ] = 'ACCEPT'
if 'site_n_lines' in list ( PmagSiteRec . keys ( ) ) and 'site_n_planes' in list ( PmagSiteRec . keys ( ) ) and PmagSiteRec [ 'site_n_lines' ] != "" and PmagSiteRec [ 'site_n_planes' ] != "" :
if int ( PmagSiteRec [ "site_n_planes" ] ) > 0 :
PmagSiteRec [ "magic_method_codes" ] = PmagSiteRec [ 'magic_method_codes' ] + ":DE-FM-LP"
elif int ( PmagSiteRec [ "site_n_lines" ] ) > 2 :
PmagSiteRec [ "magic_method_codes" ] = PmagSiteRec [ 'magic_method_codes' ] + ":DE-FM"
kill = pmag . grade ( PmagSiteRec , accept , 'site_dir' )
if len ( kill ) == 0 :
PmagResRec = { }
# set up dictionary for the pmag _ results table entry
PmagResRec [ 'data_type' ] = 'i'
# decorate it a bit
PmagResRec [ 'magic_software_packages' ] = version_num
PmagSiteRec [ 'site_description' ] = 'Site direction included in results table'
PmagResRec [ 'pmag_criteria_codes' ] = 'ACCEPT'
dec = float ( PmagSiteRec [ "site_dec" ] )
inc = float ( PmagSiteRec [ "site_inc" ] )
if 'site_alpha95' in list ( PmagSiteRec . keys ( ) ) and PmagSiteRec [ 'site_alpha95' ] != "" :
a95 = float ( PmagSiteRec [ "site_alpha95" ] )
else :
a95 = 180.
sitedat = pmag . get_dictitem ( SiteNFO , 'er_site_name' , PmagSiteRec [ 'er_site_name' ] , 'T' ) [ 0 ]
# fish out site information ( lat / lon , etc . )
lat = float ( sitedat [ 'site_lat' ] )
lon = float ( sitedat [ 'site_lon' ] )
plon , plat , dp , dm = pmag . dia_vgp ( dec , inc , a95 , lat , lon )
# get the VGP for this site
if PmagSiteRec [ 'site_tilt_correction' ] == '-1' :
C = ' (spec coord) '
if PmagSiteRec [ 'site_tilt_correction' ] == '0' :
C = ' (geog. coord) '
if PmagSiteRec [ 'site_tilt_correction' ] == '100' :
C = ' (strat. coord) '
PmagResRec [ "pmag_result_name" ] = "VGP Site: " + PmagSiteRec [ "er_site_name" ]
# decorate some more
PmagResRec [ "result_description" ] = "Site VGP, coord system = " + str ( coord ) + ' component: ' + comp
PmagResRec [ 'er_site_names' ] = PmagSiteRec [ 'er_site_name' ]
PmagResRec [ 'pmag_criteria_codes' ] = 'ACCEPT'
PmagResRec [ 'er_citation_names' ] = 'This study'
PmagResRec [ 'er_analyst_mail_names' ] = user
PmagResRec [ "er_location_names" ] = PmagSiteRec [ "er_location_name" ]
if avg_directions_by_sample :
PmagResRec [ "er_sample_names" ] = PmagSiteRec [ "er_sample_names" ]
else :
PmagResRec [ "er_specimen_names" ] = PmagSiteRec [ "er_specimen_names" ]
PmagResRec [ "tilt_correction" ] = PmagSiteRec [ 'site_tilt_correction' ]
PmagResRec [ "pole_comp_name" ] = PmagSiteRec [ 'site_comp_name' ]
PmagResRec [ "average_dec" ] = PmagSiteRec [ "site_dec" ]
PmagResRec [ "average_inc" ] = PmagSiteRec [ "site_inc" ]
PmagResRec [ "average_alpha95" ] = PmagSiteRec [ "site_alpha95" ]
PmagResRec [ "average_n" ] = PmagSiteRec [ "site_n" ]
PmagResRec [ "average_n_lines" ] = PmagSiteRec [ "site_n_lines" ]
PmagResRec [ "average_n_planes" ] = PmagSiteRec [ "site_n_planes" ]
PmagResRec [ "vgp_n" ] = PmagSiteRec [ "site_n" ]
PmagResRec [ "average_k" ] = PmagSiteRec [ "site_k" ]
PmagResRec [ "average_r" ] = PmagSiteRec [ "site_r" ]
PmagResRec [ "average_lat" ] = '%10.4f ' % ( lat )
PmagResRec [ "average_lon" ] = '%10.4f ' % ( lon )
if agefile != "" :
PmagResRec = pmag . get_age ( PmagResRec , "er_site_names" , "average_" , AgeNFO , DefaultAge )
site_height = pmag . get_dictitem ( height_nfo , 'er_site_name' , site , 'T' )
if len ( site_height ) > 0 :
PmagResRec [ "average_height" ] = site_height [ 0 ] [ 'site_height' ]
PmagResRec [ "vgp_lat" ] = '%7.1f ' % ( plat )
PmagResRec [ "vgp_lon" ] = '%7.1f ' % ( plon )
PmagResRec [ "vgp_dp" ] = '%7.1f ' % ( dp )
PmagResRec [ "vgp_dm" ] = '%7.1f ' % ( dm )
PmagResRec [ "magic_method_codes" ] = PmagSiteRec [ "magic_method_codes" ]
if '0' in PmagSiteRec [ 'site_tilt_correction' ] and "DA-DIR-GEO" not in PmagSiteRec [ 'magic_method_codes' ] :
PmagSiteRec [ 'magic_method_codes' ] = PmagSiteRec [ 'magic_method_codes' ] + ":DA-DIR-GEO"
if '100' in PmagSiteRec [ 'site_tilt_correction' ] and "DA-DIR-TILT" not in PmagSiteRec [ 'magic_method_codes' ] :
PmagSiteRec [ 'magic_method_codes' ] = PmagSiteRec [ 'magic_method_codes' ] + ":DA-DIR-TILT"
PmagSiteRec [ 'site_polarity' ] = ""
if avg_by_polarity : # assign polarity based on angle of pole lat to spin axis - may want to re - think this sometime
angle = pmag . angle ( [ 0 , 0 ] , [ 0 , ( 90 - plat ) ] )
if angle <= 55. :
PmagSiteRec [ "site_polarity" ] = 'n'
if angle > 55. and angle < 125. :
PmagSiteRec [ "site_polarity" ] = 't'
if angle >= 125. :
PmagSiteRec [ "site_polarity" ] = 'r'
PmagResults . append ( PmagResRec )
if avg_by_polarity : # find the tilt corrected data
crecs = pmag . get_dictitem ( PmagSites , 'site_tilt_correction' , '100' , 'T' )
if len ( crecs ) < 2 : # if there aren ' t any , find the geographic corrected data
crecs = pmag . get_dictitem ( PmagSites , 'site_tilt_correction' , '0' , 'T' )
if len ( crecs ) > 2 : # if there are some ,
comp = pmag . get_list ( crecs , 'site_comp_name' ) . split ( ':' ) [ 0 ]
# find the first component
# fish out all of the first component
crecs = pmag . get_dictitem ( crecs , 'site_comp_name' , comp , 'T' )
precs = [ ]
for rec in crecs :
precs . append ( { 'dec' : rec [ 'site_dec' ] , 'inc' : rec [ 'site_inc' ] , 'name' : rec [ 'er_site_name' ] , 'loc' : rec [ 'er_location_name' ] } )
# calculate average by polarity
polpars = pmag . fisher_by_pol ( precs )
# hunt through all the modes ( normal = A , reverse = B , all = ALL )
for mode in list ( polpars . keys ( ) ) :
PolRes = { }
PolRes [ 'er_citation_names' ] = 'This study'
PolRes [ "pmag_result_name" ] = "Polarity Average: Polarity " + mode
PolRes [ "data_type" ] = "a"
PolRes [ "average_dec" ] = '%7.1f' % ( polpars [ mode ] [ 'dec' ] )
PolRes [ "average_inc" ] = '%7.1f' % ( polpars [ mode ] [ 'inc' ] )
PolRes [ "average_n" ] = '%i' % ( polpars [ mode ] [ 'n' ] )
PolRes [ "average_r" ] = '%5.4f' % ( polpars [ mode ] [ 'r' ] )
PolRes [ "average_k" ] = '%6.0f' % ( polpars [ mode ] [ 'k' ] )
PolRes [ "average_alpha95" ] = '%7.1f' % ( polpars [ mode ] [ 'alpha95' ] )
PolRes [ 'er_site_names' ] = polpars [ mode ] [ 'sites' ]
PolRes [ 'er_location_names' ] = polpars [ mode ] [ 'locs' ]
PolRes [ 'magic_software_packages' ] = version_num
PmagResults . append ( PolRes )
if not skip_intensities and nositeints != 1 :
for site in sites : # now do intensities for each site
if plotsites :
print ( site )
if not avg_intensities_by_sample :
key , intlist = 'specimen' , SpecInts
# if using specimen level data
if avg_intensities_by_sample :
key , intlist = 'sample' , PmagSamps
# if using sample level data
# get all the intensities for this site
Ints = pmag . get_dictitem ( intlist , 'er_site_name' , site , 'T' )
if len ( Ints ) > 0 : # there are some
# get average intensity stuff for site table
PmagSiteRec = pmag . average_int ( Ints , key , 'site' )
# get average intensity stuff for results table
PmagResRec = pmag . average_int ( Ints , key , 'average' )
if plotsites : # if site by site examination requested - print this site out to the screen
for rec in Ints :
print ( rec [ 'er_' + key + '_name' ] , ' %7.1f' % ( 1e6 * float ( rec [ key + '_int' ] ) ) )
if len ( Ints ) > 1 :
print ( 'Average: ' , '%7.1f' % ( 1e6 * float ( PmagResRec [ 'average_int' ] ) ) , 'N: ' , len ( Ints ) )
print ( 'Sigma: ' , '%7.1f' % ( 1e6 * float ( PmagResRec [ 'average_int_sigma' ] ) ) , 'Sigma %: ' , PmagResRec [ 'average_int_sigma_perc' ] )
input ( 'Press any key to continue\n' )
er_location_name = Ints [ 0 ] [ "er_location_name" ]
# decorate the records
PmagSiteRec [ "er_location_name" ] = er_location_name
PmagSiteRec [ "er_citation_names" ] = "This study"
PmagResRec [ "er_location_names" ] = er_location_name
PmagResRec [ "er_citation_names" ] = "This study"
PmagSiteRec [ "er_analyst_mail_names" ] = user
PmagResRec [ "er_analyst_mail_names" ] = user
PmagResRec [ "data_type" ] = 'i'
if not avg_intensities_by_sample :
PmagSiteRec [ 'er_specimen_names' ] = pmag . get_list ( Ints , 'er_specimen_name' )
# list of all specimens used
PmagResRec [ 'er_specimen_names' ] = pmag . get_list ( Ints , 'er_specimen_name' )
PmagSiteRec [ 'er_sample_names' ] = pmag . get_list ( Ints , 'er_sample_name' )
# list of all samples used
PmagResRec [ 'er_sample_names' ] = pmag . get_list ( Ints , 'er_sample_name' )
PmagSiteRec [ 'er_site_name' ] = site
PmagResRec [ 'er_site_names' ] = site
PmagSiteRec [ 'magic_method_codes' ] = pmag . get_list ( Ints , 'magic_method_codes' )
PmagResRec [ 'magic_method_codes' ] = pmag . get_list ( Ints , 'magic_method_codes' )
kill = pmag . grade ( PmagSiteRec , accept , 'site_int' )
if nocrit == 1 or len ( kill ) == 0 :
b , sig = float ( PmagResRec [ 'average_int' ] ) , ""
if ( PmagResRec [ 'average_int_sigma' ] ) != "" :
sig = float ( PmagResRec [ 'average_int_sigma' ] )
# fish out site direction
sdir = pmag . get_dictitem ( PmagResults , 'er_site_names' , site , 'T' )
# get the VDM for this record using last average
# inclination ( hope it is the right one ! )
if len ( sdir ) > 0 and sdir [ - 1 ] [ 'average_inc' ] != "" :
inc = float ( sdir [ 0 ] [ 'average_inc' ] )
# get magnetic latitude using dipole formula
mlat = pmag . magnetic_lat ( inc )
# get VDM with magnetic latitude
PmagResRec [ "vdm" ] = '%8.3e ' % ( pmag . b_vdm ( b , mlat ) )
PmagResRec [ "vdm_n" ] = PmagResRec [ 'average_int_n' ]
if 'average_int_sigma' in list ( PmagResRec . keys ( ) ) and PmagResRec [ 'average_int_sigma' ] != "" :
vdm_sig = pmag . b_vdm ( float ( PmagResRec [ 'average_int_sigma' ] ) , mlat )
PmagResRec [ "vdm_sigma" ] = '%8.3e ' % ( vdm_sig )
else :
PmagResRec [ "vdm_sigma" ] = ""
mlat = ""
# define a model latitude
if get_model_lat == 1 : # use present site latitude
mlats = pmag . get_dictitem ( SiteNFO , 'er_site_name' , site , 'T' )
if len ( mlats ) > 0 :
mlat = mlats [ 0 ] [ 'site_lat' ]
# use a model latitude from some plate reconstruction model
# ( or something )
elif get_model_lat == 2 :
mlats = pmag . get_dictitem ( ModelLats , 'er_site_name' , site , 'T' )
if len ( mlats ) > 0 :
PmagResRec [ 'model_lat' ] = mlats [ 0 ] [ 'site_model_lat' ]
mlat = PmagResRec [ 'model_lat' ]
if mlat != "" : # get the VADM using the desired latitude
PmagResRec [ "vadm" ] = '%8.3e ' % ( pmag . b_vdm ( b , float ( mlat ) ) )
if sig != "" :
vdm_sig = pmag . b_vdm ( float ( PmagResRec [ 'average_int_sigma' ] ) , float ( mlat ) )
PmagResRec [ "vadm_sigma" ] = '%8.3e ' % ( vdm_sig )
PmagResRec [ "vadm_n" ] = PmagResRec [ 'average_int_n' ]
else :
PmagResRec [ "vadm_sigma" ] = ""
# fish out site information ( lat / lon , etc . )
sitedat = pmag . get_dictitem ( SiteNFO , 'er_site_name' , PmagSiteRec [ 'er_site_name' ] , 'T' )
if len ( sitedat ) > 0 :
sitedat = sitedat [ 0 ]
PmagResRec [ 'average_lat' ] = sitedat [ 'site_lat' ]
PmagResRec [ 'average_lon' ] = sitedat [ 'site_lon' ]
else :
PmagResRec [ 'average_lon' ] = 'UNKNOWN'
PmagResRec [ 'average_lon' ] = 'UNKNOWN'
PmagResRec [ 'magic_software_packages' ] = version_num
PmagResRec [ "pmag_result_name" ] = "V[A]DM: Site " + site
PmagResRec [ "result_description" ] = "V[A]DM of site"
PmagResRec [ "pmag_criteria_codes" ] = "ACCEPT"
if agefile != "" :
PmagResRec = pmag . get_age ( PmagResRec , "er_site_names" , "average_" , AgeNFO , DefaultAge )
site_height = pmag . get_dictitem ( height_nfo , 'er_site_name' , site , 'T' )
if len ( site_height ) > 0 :
PmagResRec [ "average_height" ] = site_height [ 0 ] [ 'site_height' ]
PmagSites . append ( PmagSiteRec )
PmagResults . append ( PmagResRec )
if len ( PmagSites ) > 0 :
Tmp , keylist = pmag . fillkeys ( PmagSites )
pmag . magic_write ( siteout , Tmp , 'pmag_sites' )
print ( ' sites written to ' , siteout )
else :
print ( "No Site level table" )
if len ( PmagResults ) > 0 :
TmpRes , keylist = pmag . fillkeys ( PmagResults )
pmag . magic_write ( resout , TmpRes , 'pmag_results' )
print ( ' results written to ' , resout )
else :
print ( "No Results level table" )
|
def _from_signer_and_info ( cls , signer , info , ** kwargs ) :
"""Creates a Credentials instance from a signer and service account
info .
Args :
signer ( google . auth . crypt . Signer ) : The signer used to sign JWTs .
info ( Mapping [ str , str ] ) : The service account info .
kwargs : Additional arguments to pass to the constructor .
Returns :
google . auth . jwt . Credentials : The constructed credentials .
Raises :
ValueError : If the info is not in the expected format ."""
|
return cls ( signer , service_account_email = info [ 'client_email' ] , token_uri = info [ 'token_uri' ] , project_id = info . get ( 'project_id' ) , ** kwargs )
|
def handle_django_settings ( filename ) :
'''Attempts to load a Django project and get package dependencies from
settings .
Tested using Django 1.4 and 1.8 . Not sure if some nuances are missed in
the other versions .'''
|
old_sys_path = sys . path [ : ]
dirpath = os . path . dirname ( filename )
project = os . path . basename ( dirpath )
cwd = os . getcwd ( )
project_path = os . path . normpath ( os . path . join ( dirpath , '..' ) )
if project_path not in sys . path :
sys . path . insert ( 0 , project_path )
os . chdir ( project_path )
project_settings = '{}.settings' . format ( project )
os . environ [ 'DJANGO_SETTINGS_MODULE' ] = project_settings
try :
import django
# Sanity
django . setup = lambda : False
except ImportError :
log . error ( 'Found Django settings, but Django is not installed.' )
return
log . warn ( 'Loading Django Settings (Using {}): {}' . format ( django . get_version ( ) , filename ) )
from django . conf import LazySettings
installed_apps = set ( )
settings_imports = set ( )
try :
settings = LazySettings ( )
settings . _setup ( )
for k , v in vars ( settings . _wrapped ) . items ( ) :
if k not in _excluded_settings and re . match ( r'^[A-Z_]+$' , k ) : # log . debug ( ' Scanning Django setting : % s ' , k )
scan_django_settings ( v , settings_imports )
# Manually scan INSTALLED _ APPS since the broad scan won ' t include
# strings without a period in it .
for app in getattr ( settings , 'INSTALLED_APPS' , [ ] ) :
if hasattr ( app , '__file__' ) and getattr ( app , '__file__' ) :
imp , _ = utils . import_path_from_file ( getattr ( app , '__file__' ) )
installed_apps . add ( imp )
else :
installed_apps . add ( app )
except Exception as e :
log . error ( 'Could not load Django settings: %s' , e )
log . debug ( '' , exc_info = True )
return
if not installed_apps or not settings_imports :
log . error ( 'Got empty settings values from Django settings.' )
try :
from django . apps . registry import apps , Apps , AppRegistryNotReady
# Django doesn ' t like it when the initial instance of ` apps ` is reused ,
# but it has to be populated before other instances can be created .
if not apps . apps_ready :
apps . populate ( installed_apps )
else :
apps = Apps ( installed_apps )
start = time . time ( )
while True :
try :
for app in apps . get_app_configs ( ) :
installed_apps . add ( app . name )
except AppRegistryNotReady :
if time . time ( ) - start > 10 :
raise Exception ( 'Bail out of waiting for Django' )
log . debug ( 'Waiting for apps to load...' )
continue
break
except Exception as e :
log . debug ( 'Could not use AppConfig: {}' . format ( e ) )
# Restore before sub scans can occur
sys . path [ : ] = old_sys_path
os . chdir ( cwd )
for item in settings_imports :
need_scan = item . startswith ( _filescan_modules )
yield ( 'django' , item , project_path if need_scan else None )
for app in installed_apps :
need_scan = app . startswith ( project )
yield ( 'django' , app , project_path if need_scan else None )
|
def url_tibiadata ( self ) :
""": class : ` str ` : The URL to the TibiaData . com page of the house ."""
|
return self . get_url_tibiadata ( self . id , self . world ) if self . id and self . world else None
|
def find_usedby ( self , depslock_file_path , property_validate = True ) :
"""Find all dependencies by package
: param depslock _ file _ path :
: param property _ validate : for ` root ` packages we need check property , bad if we find packages from ` lock ` file ,
we can skip validate part
: return :"""
|
if depslock_file_path is None :
self . _raw = [ self . _params ]
self . _raw [ 0 ] [ 'repo' ] = None
self . _raw [ 0 ] [ 'server' ] = None
else :
self . _raw = [ x for x in self . _downloader . common_parser . iter_packages_params ( depslock_file_path ) ]
self . packages = self . _downloader . get_usedby_packages ( { 'raw' : self . _raw } , property_validate = property_validate )
|
def rms ( signal , fs ) :
"""Returns the root mean square ( RMS ) of the given * signal *
: param signal : a vector of electric potential
: type signal : numpy . ndarray
: param fs : samplerate of the signal ( Hz )
: type fs : int
: returns : float - - the RMS value of the signal"""
|
# if a signal contains a some silence , taking the RMS of the whole
# signal will be calculated as less loud as a signal without a silent
# period . I don ' t like this , so I am going to chunk the signals , and
# take the value of the most intense chunk
chunk_time = 0.001
# 1 ms chunk
chunk_samps = int ( chunk_time * fs )
amps = [ ]
if chunk_samps > 10 :
for i in range ( 0 , len ( signal ) - chunk_samps , chunk_samps ) :
amps . append ( np . sqrt ( np . mean ( pow ( signal [ i : i + chunk_samps ] , 2 ) ) ) )
amps . append ( np . sqrt ( np . mean ( pow ( signal [ len ( signal ) - chunk_samps : ] , 2 ) ) ) )
return np . amax ( amps )
else : # samplerate low , just rms the whole thing
return np . sqrt ( np . mean ( pow ( signal , 2 ) ) )
|
def get_decorated_names ( path , decorator_module , decorator_name ) :
'''Get the name of fumctions or methods decorated with the specified decorator .
If a method , the name will be as class _ name . method _ name .
Args :
path : The path to the module .
decorator _ module : The name of the module defining the decorator .
decorator _ name : The name of the decorator .'''
|
# Read the source
with open ( path ) as f :
module_source = f . read ( )
expression = '\s*@(?:{}\.)?{}[\s\S]+?(?:instance_creator\s*=\s*([\w.]+)[\s\S]+?)?\s*def\s+(\w+)\s*\(\s*(self)?' . format ( decorator_module , decorator_name )
methods = re . compile ( expression ) . findall ( module_source )
decorateds = [ x [ 1 ] for x in methods ]
instance_creators = [ x [ 0 ] if x [ 0 ] != '' else None for x in methods ]
is_methods = [ x [ 2 ] != '' for x in methods ]
result = [ ]
class_name_expression = '\s*(?:class\s+(\w+)\s*\(.*\:\n[\s\S]+?)+?\s+def\s+{}\s*\('
# Get class names for methods
for i in range ( len ( decorateds ) ) :
decorated = decorateds [ i ]
# If a method
if is_methods [ i ] : # Get the class name
index = decorateds [ : i ] . count ( decorated )
class_name = re . compile ( class_name_expression . format ( decorated ) ) . findall ( module_source ) [ index ]
original_name = decorated
instance_creator = instance_creators [ i ]
if decorated [ : 2 ] == '__' :
decorated = '_' + class_name + decorated
result . append ( { 'name' : decorated , 'class_name' : class_name , 'instance_creator' : instance_creator } )
else :
result . append ( { 'name' : decorated } )
if DEBUG :
print ( decorateds , instance_creators , is_methods , result )
return result
|
def del_password ( name , root = None ) :
'''. . versionadded : : 2014.7.0
Delete the password from name user
name
User to delete
root
Directory to chroot into
CLI Example :
. . code - block : : bash
salt ' * ' shadow . del _ password username'''
|
cmd = [ 'passwd' ]
if root is not None :
cmd . extend ( ( '-R' , root ) )
cmd . extend ( ( '-d' , name ) )
__salt__ [ 'cmd.run' ] ( cmd , python_shell = False , output_loglevel = 'quiet' )
uinfo = info ( name , root = root )
return not uinfo [ 'passwd' ] and uinfo [ 'name' ] == name
|
def scencd ( sc , sclkch , MXPART = None ) :
"""Encode character representation of spacecraft clock time into a
double precision number .
http : / / naif . jpl . nasa . gov / pub / naif / toolkit _ docs / C / cspice / scencd _ c . html
: param sc : NAIF spacecraft identification code .
: type sc : int
: param sclkch : Character representation of a spacecraft clock .
: type sclkch : str
: param MXPART : Maximum number of spacecraft clock partitions .
: type MXPART : int
: return : Encoded representation of the clock count .
: rtype : float"""
|
sc = ctypes . c_int ( sc )
sclkch = stypes . stringToCharP ( sclkch )
sclkdp = ctypes . c_double ( )
libspice . scencd_c ( sc , sclkch , ctypes . byref ( sclkdp ) )
return sclkdp . value
|
def init_db ( drop_all = False , bind = engine ) :
"""Initialize the database , optionally dropping existing tables ."""
|
try :
if drop_all :
Base . metadata . drop_all ( bind = bind )
Base . metadata . create_all ( bind = bind )
except OperationalError as err :
msg = 'password authentication failed for user "dallinger"'
if msg in err . message :
sys . stderr . write ( db_user_warning )
raise
return session
|
def submit_error ( self , description , extra = None , default_message = None ) :
"""Send an error to bugzscout .
Sends a request to the fogbugz URL for this instance . If a case exists
with the * * same * * description , a new occurrence will be added to that
case . It is advisable to remove personal info from the description for
that reason . Account ids , emails , request ids , etc , will make the
occurrence counting builtin to bugzscout less useful . Those values
should go in the extra parameter , though , so the developer
investigating the case has access to them .
When extra is not specified , bugzscout will increase the number of
occurrences for the case with the given description , but it will not
include an entry for it ( unless it is a new case ) .
: param description : string description for error
: param extra : string details for error
: param default _ message : string default message to return in responses"""
|
req_data = { 'ScoutUserName' : self . user , 'ScoutProject' : self . project , 'ScoutArea' : self . area , # When this matches , cases are grouped together .
'Description' : description , 'Extra' : extra , # 1 forces a new bug to be created .
'ForceNewBug' : 0 , 'ScoutDefaultMessage' : default_message , # 0 sends XML response , 1 sends HTML response .
'FriendlyResponse' : 0 , }
LOG . debug ( 'Making bugzscout request to {0} with body {1}' . format ( self . url , req_data ) )
resp = requests . post ( self . url , data = req_data )
LOG . debug ( 'Response from bugzscout request: {0} body:\n{1}' . format ( resp , resp . content ) )
if resp . ok :
LOG . info ( 'Successfully submitted error to bugzscout.' )
else :
LOG . warn ( 'Failed to submit error to bugzscout: {0}' . format ( resp . reason ) )
|
def get_osid_object_mdata ( ) :
"""Return default mdata map for OsidObject"""
|
return { 'display_name' : { 'element_label' : { 'text' : 'Display Name' , 'languageTypeId' : str ( DEFAULT_LANGUAGE_TYPE ) , 'scriptTypeId' : str ( DEFAULT_SCRIPT_TYPE ) , 'formatTypeId' : str ( DEFAULT_FORMAT_TYPE ) , } , 'instructions' : { 'text' : 'Required, 255 character maximum' , 'languageTypeId' : str ( DEFAULT_LANGUAGE_TYPE ) , 'scriptTypeId' : str ( DEFAULT_SCRIPT_TYPE ) , 'formatTypeId' : str ( DEFAULT_FORMAT_TYPE ) , } , 'required' : False , 'read_only' : False , 'linked' : False , 'array' : False , 'default_string_values' : [ { 'text' : '' , 'languageTypeId' : str ( DEFAULT_LANGUAGE_TYPE ) , 'scriptTypeId' : str ( DEFAULT_SCRIPT_TYPE ) , 'formatTypeId' : str ( DEFAULT_FORMAT_TYPE ) , } ] , 'syntax' : 'STRING' , 'minimum_string_length' : 0 , 'maximum_string_length' : 256 , 'string_set' : [ ] } , 'description' : { 'element_label' : { 'text' : 'Description' , 'languageTypeId' : str ( DEFAULT_LANGUAGE_TYPE ) , 'scriptTypeId' : str ( DEFAULT_SCRIPT_TYPE ) , 'formatTypeId' : str ( DEFAULT_FORMAT_TYPE ) , } , 'instructions' : { 'text' : 'Optional' , 'languageTypeId' : str ( DEFAULT_LANGUAGE_TYPE ) , 'scriptTypeId' : str ( DEFAULT_SCRIPT_TYPE ) , 'formatTypeId' : str ( DEFAULT_FORMAT_TYPE ) , } , 'required' : False , 'read_only' : False , 'linked' : False , 'array' : False , 'default_string_values' : [ { 'text' : '' , 'languageTypeId' : str ( DEFAULT_LANGUAGE_TYPE ) , 'scriptTypeId' : str ( DEFAULT_SCRIPT_TYPE ) , 'formatTypeId' : str ( DEFAULT_FORMAT_TYPE ) , } ] , 'syntax' : 'STRING' , 'minimum_string_length' : 0 , 'maximum_string_length' : 1024 , 'string_set' : [ ] } , 'genus_type' : { 'element_label' : { 'text' : 'Genus Type' , 'languageTypeId' : str ( DEFAULT_LANGUAGE_TYPE ) , 'scriptTypeId' : str ( DEFAULT_SCRIPT_TYPE ) , 'formatTypeId' : str ( DEFAULT_FORMAT_TYPE ) , } , 'instructions' : { 'text' : 'Required genus Type of type osid.type.Type' , 'languageTypeId' : str ( DEFAULT_LANGUAGE_TYPE ) , 'scriptTypeId' : str ( DEFAULT_SCRIPT_TYPE ) , 'formatTypeId' : str ( DEFAULT_FORMAT_TYPE ) , } , 'required' : True , 'value' : False , 'read_only' : False , 'linked' : False , 'array' : False , 'default_type_values' : [ str ( DEFAULT_GENUS_TYPE ) ] , 'syntax' : 'TYPE' , 'type_set' : [ ] } }
|
def _safe_exit ( start , output ) :
"""exit without breaking pipes"""
|
try :
sys . stdout . write ( output )
sys . stdout . flush ( )
except TypeError : # python3
sys . stdout . write ( str ( output , 'utf-8' ) )
sys . stdout . flush ( )
except IOError :
pass
seconds = time . time ( ) - start
print ( "\n\n%5.3f seconds" % ( seconds ) , file = sys . stderr )
|
def circ_corrcl ( x , y , tail = 'two-sided' ) :
"""Correlation coefficient between one circular and one linear variable
random variables .
Parameters
x : np . array
First circular variable ( expressed in radians )
y : np . array
Second circular variable ( linear )
tail : string
Specify whether to return ' one - sided ' or ' two - sided ' p - value .
Returns
r : float
Correlation coefficient
pval : float
Uncorrected p - value
Notes
Python code borrowed from brainpipe ( based on the MATLAB toolbox CircStats )
Please note that NaN are automatically removed from datasets .
Examples
Compute the r and p - value between one circular and one linear variables .
> > > from pingouin import circ _ corrcl
> > > x = [ 0.785 , 1.570 , 3.141 , 0.839 , 5.934]
> > > y = [ 1.593 , 1.291 , - 0.248 , - 2.892 , 0.102]
> > > r , pval = circ _ corrcl ( x , y )
> > > print ( r , pval )
0.109 0.9708899750629236"""
|
from scipy . stats import pearsonr , chi2
x = np . asarray ( x )
y = np . asarray ( y )
# Check size
if x . size != y . size :
raise ValueError ( 'x and y must have the same length.' )
# Remove NA
x , y = remove_na ( x , y , paired = True )
n = x . size
# Compute correlation coefficent for sin and cos independently
rxs = pearsonr ( y , np . sin ( x ) ) [ 0 ]
rxc = pearsonr ( y , np . cos ( x ) ) [ 0 ]
rcs = pearsonr ( np . sin ( x ) , np . cos ( x ) ) [ 0 ]
# Compute angular - linear correlation ( equ . 27.47)
r = np . sqrt ( ( rxc ** 2 + rxs ** 2 - 2 * rxc * rxs * rcs ) / ( 1 - rcs ** 2 ) )
# Compute p - value
pval = chi2 . sf ( n * r ** 2 , 2 )
pval = pval / 2 if tail == 'one-sided' else pval
return np . round ( r , 3 ) , pval
|
def default ( self , value ) :
"""Convert mongo . ObjectId ."""
|
if isinstance ( value , ObjectId ) :
return str ( value )
return super ( ElasticJSONSerializer , self ) . default ( value )
|
def fprime ( self , w , * args ) :
"""Return the derivatives of the cost function for predictions .
Args :
w ( array of float ) : weight vectors such that :
w [ : - h1 ] - - weights between the input and h layers
w [ - h1 : ] - - weights between the h and output layers
args : features ( args [ 0 ] ) and target ( args [ 1 ] )
Returns :
gradients of the cost function for predictions"""
|
x0 = args [ 0 ]
x1 = args [ 1 ]
n0 = x0 . shape [ 0 ]
n1 = x1 . shape [ 0 ]
# n - - number of pairs to evaluate
n = max ( n0 , n1 ) * 10
idx0 = np . random . choice ( range ( n0 ) , size = n )
idx1 = np . random . choice ( range ( n1 ) , size = n )
# b - - bias for the input and h layers
b = np . ones ( ( n , 1 ) )
i1 = self . i + 1
h = self . h
h1 = h + 1
w2 = w [ - h1 : ] . reshape ( h1 , 1 )
w1 = w [ : - h1 ] . reshape ( i1 , h )
if sparse . issparse ( x0 ) :
x0 = x0 . tocsr ( ) [ idx0 ]
x1 = x1 . tocsr ( ) [ idx1 ]
xb0 = sparse . hstack ( ( x0 , b ) )
xb1 = sparse . hstack ( ( x1 , b ) )
else :
x0 = x0 [ idx0 ]
x1 = x1 [ idx1 ]
xb0 = np . hstack ( ( x0 , b ) )
xb1 = np . hstack ( ( x1 , b ) )
z0 = np . hstack ( ( sigm ( xb0 . dot ( w1 ) ) , b ) )
z1 = np . hstack ( ( sigm ( xb1 . dot ( w1 ) ) , b ) )
y0 = z0 . dot ( w2 )
y1 = z1 . dot ( w2 )
# e = 1 - sigm ( y1 - y0)
# dy = e * dsigm ( y1 - y0)
e = 1 - ( y1 - y0 )
dy = e / n
# Calculate the derivative of the cost function w . r . t . F and w2 where :
# F - - weights between the input and h layers
# w2 - - weights between the h and output layers
dw1 = - ( xb1 . T . dot ( dy . dot ( w2 [ : - 1 ] . reshape ( 1 , h ) ) * dsigm ( xb1 . dot ( w1 ) ) ) - xb0 . T . dot ( dy . dot ( w2 [ : - 1 ] . reshape ( 1 , h ) ) * dsigm ( xb0 . dot ( w1 ) ) ) ) . reshape ( i1 * h ) + self . l1 * w [ : - h1 ] / ( i1 * h )
dw2 = - ( z1 - z0 ) . T . dot ( dy ) . reshape ( h1 ) + self . l2 * w [ - h1 : ] / h1
return np . append ( dw1 , dw2 )
|
def validate ( self , value , add_comments = False , schema_name = "map" ) :
"""verbose - also return the jsonschema error details"""
|
validator = self . get_schema_validator ( schema_name )
error_messages = [ ]
if isinstance ( value , list ) :
for d in value :
error_messages += self . _validate ( d , validator , add_comments , schema_name )
else :
error_messages = self . _validate ( value , validator , add_comments , schema_name )
return error_messages
|
def AttachUserList ( client , ad_group_id , user_list_id ) :
"""Links the provided ad group and user list .
Args :
client : an AdWordsClient instance .
ad _ group _ id : an int ad group ID .
user _ list _ id : an int user list ID .
Returns :
The ad group criterion that was successfully created ."""
|
ad_group_criterion_service = client . GetService ( 'AdGroupCriterionService' , 'v201809' )
user_list = { 'xsi_type' : 'CriterionUserList' , 'userListId' : user_list_id }
ad_group_criterion = { 'xsi_type' : 'BiddableAdGroupCriterion' , 'criterion' : user_list , 'adGroupId' : ad_group_id }
operations = [ { 'operator' : 'ADD' , 'operand' : ad_group_criterion } ]
return ad_group_criterion_service . mutate ( operations ) [ 'value' ] [ 0 ]
|
def read_data ( self , size ) :
"""Receive data from the device .
If the read fails for any reason , an : obj : ` IOError ` exception
is raised .
: param size : the number of bytes to read .
: type size : int
: return : the data received .
: rtype : list ( int )"""
|
result = self . dev . bulkRead ( 0x81 , size , timeout = 1200 )
if not result or len ( result ) < size :
raise IOError ( 'pywws.device_libusb1.USBDevice.read_data failed' )
# Python2 libusb1 version 1.5 and earlier returns a string
if not isinstance ( result [ 0 ] , int ) :
result = map ( ord , result )
return list ( result )
|
def database_rename ( object_id , input_params = { } , always_retry = True , ** kwargs ) :
"""Invokes the / database - xxxx / rename API method .
For more info , see : https : / / wiki . dnanexus . com / API - Specification - v1.0.0 / Name # API - method % 3A - % 2Fclass - xxxx % 2Frename"""
|
return DXHTTPRequest ( '/%s/rename' % object_id , input_params , always_retry = always_retry , ** kwargs )
|
def computeStrongestPaths ( self , profile , pairwisePreferences ) :
"""Returns a two - dimensional dictionary that associates every pair of candidates , cand1 and
cand2 , with the strongest path from cand1 to cand2.
: ivar Profile profile : A Profile object that represents an election profile .
: ivar dict < int , dict < int , int > > pairwisePreferences : A two - dimensional dictionary that
associates every pair of candidates , cand1 and cand2 , with number of voters who prefer
cand1 to cand2."""
|
cands = profile . candMap . keys ( )
numCands = len ( cands )
# Initialize the two - dimensional dictionary that will hold our strongest paths .
strongestPaths = dict ( )
for cand in cands :
strongestPaths [ cand ] = dict ( )
for i in range ( 1 , numCands + 1 ) :
for j in range ( 1 , numCands + 1 ) :
if ( i == j ) :
continue
if pairwisePreferences [ i ] [ j ] > pairwisePreferences [ j ] [ i ] :
strongestPaths [ i ] [ j ] = pairwisePreferences [ i ] [ j ]
else :
strongestPaths [ i ] [ j ] = 0
for i in range ( 1 , numCands + 1 ) :
for j in range ( 1 , numCands + 1 ) :
if ( i == j ) :
continue
for k in range ( 1 , numCands + 1 ) :
if ( i == k or j == k ) :
continue
strongestPaths [ j ] [ k ] = max ( strongestPaths [ j ] [ k ] , min ( strongestPaths [ j ] [ i ] , strongestPaths [ i ] [ k ] ) )
return strongestPaths
|
def initialize_plugin ( self ) :
"""Initialize the plugin"""
|
# Generate a list of blacklisted packages from the configuration and
# store it into self . blacklist _ package _ names attribute so this
# operation doesn ' t end up in the fastpath .
if not self . whitelist_package_names :
self . whitelist_package_names = self . _determine_unfiltered_package_names ( )
logger . info ( f"Initialized project plugin {self.name}, filtering " + f"{self.whitelist_package_names}" )
|
def get ( self ) :
"""Constructs a ExecutionContextContext
: returns : twilio . rest . studio . v1 . flow . execution . execution _ context . ExecutionContextContext
: rtype : twilio . rest . studio . v1 . flow . execution . execution _ context . ExecutionContextContext"""
|
return ExecutionContextContext ( self . _version , flow_sid = self . _solution [ 'flow_sid' ] , execution_sid = self . _solution [ 'execution_sid' ] , )
|
def gc3 ( args ) :
"""% prog gc3 ksfile cdsfile [ cdsfile2 ] - o newksfile
Filter the Ks results to remove high GC3 genes . High GC3 genes are
problematic in Ks calculation - see Tang et al . 2010 PNAS . Specifically , the
two calculation methods produce drastically different results for these
pairs . Therefore we advise to remoeve these high GC3 genes . This is often
the case for studying cereal genes .
If 2 genomes are involved , the cdsfile of the 2nd genome can be provided
concatenated or separated ."""
|
p = OptionParser ( gc3 . __doc__ )
p . add_option ( "--plot" , default = False , action = "store_true" , help = "Also plot the GC3 histogram [default: %default]" )
p . set_outfile ( )
opts , args = p . parse_args ( args )
outfile = opts . outfile
plot = opts . plot
if not 1 < len ( args ) < 4 :
sys . exit ( not p . print_help ( ) )
ks_file , cdsfile = args [ : 2 ]
GC3 = get_GC3 ( cdsfile )
if plot :
plot_GC3 ( GC3 , cdsfile , fill = "green" )
if len ( args ) == 3 :
cdsfile2 = args [ 2 ]
GC3_2 = get_GC3 ( cdsfile2 )
GC3 . update ( GC3_2 )
if plot :
plot_GC3 ( GC3_2 , cdsfile2 , fill = "lightgreen" )
data = KsFile ( ks_file )
noriginals = len ( data )
fw = must_open ( outfile , "w" )
writer = csv . writer ( fw )
writer . writerow ( fields . split ( "," ) )
nlines = 0
cutoff = .75
for d in data :
a , b = d . name . split ( ";" )
aratio , bratio = GC3 [ a ] , GC3 [ b ]
if ( aratio + bratio ) / 2 > cutoff :
continue
writer . writerow ( d )
nlines += 1
logging . debug ( "{0} records written (from {1})." . format ( nlines , noriginals ) )
|
def convert_to_categorical ( df ) :
"""Run a heuristic on the columns of the dataframe to determine whether it contains categorical values
if the heuristic decides it ' s categorical then the type of the column is changed
Args :
df ( dataframe ) : The dataframe to check for categorical data"""
|
might_be_categorical = df . select_dtypes ( include = [ object ] ) . columns . tolist ( )
for column in might_be_categorical :
if df [ column ] . nunique ( ) < 20 : # Convert the column
print ( 'Changing column {:s} to category...' . format ( column ) )
df [ column ] = pd . Categorical ( df [ column ] )
|
def remove_connection ( self , interface1 , interface2 ) :
"""Remove a connection between two interfaces"""
|
uri = "api/interface/disconnect/%s/%s/" % ( interface1 , interface2 )
return self . delete ( uri )
|
def match_non_rule_patterns ( fixed_text , cur = 0 ) :
"""Matches given text at cursor position with non rule patterns
Returns a dictionary of three elements :
- " matched " - Bool : depending on if match found
- " found " - string / None : Value of matched pattern ' s ' find ' key or none
- " replaced " : string Replaced string if match found else input string at
cursor"""
|
pattern = exact_find_in_pattern ( fixed_text , cur , NON_RULE_PATTERNS )
if len ( pattern ) > 0 :
return { "matched" : True , "found" : pattern [ 0 ] [ 'find' ] , "replaced" : pattern [ 0 ] [ 'replace' ] }
else :
return { "matched" : False , "found" : None , "replaced" : fixed_text [ cur ] }
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.