signature
stringlengths
29
44.1k
implementation
stringlengths
0
85.2k
def get_port_profile_for_intf_input_rbridge_id ( self , ** kwargs ) : """Auto Generated Code"""
config = ET . Element ( "config" ) get_port_profile_for_intf = ET . Element ( "get_port_profile_for_intf" ) config = get_port_profile_for_intf input = ET . SubElement ( get_port_profile_for_intf , "input" ) rbridge_id = ET . SubElement ( input , "rbridge-id" ) rbridge_id . text = kwargs . pop ( 'rbridge_id' ) callback = kwargs . pop ( 'callback' , self . _callback ) return callback ( config )
def table_spec_path ( cls , project , location , dataset , table_spec ) : """Return a fully - qualified table _ spec string ."""
return google . api_core . path_template . expand ( "projects/{project}/locations/{location}/datasets/{dataset}/tableSpecs/{table_spec}" , project = project , location = location , dataset = dataset , table_spec = table_spec , )
def cli ( ctx , email , first_name , last_name , password , role = "user" , metadata = { } ) : """Create a new user Output : an empty dictionary"""
return ctx . gi . users . create_user ( email , first_name , last_name , password , role = role , metadata = metadata )
def nearest_vertices ( self , lon , lat , k = 1 , max_distance = 2.0 ) : """Query the cKDtree for the nearest neighbours and Euclidean distance from x , y points . Returns 0 , 0 if a cKDtree has not been constructed ( switch tree = True if you need this routine ) Parameters lon : 1D array of longitudinal coordinates in radians lat : 1D array of latitudinal coordinates in radians k : number of nearest neighbours to return ( default : 1) max _ distance : maximum Euclidean distance to search for neighbours ( default : 2.0) Returns d : Euclidean distance between each point and their nearest neighbour ( s ) vert : vertices of the nearest neighbour ( s )"""
if self . tree == False or self . tree == None : return 0 , 0 lons = np . array ( lon ) . reshape ( - 1 , 1 ) lats = np . array ( lat ) . reshape ( - 1 , 1 ) xyz = np . empty ( ( lons . shape [ 0 ] , 3 ) ) x , y , z = lonlat2xyz ( lons , lats ) xyz [ : , 0 ] = x [ : ] . reshape ( - 1 ) xyz [ : , 1 ] = y [ : ] . reshape ( - 1 ) xyz [ : , 2 ] = z [ : ] . reshape ( - 1 ) dxyz , vertices = self . _cKDtree . query ( xyz , k = k , distance_upper_bound = max_distance ) if k == 1 : # force this to be a 2D array vertices = np . reshape ( vertices , ( - 1 , 1 ) ) # # Now find the angular separation / great circle distance : dlatlon vertxyz = self . points [ vertices ] . transpose ( 0 , 2 , 1 ) extxyz = np . repeat ( xyz , k , axis = 1 ) . reshape ( vertxyz . shape ) angles = np . arccos ( ( extxyz * vertxyz ) . sum ( axis = 1 ) ) return angles , vertices
async def reset ( self , von_wallet : Wallet , seed : str = None ) -> Wallet : """Close and delete ( open ) VON anchor wallet and then create , open , and return replacement on current link secret . Note that this operation effectively destroys private keys for keyed data structures such as credential offers or credential definitions . Raise WalletState if the wallet is closed . : param von _ wallet : open wallet : param seed : seed to use for new wallet ( default random ) : return : replacement wallet"""
LOGGER . debug ( 'WalletManager.reset >>> von_wallet %s' , von_wallet ) if not von_wallet . handle : LOGGER . debug ( 'WalletManager.reset <!< Wallet %s is closed' , von_wallet . name ) raise WalletState ( 'Wallet {} is closed' . format ( von_wallet . name ) ) w_config = von_wallet . config # wallet under reset , no need to make copy w_config [ 'did' ] = von_wallet . did w_config [ 'seed' ] = seed w_config [ 'auto_create' ] = von_wallet . auto_create # in case both auto _ remove + auto _ create set ( create every open ) w_config [ 'auto_remove' ] = von_wallet . auto_remove label = await von_wallet . get_link_secret_label ( ) if label : w_config [ 'link_secret_label' ] = label await von_wallet . close ( ) if not von_wallet . auto_remove : await self . remove ( von_wallet ) rv = await self . create ( w_config , von_wallet . access ) await rv . open ( ) LOGGER . debug ( 'WalletManager.reset <<< %s' , rv ) return rv
def insert_slash ( string , every = 2 ) : """insert _ slash insert / every 2 char"""
return os . path . join ( string [ i : i + every ] for i in xrange ( 0 , len ( string ) , every ) )
def _set_access_log ( self , config , level ) : """Configure access logs"""
access_handler = self . _get_param ( 'global' , 'log.access_handler' , config , 'syslog' , ) # log format for syslog syslog_formatter = logging . Formatter ( "ldapcherry[%(process)d]: %(message)s" ) # replace access log handler by a syslog handler if access_handler == 'syslog' : cherrypy . log . access_log . handlers = [ ] handler = logging . handlers . SysLogHandler ( address = '/dev/log' , facility = 'user' , ) handler . setFormatter ( syslog_formatter ) cherrypy . log . access_log . addHandler ( handler ) # if stdout , open a logger on stdout elif access_handler == 'stdout' : cherrypy . log . access_log . handlers = [ ] handler = logging . StreamHandler ( sys . stdout ) formatter = logging . Formatter ( 'ldapcherry.access - %(levelname)s - %(message)s' ) handler . setFormatter ( formatter ) cherrypy . log . access_log . addHandler ( handler ) # if file , we keep the default elif access_handler == 'file' : pass # replace access log handler by a null handler elif access_handler == 'none' : cherrypy . log . access_log . handlers = [ ] handler = logging . NullHandler ( ) cherrypy . log . access_log . addHandler ( handler ) # set log level cherrypy . log . access_log . setLevel ( level )
def prepare_migration_target ( self , uuid , nics = None , port = None , tags = None ) : """: param name : Name of the kvm domain that will be migrated : param port : A dict of host _ port : container _ port pairs Example : ` port = { 8080 : 80 , 7000:7000 } ` Only supported if default network is used : param nics : Configure the attached nics to the container each nic object is a dict of the format ' type ' : nic _ type # default , bridge , vlan , or vxlan ( note , vlan and vxlan only supported by ovs ) ' id ' : id # depends on the type , bridge name ( bridge type ) zerotier network id ( zertier type ) , the vlan tag or the vxlan id : param uuid : uuid of machine to be migrated on old node : return :"""
if nics is None : nics = [ ] args = { 'nics' : nics , 'port' : port , 'uuid' : uuid } self . _migrate_network_chk . check ( args ) self . _client . sync ( 'kvm.prepare_migration_target' , args , tags = tags )
def compute_Pi_JinsDJ_given_D ( self , CDR3_seq , Pi_J_given_D , max_J_align ) : """Compute Pi _ JinsDJ conditioned on D . This function returns the Pi array from the model factors of the J genomic contributions , P ( D , J ) * P ( delJ | J ) , and the DJ ( N2 ) insertions , first _ nt _ bias _ insDJ ( n _ 1 ) PinsDJ ( \ ell _ { DJ } ) \ prod _ { i = 2 } ^ { \ ell _ { DJ } } Rdj ( n _ i | n _ { i - 1 } ) conditioned on D identity . This corresponds to { N ^ { x _ 3 } } _ { x _ 4 } J ( D ) ^ { x _ 4 } . For clarity in parsing the algorithm implementation , we include which instance attributes are used in the method as ' parameters . ' Parameters CDR3 _ seq : str CDR3 sequence composed of ' amino acids ' ( single character symbols each corresponding to a collection of codons as given by codons _ dict ) . Pi _ J _ given _ D : ndarray List of ( 4 , 3L ) ndarrays corresponding to J ( D ) ^ { x _ 4 } . max _ J _ align : int Maximum alignment of the CDR3 _ seq to any genomic J allele allowed by J _ usage _ mask . self . PinsDJ : ndarray Probability distribution of the DJ ( N2 ) insertion sequence length self . first _ nt _ bias _ insDJ : ndarray (4 , ) array of the probability distribution of the indentity of the first nucleotide insertion for the DJ junction . self . zero _ nt _ bias _ insDJ : ndarray (4 , ) array of the probability distribution of the indentity of the the nucleotide BEFORE the DJ insertion . Note , as the Markov model at the DJ junction goes 3 ' to 5 ' this is the position AFTER the insertions reading left to right . self . Tdj : dict Dictionary of full codon transfer matrices ( ( 4 , 4 ) ndarrays ) by ' amino acid ' . self . Sdj : dict Dictionary of transfer matrices ( ( 4 , 4 ) ndarrays ) by ' amino acid ' for the DJ insertion ending in the first position . self . Ddj : dict Dictionary of transfer matrices ( ( 4 , 4 ) ndarrays ) by ' amino acid ' for the VD insertion ending in the second position . self . rTdj : dict Dictionary of transfer matrices ( ( 4 , 4 ) ndarrays ) by ' amino acid ' for the DJ insertion starting in the first position . self . rDdj : dict Dictionary of transfer matrices ( ( 4 , 4 ) ndarrays ) by ' amino acid ' for DJ insertion starting in the first position and ending in the second position of the same codon . Returns Pi _ JinsDJ _ given _ D : list List of ( 4 , 3L ) ndarrays corresponding to { N ^ { x _ 3 } } _ { x _ 4 } J ( D ) ^ { x _ 4 } ."""
# max _ insertions = 30 # len ( PinsVD ) - 1 should zeropad the last few spots max_insertions = len ( self . PinsDJ ) - 1 Pi_JinsDJ_given_D = [ np . zeros ( ( 4 , len ( CDR3_seq ) * 3 ) ) for i in range ( len ( Pi_J_given_D ) ) ] for D_in in range ( len ( Pi_J_given_D ) ) : # start position is first nt in a codon for init_pos in range ( - 1 , - ( max_J_align + 1 ) , - 3 ) : # Zero insertions Pi_JinsDJ_given_D [ D_in ] [ : , init_pos ] += self . PinsDJ [ 0 ] * Pi_J_given_D [ D_in ] [ : , init_pos ] # One insertion Pi_JinsDJ_given_D [ D_in ] [ : , init_pos - 1 ] += self . PinsDJ [ 1 ] * np . dot ( self . rDdj [ CDR3_seq [ init_pos / 3 ] ] , Pi_J_given_D [ D_in ] [ : , init_pos ] ) # Two insertions and compute the base nt vec for the standard loop current_base_nt_vec = np . dot ( self . rTdj [ CDR3_seq [ init_pos / 3 ] ] , Pi_J_given_D [ D_in ] [ : , init_pos ] ) Pi_JinsDJ_given_D [ D_in ] [ 0 , init_pos - 2 ] += self . PinsDJ [ 2 ] * np . sum ( current_base_nt_vec ) base_ins = 2 # Loop over all other insertions using base _ nt _ vec for aa in CDR3_seq [ init_pos / 3 - 1 : init_pos / 3 - max_insertions / 3 : - 1 ] : Pi_JinsDJ_given_D [ D_in ] [ : , init_pos - base_ins - 1 ] += self . PinsDJ [ base_ins + 1 ] * np . dot ( self . Sdj [ aa ] , current_base_nt_vec ) Pi_JinsDJ_given_D [ D_in ] [ : , init_pos - base_ins - 2 ] += self . PinsDJ [ base_ins + 2 ] * np . dot ( self . Ddj [ aa ] , current_base_nt_vec ) current_base_nt_vec = np . dot ( self . Tdj [ aa ] , current_base_nt_vec ) Pi_JinsDJ_given_D [ D_in ] [ 0 , init_pos - base_ins - 3 ] += self . PinsDJ [ base_ins + 3 ] * np . sum ( current_base_nt_vec ) base_ins += 3 # start position is second nt in a codon for init_pos in range ( - 2 , - ( max_J_align + 1 ) , - 3 ) : # Zero insertions Pi_JinsDJ_given_D [ D_in ] [ : , init_pos ] += self . PinsDJ [ 0 ] * Pi_J_given_D [ D_in ] [ : , init_pos ] # One insertion - - - we first compute our p vec by pairwise mult with the ss distr current_base_nt_vec = np . multiply ( Pi_J_given_D [ D_in ] [ : , init_pos ] , self . first_nt_bias_insDJ ) Pi_JinsDJ_given_D [ D_in ] [ 0 , init_pos - 1 ] += self . PinsDJ [ 1 ] * np . sum ( current_base_nt_vec ) base_ins = 1 # Loop over all other insertions using base _ nt _ vec for aa in CDR3_seq [ init_pos / 3 - 1 : init_pos / 3 - max_insertions / 3 : - 1 ] : Pi_JinsDJ_given_D [ D_in ] [ : , init_pos - base_ins - 1 ] += self . PinsDJ [ base_ins + 1 ] * np . dot ( self . Sdj [ aa ] , current_base_nt_vec ) Pi_JinsDJ_given_D [ D_in ] [ : , init_pos - base_ins - 2 ] += self . PinsDJ [ base_ins + 2 ] * np . dot ( self . Ddj [ aa ] , current_base_nt_vec ) current_base_nt_vec = np . dot ( self . Tdj [ aa ] , current_base_nt_vec ) Pi_JinsDJ_given_D [ D_in ] [ 0 , init_pos - base_ins - 3 ] += self . PinsDJ [ base_ins + 3 ] * np . sum ( current_base_nt_vec ) base_ins += 3 # start position is last nt in a codon for init_pos in range ( - 3 , - ( max_J_align + 1 ) , - 3 ) : # Zero insertions Pi_JinsDJ_given_D [ D_in ] [ 0 , init_pos ] += self . PinsDJ [ 0 ] * Pi_J_given_D [ D_in ] [ 0 , init_pos ] # current _ base _ nt _ vec = first _ nt _ bias _ insDJ * Pi _ J _ given _ D [ D _ in ] [ 0 , init _ pos ] # Okay for steady state current_base_nt_vec = self . zero_nt_bias_insDJ * Pi_J_given_D [ D_in ] [ 0 , init_pos ] base_ins = 0 # Loop over all other insertions using base _ nt _ vec for aa in CDR3_seq [ init_pos / 3 - 1 : init_pos / 3 - max_insertions / 3 : - 1 ] : Pi_JinsDJ_given_D [ D_in ] [ : , init_pos - base_ins - 1 ] += self . PinsDJ [ base_ins + 1 ] * np . dot ( self . Sdj [ aa ] , current_base_nt_vec ) Pi_JinsDJ_given_D [ D_in ] [ : , init_pos - base_ins - 2 ] += self . PinsDJ [ base_ins + 2 ] * np . dot ( self . Ddj [ aa ] , current_base_nt_vec ) current_base_nt_vec = np . dot ( self . Tdj [ aa ] , current_base_nt_vec ) Pi_JinsDJ_given_D [ D_in ] [ 0 , init_pos - base_ins - 3 ] += self . PinsDJ [ base_ins + 3 ] * np . sum ( current_base_nt_vec ) base_ins += 3 return Pi_JinsDJ_given_D
def get_filter_solvers ( self , filter_ ) : """Returns the filter solvers that can solve the given filter . Arguments filter : dataql . resources . BaseFilter An instance of the a subclass of ` ` BaseFilter ` ` for which we want to get the solver classes that can solve it . Returns list The list of filter solvers instances that can solve the given resource . Raises dataql . solvers . exceptions . SolverNotFound When no solver is able to solve the given filter . Example > > > from dataql . resources import Filter > > > registry = Registry ( ) > > > registry . get _ filter _ solvers ( Filter ( name = ' foo ' ) ) [ < FilterSolver > ] > > > registry . get _ filter _ solvers ( None ) # doctest : + ELLIPSIS Traceback ( most recent call last ) : dataql . solvers . exceptions . SolverNotFound : No solvers found for this kind of object : . . ."""
solvers_classes = [ s for s in self . filter_solver_classes if s . can_solve ( filter_ ) ] if solvers_classes : solvers = [ ] for solver_class in solvers_classes : # Put the solver instance in the cache if not cached yet . if solver_class not in self . _filter_solvers_cache : self . _filter_solvers_cache [ solver_class ] = solver_class ( self ) solvers . append ( self . _filter_solvers_cache [ solver_class ] ) return solvers raise SolverNotFound ( self , filter_ )
def resource_to_url ( resource , request = None , quote = False ) : """Converts the given resource to a URL . : param request : Request object ( required for the host name part of the URL ) . If this is not given , the current request is used . : param bool quote : If set , the URL returned will be quoted ."""
if request is None : request = get_current_request ( ) # cnv = request . registry . getAdapter ( request , IResourceUrlConverter ) reg = get_current_registry ( ) cnv = reg . getAdapter ( request , IResourceUrlConverter ) return cnv . resource_to_url ( resource , quote = quote )
def page_templates_loading_check ( app_configs , ** kwargs ) : """Check if any page template can ' t be loaded ."""
errors = [ ] for page_template in settings . get_page_templates ( ) : try : loader . get_template ( page_template [ 0 ] ) except template . TemplateDoesNotExist : errors . append ( checks . Warning ( 'Django cannot find template %s' % page_template [ 0 ] , obj = page_template , id = 'pages.W001' ) ) return errors
def _set_Cpu ( self , v , load = False ) : """Setter method for Cpu , mapped from YANG variable / rbridge _ id / threshold _ monitor / Cpu ( container ) If this variable is read - only ( config : false ) in the source YANG file , then _ set _ Cpu is considered as a private method . Backends looking to populate this variable should do so via calling thisObj . _ set _ Cpu ( ) directly ."""
if hasattr ( v , "_utype" ) : v = v . _utype ( v ) try : t = YANGDynClass ( v , base = Cpu . Cpu , is_container = 'container' , presence = False , yang_name = "Cpu" , rest_name = "Cpu" , parent = self , path_helper = self . _path_helper , extmethods = self . _extmethods , register_paths = True , extensions = { u'tailf-common' : { u'info' : u'Configure settings for component:CPU' , u'cli-compact-syntax' : None , u'callpoint' : u'CpuMonitor' , u'cli-incomplete-no' : None } } , namespace = 'urn:brocade.com:mgmt:brocade-threshold-monitor' , defining_module = 'brocade-threshold-monitor' , yang_type = 'container' , is_config = True ) except ( TypeError , ValueError ) : raise ValueError ( { 'error-string' : """Cpu must be of a type compatible with container""" , 'defined-type' : "container" , 'generated-type' : """YANGDynClass(base=Cpu.Cpu, is_container='container', presence=False, yang_name="Cpu", rest_name="Cpu", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure settings for component:CPU', u'cli-compact-syntax': None, u'callpoint': u'CpuMonitor', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='container', is_config=True)""" , } ) self . __Cpu = t if hasattr ( self , '_set' ) : self . _set ( )
def aldb_device_handled ( self , addr ) : """Remove device from ALDB device list ."""
if isinstance ( addr , Address ) : remove_addr = addr . id else : remove_addr = addr try : self . _aldb_devices . pop ( remove_addr ) _LOGGER . debug ( 'Removed ALDB device %s' , remove_addr ) except KeyError : _LOGGER . debug ( 'Device %s not in ALDB device list' , remove_addr ) _LOGGER . debug ( 'ALDB device count: %d' , len ( self . _aldb_devices ) )
def parse ( celf , s ) : "generates an Introspection tree from the given XML string description ."
def from_string_elts ( celf , attrs , tree ) : elts = dict ( ( k , attrs [ k ] ) for k in attrs ) child_tags = dict ( ( childclass . tag_name , childclass ) for childclass in tuple ( celf . tag_elts . values ( ) ) + ( Introspection . Annotation , ) ) children = [ ] for child in tree : if child . tag not in child_tags : raise KeyError ( "unrecognized tag %s" % child . tag ) # end if childclass = child_tags [ child . tag ] childattrs = { } for attrname in childclass . tag_attrs : if hasattr ( childclass , "tag_attrs_optional" ) and attrname in childclass . tag_attrs_optional : childattrs [ attrname ] = child . attrib . get ( attrname , None ) else : if attrname not in child . attrib : raise ValueError ( "missing %s attribute for %s tag" % ( attrname , child . tag ) ) # end if childattrs [ attrname ] = child . attrib [ attrname ] # end if # end for if hasattr ( childclass , "attr_convert" ) : for attr in childclass . attr_convert : if attr in childattrs : childattrs [ attr ] = childclass . attr_convert [ attr ] ( childattrs [ attr ] ) # end if # end for # end if children . append ( from_string_elts ( childclass , childattrs , child ) ) # end for for child_tag , childclass in tuple ( celf . tag_elts . items ( ) ) + ( ( ) , ( ( "annotations" , Introspection . Annotation ) , ) ) [ tree . tag != "annotation" ] : for child in children : if isinstance ( child , childclass ) : if child_tag not in elts : elts [ child_tag ] = [ ] # end if elts [ child_tag ] . append ( child ) # end if # end for # end for return celf ( ** elts ) # end from _ string _ elts # begin parse tree = XMLElementTree . fromstring ( s ) assert tree . tag == "node" , "root of introspection tree must be <node> tag" return from_string_elts ( Introspection , { } , tree )
def get_gradebook_column_summary ( self , gradebook_column_id ) : """Gets the ` ` GradebookColumnSummary ` ` for summary results . arg : gradebook _ column _ id ( osid . id . Id ) : ` ` Id ` ` of the ` ` GradebookColumn ` ` return : ( osid . grading . GradebookColumnSummary ) - the gradebook column summary raise : NotFound - ` ` gradebook _ column _ id ` ` is not found raise : NullArgument - ` ` gradebook _ column _ id ` ` is ` ` null ` ` raise : OperationFailed - unable to complete request raise : PermissionDenied - authorization failure raise : Unimplemented - ` ` has _ summary ( ) ` ` is ` ` false ` ` * compliance : mandatory - - This method is must be implemented . *"""
gradebook_column = self . get_gradebook_column ( gradebook_column_id ) summary_map = gradebook_column . _my_map summary_map [ 'gradebookColumnId' ] = str ( gradebook_column . ident ) return GradebookColumnSummary ( osid_object_map = summary_map , runtime = self . _runtime , proxy = self . _proxy )
def build ( dburl , sitedir , mode ) : """Build a site ."""
if mode == 'force' : amode = [ '-a' ] else : amode = [ ] oldcwd = os . getcwd ( ) os . chdir ( sitedir ) db = StrictRedis . from_url ( dburl ) job = get_current_job ( db ) job . meta . update ( { 'out' : '' , 'milestone' : 0 , 'total' : 1 , 'return' : None , 'status' : None } ) job . save ( ) p = subprocess . Popen ( [ executable , '-m' , 'nikola' , 'build' ] + amode , stderr = subprocess . PIPE ) milestones = { 'done!' : 0 , 'render_posts' : 0 , 'render_pages' : 0 , 'generate_rss' : 0 , 'render_indexes' : 0 , 'sitemap' : 0 } out = [ ] while p . poll ( ) is None : nl = p . stderr . readline ( ) . decode ( 'utf-8' ) for k in milestones : if k in nl : milestones [ k ] = 1 out . append ( nl ) job . meta . update ( { 'milestone' : sum ( milestones . values ( ) ) , 'total' : len ( milestones ) , 'out' : '' . join ( out ) , 'return' : None , 'status' : None } ) job . save ( ) out += p . stderr . readlines ( ) out = '' . join ( out ) job . meta . update ( { 'milestone' : len ( milestones ) , 'total' : len ( milestones ) , 'out' : '' . join ( out ) , 'return' : p . returncode , 'status' : p . returncode == 0 } ) job . save ( ) os . chdir ( oldcwd ) return p . returncode
def check_abundance ( number ) : """Determine if a given number is abundant . A number is considered abundant if the sum of its divisors is greater than the number itself . Examples : check _ abundance ( 12 ) - > True check _ abundance ( 13 ) - > False check _ abundance ( 9 ) - > False : param number : The number to check for abundance . : return : Returns True if the number is abundant , otherwise False ."""
sum_of_divisors = sum ( divisor for divisor in range ( 1 , number ) if number % divisor == 0 ) return sum_of_divisors > number
def from_array ( array ) : """Deserialize a new CallbackQuery from a given dictionary . : return : new CallbackQuery instance . : rtype : CallbackQuery"""
if array is None or not array : return None # end if assert_type_or_raise ( array , dict , parameter_name = "array" ) from . . receivable . peer import User data = { } data [ 'id' ] = u ( array . get ( 'id' ) ) data [ 'from_peer' ] = User . from_array ( array . get ( 'from' ) ) data [ 'chat_instance' ] = u ( array . get ( 'chat_instance' ) ) data [ 'message' ] = Message . from_array ( array . get ( 'message' ) ) if array . get ( 'message' ) is not None else None data [ 'inline_message_id' ] = u ( array . get ( 'inline_message_id' ) ) if array . get ( 'inline_message_id' ) is not None else None data [ 'data' ] = u ( array . get ( 'data' ) ) if array . get ( 'data' ) is not None else None data [ 'game_short_name' ] = u ( array . get ( 'game_short_name' ) ) if array . get ( 'game_short_name' ) is not None else None data [ '_raw' ] = array return CallbackQuery ( ** data )
def paste ( ** kwargs ) : """Returns system clipboard contents ."""
window = Tk ( ) window . withdraw ( ) d = window . selection_get ( selection = 'CLIPBOARD' ) return d
def _get_importer ( path_name ) : """Python version of PyImport _ GetImporter C API function"""
cache = sys . path_importer_cache try : importer = cache [ path_name ] except KeyError : # Not yet cached . Flag as using the # standard machinery until we finish # checking the hooks cache [ path_name ] = None for hook in sys . path_hooks : try : importer = hook ( path_name ) break except ImportError : pass else : # The following check looks a bit odd . The trick is that # NullImporter throws ImportError if the supplied path is a # * valid * directory entry ( and hence able to be handled # by the standard import machinery ) try : importer = imp . NullImporter ( path_name ) except ImportError : return None cache [ path_name ] = importer return importer
def is_obsoletes_pid ( pid ) : """Return True if ` ` pid ` ` is referenced in the obsoletes field of any object . This will return True even if the PID is in the obsoletes field of an object that does not exist on the local MN , such as replica that is in an incomplete chain ."""
return d1_gmn . app . models . ScienceObject . objects . filter ( obsoletes__did = pid ) . exists ( )
def root_namespace ( self , value ) : """Setter for * * self . _ _ root _ namespace * * attribute . : param value : Attribute value . : type value : unicode"""
if value is not None : assert type ( value ) is unicode , "'{0}' attribute: '{1}' type is not 'unicode'!" . format ( "root_namespace" , value ) self . __root_namespace = value
def updateIncomeProcess ( self ) : '''An alternative method for constructing the income process in the infinite horizon model . Parameters none Returns none'''
if self . cycles == 0 : tax_rate = ( self . IncUnemp * self . UnempPrb ) / ( ( 1.0 - self . UnempPrb ) * self . IndL ) TranShkDstn = deepcopy ( approxMeanOneLognormal ( self . TranShkCount , sigma = self . TranShkStd [ 0 ] , tail_N = 0 ) ) TranShkDstn [ 0 ] = np . insert ( TranShkDstn [ 0 ] * ( 1.0 - self . UnempPrb ) , 0 , self . UnempPrb ) TranShkDstn [ 1 ] = np . insert ( TranShkDstn [ 1 ] * ( 1.0 - tax_rate ) * self . IndL , 0 , self . IncUnemp ) PermShkDstn = approxMeanOneLognormal ( self . PermShkCount , sigma = self . PermShkStd [ 0 ] , tail_N = 0 ) self . IncomeDstn = [ combineIndepDstns ( PermShkDstn , TranShkDstn ) ] self . TranShkDstn = TranShkDstn self . PermShkDstn = PermShkDstn self . addToTimeVary ( 'IncomeDstn' ) else : # Do the usual method if this is the lifecycle model EstimationAgentClass . updateIncomeProcess ( self )
def subtract ( lhs , rhs ) : """Returns element - wise difference of the input arrays with broadcasting . Equivalent to ` ` lhs - rhs ` ` , ` ` mx . nd . broadcast _ sub ( lhs , rhs ) ` ` and ` ` mx . nd . broadcast _ minus ( lhs , rhs ) ` ` when shapes of lhs and rhs do not match . If lhs . shape = = rhs . shape , this is equivalent to ` ` mx . nd . elemwise _ sub ( lhs , rhs ) ` ` . . note : : If the corresponding dimensions of two arrays have the same size or one of them has size 1, then the arrays are broadcastable to a common shape . Parameters lhs : scalar or mxnet . ndarray . sparse . array First array to be subtracted . rhs : scalar or mxnet . ndarray . sparse . array Second array to be subtracted . If ` ` lhs . shape ! = rhs . shape ` ` , they must be broadcastable to a common shape . _ _ spec _ _ Returns NDArray The element - wise difference of the input arrays . Examples > > > a = mx . nd . ones ( ( 2,3 ) ) . tostype ( ' csr ' ) > > > b = mx . nd . ones ( ( 2,3 ) ) . tostype ( ' csr ' ) > > > a . asnumpy ( ) array ( [ [ 1 . , 1 . , 1 . ] , [ 1 . , 1 . , 1 . ] ] , dtype = float32) > > > b . asnumpy ( ) array ( [ [ 1 . , 1 . , 1 . ] , [ 1 . , 1 . , 1 . ] ] , dtype = float32) > > > ( a - b ) . asnumpy ( ) array ( [ [ 0 . , 0 . , 0 . ] , [ 0 . , 0 . , 0 . ] ] , dtype = float32) > > > c = mx . nd . ones ( ( 2,3 ) ) . tostype ( ' row _ sparse ' ) > > > d = mx . nd . ones ( ( 2,3 ) ) . tostype ( ' row _ sparse ' ) > > > c . asnumpy ( ) array ( [ [ 1 . , 1 . , 1 . ] , [ 1 . , 1 . , 1 . ] ] , dtype = float32) > > > d . asnumpy ( ) array ( [ [ 1 . , 1 . , 1 . ] , [ 1 . , 1 . , 1 . ] ] , dtype = float32) > > > ( c - d ) . asnumpy ( ) array ( [ [ 0 . , 0 . , 0 . ] , [ 0 . , 0 . , 0 . ] ] , dtype = float32)"""
# pylint : disable = no - member , protected - access if isinstance ( lhs , NDArray ) and isinstance ( rhs , NDArray ) and lhs . shape == rhs . shape : return _ufunc_helper ( lhs , rhs , op . elemwise_sub , operator . sub , _internal . _minus_scalar , None ) return _ufunc_helper ( lhs , rhs , op . broadcast_sub , operator . sub , _internal . _minus_scalar , None )
def __get_update_uri ( self , account_id , ** kwargs ) : """Call documentation : ` / account / get _ update _ uri < https : / / www . wepay . com / developer / reference / account # update _ uri > ` _ , plus extra keyword parameters : : keyword str access _ token : will be used instead of instance ' s ` ` access _ token ` ` , with ` ` batch _ mode = True ` ` will set ` authorization ` param to it ' s value . : keyword bool batch _ mode : turn on / off the batch _ mode , see : class : ` wepay . api . WePay ` : keyword str batch _ reference _ id : ` reference _ id ` param for batch call , see : class : ` wepay . api . WePay ` : keyword str api _ version : WePay API version , see : class : ` wepay . api . WePay `"""
params = { 'account_id' : account_id } return self . make_call ( self . __get_update_uri , params , kwargs )
def get_files ( * bases ) : """List all files in a data directory ."""
for base in bases : basedir , _ = base . split ( "." , 1 ) base = os . path . join ( os . path . dirname ( __file__ ) , * base . split ( "." ) ) rem = len ( os . path . dirname ( base ) ) + len ( basedir ) + 2 for root , dirs , files in os . walk ( base ) : for name in files : yield os . path . join ( basedir , root , name ) [ rem : ]
def sign_execute_deposit ( deposit_params , private_key , infura_url ) : """Function to execute the deposit request by signing the transaction generated from the create deposit function . Execution of this function is as follows : : sign _ execute _ deposit ( deposit _ params = create _ deposit , private _ key = eth _ private _ key ) The expected return result for this function is as follows : : ' transaction _ hash ' : ' 0xcf3ea5d1821544e1686fbcb1f49d423b9ea9f42772ff9ecdaf615616d780fa75' : param deposit _ params : The parameters generated by the create function that now requires a signature . : type deposit _ params : dict : param private _ key : The Ethereum private key to sign the deposit parameters . : type private _ key : str : param infura _ url : The URL used to broadcast the deposit transaction to the Ethereum network . : type infura _ url : str : return : Dictionary of the signed transaction to initiate the deposit of ETH via the Switcheo API ."""
create_deposit_upper = deposit_params . copy ( ) create_deposit_upper [ 'transaction' ] [ 'from' ] = to_checksum_address ( create_deposit_upper [ 'transaction' ] [ 'from' ] ) create_deposit_upper [ 'transaction' ] [ 'to' ] = to_checksum_address ( create_deposit_upper [ 'transaction' ] [ 'to' ] ) create_deposit_upper [ 'transaction' ] . pop ( 'sha256' ) signed_create_txn = Account . signTransaction ( create_deposit_upper [ 'transaction' ] , private_key = private_key ) execute_signed_txn = binascii . hexlify ( signed_create_txn [ 'hash' ] ) . decode ( ) # Broadcast transaction to Ethereum Network . Web3 ( HTTPProvider ( infura_url ) ) . eth . sendRawTransaction ( signed_create_txn . rawTransaction ) return { 'transaction_hash' : '0x' + execute_signed_txn }
def appendData ( self , content ) : """Add characters to the element ' s pcdata ."""
if self . pcdata is not None : self . pcdata += content else : self . pcdata = content
def __prepare_body ( self , search_value , search_type = 'url' ) : """Prepares the http body for querying safebrowsing api . Maybe the list need to get adjusted . : param search _ value : value to search for : type search _ value : str : param search _ type : ' url ' or ' ip ' : type search _ type : str : returns : http body as dict : rtype : dict"""
body = { 'client' : { 'clientId' : self . client_id , 'clientVersion' : self . client_version } } if search_type == 'url' : data = { 'threatTypes' : [ 'MALWARE' , 'SOCIAL_ENGINEERING' , 'UNWANTED_SOFTWARE' , 'POTENTIALLY_HARMFUL_APPLICATION' ] , 'platformTypes' : [ 'ANY_PLATFORM' , 'ALL_PLATFORMS' , 'WINDOWS' , 'LINUX' , 'OSX' , 'ANDROID' , 'IOS' ] , 'threatEntryTypes' : [ 'URL' ] } elif search_type == 'ip' : data = { 'threatTypes' : [ 'MALWARE' ] , 'platformTypes' : [ 'WINDOWS' , 'LINUX' , 'OSX' ] , 'threatEntryTypes' : [ 'IP_RANGE' ] } else : raise SearchTypeNotSupportedError ( 'Currently supported search types are \'url\' and \'ip\'.' ) # TODO : Only found threatEntry ' url ' in the docs . What to use for ip _ range ? data [ 'threatEntries' ] = [ { 'url' : search_value } ] body [ 'threatInfo' ] = data return body
def shift_fn ( self , i , pre_dl = None , post_dl = None ) : """Press Shift + Fn1 ~ 12 once . * * 中文文档 * * 按下 Shift + Fn1 ~ 12 组合键 。"""
self . delay ( pre_dl ) self . k . press_key ( self . k . shift_key ) self . k . tap_key ( self . k . function_keys [ i ] ) self . k . release_key ( self . k . shift_key ) self . delay ( post_dl )
def rewrite_elife_title_prefix_json ( json_content , doi ) : """this does the work of rewriting elife title prefix json values"""
if not json_content : return json_content # title prefix rewrites by article DOI title_prefix_values = { } title_prefix_values [ "10.7554/eLife.00452" ] = "Point of View" title_prefix_values [ "10.7554/eLife.00615" ] = "Point of View" title_prefix_values [ "10.7554/eLife.00639" ] = "Point of View" title_prefix_values [ "10.7554/eLife.00642" ] = "Point of View" title_prefix_values [ "10.7554/eLife.00856" ] = "Point of View" title_prefix_values [ "10.7554/eLife.01061" ] = "Point of View" title_prefix_values [ "10.7554/eLife.01138" ] = "Point of View" title_prefix_values [ "10.7554/eLife.01139" ] = "Point of View" title_prefix_values [ "10.7554/eLife.01820" ] = "Animal Models of Disease" title_prefix_values [ "10.7554/eLife.02576" ] = "Point of View" title_prefix_values [ "10.7554/eLife.04902" ] = "Point of View" title_prefix_values [ "10.7554/eLife.05614" ] = "Point of View" title_prefix_values [ "10.7554/eLife.05635" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.05826" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.05835" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.05849" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.05861" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.05959" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.06024" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.06100" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.06793" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.06813" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.06956" ] = "The Natural History of Model Organisms" title_prefix_values [ "10.7554/eLife.09305" ] = "Point of View" title_prefix_values [ "10.7554/eLife.10825" ] = "Point of View" title_prefix_values [ "10.7554/eLife.11628" ] = "Living Science" title_prefix_values [ "10.7554/eLife.12708" ] = "Point of View" title_prefix_values [ "10.7554/eLife.12844" ] = "Point of View" title_prefix_values [ "10.7554/eLife.13035" ] = "Point of View" title_prefix_values [ "10.7554/eLife.14258" ] = "Cutting Edge" title_prefix_values [ "10.7554/eLife.14424" ] = "Point of View" title_prefix_values [ "10.7554/eLife.14511" ] = "Cell Proliferation" title_prefix_values [ "10.7554/eLife.14721" ] = "Intracellular Bacteria" title_prefix_values [ "10.7554/eLife.14790" ] = "Decision Making" title_prefix_values [ "10.7554/eLife.14830" ] = "Progenitor Cells" title_prefix_values [ "10.7554/eLife.14953" ] = "Gene Expression" title_prefix_values [ "10.7554/eLife.14973" ] = "Breast Cancer" title_prefix_values [ "10.7554/eLife.15352" ] = "Autoimmune Disorders" title_prefix_values [ "10.7554/eLife.15438" ] = "Motor Circuits" title_prefix_values [ "10.7554/eLife.15591" ] = "Protein Tagging" title_prefix_values [ "10.7554/eLife.15928" ] = "Point of View" title_prefix_values [ "10.7554/eLife.15938" ] = "Cancer Metabolism" title_prefix_values [ "10.7554/eLife.15957" ] = "Stem Cells" title_prefix_values [ "10.7554/eLife.15963" ] = "Prediction Error" title_prefix_values [ "10.7554/eLife.16019" ] = "Social Networks" title_prefix_values [ "10.7554/eLife.16076" ] = "mRNA Decay" title_prefix_values [ "10.7554/eLife.16207" ] = "Cardiac Development" title_prefix_values [ "10.7554/eLife.16209" ] = "Neural Coding" title_prefix_values [ "10.7554/eLife.16393" ] = "Neural Circuits" title_prefix_values [ "10.7554/eLife.16598" ] = "RNA Localization" title_prefix_values [ "10.7554/eLife.16758" ] = "Adaptive Evolution" title_prefix_values [ "10.7554/eLife.16800" ] = "Point of View" title_prefix_values [ "10.7554/eLife.16846" ] = "Living Science" title_prefix_values [ "10.7554/eLife.16931" ] = "Point of View" title_prefix_values [ "10.7554/eLife.16964" ] = "Ion Channels" title_prefix_values [ "10.7554/eLife.17224" ] = "Host-virus Interactions" title_prefix_values [ "10.7554/eLife.17293" ] = "Ion Channels" title_prefix_values [ "10.7554/eLife.17393" ] = "Point of View" title_prefix_values [ "10.7554/eLife.17394" ] = "p53 Family Proteins" title_prefix_values [ "10.7554/eLife.18203" ] = "Antibody Engineering" title_prefix_values [ "10.7554/eLife.18243" ] = "Host-virus Interactions" title_prefix_values [ "10.7554/eLife.18365" ] = "DNA Repair" title_prefix_values [ "10.7554/eLife.18431" ] = "Unfolded Protein Response" title_prefix_values [ "10.7554/eLife.18435" ] = "Long Distance Transport" title_prefix_values [ "10.7554/eLife.18721" ] = "Decision Making" title_prefix_values [ "10.7554/eLife.18753" ] = "Resource Competition" title_prefix_values [ "10.7554/eLife.18871" ] = "Mathematical Modeling" title_prefix_values [ "10.7554/eLife.18887" ] = "Sensorimotor Transformation" title_prefix_values [ "10.7554/eLife.19285" ] = "Genetic Screen" title_prefix_values [ "10.7554/eLife.19351" ] = "Motor Control" title_prefix_values [ "10.7554/eLife.19405" ] = "Membrane Structures" title_prefix_values [ "10.7554/eLife.19733" ] = "Focal Adhesions" title_prefix_values [ "10.7554/eLife.20043" ] = "Amyloid-beta Peptides" title_prefix_values [ "10.7554/eLife.20314" ] = "Plant Reproduction" title_prefix_values [ "10.7554/eLife.20468" ] = "Endoplasmic Reticulum" title_prefix_values [ "10.7554/eLife.20516" ] = "Innate Like Lymphocytes" title_prefix_values [ "10.7554/eLife.21070" ] = "Scientific Publishing" title_prefix_values [ "10.7554/eLife.21236" ] = "Developmental Neuroscience" title_prefix_values [ "10.7554/eLife.21522" ] = "Developmental Neuroscience" title_prefix_values [ "10.7554/eLife.21723" ] = "Living Science" title_prefix_values [ "10.7554/eLife.21863" ] = "Genetic Screening" title_prefix_values [ "10.7554/eLife.21864" ] = "Evolutionary Biology" title_prefix_values [ "10.7554/eLife.22073" ] = "Unfolded Protein Response" title_prefix_values [ "10.7554/eLife.22186" ] = "Point of View" title_prefix_values [ "10.7554/eLife.22215" ] = "Neural Wiring" title_prefix_values [ "10.7554/eLife.22256" ] = "Molecular Communication" title_prefix_values [ "10.7554/eLife.22471" ] = "Point of View" title_prefix_values [ "10.7554/eLife.22661" ] = "Reproducibility in Cancer Biology" title_prefix_values [ "10.7554/eLife.22662" ] = "Reproducibility in Cancer Biology" title_prefix_values [ "10.7554/eLife.22735" ] = "Motor Networks" title_prefix_values [ "10.7554/eLife.22850" ] = "Heat Shock Response" title_prefix_values [ "10.7554/eLife.22915" ] = "Reproducibility in Cancer Biology" title_prefix_values [ "10.7554/eLife.22926" ] = "Skeletal Stem Cells" title_prefix_values [ "10.7554/eLife.23375" ] = "Social Evolution" title_prefix_values [ "10.7554/eLife.23383" ] = "Reproducibility in Cancer Biology" title_prefix_values [ "10.7554/eLife.23447" ] = "Genetic Rearrangement" title_prefix_values [ "10.7554/eLife.23693" ] = "Reproducibility in Cancer Biology" title_prefix_values [ "10.7554/eLife.23804" ] = "Point of View" title_prefix_values [ "10.7554/eLife.24038" ] = "Cell Division" title_prefix_values [ "10.7554/eLife.24052" ] = "DNA Replication" title_prefix_values [ "10.7554/eLife.24106" ] = "Germ Granules" title_prefix_values [ "10.7554/eLife.24238" ] = "Tumor Angiogenesis" title_prefix_values [ "10.7554/eLife.24276" ] = "Stem Cells" title_prefix_values [ "10.7554/eLife.24611" ] = "Point of View" title_prefix_values [ "10.7554/eLife.24896" ] = "Visual Behavior" title_prefix_values [ "10.7554/eLife.25000" ] = "Chromatin Mapping" title_prefix_values [ "10.7554/eLife.25001" ] = "Cell Cycle" title_prefix_values [ "10.7554/eLife.25159" ] = "Ion Channels" title_prefix_values [ "10.7554/eLife.25358" ] = "Cell Division" title_prefix_values [ "10.7554/eLife.25375" ] = "Membrane Phase Separation" title_prefix_values [ "10.7554/eLife.25408" ] = "Plain-language Summaries of Research" title_prefix_values [ "10.7554/eLife.25410" ] = "Plain-language Summaries of Research" title_prefix_values [ "10.7554/eLife.25411" ] = "Plain-language Summaries of Research" title_prefix_values [ "10.7554/eLife.25412" ] = "Plain-language Summaries of Research" title_prefix_values [ "10.7554/eLife.25431" ] = "Genetic Diversity" title_prefix_values [ "10.7554/eLife.25654" ] = "Systems Biology" title_prefix_values [ "10.7554/eLife.25669" ] = "Paternal Effects" title_prefix_values [ "10.7554/eLife.25700" ] = "TOR Signaling" title_prefix_values [ "10.7554/eLife.25835" ] = "Cutting Edge" title_prefix_values [ "10.7554/eLife.25858" ] = "Developmental Biology" title_prefix_values [ "10.7554/eLife.25956" ] = "Point of View" title_prefix_values [ "10.7554/eLife.25996" ] = "Cancer Therapeutics" title_prefix_values [ "10.7554/eLife.26295" ] = "Point of View" title_prefix_values [ "10.7554/eLife.26401" ] = "Object Recognition" title_prefix_values [ "10.7554/eLife.26775" ] = "Human Evolution" title_prefix_values [ "10.7554/eLife.26787" ] = "Cutting Edge" title_prefix_values [ "10.7554/eLife.26942" ] = "Alzheimer’s Disease" title_prefix_values [ "10.7554/eLife.27085" ] = "Translational Control" title_prefix_values [ "10.7554/eLife.27198" ] = "Cell Signaling" title_prefix_values [ "10.7554/eLife.27438" ] = "Point of View" title_prefix_values [ "10.7554/eLife.27467" ] = "Evolutionary Developmental Biology" title_prefix_values [ "10.7554/eLife.27605" ] = "Population Genetics" title_prefix_values [ "10.7554/eLife.27933" ] = "Ion Channels" title_prefix_values [ "10.7554/eLife.27982" ] = "Living Science" title_prefix_values [ "10.7554/eLife.28339" ] = "Oncogene Regulation" title_prefix_values [ "10.7554/eLife.28514" ] = "Maternal Behavior" title_prefix_values [ "10.7554/eLife.28699" ] = "Point of View" title_prefix_values [ "10.7554/eLife.28757" ] = "Mitochondrial Homeostasis" title_prefix_values [ "10.7554/eLife.29056" ] = "Gene Variation" title_prefix_values [ "10.7554/eLife.29104" ] = "Cardiac Hypertrophy" title_prefix_values [ "10.7554/eLife.29502" ] = "Meiotic Recombination" title_prefix_values [ "10.7554/eLife.29586" ] = "Virus Evolution" title_prefix_values [ "10.7554/eLife.29942" ] = "Post-translational Modifications" title_prefix_values [ "10.7554/eLife.30076" ] = "Scientific Publishing" title_prefix_values [ "10.7554/eLife.30183" ] = "Point of View" title_prefix_values [ "10.7554/eLife.30194" ] = "Organ Development" title_prefix_values [ "10.7554/eLife.30249" ] = "Tissue Regeneration" title_prefix_values [ "10.7554/eLife.30280" ] = "Adverse Drug Reactions" title_prefix_values [ "10.7554/eLife.30599" ] = "Living Science" title_prefix_values [ "10.7554/eLife.30865" ] = "Stone Tool Use" title_prefix_values [ "10.7554/eLife.31106" ] = "Sensory Neurons" title_prefix_values [ "10.7554/eLife.31328" ] = "Drought Stress" title_prefix_values [ "10.7554/eLife.31697" ] = "Scientific Publishing" title_prefix_values [ "10.7554/eLife.31808" ] = "Tissue Engineering" title_prefix_values [ "10.7554/eLife.31816" ] = "Sound Processing" title_prefix_values [ "10.7554/eLife.32011" ] = "Peer Review" title_prefix_values [ "10.7554/eLife.32012" ] = "Peer Review" title_prefix_values [ "10.7554/eLife.32014" ] = "Peer Review" title_prefix_values [ "10.7554/eLife.32015" ] = "Peer Review" title_prefix_values [ "10.7554/eLife.32016" ] = "Peer Review" title_prefix_values [ "10.7554/eLife.32715" ] = "Point of View" # Edge case fix title prefix values if doi in title_prefix_values : # Do a quick sanity check , only replace if the lowercase comparison is equal # just in case the value has been changed to something else we will not replace it if json_content . lower ( ) == title_prefix_values [ doi ] . lower ( ) : json_content = title_prefix_values [ doi ] return json_content
def _raise_error_if_disconnected ( self ) -> None : """See if we ' re still connected , and if not , raise ` ` SMTPServerDisconnected ` ` ."""
if ( self . transport is None or self . protocol is None or self . transport . is_closing ( ) ) : self . close ( ) raise SMTPServerDisconnected ( "Disconnected from SMTP server" )
def msetnx ( self , * args , ** kwargs ) : """Sets key / values based on a mapping if none of the keys are already set . Mapping can be supplied as a single dictionary argument or as kwargs . Returns a boolean indicating if the operation was successful ."""
if args : if len ( args ) != 1 or not isinstance ( args [ 0 ] , dict ) : raise RedisError ( 'MSETNX requires **kwargs or a single dict arg' ) mapping = args [ 0 ] else : mapping = kwargs if len ( mapping ) == 0 : raise ResponseError ( "wrong number of arguments for 'msetnx' command" ) for key in mapping . keys ( ) : if self . _encode ( key ) in self . redis : return False for key , value in mapping . items ( ) : self . set ( key , value ) return True
def recoverTransaction ( self , serialized_transaction ) : '''Get the address of the account that signed this transaction . : param serialized _ transaction : the complete signed transaction : type serialized _ transaction : hex str , bytes or int : returns : address of signer , hex - encoded & checksummed : rtype : str . . code - block : : python > > > raw _ transaction = ' 0xf86a8086d55698372431831e848094f0109fc8df283027b6285cc889f5aa624eac1f55843b9aca008025a009ebb6ca057a0535d6186462bc0b465b561c94a295bdb0621fc19208ab149a9ca0440ffd775ce91a833ab410777204d5341a6f9fa91216a6f3ee2c051fea6a0428 ' , # noqa : E501 > > > Account . recoverTransaction ( raw _ transaction ) '0x2c7536E3605D9C16a7a3D7b1898e529396a65c23' '''
txn_bytes = HexBytes ( serialized_transaction ) txn = Transaction . from_bytes ( txn_bytes ) msg_hash = hash_of_signed_transaction ( txn ) return self . recoverHash ( msg_hash , vrs = vrs_from ( txn ) )
def get_family ( self ) : """Gets the ` ` Family ` ` associated with this session . return : ( osid . relationship . Family ) - the family raise : OperationFailed - unable to complete request raise : PermissionDenied - authorization failure * compliance : mandatory - - This method must be implemented . *"""
return FamilyLookupSession ( proxy = self . _proxy , runtime = self . _runtime ) . get_family ( self . _family_id )
def recode ( inlist , listmap , cols = None ) : """Changes the values in a list to a new set of values ( useful when you need to recode data from ( e . g . ) strings to numbers . cols defaults to None ( meaning all columns are recoded ) . Usage : recode ( inlist , listmap , cols = None ) cols = recode cols , listmap = 2D list Returns : inlist with the appropriate values replaced with new ones"""
lst = copy . deepcopy ( inlist ) if cols != None : if type ( cols ) not in [ ListType , TupleType ] : cols = [ cols ] for col in cols : for row in range ( len ( lst ) ) : try : idx = colex ( listmap , 0 ) . index ( lst [ row ] [ col ] ) lst [ row ] [ col ] = listmap [ idx ] [ 1 ] except ValueError : pass else : for row in range ( len ( lst ) ) : for col in range ( len ( lst ) ) : try : idx = colex ( listmap , 0 ) . index ( lst [ row ] [ col ] ) lst [ row ] [ col ] = listmap [ idx ] [ 1 ] except ValueError : pass return lst
def flush ( self ) : """Flush message queue if there ' s an active connection running"""
self . _pending_flush = False if self . handler is None : return if self . send_queue . is_empty ( ) : return self . handler . send_pack ( 'a[%s]' % self . send_queue . get ( ) ) self . send_queue . clear ( )
def unmapped ( sam , mates ) : """get unmapped reads"""
for read in sam : if read . startswith ( '@' ) is True : continue read = read . strip ( ) . split ( ) if read [ 2 ] == '*' and read [ 6 ] == '*' : yield read elif mates is True : if read [ 2 ] == '*' or read [ 6 ] == '*' : yield read for i in read : if i == 'YT:Z:UP' : yield read
def cross_product_matrix ( vec ) : """Returns a 3x3 cross - product matrix from a 3 - element vector ."""
return np . array ( [ [ 0 , - vec [ 2 ] , vec [ 1 ] ] , [ vec [ 2 ] , 0 , - vec [ 0 ] ] , [ - vec [ 1 ] , vec [ 0 ] , 0 ] ] )
def _tree_line ( self , no_type : bool = False ) -> str : """Return the receiver ' s contribution to tree diagram ."""
return super ( ) . _tree_line ( ) + ( "!" if self . presence else "" )
def update ( self , unique_name = values . unset , callback_method = values . unset , callback_url = values . unset , friendly_name = values . unset , rate_plan = values . unset , status = values . unset , commands_callback_method = values . unset , commands_callback_url = values . unset , sms_fallback_method = values . unset , sms_fallback_url = values . unset , sms_method = values . unset , sms_url = values . unset , voice_fallback_method = values . unset , voice_fallback_url = values . unset , voice_method = values . unset , voice_url = values . unset , reset_status = values . unset ) : """Update the SimInstance : param unicode unique _ name : A user - provided string that uniquely identifies this resource as an alternative to the Sid . : param unicode callback _ method : The HTTP method Twilio will use when making a request to the callback URL . : param unicode callback _ url : Twilio will make a request to this URL when the Sim has finished updating . : param unicode friendly _ name : A user - provided string that identifies this resource . : param unicode rate _ plan : The Sid or UniqueName of the RatePlan that this Sim should use . : param SimInstance . Status status : A string representing the status of the Sim . : param unicode commands _ callback _ method : A string representing the HTTP method to use when making a request to CommandsCallbackUrl . : param unicode commands _ callback _ url : The URL that will receive a webhook when this Sim originates a Command . : param unicode sms _ fallback _ method : The HTTP method Twilio will use when requesting the sms _ fallback _ url . : param unicode sms _ fallback _ url : The URL that Twilio will request if an error occurs retrieving or executing the TwiML requested by sms _ url . : param unicode sms _ method : The HTTP method Twilio will use when requesting the above Url . : param unicode sms _ url : The URL Twilio will request when the SIM - connected device sends an SMS message that is not a Command . : param unicode voice _ fallback _ method : The HTTP method Twilio will use when requesting the voice _ fallback _ url . : param unicode voice _ fallback _ url : The URL that Twilio will request if an error occurs retrieving or executing the TwiML requested by voice _ url . : param unicode voice _ method : The HTTP method Twilio will use when requesting the above Url . : param unicode voice _ url : The URL Twilio will request when the SIM - connected device makes a call . : param SimInstance . ResetStatus reset _ status : Initiate a connectivity reset on a Sim . : returns : Updated SimInstance : rtype : twilio . rest . wireless . v1 . sim . SimInstance"""
data = values . of ( { 'UniqueName' : unique_name , 'CallbackMethod' : callback_method , 'CallbackUrl' : callback_url , 'FriendlyName' : friendly_name , 'RatePlan' : rate_plan , 'Status' : status , 'CommandsCallbackMethod' : commands_callback_method , 'CommandsCallbackUrl' : commands_callback_url , 'SmsFallbackMethod' : sms_fallback_method , 'SmsFallbackUrl' : sms_fallback_url , 'SmsMethod' : sms_method , 'SmsUrl' : sms_url , 'VoiceFallbackMethod' : voice_fallback_method , 'VoiceFallbackUrl' : voice_fallback_url , 'VoiceMethod' : voice_method , 'VoiceUrl' : voice_url , 'ResetStatus' : reset_status , } ) payload = self . _version . update ( 'POST' , self . _uri , data = data , ) return SimInstance ( self . _version , payload , sid = self . _solution [ 'sid' ] , )
def generate_PJdelJ_nt_pos_vecs ( self , generative_model , genomic_data ) : """Process P ( J ) * P ( delJ | J ) into Pi arrays . Sets the attributes PJdelJ _ nt _ pos _ vec and PJdelJ _ 2nd _ nt _ pos _ per _ aa _ vec . Parameters generative _ model : GenerativeModelVDJ VDJ generative model class containing the model parameters . genomic _ data : GenomicDataVDJ VDJ genomic data class containing the V , D , and J germline sequences and info ."""
cutJ_genomic_CDR3_segs = genomic_data . cutJ_genomic_CDR3_segs nt2num = { 'A' : 0 , 'C' : 1 , 'G' : 2 , 'T' : 3 } num_del_pos = generative_model . PdelJ_given_J . shape [ 0 ] num_D_genes , num_J_genes = generative_model . PDJ . shape PJ = np . sum ( generative_model . PDJ , axis = 0 ) PJdelJ_nt_pos_vec = [ [ ] ] * num_J_genes PJdelJ_2nd_nt_pos_per_aa_vec = [ [ ] ] * num_J_genes for J_in , pj in enumerate ( PJ ) : # We include the marginal PJ here current_PJdelJ_nt_pos_vec = np . zeros ( ( 4 , len ( cutJ_genomic_CDR3_segs [ J_in ] ) ) ) current_PJdelJ_2nd_nt_pos_per_aa_vec = { } for aa in self . codons_dict . keys ( ) : current_PJdelJ_2nd_nt_pos_per_aa_vec [ aa ] = np . zeros ( ( 4 , len ( cutJ_genomic_CDR3_segs [ J_in ] ) ) ) for pos , nt in enumerate ( cutJ_genomic_CDR3_segs [ J_in ] ) : if pos >= num_del_pos : continue if ( len ( cutJ_genomic_CDR3_segs [ J_in ] ) - pos ) % 3 == 1 : # Start of a codon current_PJdelJ_nt_pos_vec [ nt2num [ nt ] , pos ] = pj * generative_model . PdelJ_given_J [ pos , J_in ] elif ( len ( cutJ_genomic_CDR3_segs [ J_in ] ) - pos ) % 3 == 2 : # Mid codon position for ins_nt in 'ACGT' : # We need to find what possible codons are allowed for any aa ( or motif ) for aa in self . codons_dict . keys ( ) : if ins_nt + cutJ_genomic_CDR3_segs [ J_in ] [ pos : pos + 2 ] in self . codons_dict [ aa ] : current_PJdelJ_2nd_nt_pos_per_aa_vec [ aa ] [ nt2num [ ins_nt ] , pos ] = pj * generative_model . PdelJ_given_J [ pos , J_in ] elif ( len ( cutJ_genomic_CDR3_segs [ J_in ] ) - pos ) % 3 == 0 : # End of codon current_PJdelJ_nt_pos_vec [ 0 , pos ] = pj * generative_model . PdelJ_given_J [ pos , J_in ] PJdelJ_nt_pos_vec [ J_in ] = current_PJdelJ_nt_pos_vec PJdelJ_2nd_nt_pos_per_aa_vec [ J_in ] = current_PJdelJ_2nd_nt_pos_per_aa_vec self . PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec self . PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec
def run_selection ( self ) : """Run selected text or current line in console . If some text is selected , then execute that text in console . If no text is selected , then execute current line , unless current line is empty . Then , advance cursor to next line . If cursor is on last line and that line is not empty , then add a new blank line and move the cursor there . If cursor is on last line and that line is empty , then do not move cursor ."""
text = self . get_current_editor ( ) . get_selection_as_executable_code ( ) if text : self . exec_in_extconsole . emit ( text . rstrip ( ) , self . focus_to_editor ) return editor = self . get_current_editor ( ) line = editor . get_current_line ( ) text = line . lstrip ( ) if text : self . exec_in_extconsole . emit ( text , self . focus_to_editor ) if editor . is_cursor_on_last_line ( ) and text : editor . append ( editor . get_line_separator ( ) ) editor . move_cursor_to_next ( 'line' , 'down' )
async def grant ( self , acl = 'login' ) : """Set access level of this user on the controller . : param str acl : Access control ( ' login ' , ' add - model ' , or ' superuser ' )"""
if await self . controller . grant ( self . username , acl ) : self . _user_info . access = acl
def update_notes ( self , ** kwargs ) : """Updates the notes on the subscription without generating a change This endpoint also allows you to update custom fields : sub . custom _ fields [ 0 ] . value = ' A new value ' sub . update _ notes ( )"""
for key , val in iteritems ( kwargs ) : setattr ( self , key , val ) url = urljoin ( self . _url , '/notes' ) self . put ( url )
def MakePmf ( self , xs , name = '' ) : """Makes a discrete version of this Pdf , evaluated at xs . xs : equally - spaced sequence of values Returns : new Pmf"""
pmf = Pmf ( name = name ) for x in xs : pmf . Set ( x , self . Density ( x ) ) pmf . Normalize ( ) return pmf
def _threaded ( self , * args , ** kwargs ) : """Call the target and put the result in the Queue ."""
for target in self . targets : result = target ( * args , ** kwargs ) self . queue . put ( result )
def _optimize_A ( self , A ) : """Find optimal transformation matrix A by minimization . Parameters A : ndarray The transformation matrix A . Returns A : ndarray The transformation matrix ."""
right_eigenvectors = self . right_eigenvectors_ [ : , : self . n_macrostates ] flat_map , square_map = get_maps ( A ) alpha = to_flat ( 1.0 * A , flat_map ) def obj ( x ) : return - 1 * self . _objective_function ( x , self . transmat_ , right_eigenvectors , square_map , self . populations_ ) alpha = scipy . optimize . basinhopping ( obj , alpha , niter_success = 1000 , ) [ 'x' ] alpha = scipy . optimize . fmin ( obj , alpha , full_output = True , xtol = 1E-4 , ftol = 1E-4 , maxfun = 5000 , maxiter = 100000 ) [ 0 ] if np . isneginf ( obj ( alpha ) ) : raise ValueError ( "Error: minimization has not located a feasible point." ) A = to_square ( alpha , square_map ) return A
def filter ( self , table , vg_snapshots , filter_string ) : """Naive case - insensitive search ."""
query = filter_string . lower ( ) return [ vg_snapshot for vg_snapshot in vg_snapshots if query in vg_snapshot . name . lower ( ) ]
def _approxaAInv ( self , Or , Op , Oz , ar , ap , az , interp = True ) : """NAME : _ approxaAInv PURPOSE : return R , vR , . . . coordinates for a point based on the linear approximation around the stream track INPUT : Or , Op , Oz , ar , ap , az - phase space coordinates in frequency - angle space interp = ( True ) , if True , use the interpolated track OUTPUT : ( R , vR , vT , z , vz , phi ) HISTORY : 2013-12-22 - Written - Bovy ( IAS )"""
if isinstance ( Or , ( int , float , numpy . float32 , numpy . float64 ) ) : # Scalar input Or = numpy . array ( [ Or ] ) Op = numpy . array ( [ Op ] ) Oz = numpy . array ( [ Oz ] ) ar = numpy . array ( [ ar ] ) ap = numpy . array ( [ ap ] ) az = numpy . array ( [ az ] ) # Calculate apar , angle offset along the stream closestIndx = [ self . _find_closest_trackpointaA ( Or [ ii ] , Op [ ii ] , Oz [ ii ] , ar [ ii ] , ap [ ii ] , az [ ii ] , interp = interp ) for ii in range ( len ( Or ) ) ] out = numpy . empty ( ( 6 , len ( Or ) ) ) for ii in range ( len ( Or ) ) : dOa = numpy . empty ( 6 ) if interp : dOa [ 0 ] = Or [ ii ] - self . _interpolatedObsTrackAA [ closestIndx [ ii ] , 0 ] dOa [ 1 ] = Op [ ii ] - self . _interpolatedObsTrackAA [ closestIndx [ ii ] , 1 ] dOa [ 2 ] = Oz [ ii ] - self . _interpolatedObsTrackAA [ closestIndx [ ii ] , 2 ] dOa [ 3 ] = ar [ ii ] - self . _interpolatedObsTrackAA [ closestIndx [ ii ] , 3 ] dOa [ 4 ] = ap [ ii ] - self . _interpolatedObsTrackAA [ closestIndx [ ii ] , 4 ] dOa [ 5 ] = az [ ii ] - self . _interpolatedObsTrackAA [ closestIndx [ ii ] , 5 ] jacIndx = self . _find_closest_trackpointaA ( Or [ ii ] , Op [ ii ] , Oz [ ii ] , ar [ ii ] , ap [ ii ] , az [ ii ] , interp = False ) else : dOa [ 0 ] = Or [ ii ] - self . _ObsTrackAA [ closestIndx [ ii ] , 0 ] dOa [ 1 ] = Op [ ii ] - self . _ObsTrackAA [ closestIndx [ ii ] , 1 ] dOa [ 2 ] = Oz [ ii ] - self . _ObsTrackAA [ closestIndx [ ii ] , 2 ] dOa [ 3 ] = ar [ ii ] - self . _ObsTrackAA [ closestIndx [ ii ] , 3 ] dOa [ 4 ] = ap [ ii ] - self . _ObsTrackAA [ closestIndx [ ii ] , 4 ] dOa [ 5 ] = az [ ii ] - self . _ObsTrackAA [ closestIndx [ ii ] , 5 ] jacIndx = closestIndx [ ii ] # Find 2nd closest Jacobian point for smoothing da = numpy . stack ( numpy . meshgrid ( _TWOPIWRAPS + ar [ ii ] - self . _progenitor_angle [ 0 ] , _TWOPIWRAPS + ap [ ii ] - self . _progenitor_angle [ 1 ] , _TWOPIWRAPS + az [ ii ] - self . _progenitor_angle [ 2 ] , indexing = 'xy' ) ) . T . reshape ( ( len ( _TWOPIWRAPS ) ** 3 , 3 ) ) dapar = self . _sigMeanSign * numpy . dot ( da [ numpy . argmin ( numpy . linalg . norm ( numpy . cross ( da , self . _dsigomeanProgDirection ) , axis = 1 ) ) ] , self . _dsigomeanProgDirection ) dmJacIndx = numpy . fabs ( dapar - self . _thetasTrack [ jacIndx ] ) if jacIndx == 0 : jacIndx2 = jacIndx + 1 dmJacIndx2 = numpy . fabs ( dapar - self . _thetasTrack [ jacIndx + 1 ] ) elif jacIndx == self . _nTrackChunks - 1 : jacIndx2 = jacIndx - 1 dmJacIndx2 = numpy . fabs ( dapar - self . _thetasTrack [ jacIndx - 1 ] ) else : dm1 = numpy . fabs ( dapar - self . _thetasTrack [ jacIndx - 1 ] ) dm2 = numpy . fabs ( dapar - self . _thetasTrack [ jacIndx + 1 ] ) if dm1 < dm2 : jacIndx2 = jacIndx - 1 dmJacIndx2 = dm1 else : jacIndx2 = jacIndx + 1 dmJacIndx2 = dm2 ampJacIndx = dmJacIndx / ( dmJacIndx + dmJacIndx2 ) # Make sure the angles haven ' t wrapped around if dOa [ 3 ] > numpy . pi : dOa [ 3 ] -= 2. * numpy . pi elif dOa [ 3 ] < - numpy . pi : dOa [ 3 ] += 2. * numpy . pi if dOa [ 4 ] > numpy . pi : dOa [ 4 ] -= 2. * numpy . pi elif dOa [ 4 ] < - numpy . pi : dOa [ 4 ] += 2. * numpy . pi if dOa [ 5 ] > numpy . pi : dOa [ 5 ] -= 2. * numpy . pi elif dOa [ 5 ] < - numpy . pi : dOa [ 5 ] += 2. * numpy . pi # Apply closest jacobian out [ : , ii ] = numpy . dot ( ( 1. - ampJacIndx ) * self . _allinvjacsTrack [ jacIndx , : , : ] + ampJacIndx * self . _allinvjacsTrack [ jacIndx2 , : , : ] , dOa ) if interp : out [ : , ii ] += self . _interpolatedObsTrack [ closestIndx [ ii ] ] else : out [ : , ii ] += self . _ObsTrack [ closestIndx [ ii ] ] return out
def delete_object_in_seconds ( self , obj , seconds , extra_info = None ) : """Sets the object in this container to be deleted after the specified number of seconds . The ' extra _ info ' parameter is included for backwards compatibility . It is no longer used at all , and will not be modified with swiftclient info , since swiftclient is not used any more ."""
return self . manager . delete_object_in_seconds ( self , obj , seconds )
def _ite ( lexer ) : """Return an ITE expression ."""
s = _impl ( lexer ) tok = next ( lexer ) # IMPL ' ? ' ITE ' : ' ITE if isinstance ( tok , OP_question ) : d1 = _ite ( lexer ) _expect_token ( lexer , { OP_colon } ) d0 = _ite ( lexer ) return ( 'ite' , s , d1 , d0 ) # IMPL else : lexer . unpop_token ( tok ) return s
def expandScopesGet ( self , * args , ** kwargs ) : """Expand Scopes Return an expanded copy of the given scopeset , with scopes implied by any roles included . This call uses the GET method with an HTTP body . It remains only for backward compatibility . This method takes input : ` ` v1 / scopeset . json # ` ` This method gives output : ` ` v1 / scopeset . json # ` ` This method is ` ` deprecated ` `"""
return self . _makeApiCall ( self . funcinfo [ "expandScopesGet" ] , * args , ** kwargs )
def prepare_jochem ( ctx , jochem , output , csoutput ) : """Process and filter jochem file to produce list of names for dictionary ."""
click . echo ( 'chemdataextractor.dict.prepare_jochem' ) for i , line in enumerate ( jochem ) : print ( 'JC%s' % i ) if line . startswith ( 'TM ' ) : if line . endswith ( ' @match=ci\n' ) : for tokens in _make_tokens ( line [ 3 : - 11 ] ) : output . write ( ' ' . join ( tokens ) ) output . write ( '\n' ) else : for tokens in _make_tokens ( line [ 3 : - 1 ] ) : csoutput . write ( ' ' . join ( tokens ) ) csoutput . write ( '\n' )
def create_from_name_and_dictionary ( self , name , datas ) : """Return a populated object Parameter from dictionary datas"""
parameter = ObjectParameter ( ) self . set_common_datas ( parameter , name , datas ) if "optional" in datas : parameter . optional = to_boolean ( datas [ "optional" ] ) if "type" in datas : parameter . type = str ( datas [ "type" ] ) if "generic" in datas : parameter . generic = to_boolean ( datas [ "generic" ] ) return parameter
def update_annotations_on_build ( self , build_id , annotations ) : """set annotations on build object : param build _ id : str , id of build : param annotations : dict , annotations to set : return :"""
return self . adjust_attributes_on_object ( 'builds' , build_id , 'annotations' , annotations , self . _update_metadata_things )
def qos_rcv_queue_multicast_threshold_traffic_class0 ( self , ** kwargs ) : """Auto Generated Code"""
config = ET . Element ( "config" ) qos = ET . SubElement ( config , "qos" , xmlns = "urn:brocade.com:mgmt:brocade-qos" ) rcv_queue = ET . SubElement ( qos , "rcv-queue" ) multicast = ET . SubElement ( rcv_queue , "multicast" ) threshold = ET . SubElement ( multicast , "threshold" ) traffic_class0 = ET . SubElement ( threshold , "traffic-class0" ) traffic_class0 . text = kwargs . pop ( 'traffic_class0' ) callback = kwargs . pop ( 'callback' , self . _callback ) return callback ( config )
def _fit_position_tsmap ( self , name , ** kwargs ) : """Localize a source from its TS map ."""
prefix = kwargs . get ( 'prefix' , '' ) dtheta_max = kwargs . get ( 'dtheta_max' , 0.5 ) zmin = kwargs . get ( 'zmin' , - 3.0 ) kw = { 'map_size' : 2.0 * dtheta_max , 'write_fits' : kwargs . get ( 'write_fits' , False ) , 'write_npy' : kwargs . get ( 'write_npy' , False ) , 'use_pylike' : kwargs . get ( 'use_pylike' , True ) , 'max_kernel_radius' : self . config [ 'tsmap' ] [ 'max_kernel_radius' ] , 'loglevel' : logging . DEBUG } src = self . roi . copy_source ( name ) if src [ 'SpatialModel' ] in [ 'RadialDisk' , 'RadialGaussian' ] : kw [ 'max_kernel_radius' ] = max ( kw [ 'max_kernel_radius' ] , 2.0 * src [ 'SpatialWidth' ] ) skydir = kwargs . get ( 'skydir' , src . skydir ) tsmap = self . tsmap ( utils . join_strings ( [ prefix , name . lower ( ) . replace ( ' ' , '_' ) ] ) , model = src . data , map_skydir = skydir , exclude = [ name ] , make_plots = False , ** kw ) # Find peaks with TS > 4 peaks = find_peaks ( tsmap [ 'ts' ] , 4.0 , 0.2 ) peak_best = None o = { } for p in sorted ( peaks , key = lambda t : t [ 'amp' ] , reverse = True ) : xy = p [ 'ix' ] , p [ 'iy' ] ts_value = tsmap [ 'ts' ] . data [ xy [ 1 ] , xy [ 0 ] ] posfit = fit_error_ellipse ( tsmap [ 'ts' ] , xy = xy , dpix = 2 , zmin = max ( zmin , - ts_value * 0.5 ) ) offset = posfit [ 'skydir' ] . separation ( self . roi [ name ] . skydir ) . deg if posfit [ 'fit_success' ] and posfit [ 'fit_inbounds' ] : peak_best = p break if peak_best is None : ts_value = np . max ( tsmap [ 'ts' ] . data ) posfit = fit_error_ellipse ( tsmap [ 'ts' ] , dpix = 2 , zmin = max ( zmin , - ts_value * 0.5 ) ) o . update ( posfit ) pix = posfit [ 'skydir' ] . to_pixel ( self . geom . wcs ) o [ 'xpix' ] = float ( pix [ 0 ] ) o [ 'ypix' ] = float ( pix [ 1 ] ) o [ 'skydir' ] = posfit [ 'skydir' ] . transform_to ( 'icrs' ) o [ 'pos_offset' ] = posfit [ 'skydir' ] . separation ( self . roi [ name ] . skydir ) . deg o [ 'loglike' ] = 0.5 * posfit [ 'zoffset' ] o [ 'tsmap' ] = tsmap [ 'ts' ] return o
def import_oauth2_credentials ( filename = STORAGE_FILENAME ) : """Import OAuth 2.0 session credentials from storage file . Parameters filename ( str ) Name of storage file . Returns credentials ( dict ) All your app credentials and information imported from the configuration file ."""
with open ( filename , 'r' ) as storage_file : storage = safe_load ( storage_file ) # depending on OAuth 2.0 grant _ type , these values may not exist client_secret = storage . get ( 'client_secret' ) refresh_token = storage . get ( 'refresh_token' ) credentials = { 'access_token' : storage [ 'access_token' ] , 'client_id' : storage [ 'client_id' ] , 'client_secret' : client_secret , 'expires_in_seconds' : storage [ 'expires_in_seconds' ] , 'grant_type' : storage [ 'grant_type' ] , 'refresh_token' : refresh_token , 'scopes' : storage [ 'scopes' ] , } return credentials
def transfer_syntax ( UID = None , description = None ) : """Transfer Syntax UID < - > Description lookup . : param UID : Transfer Syntax UID , returns description : param description : Take the description of a transfer syntax and return its UID"""
transfer_syntax = { "1.2.840.10008.1.2" : "Implicit VR Endian: Default Transfer Syntax for DICOM" , "1.2.840.10008.1.2.1" : "Explicit VR Little Endian" , "1.2.840.10008.1.2.1.99" : "Deflated Explicit VR Big Endian" , "1.2.840.10008.1.2.2" : "Explicit VR Big Endian" , "1.2.840.10008.1.2.4.50" : "JPEG Baseline (Process 1): Default Transfer Syntax for Lossy JPEG 8-bit Image Compression" , "1.2.840.10008.1.2.4.51" : "JPEG Baseline (Processes 2 & 4): Default Transfer Syntax for Lossy JPEG 12-bit Image Compression (Process 4 only)" , "1.2.840.10008.1.2.4.57" : "JPEG Lossless, Nonhierarchical (Processes 14)" , "1.2.840.10008.1.2.4.70" : "JPEG Lossless, Nonhierarchical, First-Order Prediction (Processes 14 [Selection Value 1])" , "1.2.840.10008.1.2.4.80" : "JPEG-LS Lossless Image Compression" , "1.2.840.10008.1.2.4.81" : "JPEG-LS Lossy (Near- Lossless) Image Compression" , "1.2.840.10008.1.2.4.90" : "JPEG 2000 Image Compression (Lossless Only)" , "1.2.840.10008.1.2.4.91" : "JPEG 2000 Image Compression" , "1.2.840.10008.1.2.4.92" : "JPEG 2000 Part 2 Multicomponent Image Compression (Lossless Only)" , "1.2.840.10008.1.2.4.93" : "JPEG 2000 Part 2 Multicomponent Image Compression" , "1.2.840.10008.1.2.4.94" : "JPIP Referenced" , "1.2.840.10008.1.2.4.95" : "JPIP Referenced Deflate" , "1.2.840.10008.1.2.5" : "RLE Lossless" , "1.2.840.10008.1.2.6.1" : "RFC 2557 MIME Encapsulation" , "1.2.840.10008.1.2.4.100" : "MPEG2 Main Profile Main Level" , "1.2.840.10008.1.2.4.102" : "MPEG-4 AVC/H.264 High Profile / Level 4.1" , "1.2.840.10008.1.2.4.103" : "MPEG-4 AVC/H.264 BD-compatible High Profile / Level 4.1" } assert UID or description , "Either Transfer syntax UID or description required" if UID in transfer_syntax : return transfer_syntax [ UID ] for key , value in transfer_syntax . iteritems ( ) : if description == value : return key return None
def PrintResponse ( batch_job_helper , response_xml ) : """Prints the BatchJobService response . Args : batch _ job _ helper : a BatchJobHelper instance . response _ xml : a string containing a response from the BatchJobService ."""
response = batch_job_helper . ParseResponse ( response_xml ) if 'rval' in response [ 'mutateResponse' ] : for data in response [ 'mutateResponse' ] [ 'rval' ] : if 'errorList' in data : print 'Operation %s - FAILURE:' % data [ 'index' ] print '\terrorType=%s' % data [ 'errorList' ] [ 'errors' ] [ 'ApiError.Type' ] print '\ttrigger=%s' % data [ 'errorList' ] [ 'errors' ] [ 'trigger' ] print '\terrorString=%s' % data [ 'errorList' ] [ 'errors' ] [ 'errorString' ] print '\tfieldPath=%s' % data [ 'errorList' ] [ 'errors' ] [ 'fieldPath' ] print '\treason=%s' % data [ 'errorList' ] [ 'errors' ] [ 'reason' ] if 'result' in data : print 'Operation %s - SUCCESS.' % data [ 'index' ]
def _html_output ( self , normal_row , error_row , row_ender , help_text_html , errors_on_separate_row ) : """Extend BaseForm ' s helper function for outputting HTML . Used by as _ table ( ) , as _ ul ( ) , as _ p ( ) . Combines the HTML version of the main form ' s fields with the HTML content for any subforms ."""
parts = [ ] parts . append ( super ( XmlObjectForm , self ) . _html_output ( normal_row , error_row , row_ender , help_text_html , errors_on_separate_row ) ) def _subform_output ( subform ) : return subform . _html_output ( normal_row , error_row , row_ender , help_text_html , errors_on_separate_row ) for name , subform in six . iteritems ( self . subforms ) : # use form label if one was set if hasattr ( subform , 'form_label' ) : name = subform . form_label parts . append ( self . _html_subform_output ( subform , name , _subform_output ) ) for name , formset in six . iteritems ( self . formsets ) : parts . append ( u ( formset . management_form ) ) # use form label if one was set # - use declared subform label if any if hasattr ( formset . forms [ 0 ] , 'form_label' ) and formset . forms [ 0 ] . form_label is not None : name = formset . forms [ 0 ] . form_label # fallback to generated label from field name elif hasattr ( formset , 'form_label' ) : name = formset . form_label # collect the html output for all the forms in the formset subform_parts = list ( ) for subform in formset . forms : subform_parts . append ( self . _html_subform_output ( subform , gen_html = _subform_output , suppress_section = True ) ) # then wrap all forms in the section container , so formset label appears once parts . append ( self . _html_subform_output ( name = name , content = u'\n' . join ( subform_parts ) ) ) return mark_safe ( u'\n' . join ( parts ) )
def chimera_node_placer_2d ( m , n , t , scale = 1. , center = None , dim = 2 ) : """Generates a function that converts Chimera indices to x , y coordinates for a plot . Parameters m : int Number of rows in the Chimera lattice . n : int Number of columns in the Chimera lattice . t : int Size of the shore within each Chimera tile . scale : float ( default 1 . ) Scale factor . When scale = 1 , all positions fit within [ 0 , 1] on the x - axis and [ - 1 , 0 ] on the y - axis . center : None or array ( default None ) Coordinates of the top left corner . dim : int ( default 2) Number of dimensions . When dim > 2 , all extra dimensions are set to 0. Returns xy _ coords : function A function that maps a Chimera index ( i , j , u , k ) in an ( m , n , t ) Chimera lattice to x , y coordinates such as used by a plot ."""
import numpy as np tile_center = t // 2 tile_length = t + 3 # 1 for middle of cross , 2 for spacing between tiles # want the enter plot to fill in [ 0 , 1 ] when scale = 1 scale /= max ( m , n ) * tile_length - 3 grid_offsets = { } if center is None : center = np . zeros ( dim ) else : center = np . asarray ( center ) paddims = dim - 2 if paddims < 0 : raise ValueError ( "layout must have at least two dimensions" ) if len ( center ) != dim : raise ValueError ( "length of center coordinates must match dimension of layout" ) def _xy_coords ( i , j , u , k ) : # row , col , shore , shore index # first get the coordinatiates within the tile if k < tile_center : p = k else : p = k + 1 if u : xy = np . array ( [ tile_center , - 1 * p ] ) else : xy = np . array ( [ p , - 1 * tile_center ] ) # next offset the corrdinates based on the which tile if i > 0 or j > 0 : if ( i , j ) in grid_offsets : xy += grid_offsets [ ( i , j ) ] else : off = np . array ( [ j * tile_length , - 1 * i * tile_length ] ) xy += off grid_offsets [ ( i , j ) ] = off # convention for Chimera - lattice pictures is to invert the y - axis return np . hstack ( ( xy * scale , np . zeros ( paddims ) ) ) + center return _xy_coords
def _new_from_rft ( self , base_template , rft_file ) : """Append a new file from . rft entry to the journal . This instructs Revit to create a new model based on the provided . rft template . Args : base _ template ( str ) : new file journal template from rmj . templates rft _ file ( str ) : full path to . rft template to be used"""
self . _add_entry ( base_template ) self . _add_entry ( templates . NEW_FROM_RFT . format ( rft_file_path = rft_file , rft_file_name = op . basename ( rft_file ) ) )
def set_multi ( self , mappings , time = 100 , compress_level = - 1 ) : """Set multiple keys with its values on server . If a key is a ( key , cas ) tuple , insert as if cas ( key , value , cas ) had been called . : param mappings : A dict with keys / values : type mappings : dict : param time : Time in seconds that your key will expire . : type time : int : param compress _ level : How much to compress . 0 = no compression , 1 = fastest , 9 = slowest but best , -1 = default compression level . : type compress _ level : int : return : True : rtype : bool"""
mappings = mappings . items ( ) msg = [ ] for key , value in mappings : if isinstance ( key , tuple ) : key , cas = key else : cas = None if cas == 0 : # Like cas ( ) , if the cas value is 0 , treat it as compare - and - set against not # existing . command = 'addq' else : command = 'setq' flags , value = self . serialize ( value , compress_level = compress_level ) m = struct . pack ( self . HEADER_STRUCT + self . COMMANDS [ command ] [ 'struct' ] % ( len ( key ) , len ( value ) ) , self . MAGIC [ 'request' ] , self . COMMANDS [ command ] [ 'command' ] , len ( key ) , 8 , 0 , 0 , len ( key ) + len ( value ) + 8 , 0 , cas or 0 , flags , time , str_to_bytes ( key ) , value ) msg . append ( m ) m = struct . pack ( self . HEADER_STRUCT + self . COMMANDS [ 'noop' ] [ 'struct' ] , self . MAGIC [ 'request' ] , self . COMMANDS [ 'noop' ] [ 'command' ] , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) msg . append ( m ) if six . PY2 : msg = '' . join ( msg ) else : msg = b'' . join ( msg ) self . _send ( msg ) opcode = - 1 retval = True while opcode != self . COMMANDS [ 'noop' ] [ 'command' ] : ( magic , opcode , keylen , extlen , datatype , status , bodylen , opaque , cas , extra_content ) = self . _get_response ( ) if status != self . STATUS [ 'success' ] : retval = False if status == self . STATUS [ 'server_disconnected' ] : break return retval
def encode_batch ( self , inputBatch ) : """Encodes a whole batch of input arrays , without learning ."""
X = inputBatch encode = self . encode Y = np . array ( [ encode ( x ) for x in X ] ) return Y
def block ( seed ) : """Return block of normal random numbers Parameters seed : { None , int } The seed to generate the noise . sd Returns noise : numpy . ndarray Array of random numbers"""
num = SAMPLE_RATE * BLOCK_SIZE rng = RandomState ( seed % 2 ** 32 ) variance = SAMPLE_RATE / 2 return rng . normal ( size = num , scale = variance ** 0.5 )
def make_worlist_trie ( wordlist ) : """Creates a nested dictionary representing the trie created by the given word list . : param wordlist : str list : : return : nested dictionary > > > make _ worlist _ trie ( [ ' einander ' , ' einen ' , ' neben ' ] ) { ' e ' : { ' i ' : { ' n ' : { ' a ' : { ' n ' : { ' d ' : { ' e ' : { ' r ' : { ' _ _ end _ _ ' : ' _ _ end _ _ ' } } } } } , ' e ' : { ' n ' : { ' _ _ end _ _ ' : ' _ _ end _ _ ' } } } } } , ' n ' : { ' e ' : { ' b ' : { ' e ' : { ' n ' : { ' _ _ end _ _ ' : ' _ _ end _ _ ' } } } } }"""
dicts = dict ( ) for w in wordlist : curr = dicts for l in w : curr = curr . setdefault ( l , { } ) curr [ '__end__' ] = '__end__' return dicts
def on_complete ( cls , req ) : """Callback called when the request to REST is done . Handles the errors and if there is none , : class : ` . OutputPicker ` is shown ."""
# handle http errors if not ( req . status == 200 or req . status == 0 ) : ViewController . log_view . add ( req . text ) alert ( req . text ) # TODO : better handling return try : resp = json . loads ( req . text ) except ValueError : resp = None if not resp : alert ( "Chyba při konverzi!" ) # TODO : better ViewController . log_view . add ( "Error while generating MARC: %s" % resp . text ) return OutputPicker . show ( resp )
def install ( self ) : # pragma : no cover """Install / download ssh keys from LDAP for consumption by SSH ."""
keys = self . get_keys_from_ldap ( ) for user , ssh_keys in keys . items ( ) : user_dir = API . __authorized_keys_path ( user ) if not os . path . isdir ( user_dir ) : os . makedirs ( user_dir ) authorized_keys_file = os . path . join ( user_dir , 'authorized_keys' ) with open ( authorized_keys_file , 'w' ) as FILE : print ( "\n" . join ( [ k . decode ( ) for k in ssh_keys ] ) , file = FILE )
def getDwordAtRva ( self , rva ) : """Returns a C { DWORD } from a given RVA . @ type rva : int @ param rva : The RVA to get the C { DWORD } from . @ rtype : L { DWORD } @ return : The L { DWORD } obtained at the given RVA ."""
return datatypes . DWORD . parse ( utils . ReadData ( self . getDataAtRva ( rva , 4 ) ) )
def setVarcompExact ( self , ldeltamin = - 5 , ldeltamax = 5 , num_intervals = 100 ) : """setVarcompExact ( ALMM self , limix : : mfloat _ t ldeltamin = - 5 , limix : : mfloat _ t ldeltamax = 5 , limix : : muint _ t num _ intervals = 100) Parameters ldeltamin : limix : : mfloat _ t ldeltamax : limix : : mfloat _ t num _ intervals : limix : : muint _ t setVarcompExact ( ALMM self , limix : : mfloat _ t ldeltamin = - 5 , limix : : mfloat _ t ldeltamax = 5) Parameters ldeltamin : limix : : mfloat _ t ldeltamax : limix : : mfloat _ t setVarcompExact ( ALMM self , limix : : mfloat _ t ldeltamin = - 5) Parameters ldeltamin : limix : : mfloat _ t setVarcompExact ( ALMM self ) Parameters self : limix : : ALMM *"""
return _core . ALMM_setVarcompExact ( self , ldeltamin , ldeltamax , num_intervals )
def eglGetDisplay ( display = EGL_DEFAULT_DISPLAY ) : """Connect to the EGL display server ."""
res = _lib . eglGetDisplay ( display ) if not res or res == EGL_NO_DISPLAY : raise RuntimeError ( 'Could not create display' ) return res
def addSkip ( self , test : unittest . case . TestCase , reason : str ) : """Transforms the test in a serializable version of it and sends it to a queue for further analysis : param test : the test to save : param reason : the reason why the test was skipped"""
test . time_taken = time . time ( ) - self . start_time test . _outcome = None self . result_queue . put ( ( TestState . skipped , test , reason ) )
def largest_tuple_diff ( tuple_list : list ) -> int : """This function computes the highest difference among pairs within a provided list of tuples . Args : tuple _ list : A list of tuples Returns : An integer denoting the highest absolute difference between pair elements in the list . Examples : > > > largest _ tuple _ diff ( [ ( 3 , 5 ) , ( 1 , 7 ) , ( 10 , 3 ) , ( 1 , 2 ) ] ) > > > largest _ tuple _ diff ( [ ( 4 , 6 ) , ( 2 , 17 ) , ( 9 , 13 ) , ( 11 , 12 ) ] ) 15 > > > largest _ tuple _ diff ( [ ( 12 , 35 ) , ( 21 , 27 ) , ( 13 , 23 ) , ( 41 , 22 ) ] ) 23"""
differences = [ abs ( a - b ) for a , b in tuple_list ] max_difference = max ( differences ) return max_difference
def _fetch_system_by_machine_id ( self ) : '''Get a system by machine ID Returns dict system exists in inventory False system does not exist in inventory None error connection or parsing response'''
machine_id = generate_machine_id ( ) try : url = self . api_url + '/inventory/v1/hosts?insights_id=' + machine_id net_logger . info ( "GET %s" , url ) res = self . session . get ( url , timeout = self . config . http_timeout ) except ( requests . ConnectionError , requests . Timeout ) as e : logger . error ( e ) logger . error ( 'The Insights API could not be reached.' ) return None try : if ( self . handle_fail_rcs ( res ) ) : return None res_json = json . loads ( res . content ) except ValueError as e : logger . error ( e ) logger . error ( 'Could not parse response body.' ) return None if res_json [ 'total' ] == 0 : logger . debug ( 'No hosts found with machine ID: %s' , machine_id ) return False return res_json [ 'results' ]
def set_plugins_params ( self , plugins = None , search_dirs = None , autoload = None , required = False ) : """Sets plugin - related parameters . : param list | str | unicode | OptionsGroup | list [ OptionsGroup ] plugins : uWSGI plugins to load : param list | str | unicode search _ dirs : Directories to search for uWSGI plugins . : param bool autoload : Try to automatically load plugins when unknown options are found . : param bool required : Load uWSGI plugins and exit on error ."""
plugins = plugins or [ ] command = 'need-plugin' if required else 'plugin' for plugin in listify ( plugins ) : if plugin not in self . _plugins : self . _set ( command , plugin , multi = True ) self . _plugins . append ( plugin ) self . _set ( 'plugins-dir' , search_dirs , multi = True , priority = 0 ) self . _set ( 'autoload' , autoload , cast = bool ) return self
def get_date ( ) : '''Displays the current date : return : the system date : rtype : str CLI Example : . . code - block : : bash salt ' * ' timezone . get _ date'''
ret = salt . utils . mac_utils . execute_return_result ( 'systemsetup -getdate' ) return salt . utils . mac_utils . parse_return ( ret )
def write_branch_data ( self , file ) : """Writes branch data to file ."""
# I , J , CKT , R , X , B , RATEA , RATEB , RATEC , GI , BI , GJ , BJ , ST , LEN , O1 , F1 , . . . , O4 , F4 branch_attr = [ "r" , "x" , "b" , "rate_a" , "rate_b" , "rate_c" ] for branch in self . case . branches : if feq ( branch . ratio , 0.0 ) : vals = [ getattr ( branch , a ) for a in branch_attr ] if float ( vals [ 1 ] ) < 0.001 : vals [ 1 ] = 0.001 # small reactance , todo : increase decimal vals . insert ( 0 , "1 " ) vals . insert ( 0 , branch . to_bus . _i ) vals . insert ( 0 , branch . from_bus . _i ) vals . extend ( [ 0. , 0. , 0. , 0. ] ) vals . append ( branch . online ) vals . extend ( [ 0.0 , 1 , 1.0 , ] ) file . write ( "%6d,%6d,'%s',%10.3f,%10.3f,%10.3f,%10.3f,%10.3f," "%10.3f,%10.3f,%10.3f,%10.3f,%10.3f,%d,%10.3f,%4d,%6.4f\n" % tuple ( vals ) ) file . write ( " 0 / END OF NON-TRANSFORMER BRANCH DATA, BEGIN TRANSFORMER DATA\n" ) # I , J , K , CKT , CW , CZ , CM , MAG1 , MAG2 , NMETR , ' NAME ' , STAT , O1 , F1 , . . . , O4 , F4 # R1-2 , X1-2 , SBASE1-2 # WINDV1 , NOMV1 , ANG1 , RATA1 , RATB1 , RATC1 , COD1 , CONT1 , RMA1 , RMI1 , VMA1 , VMI1 , NTP1 , TAB1 , CR1 , CX1 # WINDV2 , NOMV2 for branch in self . case . branches : if not feq ( branch . ratio , 0.0 ) : vals = [ ] vals . append ( branch . from_bus . _i ) vals . append ( branch . to_bus . _i ) # K , CKT , CW , CZ , CM , MAG1 , MAG2 , NMETR vals . extend ( [ 0 , "1 " , 1 , 1 , 1 , 0.0 , 0.0 , 2 ] ) vals . append ( branch . name ) vals . append ( branch . online ) vals . extend ( [ 1 , 1.0 ] ) # O1 , F1 file . write ( "%6d,%6d,%6d,'%2s',%d,%d,%d,%10.3f,%10.3f,%d," "'%-12s',%d,%4d,%6.4f\n" % tuple ( vals ) ) file . write ( "%8.3f,%8.3f,%10.2f\n" % ( branch . r , branch . x , self . case . base_mva ) ) line3 = [ ] line3 . append ( branch . ratio ) # Winding - 1 RATIO line3 . append ( 0.0 ) line3 . append ( branch . phase_shift ) line3 . append ( branch . rate_a ) line3 . append ( branch . rate_b ) line3 . append ( branch . rate_c ) # COD1 , CONT1 , RMA1 , RMI1 , VMA1 , VMI1 , NTP1 , TAB1 , CR1 , CX1 line3 . extend ( [ 0 , 0 , 1.1 , 0.9 , 1.1 , 0.9 , 33 , 0 , 0.0 , 0.0 ] ) file . write ( "%7.5f,%8.3f,%8.3f,%8.2f,%8.2f,%8.2f,%d,%7d,%8.5f," "%8.5f,%8.5f,%8.5f,%4d,%2d,%8.5f,%8.5f\n" % tuple ( line3 ) ) file . write ( "%7.5f,%8.3f\n" % ( 1.0 , 0.0 ) ) # Winding - 2 RATIO : 1 file . write ( """ 0 / END OF TRANSFORMER DATA, BEGIN AREA INTERCHANGE DATA 0 / END OF AREA INTERCHANGE DATA, BEGIN TWO-TERMINAL DC DATA 0 / END OF TWO-TERMINAL DC DATA, BEGIN VSC DC LINE DATA 0 / END OF VSC DC LINE DATA, BEGIN SWITCHED SHUNT DATA 0 / END OF SWITCHED SHUNT DATA, BEGIN TRANS. IMP. CORR. TABLE DATA 0 / END OF TRANS. IMP. CORR. TABLE DATA, BEGIN MULTI-TERMINAL DC LINE DATA 0 / END OF MULTI-TERMINAL DC LINE DATA, BEGIN MULTI-SECTION LINE DATA 0 / END OF MULTI-SECTION LINE DATA, BEGIN ZONE DATA 0 / END OF ZONE DATA, BEGIN INTERAREA TRANSFER DATA 0 / END OF INTERAREA TRANSFER DATA, BEGIN OWNER DATA 0 / END OF OWNER DATA, BEGIN FACTS DEVICE DATA 0 / END OF FACTS DEVICE DATA, END OF CASE DATA """ )
def read_moc_json ( moc , filename = None , file = None ) : """Read JSON encoded data into a MOC . Either a filename , or an open file object can be specified ."""
if file is not None : obj = _read_json ( file ) else : with open ( filename , 'rb' ) as f : obj = _read_json ( f ) for ( order , cells ) in obj . items ( ) : moc . add ( order , cells )
def mac_address_table_aging_time_conversational_time_out ( self , ** kwargs ) : """Auto Generated Code"""
config = ET . Element ( "config" ) mac_address_table = ET . SubElement ( config , "mac-address-table" , xmlns = "urn:brocade.com:mgmt:brocade-mac-address-table" ) aging_time = ET . SubElement ( mac_address_table , "aging-time" ) conversational_time_out = ET . SubElement ( aging_time , "conversational-time-out" ) conversational_time_out . text = kwargs . pop ( 'conversational_time_out' ) callback = kwargs . pop ( 'callback' , self . _callback ) return callback ( config )
def interleave ( args ) : r"""zip followed by flatten Args : args ( tuple ) : tuple of lists to interleave SeeAlso : You may actually be better off doing something like this : a , b , = args ut . flatten ( ut . bzip ( a , b ) ) ut . flatten ( ut . bzip ( [ 1 , 2 , 3 ] , [ ' - ' ] ) ) [1 , ' - ' , 2 , ' - ' , 3 , ' - ' ] Example : > > > # ENABLE _ DOCTEST > > > from utool . util _ iter import * # NOQA > > > import utool as ut > > > args = ( [ 1 , 2 , 3 , 4 , 5 ] , [ ' A ' , ' B ' , ' C ' , ' D ' , ' E ' , ' F ' , ' G ' ] ) > > > genresult = interleave ( args ) > > > result = ut . repr4 ( list ( genresult ) , nl = False ) > > > print ( result ) [1 , ' A ' , 2 , ' B ' , 3 , ' C ' , 4 , ' D ' , 5 , ' E ' ]"""
arg_iters = list ( map ( iter , args ) ) cycle_iter = it . cycle ( arg_iters ) for iter_ in cycle_iter : yield six . next ( iter_ )
def get_parameter_value ( self , parameter , from_cache = True , timeout = 10 ) : """Retrieve the current value of the specified parameter . : param str parameter : Either a fully - qualified XTCE name or an alias in the format ` ` NAMESPACE / NAME ` ` . : param bool from _ cache : If ` ` False ` ` this call will block until a fresh value is received on the processor . If ` ` True ` ` the server returns the latest value instead ( which may be ` ` None ` ` ) . : param float timeout : The amount of seconds to wait for a fresh value . ( ignored if ` ` from _ cache = True ` ` ) . : rtype : . ParameterValue"""
params = { 'fromCache' : from_cache , 'timeout' : int ( timeout * 1000 ) , } parameter = adapt_name_for_rest ( parameter ) url = '/processors/{}/{}/parameters{}' . format ( self . _instance , self . _processor , parameter ) response = self . _client . get_proto ( url , params = params ) proto = pvalue_pb2 . ParameterValue ( ) proto . ParseFromString ( response . content ) # Server returns ParameterValue with only ' id ' set if no # value existed . Convert this to ` ` None ` ` . if proto . HasField ( 'rawValue' ) or proto . HasField ( 'engValue' ) : return ParameterValue ( proto ) return None
def _combine ( self , x , y ) : """Combines two constraints , raising an error if they are not compatible ."""
if x is None or y is None : return x or y if x != y : raise ValueError ( 'Incompatible set of constraints provided.' ) return x
def simxGetObjectVelocity ( clientID , objectHandle , operationMode ) : '''Please have a look at the function description / documentation in the V - REP user manual'''
linearVel = ( ct . c_float * 3 ) ( ) angularVel = ( ct . c_float * 3 ) ( ) ret = c_GetObjectVelocity ( clientID , objectHandle , linearVel , angularVel , operationMode ) arr1 = [ ] for i in range ( 3 ) : arr1 . append ( linearVel [ i ] ) arr2 = [ ] for i in range ( 3 ) : arr2 . append ( angularVel [ i ] ) return ret , arr1 , arr2
def confd_state_epoll ( self , ** kwargs ) : """Auto Generated Code"""
config = ET . Element ( "config" ) confd_state = ET . SubElement ( config , "confd-state" , xmlns = "http://tail-f.com/yang/confd-monitoring" ) epoll = ET . SubElement ( confd_state , "epoll" ) epoll . text = kwargs . pop ( 'epoll' ) callback = kwargs . pop ( 'callback' , self . _callback ) return callback ( config )
def is_mainthread ( thread = None ) : '''Check if thread is the main thread . If ` ` thread ` ` is not supplied check the current thread'''
thread = thread if thread is not None else current_thread ( ) return isinstance ( thread , threading . _MainThread )
def validar ( self , id_vlan ) : """Validates ACL - IPv4 of VLAN from its identifier . Assigns 1 to ' acl _ valida ' . : param id _ vlan : Identifier of the Vlan . Integer value and greater than zero . : return : None : raise InvalidParameterError : Vlan identifier is null and invalid . : raise VlanNaoExisteError : Vlan not registered . : raise DataBaseError : Networkapi failed to access the database . : raise XMLError : Networkapi failed to generate the XML response ."""
if not is_valid_int_param ( id_vlan ) : raise InvalidParameterError ( u'The identifier of Vlan is invalid or was not informed.' ) url = 'vlan/' + str ( id_vlan ) + '/validate/' + IP_VERSION . IPv4 [ 0 ] + '/' code , xml = self . submit ( None , 'PUT' , url ) return self . response ( code , xml )
def getDataMap ( self , intype , pos , name , offset = 0 ) : """Hook defined to lookup a name , and get it from a vector . Can be overloaded to get it from somewhere else ."""
if intype == "input" : vector = self . inputs elif intype == "target" : vector = self . targets else : raise AttributeError ( "invalid map type '%s'" % intype ) return vector [ pos ] [ offset : offset + self [ name ] . size ]
def rotate_texture ( texture , rotation , x_offset = 0.5 , y_offset = 0.5 ) : """Rotates the given texture by a given angle . Args : texture ( texture ) : the texture to rotate rotation ( float ) : the angle of rotation in degrees x _ offset ( float ) : the x component of the center of rotation ( optional ) y _ offset ( float ) : the y component of the center of rotation ( optional ) Returns : texture : A texture ."""
x , y = texture x = x . copy ( ) - x_offset y = y . copy ( ) - y_offset angle = np . radians ( rotation ) x_rot = x * np . cos ( angle ) + y * np . sin ( angle ) y_rot = x * - np . sin ( angle ) + y * np . cos ( angle ) return x_rot + x_offset , y_rot + y_offset
def bucket_lister ( manager , bucket_name , prefix = None , marker = None , limit = None ) : """A generator function for listing keys in a bucket ."""
eof = False while not eof : ret , eof , info = manager . list ( bucket_name , prefix = prefix , limit = limit , marker = marker ) if ret is None : raise QiniuError ( info ) if not eof : marker = ret [ 'marker' ] for item in ret [ 'items' ] : yield item
def find_all ( cls , vid = None , pid = None ) : """Returns all FTDI devices matching our vendor and product IDs . : returns : list of devices : raises : : py : class : ` ~ alarmdecoder . util . CommError `"""
if not have_pyftdi : raise ImportError ( 'The USBDevice class has been disabled due to missing requirement: pyftdi or pyusb.' ) cls . __devices = [ ] query = cls . PRODUCT_IDS if vid and pid : query = [ ( vid , pid ) ] try : cls . __devices = Ftdi . find_all ( query , nocache = True ) except ( usb . core . USBError , FtdiError ) as err : raise CommError ( 'Error enumerating AD2USB devices: {0}' . format ( str ( err ) ) , err ) return cls . __devices
def send_keyevents ( self , keyevent : int ) -> None : '''Simulates typing keyevents .'''
self . _execute ( '-s' , self . device_sn , 'shell' , 'input' , 'keyevent' , str ( keyevent ) )
def get_csig ( self , calc = None ) : """Because we ' re a Python value node and don ' t have a real timestamp , we get to ignore the calculator and just use the value contents ."""
try : return self . ninfo . csig except AttributeError : pass contents = self . get_contents ( ) self . get_ninfo ( ) . csig = contents return contents
def unregister ( self , observers ) : u"""Concrete method of Subject . unregister ( ) . Unregister observers as an argument to self . observers ."""
if isinstance ( observers , list ) or isinstance ( observers , tuple ) : for observer in observers : try : index = self . _observers . index ( observer ) self . _observers . remove ( self . _observers [ index ] ) except ValueError : # logging print ( '{observer} not in list...' . format ( observer ) ) elif isinstance ( observers , base . Observer ) : try : index = self . _observers . index ( observers ) self . _observers . remove ( self . _observers [ index ] ) except ValueError : # logging print ( '{observer} not in list...' . format ( observers ) ) else : err_message = ( 'ConfigReader.register support' 'ListType, TupleType and {observer} Object.' '' . format ( base . Observer . __name__ ) ) raise ValueError ( err_message )
def _generate_author_query ( self , author_name ) : """Generates a query handling specifically authors . Notes : The match query is generic enough to return many results . Then , using the filter clause we truncate these so that we imitate legacy ' s behaviour on returning more " exact " results . E . g . Searching for ` Smith , John ` shouldn ' t return papers of ' Smith , Bob ' . Additionally , doing a ` ` match ` ` with ` ` " operator " : " and " ` ` in order to be even more exact in our search , by requiring that ` ` full _ name ` ` field contains both"""
name_variations = [ name_variation . lower ( ) for name_variation in generate_minimal_name_variations ( author_name ) ] # When the query contains sufficient data , i . e . full names , e . g . ` ` Mele , Salvatore ` ` ( and not ` ` Mele , S ` ` or # ` ` Mele ` ` ) we can improve our filtering in order to filter out results containing records with authors that # have the same non lastnames prefix , e . g . ' Mele , Samuele ' . if author_name_contains_fullnames ( author_name ) : specialized_author_filter = [ { 'bool' : { 'must' : [ { 'term' : { ElasticSearchVisitor . AUTHORS_NAME_VARIATIONS_FIELD : names_variation [ 0 ] } } , generate_match_query ( ElasticSearchVisitor . KEYWORD_TO_ES_FIELDNAME [ 'author' ] , names_variation [ 1 ] , with_operator_and = True ) ] } } for names_variation in product ( name_variations , name_variations ) ] else : # In the case of initials or even single lastname search , filter with only the name variations . specialized_author_filter = [ { 'term' : { ElasticSearchVisitor . AUTHORS_NAME_VARIATIONS_FIELD : name_variation } } for name_variation in name_variations ] query = { 'bool' : { 'filter' : { 'bool' : { 'should' : specialized_author_filter } } , 'must' : { 'match' : { ElasticSearchVisitor . KEYWORD_TO_ES_FIELDNAME [ 'author' ] : author_name } } } } return generate_nested_query ( ElasticSearchVisitor . AUTHORS_NESTED_QUERY_PATH , query )
def _setup_source_conn ( self , source_conn_id , source_bucket_name = None ) : """Retrieve connection based on source _ conn _ id . In case of s3 it also configures the bucket . Validates that connection id belongs to supported connection type . : param source _ conn _ id : : param source _ bucket _ name :"""
self . source_conn = BaseHook . get_hook ( source_conn_id ) self . source_conn_id = source_conn_id # Workaround for getting hook in case of s3 connection # This is needed because get _ hook silently returns None for s3 connections # See https : / / issues . apache . org / jira / browse / AIRFLOW - 2316 for more info connection = BaseHook . _get_connection_from_env ( source_conn_id ) self . log . info ( connection . extra_dejson ) if connection . conn_type == 's3' : self . log . info ( "Setting up s3 connection {0}" . format ( source_conn_id ) ) self . source_conn = S3Hook ( aws_conn_id = source_conn_id ) # End Workaround if source_bucket_name is None : raise AttributeError ( "Missing source bucket for s3 connection" ) self . source_bucket_name = source_bucket_name if not isinstance ( self . source_conn , DbApiHook ) and not isinstance ( self . source_conn , S3Hook ) : raise AttributeError ( "Only s3_csv, local and sql connection types are allowed, not {0}" . format ( type ( self . source_conn ) ) )
def delete ( self , event ) : """Abort running task if it exists ."""
super ( CeleryReceiver , self ) . delete ( event ) AsyncResult ( event . id ) . revoke ( terminate = True )
def get_view_name ( self ) : """Return the view name , as used in OPTIONS responses and in the browsable API ."""
func = self . settings . VIEW_NAME_FUNCTION return func ( self . __class__ , getattr ( self , 'suffix' , None ) )