signature
stringlengths 29
44.1k
| implementation
stringlengths 0
85.2k
|
---|---|
def ctrl_c ( self , pre_dl = None , post_dl = None ) :
"""Press Ctrl + C , usually for copy .
* * 中文文档 * *
按下 Ctrl + C 组合键 , 通常用于复制 。"""
|
self . delay ( pre_dl )
self . k . press_key ( self . k . control_key )
self . k . tap_key ( "c" )
self . k . release_key ( self . k . control_key )
self . delay ( post_dl )
|
def _load ( cls , prefix , user_agent_config_yaml , user_agent_lookup = None ) : # type : ( str , str , Optional [ str ] ) - > str
"""Load user agent YAML file
Args :
prefix ( str ) : Text to put at start of user agent
user _ agent _ config _ yaml ( str ) : Path to user agent YAML file
user _ agent _ lookup ( Optional [ str ] ) : Lookup key for YAML . Ignored if user _ agent supplied .
Returns :
str : user agent"""
|
if not user_agent_config_yaml :
user_agent_config_yaml = cls . default_user_agent_config_yaml
logger . info ( 'No user agent or user agent config file given. Using default user agent config file: %s.' % user_agent_config_yaml )
if not isfile ( user_agent_config_yaml ) :
raise UserAgentError ( "User_agent should be supplied in a YAML config file. It can be your project's name for example." )
logger . info ( 'Loading user agent config from: %s' % user_agent_config_yaml )
user_agent_config_dict = load_yaml ( user_agent_config_yaml )
if user_agent_lookup :
user_agent_config_dict = user_agent_config_dict . get ( user_agent_lookup )
if not user_agent_config_dict :
raise UserAgentError ( "No user agent information read from: %s" % user_agent_config_yaml )
ua = user_agent_config_dict . get ( 'user_agent' )
return cls . _construct ( user_agent_config_dict , prefix , ua )
|
def ftr_process ( url = None , content = None , config = None , base_url = None ) :
u"""process an URL , or some already fetched content from a given URL .
: param url : The URL of article to extract . Can be
` ` None ` ` , but only if you provide both ` ` content ` ` and
` ` config ` ` parameters .
: type url : str , unicode or ` ` None ` `
: param content : the HTML content already downloaded . If given ,
it will be used for extraction , and the ` ` url ` ` parameter will
be used only for site config lookup if ` ` config ` ` is not given .
Please , only ` ` unicode ` ` to avoid charset errors .
: type content : unicode or ` ` None ` `
: param config : if ` ` None ` ` , it will be looked up from ` ` url ` ` with as
much love and AI as possible . But don ' t expect too much .
: type config : a : class : ` SiteConfig ` instance or ` ` None ` `
: param base _ url : reserved parameter , used when fetching multi - pages URLs .
It will hold the base URL ( the first one fetched ) , and will serve as
base for fixing non - schemed URLs or query _ string - only links to next
page ( s ) . Please do not set this parameter until you very know what you
are doing . Default : ` ` None ` ` .
: type base _ url : str or unicode or None
: raises :
- : class : ` RuntimeError ` in all parameters - incompatible situations .
Please RFTD carefully , and report strange unicornic edge - cases .
- : class : ` SiteConfigNotFound ` if no five - filter site config can
be found .
- any raw ` ` requests . * ` ` exception , network related , if anything
goes wrong during url fetching .
: returns :
- either a : class : ` ContentExtractor ` instance with extracted
( and : attr : ` . failures ` ) attributes set , in case a site config
could be found .
When the extractor knows how to handle multiple - pages articles ,
all pages contents will be extracted and cleaned — if relevant —
and concatenated into the instance : attr : ` body ` attribute .
The : attr : ` next _ page _ link ` attribute will be a ` ` list ` `
containing all sub - pages links . Note : the first link is the one
you fed the extractor with ; it will not be repeated in the list .
- or ` ` None ` ` , if content was not given and url fetching returned
a non - OK HTTP code , or if no site config could be found ( in that
particular case , no extraction at all is performed ) ."""
|
if url is None and content is None and config is None :
raise RuntimeError ( 'At least one of url or the couple content/config ' 'argument must be present.' )
if content is not None and url is None and config is None :
raise RuntimeError ( 'Passing content only will not give any result.' )
if content is None :
if url is None :
raise RuntimeError ( 'When content is unset, url must be set.' )
try :
result = requests_get ( url )
if result . status_code != requests . codes . ok :
LOGGER . error ( u'Wrong status code in return while getting ' u'“%s”.' , url )
return None
# Override before accessing result . text ; see ` requests ` doc .
result . encoding = detect_encoding_from_requests_response ( result )
LOGGER . info ( u'Downloaded %s bytes as %s text.' , len ( result . text ) , result . encoding )
# result . text is always unicode
content = result . text
except :
LOGGER . error ( u'Content could not be fetched from URL %s.' , url )
raise
if config is None : # This can eventually raise SiteConfigNotFound
config_string , matched_host = ftr_get_config ( url )
config = SiteConfig ( site_config_text = config_string , host = matched_host )
extractor = ContentExtractor ( config )
if base_url is None :
base_url = url
if extractor . process ( html = content ) : # This is recursive . Yeah .
if extractor . next_page_link is not None :
next_page_link = sanitize_next_page_link ( extractor . next_page_link , base_url )
next_extractor = ftr_process ( url = next_page_link , base_url = base_url )
extractor . body += next_extractor . body
extractor . next_page_link = [ next_page_link ]
if next_extractor . next_page_link is not None :
extractor . next_page_link . extend ( next_extractor . next_page_link )
return extractor
return None
|
def _delete_dir ( self ) :
"""Delete old folder if exists before start build"""
|
if not self . auto and os . path . isdir ( self . meta . build_path + self . prgnam ) :
shutil . rmtree ( self . meta . build_path + self . prgnam )
|
def k ( self , symbol = '' , begin = None , end = None ) :
'''读取k线信息
: param symbol :
: param begin :
: param end :
: return : pd . dataFrame or None'''
|
with self . client . connect ( * self . bestip ) :
data = self . client . get_k_data ( symbol , begin , end )
return data
|
def ReportConfiguration ( self , file ) :
""": param file : Destination for report details
: return : None"""
|
global encodingpar
print >> file , BuildReportLine ( "FAM FILE" , self . fam_details )
print >> file , BuildReportLine ( "IMPUTE_ARCHIVES" , "%s:%s" % ( str ( self . chroms [ 0 ] ) , self . archives [ 0 ] ) )
idx = 0
for arch in self . archives [ 1 : ] :
print >> file , BuildReportLine ( "" , "%s:%s" % ( str ( self . chroms [ idx + 1 ] ) , arch ) )
idx += 1
print >> file , BuildReportLine ( "ENCODING" , [ "Additive" , "Dominant" , "Recessive" , "Genotype" , "Raw" ] [ encoding ] )
print >> file , BuildReportLine ( "INFO-EXT" , Parser . info_ext )
print >> file , BuildReportLine ( "INFO-THRESH" , Parser . info_threshold )
|
def setup_method_options ( method , tuning_options ) :
"""prepare method specific options"""
|
kwargs = { }
# pass size of parameter space as max iterations to methods that support it
# it seems not all methods iterpret this value in the same manner
maxiter = numpy . prod ( [ len ( v ) for v in tuning_options . tune_params . values ( ) ] )
kwargs [ 'maxiter' ] = maxiter
if method in [ "Nelder-Mead" , "Powell" ] :
kwargs [ 'maxfev' ] = maxiter
elif method == "L-BFGS-B" :
kwargs [ 'maxfun' ] = maxiter
# pass eps to methods that support it
if method in [ "CG" , "BFGS" , "L-BFGS-B" , "TNC" , "SLSQP" ] :
kwargs [ 'eps' ] = tuning_options . eps
elif method == "COBYLA" :
kwargs [ 'rhobeg' ] = tuning_options . eps
return kwargs
|
def _get_field_schema ( self ) :
"""Get a list of all of the default fields for this query type .
If data is available in the monitor type , a list of field definitions
will be returned ahead of the actual data , providing insight into
the available fields . If no data is available in a monitor , this will
block on recv ( ) .
: return : list of dictionary fields with the field schema"""
|
self . update_format ( DetailedFormat ( ) )
for fields in self . execute ( ) :
if 'fields' in fields :
return fields [ 'fields' ]
|
def init ( driverName = None , debug = False ) :
'''Constructs a new TTS engine instance or reuses the existing instance for
the driver name .
@ param driverName : Name of the platform specific driver to use . If
None , selects the default driver for the operating system .
@ type : str
@ param debug : Debugging output enabled or not
@ type debug : bool
@ return : Engine instance
@ rtype : L { engine . Engine }'''
|
try :
eng = _activeEngines [ driverName ]
except KeyError :
eng = Engine ( driverName , debug )
_activeEngines [ driverName ] = eng
return eng
|
def star ( n , alpha = 'faced' , center = ( 1 , 1 ) ) :
"""Create the star points of various design matrices
Parameters
n : int
The number of variables in the design
Optional
alpha : str
Available values are ' faced ' ( default ) , ' orthogonal ' , or ' rotatable '
center : array
A 1 - by - 2 array of integers indicating the number of center points
assigned in each block of the response surface design . Default is
(1 , 1 ) .
Returns
H : 2d - array
The star - point portion of the design matrix ( i . e . at + / - alpha )
a : scalar
The alpha value to scale the star points with .
Example
> > > star ( 3)
array ( [ [ - 1 . , 0 . , 0 . ] ,
[ 1 . , 0 . , 0 . ] ,
[ 0 . , - 1 . , 0 . ] ,
[ 0 . , 1 . , 0 . ] ,
[ 0 . , 0 . , - 1 . ] ,
[ 0 . , 0 . , 1 . ] ] )"""
|
# Star points at the center of each face of the factorial
if alpha == 'faced' :
a = 1
elif alpha == 'orthogonal' :
nc = 2 ** n
# factorial points
nco = center [ 0 ]
# center points to factorial
na = 2 * n
# axial points
nao = center [ 1 ]
# center points to axial design
# value of alpha in orthogonal design
a = ( n * ( 1 + nao / float ( na ) ) / ( 1 + nco / float ( nc ) ) ) ** 0.5
elif alpha == 'rotatable' :
nc = 2 ** n
# number of factorial points
a = nc ** ( 0.25 )
# value of alpha in rotatable design
else :
raise ValueError ( 'Invalid value for "alpha": {:}' . format ( alpha ) )
# Create the actual matrix now .
H = np . zeros ( ( 2 * n , n ) )
for i in range ( n ) :
H [ 2 * i : 2 * i + 2 , i ] = [ - 1 , 1 ]
H *= a
return H , a
|
async def get_authenticated_user ( self , http_client : httpclient . AsyncHTTPClient = None ) -> Dict [ str , Any ] :
"""Gets the OAuth authorized user and access token .
This method should be called from the handler for your
OAuth callback URL to complete the registration process . We run the
callback with the authenticated user dictionary . This dictionary
will contain an ` ` access _ key ` ` which can be used to make authorized
requests to this service on behalf of the user . The dictionary will
also contain other fields such as ` ` name ` ` , depending on the service
used .
. . versionchanged : : 6.0
The ` ` callback ` ` argument was removed . Use the returned
awaitable object instead ."""
|
handler = cast ( RequestHandler , self )
request_key = escape . utf8 ( handler . get_argument ( "oauth_token" ) )
oauth_verifier = handler . get_argument ( "oauth_verifier" , None )
request_cookie = handler . get_cookie ( "_oauth_request_token" )
if not request_cookie :
raise AuthError ( "Missing OAuth request token cookie" )
handler . clear_cookie ( "_oauth_request_token" )
cookie_key , cookie_secret = [ base64 . b64decode ( escape . utf8 ( i ) ) for i in request_cookie . split ( "|" ) ]
if cookie_key != request_key :
raise AuthError ( "Request token does not match cookie" )
token = dict ( key = cookie_key , secret = cookie_secret )
# type : Dict [ str , Union [ str , bytes ] ]
if oauth_verifier :
token [ "verifier" ] = oauth_verifier
if http_client is None :
http_client = self . get_auth_http_client ( )
assert http_client is not None
response = await http_client . fetch ( self . _oauth_access_token_url ( token ) )
access_token = _oauth_parse_response ( response . body )
user = await self . _oauth_get_user_future ( access_token )
if not user :
raise AuthError ( "Error getting user" )
user [ "access_token" ] = access_token
return user
|
def set_cmap_cb ( self , w , index ) :
"""This callback is invoked when the user selects a new color
map from the preferences pane ."""
|
name = cmap . get_names ( ) [ index ]
self . t_ . set ( color_map = name )
|
def _get_si ( ) :
'''Authenticate with vCenter server and return service instance object .'''
|
url = config . get_cloud_config_value ( 'url' , get_configured_provider ( ) , __opts__ , search_global = False )
username = config . get_cloud_config_value ( 'user' , get_configured_provider ( ) , __opts__ , search_global = False )
password = config . get_cloud_config_value ( 'password' , get_configured_provider ( ) , __opts__ , search_global = False )
protocol = config . get_cloud_config_value ( 'protocol' , get_configured_provider ( ) , __opts__ , search_global = False , default = 'https' )
port = config . get_cloud_config_value ( 'port' , get_configured_provider ( ) , __opts__ , search_global = False , default = 443 )
return salt . utils . vmware . get_service_instance ( url , username , password , protocol = protocol , port = port )
|
def score_large_straight_yatzy ( dice : List [ int ] ) -> int :
"""Large straight scoring according to yatzy rules"""
|
dice_set = set ( dice )
if _are_two_sets_equal ( { 2 , 3 , 4 , 5 , 6 } , dice_set ) :
return sum ( dice )
return 0
|
def _sheet_meta_from_prompts ( sheets , old_name , name , ct_paleo , ct_chron ) :
"""Guide the user to create a proper , standardized sheet name
: param list sheets : Running list of sheet metadata
: param str old _ name : Original sheet name
: param str name : Data set name
: param int ct _ paleo : Running count of paleoData tables
: param int ct _ chron : Running count of chronData tables
: return sheets paleo _ ct chron _ ct : Updated sheets and counts"""
|
cont = True
# Loop until valid sheet name is built , or user gives up
while cont :
try :
pc = input ( "Is this a (p)aleo or (c)hronology sheet?" ) . lower ( )
if pc in ( "p" , "c" , "paleo" , "chron" , "chronology" ) :
tt = input ( "Is this a (d)istribution, (e)nsemble, (m)easurement, or (s)ummary sheet?" ) . lower ( )
if tt in EXCEL_SHEET_TYPES [ "distribution" ] or tt in EXCEL_SHEET_TYPES [ "ensemble" ] or tt in EXCEL_SHEET_TYPES [ "summary" ] or tt in EXCEL_SHEET_TYPES [ "measurement" ] : # valid answer , keep going
if tt in EXCEL_SHEET_TYPES [ "distribution" ] :
tt = "distribution"
elif tt in EXCEL_SHEET_TYPES [ "summary" ] :
tt = "summary"
elif tt in EXCEL_SHEET_TYPES [ "ensemble" ] :
tt = "ensemble"
elif tt in EXCEL_SHEET_TYPES [ "measurement" ] :
tt = "measurement"
if pc in EXCEL_SHEET_TYPES [ "paleo" ] :
if tt in [ "ensemble" , "summary" ] :
sheet = "{}{}{}{}" . format ( "paleo" , ct_paleo , tt , 1 )
else :
sheet = "{}{}{}" . format ( "paleo" , ct_paleo , tt )
elif pc in EXCEL_SHEET_TYPES [ "chron" ] :
if tt in [ "ensemble" , "summary" ] :
sheet = "{}{}{}{}" . format ( "chron" , ct_chron , tt , 1 )
else :
sheet = "{}{}{}" . format ( "chron" , ct_chron , tt )
# Test the sheet that was built from the user responses .
# If it matches the Regex , then continue to build the sheet metadata . If not , try again or skip sheet .
m = re . match ( re_sheet , sheet . lower ( ) )
if m :
sheets , ct_paleo , ct_chron = _sheet_meta_from_regex ( m , sheets , old_name , name , ct_paleo , ct_chron )
print ( "Sheet created: {}" . format ( sheet ) )
cont = False
else :
resp = input ( "invalid sheet name. try again? (y/n): " )
if resp == "n" :
print ( "No valid sheet name was created. Skipping sheet: {}" . format ( sheet ) )
cont = False
except Exception as e :
logger_excel . debug ( "excel: sheet_meta_from_prompts: error during prompts, {}" . format ( e ) )
cont = False
print ( "=====================================================" )
return sheets , ct_paleo , ct_chron
|
def start_client ( self , event = None ) :
"""Negotiate a new SSH2 session as a client . This is the first step after
creating a new L { Transport } . A separate thread is created for protocol
negotiation .
If an event is passed in , this method returns immediately . When
negotiation is done ( successful or not ) , the given C { Event } will
be triggered . On failure , L { is _ active } will return C { False } .
( Since 1.4 ) If C { event } is C { None } , this method will not return until
negotation is done . On success , the method returns normally .
Otherwise an SSHException is raised .
After a successful negotiation , you will usually want to authenticate ,
calling L { auth _ password < Transport . auth _ password > } or
L { auth _ publickey < Transport . auth _ publickey > } .
@ note : L { connect } is a simpler method for connecting as a client .
@ note : After calling this method ( or L { start _ server } or L { connect } ) ,
you should no longer directly read from or write to the original
socket object .
@ param event : an event to trigger when negotiation is complete
( optional )
@ type event : threading . Event
@ raise SSHException : if negotiation fails ( and no C { event } was passed
in )"""
|
self . active = True
if event is not None : # async , return immediately and let the app poll for completion
self . completion_event = event
self . start ( )
return
# synchronous , wait for a result
self . completion_event = event = threading . Event ( )
self . start ( )
Random . atfork ( )
while True :
event . wait ( 0.1 )
if not self . active :
e = self . get_exception ( )
if e is not None :
raise e
raise SSHException ( 'Negotiation failed.' )
if event . isSet ( ) :
break
|
def find_include_file ( self , t ) :
"""Finds the # include file for a given preprocessor tuple ."""
|
fname = t [ 2 ]
for d in self . searchpath [ t [ 1 ] ] :
if d == os . curdir :
f = fname
else :
f = os . path . join ( d , fname )
if os . path . isfile ( f ) :
return f
return None
|
def _unique_constrains ( cls ) :
"""Get all ( single column and multi column ) unique constraints"""
|
unique = [ { c . name for c in u . columns } for u in cls . __table_args__ if isinstance ( u , UniqueConstraint ) ]
unique . extend ( { c . name } for c in cls . __table__ . columns if c . unique )
return unique
|
def validate ( self , value ) :
"""Validate value .
Args :
value : model value .
Returns :
Whether the specified value is valid data type value .
Raises :
BadValueError : when value is not of self . data _ type type ."""
|
if value is not None and not isinstance ( value , self . data_type ) :
raise datastore_errors . BadValueError ( "Property %s must be convertible to a %s instance (%s)" % ( self . name , self . data_type , value ) )
return super ( JsonProperty , self ) . validate ( value )
|
def coordinator_dead ( self , error ) :
"""Mark the current coordinator as dead ."""
|
if self . coordinator_id is not None :
log . warning ( "Marking the coordinator dead (node %s) for group %s: %s." , self . coordinator_id , self . group_id , error )
self . coordinator_id = None
|
def _formatOntologyTermObject ( self , terms , element_type ) :
"""Formats the ontology term object for query"""
|
elementClause = None
if not isinstance ( terms , collections . Iterable ) :
terms = [ terms ]
elements = [ ]
for term in terms :
if term . term_id :
elements . append ( '?{} = <{}> ' . format ( element_type , term . term_id ) )
else :
elements . append ( '?{} = <{}> ' . format ( element_type , self . _toNamespaceURL ( term . term ) ) )
elementClause = "({})" . format ( " || " . join ( elements ) )
return elementClause
|
def encrypt ( self , k , a , m ) :
"""Encrypt accoriding to the selected encryption and hashing
functions .
: param k : Encryption key ( optional )
: param a : Additional Authentication Data
: param m : Plaintext
Returns a dictionary with the computed data ."""
|
iv = _randombits ( 96 )
cipher = Cipher ( algorithms . AES ( k ) , modes . GCM ( iv ) , backend = self . backend )
encryptor = cipher . encryptor ( )
encryptor . authenticate_additional_data ( a )
e = encryptor . update ( m ) + encryptor . finalize ( )
return ( iv , e , encryptor . tag )
|
def addons ( cls , recurse = True ) :
"""Returns a dictionary containing all the available addons
for this mixin class . If the optional recurse flag is set to True ,
then all the base classes will be searched for the given addon as well .
: param recurse | < bool >
: return { < str > name : < variant > addon , . . }"""
|
cls . initAddons ( )
prop = '_{0}__addons' . format ( cls . __name__ )
out = { }
# lookup base classes
if recurse :
for base in cls . __bases__ :
if issubclass ( base , AddonManager ) :
out . update ( base . addons ( recurse ) )
# always use the highest level for any given key
out . update ( getattr ( cls , prop , { } ) )
return out
|
async def workerTypeHealth ( self , * args , ** kwargs ) :
"""Look up the resource health for a workerType
Return a view of the health of a given worker type
This method gives output : ` ` v1 / health . json # ` `
This method is ` ` experimental ` `"""
|
return await self . _makeApiCall ( self . funcinfo [ "workerTypeHealth" ] , * args , ** kwargs )
|
def submit_as_gauge_and_monotonic_count ( self , metric_suffix , metric , scraper_config ) :
"""submit a kube _ dns metric both as a gauge ( for compatibility ) and as a monotonic _ count"""
|
metric_name = scraper_config [ 'namespace' ] + metric_suffix
for sample in metric . samples : # Explicit shallow copy of the instance tags
_tags = list ( scraper_config [ 'custom_tags' ] )
for label_name , label_value in iteritems ( sample [ self . SAMPLE_LABELS ] ) :
_tags . append ( '{}:{}' . format ( label_name , label_value ) )
# submit raw metric
self . gauge ( metric_name , sample [ self . SAMPLE_VALUE ] , _tags )
# submit rate metric
self . monotonic_count ( metric_name + '.count' , sample [ self . SAMPLE_VALUE ] , _tags )
|
def median ( self , * args , ** kwargs ) :
'''geo . median ( axis = None , out = None , overwrite _ input = False )
axis : int , optional
Axis along which the medians are computed . The default ( axis = None )
is to compute the median along a flattened version of the array .
out : ndarray , optional
Alternative output array in which to place the result . It must have
the same shape and buffer length as the expected output , but the
type ( of the output ) will be cast if necessary .
overwrite _ input : bool , optional
If True , then allow use of memory of input array ( a ) for
calculations . The input array will be modified by the call to
median . This will save memory when you do not need to preserve the
contents of the input array . Treat the input as undefined , but it
will probably be fully or partially sorted . Default is False . Note
that , if ` overwrite _ input ` is True and the input is not already an
ndarray , an error will be raised .'''
|
return np . ma . median ( self . raster , * args , ** kwargs )
|
def get_endpoint_map ( self ) :
"""returns API version and endpoint map"""
|
log . debug ( "getting end points..." )
cmd , url = DEVICE_URLS [ "get_endpoint_map" ]
return self . _exec ( cmd , url )
|
def to ( self , * args ) :
'''get / set the ' device ' to which messages are sent .
Valid targets are :
string filenames : ' / tmp / test . log '
remote hosts : ' pretoria : 1701'
system devices : sys . stdout , sys . stderr
special names : ' stdout '
file handles : open ( ' / tmp / test . log ' )'''
|
if len ( args ) :
self . _logFile = args [ 0 ]
if self . _logHandle and self . _logHandle != sys . stdout :
self . _logHandle . close ( )
# if type ( self . _ logFile ) is types . FileType :
if isinstance ( self . _logFile , IOBase ) :
self . _logHandle = self . _logFile
elif self . _logFile == 'stdout' :
self . _logHandle = sys . stdout
elif self . socket_parse ( self . _logFile ) :
self . _logHandle = C_dgmsocket ( self . _socketRemote , int ( self . _socketPort ) )
else :
self . _logHandle = open ( self . _logFile , "a" )
self . _sys_stdout = self . _logHandle
else :
return self . _logFile
|
def webui_schematics_panels_panel_properties_height ( self , ** kwargs ) :
"""Auto Generated Code"""
|
config = ET . Element ( "config" )
webui = ET . SubElement ( config , "webui" , xmlns = "http://tail-f.com/ns/webui" )
schematics = ET . SubElement ( webui , "schematics" )
panels = ET . SubElement ( schematics , "panels" )
panel = ET . SubElement ( panels , "panel" )
name_key = ET . SubElement ( panel , "name" )
name_key . text = kwargs . pop ( 'name' )
properties = ET . SubElement ( panel , "properties" )
height = ET . SubElement ( properties , "height" )
height . text = kwargs . pop ( 'height' )
callback = kwargs . pop ( 'callback' , self . _callback )
return callback ( config )
|
def __add_symbols ( self , cmd ) :
"""Add all additional defined and undefined symbols ."""
|
if self . __config . define_symbols :
symbols = self . __config . define_symbols
cmd . append ( '' . join ( [ ' -D"%s"' % def_symbol for def_symbol in symbols ] ) )
if self . __config . undefine_symbols :
un_symbols = self . __config . undefine_symbols
cmd . append ( '' . join ( [ ' -U"%s"' % undef_symbol for undef_symbol in un_symbols ] ) )
return cmd
|
def make_all_dirs ( path , mode = 0o777 ) :
"""Ensure local dir , with all its parent dirs , are created .
Unlike os . makedirs ( ) , will not fail if the path already exists ."""
|
# Avoid races inherent to doing this in two steps ( check then create ) .
# Python 3 has exist _ ok but the approach below works for Python 2 + 3.
# https : / / stackoverflow . com / questions / 600268 / mkdir - p - functionality - in - python
try :
os . makedirs ( path , mode = mode )
except OSError as e :
if e . errno == errno . EEXIST and os . path . isdir ( path ) :
pass
else :
raise
return path
|
def _float ( value ) :
"""Conversion of state vector field , with automatic unit handling"""
|
if "[" in value : # There is a unit field
value , sep , unit = value . partition ( "[" )
unit = sep + unit
# As defined in the CCSDS Orbital Data Message Blue Book , the unit should
# be the same as defined in table 3-3 which are for km and km / s for position and
# velocity respectively . Thus , there should be no other conversion to make
if unit in ( "[km]" , "[km/s]" ) :
multiplier = 1000
elif unit == "[s]" :
multiplier = 1
else :
raise ValueError ( "Unknown unit for this field" , unit )
else : # if no unit is provided , the default is km , and km / s
multiplier = 1000
return float ( value ) * multiplier
|
def setup ( app ) :
'''Required Sphinx extension setup function .'''
|
app . add_role ( 'bokeh-commit' , bokeh_commit )
app . add_role ( 'bokeh-issue' , bokeh_issue )
app . add_role ( 'bokeh-pull' , bokeh_pull )
app . add_role ( 'bokeh-tree' , bokeh_tree )
|
def check_service ( self , info ) :
"""Checks the network for a unique service name , modifying the
ServiceInfo passed in if it is not unique ."""
|
now = current_time_millis ( )
next_time = now
i = 0
while i < 3 :
for record in self . cache . entries_with_name ( info . type ) :
if record . type == _TYPE_PTR and not record . is_expired ( now ) and record . alias == info . name :
if ( info . name . find ( '.' ) < 0 ) :
info . name = info . name + ".[" + info . address + ":" + info . port + "]." + info . type
self . check_service ( info )
return
raise NonUniqueNameException
if now < next_time :
self . wait ( next_time - now )
now = current_time_millis ( )
continue
out = DNSOutgoing ( _FLAGS_QR_QUERY | _FLAGS_AA )
self . debug = out
out . add_question ( DNSQuestion ( info . type , _TYPE_PTR , _CLASS_IN ) )
out . add_authorative_answer ( DNSPointer ( info . type , _TYPE_PTR , _CLASS_IN , info . ttl , info . name ) )
self . send ( out )
i += 1
next_time += _CHECK_TIME
|
def unzip ( input_layer , split_dim = 0 , num_splits = 2 ) :
"""Unzips this Tensor along the split _ dim into num _ splits Equal chunks .
Examples :
* ` [ 1 , 2 , 3 , 4 ] - > [ 1 , 3 ] , [ 2 , 4 ] `
* ` [ [ 1 , 1 ] , [ 2 , 2 ] , [ 3 , 3 ] , [ 4 , 4 ] ] - > [ [ 1 , 1 ] , [ 3 , 3 ] ] , [ [ 2 , 2 ] , [ 4 , 4 ] ] `
Args :
input _ layer : The chainable object , supplied .
split _ dim : The dimension to split along . Defaults to batch .
num _ splits : The number of splits .
Returns :
A list of PrettyTensors .
Raises :
ValueError : If split _ dim is out of range or isn ' t divided evenly by
num _ splits ."""
|
shape = input_layer . shape
_check_split_dims ( num_splits , split_dim , shape )
splits = functions . unzip ( input_layer , split_dim , shape [ split_dim ] , num_splits )
return input_layer . with_sequence ( splits )
|
def unapostrophe ( text ) :
"""Strip apostrophe and ' s ' from the end of a string ."""
|
text = re . sub ( r'[%s]s?$' % '' . join ( APOSTROPHES ) , '' , text )
return text
|
def clean_dictkeys ( ddict , exclusions = None ) :
"""Exclude chars in dict keys and return a clean dictionary ."""
|
exclusions = [ ] if exclusions is None else exclusions
if not isinstance ( ddict , dict ) :
return { }
for key in list ( ddict . keys ( ) ) :
if [ incl for incl in exclusions if incl in key ] :
data = ddict . pop ( key )
clean_key = exclude_chars ( key , exclusions )
if clean_key :
if clean_key in ddict :
ddict [ clean_key ] = force_list ( ddict [ clean_key ] )
add_element ( ddict , clean_key , data )
else :
ddict [ clean_key ] = data
# dict case
if isinstance ( ddict . get ( key ) , dict ) :
ddict [ key ] = clean_dictkeys ( ddict [ key ] , exclusions )
# list case
elif isinstance ( ddict . get ( key ) , list ) :
for row in ddict [ key ] :
if isinstance ( row , dict ) :
row = clean_dictkeys ( row , exclusions )
return ddict
|
def scp_put ( files , remote_path = None , recursive = False , preserve_times = False , saltenv = 'base' , ** kwargs ) :
'''. . versionadded : : 2019.2.0
Transfer files and directories to remote network device .
. . note : :
This function is only available only when the underlying library
` scp < https : / / github . com / jbardin / scp . py > ` _
is installed . See
: mod : ` scp module < salt . modules . scp _ mod > ` for
more details .
files
A single path or a list of paths to be transferred .
remote _ path
The path on the remote device where to store the files .
recursive : ` ` True ` `
Transfer files and directories recursively .
preserve _ times : ` ` False ` `
Preserve ` ` mtime ` ` and ` ` atime ` ` of transferred files and directories .
saltenv : ` ` base ` `
The name of the Salt environment . Ignored when ` ` files ` ` is not a
` ` salt : / / ` ` URL .
hostname
The hostname of the remote device .
port : ` ` 22 ` `
The port of the remote device .
username
The username required for SSH authentication on the device .
password
Used for password authentication . It is also used for private key
decryption if ` ` passphrase ` ` is not given .
passphrase
Used for decrypting private keys .
pkey
An optional private key to use for authentication .
key _ filename
The filename , or list of filenames , of optional private key ( s ) and / or
certificates to try for authentication .
timeout
An optional timeout ( in seconds ) for the TCP connect .
socket _ timeout : ` ` 10 ` `
The channel socket timeout in seconds .
buff _ size : ` ` 16384 ` `
The size of the SCP send buffer .
allow _ agent : ` ` True ` `
Set to ` ` False ` ` to disable connecting to the SSH agent .
look _ for _ keys : ` ` True ` `
Set to ` ` False ` ` to disable searching for discoverable private key
files in ` ` ~ / . ssh / ` `
banner _ timeout
An optional timeout ( in seconds ) to wait for the SSH banner to be
presented .
auth _ timeout
An optional timeout ( in seconds ) to wait for an authentication
response .
auto _ add _ policy : ` ` False ` `
Automatically add the host to the ` ` known _ hosts ` ` .
CLI Example :
. . code - block : : bash
salt ' * ' napalm . scp _ put / path / to / file / var / tmp / file auto _ add _ policy = True'''
|
conn_args = netmiko_args ( ** kwargs )
conn_args [ 'hostname' ] = conn_args [ 'host' ]
kwargs . update ( conn_args )
return __salt__ [ 'scp.put' ] ( files , remote_path = remote_path , recursive = recursive , preserve_times = preserve_times , saltenv = saltenv , ** kwargs )
|
def bind ( self , sock ) :
"""Wrap and return the given socket ."""
|
if self . context is None :
self . context = self . get_context ( )
conn = SSLConnection ( self . context , sock )
self . _environ = self . get_environ ( )
return conn
|
def connect_put_node_proxy_with_path ( self , name , path , ** kwargs ) :
"""connect PUT requests to proxy of Node
This method makes a synchronous HTTP request by default . To make an
asynchronous HTTP request , please pass async _ req = True
> > > thread = api . connect _ put _ node _ proxy _ with _ path ( name , path , async _ req = True )
> > > result = thread . get ( )
: param async _ req bool
: param str name : name of the NodeProxyOptions ( required )
: param str path : path to the resource ( required )
: param str path2 : Path is the URL path to use for the current proxy request to node .
: return : str
If the method is called asynchronously ,
returns the request thread ."""
|
kwargs [ '_return_http_data_only' ] = True
if kwargs . get ( 'async_req' ) :
return self . connect_put_node_proxy_with_path_with_http_info ( name , path , ** kwargs )
else :
( data ) = self . connect_put_node_proxy_with_path_with_http_info ( name , path , ** kwargs )
return data
|
def get_tdms_files ( directory ) :
"""Recursively find projects based on ' . tdms ' file endings
Searches the ` directory ` recursively and return a sorted list
of all found ' . tdms ' project files , except fluorescence
data trace files which end with ` _ traces . tdms ` ."""
|
path = pathlib . Path ( directory ) . resolve ( )
# get all tdms files
tdmslist = [ r for r in path . rglob ( "*.tdms" ) if r . is_file ( ) ]
# exclude traces files
tdmslist = [ r for r in tdmslist if not r . name . endswith ( "_traces.tdms" ) ]
return sorted ( tdmslist )
|
def reset_object ( self , driver_wrapper = None ) :
"""Reset each page element object
: param driver _ wrapper : driver wrapper instance"""
|
if driver_wrapper :
self . driver_wrapper = driver_wrapper
for element in self . _page_elements :
element . reset_object ( driver_wrapper )
self . _web_elements = [ ]
self . _page_elements = [ ]
|
def seen_tasks ( self ) :
"""Shows a list of seen task types ."""
|
print ( '\n' . join ( self . _stub . seen_tasks ( clearly_pb2 . Empty ( ) ) . task_types ) )
|
def removeSinglePixels ( img ) :
'''img - boolean array
remove all pixels that have no neighbour'''
|
gx = img . shape [ 0 ]
gy = img . shape [ 1 ]
for i in range ( gx ) :
for j in range ( gy ) :
if img [ i , j ] :
found_neighbour = False
for ii in range ( max ( 0 , i - 1 ) , min ( gx , i + 2 ) ) :
for jj in range ( max ( 0 , j - 1 ) , min ( gy , j + 2 ) ) :
if ii == i and jj == j :
continue
if img [ ii , jj ] :
found_neighbour = True
break
if found_neighbour :
break
if not found_neighbour :
img [ i , j ] = 0
|
def speakerDiarization ( filename , n_speakers , mt_size = 2.0 , mt_step = 0.2 , st_win = 0.05 , lda_dim = 35 , plot_res = False ) :
'''ARGUMENTS :
- filename : the name of the WAV file to be analyzed
- n _ speakers the number of speakers ( clusters ) in the recording ( < = 0 for unknown )
- mt _ size ( opt ) mid - term window size
- mt _ step ( opt ) mid - term window step
- st _ win ( opt ) short - term window size
- lda _ dim ( opt ) LDA dimension ( 0 for no LDA )
- plot _ res ( opt ) 0 for not plotting the results 1 for plottingy'''
|
[ fs , x ] = audioBasicIO . readAudioFile ( filename )
x = audioBasicIO . stereo2mono ( x )
duration = len ( x ) / fs
[ classifier_1 , MEAN1 , STD1 , classNames1 , mtWin1 , mtStep1 , stWin1 , stStep1 , computeBEAT1 ] = aT . load_model_knn ( os . path . join ( os . path . dirname ( os . path . realpath ( __file__ ) ) , "data" , "knnSpeakerAll" ) )
[ classifier_2 , MEAN2 , STD2 , classNames2 , mtWin2 , mtStep2 , stWin2 , stStep2 , computeBEAT2 ] = aT . load_model_knn ( os . path . join ( os . path . dirname ( os . path . realpath ( __file__ ) ) , "data" , "knnSpeakerFemaleMale" ) )
[ mt_feats , st_feats , _ ] = aF . mtFeatureExtraction ( x , fs , mt_size * fs , mt_step * fs , round ( fs * st_win ) , round ( fs * st_win * 0.5 ) )
MidTermFeatures2 = numpy . zeros ( ( mt_feats . shape [ 0 ] + len ( classNames1 ) + len ( classNames2 ) , mt_feats . shape [ 1 ] ) )
for i in range ( mt_feats . shape [ 1 ] ) :
cur_f1 = ( mt_feats [ : , i ] - MEAN1 ) / STD1
cur_f2 = ( mt_feats [ : , i ] - MEAN2 ) / STD2
[ res , P1 ] = aT . classifierWrapper ( classifier_1 , "knn" , cur_f1 )
[ res , P2 ] = aT . classifierWrapper ( classifier_2 , "knn" , cur_f2 )
MidTermFeatures2 [ 0 : mt_feats . shape [ 0 ] , i ] = mt_feats [ : , i ]
MidTermFeatures2 [ mt_feats . shape [ 0 ] : mt_feats . shape [ 0 ] + len ( classNames1 ) , i ] = P1 + 0.0001
MidTermFeatures2 [ mt_feats . shape [ 0 ] + len ( classNames1 ) : : , i ] = P2 + 0.0001
mt_feats = MidTermFeatures2
# TODO
iFeaturesSelect = [ 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 ]
mt_feats = mt_feats [ iFeaturesSelect , : ]
( mt_feats_norm , MEAN , STD ) = aT . normalizeFeatures ( [ mt_feats . T ] )
mt_feats_norm = mt_feats_norm [ 0 ] . T
n_wins = mt_feats . shape [ 1 ]
# remove outliers :
dist_all = numpy . sum ( distance . squareform ( distance . pdist ( mt_feats_norm . T ) ) , axis = 0 )
m_dist_all = numpy . mean ( dist_all )
i_non_outliers = numpy . nonzero ( dist_all < 1.2 * m_dist_all ) [ 0 ]
# TODO : Combine energy threshold for outlier removal :
# EnergyMin = numpy . min ( mt _ feats [ 1 , : ] )
# EnergyMean = numpy . mean ( mt _ feats [ 1 , : ] )
# Thres = ( 1.5 * EnergyMin + 0.5 * EnergyMean ) / 2.0
# i _ non _ outliers = numpy . nonzero ( mt _ feats [ 1 , : ] > Thres ) [ 0]
# print i _ non _ outliers
perOutLier = ( 100.0 * ( n_wins - i_non_outliers . shape [ 0 ] ) ) / n_wins
mt_feats_norm_or = mt_feats_norm
mt_feats_norm = mt_feats_norm [ : , i_non_outliers ]
# LDA dimensionality reduction :
if lda_dim > 0 : # [ mt _ feats _ to _ red , _ , _ ] = aF . mtFeatureExtraction ( x , fs , mt _ size * fs , st _ win * fs , round ( fs * st _ win ) , round ( fs * st _ win ) ) ;
# extract mid - term features with minimum step :
mt_win_ratio = int ( round ( mt_size / st_win ) )
mt_step_ratio = int ( round ( st_win / st_win ) )
mt_feats_to_red = [ ]
num_of_features = len ( st_feats )
num_of_stats = 2
# for i in range ( num _ of _ stats * num _ of _ features + 1 ) :
for i in range ( num_of_stats * num_of_features ) :
mt_feats_to_red . append ( [ ] )
for i in range ( num_of_features ) : # for each of the short - term features :
curPos = 0
N = len ( st_feats [ i ] )
while ( curPos < N ) :
N1 = curPos
N2 = curPos + mt_win_ratio
if N2 > N :
N2 = N
curStFeatures = st_feats [ i ] [ N1 : N2 ]
mt_feats_to_red [ i ] . append ( numpy . mean ( curStFeatures ) )
mt_feats_to_red [ i + num_of_features ] . append ( numpy . std ( curStFeatures ) )
curPos += mt_step_ratio
mt_feats_to_red = numpy . array ( mt_feats_to_red )
mt_feats_to_red_2 = numpy . zeros ( ( mt_feats_to_red . shape [ 0 ] + len ( classNames1 ) + len ( classNames2 ) , mt_feats_to_red . shape [ 1 ] ) )
for i in range ( mt_feats_to_red . shape [ 1 ] ) :
cur_f1 = ( mt_feats_to_red [ : , i ] - MEAN1 ) / STD1
cur_f2 = ( mt_feats_to_red [ : , i ] - MEAN2 ) / STD2
[ res , P1 ] = aT . classifierWrapper ( classifier_1 , "knn" , cur_f1 )
[ res , P2 ] = aT . classifierWrapper ( classifier_2 , "knn" , cur_f2 )
mt_feats_to_red_2 [ 0 : mt_feats_to_red . shape [ 0 ] , i ] = mt_feats_to_red [ : , i ]
mt_feats_to_red_2 [ mt_feats_to_red . shape [ 0 ] : mt_feats_to_red . shape [ 0 ] + len ( classNames1 ) , i ] = P1 + 0.0001
mt_feats_to_red_2 [ mt_feats_to_red . shape [ 0 ] + len ( classNames1 ) : : , i ] = P2 + 0.0001
mt_feats_to_red = mt_feats_to_red_2
mt_feats_to_red = mt_feats_to_red [ iFeaturesSelect , : ]
# mt _ feats _ to _ red + = numpy . random . rand ( mt _ feats _ to _ red . shape [ 0 ] , mt _ feats _ to _ red . shape [ 1 ] ) * 0.0000010
( mt_feats_to_red , MEAN , STD ) = aT . normalizeFeatures ( [ mt_feats_to_red . T ] )
mt_feats_to_red = mt_feats_to_red [ 0 ] . T
# dist _ all = numpy . sum ( distance . squareform ( distance . pdist ( mt _ feats _ to _ red . T ) ) , axis = 0)
# m _ dist _ all = numpy . mean ( dist _ all )
# iNonOutLiers2 = numpy . nonzero ( dist _ all < 3.0 * m _ dist _ all ) [ 0]
# mt _ feats _ to _ red = mt _ feats _ to _ red [ : , iNonOutLiers2]
Labels = numpy . zeros ( ( mt_feats_to_red . shape [ 1 ] , ) ) ;
LDAstep = 1.0
LDAstepRatio = LDAstep / st_win
# print LDAstep , LDAstepRatio
for i in range ( Labels . shape [ 0 ] ) :
Labels [ i ] = int ( i * st_win / LDAstepRatio ) ;
clf = sklearn . discriminant_analysis . LinearDiscriminantAnalysis ( n_components = lda_dim )
clf . fit ( mt_feats_to_red . T , Labels )
mt_feats_norm = ( clf . transform ( mt_feats_norm . T ) ) . T
if n_speakers <= 0 :
s_range = range ( 2 , 10 )
else :
s_range = [ n_speakers ]
clsAll = [ ]
sil_all = [ ]
centersAll = [ ]
for iSpeakers in s_range :
k_means = sklearn . cluster . KMeans ( n_clusters = iSpeakers )
k_means . fit ( mt_feats_norm . T )
cls = k_means . labels_
means = k_means . cluster_centers_
# Y = distance . squareform ( distance . pdist ( mt _ feats _ norm . T ) )
clsAll . append ( cls )
centersAll . append ( means )
sil_1 = [ ] ;
sil_2 = [ ]
for c in range ( iSpeakers ) : # for each speaker ( i . e . for each extracted cluster )
clust_per_cent = numpy . nonzero ( cls == c ) [ 0 ] . shape [ 0 ] / float ( len ( cls ) )
if clust_per_cent < 0.020 :
sil_1 . append ( 0.0 )
sil_2 . append ( 0.0 )
else : # get subset of feature vectors
mt_feats_norm_temp = mt_feats_norm [ : , cls == c ]
# compute average distance between samples
# that belong to the cluster ( a values )
Yt = distance . pdist ( mt_feats_norm_temp . T )
sil_1 . append ( numpy . mean ( Yt ) * clust_per_cent )
silBs = [ ]
for c2 in range ( iSpeakers ) : # compute distances from samples of other clusters
if c2 != c :
clust_per_cent_2 = numpy . nonzero ( cls == c2 ) [ 0 ] . shape [ 0 ] / float ( len ( cls ) )
MidTermFeaturesNormTemp2 = mt_feats_norm [ : , cls == c2 ]
Yt = distance . cdist ( mt_feats_norm_temp . T , MidTermFeaturesNormTemp2 . T )
silBs . append ( numpy . mean ( Yt ) * ( clust_per_cent + clust_per_cent_2 ) / 2.0 )
silBs = numpy . array ( silBs )
# . . . and keep the minimum value ( i . e .
# the distance from the " nearest " cluster )
sil_2 . append ( min ( silBs ) )
sil_1 = numpy . array ( sil_1 ) ;
sil_2 = numpy . array ( sil_2 ) ;
sil = [ ]
for c in range ( iSpeakers ) : # for each cluster ( speaker ) compute silhouette
sil . append ( ( sil_2 [ c ] - sil_1 [ c ] ) / ( max ( sil_2 [ c ] , sil_1 [ c ] ) + 0.00001 ) )
# keep the AVERAGE SILLOUETTE
sil_all . append ( numpy . mean ( sil ) )
imax = numpy . argmax ( sil_all )
# optimal number of clusters
nSpeakersFinal = s_range [ imax ]
# generate the final set of cluster labels
# ( important : need to retrieve the outlier windows :
# this is achieved by giving them the value of their
# nearest non - outlier window )
cls = numpy . zeros ( ( n_wins , ) )
for i in range ( n_wins ) :
j = numpy . argmin ( numpy . abs ( i - i_non_outliers ) )
cls [ i ] = clsAll [ imax ] [ j ]
# Post - process method 1 : hmm smoothing
for i in range ( 1 ) : # hmm training
start_prob , transmat , means , cov = trainHMM_computeStatistics ( mt_feats_norm_or , cls )
hmm = hmmlearn . hmm . GaussianHMM ( start_prob . shape [ 0 ] , "diag" )
hmm . startprob_ = start_prob
hmm . transmat_ = transmat
hmm . means_ = means ;
hmm . covars_ = cov
cls = hmm . predict ( mt_feats_norm_or . T )
# Post - process method 2 : median filtering :
cls = scipy . signal . medfilt ( cls , 13 )
cls = scipy . signal . medfilt ( cls , 11 )
sil = sil_all [ imax ]
class_names = [ "speaker{0:d}" . format ( c ) for c in range ( nSpeakersFinal ) ] ;
# load ground - truth if available
gt_file = filename . replace ( '.wav' , '.segments' )
# if groundturh exists
if os . path . isfile ( gt_file ) :
[ seg_start , seg_end , seg_labs ] = readSegmentGT ( gt_file )
flags_gt , class_names_gt = segs2flags ( seg_start , seg_end , seg_labs , mt_step )
if plot_res :
fig = plt . figure ( )
if n_speakers > 0 :
ax1 = fig . add_subplot ( 111 )
else :
ax1 = fig . add_subplot ( 211 )
ax1 . set_yticks ( numpy . array ( range ( len ( class_names ) ) ) )
ax1 . axis ( ( 0 , duration , - 1 , len ( class_names ) ) )
ax1 . set_yticklabels ( class_names )
ax1 . plot ( numpy . array ( range ( len ( cls ) ) ) * mt_step + mt_step / 2.0 , cls )
if os . path . isfile ( gt_file ) :
if plot_res :
ax1 . plot ( numpy . array ( range ( len ( flags_gt ) ) ) * mt_step + mt_step / 2.0 , flags_gt , 'r' )
purity_cluster_m , purity_speaker_m = evaluateSpeakerDiarization ( cls , flags_gt )
print ( "{0:.1f}\t{1:.1f}" . format ( 100 * purity_cluster_m , 100 * purity_speaker_m ) )
if plot_res :
plt . title ( "Cluster purity: {0:.1f}% - " "Speaker purity: {1:.1f}%" . format ( 100 * purity_cluster_m , 100 * purity_speaker_m ) )
if plot_res :
plt . xlabel ( "time (seconds)" )
# print s _ range , sil _ all
if n_speakers <= 0 :
plt . subplot ( 212 )
plt . plot ( s_range , sil_all )
plt . xlabel ( "number of clusters" ) ;
plt . ylabel ( "average clustering's sillouette" ) ;
plt . show ( )
return cls
|
def extract_twin_values ( triples , traits , gender = None ) :
"""Calculate the heritability of certain traits in triplets .
Parameters
triples : ( a , b , " Female / Male " ) triples . The sample IDs are then used to query
the traits dictionary .
traits : sample _ id = > value dictionary
Returns
tuples of size 2 , that contain paired trait values of the twins"""
|
# Construct the pairs of trait values
traitValuesAbsent = 0
nanValues = 0
genderSkipped = 0
twinValues = [ ]
for a , b , t in triples :
if gender is not None and t != gender :
genderSkipped += 1
continue
if not ( a in traits and b in traits ) :
traitValuesAbsent += 1
continue
if np . isnan ( traits [ a ] ) or np . isnan ( traits [ b ] ) :
nanValues += 1
continue
twinValues . append ( ( traits [ a ] , traits [ b ] ) )
print ( "A total of {} pairs extracted ({} absent; {} nan; {} genderSkipped)" . format ( len ( twinValues ) , traitValuesAbsent , nanValues , genderSkipped ) )
return twinValues
|
def get_blocks_struct ( self ) :
"""Return a dictionary with block ids keyed to ( x , y , z ) ."""
|
cur_x = 0
cur_y = 0
cur_z = 0
blocks = { }
for block_id in self . blocksList :
blocks [ ( cur_x , cur_y , cur_z ) ] = block_id
cur_y += 1
if ( cur_y > 127 ) :
cur_y = 0
cur_z += 1
if ( cur_z > 15 ) :
cur_z = 0
cur_x += 1
return blocks
|
def _valid_ip ( ip_address ) :
'''Check if the IP address is valid and routable
Return either True or False'''
|
try :
address = ipaddress . IPv4Address ( ip_address )
except ipaddress . AddressValueError :
return False
if address . is_unspecified or address . is_loopback or address . is_link_local or address . is_multicast or address . is_reserved :
return False
return True
|
def first_of ( obj , * attrs ) :
""": param obj :
: param attrs : a list of strings
: return : the first truthy attribute of obj , calling it as a function if necessary ."""
|
for attr in attrs :
r = resolve ( obj , attr )
if r :
return r
|
def set_keyboard_focus ( self , move_up , move_down , select ) :
"""Set the keyboard as the object that controls the menu .
move _ up is from the pygame . KEYS enum that defines what button causes the menu selection to move up .
move _ down is from the pygame . KEYS enum that defines what button causes the menu selection to move down .
select is from the pygame . KEYS enum that defines what button causes the button to be selected ."""
|
self . input_focus = StateTypes . KEYBOARD
self . move_up_button = move_up
self . move_down_button = move_down
self . select_button = select
|
def hide ( self , fromQtmacs : bool = False ) :
"""Overloaded ` ` hide ( ) ` ` function to avoid calling it
accidentally .
This method is a ( weak ) security mechanism to prevent
programmers from using the ` ` hide ` ` method as originally
intended by Qt , ie . to hide a window . However , in Qtmacs ,
applets can only be made invisible by either killing them with
` ` qteKillApplet ` ` or replacing them with another applet ( see
eg . ` ` qteReplaceAppletInLayout ` ` ) . Using the Qt native
` ` hide ( ) ` ` method messes with the Qtmacs layout engine and can
lead to unexpected visual results and more serious errors .
This method should only be used by ` ` QtmacsMain ` ` to implement
the layout but not by any applets or macros , unless it is for
a widget not under the control of Qtmacs ( probably a bad
idea ) .
| Args |
* * fromQtmacs ( * * bool * * ) : if * * True * * then the original
` ` hide ( ) ` ` method is called
| Returns |
* * * None * *
| Raises |
* * * QtmacsArgumentError * * if at least one argument has an invalid type ."""
|
if not fromQtmacs : # Log a warning message if someone tries to call the
# native hide ( ) method .
msg = ( 'hide() command for applet <b>{}</b> ignored. Use ' ' qteNewApplet instead.' . format ( self . qteAppletID ( ) ) )
self . qteLogger . warning ( msg )
else : # If we are explicitly requested to hide ( ) the widget ,
# then clear the Qtmacs internal visibility flag ( will be
# used in the focus manager to double check that Qtmacs
# and Qt agree on which widgets are visible ) , remove the
# applet from the QtmacsSplitter by re - parenting it to
# * * None * * , and tell Qt to actually hide the widget as
# soon as the event loop is in control again .
self . _qteAdmin . isVisible = False
self . qteReparent ( None )
QtGui . QWidget . hide ( self )
|
def FqdnUrl ( v ) :
"""Verify that the value is a Fully qualified domain name URL .
> > > s = Schema ( FqdnUrl ( ) )
> > > with raises ( MultipleInvalid , ' expected a Fully qualified domain name URL ' ) :
. . . s ( " http : / / localhost / " )
> > > s ( ' http : / / w3 . org ' )
' http : / / w3 . org '"""
|
try :
parsed_url = _url_validation ( v )
if "." not in parsed_url . netloc :
raise UrlInvalid ( "must have a domain name in URL" )
return v
except :
raise ValueError
|
def _get_violations ( self , query , record ) :
"""Reverse - engineer the query to figure out why a record was selected .
: param query : MongoDB query
: type query : MongQuery
: param record : Record in question
: type record : dict
: return : Reasons why bad
: rtype : list ( ConstraintViolation )"""
|
# special case , when no constraints are given
if len ( query . all_clauses ) == 0 :
return [ NullConstraintViolation ( ) ]
# normal case , check all the constraints
reasons = [ ]
for clause in query . all_clauses :
var_name = None
key = clause . constraint . field . name
op = clause . constraint . op
fval = mongo_get ( record , key )
if fval is None :
expected = clause . constraint . value
reasons . append ( ConstraintViolation ( clause . constraint , 'missing' , expected ) )
continue
if op . is_variable ( ) : # retrieve value for variable
var_name = clause . constraint . value
value = mongo_get ( record , var_name , default = None )
if value is None :
reasons . append ( ConstraintViolation ( clause . constraint , 'missing' , var_name ) )
continue
clause . constraint . value = value
# swap out value , temporarily
# take length for size
if op . is_size ( ) :
if isinstance ( fval , str ) or not hasattr ( fval , '__len__' ) :
reasons . append ( ConstraintViolation ( clause . constraint , type ( fval ) , 'sequence' ) )
if op . is_variable ( ) :
clause . constraint . value = var_name
# put original value back
continue
fval = len ( fval )
ok , expected = clause . constraint . passes ( fval )
if not ok :
reasons . append ( ConstraintViolation ( clause . constraint , fval , expected ) )
if op . is_variable ( ) :
clause . constraint . value = var_name
# put original value back
return reasons
|
def print_spelling_errors ( filename , encoding = 'utf8' ) :
"""Print misspelled words returned by sphinxcontrib - spelling"""
|
filesize = os . stat ( filename ) . st_size
if filesize :
sys . stdout . write ( 'Misspelled Words:\n' )
with io . open ( filename , encoding = encoding ) as wordlist :
for line in wordlist :
sys . stdout . write ( ' ' + line )
return 1 if filesize else 0
|
def view_creatr ( filename ) :
"""Name of the View File to be created"""
|
if not check ( ) :
click . echo ( Fore . RED + 'ERROR: Ensure you are in a bast app to run the create:view command' )
return
path = os . path . abspath ( '.' ) + '/public/templates'
if not os . path . exists ( path ) :
os . makedirs ( path )
filename_ = str ( filename + ".html" ) . lower ( )
view_file = open ( path + "/" + filename_ , 'w+' )
view_file . write ( "" )
view_file . close ( )
click . echo ( Fore . GREEN + "View file " + filename_ + "created in public/template folder" )
|
def unsafe ( self ) :
"""True if the mapping is unsafe for an update .
Applies only to local source . Returns True if the paths for source and
destination are the same , or if one is a component of the other path ."""
|
( scheme , netloc , path , params , query , frag ) = urlparse ( self . src_uri )
if ( scheme != '' ) :
return ( False )
s = os . path . normpath ( self . src_uri )
d = os . path . normpath ( self . dst_path )
lcp = os . path . commonprefix ( [ s , d ] )
return ( s == lcp or d == lcp )
|
def validate ( self , obj ) :
"""Validate convertibility to internal representation
Returns
bool
True if ' obj ' matches the data type
Raises
ValidationError
If the validation fails"""
|
if not isinstance ( obj , self . internal_type ) :
raise ValidationError ( obj , self . internal_type )
return True
|
def replace_widgets ( self , widgets , team_context , dashboard_id , eTag = None ) :
"""ReplaceWidgets .
[ Preview API ] Replace the widgets on specified dashboard with the supplied widgets .
: param [ Widget ] widgets : Revised state of widgets to store for the dashboard .
: param : class : ` < TeamContext > < azure . devops . v5_0 . dashboard . models . TeamContext > ` team _ context : The team context for the operation
: param str dashboard _ id : ID of the Dashboard to modify .
: param String eTag : Dashboard Widgets Version
: rtype : : class : ` < WidgetsVersionedList > < azure . devops . v5_0 . dashboard . models . WidgetsVersionedList > `"""
|
project = None
team = None
if team_context is not None :
if team_context . project_id :
project = team_context . project_id
else :
project = team_context . project
if team_context . team_id :
team = team_context . team_id
else :
team = team_context . team
route_values = { }
if project is not None :
route_values [ 'project' ] = self . _serialize . url ( 'project' , project , 'string' )
if team is not None :
route_values [ 'team' ] = self . _serialize . url ( 'team' , team , 'string' )
if dashboard_id is not None :
route_values [ 'dashboardId' ] = self . _serialize . url ( 'dashboard_id' , dashboard_id , 'str' )
content = self . _serialize . body ( widgets , '[Widget]' )
response = self . _send ( http_method = 'PUT' , location_id = 'bdcff53a-8355-4172-a00a-40497ea23afc' , version = '5.0-preview.2' , route_values = route_values , content = content )
response_object = models . WidgetsVersionedList ( )
response_object . widgets = self . _deserialize ( '[Widget]' , self . _unwrap_collection ( response ) )
response_object . eTag = response . headers . get ( 'ETag' )
return response_object
|
async def add ( self , full , valu ) :
'''Atomically increments a node ' s value .'''
|
node = await self . open ( full )
oldv = node . valu
newv = oldv + valu
node . valu = await self . storNodeValu ( full , node . valu + valu )
await node . fire ( 'hive:set' , path = full , valu = valu , oldv = oldv )
return newv
|
def _read_precursor ( precursor , sps ) :
"""Load precursor file for that species"""
|
hairpin = defaultdict ( str )
name = None
with open ( precursor ) as in_handle :
for line in in_handle :
if line . startswith ( ">" ) :
if hairpin [ name ] :
hairpin [ name ] = hairpin [ name ] + "NNNNNNNNNNNN"
name = line . strip ( ) . replace ( ">" , " " ) . split ( ) [ 0 ]
else :
hairpin [ name ] += line . strip ( )
hairpin [ name ] = hairpin [ name ] + "NNNNNNNNNNNN"
return hairpin
|
def closed_loop_edge_lengths_via_footpoint ( glats , glons , alts , dates , direction , vector_direction , step_size = None , max_steps = None , edge_length = 25. , edge_steps = 5 ) :
"""Forms closed loop integration along mag field , satrting at input
points and goes through footpoint . At footpoint , steps along vector direction
in both positive and negative directions , then traces back to opposite
footpoint . Back at input location , steps toward those new field lines
( edge _ length ) along vector direction until hitting distance of minimum
approach . Loops don ' t always close . Returns total edge distance
that goes through input location , along with the distances of closest approach .
Note
vector direction refers to the magnetic unit vector direction
Parameters
glats : list - like of floats ( degrees )
Geodetic ( WGS84 ) latitude
glons : list - like of floats ( degrees )
Geodetic ( WGS84 ) longitude
alts : list - like of floats ( km )
Geodetic ( WGS84 ) altitude , height above surface
dates : list - like of datetimes
Date and time for determination of scalars
direction : string
' north ' or ' south ' for tracing through northern or
southern footpoint locations
vector _ direction : string
' meridional ' or ' zonal ' unit vector directions
step _ size : float ( km )
Step size ( km ) used for field line integration
max _ steps : int
Number of steps taken for field line integration
edge _ length : float ( km )
Half of total edge length ( step ) taken at footpoint location .
edge _ length step in both positive and negative directions .
edge _ steps : int
Number of steps taken from footpoint towards new field line
in a given direction ( positive / negative ) along unit vector
Returns
np . array , np . array , np . array
A closed loop field line path through input location and footpoint in
northern / southern hemisphere and back is taken . The return edge length
through input location is provided .
The distances of closest approach for the positive step along vector
direction , and the negative step are returned ."""
|
if step_size is None :
step_size = 100.
if max_steps is None :
max_steps = 1000
steps = np . arange ( max_steps )
if direction == 'south' :
direct = - 1
elif direction == 'north' :
direct = 1
# use spacecraft location to get ECEF
ecef_xs , ecef_ys , ecef_zs = geodetic_to_ecef ( glats , glons , alts )
# prepare output
full_local_step = [ ]
min_distance_plus = [ ]
min_distance_minus = [ ]
for ecef_x , ecef_y , ecef_z , glat , glon , alt , date in zip ( ecef_xs , ecef_ys , ecef_zs , glats , glons , alts , dates ) : # going to try and form close loops via field line integration
# start at location of interest , map down to northern or southern
# footpoints then take symmetric steps along meridional and zonal
# directions and trace back from location of interest , step along
# field line directions until we intersect or hit the distance of
# closest approach to the return field line with the known
# distances of footpoint steps , and the closet approach distance
# we can determine the scalar mapping of one location to another
yr , doy = pysat . utils . getyrdoy ( date )
double_date = float ( yr ) + float ( doy ) / 366.
# print ( glat , glon , alt )
# trace to footpoint , starting with input location
sc_root = np . array ( [ ecef_x , ecef_y , ecef_z ] )
trace = field_line_trace ( sc_root , double_date , direct , 120. , steps = steps , step_size = step_size , max_steps = max_steps )
# pull out footpoint location
ftpnt = trace [ - 1 , : ]
ft_glat , ft_glon , ft_alt = ecef_to_geodetic ( * ftpnt )
# take step from footpoint along + vector direction
plus_step = step_along_mag_unit_vector ( ftpnt [ 0 ] , ftpnt [ 1 ] , ftpnt [ 2 ] , date , direction = vector_direction , num_steps = edge_steps , step_size = edge_length / edge_steps )
# trace this back to other footpoint
other_plus = field_line_trace ( plus_step , double_date , - direct , 0. , steps = steps , step_size = step_size , max_steps = max_steps )
# take half step from first footpoint along - vector direction
minus_step = step_along_mag_unit_vector ( ftpnt [ 0 ] , ftpnt [ 1 ] , ftpnt [ 2 ] , date , direction = vector_direction , scalar = - 1 , num_steps = edge_steps , step_size = edge_length / edge_steps )
# trace this back to other footpoint
other_minus = field_line_trace ( minus_step , double_date , - direct , 0. , steps = steps , step_size = step_size , max_steps = max_steps )
# need to determine where the intersection of field line coming back from
# footpoint through postive vector direction step and back
# in relation to the vector direction from the s / c location .
pos_edge_length , _ , mind_pos = step_until_intersect ( sc_root , other_plus , 1 , date , direction = vector_direction , field_step_size = step_size , step_size_goal = edge_length / edge_steps )
# take half step from S / C along - vector direction
minus_edge_length , _ , mind_minus = step_until_intersect ( sc_root , other_minus , - 1 , date , direction = vector_direction , field_step_size = step_size , step_size_goal = edge_length / edge_steps )
# collect outputs
full_local_step . append ( pos_edge_length + minus_edge_length )
min_distance_plus . append ( mind_pos )
min_distance_minus . append ( mind_minus )
return np . array ( full_local_step ) , np . array ( min_distance_plus ) , np . array ( min_distance_minus )
|
def list_domains ( ) :
'''Return a list of virtual machine names on the minion
CLI Example :
. . code - block : : bash
salt ' * ' virt . list _ domains'''
|
data = __salt__ [ 'vmadm.list' ] ( keyed = True )
vms = [ "UUID TYPE RAM STATE ALIAS" ]
for vm in data :
vms . append ( "{vmuuid}{vmtype}{vmram}{vmstate}{vmalias}" . format ( vmuuid = vm . ljust ( 38 ) , vmtype = data [ vm ] [ 'type' ] . ljust ( 6 ) , vmram = data [ vm ] [ 'ram' ] . ljust ( 9 ) , vmstate = data [ vm ] [ 'state' ] . ljust ( 18 ) , vmalias = data [ vm ] [ 'alias' ] , ) )
return vms
|
def _n_parameters ( self ) :
"""Return the number of free parameters in the model ."""
|
ndim = self . means_ . shape [ 1 ]
if self . covariance_type == 'full' :
cov_params = self . n_components * ndim * ( ndim + 1 ) / 2.
elif self . covariance_type == 'diag' :
cov_params = self . n_components * ndim
elif self . covariance_type == 'tied' :
cov_params = ndim * ( ndim + 1 ) / 2.
elif self . covariance_type == 'spherical' :
cov_params = self . n_components
mean_params = ndim * self . n_components
return int ( cov_params + mean_params + self . n_components - 1 )
|
def rpc_get_historic_names_by_address ( self , address , offset , count , ** con_info ) :
"""Get the list of names owned by an address throughout history
Return { ' status ' : True , ' names ' : [ { ' name ' : . . . , ' block _ id ' : . . . , ' vtxindex ' : . . . } ] } on success
Return { ' error ' : . . . } on error"""
|
if not check_address ( address ) :
return { 'error' : 'Invalid address' , 'http_status' : 400 }
if not check_offset ( offset ) :
return { 'error' : 'invalid offset' , 'http_status' : 400 }
if not check_count ( count , 10 ) :
return { 'error' : 'invalid count' , 'http_status' : 400 }
db = get_db_state ( self . working_dir )
names = db . get_historic_names_by_address ( address , offset , count )
db . close ( )
if names is None :
names = [ ]
return self . success_response ( { 'names' : names } )
|
def update_spec ( self ) :
"""Update the source specification with information from the row intuiter , but only if the spec values
are not already set ."""
|
if self . datafile . exists :
with self . datafile . reader as r :
self . header_lines = r . info [ 'header_rows' ]
self . comment_lines = r . info [ 'comment_rows' ]
self . start_line = r . info [ 'data_start_row' ]
self . end_line = r . info [ 'data_end_row' ]
|
def retrieve_token ( self , token ) :
"""Retrieve Token details for a specific Token .
Args :
token : The identifier of the token .
Returns :"""
|
headers = self . client . _get_private_headers ( )
endpoint = '/tokens/{}' . format ( token )
return self . client . _get ( self . client . URL_BASE + endpoint , headers = headers )
|
def get_abs ( msrc , mrec , srcazm , srcdip , recazm , recdip , verb ) :
r"""Get required ab ' s for given angles .
This check - function is called from one of the modelling routines in
: mod : ` model ` . Consult these modelling routines for a detailed description
of the input parameters .
Parameters
msrc , mrec : bool
True if src / rec is magnetic , else False .
srcazm , recazm : float
Horizontal source / receiver angle ( azimuth ) .
srcdip , recdip : float
Vertical source / receiver angle ( dip ) .
verb : { 0 , 1 , 2 , 3 , 4}
Level of verbosity .
Returns
ab _ calc : array of int
ab ' s to calculate for this bipole ."""
|
# Get required ab ' s ( 9 at most )
ab_calc = np . array ( [ [ 11 , 12 , 13 ] , [ 21 , 22 , 23 ] , [ 31 , 32 , 33 ] ] )
if msrc :
ab_calc += 3
if mrec :
ab_calc += 30
# Switch < ab > using reciprocity .
if msrc : # G ^ mm _ ab ( s , r , e , z ) = - G ^ ee _ ab ( s , r , - z , - e )
ab_calc -= 33
# -30 : mrec - > erec ; - 3 : msrc - > esrc
else : # G ^ me _ ab ( s , r , e , z ) = - G ^ em _ ba ( r , s , e , z )
ab_calc = ab_calc % 10 * 10 + ab_calc // 10
# Swap alpha / beta
# Remove unnecessary ab ' s
bab = np . asarray ( ab_calc * 0 + 1 , dtype = bool )
# Remove if source is x - or y - directed
check = np . atleast_1d ( srcazm ) [ 0 ]
if np . allclose ( srcazm % ( np . pi / 2 ) , 0 ) : # if all angles are multiples of 90
if np . isclose ( check // ( np . pi / 2 ) % 2 , 0 ) : # Multiples of pi ( 180)
bab [ : , 1 ] *= False
# x - directed source , remove y
else : # Multiples of pi / 2 ( 90)
bab [ : , 0 ] *= False
# y - directed source , remove x
# Remove if source is vertical
check = np . atleast_1d ( srcdip ) [ 0 ]
if np . allclose ( srcdip % ( np . pi / 2 ) , 0 ) : # if all angles are multiples of 90
if np . isclose ( check // ( np . pi / 2 ) % 2 , 0 ) : # Multiples of pi ( 180)
bab [ : , 2 ] *= False
# Horizontal , remove z
else : # Multiples of pi / 2 ( 90)
bab [ : , : 2 ] *= False
# Vertical , remove x / y
# Remove if receiver is x - or y - directed
check = np . atleast_1d ( recazm ) [ 0 ]
if np . allclose ( recazm % ( np . pi / 2 ) , 0 ) : # if all angles are multiples of 90
if np . isclose ( check // ( np . pi / 2 ) % 2 , 0 ) : # Multiples of pi ( 180)
bab [ 1 , : ] *= False
# x - directed receiver , remove y
else : # Multiples of pi / 2 ( 90)
bab [ 0 , : ] *= False
# y - directed receiver , remove x
# Remove if receiver is vertical
check = np . atleast_1d ( recdip ) [ 0 ]
if np . allclose ( recdip % ( np . pi / 2 ) , 0 ) : # if all angles are multiples of 90
if np . isclose ( check // ( np . pi / 2 ) % 2 , 0 ) : # Multiples of pi ( 180)
bab [ 2 , : ] *= False
# Horizontal , remove z
else : # Multiples of pi / 2 ( 90)
bab [ : 2 , : ] *= False
# Vertical , remove x / y
# Reduce
ab_calc = ab_calc [ bab ] . ravel ( )
# Print actual calculated < ab >
if verb > 2 :
print ( " Required ab's : " , _strvar ( ab_calc ) )
return ab_calc
|
def fetch ( self , is_dl_forced = True ) :
"""Fetches data from udp collaboration server ,
see top level comments for class for more information
: return :"""
|
username = config . get_config ( ) [ 'dbauth' ] [ 'udp' ] [ 'user' ]
password = config . get_config ( ) [ 'dbauth' ] [ 'udp' ] [ 'password' ]
credentials = ( username , password )
# Get patient map file :
patient_id_map = self . open_and_parse_yaml ( self . map_files [ 'patient_ids' ] )
udp_internal_ids = patient_id_map . keys ( )
phenotype_fields = [ 'Patient' , 'HPID' , 'Present' ]
# Get phenotype ids for each patient
phenotype_params = { 'method' : 'search_subjects' , 'subject_type' : 'Phenotype' , 'search_mode' : 'DEEP' , 'fields' : 'Patient' , 'conditions' : 'equals' , 'values' : ',' . join ( udp_internal_ids ) , 'user_fields' : ',' . join ( phenotype_fields ) }
prioritized_variants = [ 'Patient' , 'Gene' , 'Chromosome Position' , 'Variant Allele' , 'Transcript' ]
prioritized_params = { 'method' : 'search_subjects' , 'subject_type' : 'Variant Prioritization' , 'search_mode' : 'DEEP' , 'fields' : 'Patient' , 'conditions' : 'equals' , 'values' : ',' . join ( udp_internal_ids ) , 'user_fields' : ',' . join ( prioritized_variants ) , 'format' : 'json' }
variant_fields = [ 'Patient' , 'Family' , 'Chr' , 'Build' , 'Chromosome Position' , 'Reference Allele' , 'Variant Allele' , 'Parent of origin' , 'Allele Type' , 'Mutation Type' , 'Gene' , 'Transcript' , 'Original Amino Acid' , 'Variant Amino Acid' , 'Amino Acid Change' , 'Segregates with' , 'Position' , 'Exon' , 'Inheritance model' , 'Zygosity' , 'dbSNP ID' , '1K Frequency' , 'Number of Alleles' ]
variant_params = { 'method' : 'search_subjects' , 'subject_type' : 'Exome Analysis Results' , 'search_mode' : 'DEEP' , 'fields' : 'Patient' , 'conditions' : 'equals' , 'user_fields' : ',' . join ( variant_fields ) , 'format' : 'json' }
pheno_file = open ( '/' . join ( ( self . rawdir , self . files [ 'patient_phenotypes' ] [ 'file' ] ) ) , 'w' )
variant_file = open ( '/' . join ( ( self . rawdir , self . files [ 'patient_variants' ] [ 'file' ] ) ) , 'w' )
pheno_file . write ( '{0}\n' . format ( '\t' . join ( phenotype_fields ) ) )
variant_file . write ( '{0}\n' . format ( '\t' . join ( variant_fields ) ) )
variant_gene = self . _fetch_data_from_udp ( udp_internal_ids , prioritized_params , prioritized_variants , credentials )
variant_gene_map = dict ( )
for line in variant_gene :
variant_gene_map . setdefault ( line [ 0 ] , [ ] ) . append ( # Try to make a unique value based on gene - pos - variantAlele - transcript
# TODO make this a dict for readability purposes
"{0}-{1}-{2}-{3}" . format ( line [ 1 ] , line [ 2 ] , line [ 3 ] , line [ 4 ] ) )
variant_info = self . _fetch_data_from_udp ( udp_internal_ids , variant_params , variant_fields , credentials )
for line in variant_info :
variant = "{0}-{1}-{2}-{3}" . format ( line [ 10 ] , line [ 4 ] , line [ 6 ] , line [ 11 ] )
if variant in variant_gene_map [ line [ 0 ] ] :
line [ 0 ] = patient_id_map [ line [ 0 ] ]
line [ 4 ] = re . sub ( r'\.0$' , '' , line [ 4 ] )
variant_file . write ( '{0}\n' . format ( '\t' . join ( line ) ) )
phenotype_info = self . _fetch_data_from_udp ( udp_internal_ids , phenotype_params , phenotype_fields , credentials )
for line in phenotype_info :
line [ 0 ] = patient_id_map [ line [ 0 ] ]
pheno_file . write ( '{0}\n' . format ( '\t' . join ( line ) ) )
variant_file . close ( )
pheno_file . close ( )
return
|
def load_devices ( self ) :
"""load stored devices from the local file"""
|
self . _devices = [ ]
if os . path . exists ( self . _devices_filename ) :
log . debug ( "loading devices from '{}'..." . format ( self . _devices_filename ) )
with codecs . open ( self . _devices_filename , "rb" , "utf-8" ) as f :
self . _devices = json . load ( f )
return self . _devices
|
def run_netsh_command ( netsh_args ) :
"""Execute a netsh command and return the output ."""
|
devnull = open ( os . devnull , 'w' )
command_raw = 'netsh interface ipv4 ' + netsh_args
return int ( subprocess . call ( command_raw , stdout = devnull ) )
|
def _set_up_savefolder ( self ) :
"""Create catalogs for different file output to clean up savefolder .
Non - public method
Parameters
None
Returns
None"""
|
if self . savefolder == None :
return
self . cells_path = os . path . join ( self . savefolder , 'cells' )
if RANK == 0 :
if not os . path . isdir ( self . cells_path ) :
os . mkdir ( self . cells_path )
self . figures_path = os . path . join ( self . savefolder , 'figures' )
if RANK == 0 :
if not os . path . isdir ( self . figures_path ) :
os . mkdir ( self . figures_path )
self . populations_path = os . path . join ( self . savefolder , 'populations' )
if RANK == 0 :
if not os . path . isdir ( self . populations_path ) :
os . mkdir ( self . populations_path )
COMM . Barrier ( )
|
def get_1D_overlap ( eclusters , depth = 1 ) :
"""Find blocks that are 1D overlapping ,
returns cliques of block ids that are in conflict"""
|
overlap_set = set ( )
active = set ( )
ends = [ ]
for i , ( chr , left , right ) in enumerate ( eclusters ) :
ends . append ( ( chr , left , 0 , i ) )
# 0/1 for left / right - ness
ends . append ( ( chr , right , 1 , i ) )
ends . sort ( )
chr_last = ""
for chr , pos , left_right , i in ends :
if chr != chr_last :
active . clear ( )
if left_right == 0 :
active . add ( i )
else :
active . remove ( i )
if len ( active ) > depth :
overlap_set . add ( tuple ( sorted ( active ) ) )
chr_last = chr
return overlap_set
|
def handle_hooks ( stage , hooks , provider , context , dump , outline ) :
"""Handle pre / post hooks .
Args :
stage ( str ) : The name of the hook stage - pre _ build / post _ build .
hooks ( list ) : A list of dictionaries containing the hooks to execute .
provider ( : class : ` stacker . provider . base . BaseProvider ` ) : The provider
the current stack is using .
context ( : class : ` stacker . context . Context ` ) : The current stacker
context .
dump ( bool ) : Whether running with dump set or not .
outline ( bool ) : Whether running with outline set or not ."""
|
if not outline and not dump and hooks :
utils . handle_hooks ( stage = stage , hooks = hooks , provider = provider , context = context )
|
def download_image ( self , image_type , image ) :
"""Read file of a project and download it
: param image _ type : Image type
: param image : The path of the image
: returns : A file stream"""
|
url = self . _getUrl ( "/{}/images/{}" . format ( image_type , image ) )
response = yield from self . _session ( ) . request ( "GET" , url , auth = self . _auth )
if response . status == 404 :
raise aiohttp . web . HTTPNotFound ( text = "{} not found on compute" . format ( image ) )
return response
|
def get_all_clients ( self , params = None ) :
"""Get all clients
This will iterate over all pages until it gets all elements .
So if the rate limit exceeded it will throw an Exception and you will get nothing
: param params : search params
: return : list"""
|
return self . _iterate_through_pages ( get_function = self . get_clients_per_page , resource = CLIENTS , ** { 'params' : params } )
|
def set_deployment_run_id ( self ) :
"""Sets the deployment run ID from deployment properties
: return : None"""
|
log = logging . getLogger ( self . cls_logger + '.set_deployment_run_id' )
deployment_run_id_val = self . get_value ( 'cons3rt.deploymentRun.id' )
if not deployment_run_id_val :
log . debug ( 'Deployment run ID not found in deployment properties' )
return
try :
deployment_run_id = int ( deployment_run_id_val )
except ValueError :
log . debug ( 'Deployment run ID found was unable to convert to an int: {d}' . format ( d = deployment_run_id_val ) )
return
self . deployment_run_id = deployment_run_id
log . info ( 'Found deployment run ID: {i}' . format ( i = str ( self . deployment_run_id ) ) )
|
def is_shown ( self , request ) :
"""If there aren ' t any visible items in the submenu , don ' t bother to show
this menu item"""
|
for menuitem in self . menu . _registered_menu_items :
if menuitem . is_shown ( request ) :
return True
return False
|
def scaled_dimensions ( self , width = None , height = None ) :
"""Return a ( cx , cy ) 2 - tuple representing the native dimensions of this
image scaled by applying the following rules to * width * and * height * .
If both * width * and * height * are specified , the return value is
( * width * , * height * ) ; no scaling is performed . If only one is
specified , it is used to compute a scaling factor that is then
applied to the unspecified dimension , preserving the aspect ratio of
the image . If both * width * and * height * are | None | , the native
dimensions are returned . The native dimensions are calculated using
the dots - per - inch ( dpi ) value embedded in the image , defaulting to 72
dpi if no value is specified , as is often the case . The returned
values are both | Length | objects ."""
|
if width is None and height is None :
return self . width , self . height
if width is None :
scaling_factor = float ( height ) / float ( self . height )
width = round ( self . width * scaling_factor )
if height is None :
scaling_factor = float ( width ) / float ( self . width )
height = round ( self . height * scaling_factor )
return Emu ( width ) , Emu ( height )
|
def latmio_dir ( R , itr , D = None , seed = None ) :
'''This function " latticizes " a directed network , while preserving the in -
and out - degree distributions . In weighted networks , the function
preserves the out - strength but not the in - strength distributions .
Parameters
R : NxN np . ndarray
directed binary / weighted connection matrix
itr : int
rewiring parameter . Each edge is rewired approximately itr times .
D : np . ndarray | None
distance - to - diagonal matrix . Defaults to the actual distance matrix
if not specified .
seed : hashable , optional
If None ( default ) , use the np . random ' s global random state to generate random numbers .
Otherwise , use a new np . random . RandomState instance seeded with the given value .
Returns
Rlatt : NxN np . ndarray
latticized network in original node ordering
Rrp : NxN np . ndarray
latticized network in node ordering used for latticization
ind _ rp : Nx1 np . ndarray
node ordering used for latticization
eff : int
number of actual rewirings carried out'''
|
rng = get_rng ( seed )
n = len ( R )
ind_rp = rng . permutation ( n )
# randomly reorder matrix
R = R . copy ( )
R = R [ np . ix_ ( ind_rp , ind_rp ) ]
# create distance to diagonal matrix if not specified by user
if D is None :
D = np . zeros ( ( n , n ) )
un = np . mod ( range ( 1 , n ) , n )
um = np . mod ( range ( n - 1 , 0 , - 1 ) , n )
u = np . append ( ( 0 , ) , np . where ( un < um , un , um ) )
for v in range ( int ( np . ceil ( n / 2 ) ) ) :
D [ n - v - 1 , : ] = np . append ( u [ v + 1 : ] , u [ : v + 1 ] )
D [ v , : ] = D [ n - v - 1 , : ] [ : : - 1 ]
i , j = np . where ( R )
k = len ( i )
itr *= k
# maximal number of rewiring attempts per iteration
max_attempts = np . round ( n * k / ( n * ( n - 1 ) ) )
# actual number of successful rewirings
eff = 0
for it in range ( itr ) :
att = 0
while att <= max_attempts : # while not rewired
while True :
e1 = rng . randint ( k )
e2 = rng . randint ( k )
while e1 == e2 :
e2 = rng . randint ( k )
a = i [ e1 ]
b = j [ e1 ]
c = i [ e2 ]
d = j [ e2 ]
if a != c and a != d and b != c and b != d :
break
# rewiring condition
if not ( R [ a , d ] or R [ c , b ] ) : # lattice condition
if ( D [ a , b ] * R [ a , b ] + D [ c , d ] * R [ c , d ] >= D [ a , d ] * R [ a , b ] + D [ c , b ] * R [ c , d ] ) :
R [ a , d ] = R [ a , b ]
R [ a , b ] = 0
R [ c , b ] = R [ c , d ]
R [ c , d ] = 0
j . setflags ( write = True )
j [ e1 ] = d
j [ e2 ] = b
# reassign edge indices
eff += 1
break
att += 1
Rlatt = R [ np . ix_ ( ind_rp [ : : - 1 ] , ind_rp [ : : - 1 ] ) ]
# reverse random permutation
return Rlatt , R , ind_rp , eff
|
def get_precursor_mz ( exact_mass , precursor_type ) :
"""Calculate precursor mz based on exact mass and precursor type
Args :
exact _ mass ( float ) : exact mass of compound of interest
precursor _ type ( str ) : Precursor type ( currently only works with ' [ M - H ] - ' , ' [ M + H ] + ' and ' [ M + H - H2O ] + '
Return :
neutral mass of compound"""
|
# these are just taken from what was present in the massbank . msp file for those missing the exact mass
d = { '[M-H]-' : - 1.007276 , '[M+H]+' : 1.007276 , '[M+H-H2O]+' : 1.007276 - ( ( 1.007276 * 2 ) + 15.9949 ) }
try :
return exact_mass + d [ precursor_type ]
except KeyError as e :
print ( e )
return False
|
def make_module ( self , vars = None , shared = False , locals = None ) :
"""This method works like the : attr : ` module ` attribute when called
without arguments but it will evaluate the template on every call
rather than caching it . It ' s also possible to provide
a dict which is then used as context . The arguments are the same
as for the : meth : ` new _ context ` method ."""
|
return TemplateModule ( self , self . new_context ( vars , shared , locals ) )
|
def get_hour_dirs ( root = None ) :
"""Gets the directories under selfplay _ dir that match YYYY - MM - DD - HH ."""
|
root = root or selfplay_dir ( )
return list ( filter ( lambda s : re . match ( r"\d{4}-\d{2}-\d{2}-\d{2}" , s ) , gfile . ListDirectory ( root ) ) )
|
def _add_redundancy_router_interfaces ( self , context , router , itfc_info , new_port , redundancy_router_ids = None , ha_settings_db = None , create_ha_group = True ) :
"""To be called in add _ router _ interface ( ) AFTER interface has been
added to router in DB ."""
|
# There are essentially three cases where we add interface to a
# redundancy router :
# 1 . HA is enabled on a user visible router that has one or more
# interfaces .
# 2 . Redundancy level is increased so one or more redundancy routers
# are added .
# 3 . An interface is added to a user visible router .
# For 1 : An HA GROUP MUST BE CREATED and EXTRA PORTS MUST BE CREATED
# for each redundancy router . The id of extra port should be
# specified in the interface _ info argument of the
# add _ router _ interface call so that we ADD BY PORT .
# For 2 : HA group need NOT be created as it will already exist ( since
# there is already at least on redundancy router ) . EXTRA PORTS
# MUST BE CREATED for each added redundancy router . The id
# of extra port should be specified in the interface _ info
# argument of the add _ router _ interface call so that we ADD BY
# PORT .
# For 3 : if the interface for the user _ visible _ router was added by . . .
# a ) PORT : An HA GROUP MUST BE CREATED and and EXTRA PORTS MUST BE
# CREATED for each redundancy router . The id of extra port
# should be specified in the interface _ info argument of
# the add _ router _ interface call so that we ADD BY PORT .
# b ) SUBNET : There are two cases to consider . If the added interface
# of the user _ visible _ router has . . .
# b1 ) 1 SUBNET : An HA GROUP MUST BE CREATED and and EXTRA
# PORTS MUST BE CREATED for each redundancy
# router . The id of extra port should be
# specified in the interface _ info argument of
# the add _ router _ interface call so we ADD BY
# PORT .
# b2 ) > 1 SUBNETS : HA group need NOT be created as it will
# already exist ( since the redundancy routers
# should already have extra ports to which the
# ( IPv6 ) subnet is added . Extra ports need
# thus NOT be created . The subnet id should be
# added to the existing extra ports .
router_id = router [ 'id' ]
if ha_settings_db is None :
ha_settings_db = self . _get_ha_settings_by_router_id ( context , router_id )
if ha_settings_db is None :
return
e_context = context . elevated ( )
add_by_subnet = ( itfc_info is not None and 'subnet_id' in itfc_info and len ( new_port [ 'fixed_ips' ] ) > 1 )
if ( add_by_subnet is False or ( itfc_info is None and create_ha_group is True ) ) : # generate ha settings and extra port for router ( VIP ) port
self . _create_ha_group ( e_context , router , new_port , ha_settings_db )
fixed_ips = self . _get_fixed_ips_subnets ( new_port [ 'fixed_ips' ] )
for r_id in ( redundancy_router_ids or self . _get_redundancy_router_ids ( e_context , router_id ) ) :
if add_by_subnet is True : # need to add subnet to redundancy router port
ports = self . _core_plugin . get_ports ( e_context , filters = { 'device_id' : [ r_id ] , 'network_id' : [ new_port [ 'network_id' ] ] } , fields = [ 'fixed_ips' , 'id' ] )
redundancy_port = ports [ 0 ]
fixed_ips = redundancy_port [ 'fixed_ips' ]
fixed_ip = { 'subnet_id' : itfc_info [ 'subnet_id' ] }
fixed_ips . append ( fixed_ip )
self . _core_plugin . update_port ( e_context , redundancy_port [ 'id' ] , { 'port' : { 'fixed_ips' : fixed_ips } } )
else :
redundancy_port = self . _create_hidden_port ( e_context , new_port [ 'network_id' ] , '' , fixed_ips )
interface_info = { 'port_id' : redundancy_port [ 'id' ] }
self . add_router_interface ( e_context , r_id , interface_info )
|
def async_send ( self , url , data , headers , success_cb , failure_cb ) :
"""Spawn an async request to a remote webserver ."""
|
# this can be optimized by making a custom self . send that does not
# read the response since we don ' t use it .
self . _lock . acquire ( )
return gevent . spawn ( super ( GeventedHTTPTransport , self ) . send , url , data , headers ) . link ( lambda x : self . _done ( x , success_cb , failure_cb ) )
|
def _CompileProtos ( ) :
"""Compiles all Fleetspeak protos ."""
|
proto_files = [ ]
for dir_path , _ , filenames in os . walk ( THIS_DIRECTORY ) :
for filename in filenames :
if filename . endswith ( ".proto" ) :
proto_files . append ( os . path . join ( dir_path , filename ) )
if not proto_files :
return
protoc_command = [ "python" , "-m" , "grpc_tools.protoc" , "--python_out" , THIS_DIRECTORY , "--grpc_python_out" , THIS_DIRECTORY , "--proto_path" , THIS_DIRECTORY , ]
protoc_command . extend ( proto_files )
subprocess . check_output ( protoc_command )
|
def loglike ( self , y , f , n ) :
r"""Binomial log likelihood .
Parameters
y : ndarray
array of 0 , 1 valued integers of targets
f : ndarray
latent function from the GLM prior ( : math : ` \ mathbf { f } =
\ boldsymbol \ Phi \ mathbf { w } ` )
n : ndarray
the total number of observations
Returns
logp : ndarray
the log likelihood of each y given each f under this
likelihood ."""
|
ll = binom . logpmf ( y , n = n , p = expit ( f ) )
return ll
|
def dataframe ( self ) :
"""Returns a pandas DataFrame containing all other class properties and
values . The index for the DataFrame is the string abbreviation of the
team , such as ' DET ' ."""
|
fields_to_include = { 'abbreviation' : self . abbreviation , 'average_age' : self . average_age , 'games_played' : self . games_played , 'goals_against' : self . goals_against , 'goals_for' : self . goals_for , 'losses' : self . losses , 'name' : self . name , 'overtime_losses' : self . overtime_losses , 'pdo_at_even_strength' : self . pdo_at_even_strength , 'penalty_killing_percentage' : self . penalty_killing_percentage , 'points' : self . points , 'points_percentage' : self . points_percentage , 'power_play_goals' : self . power_play_goals , 'power_play_goals_against' : self . power_play_goals_against , 'power_play_opportunities' : self . power_play_opportunities , 'power_play_opportunities_against' : self . power_play_opportunities_against , 'power_play_percentage' : self . power_play_percentage , 'rank' : self . rank , 'save_percentage' : self . save_percentage , 'shooting_percentage' : self . shooting_percentage , 'short_handed_goals' : self . short_handed_goals , 'short_handed_goals_against' : self . short_handed_goals_against , 'shots_against' : self . shots_against , 'shots_on_goal' : self . shots_on_goal , 'simple_rating_system' : self . simple_rating_system , 'strength_of_schedule' : self . strength_of_schedule , 'total_goals_per_game' : self . total_goals_per_game , 'wins' : self . wins }
return pd . DataFrame ( [ fields_to_include ] , index = [ self . _abbreviation ] )
|
def blog_authors ( * args ) :
"""Put a list of authors ( users ) for blog posts into the template context ."""
|
blog_posts = BlogPost . objects . published ( )
authors = User . objects . filter ( blogposts__in = blog_posts )
return list ( authors . annotate ( post_count = Count ( "blogposts" ) ) )
|
def _resize_with_dtype ( arr , dtype ) :
"""This function will transform arr into an array with the same type as dtype . It will do this by
filling new columns with zeros ( or NaNs , if it is a float column ) . Also , columns that are not
in the new dtype will be dropped ."""
|
structured_arrays = dtype . names is not None and arr . dtype . names is not None
old_columns = arr . dtype . names or [ ]
new_columns = dtype . names or [ ]
# In numpy 1.9 the ndarray . astype method used to handle changes in number of fields . The code below
# should replicate the same behaviour the old astype used to have .
# One may be tempted to use np . lib . recfunctions . stack _ arrays to implement both this step and the
# concatenate that follows but it 2x slower and it requires providing your own default values ( instead
# of np . zeros ) .
# Numpy 1.14 supports doing new _ arr [ old _ columns ] = arr [ old _ columns ] , which is faster than the code below
# ( in benchmarks it seems to be even slightly faster than using the old astype ) . However , that is not
# supported by numpy 1.9.2.
if structured_arrays and ( old_columns != new_columns ) :
old_columns = set ( old_columns )
new_columns = set ( new_columns )
new_arr = np . zeros ( arr . shape , dtype )
for c in old_columns & new_columns :
new_arr [ c ] = arr [ c ]
# missing float columns should default to nan rather than zero
_is_float_type = lambda _dtype : _dtype . type in ( np . float32 , np . float64 )
_is_void_float_type = lambda _dtype : _dtype . type == np . void and _is_float_type ( _dtype . subdtype [ 0 ] )
_is_float_or_void_float_type = lambda _dtype : _is_float_type ( _dtype ) or _is_void_float_type ( _dtype )
_is_float = lambda column : _is_float_or_void_float_type ( dtype . fields [ column ] [ 0 ] )
for new_column in filter ( _is_float , new_columns - old_columns ) :
new_arr [ new_column ] = np . nan
return new_arr . astype ( dtype )
else :
return arr . astype ( dtype )
|
def _deps_only_toggled ( self , widget , data = None ) :
"""Function deactivate options in case of deps _ only and opposite"""
|
active = widget . get_active ( )
self . dir_name . set_sensitive ( not active )
self . entry_project_name . set_sensitive ( not active )
self . dir_name_browse_btn . set_sensitive ( not active )
self . run_btn . set_sensitive ( active or not self . project_name_shown or self . entry_project_name . get_text ( ) != "" )
|
def _get_xref ( self , line ) :
"""Given line , return optional attribute xref value in a dict of sets ."""
|
# Ex : Wikipedia : Zygotene
# Ex : Reactome : REACT _ 22295 " Addition of a third mannose to . . . "
mtch = self . attr2cmp [ 'xref' ] . match ( line )
return mtch . group ( 1 ) . replace ( ' ' , '' )
|
def show_formats ( ) :
"""Print a list of all the file formats that are supported for writing .
The file formats are determined by their extensions .
Returns
None"""
|
fmts = { "ann" : "Kvis annotation" , "reg" : "DS9 regions file" , "fits" : "FITS Binary Table" , "csv" : "Comma separated values" , "tab" : "tabe separated values" , "tex" : "LaTeX table format" , "html" : "HTML table" , "vot" : "VO-Table" , "xml" : "VO-Table" , "db" : "Sqlite3 database" , "sqlite" : "Sqlite3 database" }
supported = get_table_formats ( )
print ( "Extension | Description | Supported?" )
for k in sorted ( fmts . keys ( ) ) :
print ( "{0:10s} {1:24s} {2}" . format ( k , fmts [ k ] , k in supported ) )
return
|
def md5 ( text ) :
"""Returns the md5 hash of a string ."""
|
h = hashlib . md5 ( )
h . update ( _unicode ( text ) . encode ( "utf-8" ) )
return h . hexdigest ( )
|
def format_exception ( cls , instance , trcback , context = 1 ) :
"""| Formats given exception .
| The code produce a similar output to : func : ` traceback . format _ exception ` except that it allows frames to be excluded
from the stack if the given stack trace frame tag is found in the frame locals and set * * True * * .
: param cls : Exception class .
: type cls : object
: param instance : Exception instance .
: type instance : object
: param trcback : Traceback .
: type trcback : Traceback
: param context : Context being included .
: type context : int
: return : Formated exception .
: rtype : list"""
|
stack = extract_stack ( get_inner_most_frame ( trcback ) , context = context )
output = [ ]
output . append ( "Traceback (most recent call last):" )
for frame , file_name , line_number , name , context , index in stack :
output . append ( " File \"{0}\", line {1}, in {2}" . format ( file_name , line_number , name ) )
for line in context :
output . append ( " {0}" . format ( line . strip ( ) ) )
for line in traceback . format_exception_only ( cls , instance ) :
output . append ( "{0}" . format ( line ) )
return output
|
def set_screen_layout ( self , screen_layout_mode , guest_screen_info ) :
"""Set video modes for the guest screens .
in screen _ layout _ mode of type : class : ` ScreenLayoutMode `
in guest _ screen _ info of type : class : ` IGuestScreenInfo `"""
|
if not isinstance ( screen_layout_mode , ScreenLayoutMode ) :
raise TypeError ( "screen_layout_mode can only be an instance of type ScreenLayoutMode" )
if not isinstance ( guest_screen_info , list ) :
raise TypeError ( "guest_screen_info can only be an instance of type list" )
for a in guest_screen_info [ : 10 ] :
if not isinstance ( a , IGuestScreenInfo ) :
raise TypeError ( "array can only contain objects of type IGuestScreenInfo" )
self . _call ( "setScreenLayout" , in_p = [ screen_layout_mode , guest_screen_info ] )
|
def _ParsePathSpecification ( self , knowledge_base , searcher , file_system , path_specification , path_separator ) :
"""Parses a file system for a preprocessing attribute .
Args :
knowledge _ base ( KnowledgeBase ) : to fill with preprocessing information .
searcher ( dfvfs . FileSystemSearcher ) : file system searcher to preprocess
the file system .
file _ system ( dfvfs . FileSystem ) : file system to be preprocessed .
path _ specification ( dfvfs . PathSpec ) : path specification that contains
the artifact value data .
path _ separator ( str ) : path segment separator .
Raises :
PreProcessFail : if the preprocessing fails ."""
|
try :
file_entry = searcher . GetFileEntryByPathSpec ( path_specification )
except IOError as exception :
relative_path = searcher . GetRelativePath ( path_specification )
if path_separator != file_system . PATH_SEPARATOR :
relative_path_segments = file_system . SplitPath ( relative_path )
relative_path = '{0:s}{1:s}' . format ( path_separator , path_separator . join ( relative_path_segments ) )
raise errors . PreProcessFail ( ( 'Unable to retrieve file entry: {0:s} with error: ' '{1!s}' ) . format ( relative_path , exception ) )
if file_entry :
self . _ParseFileEntry ( knowledge_base , file_entry )
|
def are_same_file_types ( objs ) :
"""Are given ( maybe ) file objs same type ( extension ) ?
: param objs : A list of file path or file ( - like ) objects
> > > are _ same _ file _ types ( [ ] )
False
> > > are _ same _ file _ types ( [ " a . conf " ] )
True
> > > are _ same _ file _ types ( [ " a . conf " , " b . conf " ] )
True
> > > are _ same _ file _ types ( [ " a . yml " , " b . yml " ] )
True
> > > are _ same _ file _ types ( [ " a . yml " , " b . json " ] )
False
> > > strm = anyconfig . compat . StringIO ( )
> > > are _ same _ file _ types ( [ " a . yml " , " b . yml " , strm ] )
False"""
|
if not objs :
return False
ext = _try_to_get_extension ( objs [ 0 ] )
if ext is None :
return False
return all ( _try_to_get_extension ( p ) == ext for p in objs [ 1 : ] )
|
def dtool ( debug ) :
"""Tool to work with datasets ."""
|
level = logging . WARNING
if debug :
level = logging . DEBUG
logging . basicConfig ( format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' , level = level )
|
def unsubscribe ( self , future ) :
"""Terminates the subscription given by a future
Args :
future ( Future ) : The future of the original subscription"""
|
assert future not in self . _pending_unsubscribes , "%r has already been unsubscribed from" % self . _pending_unsubscribes [ future ]
subscribe = self . _requests [ future ]
self . _pending_unsubscribes [ future ] = subscribe
# Clear out the subscription
self . _subscriptions . pop ( subscribe . id )
request = Unsubscribe ( subscribe . id )
request . set_callback ( self . _q . put )
try :
controller = self . get_controller ( subscribe . path [ 0 ] )
except ValueError : # Controller has already gone , probably during tearDown
pass
else :
self . handle_request ( controller , request )
|
def export_svgs ( obj , filename = None , height = None , width = None , webdriver = None , timeout = 5 ) :
'''Export the SVG - enabled plots within a layout . Each plot will result
in a distinct SVG file .
If the filename is not given , it is derived from the script name
( e . g . ` ` / foo / myplot . py ` ` will create ` ` / foo / myplot . svg ` ` )
Args :
obj ( LayoutDOM object ) : a Layout ( Row / Column ) , Plot or Widget object to display
filename ( str , optional ) : filename to save document under ( default : None )
If None , infer from the filename .
height ( int ) : the desired height of the exported layout obj only if
it ' s a Plot instance . Otherwise the height kwarg is ignored .
width ( int ) : the desired width of the exported layout obj only if
it ' s a Plot instance . Otherwise the width kwarg is ignored .
webdriver ( selenium . webdriver ) : a selenium webdriver instance to use
to export the image .
timeout ( int ) : the maximum amount of time ( in seconds ) to wait for
Bokeh to initialize ( default : 5 ) ( Added in 1.1.1 ) .
Returns :
filenames ( list ( str ) ) : the list of filenames where the SVGs files are
saved .
. . warning : :
Responsive sizing _ modes may generate layouts with unexpected size and
aspect ratios . It is recommended to use the default ` ` fixed ` ` sizing mode .'''
|
svgs = get_svgs ( obj , height = height , width = width , driver = webdriver , timeout = timeout )
if len ( svgs ) == 0 :
log . warning ( "No SVG Plots were found." )
return
if filename is None :
filename = default_filename ( "svg" )
filenames = [ ]
for i , svg in enumerate ( svgs ) :
if i == 0 :
filename = filename
else :
idx = filename . find ( ".svg" )
filename = filename [ : idx ] + "_{}" . format ( i ) + filename [ idx : ]
with io . open ( filename , mode = "w" , encoding = "utf-8" ) as f :
f . write ( svg )
filenames . append ( filename )
return filenames
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.