Dataset Viewer
Auto-converted to Parquet
image
image
page_id
string
expressions
sequence
0001015_page02
{ "latex": [ "$S(\\phi )$", "$\\phi $", "$\\exp (-Ht)$", "$\\psi (x)$", "$d\\mu $", "$x$", "$x(t)$", "$V$", "$H= L +V(x)$", "$L$", "$x(t)$", "\\begin {equation} H = \\half p^2 + V(x) \\end {equation}", "\\begin {equation}\\label {EVeq} \\exp (-Ht) \\psi (x) = \\int d\\mu \\exp \\left ( -\\int _0^t V((x(s)) ds \\right ) \\psi (x(t)) \\end {equation}" ], "latex_norm": [ "$ S ( \\phi ) $", "$ \\phi $", "$ e x p ( - H t ) $", "$ \\psi ( x ) $", "$ d \\mu $", "$ x $", "$ x ( t ) $", "$ V $", "$ H = L + V ( x ) $", "$ L $", "$ x ( t ) $", "\\begin{equation*} H = \\frac { 1 } { 2 } p ^ { 2 } + V ( x ) \\end{equation*}", "\\begin{equation*} \\operatorname { e x p } ( - H t ) \\psi ( x ) = \\int d \\mu \\operatorname { e x p } ( - \\int _ { 0 } ^ { t } V ( ( x ( s ) ) d s ) \\psi ( x ( t ) ) \\end{equation*}" ], "latex_expand": [ "$ \\mitS ( \\mitphi ) $", "$ \\mitphi $", "$ \\mathrm { e x p } ( - \\mitH \\mitt ) $", "$ \\mitpsi ( \\mitx ) $", "$ \\mitd \\mitmu $", "$ \\mitx $", "$ \\mitx ( \\mitt ) $", "$ \\mitV $", "$ \\mitH = \\mitL + \\mitV ( \\mitx ) $", "$ \\mitL $", "$ \\mitx ( \\mitt ) $", "\\begin{equation*} \\mitH = \\frac { 1 } { 2 } \\mitp ^ { 2 } + \\mitV ( \\mitx ) \\end{equation*}", "\\begin{equation*} \\operatorname { e x p } ( - \\mitH \\mitt ) \\mitpsi ( \\mitx ) = \\int \\mitd \\mitmu \\operatorname { e x p } \\left( - \\int _ { 0 } ^ { \\mitt } \\mitV ( ( \\mitx ( \\mits ) ) \\mitd \\mits \\right) \\mitpsi ( \\mitx ( \\mitt ) ) \\end{equation*}" ], "x_min": [ 0.22939999401569366, 0.484499990940094, 0.6917999982833862, 0.29789999127388, 0.227400004863739, 0.579800009727478, 0.6371999979019165, 0.44780001044273376, 0.5569999814033508, 0.7554000020027161, 0.6068000197410583, 0.22179999947547913, 0.22179999947547913 ], "y_min": [ 0.15770000219345093, 0.1581999957561493, 0.5814999938011169, 0.5985999703407288, 0.6729000210762024, 0.676800012588501, 0.6723999977111816, 0.6904000043869019, 0.7407000064849854, 0.7416999936103821, 0.7583000063896179, 0.5375999808311462, 0.6220999956130981 ], "x_max": [ 0.2694999873638153, 0.4968999922275543, 0.7781999707221985, 0.33869999647140503, 0.2502000033855438, 0.5909000039100647, 0.6711000204086304, 0.4643999934196472, 0.6897000074386597, 0.7692000269889832, 0.6406999826431274, 0.3675999939441681, 0.6973000168800354 ], "y_max": [ 0.17229999601840973, 0.17190000414848328, 0.5965999960899353, 0.6136999726295471, 0.6866000294685364, 0.6836000084877014, 0.6869999766349792, 0.7006999850273132, 0.7558000087738037, 0.7523999810218811, 0.7728999853134155, 0.5698000192642212, 0.6607000231742859 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001015_page03
{ "latex": [ "$x: I \\to M$", "$I$", "$[0,t]$", "$M$", "$n$", "$g$", "$\\omega =dh$", "$M$", "$\\omega = \\Omu (x) d\\Xmu $", "$\\omega = \\Omu (x) d\\Xmu $", "$\\dot {x}^{\\mu }(t')= \\frac {d{x}^{\\mu }}{d t'}$", "$S[x(.)] = i(h(x(t))-h(x(0)))$", "$x(t)$", "$\\omega =0$", "$h$", "$M$", "$\\omega =dh$", "$\\Pmu $", "$\\Xmu $", "$n$", "$H(p,x)= \\Pmu \\Xmu - \\Lag (x,\\dot {x})$", "$H(p,x)= \\Pmu \\Xmu - \\Lag (x,\\dot {x})$", "$\\omega $", "$\\Pb {\\Tmu }{T_{\\nu }}=0$", "$\\Pb {\\Tmu }{H_c}=0$", "$\\Tmu $", "$\\psi (x)$", "$\\Pmu =-i \\Dmu $", "$\\Pmu $", "$-i\\DDmu $", "$\\XXmu \\psi =0$", "$\\XXmu =g^{\\mu \\nu } (p_{\\nu } + i\\omega _{\\nu })$", "\\begin {equation}\\label {ACeq} S[x(.)] = \\Intot i\\Omu (x(t'))\\dot {x}^{\\mu }(t') \\, dt' \\end {equation}", "\\begin {equation}\\label {MOMeq} \\Pmu = \\frac {\\delta \\Lag }{\\delta \\dot {x}^\\mu } = i\\Omu , \\end {equation}", "\\begin {equation} \\Tmu \\equiv \\Pmu - i\\Omu . \\end {equation}", "\\begin {equation}\\label {GTeq} \\delta _{\\epsilon }\\psi (x) =-i \\epsilon (\\Dmu \\psi (x) + \\Omu (x) \\psi (x)) \\end {equation}" ], "latex_norm": [ "$ x : I \\rightarrow M $", "$ I $", "$ [ 0 , t ] $", "$ M $", "$ n $", "$ g $", "$ \\omega = d h $", "$ M $", "$ \\omega = \\omega _ { \\mu } ( x ) d x ^ { \\mu } $", "$ \\omega = \\omega _ { \\mu } ( x ) d x ^ { \\mu } $", "$ \\dot { x } ^ { \\mu } ( t ^ { \\prime } ) = \\frac { d x ^ { \\mu } } { d t ^ { \\prime } } $", "$ S [ x ( . ) ] = i ( h ( x ( t ) ) - h ( x ( 0 ) ) ) $", "$ x ( t ) $", "$ \\omega = 0 $", "$ h $", "$ M $", "$ \\omega = d h $", "$ p _ { \\mu } $", "$ x ^ { \\mu } $", "$ n $", "$ H ( p , x ) = p _ { \\mu } x ^ { \\mu } - L ( x , \\dot { x } ) $", "$ H ( p , x ) = p _ { \\mu } x ^ { \\mu } - L ( x , \\dot { x } ) $", "$ \\omega $", "$ \\{ T _ { \\mu } , T _ { \\nu } \\} = 0 $", "$ \\{ T _ { \\mu } , H _ { c } \\} = 0 $", "$ T _ { \\mu } $", "$ \\psi ( x ) $", "$ p _ { \\mu } = - i \\partial _ { \\mu } $", "$ p _ { \\mu } $", "$ - i \\nabla _ { \\mu } $", "$ X ^ { \\mu } \\psi = 0 $", "$ X ^ { \\mu } = g ^ { \\mu \\nu } ( p _ { \\nu } + i \\omega _ { \\nu } ) $", "\\begin{equation*} S [ x ( . ) ] = \\int _ { 0 } ^ { t } i \\omega _ { \\mu } ( x ( t ^ { \\prime } ) ) \\dot { x } ^ { \\mu } ( t ^ { \\prime } ) \\, d t ^ { \\prime } \\end{equation*}", "\\begin{equation*} p _ { \\mu } = \\frac { \\delta L } { \\delta \\dot { x } ^ { \\mu } } = i \\omega _ { \\mu } , \\end{equation*}", "\\begin{equation*} T _ { \\mu } \\equiv p _ { \\mu } - i \\omega _ { \\mu } . \\end{equation*}", "\\begin{equation*} \\delta _ { \\epsilon } \\psi ( x ) = - i \\epsilon ( \\partial _ { \\mu } \\psi ( x ) + \\omega _ { \\mu } ( x ) \\psi ( x ) ) \\end{equation*}" ], "latex_expand": [ "$ \\mitx : \\mitI \\rightarrow \\mitM $", "$ \\mitI $", "$ [ 0 , \\mitt ] $", "$ \\mitM $", "$ \\mitn $", "$ \\mitg $", "$ \\mitomega = \\mitd \\Planckconst $", "$ \\mitM $", "$ \\mitomega = \\mitomega _ { \\mitmu } ( \\mitx ) \\mitd \\mitx ^ { \\mitmu } $", "$ \\mitomega = \\mitomega _ { \\mitmu } ( \\mitx ) \\mitd \\mitx ^ { \\mitmu } $", "$ \\dot { \\mitx } ^ { \\mitmu } ( \\mitt ^ { \\prime } ) = \\frac { \\mitd \\mitx ^ { \\mitmu } } { \\mitd \\mitt ^ { \\prime } } $", "$ \\mitS [ \\mitx ( . ) ] = \\miti ( \\Planckconst ( \\mitx ( \\mitt ) ) - \\Planckconst ( \\mitx ( 0 ) ) ) $", "$ \\mitx ( \\mitt ) $", "$ \\mitomega = 0 $", "$ \\Planckconst $", "$ \\mitM $", "$ \\mitomega = \\mitd \\Planckconst $", "$ \\mitp _ { \\mitmu } $", "$ \\mitx ^ { \\mitmu } $", "$ \\mitn $", "$ \\mitH ( \\mitp , \\mitx ) = \\mitp _ { \\mitmu } \\mitx ^ { \\mitmu } - \\mitL ( \\mitx , \\dot { \\mitx } ) $", "$ \\mitH ( \\mitp , \\mitx ) = \\mitp _ { \\mitmu } \\mitx ^ { \\mitmu } - \\mitL ( \\mitx , \\dot { \\mitx } ) $", "$ \\mitomega $", "$ \\left\\{ \\mitT _ { \\mitmu } , \\mitT _ { \\mitnu } \\right \\} = 0 $", "$ \\left\\{ \\mitT _ { \\mitmu } , \\mitH _ { \\mitc } \\right \\} = 0 $", "$ \\mitT _ { \\mitmu } $", "$ \\mitpsi ( \\mitx ) $", "$ \\mitp _ { \\mitmu } = - \\miti \\mitpartial _ { \\mitmu } $", "$ \\mitp _ { \\mitmu } $", "$ - \\miti \\nabla _ { \\mitmu } $", "$ \\mitX ^ { \\mitmu } \\mitpsi = 0 $", "$ \\mitX ^ { \\mitmu } = \\mitg ^ { \\mitmu \\mitnu } ( \\mitp _ { \\mitnu } + \\miti \\mitomega _ { \\mitnu } ) $", "\\begin{equation*} \\mitS [ \\mitx ( . ) ] = \\int _ { 0 } ^ { \\mitt } \\miti \\mitomega _ { \\mitmu } ( \\mitx ( \\mitt ^ { \\prime } ) ) \\dot { \\mitx } ^ { \\mitmu } ( \\mitt ^ { \\prime } ) \\, \\mitd \\mitt ^ { \\prime } \\end{equation*}", "\\begin{equation*} \\mitp _ { \\mitmu } = \\frac { \\mitdelta \\mitL } { \\mitdelta \\dot { \\mitx } ^ { \\mitmu } } = \\miti \\mitomega _ { \\mitmu } , \\end{equation*}", "\\begin{equation*} \\mitT _ { \\mitmu } \\equiv \\mitp _ { \\mitmu } - \\miti \\mitomega _ { \\mitmu } . \\end{equation*}", "\\begin{equation*} \\mitdelta _ { \\mitepsilon } \\mitpsi ( \\mitx ) = - \\miti \\mitepsilon ( \\mitpartial _ { \\mitmu } \\mitpsi ( \\mitx ) + \\mitomega _ { \\mitmu } ( \\mitx ) \\mitpsi ( \\mitx ) ) \\end{equation*}" ], "x_min": [ 0.4733999967575073, 0.6427000164985657, 0.7892000079154968, 0.21080000698566437, 0.28540000319480896, 0.7084000110626221, 0.1728000044822693, 0.4650999903678894, 0.7892000079154968, 0.1728000044822693, 0.29580000042915344, 0.1728000044822693, 0.7573999762535095, 0.6578999757766724, 0.3068000078201294, 0.5273000001907349, 0.6316999793052673, 0.31029999256134033, 0.44850000739097595, 0.45890000462532043, 0.6717000007629395, 0.1728000044822693, 0.6814000010490417, 0.5612000226974487, 0.7103999853134155, 0.6690000295639038, 0.23149999976158142, 0.2646999955177307, 0.31380000710487366, 0.7186999917030334, 0.7387999892234802, 0.22939999401569366, 0.22179999947547913, 0.22179999947547913, 0.22179999947547913, 0.22179999947547913 ], "y_min": [ 0.27149999141693115, 0.27149999141693115, 0.2705000042915344, 0.28859999775886536, 0.2919999957084656, 0.2919999957084656, 0.37599998712539673, 0.37599998712539673, 0.375, 0.3921000063419342, 0.3905999958515167, 0.4092000126838684, 0.4262999892234802, 0.4447999894618988, 0.46140000224113464, 0.461899995803833, 0.46140000224113464, 0.49950000643730164, 0.4966000020503998, 0.5659000277519226, 0.6172000169754028, 0.6342999935150146, 0.6557999849319458, 0.6685000061988831, 0.6685000061988831, 0.6865000128746033, 0.7411999702453613, 0.7588000297546387, 0.7797999978065491, 0.7764000296592712, 0.8105000257492065, 0.82669997215271, 0.326200008392334, 0.5181000232696533, 0.586899995803833, 0.7099999785423279 ], "x_max": [ 0.5722000002861023, 0.6538000106811523, 0.8258000016212463, 0.2321999967098236, 0.2978000044822693, 0.7195000052452087, 0.23430000245571136, 0.48649999499320984, 0.8292999863624573, 0.2522999942302704, 0.39809998869895935, 0.4291999936103821, 0.7919999957084656, 0.7124999761581421, 0.31850001215934753, 0.5493999719619751, 0.6952999830245972, 0.3296999931335449, 0.4699000120162964, 0.47130000591278076, 0.8264999985694885, 0.23360000550746918, 0.6952000260353088, 0.6675999760627747, 0.8209999799728394, 0.6904000043869019, 0.27160000801086426, 0.3628000020980835, 0.33320000767707825, 0.7670999765396118, 0.8266000151634216, 0.3953000009059906, 0.492000013589859, 0.36489999294281006, 0.35030001401901245, 0.5245000123977661 ], "y_max": [ 0.2818000018596649, 0.2818000018596649, 0.2851000130176544, 0.2989000082015991, 0.298799991607666, 0.3012999892234802, 0.3862999975681305, 0.3862999975681305, 0.39010000228881836, 0.40720000863075256, 0.4081999957561493, 0.4242999851703644, 0.4413999915122986, 0.45509999990463257, 0.47209998965263367, 0.4722000062465668, 0.47209998965263367, 0.510200023651123, 0.5063999891281128, 0.572700023651123, 0.6323000192642212, 0.649399995803833, 0.6625999808311462, 0.6836000084877014, 0.6836000084877014, 0.7006999850273132, 0.7558000087738037, 0.7734000086784363, 0.7904999852180481, 0.7906000018119812, 0.8237000107765198, 0.8417999744415283, 0.36480000615119934, 0.5512999892234802, 0.6044999957084656, 0.728600025177002 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001015_page04
{ "latex": [ "$\\Etamu $", "$\\Pimu $", "$(2n,2n)$", "$\\Etamu ,\\Pimu $", "$\\nabla $", "$\\psi (x,\\eta )$", "$\\Pmu =-i \\DDmu $", "$\\Pimu = -i\\frac {\\partial }{\\partial \\Etamu }$", "$\\psi (x,\\eta )$", "$(n,n)$", "$SM$", "$\\Xmu ,\\Etamu $", "$Q$", "$Q=\\Etamu \\Tmu =-i\\Etamu (\\Dmu + \\omega )$", "$Q=\\Etamu \\Tmu =-i\\Etamu (\\Dmu + \\omega )$", "$\\chi $", "$\\chi = \\Pimu \\XXmu = -ig^{\\mu \\nu } \\Pimu (\\nabla _{\\nu }-\\omega _{\\nu })$", "$M$", "$\\psi (x,\\eta )$", "$Q=-i\\Emh d \\Eph $", "$\\chi = \\Eph \\delta \\Emh $", "$d$", "$\\delta = *d*$", "$h$", "$\\chi =\\Pimu \\XXmu $", "$h$", "$Q$", "$h$", "$H_g$", "\\begin {equation}\\label {SPBeq} d\\Pmu \\wedge d \\Xmu + \\nabla \\Pimu \\wedge \\nabla \\Etamu + \\frac 12 dx^{\\mu } \\wedge dx^{\\nu } \\Curv {\\mu }{\\nu }{\\kappa }{\\lambda }\\eta ^{\\kappa }\\pi _{\\lambda }, \\end {equation}", "\\begin {eqnarray}\\DDmu \\psi (x,\\eta ) = \\Dmu \\psi (x,\\eta ) + \\Gam {\\mu }{\\nu }{\\lambda } \\eta ^{\\nu } \\frac {\\partial }{\\partial \\eta ^{\\lambda }}\\psi (x,\\eta ). \\end {eqnarray}", "\\begin {eqnarray}H_g &=& i( Q \\chi + \\chi Q) \\End &=& d \\delta + \\delta d + g^{\\mu \\nu }\\Omu \\omega _{\\nu } -i (\\Pimu \\eta ^{\\nu } - \\eta ^{\\nu }\\Pimu ) \\frac {\\partial ^2 h }{\\partial \\Xmu \\partial x_{\\nu }}. \\end {eqnarray}" ], "latex_norm": [ "$ \\eta ^ { \\mu } $", "$ \\pi _ { \\mu } $", "$ ( 2 n , 2 n ) $", "$ \\eta ^ { \\mu } , \\pi _ { \\mu } $", "$ \\nabla $", "$ \\psi ( x , \\eta ) $", "$ p _ { \\mu } = - i \\nabla _ { \\mu } $", "$ \\pi _ { \\mu } = - i \\frac { \\partial } { \\partial \\eta ^ { \\mu } } $", "$ \\psi ( x , \\eta ) $", "$ ( n , n ) $", "$ S M $", "$ x ^ { \\mu } , \\eta ^ { \\mu } $", "$ Q $", "$ Q = \\eta ^ { \\mu } T _ { \\mu } = - i \\eta ^ { \\mu } ( \\partial _ { \\mu } + \\omega ) $", "$ Q = \\eta ^ { \\mu } T _ { \\mu } = - i \\eta ^ { \\mu } ( \\partial _ { \\mu } + \\omega ) $", "$ \\chi $", "$ \\chi = \\pi _ { \\mu } X ^ { \\mu } = - i g ^ { \\mu \\nu } \\pi _ { \\mu } ( \\nabla _ { \\nu } - \\omega _ { \\nu } ) $", "$ M $", "$ \\psi ( x , \\eta ) $", "$ Q = - i e ^ { - h } d e ^ { h } $", "$ \\chi = e ^ { h } \\delta e ^ { - h } $", "$ d $", "$ \\delta = \\ast d \\ast $", "$ h $", "$ \\chi = \\pi _ { \\mu } X ^ { \\mu } $", "$ h $", "$ Q $", "$ h $", "$ H _ { g } $", "\\begin{equation*} d p _ { \\mu } \\wedge d x ^ { \\mu } + \\nabla \\pi _ { \\mu } \\wedge \\nabla \\eta ^ { \\mu } + \\frac { 1 } { 2 } d x ^ { \\mu } \\wedge d x ^ { \\nu } R _ { \\mu \\nu \\kappa } { } ^ { \\lambda } \\eta ^ { \\kappa } \\pi _ { \\lambda } , \\end{equation*}", "\\begin{equation*} \\nabla _ { \\mu } \\psi ( x , \\eta ) = \\partial _ { \\mu } \\psi ( x , \\eta ) + \\Gamma _ { \\mu \\nu } ^ { \\lambda } \\eta ^ { \\nu } \\frac { \\partial } { \\partial \\eta ^ { \\lambda } } \\psi ( x , \\eta ) . \\end{equation*}", "\\begin{align*} H _ { g } & = & i ( Q \\chi + \\chi Q ) \\\\ & = & d \\delta + \\delta d + g ^ { \\mu \\nu } \\omega _ { \\mu } \\omega _ { \\nu } - i ( \\pi _ { \\mu } \\eta ^ { \\nu } - \\eta ^ { \\nu } \\pi _ { \\mu } ) \\frac { \\partial ^ { 2 } h } { \\partial x ^ { \\mu } \\partial x _ { \\nu } } . \\end{align*}" ], "latex_expand": [ "$ \\miteta ^ { \\mitmu } $", "$ \\mitpi _ { \\mitmu } $", "$ ( 2 \\mitn , 2 \\mitn ) $", "$ \\miteta ^ { \\mitmu } , \\mitpi _ { \\mitmu } $", "$ \\nabla $", "$ \\mitpsi ( \\mitx , \\miteta ) $", "$ \\mitp _ { \\mitmu } = - \\miti \\nabla _ { \\mitmu } $", "$ \\mitpi _ { \\mitmu } = - \\miti \\frac { \\mitpartial } { \\mitpartial \\miteta ^ { \\mitmu } } $", "$ \\mitpsi ( \\mitx , \\miteta ) $", "$ ( \\mitn , \\mitn ) $", "$ \\mitS \\mitM $", "$ \\mitx ^ { \\mitmu } , \\miteta ^ { \\mitmu } $", "$ \\mitQ $", "$ \\mitQ = \\miteta ^ { \\mitmu } \\mitT _ { \\mitmu } = - \\miti \\miteta ^ { \\mitmu } ( \\mitpartial _ { \\mitmu } + \\mitomega ) $", "$ \\mitQ = \\miteta ^ { \\mitmu } \\mitT _ { \\mitmu } = - \\miti \\miteta ^ { \\mitmu } ( \\mitpartial _ { \\mitmu } + \\mitomega ) $", "$ \\mitchi $", "$ \\mitchi = \\mitpi _ { \\mitmu } \\mitX ^ { \\mitmu } = - \\miti \\mitg ^ { \\mitmu \\mitnu } \\mitpi _ { \\mitmu } ( \\nabla _ { \\mitnu } - \\mitomega _ { \\mitnu } ) $", "$ \\mitM $", "$ \\mitpsi ( \\mitx , \\miteta ) $", "$ \\mitQ = - \\miti \\mite ^ { - \\Planckconst } \\mitd \\mite ^ { \\Planckconst } $", "$ \\mitchi = \\mite ^ { \\Planckconst } \\mitdelta \\mite ^ { - \\Planckconst } $", "$ \\mitd $", "$ \\mitdelta = \\ast \\mitd \\ast $", "$ \\Planckconst $", "$ \\mitchi = \\mitpi _ { \\mitmu } \\mitX ^ { \\mitmu } $", "$ \\Planckconst $", "$ \\mitQ $", "$ \\Planckconst $", "$ \\mitH _ { \\mitg } $", "\\begin{equation*} \\mitd \\mitp _ { \\mitmu } \\wedge \\mitd \\mitx ^ { \\mitmu } + \\nabla \\mitpi _ { \\mitmu } \\wedge \\nabla \\miteta ^ { \\mitmu } + \\frac { 1 } { 2 } \\mitd \\mitx ^ { \\mitmu } \\wedge \\mitd \\mitx ^ { \\mitnu } \\mitR _ { \\mitmu \\mitnu \\mitkappa } { } ^ { \\mitlambda } \\miteta ^ { \\mitkappa } \\mitpi _ { \\mitlambda } , \\end{equation*}", "\\begin{equation*} \\nabla _ { \\mitmu } \\mitpsi ( \\mitx , \\miteta ) = \\mitpartial _ { \\mitmu } \\mitpsi ( \\mitx , \\miteta ) + \\mupGamma _ { \\mitmu \\mitnu } ^ { \\mitlambda } \\miteta ^ { \\mitnu } \\frac { \\mitpartial } { \\mitpartial \\miteta ^ { \\mitlambda } } \\mitpsi ( \\mitx , \\miteta ) . \\end{equation*}", "\\begin{align*} \\mitH _ { \\mitg } & = & \\miti ( \\mitQ \\mitchi + \\mitchi \\mitQ ) \\\\ & = & \\mitd \\mitdelta + \\mitdelta \\mitd + \\mitg ^ { \\mitmu \\mitnu } \\mitomega _ { \\mitmu } \\mitomega _ { \\mitnu } - \\miti ( \\mitpi _ { \\mitmu } \\miteta ^ { \\mitnu } - \\miteta ^ { \\mitnu } \\mitpi _ { \\mitmu } ) \\frac { \\mitpartial ^ { 2 } \\Planckconst } { \\mitpartial \\mitx ^ { \\mitmu } \\mitpartial \\mitx _ { \\mitnu } } . \\end{align*}" ], "x_min": [ 0.43470001220703125, 0.8051000237464905, 0.5522000193595886, 0.41260001063346863, 0.23569999635219574, 0.2224999964237213, 0.5044999718666077, 0.6191999912261963, 0.257099986076355, 0.5009999871253967, 0.7912999987602234, 0.3711000084877014, 0.367000013589859, 0.6115999817848206, 0.1728000044822693, 0.553600013256073, 0.1728000044822693, 0.3898000121116638, 0.5902000069618225, 0.6980000138282776, 0.1728000044822693, 0.33379998803138733, 0.738099992275238, 0.3075000047683716, 0.4499000012874603, 0.6061000227928162, 0.31029999256134033, 0.367000013589859, 0.7276999950408936, 0.22179999947547913, 0.22179999947547913, 0.22179999947547913 ], "y_min": [ 0.17630000412464142, 0.17919999361038208, 0.19189999997615814, 0.21040000021457672, 0.29490000009536743, 0.3456999957561493, 0.3467000126838684, 0.3441999852657318, 0.364300012588501, 0.364300012588501, 0.365200012922287, 0.38280001282691956, 0.4706999957561493, 0.46970000863075256, 0.48730000853538513, 0.5088000297546387, 0.5214999914169312, 0.5396000146865845, 0.5386000275611877, 0.5375999808311462, 0.5547000169754028, 0.5565999746322632, 0.5565999746322632, 0.6840999722480774, 0.7529000043869019, 0.7871000170707703, 0.8217999935150146, 0.8384000062942505, 0.8389000296592712, 0.24950000643730164, 0.42100000381469727, 0.598800003528595 ], "x_max": [ 0.4546999931335449, 0.8258000016212463, 0.6205999851226807, 0.46239998936653137, 0.2529999911785126, 0.2825999855995178, 0.605400025844574, 0.7228999733924866, 0.3172000050544739, 0.5493999719619751, 0.8264999985694885, 0.42089998722076416, 0.3828999996185303, 0.8258000016212463, 0.19349999725818634, 0.5659999847412109, 0.46860000491142273, 0.41190001368522644, 0.6503000259399414, 0.8209999799728394, 0.2702000141143799, 0.3441999852657318, 0.8058000206947327, 0.3192000091075897, 0.5383999943733215, 0.6177999973297119, 0.32690000534057617, 0.37869998812675476, 0.7526000142097473, 0.64410001039505, 0.5860000252723694, 0.6820999979972839 ], "y_max": [ 0.1889999955892563, 0.1898999959230423, 0.20649999380111694, 0.2240999937057495, 0.3052000105381012, 0.3603000044822693, 0.36090001463890076, 0.3637000024318695, 0.3788999915122986, 0.3788999915122986, 0.37549999356269836, 0.3955000042915344, 0.4839000105857849, 0.4853000044822693, 0.5023999810218811, 0.5185999870300293, 0.5365999937057495, 0.5498999953269958, 0.5532000064849854, 0.5526999831199646, 0.5698000192642212, 0.5669000148773193, 0.5669000148773193, 0.6948000192642212, 0.7670999765396118, 0.7973999977111816, 0.8349999785423279, 0.8490999937057495, 0.8531000018119812, 0.2816999852657318, 0.460999995470047, 0.656000018119812 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001015_page05
{ "latex": [ "$H_g$", "$x_t,\\eta _t$", "$SM$", "$\\Xmu ,\\Etamu $", "$b_t$", "$(\\theta _t,\\rho _t)$", "$(d+ \\delta )^2$", "$J$", "$u:\\Sigma \\to M$", "$\\Sigma $", "$2m$", "$M$", "$H^{\\alpha }_{\\mu }$", "$\\Etamu $", "$\\pi ^{\\alpha }_{\\mu }$", "$\\alpha =1,2$", "$\\Sigma $", "$\\mu =1,\\dots ,2 m$", "$M$", "$H$", "$\\pi $", "$P^{^{-}}H=0, P^{^{-}}\\pi =0$", "$P^{^{-}}{}^{\\alpha \\mu }_{\\beta \\nu } =\\delta ^{\\alpha }_{\\beta }\\delta ^{\\mu }_{\\nu }- \\epsilon ^{\\alpha }_{\\beta }J^{\\mu }_{\\nu }$", "$\\epsilon $", "$\\Sigma $", "$J$", "\\begin {eqnarray} \\Xmu _t &=& \\Xmu + \\Intot e^{\\mu }_{a,s}\\circ db^{a}_s , \\End e^{\\mu }_{a,t}&=& e^{\\mu }_{a} +\\Intot -e^{\\nu }_{a,s} e^{\\lambda }_{b,s} \\Gam {\\nu }{\\lambda }{\\mu }(x_s) \\circ db^{b}_s \\End \\Etamu _t &=& \\Etamu + \\theta ^{a}_t e^{\\mu }_{a,t} \\End +&&\\!\\!\\!\\!\\!\\!\\!\\!\\! \\Intot \\big ( - \\eta ^{\\nu }_s \\Gam {\\nu }{\\lambda }{\\mu } e^{\\lambda }_{b,s} \\circ db^{b}_s - \\theta ^a_t de^{\\mu }_{a,s} +\\frac {1}{4}\\eta ^{\\nu }_s \\Curv {\\nu }{\\lambda }{\\kappa }{\\mu } (x_s)\\eta ^{\\lambda }_s\\rho ^{a}_s e^{\\kappa }_{a,s} ds \\big ), \\end {eqnarray}" ], "latex_norm": [ "$ H _ { g } $", "$ x _ { t } , \\eta _ { t } $", "$ S M $", "$ x ^ { \\mu } , \\eta ^ { \\mu } $", "$ b _ { t } $", "$ ( \\theta _ { t } , \\rho _ { t } ) $", "$ ( d + \\delta ) ^ { 2 } $", "$ J $", "$ u : \\Sigma \\rightarrow M $", "$ \\Sigma $", "$ 2 m $", "$ M $", "$ H _ { \\mu } ^ { \\alpha } $", "$ \\eta ^ { \\mu } $", "$ \\pi _ { \\mu } ^ { \\alpha } $", "$ \\alpha = 1 , 2 $", "$ \\Sigma $", "$ \\mu = 1 , \\ldots , 2 m $", "$ M $", "$ H $", "$ \\pi $", "$ P ^ { { } ^ { - } } H = 0 , P ^ { { } ^ { - } } \\pi = 0 $", "$ P ^ { { } ^ { - } } { } _ { \\beta \\nu } ^ { \\alpha \\mu } = \\delta _ { \\beta } ^ { \\alpha } \\delta _ { \\nu } ^ { \\mu } - \\epsilon _ { \\beta } ^ { \\alpha } J _ { \\nu } ^ { \\mu } $", "$ \\epsilon $", "$ \\Sigma $", "$ J $", "\\begin{align*} x _ { t } ^ { \\mu } & = & x ^ { \\mu } + \\int _ { 0 } ^ { t } e _ { a , s } ^ { \\mu } \\circ d b _ { s } ^ { a } , \\\\ e _ { a , t } ^ { \\mu } & = & e _ { a } ^ { \\mu } + \\int _ { 0 } ^ { t } - e _ { a , s } ^ { \\nu } e _ { b , s } ^ { \\lambda } \\Gamma _ { \\nu \\lambda } ^ { \\mu } ( x _ { s } ) \\circ d b _ { s } ^ { b } \\\\ \\eta _ { t } ^ { \\mu } & = & \\eta ^ { \\mu } + \\theta _ { t } ^ { a } e _ { a , t } ^ { \\mu } \\\\ + & & \\! \\! \\! \\! \\! \\! \\! \\! \\! \\int _ { 0 } ^ { t } ( - \\eta _ { s } ^ { \\nu } \\Gamma _ { \\nu \\lambda } ^ { \\mu } e _ { b , s } ^ { \\lambda } \\circ d b _ { s } ^ { b } - \\theta _ { t } ^ { a } d e _ { a , s } ^ { \\mu } + \\frac { 1 } { 4 } \\eta _ { s } ^ { \\nu } R _ { \\nu \\lambda \\kappa } { } ^ { \\mu } ( x _ { s } ) \\eta _ { s } ^ { \\lambda } \\rho _ { s } ^ { a } e _ { a , s } ^ { \\kappa } d s ) , \\end{align*}" ], "latex_expand": [ "$ \\mitH _ { \\mitg } $", "$ \\mitx _ { \\mitt } , \\miteta _ { \\mitt } $", "$ \\mitS \\mitM $", "$ \\mitx ^ { \\mitmu } , \\miteta ^ { \\mitmu } $", "$ \\mitb _ { \\mitt } $", "$ ( \\mittheta _ { \\mitt } , \\mitrho _ { \\mitt } ) $", "$ ( \\mitd + \\mitdelta ) ^ { 2 } $", "$ \\mitJ $", "$ \\mitu : \\mupSigma \\rightarrow \\mitM $", "$ \\mupSigma $", "$ 2 \\mitm $", "$ \\mitM $", "$ \\mitH _ { \\mitmu } ^ { \\mitalpha } $", "$ \\miteta ^ { \\mitmu } $", "$ \\mitpi _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitalpha = 1 , 2 $", "$ \\mupSigma $", "$ \\mitmu = 1 , \\ldots , 2 \\mitm $", "$ \\mitM $", "$ \\mitH $", "$ \\mitpi $", "$ \\mitP ^ { { } ^ { - } } \\mitH = 0 , \\mitP ^ { { } ^ { - } } \\mitpi = 0 $", "$ \\mitP ^ { { } ^ { - } } { } _ { \\mitbeta \\mitnu } ^ { \\mitalpha \\mitmu } = \\mitdelta _ { \\mitbeta } ^ { \\mitalpha } \\mitdelta _ { \\mitnu } ^ { \\mitmu } - \\mitepsilon _ { \\mitbeta } ^ { \\mitalpha } \\mitJ _ { \\mitnu } ^ { \\mitmu } $", "$ \\mitepsilon $", "$ \\mupSigma $", "$ \\mitJ $", "\\begin{align*} \\mitx _ { \\mitt } ^ { \\mitmu } & = & \\mitx ^ { \\mitmu } + \\int _ { 0 } ^ { \\mitt } \\mite _ { \\mita , \\mits } ^ { \\mitmu } \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mita } , \\\\ \\mite _ { \\mita , \\mitt } ^ { \\mitmu } & = & \\mite _ { \\mita } ^ { \\mitmu } + \\int _ { 0 } ^ { \\mitt } - \\mite _ { \\mita , \\mits } ^ { \\mitnu } \\mite _ { \\mitb , \\mits } ^ { \\mitlambda } \\mupGamma _ { \\mitnu \\mitlambda } ^ { \\mitmu } ( \\mitx _ { \\mits } ) \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mitb } \\\\ \\miteta _ { \\mitt } ^ { \\mitmu } & = & \\miteta ^ { \\mitmu } + \\mittheta _ { \\mitt } ^ { \\mita } \\mite _ { \\mita , \\mitt } ^ { \\mitmu } \\\\ + & & \\! \\! \\! \\! \\! \\! \\! \\! \\! \\int _ { 0 } ^ { \\mitt } \\big ( - \\miteta _ { \\mits } ^ { \\mitnu } \\mupGamma _ { \\mitnu \\mitlambda } ^ { \\mitmu } \\mite _ { \\mitb , \\mits } ^ { \\mitlambda } \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mitb } - \\mittheta _ { \\mitt } ^ { \\mita } \\mitd \\mite _ { \\mita , \\mits } ^ { \\mitmu } + \\frac { 1 } { 4 } \\miteta _ { \\mits } ^ { \\mitnu } \\mitR _ { \\mitnu \\mitlambda \\mitkappa } { } ^ { \\mitmu } ( \\mitx _ { \\mits } ) \\miteta _ { \\mits } ^ { \\mitlambda } \\mitrho _ { \\mits } ^ { \\mita } \\mite _ { \\mita , \\mits } ^ { \\mitkappa } \\mitd \\mits \\big ) , \\end{align*}" ], "x_min": [ 0.1728000044822693, 0.3124000132083893, 0.5396999716758728, 0.7713000178337097, 0.22939999401569366, 0.5708000063896179, 0.7269999980926514, 0.5493999719619751, 0.3711000084877014, 0.7193999886512756, 0.1728000044822693, 0.5342000126838684, 0.326200008392334, 0.5631999969482422, 0.6295999884605408, 0.7221999764442444, 0.26809999346733093, 0.3434999883174896, 0.6061000227928162, 0.7477999925613403, 0.8141000270843506, 0.33169999718666077, 0.557699978351593, 0.3386000096797943, 0.5777000188827515, 0.6371999979019165, 0.21809999644756317 ], "y_min": [ 0.17579999566078186, 0.26510000228881836, 0.2612000107765198, 0.26170000433921814, 0.448199987411499, 0.44780001044273376, 0.4814000129699707, 0.7416999936103821, 0.7592999935150146, 0.7592999935150146, 0.7768999934196472, 0.7764000296592712, 0.7935000061988831, 0.7939000129699707, 0.7939000129699707, 0.7939000129699707, 0.8105000257492065, 0.8109999895095825, 0.8105000257492065, 0.8105000257492065, 0.8140000104904175, 0.8241999745368958, 0.8241999745368958, 0.8485999703407288, 0.8446999788284302, 0.8446999788284302, 0.29829999804496765 ], "x_max": [ 0.19769999384880066, 0.3546000123023987, 0.5748999714851379, 0.8210999965667725, 0.24459999799728394, 0.626800000667572, 0.7954000234603882, 0.5631999969482422, 0.48579999804496765, 0.7339000105857849, 0.2003999948501587, 0.5555999875068665, 0.3544999957084656, 0.583899974822998, 0.6517000198364258, 0.7926999926567078, 0.2825999855995178, 0.46860000491142273, 0.6274999976158142, 0.7664999961853027, 0.8258000016212463, 0.4968999922275543, 0.7276999950408936, 0.34689998626708984, 0.592199981212616, 0.6503000259399414, 0.7684000134468079 ], "y_max": [ 0.1899999976158142, 0.274399995803833, 0.2718999981880188, 0.274399995803833, 0.4609000086784363, 0.46239998936653137, 0.4970000088214874, 0.7523999810218811, 0.769599974155426, 0.769599974155426, 0.7867000102996826, 0.7867000102996826, 0.8090999722480774, 0.8065999746322632, 0.8090000152587891, 0.8065999746322632, 0.8208000063896179, 0.8237000107765198, 0.8208000063896179, 0.8208000063896179, 0.8208000063896179, 0.8407999873161316, 0.8436999917030334, 0.8549000024795532, 0.8550000190734863, 0.8550000190734863, 0.4366999864578247 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001015_page06
{ "latex": [ "$M$", "$\\delta u^{\\mu } = i \\epsilon \\eta ^{\\mu }$", "$J$", "$M$", "$u:\\Sigma \\to M$", "$p^{\\alpha }_{\\mu }$", "$H^{\\alpha }_{\\mu }$", "${\\cal {P}}_{\\mu }^{\\alpha }$", "$\\pi ^{\\alpha }_{\\mu }$", "$J$" ], "latex_norm": [ "$ M $", "$ \\delta u ^ { \\mu } = i \\epsilon \\eta ^ { \\mu } $", "$ J $", "$ M $", "$ u : \\Sigma \\rightarrow M $", "$ p _ { \\mu } ^ { \\alpha } $", "$ H _ { \\mu } ^ { \\alpha } $", "$ P _ { \\mu } ^ { \\alpha } $", "$ \\pi _ { \\mu } ^ { \\alpha } $", "$ J $" ], "latex_expand": [ "$ \\mitM $", "$ \\mitdelta \\mitu ^ { \\mitmu } = \\miti \\mitepsilon \\miteta ^ { \\mitmu } $", "$ \\mitJ $", "$ \\mitM $", "$ \\mitu : \\mupSigma \\rightarrow \\mitM $", "$ \\mitp _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitH _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitP _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitpi _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitJ $" ], "x_min": [ 0.2922999858856201, 0.4090999960899353, 0.24740000069141388, 0.46650001406669617, 0.257099986076355, 0.5722000002861023, 0.31380000710487366, 0.8003000020980835, 0.3808000087738037, 0.367000013589859 ], "y_min": [ 0.15870000422000885, 0.1753000020980835, 0.20999999344348907, 0.20999999344348907, 0.31299999356269836, 0.31349998712539673, 0.33009999990463257, 0.33009999990463257, 0.34769999980926514, 0.364300012588501 ], "x_max": [ 0.31369999051094055, 0.5009999871253967, 0.2605000138282776, 0.4878999888896942, 0.35179999470710754, 0.5928999781608582, 0.34209999442100525, 0.8259000182151794, 0.4036000072956085, 0.3801000118255615 ], "y_max": [ 0.16899999976158142, 0.1889999955892563, 0.22030000388622284, 0.22030000388622284, 0.32330000400543213, 0.3285999894142151, 0.3456999957561493, 0.3456999957561493, 0.3628000020980835, 0.37459999322891235 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001073_page01
{ "latex": [ "$U(1)$", "$\\theta $" ], "latex_norm": [ "$ U ( 1 ) $", "$ \\theta $" ], "latex_expand": [ "$ \\mitU ( 1 ) $", "$ \\mittheta $" ], "x_min": [ 0.3019999861717224, 0.3917999863624573 ], "y_min": [ 0.5996000170707703, 0.6226000189781189 ], "x_max": [ 0.34279999136924744, 0.40220001339912415 ], "y_max": [ 0.6141999959945679, 0.6328999996185303 ], "expr_type": [ "embedded", "embedded" ] }
0001073_page02
{ "latex": [ "$B$", "$U(2)$", "$B$", "$O(\\theta )$", "$U(1)$", "$\\phi $", "$\\mathbb {R}^3\\setminus \\{0\\}$", "$S^2$", "$\\pi _1(U(1))=\\mathbb {Z}$", "$m\\propto 1/g_{\\rm YM}$", "$O(\\theta ^2)$", "$U(1)$", "$A$", "$\\theta $", "$U(1)$" ], "latex_norm": [ "$ B $", "$ U ( 2 ) $", "$ B $", "$ O ( \\theta ) $", "$ U ( 1 ) $", "$ \\phi $", "$ R ^ { 3 } \\setminus \\{ 0 \\} $", "$ S ^ { 2 } $", "$ \\pi _ { 1 } ( U ( 1 ) ) = Z $", "$ m \\propto 1 \\slash g _ { Y M } $", "$ O ( \\theta ^ { 2 } ) $", "$ U ( 1 ) $", "$ A $", "$ \\theta $", "$ U ( 1 ) $" ], "latex_expand": [ "$ \\mitB $", "$ \\mitU ( 2 ) $", "$ \\mitB $", "$ \\mitO ( \\mittheta ) $", "$ \\mitU ( 1 ) $", "$ \\mitphi $", "$ \\BbbR ^ { 3 } \\setminus \\{ 0 \\} $", "$ \\mitS ^ { 2 } $", "$ \\mitpi _ { 1 } ( \\mitU ( 1 ) ) = \\BbbZ $", "$ \\mitm \\propto 1 \\slash \\mitg _ { \\mathrm { Y M } } $", "$ \\mitO ( \\mittheta ^ { 2 } ) $", "$ \\mitU ( 1 ) $", "$ \\mitA $", "$ \\mittheta $", "$ \\mitU ( 1 ) $" ], "x_min": [ 0.883899986743927, 0.6420000195503235, 0.13750000298023224, 0.47269999980926514, 0.13750000298023224, 0.41670000553131104, 0.7635999917984009, 0.34279999136924744, 0.4036000072956085, 0.22110000252723694, 0.3772999942302704, 0.17000000178813934, 0.36629998683929443, 0.48170000314712524, 0.5853000283241272 ], "y_min": [ 0.08250000327825546, 0.2378000020980835, 0.2612000107765198, 0.30469998717308044, 0.32710000872612, 0.35010001063346863, 0.3711000084877014, 0.3935999870300293, 0.4165000021457672, 0.48339998722076416, 0.7505000233650208, 0.7728999853134155, 0.7738999724388123, 0.7738999724388123, 0.8403000235557556 ], "x_max": [ 0.9004999995231628, 0.6834999918937683, 0.15410000085830688, 0.5134999752044678, 0.17829999327659607, 0.42910000681877136, 0.836899995803833, 0.36419999599456787, 0.5203999876976013, 0.328900009393692, 0.42640000581741333, 0.21080000698566437, 0.3813999891281128, 0.4921000003814697, 0.6261000037193298 ], "y_max": [ 0.09319999814033508, 0.25290000438690186, 0.27149999141693115, 0.3197999894618988, 0.3416999876499176, 0.36329999566078186, 0.38670000433921814, 0.40529999136924744, 0.4311000108718872, 0.49799999594688416, 0.7656000256538391, 0.7879999876022339, 0.784600019454956, 0.784600019454956, 0.8549000024795532 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001073_page03
{ "latex": [ "$\\star $", "$O(\\theta ^2)$", "$F$", "$i$", "$j$", "$O(\\theta ^2)$", "$\\theta $", "$F$", "$i$", "$F$", "$A$", "$A$", "$A\\simeq A^0+A^1+A^2$", "$\\theta $", "$F_{ij}\\simeq F_{ij}^0+F_{ij}^1+F_{ij}^2$", "$f^{1, 2}=dA^{1, 2}$", "$g$", "$\\ast 1$", "$F$", "$\\theta $", "$f(x)\\star g(x)=\\exp (\\frac {i}{2}\\theta _{ij}\\partial _i\\partial _j') f(x)g(x')|_{x=x'}$", "$[x_i, x_j]=i\\theta _{ij}$", "$A_0=0$", "\\begin {equation} F=dA-\\frac {i}{2}[A, A]_{\\star }. \\end {equation}", "\\begin {equation} \\label {eq:F_ij} F_{ij}\\simeq \\partial _i A_j-\\partial _j A_i+\\theta _{mn}\\partial _m A_i \\partial _n A_j, \\end {equation}", "\\begin {eqnarray} F_{ij}^0 & = & \\partial _i A_j^0-\\partial _j A_i^0 \\\\ F_{ij}^1 & = & \\partial _i A_j^1-\\partial _j A_i^1+\\theta _{mn}\\partial _m A_i^0 \\partial _n A_j^0 \\\\ F_{ij}^2 & = & \\partial _i A_j^2-\\partial _j A_i^2+\\theta _{mn}\\partial _m A_i^0 \\partial _n A_j^1+\\theta _{mn}\\partial _m A_i^1 \\partial _n A_j^0. \\end {eqnarray}", "\\begin {equation} \\label {eq:DF} DF=4\\pi g\\delta ^3(\\vec r\\,)\\ast \\!1 \\end {equation}", "\\begin {equation} DF=dF-i[A, F]_{\\star }. \\end {equation}", "\\begin {eqnarray} dF^0 & = & 4\\pi g\\delta ^3(\\vec r\\,)\\ast \\!1 \\\\ dF^1 & = & -\\theta _{mn}\\partial _m A^0\\wedge \\partial _n F^0 \\\\ dF^2 & = & -\\theta _{mn}\\partial _m A^1\\wedge \\partial _n F^0 -\\theta _{mn}\\partial _m A^0\\wedge \\partial _n F^1. \\end {eqnarray}" ], "latex_norm": [ "$ \\star $", "$ O ( \\theta ^ { 2 } ) $", "$ F $", "$ i $", "$ j $", "$ O ( \\theta ^ { 2 } ) $", "$ \\theta $", "$ F $", "$ i $", "$ F $", "$ A $", "$ A $", "$ A \\sime A ^ { 0 } + A ^ { 1 } + A ^ { 2 } $", "$ \\theta $", "$ F _ { i j } \\sime F _ { i j } ^ { 0 } + F _ { i j } ^ { 1 } + F _ { i j } ^ { 2 } $", "$ f ^ { 1 , 2 } = d A ^ { 1 , 2 } $", "$ g $", "$ \\ast 1 $", "$ F $", "$ \\theta $", "$ f ( x ) \\star g ( x ) = e x p ( \\frac { i } { 2 } \\theta _ { i j } \\partial _ { i } \\partial _ { j } ^ { \\prime } ) f ( x ) g ( x ^ { \\prime } ) \\vert _ { x = x ^ { \\prime } } $", "$ [ x _ { i } , x _ { j } ] = i \\theta _ { i j } $", "$ A _ { 0 } = 0 $", "\\begin{equation*} F = d A - \\frac { i } { 2 } [ A , A ] _ { \\star } . \\end{equation*}", "\\begin{equation*} F _ { i j } \\sime \\partial _ { i } A _ { j } - \\partial _ { j } A _ { i } + \\theta _ { m n } \\partial _ { m } A _ { i } \\partial _ { n } A _ { j } , \\end{equation*}", "\\begin{align*} F _ { i j } ^ { 0 } & = & \\partial _ { i } A _ { j } ^ { 0 } - \\partial _ { j } A _ { i } ^ { 0 } \\\\ F _ { i j } ^ { 1 } & = & \\partial _ { i } A _ { j } ^ { 1 } - \\partial _ { j } A _ { i } ^ { 1 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 0 } \\partial _ { n } A _ { j } ^ { 0 } \\\\ F _ { i j } ^ { 2 } & = & \\partial _ { i } A _ { j } ^ { 2 } - \\partial _ { j } A _ { i } ^ { 2 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 0 } \\partial _ { n } A _ { j } ^ { 1 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 1 } \\partial _ { n } A _ { j } ^ { 0 } . \\end{align*}", "\\begin{equation*} D F = 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) \\ast \\! 1 \\end{equation*}", "\\begin{equation*} D F = d F - i [ A , F ] _ { \\star } . \\end{equation*}", "\\begin{align*} d F ^ { 0 } & = & 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) \\ast \\! 1 \\\\ d F ^ { 1 } & = & - \\theta _ { m n } \\partial _ { m } A ^ { 0 } \\wedge \\partial _ { n } F ^ { 0 } \\\\ d F ^ { 2 } & = & - \\theta _ { m n } \\partial _ { m } A ^ { 1 } \\wedge \\partial _ { n } F ^ { 0 } - \\theta _ { m n } \\partial _ { m } A ^ { 0 } \\wedge \\partial _ { n } F ^ { 1 } . \\end{align*}" ], "latex_expand": [ "$ \\star $", "$ \\mitO ( \\mittheta ^ { 2 } ) $", "$ \\mitF $", "$ \\miti $", "$ \\mitj $", "$ \\mitO ( \\mittheta ^ { 2 } ) $", "$ \\mittheta $", "$ \\mitF $", "$ \\miti $", "$ \\mitF $", "$ \\mitA $", "$ \\mitA $", "$ \\mitA \\sime \\mitA ^ { 0 } + \\mitA ^ { 1 } + \\mitA ^ { 2 } $", "$ \\mittheta $", "$ \\mitF _ { \\miti \\mitj } \\sime \\mitF _ { \\miti \\mitj } ^ { 0 } + \\mitF _ { \\miti \\mitj } ^ { 1 } + \\mitF _ { \\miti \\mitj } ^ { 2 } $", "$ \\mitf ^ { 1 , 2 } = \\mitd \\mitA ^ { 1 , 2 } $", "$ \\mitg $", "$ \\ast 1 $", "$ \\mitF $", "$ \\mittheta $", "$ \\mitf ( \\mitx ) \\star \\mitg ( \\mitx ) = \\mathrm { e x p } ( \\frac { \\miti } { 2 } \\mittheta _ { \\miti \\mitj } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitj } ^ { \\prime } ) \\mitf ( \\mitx ) \\mitg ( \\mitx ^ { \\prime } ) \\vert _ { \\mitx = \\mitx ^ { \\prime } } $", "$ [ \\mitx _ { \\miti } , \\mitx _ { \\mitj } ] = \\miti \\mittheta _ { \\miti \\mitj } $", "$ \\mitA _ { 0 } = 0 $", "\\begin{equation*} \\mitF = \\mitd \\mitA - \\frac { \\miti } { 2 } [ \\mitA , \\mitA ] _ { \\star } . \\end{equation*}", "\\begin{equation*} \\mitF _ { \\miti \\mitj } \\sime \\mitpartial _ { \\miti } \\mitA _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } , \\end{equation*}", "\\begin{align*} \\mitF _ { \\miti \\mitj } ^ { 0 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 0 } \\\\ \\mitF _ { \\miti \\mitj } ^ { 1 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 1 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 1 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 0 } \\\\ \\mitF _ { \\miti \\mitj } ^ { 2 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 2 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 2 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 1 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 1 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 0 } . \\end{align*}", "\\begin{equation*} \\mitD \\mitF = 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) \\ast \\! 1 \\end{equation*}", "\\begin{equation*} \\mitD \\mitF = \\mitd \\mitF - \\miti [ \\mitA , \\mitF ] _ { \\star } . \\end{equation*}", "\\begin{align*} \\mitd \\mitF ^ { 0 } & = & 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) \\ast \\! 1 \\\\ \\mitd \\mitF ^ { 1 } & = & - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 0 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 0 } \\\\ \\mitd \\mitF ^ { 2 } & = & - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 1 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 0 } - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 0 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 1 } . \\end{align*}" ], "x_min": [ 0.45750001072883606, 0.34279999136924744, 0.40290001034736633, 0.19280000030994415, 0.21080000698566437, 0.5645999908447266, 0.15889999270439148, 0.16030000150203705, 0.460999995470047, 0.5169000029563904, 0.7760999798774719, 0.6924999952316284, 0.7387999892234802, 0.47130000591278076, 0.652400016784668, 0.4291999936103821, 0.1949000060558319, 0.45890000462532043, 0.13750000298023224, 0.29580000042915344, 0.1678999960422516, 0.5113999843597412, 0.47269999980926514, 0.43470001220703125, 0.367000013589859, 0.2930000126361847, 0.43810001015663147, 0.4291999936103821, 0.321399986743927 ], "y_min": [ 0.15279999375343323, 0.21879999339580536, 0.22020000219345093, 0.29100000858306885, 0.29100000858306885, 0.2890999913215637, 0.31299999356269836, 0.3353999853134155, 0.3353999853134155, 0.3353999853134155, 0.35740000009536743, 0.3799000084400177, 0.3783999979496002, 0.40230000019073486, 0.4009000062942505, 0.5282999873161316, 0.6265000104904175, 0.6234999895095825, 0.6449999809265137, 0.7153000235557556, 0.8270999789237976, 0.8281000256538391, 0.8442000150680542, 0.17239999771118164, 0.25200000405311584, 0.4302999973297119, 0.5820000171661377, 0.6762999892234802, 0.745199978351593 ], "x_max": [ 0.46860000491142273, 0.3912000060081482, 0.4194999933242798, 0.2003999948501587, 0.22050000727176666, 0.6136999726295471, 0.16930000483989716, 0.1762000024318695, 0.46860000491142273, 0.532800018787384, 0.7912999987602234, 0.7077000141143799, 0.9004999995231628, 0.48170000314712524, 0.8278999924659729, 0.5376999974250793, 0.20600000023841858, 0.4796000123023987, 0.1534000039100647, 0.3061999976634979, 0.4733999967575073, 0.6082000136375427, 0.5238000154495239, 0.605400025844574, 0.669700026512146, 0.7450000047683716, 0.6025999784469604, 0.6110000014305115, 0.71670001745224 ], "y_max": [ 0.15960000455379486, 0.23389999568462372, 0.2304999977350235, 0.3012999892234802, 0.3037000000476837, 0.30469998717308044, 0.32330000400543213, 0.3456999957561493, 0.3456999957561493, 0.3456999957561493, 0.36809998750686646, 0.3901999890804291, 0.3910999894142151, 0.41260001063346863, 0.4180000126361847, 0.542900025844574, 0.6358000040054321, 0.6333000063896179, 0.6553000211715698, 0.7260000109672546, 0.842199981212616, 0.8413000106811523, 0.8549000024795532, 0.20509999990463257, 0.2700999975204468, 0.5072000026702881, 0.6014999747276306, 0.6944000124931335, 0.8187000155448914 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001073_page04
{ "latex": [ "$\\nabla \\cdot \\vec B^0=4\\pi g\\delta ^3(\\vec r\\,)$", "$B^0=\\ast F^0$", "$\\vec B^0=g\\vec r/r^3$", "$A^0$", "$A^{1, 2}$", "$A^0$", "$i\\to k$", "$j\\to i$", "$k\\to j$", "$m\\leftrightarrow n$", "$d f^1=0$", "$f^1=0$", "$A^1$", "$A^1$", "$A^0$", "$F^1$", "$-2\\epsilon _{ijk}(\\theta _{mn} \\theta _{pq}\\partial _m A^0_k\\partial _q A^0_j \\partial _n \\partial _p A^0_i)$", "$j$", "$k$", "$d f^2=0$", "$A^2$", "$f^{1, 2}$", "$f^{1, 2}=dA^{1, 2}$", "$F^0=dA^0$", "$S^2$", "$A^0$", "$A$", "$A$", "$g\\simeq g^0+g^1+g^2$", "$|A^0|\\sim 1/r$", "$|F^0|\\sim 1/r^2$", "$|F^1|\\sim 1/r^4$", "$|F^2|=0$", "\\begin {eqnarray} \\epsilon _{ijk}\\partial _i f^1_{jk} & = & -\\epsilon _{ijk}\\partial _i (\\theta _{mn}\\partial _m A^0_j\\partial _n A^0_k) -\\epsilon _{ijk}\\theta _{nm}\\partial _n A^0_k\\partial _m F^0_{ij} \\\\ &= & -\\epsilon _{ijk}\\theta _{mn}\\Big (\\partial _m \\partial _i A^0_j \\partial _n A^0_k +\\partial _mA^0_j\\partial _n\\partial _i A^0_k -\\partial _n A^0_k\\partial _m (\\partial _i A_j^0- \\partial _j A_i^0)\\Big ). \\end {eqnarray}", "\\begin {eqnarray} \\epsilon _{ijk}\\partial _i f^2_{jk} & = & -\\epsilon _{ijk}\\partial _i \\Big (\\theta _{mn}(\\partial _m A^0_j\\partial _n A^1_k- \\partial _m A^0_k\\partial _n A^1_j)\\Big ) \\\\ && -\\epsilon _{ijk}\\theta _{nm}\\partial _n A^1_k\\partial _m F^0_{ij} -\\epsilon _{ijk}\\theta _{mn}\\partial _m A^0_k\\partial _n F^1_{ij}. \\end {eqnarray}", "\\begin {equation} \\epsilon _{ijk}\\partial _i f^2_{jk}=-\\epsilon _{ijk}\\theta _{mn}\\theta _{pq} \\partial _m A^0_k\\partial _n (\\partial _p A^0_i\\partial _q A^0_j). \\end {equation}", "\\begin {equation} m=\\int |F|^2 \\sim \\int _0^{\\infty } r^2dr\\left | \\frac {1}{r^2}+\\frac {1}{r^4} \\right |^2=\\infty . \\end {equation}" ], "latex_norm": [ "$ \\nabla \\cdot \\vec { B } ^ { 0 } = 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) $", "$ B ^ { 0 } = \\ast F ^ { 0 } $", "$ \\vec { B } ^ { 0 } = g \\vec { r } \\slash r ^ { 3 } $", "$ A ^ { 0 } $", "$ A ^ { 1 , 2 } $", "$ A ^ { 0 } $", "$ i \\rightarrow k $", "$ j \\rightarrow i $", "$ k \\rightarrow j $", "$ m \\leftrightarrow n $", "$ d f ^ { 1 } = 0 $", "$ f ^ { 1 } = 0 $", "$ A ^ { 1 } $", "$ A ^ { 1 } $", "$ A ^ { 0 } $", "$ F ^ { 1 } $", "$ - 2 \\epsilon _ { i j k } ( \\theta _ { m n } \\theta _ { p q } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { q } A _ { j } ^ { 0 } \\partial _ { n } \\partial _ { p } A _ { i } ^ { 0 } ) $", "$ j $", "$ k $", "$ d f ^ { 2 } = 0 $", "$ A ^ { 2 } $", "$ f ^ { 1 , 2 } $", "$ f ^ { 1 , 2 } = d A ^ { 1 , 2 } $", "$ F ^ { 0 } = d A ^ { 0 } $", "$ S ^ { 2 } $", "$ A ^ { 0 } $", "$ A $", "$ A $", "$ g \\sime g ^ { 0 } + g ^ { 1 } + g ^ { 2 } $", "$ \\vert A ^ { 0 } \\vert \\sim 1 \\slash r $", "$ \\vert F ^ { 0 } \\vert \\sim 1 \\slash r ^ { 2 } $", "$ \\vert F ^ { 1 } \\vert \\sim 1 \\slash r ^ { 4 } $", "$ \\vert F ^ { 2 } \\vert = 0 $", "\\begin{align*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 1 } & = & - \\epsilon _ { i j k } \\partial _ { i } ( \\theta _ { m n } \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 0 } ) - \\epsilon _ { i j k } \\theta _ { n m } \\partial _ { n } A _ { k } ^ { 0 } \\partial _ { m } F _ { i j } ^ { 0 } \\\\ & = & - \\epsilon _ { i j k } \\theta _ { m n } ( \\partial _ { m } \\partial _ { i } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 0 } + \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } \\partial _ { i } A _ { k } ^ { 0 } - \\partial _ { n } A _ { k } ^ { 0 } \\partial _ { m } ( \\partial _ { i } A _ { j } ^ { 0 } - \\partial _ { j } A _ { i } ^ { 0 } ) ) . \\end{align*}", "\\begin{align*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 2 } & = & - \\epsilon _ { i j k } \\partial _ { i } ( \\theta _ { m n } ( \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 1 } - \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } A _ { j } ^ { 1 } ) ) \\\\ & & - \\epsilon _ { i j k } \\theta _ { n m } \\partial _ { n } A _ { k } ^ { 1 } \\partial _ { m } F _ { i j } ^ { 0 } - \\epsilon _ { i j k } \\theta _ { m n } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } F _ { i j } ^ { 1 } . \\end{align*}", "\\begin{equation*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 2 } = - \\epsilon _ { i j k } \\theta _ { m n } \\theta _ { p q } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } ( \\partial _ { p } A _ { i } ^ { 0 } \\partial _ { q } A _ { j } ^ { 0 } ) . \\end{equation*}", "\\begin{equation*} m = \\int \\vert F \\vert ^ { 2 } \\sim \\int _ { 0 } ^ { \\infty } r ^ { 2 } d r { \\vert \\frac { 1 } { r ^ { 2 } } + \\frac { 1 } { r ^ { 4 } } \\vert } ^ { 2 } = \\infty . \\end{equation*}" ], "latex_expand": [ "$ \\nabla \\cdot \\vec { \\mitB } ^ { 0 } = 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) $", "$ \\mitB ^ { 0 } = \\ast \\mitF ^ { 0 } $", "$ \\vec { \\mitB } ^ { 0 } = \\mitg \\vec { \\mitr } \\slash \\mitr ^ { 3 } $", "$ \\mitA ^ { 0 } $", "$ \\mitA ^ { 1 , 2 } $", "$ \\mitA ^ { 0 } $", "$ \\miti \\rightarrow \\mitk $", "$ \\mitj \\rightarrow \\miti $", "$ \\mitk \\rightarrow \\mitj $", "$ \\mitm \\leftrightarrow \\mitn $", "$ \\mitd \\mitf ^ { 1 } = 0 $", "$ \\mitf ^ { 1 } = 0 $", "$ \\mitA ^ { 1 } $", "$ \\mitA ^ { 1 } $", "$ \\mitA ^ { 0 } $", "$ \\mitF ^ { 1 } $", "$ - 2 \\mitepsilon _ { \\miti \\mitj \\mitk } ( \\mittheta _ { \\mitm \\mitn } \\mittheta _ { \\mitp \\mitq } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitq } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitp } \\mitA _ { \\miti } ^ { 0 } ) $", "$ \\mitj $", "$ \\mitk $", "$ \\mitd \\mitf ^ { 2 } = 0 $", "$ \\mitA ^ { 2 } $", "$ \\mitf ^ { 1 , 2 } $", "$ \\mitf ^ { 1 , 2 } = \\mitd \\mitA ^ { 1 , 2 } $", "$ \\mitF ^ { 0 } = \\mitd \\mitA ^ { 0 } $", "$ \\mitS ^ { 2 } $", "$ \\mitA ^ { 0 } $", "$ \\mitA $", "$ \\mitA $", "$ \\mitg \\sime \\mitg ^ { 0 } + \\mitg ^ { 1 } + \\mitg ^ { 2 } $", "$ \\vert \\mitA ^ { 0 } \\vert \\sim 1 \\slash \\mitr $", "$ \\vert \\mitF ^ { 0 } \\vert \\sim 1 \\slash \\mitr ^ { 2 } $", "$ \\vert \\mitF ^ { 1 } \\vert \\sim 1 \\slash \\mitr ^ { 4 } $", "$ \\vert \\mitF ^ { 2 } \\vert = 0 $", "\\begin{align*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 1 } & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } ( \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } ) - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitn \\mitm } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitj } ^ { 0 } \\\\ & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\Big ( \\mitpartial _ { \\mitm } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } + \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitpartial _ { \\miti } \\mitA _ { \\mitk } ^ { 0 } - \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitm } ( \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 0 } ) \\Big ) . \\end{align*}", "\\begin{align*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 2 } & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\Big ( \\mittheta _ { \\mitm \\mitn } ( \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 1 } - \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 1 } ) \\Big ) \\\\ & & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitn \\mitm } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 1 } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitj } ^ { 0 } - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } ^ { 1 } . \\end{align*}", "\\begin{equation*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 2 } = - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\mittheta _ { \\mitp \\mitq } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } ( \\mitpartial _ { \\mitp } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitq } \\mitA _ { \\mitj } ^ { 0 } ) . \\end{equation*}", "\\begin{equation*} \\mitm = \\int \\vert \\mitF \\vert ^ { 2 } \\sim \\int _ { 0 } ^ { \\infty } \\mitr ^ { 2 } \\mitd \\mitr { \\left\\vert \\frac { 1 } { \\mitr ^ { 2 } } + \\frac { 1 } { \\mitr ^ { 4 } } \\right\\vert } ^ { 2 } = \\infty . \\end{equation*}" ], "x_min": [ 0.5453000068664551, 0.7706000208854675, 0.29510000348091125, 0.44369998574256897, 0.5465999841690063, 0.6924999952316284, 0.19349999725818634, 0.259799987077713, 0.3248000144958496, 0.4271000027656555, 0.3959999978542328, 0.8438000082969666, 0.7387999892234802, 0.30059999227523804, 0.8093000054359436, 0.13750000298023224, 0.48240000009536743, 0.3359000086784363, 0.3912000060081482, 0.3352000117301941, 0.5286999940872192, 0.31380000710487366, 0.7989000082015991, 0.6420000195503235, 0.16380000114440918, 0.6288999915122986, 0.8852999806404114, 0.8285999894142151, 0.37040001153945923, 0.35249999165534973, 0.4546999931335449, 0.5652999877929688, 0.7084000110626221, 0.19140000641345978, 0.29159998893737793, 0.33660000562667847, 0.3449000120162964 ], "y_min": [ 0.08399999886751175, 0.08640000224113464, 0.10639999806880951, 0.10890000313520432, 0.13130000233650208, 0.13130000233650208, 0.2754000127315521, 0.2759000062942505, 0.2754000127315521, 0.27880001068115234, 0.2964000105857849, 0.2964000105857849, 0.3188000023365021, 0.46140000224113464, 0.46140000224113464, 0.4839000105857849, 0.5508000254631042, 0.5752000212669373, 0.5741999745368958, 0.5952000021934509, 0.5952000021934509, 0.6176999807357788, 0.6176999807357788, 0.6401000022888184, 0.6621000170707703, 0.6621000170707703, 0.6859999895095825, 0.7085000276565552, 0.7738999724388123, 0.7958999872207642, 0.7964000105857849, 0.7958999872207642, 0.7958999872207642, 0.1808999925851822, 0.3628000020980835, 0.5131999850273132, 0.8198000192642212 ], "x_max": [ 0.7111999988555908, 0.8597000241279602, 0.3939000070095062, 0.46720001101493835, 0.5812000036239624, 0.7160000205039978, 0.2467000037431717, 0.311599999666214, 0.3808000087738037, 0.4921000003814697, 0.4596000015735626, 0.9004999995231628, 0.7616000175476074, 0.32409998774528503, 0.8327999711036682, 0.16169999539852142, 0.7554000020027161, 0.3456000089645386, 0.40290001034736633, 0.40149998664855957, 0.5522000193595886, 0.3456000089645386, 0.9004999995231628, 0.7269999980926514, 0.1859000027179718, 0.6517000198364258, 0.9004999995231628, 0.8438000082969666, 0.5134999752044678, 0.4429999887943268, 0.5534999966621399, 0.6633999943733215, 0.7796000242233276, 0.8458999991416931, 0.7462999820709229, 0.7035999894142151, 0.6952999830245972 ], "y_max": [ 0.10209999978542328, 0.09860000014305115, 0.12449999898672104, 0.12060000002384186, 0.14300000667572021, 0.14300000667572021, 0.28610000014305115, 0.28859999775886536, 0.28859999775886536, 0.28610000014305115, 0.3109999895095825, 0.3109999895095825, 0.3305000066757202, 0.4731000065803528, 0.4731000065803528, 0.49559998512268066, 0.5679000020027161, 0.5878999829292297, 0.5849000215530396, 0.6097999811172485, 0.6068999767303467, 0.6323000192642212, 0.6323000192642212, 0.6517999768257141, 0.6743000149726868, 0.6743000149726868, 0.6963000297546387, 0.7188000082969666, 0.7885000109672546, 0.8115000128746033, 0.8115000128746033, 0.8115000128746033, 0.8115000128746033, 0.23579999804496765, 0.4187999963760376, 0.5346999764442444, 0.8603000044822693 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001073_page05
{ "latex": [ "$\\phi $", "$\\phi $", "$\\star $", "$U(1)$", "$\\lambda =\\lambda ^0+\\lambda ^1+\\cdots $", "$\\vec f =q\\vec v\\times \\vec B$", "$\\delta \\vec f =0$", "$\\delta B=\\ast \\delta F$", "$\\rho _{\\rm V}$", "$\\theta =1/B$", "$B$", "$\\theta $", "$\\rho _{\\rm V}$", "$B$", "$B$", "\\begin {eqnarray} \\delta F & \\simeq & [i\\lambda , F]_{\\star } \\\\ &\\simeq & 0-\\theta _{mn}\\partial _m \\lambda ^0\\partial _n F^0 -(\\theta _{mn}\\partial _m \\lambda ^1\\partial _n F^0 +\\theta _{mn}\\partial _m \\lambda ^0\\partial _n F^1), \\end {eqnarray}", "\\begin {eqnarray} \\rho _{\\rm V} & = & \\frac {1}{8\\pi }B^2=\\frac {1}{8\\pi \\theta ^2},\\\\ && \\end {eqnarray}" ], "latex_norm": [ "$ \\phi $", "$ \\phi $", "$ \\star $", "$ U ( 1 ) $", "$ \\lambda = \\lambda ^ { 0 } + \\lambda ^ { 1 } + \\cdots $", "$ \\vec { f } = q \\vec { v } \\times \\vec { B } $", "$ \\delta \\vec { f } = 0 $", "$ \\delta B = \\ast \\delta F $", "$ \\rho _ { V } $", "$ \\theta = 1 \\slash B $", "$ B $", "$ \\theta $", "$ \\rho _ { V } $", "$ B $", "$ B $", "\\begin{align*} \\delta F & \\sime & [ i \\lambda , F ] _ { \\star } \\\\ & \\sime & 0 - \\theta _ { m n } \\partial _ { m } \\lambda ^ { 0 } \\partial _ { n } F ^ { 0 } - ( \\theta _ { m n } \\partial _ { m } \\lambda ^ { 1 } \\partial _ { n } F ^ { 0 } + \\theta _ { m n } \\partial _ { m } \\lambda ^ { 0 } \\partial _ { n } F ^ { 1 } ) , \\end{align*}", "\\begin{align*} \\rho _ { V } & = & \\frac { 1 } { 8 \\pi } B ^ { 2 } = \\frac { 1 } { 8 \\pi \\theta ^ { 2 } } , \\end{align*}" ], "latex_expand": [ "$ \\mitphi $", "$ \\mitphi $", "$ \\star $", "$ \\mitU ( 1 ) $", "$ \\mitlambda = \\mitlambda ^ { 0 } + \\mitlambda ^ { 1 } + \\cdots $", "$ \\vec { \\mitf } = \\mitq \\vec { \\mitv } \\times \\vec { \\mitB } $", "$ \\mitdelta \\vec { \\mitf } = 0 $", "$ \\mitdelta \\mitB = \\ast \\mitdelta \\mitF $", "$ \\mitrho _ { \\mathrm { V } } $", "$ \\mittheta = 1 \\slash \\mitB $", "$ \\mitB $", "$ \\mittheta $", "$ \\mitrho _ { \\mathrm { V } } $", "$ \\mitB $", "$ \\mitB $", "\\begin{align*} \\mitdelta \\mitF & \\sime & [ \\miti \\mitlambda , \\mitF ] _ { \\star } \\\\ & \\sime & 0 - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 0 } \\mitpartial _ { \\mitn } \\mitF ^ { 0 } - ( \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 1 } \\mitpartial _ { \\mitn } \\mitF ^ { 0 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 0 } \\mitpartial _ { \\mitn } \\mitF ^ { 1 } ) , \\end{align*}", "\\begin{align*} \\mitrho _ { \\mathrm { V } } & = & \\frac { 1 } { 8 \\mitpi } \\mitB ^ { 2 } = \\frac { 1 } { 8 \\mitpi \\mittheta ^ { 2 } } , \\end{align*}" ], "x_min": [ 0.3248000144958496, 0.4083999991416931, 0.760200023651123, 0.2184000015258789, 0.19280000030994415, 0.2549999952316284, 0.5383999943733215, 0.6557999849319458, 0.20659999549388885, 0.1817999929189682, 0.8341000080108643, 0.2847000062465668, 0.5695000290870667, 0.883899986743927, 0.49070000648498535, 0.25850000977516174, 0.4291999936103821 ], "y_min": [ 0.23880000412464142, 0.2612000107765198, 0.3091000020503998, 0.32710000872612, 0.427700012922287, 0.4916999936103821, 0.4916999936103821, 0.4961000084877014, 0.6557999849319458, 0.6958000063896179, 0.6967999935150146, 0.7188000082969666, 0.7226999998092651, 0.7192000150680542, 0.826200008392334, 0.35910001397132874, 0.76419997215271 ], "x_max": [ 0.33649998903274536, 0.42010000348091125, 0.7706000208854675, 0.25920000672340393, 0.33169999718666077, 0.3483000099658966, 0.5964999794960022, 0.742900013923645, 0.22939999401569366, 0.25780001282691956, 0.8507000207901001, 0.29510000348091125, 0.5916000008583069, 0.9004999995231628, 0.5044999718666077, 0.7789000272750854, 0.605400025844574 ], "y_max": [ 0.25200000405311584, 0.274399995803833, 0.3158999979496002, 0.3416999876499176, 0.44040000438690186, 0.5092999935150146, 0.5092999935150146, 0.5063999891281128, 0.6650999784469604, 0.7103999853134155, 0.707099974155426, 0.7294999957084656, 0.7325000166893005, 0.7294999957084656, 0.8349999785423279, 0.40220001339912415, 0.7998999953269958 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001073_page06
{ "latex": [ "$\\rho _{\\rm V}$", "\\begin {equation} \\sqrt {\\theta }=\\left (\\frac {1}{8\\pi \\rho _{\\rm V}}\\right )^{1/4}\\simeq \\left (\\frac {1}{8\\pi \\times 10^{-47}\\,\\,\\mathrm {GeV}^4}\\right )^{1/4} \\simeq 5.0\\times 10^{-3}\\,\\,\\mathrm {cm}. \\end {equation}" ], "latex_norm": [ "$ \\rho _ { V } $", "\\begin{equation*} \\sqrt { \\theta } = { ( \\frac { 1 } { 8 \\pi \\rho _ { V } } ) } ^ { 1 \\slash 4 } \\sime { ( \\frac { 1 } { 8 \\pi \\times 1 0 ^ { - 4 7 } \\, \\, { G e V } ^ { 4 } } ) } ^ { 1 \\slash 4 } \\sime 5 . 0 \\times 1 0 ^ { - 3 } \\, \\, c m . \\end{equation*}" ], "latex_expand": [ "$ \\mitrho _ { \\mathrm { V } } $", "\\begin{equation*} \\sqrt { \\mittheta } = { \\left( \\frac { 1 } { 8 \\mitpi \\mitrho _ { \\mathrm { V } } } \\right) } ^ { 1 \\slash 4 } \\sime { \\left( \\frac { 1 } { 8 \\mitpi \\times 1 0 ^ { - 4 7 } \\, \\, { \\mathrm { G e V } } ^ { 4 } } \\right) } ^ { 1 \\slash 4 } \\sime 5 . 0 \\times 1 0 ^ { - 3 } \\, \\, \\mathrm { c m } . \\end{equation*}" ], "x_min": [ 0.37940001487731934, 0.25220000743865967 ], "y_min": [ 0.19480000436306, 0.1128000020980835 ], "x_max": [ 0.40220001339912415, 0.7885000109672546 ], "y_max": [ 0.2046000063419342, 0.15379999577999115 ], "expr_type": [ "embedded", "isolated" ] }
0001073_page07
{ "latex": [ "$\\mathcal {N}=2$", "$R^4$", "$p$" ], "latex_norm": [ "$ N = 2 $", "$ R ^ { 4 } $", "$ p $" ], "latex_expand": [ "$ \\mscrN = 2 $", "$ \\mitR ^ { 4 } $", "$ \\mitp $" ], "x_min": [ 0.6177999973297119, 0.33719998598098755, 0.541100025177002 ], "y_min": [ 0.274399995803833, 0.7240999937057495, 0.763700008392334 ], "x_max": [ 0.6765000224113464, 0.36070001125335693, 0.5515000224113464 ], "y_max": [ 0.2847000062465668, 0.736299991607666, 0.7730000019073486 ], "expr_type": [ "embedded", "embedded", "embedded" ] }
0001101_page01
{ "latex": [ "$^1$", "$^2$", "$^1$", "$^3$", "$^1$", "$^2$", "$^3$", "$N=1$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$" ], "latex_norm": [ "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 1 } $", "$ { } ^ { 3 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $", "$ N = 1 $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $" ], "latex_expand": [ "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 1 } $", "$ { } ^ { 3 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $", "$ \\mitN = 1 $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $" ], "x_min": [ 0.33239999413490295, 0.4691999852657318, 0.6018999814987183, 0.7829999923706055, 0.2840000092983246, 0.30550000071525574, 0.3718000054359436, 0.35109999775886536, 0.30820000171661377 ], "y_min": [ 0.26030001044273376, 0.26030001044273376, 0.26030001044273376, 0.26030001044273376, 0.288100004196167, 0.32710000872612, 0.3662000000476837, 0.5601000189781189, 0.5961999893188477 ], "x_max": [ 0.3407000005245209, 0.47749999165534973, 0.6101999878883362, 0.7912999987602234, 0.2922999858856201, 0.31380000710487366, 0.3801000118255615, 0.39739999175071716, 0.5030999779701233 ], "y_max": [ 0.27149999141693115, 0.27149999141693115, 0.27149999141693115, 0.27149999141693115, 0.29980000853538513, 0.33880001306533813, 0.3774000108242035, 0.5688999891281128, 0.6083999872207642 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001101_page02
{ "latex": [ "$S^1/Z_2$", "$N=1$", "$E_{8}$", "$N=1$", "$R$", "$10^{16}$", "$\\rho $", "$R$", "$E_{8}$", "$3+1$", "$F_{ab}=F_{\\bar a\\bar b}=g^{a \\bar b}F_{a \\bar b}=0$", "$N=1$", "$E_{8}$", "$G$", "$G\\times H \\subseteq E_{8}$", "$E_{8}$", "$H$", "$G$", "$E_{8}$", "$E_{8}$", "$E_{6}$", "$SO(10)$", "$SU(5)$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$E_{8}$", "$E_{6}$", "$G=SU(3)$", "$X$", "$G\\subseteq E_{8}$" ], "latex_norm": [ "$ S ^ { 1 } \\slash Z _ { 2 } $", "$ N = 1 $", "$ E _ { 8 } $", "$ N = 1 $", "$ R $", "$ 1 0 ^ { 1 6 } $", "$ \\rho $", "$ R $", "$ E _ { 8 } $", "$ 3 + 1 $", "$ F _ { a b } = F _ { \\bar { a } \\bar { b } } = g ^ { a \\bar { b } } F _ { a \\bar { b } } = 0 $", "$ N = 1 $", "$ E _ { 8 } $", "$ G $", "$ G \\times H \\subseteq E _ { 8 } $", "$ E _ { 8 } $", "$ H $", "$ G $", "$ E _ { 8 } $", "$ E _ { 8 } $", "$ E _ { 6 } $", "$ S O ( 1 0 ) $", "$ S U ( 5 ) $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ E _ { 8 } $", "$ E _ { 6 } $", "$ G = S U ( 3 ) $", "$ X $", "$ G \\subseteq E _ { 8 } $" ], "latex_expand": [ "$ \\mitS ^ { 1 } \\slash \\mitZ _ { 2 } $", "$ \\mitN = 1 $", "$ \\mitE _ { 8 } $", "$ \\mitN = 1 $", "$ \\mitR $", "$ 1 0 ^ { 1 6 } $", "$ \\mitrho $", "$ \\mitR $", "$ \\mitE _ { 8 } $", "$ 3 + 1 $", "$ \\mitF _ { \\mita \\mitb } = \\mitF _ { \\bar { \\mita } \\bar { \\mitb } } = \\mitg ^ { \\mita \\bar { \\mitb } } \\mitF _ { \\mita \\bar { \\mitb } } = 0 $", "$ \\mitN = 1 $", "$ \\mitE _ { 8 } $", "$ \\mitG $", "$ \\mitG \\times \\mitH \\subseteq \\mitE _ { 8 } $", "$ \\mitE _ { 8 } $", "$ \\mitH $", "$ \\mitG $", "$ \\mitE _ { 8 } $", "$ \\mitE _ { 8 } $", "$ \\mitE _ { 6 } $", "$ \\mitS \\mitO ( 1 0 ) $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitE _ { 8 } $", "$ \\mitE _ { 6 } $", "$ \\mitG = \\mitS \\mitU ( 3 ) $", "$ \\mitX $", "$ \\mitG \\subseteq \\mitE _ { 8 } $" ], "x_min": [ 0.24529999494552612, 0.3711000084877014, 0.4325999915599823, 0.1949000060558319, 0.5992000102996826, 0.7630000114440918, 0.2833000123500824, 0.420199990272522, 0.17900000512599945, 0.5590999722480774, 0.120899997651577, 0.33309999108314514, 0.35589998960494995, 0.5860000252723694, 0.669700026512146, 0.8859999775886536, 0.4519999921321869, 0.7885000109672546, 0.8334000110626221, 0.7027999758720398, 0.7795000076293945, 0.8126999735832214, 0.120899997651577, 0.5342000126838684, 0.2134999930858612, 0.2605000138282776, 0.36559998989105225, 0.7954000234603882, 0.695900022983551 ], "y_min": [ 0.1615999937057495, 0.16359999775886536, 0.16359999775886536, 0.2890999913215637, 0.3100999891757965, 0.30809998512268066, 0.33399999141693115, 0.3310999870300293, 0.4146000146865845, 0.4359999895095825, 0.47360000014305115, 0.47749999165534973, 0.4984999895095825, 0.5189999938011169, 0.5189999938011169, 0.5189999938011169, 0.5400000214576721, 0.5400000214576721, 0.5400000214576721, 0.5609999895095825, 0.5820000171661377, 0.5810999870300293, 0.6021000146865845, 0.6021000146865845, 0.6234999895095825, 0.6234999895095825, 0.6230000257492065, 0.7285000085830688, 0.7494999766349792 ], "x_max": [ 0.29510000348091125, 0.4221999943256378, 0.4546999931335449, 0.24879999458789825, 0.6136999726295471, 0.7968999743461609, 0.2930000126361847, 0.43470001220703125, 0.20110000669956207, 0.6013000011444092, 0.3206000030040741, 0.38839998841285706, 0.3779999911785126, 0.6004999876022339, 0.7817000150680542, 0.9081000089645386, 0.4693000018596649, 0.8036999702453613, 0.8554999828338623, 0.7249000072479248, 0.8015999794006348, 0.8720999956130981, 0.1712999939918518, 0.755299985408783, 0.23559999465942383, 0.2825999855995178, 0.4546999931335449, 0.8126999735832214, 0.7588000297546387 ], "y_max": [ 0.1762000024318695, 0.1729000061750412, 0.17479999363422394, 0.29840001463890076, 0.31940001249313354, 0.31929999589920044, 0.34279999136924744, 0.34040001034736633, 0.42579999566078186, 0.4458000063896179, 0.490200012922287, 0.4867999851703644, 0.5097000002861023, 0.5288000106811523, 0.5307000279426575, 0.5307000279426575, 0.5497999787330627, 0.5497999787330627, 0.5511999726295471, 0.5722000002861023, 0.5932000279426575, 0.5947999954223633, 0.6158000230789185, 0.6158000230789185, 0.635200023651123, 0.635200023651123, 0.6362000107765198, 0.7378000020980835, 0.760699987411499 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001101_page03
{ "latex": [ "$G$", "$X$", "$SU(n)\\subset E_{8}$", "$SU(n)$", "$SU(n)$", "$E_{6}$", "$SO(10)$", "$SU(5)$", "$SU(3)$", "$SU(4)$", "$SU(5)$", "$E_{8}$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$SU(5)$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$" ], "latex_norm": [ "$ G $", "$ X $", "$ S U ( n ) \\subset E _ { 8 } $", "$ S U ( n ) $", "$ S U ( n ) $", "$ E _ { 6 } $", "$ S O ( 1 0 ) $", "$ S U ( 5 ) $", "$ S U ( 3 ) $", "$ S U ( 4 ) $", "$ S U ( 5 ) $", "$ E _ { 8 } $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ S U ( 5 ) $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $" ], "latex_expand": [ "$ \\mitG $", "$ \\mitX $", "$ \\mitS \\mitU ( \\mitn ) \\subset \\mitE _ { 8 } $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitE _ { 6 } $", "$ \\mitS \\mitO ( 1 0 ) $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitS \\mitU ( 3 ) $", "$ \\mitS \\mitU ( 4 ) $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitE _ { 8 } $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $" ], "x_min": [ 0.7269999980926514, 0.7878000140190125, 0.3718000054359436, 0.47620001435279846, 0.120899997651577, 0.2418999969959259, 0.274399995803833, 0.37389999628067017, 0.17970000207424164, 0.24050000309944153, 0.33169999718666077, 0.7975000143051147, 0.33660000562667847, 0.8568999767303467, 0.6039999723434448 ], "y_min": [ 0.17139999568462372, 0.17190000414848328, 0.3174000084400177, 0.3379000127315521, 0.4009000062942505, 0.44339999556541443, 0.44290000200271606, 0.44290000200271606, 0.46389999985694885, 0.46389999985694885, 0.46389999985694885, 0.4643999934196472, 0.48489999771118164, 0.7773000001907349, 0.79830002784729 ], "x_max": [ 0.7422000169754028, 0.8044000267982483, 0.4740999937057495, 0.5286999940872192, 0.17339999973773956, 0.2639999985694885, 0.33379998803138733, 0.42500001192092896, 0.23010000586509705, 0.29159998893737793, 0.38280001282691956, 0.819599986076355, 0.5570999979972839, 0.9079999923706055, 0.8209999799728394 ], "y_max": [ 0.18119999766349792, 0.18119999766349792, 0.33059999346733093, 0.3515999913215637, 0.4146000146865845, 0.45509999990463257, 0.4560999870300293, 0.4560999870300293, 0.4771000146865845, 0.4771000146865845, 0.4771000146865845, 0.47609999775886536, 0.49810001254081726, 0.7910000085830688, 0.8119999766349792 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001101_page04
{ "latex": [ "$N=1$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$3+1$", "$3+1$", "$Z=X/\\tau _{X}$", "$\\pi _{1}(Z)=\\ZZ _{2}$", "$SU(5)$", "$\\pi _{1}(Z)=\\ZZ _{2}$", "$SU(5)$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$B=F_{2}$", "$B=dP_{3}$", "$SU(n)$", "$n$", "$N=1$", "$SU(3)_{C}\\times SU(2)_{L}\\times U(1)_{Y}$", "$X$", "$Z=X/\\tau _X$", "$E_8$", "$X$", "$\\sigma $", "$\\xi $", "$B$", "$X$", "$X$" ], "latex_norm": [ "$ N = 1 $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ 3 + 1 $", "$ 3 + 1 $", "$ Z = X \\slash \\tau _ { X } $", "$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $", "$ S U ( 5 ) $", "$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $", "$ S U ( 5 ) $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ B = F _ { 2 } $", "$ B = d P _ { 3 } $", "$ S U ( n ) $", "$ n $", "$ N = 1 $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ X $", "$ Z = X \\slash \\tau _ { X } $", "$ E _ { 8 } $", "$ X $", "$ \\sigma $", "$ \\xi $", "$ B $", "$ X $", "$ X $" ], "latex_expand": [ "$ \\mitN = 1 $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ 3 + 1 $", "$ 3 + 1 $", "$ \\mitZ = \\mitX \\slash \\mittau _ { \\mitX } $", "$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitB = \\mitF _ { 2 } $", "$ \\mitB = \\mitd \\mitP _ { 3 } $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitn $", "$ \\mitN = 1 $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitX $", "$ \\mitZ = \\mitX \\slash \\mittau _ { \\mitX } $", "$ \\mitE _ { 8 } $", "$ \\mitX $", "$ \\mitsigma $", "$ \\mitxi $", "$ \\mitB $", "$ \\mitX $", "$ \\mitX $" ], "x_min": [ 0.3779999911785126, 0.19900000095367432, 0.2046000063419342, 0.7635999917984009, 0.27709999680519104, 0.120899997651577, 0.8521000146865845, 0.17069999873638153, 0.6309999823570251, 0.8258000016212463, 0.120899997651577, 0.38909998536109924, 0.6807000041007996, 0.5266000032424927, 0.6122999787330627, 0.14509999752044678, 0.2791999876499176, 0.120899997651577, 0.5059000253677368, 0.47749999165534973, 0.7781999707221985, 0.26809999346733093, 0.31859999895095825, 0.6855999827384949, 0.7249000072479248, 0.8141000270843506 ], "y_min": [ 0.10890000313520432, 0.14990000426769257, 0.17239999771118164, 0.17239999771118164, 0.3589000105857849, 0.3799000084400177, 0.3799000084400177, 0.4009000062942505, 0.4009000062942505, 0.4009000062942505, 0.4219000041484833, 0.44339999556541443, 0.4643999934196472, 0.5654000043869019, 0.5698000192642212, 0.5874000191688538, 0.6074000000953674, 0.6499000191688538, 0.6704000234603882, 0.6919000148773193, 0.7445999979972839, 0.7685999870300293, 0.7651000022888184, 0.7651000022888184, 0.7651000022888184, 0.7860999703407288 ], "x_max": [ 0.42910000681877136, 0.42149999737739563, 0.24740000069141388, 0.8058000206947327, 0.3628000020980835, 0.21209999918937683, 0.9024999737739563, 0.2687999904155731, 0.6814000010490417, 0.9079999923706055, 0.25839999318122864, 0.44850000739097595, 0.7498000264167786, 0.5791000127792358, 0.6240000128746033, 0.20180000364780426, 0.4975999891757965, 0.13750000298023224, 0.5936999917030334, 0.49959999322891235, 0.7954999804496765, 0.2791999876499176, 0.32829999923706055, 0.7008000016212463, 0.7422000169754028, 0.8313999772071838 ], "y_max": [ 0.11869999766349792, 0.16359999775886536, 0.18219999969005585, 0.18219999969005585, 0.3725999891757965, 0.3935999870300293, 0.3935999870300293, 0.4146000146865845, 0.4146000146865845, 0.4146000146865845, 0.43560001254081726, 0.45509999990463257, 0.47609999775886536, 0.5791000127792358, 0.5756999850273132, 0.5967000126838684, 0.6211000084877014, 0.6596999764442444, 0.6836000084877014, 0.7035999894142151, 0.7538999915122986, 0.7749000191688538, 0.7773000001907349, 0.7749000191688538, 0.7749000191688538, 0.7958999872207642 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001101_page05
{ "latex": [ "$\\tau _{B}$", "$B$", "$a$", "$b$", "$\\tau _{B}$", "$\\tau _{X}$", "$X$", "$\\mathcal {F}_{\\tau _B}$", "$\\tau _{B}$", "$V$", "$X$", "$\\eta $", "$B$", "$\\lambda $", "$\\kappa _i$", "$m$", "$B$", "$V$", "$V_{Z}$", "$Z$", "$\\eta $", "$B$", "$\\k _i$", "$V_{Z}$", "$Z$", "$N_{\\text {gen}}=3$", "$V$", "$X$", "\\begin {equation} g_{2} = 4(a^{2}-b) , \\qquad g_{3} = 4ab . \\label {eq:43} \\end {equation}", "\\begin {equation} \\Delta = \\Delta _{1}\\Delta _{2}^{2} , \\label {eq:44} \\end {equation}", "\\begin {equation} \\Delta _{1} = a^{2}-4b , \\qquad \\Delta _{2}=4(2a^{2}+b) . \\label {eq:45} \\end {equation}", "\\begin {equation} \\mathcal {F}_{\\tau _B} \\cap \\{\\Delta =0\\} = \\emptyset . \\label {eq:46} \\end {equation}", "\\begin {equation} \\l - \\sfrac {1}{2} \\in \\ZZ , \\qquad \\k _i - \\shf m \\in \\ZZ , \\label {eq:47} \\end {equation}", "\\begin {equation} \\eta \\text { is effective} \\label {eq:47A} \\end {equation}", "\\begin {equation} \\begin {aligned} \\tau _{B}(\\eta ) &= \\eta , \\\\ \\sum _i \\k _i &= \\eta \\cdot c_1 \\end {aligned} \\label {eq:48} \\end {equation}", "\\begin {equation} N_{\\text {gen}} = \\sfrac {1}{2}c_{3}(V_{Z}) . \\label {eq:49} \\end {equation}" ], "latex_norm": [ "$ \\tau _ { B } $", "$ B $", "$ a $", "$ b $", "$ \\tau _ { B } $", "$ \\tau _ { X } $", "$ X $", "$ F _ { \\tau _ { B } } $", "$ \\tau _ { B } $", "$ V $", "$ X $", "$ \\eta $", "$ B $", "$ \\lambda $", "$ \\kappa _ { i } $", "$ m $", "$ B $", "$ V $", "$ V _ { Z } $", "$ Z $", "$ \\eta $", "$ B $", "$ \\kappa _ { i } $", "$ V _ { Z } $", "$ Z $", "$ N _ { g e n } = 3 $", "$ V $", "$ X $", "\\begin{equation*} g _ { 2 } = 4 ( a ^ { 2 } - b ) , \\qquad g _ { 3 } = 4 a b . \\end{equation*}", "\\begin{equation*} \\Delta = \\Delta _ { 1 } \\Delta _ { 2 } ^ { 2 } , \\end{equation*}", "\\begin{equation*} \\Delta _ { 1 } = a ^ { 2 } - 4 b , \\qquad \\Delta _ { 2 } = 4 ( 2 a ^ { 2 } + b ) . \\end{equation*}", "\\begin{equation*} F _ { \\tau _ { B } } \\cap \\{ \\Delta = 0 \\} = \\emptyset . \\end{equation*}", "\\begin{equation*} \\lambda - \\frac { 1 } { 2 } \\in Z , \\qquad \\kappa _ { i } - \\frac { 1 } { 2 } m \\in Z , \\end{equation*}", "\\begin{equation*} \\eta ~ i s ~ e f f e c t i v e \\end{equation*}", "\\begin{align*} \\begin{array}{rl} \\tau _ { B } ( \\eta ) & = \\eta , \\\\ \\sum _ { i } \\kappa _ { i } & = \\eta \\cdot c _ { 1 } \\end{array} \\end{align*}", "\\begin{equation*} N _ { g e n } = \\frac { 1 } { 2 } c _ { 3 } ( V _ { Z } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mittau _ { \\mitB } $", "$ \\mitB $", "$ \\mita $", "$ \\mitb $", "$ \\mittau _ { \\mitB } $", "$ \\mittau _ { \\mitX } $", "$ \\mitX $", "$ \\mscrF _ { \\mittau _ { \\mitB } } $", "$ \\mittau _ { \\mitB } $", "$ \\mitV $", "$ \\mitX $", "$ \\miteta $", "$ \\mitB $", "$ \\mitlambda $", "$ \\mitkappa _ { \\miti } $", "$ \\mitm $", "$ \\mitB $", "$ \\mitV $", "$ \\mitV _ { \\mitZ } $", "$ \\mitZ $", "$ \\miteta $", "$ \\mitB $", "$ \\mitkappa _ { \\miti } $", "$ \\mitV _ { \\mitZ } $", "$ \\mitZ $", "$ \\mitN _ { \\mathrm { g e n } } = 3 $", "$ \\mitV $", "$ \\mitX $", "\\begin{equation*} \\mitg _ { 2 } = 4 ( \\mita ^ { 2 } - \\mitb ) , \\qquad \\mitg _ { 3 } = 4 \\mita \\mitb . \\end{equation*}", "\\begin{equation*} \\mupDelta = \\mupDelta _ { 1 } \\mupDelta _ { 2 } ^ { 2 } , \\end{equation*}", "\\begin{equation*} \\mupDelta _ { 1 } = \\mita ^ { 2 } - 4 \\mitb , \\qquad \\mupDelta _ { 2 } = 4 ( 2 \\mita ^ { 2 } + \\mitb ) . \\end{equation*}", "\\begin{equation*} \\displaystyle \\mscrF _ { \\mittau _ { \\mitB } } \\cap \\{ \\mupDelta = 0 \\} = \\varnothing . \\end{equation*}", "\\begin{equation*} \\mitlambda - { \\textstyle \\frac { 1 } { 2 } } \\in \\BbbZ , \\qquad \\mitkappa _ { \\miti } - { \\textstyle \\frac { 1 } { 2 } } \\mitm \\in \\BbbZ , \\end{equation*}", "\\begin{equation*} \\miteta ~ \\mathrm { i s } ~ \\mathrm { e f f e c t i v e } \\end{equation*}", "\\begin{align*} \\begin{array}{rl} \\mittau _ { \\mitB } ( \\miteta ) & = \\miteta , \\\\ \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } & = \\miteta \\cdot \\mitc _ { 1 } \\end{array} \\end{align*}", "\\begin{equation*} \\mitN _ { \\mathrm { g e n } } = { \\textstyle \\frac { 1 } { 2 } } \\mitc _ { 3 } ( \\mitV _ { \\mitZ } ) . \\end{equation*}" ], "x_min": [ 0.8618000149726868, 0.16660000383853912, 0.3677000105381012, 0.42089998722076416, 0.6151000261306763, 0.25290000438690186, 0.3061999976634979, 0.5598000288009644, 0.6488999724388123, 0.7193999886512756, 0.7774999737739563, 0.6115999817848206, 0.7193999886512756, 0.16660000383853912, 0.2190999984741211, 0.20800000429153442, 0.27300000190734863, 0.515500009059906, 0.7864999771118164, 0.8555999994277954, 0.2093999981880188, 0.2467000037431717, 0.4277999997138977, 0.30959999561309814, 0.3765999972820282, 0.2053000032901764, 0.7580999732017517, 0.8181999921798706, 0.4223000109195709, 0.49000000953674316, 0.3953000009059906, 0.45820000767707825, 0.42089998722076416, 0.487199991941452, 0.48240000009536743, 0.44920000433921814 ], "y_min": [ 0.28119999170303345, 0.298799991607666, 0.30219998955726624, 0.298799991607666, 0.30219998955726624, 0.32280001044273376, 0.3197999894618988, 0.3197999894618988, 0.32280001044273376, 0.3905999958515167, 0.3905999958515167, 0.41499999165534973, 0.4115999937057495, 0.43209999799728394, 0.43549999594688416, 0.5015000104904175, 0.5640000104904175, 0.5952000021934509, 0.5952000021934509, 0.5952000021934509, 0.6195999979972839, 0.6161999702453613, 0.6195999979972839, 0.7567999958992004, 0.7567999958992004, 0.8227999806404114, 0.8227999806404114, 0.8227999806404114, 0.13570000231266022, 0.18950000405311584, 0.23880000412464142, 0.3481000065803528, 0.46000000834465027, 0.5278000235557556, 0.6431999802589417, 0.7842000126838684 ], "x_max": [ 0.8824999928474426, 0.1817999929189682, 0.3781000077724457, 0.4291999936103821, 0.6358000040054321, 0.2750000059604645, 0.32280001044273376, 0.5916000008583069, 0.6696000099182129, 0.7346000075340271, 0.7947999835014343, 0.6212999820709229, 0.7346000075340271, 0.1776999980211258, 0.23569999635219574, 0.22460000216960907, 0.2881999909877777, 0.5307000279426575, 0.8093000054359436, 0.8701000213623047, 0.21979999542236328, 0.26190000772476196, 0.44440001249313354, 0.33169999718666077, 0.3910999894142151, 0.27649998664855957, 0.7732999920845032, 0.8348000049591064, 0.6552000045776367, 0.5839999914169312, 0.6814000010490417, 0.6184999942779541, 0.6531000137329102, 0.5895000100135803, 0.5943999886512756, 0.5819000005722046 ], "y_max": [ 0.28949999809265137, 0.30809998512268066, 0.30809998512268066, 0.30809998512268066, 0.3100000023841858, 0.3310999870300293, 0.32910001277923584, 0.33250001072883606, 0.3310999870300293, 0.39989998936653137, 0.39989998936653137, 0.42329999804496765, 0.42089998722076416, 0.44190001487731934, 0.4438000023365021, 0.5077999830245972, 0.5738000273704529, 0.6050000190734863, 0.6068999767303467, 0.6050000190734863, 0.6279000043869019, 0.6255000233650208, 0.6273999810218811, 0.7684999704360962, 0.7666000127792358, 0.8360000252723694, 0.832099974155426, 0.832099974155426, 0.1543000042438507, 0.2084999978542328, 0.2574000060558319, 0.36570000648498535, 0.4794999957084656, 0.542900025844574, 0.6973000168800354, 0.8036999702453613 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page06
{ "latex": [ "$[W_{Z}]$", "$V_{Z1}$", "$V_{Z2}$", "$V_{Z2}$", "$E_{8}$", "$c_{2}(V_{Z2})$", "$X$", "$[W_{Z}]$", "$Z$", "$[W_{Z}]$", "$[W]$", "$X$", "$[W]$", "\\begin {equation} 6 = \\lambda \\eta ( \\eta -nc_{1}) . \\label {eq:50} \\end {equation}", "\\begin {equation} [W_{Z}] = c_{2}(TZ) - c_{2}(V_{Z1}) - c_{2}(V_{Z2}) , \\label {eq:51} \\end {equation}", "\\begin {equation} [W_{Z}] = \\frac {1}{2}q_{*}[W] , \\label {eq:51A} \\end {equation}", "\\begin {equation} [W] = c_{2}(TX) - c_{2}(V) . \\label {eq:52} \\end {equation}", "\\begin {equation} [W] = \\sigma _{*}W_{B} + c(F-N) + dN \\label {eq:53} \\end {equation}", "\\begin {equation} W_{B} = 12c_1-\\eta \\label {eq:54} \\end {equation}", "\\begin {align} c &= c_2 + \\left (\\frac {1}{24}(n^{3}-n)+11\\right )c_1^{2} - \\hf \\left (\\l ^{2}-\\frac {1}{4}\\right ) n\\eta \\left (\\eta -nc_1\\right ) - \\sum _{i}\\k _i^{2} , \\\\ d &= c_2 + \\left (\\frac {1}{24}(n^{3}-n)-1\\right )c_1^{2} - \\hf \\left (\\l ^{2}-\\frac {1}{4}\\right ) n\\eta \\left (\\eta -nc_1\\right ) - \\sum _{i}\\k _i^{2} + \\sum _{i}\\k _i . \\end {align}", "\\begin {equation} W_{B} \\text { is effective in $B$}, \\quad c \\geq 0, \\quad d \\geq 0 . \\label {eq:57} \\end {equation}" ], "latex_norm": [ "$ [ W _ { Z } ] $", "$ V _ { Z 1 } $", "$ V _ { Z 2 } $", "$ V _ { Z 2 } $", "$ E _ { 8 } $", "$ c _ { 2 } ( V _ { Z 2 } ) $", "$ X $", "$ [ W _ { Z } ] $", "$ Z $", "$ [ W _ { Z } ] $", "$ [ W ] $", "$ X $", "$ [ W ] $", "\\begin{equation*} 6 = \\lambda \\eta ( \\eta - n c _ { 1 } ) . \\end{equation*}", "\\begin{equation*} [ W _ { Z } ] = c _ { 2 } ( T Z ) - c _ { 2 } ( V _ { Z 1 } ) - c _ { 2 } ( V _ { Z 2 } ) , \\end{equation*}", "\\begin{equation*} [ W _ { Z } ] = \\frac { 1 } { 2 } q _ { \\ast } [ W ] , \\end{equation*}", "\\begin{equation*} [ W ] = c _ { 2 } ( T X ) - c _ { 2 } ( V ) . \\end{equation*}", "\\begin{equation*} [ W ] = \\sigma _ { \\ast } W _ { B } + c ( F - N ) + d N \\end{equation*}", "\\begin{equation*} W _ { B } = 1 2 c _ { 1 } - \\eta \\end{equation*}", "\\begin{align*} c & = c _ { 2 } + ( \\frac { 1 } { 2 4 } ( n ^ { 3 } - n ) + 1 1 ) c _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } ( \\lambda ^ { 2 } - \\frac { 1 } { 4 } ) n \\eta ( \\eta - n c _ { 1 } ) - \\sum _ { i } \\kappa _ { i } ^ { 2 } , \\\\ d & = c _ { 2 } + ( \\frac { 1 } { 2 4 } ( n ^ { 3 } - n ) - 1 ) c _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } ( \\lambda ^ { 2 } - \\frac { 1 } { 4 } ) n \\eta ( \\eta - n c _ { 1 } ) - \\sum _ { i } \\kappa _ { i } ^ { 2 } + \\sum _ { i } \\kappa _ { i } . \\end{align*}", "\\begin{equation*} W _ { B } i s ~ e f f e c t i v e ~ i n ~ B , \\quad c \\geq 0 , \\quad d \\geq 0 . \\end{equation*}" ], "latex_expand": [ "$ [ \\mitW _ { \\mitZ } ] $", "$ \\mitV _ { \\mitZ 1 } $", "$ \\mitV _ { \\mitZ 2 } $", "$ \\mitV _ { \\mitZ 2 } $", "$ \\mitE _ { 8 } $", "$ \\mitc _ { 2 } ( \\mitV _ { \\mitZ 2 } ) $", "$ \\mitX $", "$ [ \\mitW _ { \\mitZ } ] $", "$ \\mitZ $", "$ [ \\mitW _ { \\mitZ } ] $", "$ [ \\mitW ] $", "$ \\mitX $", "$ [ \\mitW ] $", "\\begin{equation*} 6 = \\mitlambda \\miteta ( \\miteta - \\mitn \\mitc _ { 1 } ) . \\end{equation*}", "\\begin{equation*} [ \\mitW _ { \\mitZ } ] = \\mitc _ { 2 } ( \\mitT \\mitZ ) - \\mitc _ { 2 } ( \\mitV _ { \\mitZ 1 } ) - \\mitc _ { 2 } ( \\mitV _ { \\mitZ 2 } ) , \\end{equation*}", "\\begin{equation*} [ \\mitW _ { \\mitZ } ] = \\frac { 1 } { 2 } \\mitq _ { \\ast } [ \\mitW ] , \\end{equation*}", "\\begin{equation*} [ \\mitW ] = \\mitc _ { 2 } ( \\mitT \\mitX ) - \\mitc _ { 2 } ( \\mitV ) . \\end{equation*}", "\\begin{equation*} [ \\mitW ] = \\mitsigma _ { \\ast } \\mitW _ { \\mitB } + \\mitc ( \\mitF - \\mitN ) + \\mitd \\mitN \\end{equation*}", "\\begin{equation*} \\mitW _ { \\mitB } = 1 2 \\mitc _ { 1 } - \\miteta \\end{equation*}", "\\begin{align*} \\mitc & = \\mitc _ { 2 } + \\left( \\frac { 1 } { 2 4 } ( \\mitn ^ { 3 } - \\mitn ) + 1 1 \\right) \\mitc _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } \\left( \\mitlambda ^ { 2 } - \\frac { 1 } { 4 } \\right) \\mitn \\miteta \\left( \\miteta - \\mitn \\mitc _ { 1 } \\right) - \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } , \\\\ \\mitd & = \\mitc _ { 2 } + \\left( \\frac { 1 } { 2 4 } ( \\mitn ^ { 3 } - \\mitn ) - 1 \\right) \\mitc _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } \\left( \\mitlambda ^ { 2 } - \\frac { 1 } { 4 } \\right) \\mitn \\miteta \\left( \\miteta - \\mitn \\mitc _ { 1 } \\right) - \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } + \\sum _ { \\miti } \\mitkappa _ { \\miti } . \\end{align*}", "\\begin{equation*} \\mitW _ { \\mitB } \\mathrm { i s ~ e f f e c t i v e ~ i n } \\mitB , \\quad \\mitc \\geq 0 , \\quad \\mitd \\geq 0 . \\end{equation*}" ], "x_min": [ 0.1720999926328659, 0.37040001153945923, 0.4408999979496002, 0.673799991607666, 0.28610000014305115, 0.6585999727249146, 0.4519999921321869, 0.20319999754428864, 0.120899997651577, 0.6614000201225281, 0.32829999923706055, 0.7346000075340271, 0.4000999927520752, 0.4706000089645386, 0.3677000105381012, 0.44850000739097595, 0.42089998722076416, 0.3898000121116638, 0.45399999618530273, 0.18799999356269836, 0.3849000036716461 ], "y_min": [ 0.24899999797344208, 0.2709999978542328, 0.2709999978542328, 0.2919999957084656, 0.3125, 0.31200000643730164, 0.40139999985694885, 0.6826000213623047, 0.7045999765396118, 0.7035999894142151, 0.7246000170707703, 0.725600004196167, 0.7768999934196472, 0.1386999934911728, 0.211899995803833, 0.35600000619888306, 0.4311999976634979, 0.486299991607666, 0.5365999937057495, 0.5913000106811523, 0.8086000084877014 ], "x_max": [ 0.21150000393390656, 0.4000999927520752, 0.4706000089645386, 0.703499972820282, 0.3075000047683716, 0.7179999947547913, 0.46860000491142273, 0.2425999939441681, 0.13539999723434448, 0.7008000016212463, 0.3587000072002411, 0.7519000172615051, 0.43050000071525574, 0.6061000227928162, 0.6600000262260437, 0.5791000127792358, 0.6108999848365784, 0.6420000195503235, 0.5770000219345093, 0.7940999865531921, 0.6916999816894531 ], "y_max": [ 0.26269999146461487, 0.28220000863075256, 0.28220000863075256, 0.30320000648498535, 0.32420000433921814, 0.3257000148296356, 0.41119998693466187, 0.6963000297546387, 0.7139000296592712, 0.7172999978065491, 0.7383000254631042, 0.7348999977111816, 0.7906000018119812, 0.155799999833107, 0.22849999368190765, 0.3862999975681305, 0.44830000400543213, 0.5029000043869019, 0.5516999959945679, 0.6697999835014343, 0.8237000107765198 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page07
{ "latex": [ "$E_{8}$", "$G$", "$H$", "$E_{8}$", "$H$", "$G \\times H \\subset E_{8}$", "$G$", "$H$", "$H$", "$SU(5)\\times SU(5)\\subset E_{8}$", "$Z$", "\\begin {equation} G \\times H \\subset E_{8} . \\label {eq:58} \\end {equation}", "\\begin {equation} \\eta > nc_{1}. \\label {eq:59} \\end {equation}", "\\begin {equation} G = SU(5) . \\label {eq:60} \\end {equation}", "\\begin {equation} H = SU(5) . \\label {eq:61} \\end {equation}", "\\begin {equation} \\pi _{1}(Z)=\\ZZ _{2} . \\label {eq:62} \\end {equation}", "\\begin {equation} SU(5) \\rightarrow SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y} , \\label {eq:63} \\end {equation}", "\\begin {equation} \\mathcal {G} = \\left (\\begin {array}{cc} \\mathbf {1}_3 & \\\\ & -\\mathbf {1}_2 \\end {array}\\right ) . \\label {eq:64} \\end {equation}" ], "latex_norm": [ "$ E _ { 8 } $", "$ G $", "$ H $", "$ E _ { 8 } $", "$ H $", "$ G \\times H \\subset E _ { 8 } $", "$ G $", "$ H $", "$ H $", "$ S U ( 5 ) \\times S U ( 5 ) \\subset E _ { 8 } $", "$ Z $", "\\begin{equation*} G \\times H \\subset E _ { 8 } . \\end{equation*}", "\\begin{equation*} \\eta > n c _ { 1 } . \\end{equation*}", "\\begin{equation*} G = S U ( 5 ) . \\end{equation*}", "\\begin{equation*} H = S U ( 5 ) . \\end{equation*}", "\\begin{equation*} \\pi _ { 1 } ( Z ) = Z _ { 2 } . \\end{equation*}", "\\begin{equation*} S U ( 5 ) \\rightarrow S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } , \\end{equation*}", "\\begin{align*} G = ( \\begin{array}{cc} 1 _ { 3 } & \\\\ & - 1 _ { 2 } \\end{array} ) . \\end{align*}" ], "latex_expand": [ "$ \\mitE _ { 8 } $", "$ \\mitG $", "$ \\mitH $", "$ \\mitE _ { 8 } $", "$ \\mitH $", "$ \\mitG \\times \\mitH \\subset \\mitE _ { 8 } $", "$ \\mitG $", "$ \\mitH $", "$ \\mitH $", "$ \\mitS \\mitU ( 5 ) \\times \\mitS \\mitU ( 5 ) \\subset \\mitE _ { 8 } $", "$ \\mitZ $", "\\begin{equation*} \\mitG \\times \\mitH \\subset \\mitE _ { 8 } . \\end{equation*}", "\\begin{equation*} \\miteta > \\mitn \\mitc _ { 1 } . \\end{equation*}", "\\begin{equation*} \\mitG = \\mitS \\mitU ( 5 ) . \\end{equation*}", "\\begin{equation*} \\mitH = \\mitS \\mitU ( 5 ) . \\end{equation*}", "\\begin{equation*} \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } . \\end{equation*}", "\\begin{equation*} \\mitS \\mitU ( 5 ) \\rightarrow \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } , \\end{equation*}", "\\begin{align*} \\mscrG = \\left( \\begin{array}{cc} \\mbfone _ { 3 } & \\\\ & - \\mbfone _ { 2 } \\end{array} \\right) . \\end{align*}" ], "x_min": [ 0.3946000039577484, 0.1395999938249588, 0.29789999127388, 0.8859999775886536, 0.27639999985694885, 0.3765999972820282, 0.5245000123977661, 0.2142000049352646, 0.2653999924659729, 0.3068000078201294, 0.19769999384880066, 0.46160000562667847, 0.5037999749183655, 0.46720001101493835, 0.4657999873161316, 0.4657999873161316, 0.3614000082015991, 0.45750001072883606 ], "y_min": [ 0.10890000313520432, 0.16850000619888306, 0.18950000405311584, 0.23100000619888306, 0.25200000405311584, 0.3012999892234802, 0.3012999892234802, 0.32179999351501465, 0.40720000863075256, 0.42719998955726624, 0.5679000020027161, 0.13529999554157257, 0.35010001063346863, 0.4535999894142151, 0.5131999850273132, 0.5938000082969666, 0.6528000235557556, 0.7451000213623047 ], "x_max": [ 0.41670000553131104, 0.15410000085830688, 0.31520000100135803, 0.9081000089645386, 0.2937000095844269, 0.48159998655319214, 0.5396999716758728, 0.23149999976158142, 0.2827000021934509, 0.47609999775886536, 0.21220000088214874, 0.5694000124931335, 0.5735999941825867, 0.5640000104904175, 0.5652999877929688, 0.5652999877929688, 0.6661999821662903, 0.6191999912261963 ], "y_max": [ 0.12060000002384186, 0.1777999997138977, 0.1987999975681305, 0.24269999563694, 0.26179999113082886, 0.3125, 0.31060001254081726, 0.33160001039505005, 0.4165000021457672, 0.44040000438690186, 0.5771999955177307, 0.14990000426769257, 0.3637999892234802, 0.4702000021934509, 0.5297999978065491, 0.6104000210762024, 0.6699000000953674, 0.7910000085830688 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page08
{ "latex": [ "$\\PP ^1$", "$\\PP ^1$", "$F_2$", "$\\cS $", "$\\cE $", "$F_2$", "$\\tau _B$", "$B$", "$\\PP ^1$", "$(u,v)$", "$\\PP ^1$", "$(u,v)\\to (-u,v)$", "$(0,1)$", "$(1,0)$", "$u$", "$\\tau_B$", "$\\PP ^1$", "$\\PP ^1$", "${\\cal {F}}_{\\tau _{B}}$", "$\\tau_X$", "$\\tau_B$", "$a$", "$b$", "$K_B^{-2}$", "$K_B^{-4}$", "$K_B$", "$\\tau_B$", "$X$", "$a$", "$b$", "$\\Delta _{1}$", "$\\Delta _{2}$", "$a$", "$b$", "\\begin {equation} B = F_2. \\end {equation}", "\\begin {equation} \\cS \\cdot \\cS = -2, \\qquad \\cS \\cdot \\cE = 1, \\qquad \\cE \\cdot \\cE = 0. \\label {eq:intc2} \\end {equation}", "\\begin {equation} c_1(F_2) = 2\\cS + 4\\cE , \\label {c1F2} \\end {equation}", "\\begin {equation} c_2(F_2) = 4. \\label {c2F2} \\end {equation}", "\\begin {equation} \\D _1 = a^2 - 4b, \\qquad \\D _2 = 4\\left (2a^2 + b\\right ), \\end {equation}", "\\begin {equation} \\tau _B(a) = a, \\qquad \\tau _B(b) = b. \\label {eq:hi} \\end {equation}" ], "latex_norm": [ "$ { C P } ^ { 1 } $", "$ { C P } ^ { 1 } $", "$ F _ { 2 } $", "$ S $", "$ E $", "$ F _ { 2 } $", "$ \\tau _ { B } $", "$ B $", "$ { C P } ^ { 1 } $", "$ ( u , v ) $", "$ { C P } ^ { 1 } $", "$ ( u , v ) \\rightarrow ( - u , v ) $", "$ ( 0 , 1 ) $", "$ ( 1 , 0 ) $", "$ u $", "$ \\tau _ { B } $", "$ { C P } ^ { 1 } $", "$ { C P } ^ { 1 } $", "$ F _ { \\tau _ { B } } $", "$ \\tau _ { X } $", "$ \\tau _ { B } $", "$ a $", "$ b $", "$ K _ { B } ^ { - 2 } $", "$ K _ { B } ^ { - 4 } $", "$ K _ { B } $", "$ \\tau _ { B } $", "$ X $", "$ a $", "$ b $", "$ \\Delta _ { 1 } $", "$ \\Delta _ { 2 } $", "$ a $", "$ b $", "\\begin{equation*} B = F _ { 2 } . \\end{equation*}", "\\begin{equation*} S \\cdot S = - 2 , \\qquad S \\cdot E = 1 , \\qquad E \\cdot E = 0 . \\end{equation*}", "\\begin{equation*} c _ { 1 } ( F _ { 2 } ) = 2 S + 4 E , \\end{equation*}", "\\begin{equation*} c _ { 2 } ( F _ { 2 } ) = 4 . \\end{equation*}", "\\begin{equation*} \\Delta _ { 1 } = a ^ { 2 } - 4 b , \\qquad \\Delta _ { 2 } = 4 ( 2 a ^ { 2 } + b ) , \\end{equation*}", "\\begin{equation*} \\tau _ { B } ( a ) = a , \\qquad \\tau _ { B } ( b ) = b . \\end{equation*}" ], "latex_expand": [ "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ \\mitF _ { 2 } $", "$ \\mscrS $", "$ \\mscrE $", "$ \\mitF _ { 2 } $", "$ \\mittau _ { \\mitB } $", "$ \\mitB $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ ( \\mitu , \\mitv ) $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ ( \\mitu , \\mitv ) \\rightarrow ( - \\mitu , \\mitv ) $", "$ ( 0 , 1 ) $", "$ ( 1 , 0 ) $", "$ \\mitu $", "$ \\mittau _ { \\mitB } $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ \\mitF _ { \\mittau _ { \\mitB } } $", "$ \\mittau _ { \\mitX } $", "$ \\mittau _ { \\mitB } $", "$ \\mita $", "$ \\mitb $", "$ \\mitK _ { \\mitB } ^ { - 2 } $", "$ \\mitK _ { \\mitB } ^ { - 4 } $", "$ \\mitK _ { \\mitB } $", "$ \\mittau _ { \\mitB } $", "$ \\mitX $", "$ \\mita $", "$ \\mitb $", "$ \\mupDelta _ { 1 } $", "$ \\mupDelta _ { 2 } $", "$ \\mita $", "$ \\mitb $", "\\begin{equation*} \\mitB = \\mitF _ { 2 } . \\end{equation*}", "\\begin{equation*} \\mscrS \\cdot \\mscrS = - 2 , \\qquad \\mscrS \\cdot \\mscrE = 1 , \\qquad \\mscrE \\cdot \\mscrE = 0 . \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\mitF _ { 2 } ) = 2 \\mscrS + 4 \\mscrE , \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\mitF _ { 2 } ) = 4 . \\end{equation*}", "\\begin{equation*} \\mupDelta _ { 1 } = \\mita ^ { 2 } - 4 \\mitb , \\qquad \\mupDelta _ { 2 } = 4 \\left( 2 \\mita ^ { 2 } + \\mitb \\right) , \\end{equation*}", "\\begin{equation*} \\displaystyle \\mittau _ { \\mitB } ( \\mita ) = \\mita , \\qquad \\mittau _ { \\mitB } ( \\mitb ) = \\mitb . \\end{equation*}" ], "x_min": [ 0.6538000106811523, 0.8141000270843506, 0.3779999911785126, 0.583299994468689, 0.7366999983787537, 0.42570000886917114, 0.4733999967575073, 0.8873999714851379, 0.5446000099182129, 0.6082000136375427, 0.120899997651577, 0.43050000071525574, 0.2053000032901764, 0.45399999618530273, 0.5548999905586243, 0.8549000024795532, 0.40639999508857727, 0.6247000098228455, 0.7193999886512756, 0.6281999945640564, 0.7008000016212463, 0.29030001163482666, 0.34139999747276306, 0.4747999906539917, 0.5522000193595886, 0.7498000264167786, 0.4036000072956085, 0.5846999883651733, 0.4056999981403351, 0.4596000015735626, 0.7311999797821045, 0.7989000082015991, 0.39879998564720154, 0.4526999890804291, 0.48170000314712524, 0.3537999987602234, 0.4408999979496002, 0.4699000120162964, 0.367000013589859, 0.41260001063346863 ], "y_min": [ 0.20649999380111694, 0.20649999380111694, 0.23000000417232513, 0.23000000417232513, 0.23000000417232513, 0.3003000020980835, 0.42089998722076416, 0.4180000126361847, 0.43650001287460327, 0.43799999356269836, 0.4569999873638153, 0.45899999141693115, 0.47999998927116394, 0.47999998927116394, 0.4839000105857849, 0.4839000105857849, 0.49900001287460327, 0.49900001287460327, 0.5015000104904175, 0.5468999743461609, 0.5468999743461609, 0.6561999917030334, 0.6528000235557556, 0.6503999829292297, 0.6503999829292297, 0.6528000235557556, 0.6772000193595886, 0.673799991607666, 0.7451000213623047, 0.7416999936103821, 0.7416999936103821, 0.7416999936103821, 0.7660999894142151, 0.7627000212669373, 0.17329999804496765, 0.27000001072883606, 0.33149999380111694, 0.38670000433921814, 0.6147000193595886, 0.7050999999046326 ], "x_max": [ 0.6862999796867371, 0.8465999960899353, 0.3986999988555908, 0.5957000255584717, 0.7483999729156494, 0.4456999897956848, 0.49410000443458557, 0.9025999903678894, 0.5770999789237976, 0.6510000228881836, 0.1534000039100647, 0.5604000091552734, 0.24609999358654022, 0.49549999833106995, 0.5659999847412109, 0.8755999803543091, 0.43959999084472656, 0.6571999788284302, 0.7512000203132629, 0.6503000259399414, 0.7214999794960022, 0.30070000886917114, 0.349700003862381, 0.510699987411499, 0.588100016117096, 0.7781000137329102, 0.4242999851703644, 0.6019999980926514, 0.4153999984264374, 0.46790000796318054, 0.7554000020027161, 0.8230999708175659, 0.4092000126838684, 0.460999995470047, 0.5493999719619751, 0.6772000193595886, 0.5874000191688538, 0.5611000061035156, 0.6614000201225281, 0.6184999942779541 ], "y_max": [ 0.21870000660419464, 0.21870000660419464, 0.24120000004768372, 0.23929999768733978, 0.23929999768733978, 0.31200000643730164, 0.4291999936103821, 0.42730000615119934, 0.448199987411499, 0.451200008392334, 0.4691999852657318, 0.4722000062465668, 0.49320000410079956, 0.49320000410079956, 0.490200012922287, 0.49219998717308044, 0.5112000107765198, 0.5112000107765198, 0.5146999955177307, 0.5547000169754028, 0.5547000169754028, 0.6625000238418579, 0.6625999808311462, 0.6664999723434448, 0.6664999723434448, 0.6644999980926514, 0.6855000257492065, 0.6836000084877014, 0.7513999938964844, 0.7515000104904175, 0.7534000277519226, 0.7534000277519226, 0.7724000215530396, 0.7724999785423279, 0.18790000677108765, 0.2851000130176544, 0.34860000014305115, 0.4032999873161316, 0.6347000002861023, 0.7221999764442444 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page09
{ "latex": [ "$\\eta $", "$F_{2}$", "$\\tau _{B}$", "$\\cS $", "$\\cE $", "$\\eta $", "$\\cS $", "$\\cE $", "$\\eta $", "$\\tau _{B}(\\eta )=\\eta $", "$\\eta $", "$\\l $", "$\\k _{i}$", "$\\l $", "$\\k _i$", "$i=1,\\dots ,4\\eta \\cdot c_1$", "$\\sum _i\\k _i^2$", "$\\sum _i\\k _i=\\eta \\cdot c_1$", "$n=5$", "$n=5$", "$W$", "$[W]$", "$c$", "$d$", "$F-N$", "$N$", "$k$", "\\begin {equation} \\tau _B(\\cS ) = \\cS , \\qquad \\tau _B(\\cE ) = \\cE . \\label {eq:hello} \\end {equation}", "\\begin {equation} \\begin {aligned} \\text {solution 1:} & \\quad \\eta = 14\\mathcal {S} + 22\\mathcal {E}, \\quad \\l = \\sfrac {3}{2}, \\\\ {}& \\sum _i\\k _i = \\eta \\cdot c_1 = 44, \\quad \\sum _i \\k _i^2 \\leq 60 , \\\\ \\text {solution 2:} & \\quad \\eta = 24\\mathcal {S} + 30\\mathcal {E}, \\quad \\l = -\\sfrac {1}{2}, \\\\ {}& \\sum _i\\k _i = \\eta \\cdot c_1 = 60, \\quad \\sum _i \\k _i^2 \\leq 76 . \\end {aligned} \\label {solF2} \\end {equation}", "\\begin {equation} \\begin {aligned} \\text {solution 1:} \\quad & [W] = \\s _{*}\\left (10\\cS +26\\cE \\right ) + \\left (112-k\\right )\\left (F-N\\right ) + \\left (60-k\\right ) N, \\\\ \\text {solution 2:} \\quad & [W] = \\s _{*}\\left (18\\cE \\right ) + \\left (132-k\\right )\\left (F-N\\right ) + \\left (76-k\\right ) N, \\end {aligned} \\label {eq:branes} \\end {equation}", "\\begin {equation} k = \\sum _i \\k _i^2 \\end {equation}", "\\begin {equation} \\begin {aligned} \\text {solution 1:} \\quad & W_{B} = 10\\cS + 26\\cE , \\\\ \\text {solution 2:} \\quad & W_{B} = 18\\cE , \\end {aligned} \\end {equation}" ], "latex_norm": [ "$ \\eta $", "$ F _ { 2 } $", "$ \\tau _ { B } $", "$ S $", "$ E $", "$ \\eta $", "$ S $", "$ E $", "$ \\eta $", "$ \\tau _ { B } ( \\eta ) = \\eta $", "$ \\eta $", "$ \\lambda $", "$ \\kappa _ { i } $", "$ \\lambda $", "$ \\kappa _ { i } $", "$ i = 1 , \\ldots , 4 \\eta \\cdot c _ { 1 } $", "$ \\sum _ { i } \\kappa _ { i } ^ { 2 } $", "$ \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } $", "$ n = 5 $", "$ n = 5 $", "$ W $", "$ [ W ] $", "$ c $", "$ d $", "$ F - N $", "$ N $", "$ k $", "\\begin{equation*} \\tau _ { B } ( S ) = S , \\qquad \\tau _ { B } ( E ) = E . \\end{equation*}", "\\begin{equation*} \\begin{array}{ll} s o l u t i o n ~ 1 : & \\quad \\eta = 1 4 S + 2 2 E , \\quad \\lambda = \\frac { 3 } { 2 } , \\\\ & \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } = 4 4 , \\quad \\sum _ { i } \\kappa _ { i } ^ { 2 } \\leq 6 0 , \\\\ s o l u t i o n ~ 2 : & \\quad \\eta = 2 4 S + 3 0 E , \\quad \\lambda = - \\frac { 1 } { 2 } , \\\\ & \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } = 6 0 , \\quad \\sum _ { i } \\kappa _ { i } ^ { 2 } \\leq 7 6 . \\end{array} \\end{equation*}", "\\begin{align*} \\begin{array}{ll} s o l u t i o n ~ 1 : \\quad & [ W ] = \\sigma _ { \\ast } ( 1 0 S + 2 6 E ) + ( 1 1 2 - k ) ( F - N ) + ( 6 0 - k ) N , \\\\ s o l u t i o n ~ 2 : \\quad & [ W ] = \\sigma _ { \\ast } ( 1 8 E ) + ( 1 3 2 - k ) ( F - N ) + ( 7 6 - k ) N , \\end{array} \\end{align*}", "\\begin{equation*} k = \\sum _ { i } \\kappa _ { i } ^ { 2 } \\end{equation*}", "\\begin{align*} \\begin{array}{ll} s o l u t i o n ~ 1 : \\quad & W _ { B } = 1 0 S + 2 6 E , \\\\ s o l u t i o n ~ 2 : \\quad & W _ { B } = 1 8 E , \\end{array} \\end{align*}" ], "latex_expand": [ "$ \\miteta $", "$ \\mitF _ { 2 } $", "$ \\mittau _ { \\mitB } $", "$ \\mscrS $", "$ \\mscrE $", "$ \\miteta $", "$ \\mscrS $", "$ \\mscrE $", "$ \\miteta $", "$ \\mittau _ { \\mitB } ( \\miteta ) = \\miteta $", "$ \\miteta $", "$ \\mitlambda $", "$ \\mitkappa _ { \\miti } $", "$ \\mitlambda $", "$ \\mitkappa _ { \\miti } $", "$ \\miti = 1 , \\ldots , 4 \\miteta \\cdot \\mitc _ { 1 } $", "$ \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } $", "$ \\sum _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } $", "$ \\mitn = 5 $", "$ \\mitn = 5 $", "$ \\mitW $", "$ [ \\mitW ] $", "$ \\mitc $", "$ \\mitd $", "$ \\mitF - \\mitN $", "$ \\mitN $", "$ \\mitk $", "\\begin{equation*} \\displaystyle \\mittau _ { \\mitB } ( \\mscrS ) = \\mscrS , \\qquad \\mittau _ { \\mitB } ( \\mscrE ) = \\mscrE . \\end{equation*}", "\\begin{equation*} \\begin{array}{ll} \\mathrm { so l u t i o n ~ 1 } : & \\quad \\miteta = 1 4 \\mscrS + 2 2 \\mscrE , \\quad \\mitlambda = { \\textstyle \\frac { 3 } { 2 } } , \\\\ & \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } = 4 4 , \\quad \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\leq 6 0 , \\\\ \\mathrm { s o l u t i o n ~ 2 } : & \\quad \\miteta = 2 4 \\mscrS + 3 0 \\mscrE , \\quad \\mitlambda = - { \\textstyle \\frac { 1 } { 2 } } , \\\\ & \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } = 6 0 , \\quad \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\leq 7 6 . \\end{array} \\end{equation*}", "\\begin{align*} \\begin{array}{ll} \\mathrm { s o l u t i o n ~ 1 } : \\quad & [ \\mitW ] = \\mitsigma _ { \\ast } \\left( 1 0 \\mscrS + 2 6 \\mscrE \\right) + \\left( 1 1 2 - \\mitk \\right) \\left( \\mitF - \\mitN \\right) + \\left( 6 0 - \\mitk \\right) \\mitN , \\\\ \\mathrm { s o l u t i o n ~ 2 } : \\quad & [ \\mitW ] = \\mitsigma _ { \\ast } \\left( 1 8 \\mscrE \\right) + \\left( 1 3 2 - \\mitk \\right) \\left( \\mitF - \\mitN \\right) + \\left( 7 6 - \\mitk \\right) \\mitN , \\end{array} \\end{align*}", "\\begin{equation*} \\mitk = \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\end{equation*}", "\\begin{align*} \\begin{array}{ll} \\mathrm { s o l u t i o n ~ 1 } : \\quad & \\mitW _ { \\mitB } = 1 0 \\mscrS + 2 6 \\mscrE , \\\\ \\mathrm { s o l u t i o n ~ 2 } : \\quad & \\mitW _ { \\mitB } = 1 8 \\mscrE , \\end{array} \\end{align*}" ], "x_min": [ 0.4174000024795532, 0.4553999900817871, 0.802299976348877, 0.32899999618530273, 0.3828999996185303, 0.24529999494552612, 0.46790000796318054, 0.5217999815940857, 0.7415000200271606, 0.8238000273704529, 0.3352000117301941, 0.35589998960494995, 0.4077000021934509, 0.4097999930381775, 0.31029999256134033, 0.37599998712539673, 0.23360000550746918, 0.5210999846458435, 0.20180000364780426, 0.6212999820709229, 0.6607000231742859, 0.4422999918460846, 0.760200023651123, 0.8065000176429749, 0.19900000095367432, 0.2922999858856201, 0.8238000273704529, 0.40639999508857727, 0.33379998803138733, 0.2370000034570694, 0.47269999980926514, 0.3917999863624573 ], "y_min": [ 0.11230000108480453, 0.10890000313520432, 0.11230000108480453, 0.1509000062942505, 0.1509000062942505, 0.21969999372959137, 0.21629999577999115, 0.2168000042438507, 0.21969999372959137, 0.21580000221729279, 0.24070000648498535, 0.23729999363422394, 0.24070000648498535, 0.41359999775886536, 0.43799999356269836, 0.4350999891757965, 0.4535999894142151, 0.4546000063419342, 0.4771000146865845, 0.5185999870300293, 0.5390999913215637, 0.6958000063896179, 0.7842000126838684, 0.7807999849319458, 0.801800012588501, 0.801800012588501, 0.801800012588501, 0.17970000207424164, 0.2797999978065491, 0.5791000127792358, 0.6538000106811523, 0.7188000082969666 ], "x_max": [ 0.4277999997138977, 0.47540000081062317, 0.8230000138282776, 0.34209999442100525, 0.3953000009059906, 0.2549999952316284, 0.48100000619888306, 0.5335000157356262, 0.7519000172615051, 0.9025999903678894, 0.3456000089645386, 0.367000013589859, 0.4242999851703644, 0.42089998722076416, 0.32690000534057617, 0.5087000131607056, 0.28130000829696655, 0.6288999915122986, 0.2515999972820282, 0.6765999794006348, 0.6807000041007996, 0.47269999980926514, 0.7684999704360962, 0.8169000148773193, 0.2515000104904175, 0.30959999561309814, 0.8342000246047974, 0.6248000264167786, 0.6973000168800354, 0.7940000295639038, 0.5583999752998352, 0.63919997215271 ], "y_max": [ 0.12110000103712082, 0.1200999990105629, 0.12060000002384186, 0.16019999980926514, 0.16019999980926514, 0.22849999368190765, 0.22609999775886536, 0.22609999775886536, 0.22849999368190765, 0.22949999570846558, 0.24950000643730164, 0.24709999561309814, 0.24899999797344208, 0.42340001463890076, 0.4458000063896179, 0.44679999351501465, 0.46869999170303345, 0.46880000829696655, 0.48590001463890076, 0.527899980545044, 0.5489000082015991, 0.7095000147819519, 0.7904999852180481, 0.7906000018119812, 0.8125, 0.8116000294685364, 0.8111000061035156, 0.19629999995231628, 0.4004000127315521, 0.6284000277519226, 0.6884999871253967, 0.7681000232696533 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page10
{ "latex": [ "$n=5$", "$\\eta > 5c_{1}$", "$\\eta $", "$c_{1}$", "$B=F_{2}$", "$Z$", "$\\pi _{1}(Z)=\\ZZ _{2}$", "$V_{Z}$", "$N=1$", "$H=SU(5)$", "$\\pi _{1}(Z)=\\ZZ _{2}$", "$Z$", "\\begin {equation} \\eta > 5c_1 = 10\\cS +20\\cE \\end {equation}", "\\begin {equation} SU(5) \\rightarrow SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y} , \\end {equation}" ], "latex_norm": [ "$ n = 5 $", "$ \\eta > 5 c _ { 1 } $", "$ \\eta $", "$ c _ { 1 } $", "$ B = F _ { 2 } $", "$ Z $", "$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $", "$ V _ { Z } $", "$ N = 1 $", "$ H = S U ( 5 ) $", "$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $", "$ Z $", "\\begin{equation*} \\eta > 5 c _ { 1 } = 1 0 S + 2 0 E \\end{equation*}", "\\begin{equation*} S U ( 5 ) \\rightarrow S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } , \\end{equation*}" ], "latex_expand": [ "$ \\mitn = 5 $", "$ \\miteta > 5 \\mitc _ { 1 } $", "$ \\miteta $", "$ \\mitc _ { 1 } $", "$ \\mitB = \\mitF _ { 2 } $", "$ \\mitZ $", "$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $", "$ \\mitV _ { \\mitZ } $", "$ \\mitN = 1 $", "$ \\mitH = \\mitS \\mitU ( 5 ) $", "$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $", "$ \\mitZ $", "\\begin{equation*} \\miteta > 5 \\mitc _ { 1 } = 1 0 \\mscrS + 2 0 \\mscrE \\end{equation*}", "\\begin{equation*} \\mitS \\mitU ( 5 ) \\rightarrow \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } , \\end{equation*}" ], "x_min": [ 0.3310000002384186, 0.652400016784668, 0.41530001163482666, 0.46720001101493835, 0.489300012588501, 0.21289999783039093, 0.6931999921798706, 0.6247000098228455, 0.8568999767303467, 0.8162000179290771, 0.4235999882221222, 0.4036000072956085, 0.43050000071525574, 0.3614000082015991 ], "y_min": [ 0.10939999669790268, 0.10939999669790268, 0.20309999585151672, 0.20309999585151672, 0.2206999957561493, 0.24169999361038208, 0.24070000648498535, 0.2831999957561493, 0.2831999957561493, 0.3037000000476837, 0.32420000433921814, 0.43309998512268066, 0.14749999344348907, 0.3540000021457672 ], "x_max": [ 0.382099986076355, 0.7181000113487244, 0.42570000886917114, 0.4837999939918518, 0.5486999750137329, 0.227400004863739, 0.7919999957084656, 0.6467999815940857, 0.9079999923706055, 0.9081000089645386, 0.5148000121116638, 0.4180999994277954, 0.6004999876022339, 0.6661999821662903 ], "y_max": [ 0.11869999766349792, 0.12110000103712082, 0.211899995803833, 0.21089999377727509, 0.23190000653266907, 0.25099998712539673, 0.25440001487731934, 0.29490000009536743, 0.2930000126361847, 0.31690001487731934, 0.3379000127315521, 0.4424000084400177, 0.16259999573230743, 0.3711000084877014 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001113_page02
{ "latex": [ "$F_{MN}=\\partial _MA_N-\\partial _NA_M$", "$D_M \\phi =\\partial _M +ieA_M$", "$A(r)$", "$\\varphi (r)$", "$O(\\epsilon )$", "$(\\epsilon =1/\\sqrt {a})$", "$(X^5,X^6)$", "$(X^0-X^3)$", "$a$", "$R<<a$", "$A_M^0$", "$\\phi ^0$", "$X^M=Y^M(\\xi ^\\mu )$", "$(\\mu =0-3)$", "$x^M$", "$X^M$", "$n_m^M$", "$\\Psi _i$", "$\\Psi _f$", "\\begin {equation} {\\cal L}=-{1\\over 4}F_{MN}F^{MN}+D_M\\phi ^\\dagger D^M\\phi +a|\\phi |^2-b|\\phi |^4 +c \\label {1} \\end {equation}", "\\begin {equation} A_M=\\epsilon _{0123MN}A(r)X^N/r,\\ \\phi =\\varphi (r)e^{in\\theta },\\ (r^2=(x^5)^2+(x^6)^2) \\label {2} \\end {equation}", "\\begin {eqnarray}\\displaystyle &-\\frac {1}{r}\\frac {d}{dr}\\left (r{d \\over dr}\\varphi \\right ) +\\left [\\left ({n \\over r}+eA\\right )^2-a+2b\\varphi ^2\\right ]\\varphi =0\\cr &-{d \\over dr}\\left ({1\\over r}{d \\over dr}rA\\right ) +\\varphi ^2\\left (e^2A^2+{en \\over r}\\right )=0 \\end {eqnarray}", "\\begin {equation} X^M=Y^M(x^\\mu )+n_m^M x^m,\\ \\ (M=0-3,5,6,\\ \\mu =0-3,\\ m=5,6) \\label {4} \\end {equation}", "\\begin {equation} A_M^0=\\epsilon _{0123MN}A(r)x^N/r,\\ \\phi ^0=\\varphi (r)e^{in\\theta }.\\ (r^2=x^m x^m) \\label {5} \\end {equation}", "\\begin {equation} S_{fi}=\\int \\prod _{X^M}dA_Md\\phi d\\phi ^\\dagger \\exp \\left [i\\int {\\cal L}d^6X \\right ]\\Psi _f^*\\Psi _i\\prod _{X^M}\\delta (\\partial _MA^M) \\label {6} \\end {equation}" ], "latex_norm": [ "$ F _ { M N } = \\partial _ { M } A _ { N } - \\partial _ { N } A _ { M } $", "$ D _ { M } \\phi = \\partial _ { M } + i e A _ { M } $", "$ A ( r ) $", "$ \\varphi ( r ) $", "$ O ( \\epsilon ) $", "$ ( \\epsilon = 1 \\slash \\sqrt { a } ) $", "$ ( X ^ { 5 } , X ^ { 6 } ) $", "$ ( X ^ { 0 } - X ^ { 3 } ) $", "$ a $", "$ R < < a $", "$ A _ { M } ^ { 0 } $", "$ \\phi ^ { 0 } $", "$ X ^ { M } = Y ^ { M } ( \\xi ^ { \\mu } ) $", "$ ( \\mu = 0 - 3 ) $", "$ x ^ { M } $", "$ X ^ { M } $", "$ n _ { m } ^ { M } $", "$ \\Psi _ { i } $", "$ \\Psi _ { f } $", "\\begin{equation*} L = - \\frac { 1 } { 4 } F _ { M N } F ^ { M N } + D _ { M } \\phi ^ { \\dagger } D ^ { M } \\phi + a \\vert \\phi \\vert ^ { 2 } - b \\vert \\phi \\vert ^ { 4 } + c \\end{equation*}", "\\begin{equation*} A _ { M } = \\epsilon _ { 0 1 2 3 M N } A ( r ) X ^ { N } \\slash r , ~ \\phi = \\varphi ( r ) e ^ { i n \\theta } , ~ ( r ^ { 2 } = ( x ^ { 5 } ) ^ { 2 } + ( x ^ { 6 } ) ^ { 2 } ) \\end{equation*}", "\\begin{align*} & - \\frac { 1 } { r } \\frac { d } { d r } ( r \\frac { d } { d r } \\varphi ) + [ { ( \\frac { n } { r } + e A ) } ^ { 2 } - a + 2 b \\varphi ^ { 2 } ] \\varphi = 0 \\\\ & - \\frac { d } { d r } ( \\frac { 1 } { r } \\frac { d } { d r } r A ) + \\varphi ^ { 2 } ( e ^ { 2 } A ^ { 2 } + \\frac { e n } { r } ) = 0 \\end{align*}", "\\begin{equation*} X ^ { M } = Y ^ { M } ( x ^ { \\mu } ) + n _ { m } ^ { M } x ^ { m } , ~ ~ ( M = 0 - 3 , 5 , 6 , ~ \\mu = 0 - 3 , ~ m = 5 , 6 ) \\end{equation*}", "\\begin{equation*} A _ { M } ^ { 0 } = \\epsilon _ { 0 1 2 3 M N } A ( r ) x ^ { N } \\slash r , ~ \\phi ^ { 0 } = \\varphi ( r ) e ^ { i n \\theta } . ~ ( r ^ { 2 } = x ^ { m } x ^ { m } ) \\end{equation*}", "\\begin{equation*} S _ { f i } = \\int \\prod _ { X ^ { M } } d A _ { M } d \\phi d \\phi ^ { \\dagger } \\operatorname { e x p } [ i \\int L d ^ { 6 } X ] \\Psi _ { f } ^ { \\ast } \\Psi _ { i } \\prod _ { X ^ { M } } \\delta ( \\partial _ { M } A ^ { M } ) \\end{equation*}" ], "latex_expand": [ "$ \\mitF _ { \\mitM \\mitN } = \\mitpartial _ { \\mitM } \\mitA _ { \\mitN } - \\mitpartial _ { \\mitN } \\mitA _ { \\mitM } $", "$ \\mitD _ { \\mitM } \\mitphi = \\mitpartial _ { \\mitM } + \\miti \\mite \\mitA _ { \\mitM } $", "$ \\mitA ( \\mitr ) $", "$ \\mitvarphi ( \\mitr ) $", "$ \\mitO ( \\mitepsilon ) $", "$ ( \\mitepsilon = 1 \\slash \\sqrt { \\mita } ) $", "$ ( \\mitX ^ { 5 } , \\mitX ^ { 6 } ) $", "$ ( \\mitX ^ { 0 } - \\mitX ^ { 3 } ) $", "$ \\mita $", "$ \\mitR < < \\mita $", "$ \\mitA _ { \\mitM } ^ { 0 } $", "$ \\mitphi ^ { 0 } $", "$ \\mitX ^ { \\mitM } = \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) $", "$ ( \\mitmu = 0 - 3 ) $", "$ \\mitx ^ { \\mitM } $", "$ \\mitX ^ { \\mitM } $", "$ \\mitn _ { \\mitm } ^ { \\mitM } $", "$ \\mupPsi _ { \\miti } $", "$ \\mupPsi _ { \\mitf } $", "\\begin{equation*} \\mitL = - \\frac { 1 } { 4 } \\mitF _ { \\mitM \\mitN } \\mitF ^ { \\mitM \\mitN } + \\mitD _ { \\mitM } \\mitphi ^ { \\dagger } \\mitD ^ { \\mitM } \\mitphi + \\mita \\vert \\mitphi \\vert ^ { 2 } - \\mitb \\vert \\mitphi \\vert ^ { 4 } + \\mitc \\end{equation*}", "\\begin{equation*} \\mitA _ { \\mitM } = \\mitepsilon _ { 0 1 2 3 \\mitM \\mitN } \\mitA ( \\mitr ) \\mitX ^ { \\mitN } \\slash \\mitr , ~ \\mitphi = \\mitvarphi ( \\mitr ) \\mite ^ { \\miti \\mitn \\mittheta } , ~ ( \\mitr ^ { 2 } = ( \\mitx ^ { 5 } ) ^ { 2 } + ( \\mitx ^ { 6 } ) ^ { 2 } ) \\end{equation*}", "\\begin{align*} & - \\frac { 1 } { \\mitr } \\frac { \\mitd } { \\mitd \\mitr } \\left( \\mitr \\frac { \\mitd } { \\mitd \\mitr } \\mitvarphi \\right) + \\left[ { \\left( \\frac { \\mitn } { \\mitr } + \\mite \\mitA \\right) } ^ { 2 } - \\mita + 2 \\mitb \\mitvarphi ^ { 2 } \\right] \\mitvarphi = 0 \\\\ & - \\frac { \\mitd } { \\mitd \\mitr } \\left( \\frac { 1 } { \\mitr } \\frac { \\mitd } { \\mitd \\mitr } \\mitr \\mitA \\right) + \\mitvarphi ^ { 2 } \\left( \\mite ^ { 2 } \\mitA ^ { 2 } + \\frac { \\mite \\mitn } { \\mitr } \\right) = 0 \\end{align*}", "\\begin{equation*} \\mitX ^ { \\mitM } = \\mitY ^ { \\mitM } ( \\mitx ^ { \\mitmu } ) + \\mitn _ { \\mitm } ^ { \\mitM } \\mitx ^ { \\mitm } , ~ ~ ( \\mitM = 0 - 3 , 5 , 6 , ~ \\mitmu = 0 - 3 , ~ \\mitm = 5 , 6 ) \\end{equation*}", "\\begin{equation*} \\mitA _ { \\mitM } ^ { 0 } = \\mitepsilon _ { 0 1 2 3 \\mitM \\mitN } \\mitA ( \\mitr ) \\mitx ^ { \\mitN } \\slash \\mitr , ~ \\mitphi ^ { 0 } = \\mitvarphi ( \\mitr ) \\mite ^ { \\miti \\mitn \\mittheta } . ~ ( \\mitr ^ { 2 } = \\mitx ^ { \\mitm } \\mitx ^ { \\mitm } ) \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitf \\miti } = \\int \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitA _ { \\mitM } \\mitd \\mitphi \\mitd \\mitphi ^ { \\dagger } \\operatorname { e x p } \\left[ \\miti \\int \\mitL \\mitd ^ { 6 } \\mitX \\right] \\mupPsi _ { \\mitf } ^ { \\ast } \\mupPsi _ { \\miti } \\prod _ { \\mitX ^ { \\mitM } } \\mitdelta ( \\mitpartial _ { \\mitM } \\mitA ^ { \\mitM } ) \\end{equation*}" ], "x_min": [ 0.13410000503063202, 0.3808000087738037, 0.13410000503063202, 0.2184000015258789, 0.4706000089645386, 0.5162000060081482, 0.07739999890327454, 0.515500009059906, 0.7753999829292297, 0.29580000042915344, 0.8568999767303467, 0.1160999983549118, 0.43470001220703125, 0.5687999725341797, 0.17419999837875366, 0.13199999928474426, 0.44440001249313354, 0.46720001101493835, 0.532800018787384, 0.2639999985694885, 0.22390000522136688, 0.28769999742507935, 0.2046000063419342, 0.2549999952316284, 0.23639999330043793 ], "y_min": [ 0.47850000858306885, 0.47850000858306885, 0.5346999764442444, 0.5346999764442444, 0.625, 0.6240000128746033, 0.6410999894142151, 0.6410999894142151, 0.6464999914169312, 0.6601999998092651, 0.6586999893188477, 0.6758000254631042, 0.6753000020980835, 0.6762999892234802, 0.6923999786376953, 0.7490000128746033, 0.7490000128746033, 0.8246999979019165, 0.8246999979019165, 0.4336000084877014, 0.5009999871253967, 0.5590999722480774, 0.7167999744415283, 0.7904999852180481, 0.8471999764442444 ], "x_max": [ 0.33660000562667847, 0.5486999750137329, 0.17419999837875366, 0.2563999891281128, 0.5092999935150146, 0.6150000095367432, 0.15410000085830688, 0.6053000092506409, 0.7864999771118164, 0.367000013589859, 0.8880000114440918, 0.13609999418258667, 0.5626000165939331, 0.6682999730110168, 0.20180000364780426, 0.16660000383853912, 0.47269999980926514, 0.4885999858379364, 0.557699978351593, 0.703499972820282, 0.7436000108718872, 0.682200014591217, 0.763700008392334, 0.7124999761581421, 0.7311999797821045 ], "y_max": [ 0.4912000000476837, 0.4916999936103821, 0.5493000149726868, 0.5493000149726868, 0.6395999789237976, 0.6395999789237976, 0.6567000150680542, 0.6567000150680542, 0.6532999873161316, 0.6704999804496765, 0.673799991607666, 0.6904000043869019, 0.6909000277519226, 0.6909000277519226, 0.7045999765396118, 0.7612000107765198, 0.7645999789237976, 0.836899995803833, 0.8389000296592712, 0.46630001068115234, 0.5210000276565552, 0.6136999726295471, 0.7368000149726868, 0.8100000023841858, 0.8858000040054321 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001113_page03
{ "latex": [ "$C^M(\\xi ^\\mu )$", "$|\\widetilde \\phi |^2$", "$(\\widetilde \\phi =\\phi -\\sqrt {a/2b})$", "$N(\\xi ^\\mu )$", "$x^\\mu =\\xi ^\\mu $", "$\\prod _{X_{/\\!/}}$", "$\\xi ^\\mu $", "$x^M$", "$A_M$", "$\\phi $", "$B_{\\bar N}= A_{\\bar N}-A^0_{\\bar N}$", "$\\sigma =\\phi -\\phi ^0$", "$\\widetilde C^\\mu =0$", "$V^{\\bar N M}$", "$g^{LM}$", "$\\nabla _M$", "$D_M^0=\\nabla _M+ieA_M^0$", "$J_0=\\int |\\widetilde \\phi ^0|^2dx^5dx^6$", "${\\cal L}_2$", "$|\\phi ^0|^2$", "$g_{m\\mu }=O(R/a)<<1$", "$g_{mn}=-\\delta _{mn}+O(R/a)$", "$B_{\\bar M}$", "$B_{\\bar \\mu }$", "$B_{\\bar m}$", "$S^{\\rm eff}$", "$\\delta $", "$\\delta =\\int dk e^{ikx}$", "\\begin {equation} 1=\\int \\prod _{X_{/\\!/}}dY^M(\\xi ^\\mu )\\delta \\left (Y^M(\\xi ^\\mu )-C^M(\\xi ^\\mu )\\right ) \\label {7} \\end {equation}", "\\begin {equation} C^M(\\xi ^\\mu )=\\int _{N(\\xi ^\\mu )} X^M |\\widetilde \\phi |^2 d^2X_{\\perp }\\Bigg / \\int _{N(\\xi ^\\mu )} |\\widetilde \\phi |^2 d^2X_{\\perp } \\label {8} \\end {equation}", "\\begin {equation} S_{fi}=\\int \\prod _{X_{/\\!/}}dY^M\\prod _{X^M}dB_{\\bar N} d\\sigma d\\sigma ^\\dagger \\delta (\\sqrt {-g} \\nabla _{\\bar N}B^{\\bar N} \\prod _{X_{/\\!/}}\\delta (\\widetilde C^M) \\exp \\left [i\\int \\left ({\\cal L}_0+{\\cal L}_1 \\right )\\sqrt {-g}d^6x\\right ]\\Psi _f^*\\Psi _i \\label {9} \\end {equation}", "\\begin {eqnarray} {\\cal L}_0 &=& {\\cal L}(\\phi =\\phi _0, A_M=A_M^0) \\\\ {\\cal L}_2 &=& -\\frac {1}{2}g^{LM}\\nabla _L B_{\\bar N} \\nabla _M B^{\\bar N} +B_{\\bar N} B^{\\bar N} e^2 |\\phi ^0|^2 +g^{LM}(D_L^0\\sigma )^\\dagger (D_M^0\\sigma )\\cr &&-4ieV^{\\bar N M} B_{\\bar N} {\\rm Im} \\left ( \\sigma ^\\dagger D_M^0 \\phi ^0 \\right ) +a|\\sigma |^2 -b\\left [ 4|\\phi ^0\\sigma |^2 +2{\\rm Re}(\\sigma ^\\dagger \\phi ^0)^2\\right ], \\\\ \\widetilde C^m &=& \\int x^m |\\widetilde \\phi |^2 dx^5 dx^6 \\Bigg / \\int |\\widetilde \\phi |^2 dx^5 dx^6 \\\\ &=& \\frac {1}{J_0}\\int x^m \\left [|\\sigma |^2 + {\\rm Re}(\\widetilde \\phi ^0\\sigma ^\\dagger ) \\left \\{1-\\frac {2}{J_0}\\int {\\rm Re}(\\widetilde \\phi ^0\\sigma ^\\dagger )dx^5 dx^6\\right \\}\\right ]dx^5 dx^6, \\end {eqnarray}", "\\begin {equation} S^{\\rm eff} = -i\\ln \\int \\prod _{X^M}dB_{\\bar N} d\\sigma d\\sigma ^\\dagger \\delta \\left (\\sqrt {-g}\\nabla _{\\bar N}B^{\\bar N}\\right )\\prod _{X_{/\\!/}}\\delta (\\widetilde C^M) \\exp \\left [i\\int \\sqrt {-g}{\\cal L}_2 d^6 x \\right ]. \\label {14} \\end {equation}", "\\begin {equation} S^{\\rm eff} = -i\\ln \\int \\prod _{\\xi ^\\mu }dw_m\\prod _{x^M}dB_{\\bar M} d\\sigma d\\sigma ^\\dagger dv \\exp \\left [i\\int (\\Xi \\Phi +\\Phi ^\\dagger \\Delta \\Phi )d^6x\\right ] \\label {15} \\end {equation}" ], "latex_norm": [ "$ C ^ { M } ( \\xi ^ { \\mu } ) $", "$ \\vert \\widetilde { \\phi } \\vert ^ { 2 } $", "$ ( \\widetilde { \\phi } = \\phi - \\sqrt { a \\slash 2 b } ) $", "$ N ( \\xi ^ { \\mu } ) $", "$ x ^ { \\mu } = \\xi ^ { \\mu } $", "$ \\prod _ { X _ { \\slash \\! \\slash } } $", "$ \\xi ^ { \\mu } $", "$ x ^ { M } $", "$ A _ { M } $", "$ \\phi $", "$ B _ { \\bar { N } } = A _ { \\bar { N } } - A _ { \\bar { N } } ^ { 0 } $", "$ \\sigma = \\phi - \\phi ^ { 0 } $", "$ \\widetilde { C } ^ { \\mu } = 0 $", "$ V ^ { \\bar { N } M } $", "$ g ^ { L M } $", "$ \\nabla _ { M } $", "$ D _ { M } ^ { 0 } = \\nabla _ { M } + i e A _ { M } ^ { 0 } $", "$ J _ { 0 } = \\int \\vert \\widetilde { \\phi } ^ { 0 } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } $", "$ L _ { 2 } $", "$ \\vert \\phi ^ { 0 } \\vert ^ { 2 } $", "$ g _ { m \\mu } = O ( R \\slash a ) < < 1 $", "$ g _ { m n } = - \\delta _ { m n } + O ( R \\slash a ) $", "$ B _ { \\bar { M } } $", "$ B _ { \\bar { \\mu } } $", "$ B _ { \\bar { m } } $", "$ S ^ { e f f } $", "$ \\delta $", "$ \\delta = \\int d k e ^ { i k x } $", "\\begin{equation*} 1 = \\int \\prod _ { X _ { \\slash \\! \\slash } } d Y ^ { M } ( \\xi ^ { \\mu } ) \\delta ( Y ^ { M } ( \\xi ^ { \\mu } ) - C ^ { M } ( \\xi ^ { \\mu } ) ) \\end{equation*}", "\\begin{equation*} C ^ { M } ( \\xi ^ { \\mu } ) = \\int _ { N ( \\xi ^ { \\mu } ) } X ^ { M } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d ^ { 2 } X _ { \\perp } \\slash \\int _ { N ( \\xi ^ { \\mu } ) } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d ^ { 2 } X _ { \\perp } \\end{equation*}", "\\begin{equation*} S _ { f i } = \\int \\prod _ { X _ { \\slash \\! \\slash } } d Y ^ { M } \\prod _ { X ^ { M } } d B _ { \\bar { N } } d \\sigma d \\sigma ^ { \\dagger } \\delta ( \\sqrt { - g } \\nabla _ { \\bar { N } } B ^ { \\bar { N } } \\prod _ { X _ { \\slash \\! \\slash } } \\delta ( \\widetilde { C } ^ { M } ) \\operatorname { e x p } [ i \\int ( L _ { 0 } + L _ { 1 } ) \\sqrt { - g } d ^ { 6 } x ] \\Psi _ { f } ^ { \\ast } \\Psi _ { i } \\end{equation*}", "\\begin{align*} L _ { 0 } & = & L ( \\phi = \\phi _ { 0 } , A _ { M } = A _ { M } ^ { 0 } ) \\\\ L _ { 2 } & = & - \\frac { 1 } { 2 } g ^ { L M } \\nabla _ { L } B _ { \\bar { N } } \\nabla _ { M } B ^ { \\bar { N } } + B _ { \\bar { N } } B ^ { \\bar { N } } e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } + g ^ { L M } ( D _ { L } ^ { 0 } \\sigma ) ^ { \\dagger } ( D _ { M } ^ { 0 } \\sigma ) \\\\ & & - 4 i e V ^ { \\bar { N } M } B _ { \\bar { N } } I m ( \\sigma ^ { \\dagger } D _ { M } ^ { 0 } \\phi ^ { 0 } ) + a \\vert \\sigma \\vert ^ { 2 } - b [ 4 \\vert \\phi ^ { 0 } \\sigma \\vert ^ { 2 } + 2 R e ( \\sigma ^ { \\dagger } \\phi ^ { 0 } ) ^ { 2 } ] , \\\\ \\widetilde { C } ^ { m } & = & \\int x ^ { m } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } \\slash \\int \\vert \\widetilde { \\phi } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } \\\\ & = & \\frac { 1 } { J _ { 0 } } \\int x ^ { m } [ \\vert \\sigma \\vert ^ { 2 } + R e ( \\widetilde { \\phi } ^ { 0 } \\sigma ^ { \\dagger } ) \\{ 1 - \\frac { 2 } { J _ { 0 } } \\int R e ( \\widetilde { \\phi } ^ { 0 } \\sigma ^ { \\dagger } ) d x ^ { 5 } d x ^ { 6 } \\} ] d x ^ { 5 } d x ^ { 6 } , \\end{align*}", "\\begin{equation*} S ^ { e f f } = - i \\operatorname { l n } \\int \\prod _ { X ^ { M } } d B _ { \\bar { N } } d \\sigma d \\sigma ^ { \\dagger } \\delta ( \\sqrt { - g } \\nabla _ { \\bar { N } } B ^ { \\bar { N } } ) \\prod _ { X _ { \\slash \\! \\slash } } \\delta ( \\widetilde { C } ^ { M } ) \\operatorname { e x p } [ i \\int \\sqrt { - g } L _ { 2 } d ^ { 6 } x ] . \\end{equation*}", "\\begin{equation*} S ^ { e f f } = - i \\operatorname { l n } \\int \\prod _ { \\xi ^ { \\mu } } d w _ { m } \\prod _ { x ^ { M } } d B _ { \\bar { M } } d \\sigma d \\sigma ^ { \\dagger } d v \\operatorname { e x p } [ i \\int ( \\Xi \\Phi + \\Phi ^ { \\dagger } \\Delta \\Phi ) d ^ { 6 } x ] \\end{equation*}" ], "latex_expand": [ "$ \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) $", "$ \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } $", "$ ( \\widetilde { \\mitphi } = \\mitphi - \\sqrt { \\mita \\slash 2 \\mitb } ) $", "$ \\mitN ( \\mitxi ^ { \\mitmu } ) $", "$ \\mitx ^ { \\mitmu } = \\mitxi ^ { \\mitmu } $", "$ \\prod _ { \\mitX _ { \\slash \\! \\slash } } $", "$ \\mitxi ^ { \\mitmu } $", "$ \\mitx ^ { \\mitM } $", "$ \\mitA _ { \\mitM } $", "$ \\mitphi $", "$ \\mitB _ { \\bar { \\mitN } } = \\mitA _ { \\bar { \\mitN } } - \\mitA _ { \\bar { \\mitN } } ^ { 0 } $", "$ \\mitsigma = \\mitphi - \\mitphi ^ { 0 } $", "$ \\widetilde { \\mitC } ^ { \\mitmu } = 0 $", "$ \\mitV ^ { \\bar { \\mitN } \\mitM } $", "$ \\mitg ^ { \\mitL \\mitM } $", "$ \\nabla _ { \\mitM } $", "$ \\mitD _ { \\mitM } ^ { 0 } = \\nabla _ { \\mitM } + \\miti \\mite \\mitA _ { \\mitM } ^ { 0 } $", "$ \\mitJ _ { 0 } = \\int \\nolimits \\vert \\widetilde { \\mitphi } ^ { 0 } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } $", "$ \\mitL _ { 2 } $", "$ \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } $", "$ \\mitg _ { \\mitm \\mitmu } = \\mitO ( \\mitR \\slash \\mita ) < < 1 $", "$ \\mitg _ { \\mitm \\mitn } = - \\mitdelta _ { \\mitm \\mitn } + \\mitO ( \\mitR \\slash \\mita ) $", "$ \\mitB _ { \\bar { \\mitM } } $", "$ \\mitB _ { \\bar { \\mitmu } } $", "$ \\mitB _ { \\bar { \\mitm } } $", "$ \\mitS ^ { \\mathrm { e f f } } $", "$ \\mitdelta $", "$ \\mitdelta = \\int \\nolimits \\mitd \\mitk \\mite ^ { \\miti \\mitk \\mitx } $", "\\begin{equation*} 1 = \\int \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitd \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) \\mitdelta \\left( \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) - \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) \\right) \\end{equation*}", "\\begin{equation*} \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) = \\int _ { \\mitN ( \\mitxi ^ { \\mitmu } ) } \\mitX ^ { \\mitM } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd ^ { 2 } \\mitX _ { \\perp } \\Biggl / \\int _ { \\mitN ( \\mitxi ^ { \\mitmu } ) } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd ^ { 2 } \\mitX _ { \\perp } \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitf \\miti } = \\int \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitd \\mitY ^ { \\mitM } \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitN } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitdelta ( \\sqrt { - \\mitg } \\nabla _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitdelta ( \\widetilde { \\mitC } ^ { \\mitM } ) \\operatorname { e x p } \\left[ \\miti \\int \\left( \\mitL _ { 0 } + \\mitL _ { 1 } \\right) \\sqrt { - \\mitg } \\mitd ^ { 6 } \\mitx \\right] \\mupPsi _ { \\mitf } ^ { \\ast } \\mupPsi _ { \\miti } \\end{equation*}", "\\begin{align*} \\mitL _ { 0 } & = & \\mitL ( \\mitphi = \\mitphi _ { 0 } , \\mitA _ { \\mitM } = \\mitA _ { \\mitM } ^ { 0 } ) \\\\ \\mitL _ { 2 } & = & - \\frac { 1 } { 2 } \\mitg ^ { \\mitL \\mitM } \\nabla _ { \\mitL } \\mitB _ { \\bar { \\mitN } } \\nabla _ { \\mitM } \\mitB ^ { \\bar { \\mitN } } + \\mitB _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitg ^ { \\mitL \\mitM } ( \\mitD _ { \\mitL } ^ { 0 } \\mitsigma ) ^ { \\dagger } ( \\mitD _ { \\mitM } ^ { 0 } \\mitsigma ) \\\\ & & - 4 \\miti \\mite \\mitV ^ { \\bar { \\mitN } \\mitM } \\mitB _ { \\bar { \\mitN } } \\mathrm { I m } \\left( \\mitsigma ^ { \\dagger } \\mitD _ { \\mitM } ^ { 0 } \\mitphi ^ { 0 } \\right) + \\mita \\vert \\mitsigma \\vert ^ { 2 } - \\mitb \\left[ 4 \\vert \\mitphi ^ { 0 } \\mitsigma \\vert ^ { 2 } + 2 \\mathrm { R e } ( \\mitsigma ^ { \\dagger } \\mitphi ^ { 0 } ) ^ { 2 } \\right] , \\\\ \\widetilde { \\mitC } ^ { \\mitm } & = & \\int \\mitx ^ { \\mitm } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\Biggl / \\int \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\\\ & = & \\frac { 1 } { \\mitJ _ { 0 } } \\int \\mitx ^ { \\mitm } \\left[ \\vert \\mitsigma \\vert ^ { 2 } + \\mathrm { R e } ( \\widetilde { \\mitphi } ^ { 0 } \\mitsigma ^ { \\dagger } ) \\left\\{ 1 - \\frac { 2 } { \\mitJ _ { 0 } } \\int \\mathrm { R e } ( \\widetilde { \\mitphi } ^ { 0 } \\mitsigma ^ { \\dagger } ) \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\right\\} \\right] \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } , \\end{align*}", "\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = - \\miti \\operatorname { l n } \\int \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitN } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitdelta \\left( \\sqrt { - \\mitg } \\nabla _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\right) \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitdelta ( \\widetilde { \\mitC } ^ { \\mitM } ) \\operatorname { e x p } \\left[ \\miti \\int \\sqrt { - \\mitg } \\mitL _ { 2 } \\mitd ^ { 6 } \\mitx \\right] . \\end{equation*}", "\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = - \\miti \\operatorname { l n } \\int \\prod _ { \\mitxi ^ { \\mitmu } } \\mitd \\mitw _ { \\mitm } \\prod _ { \\mitx ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitM } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitd \\mitv \\operatorname { e x p } \\left[ \\miti \\int ( \\mupXi \\mupPhi + \\mupPhi ^ { \\dagger } \\mupDelta \\mupPhi ) \\mitd ^ { 6 } \\mitx \\right] \\end{equation*}" ], "x_min": [ 0.1348000019788742, 0.5238000154495239, 0.5619000196456909, 0.07739999890327454, 0.2881999909877777, 0.11060000211000443, 0.5555999875068665, 0.7172999978065491, 0.34279999136924744, 0.420199990272522, 0.7056000232696533, 0.07739999890327454, 0.11749999970197678, 0.8016999959945679, 0.15960000455379486, 0.373199999332428, 0.673799991607666, 0.07739999890327454, 0.40290001034736633, 0.5092999935150146, 0.7269999980926514, 0.10090000182390213, 0.349700003862381, 0.621999979019165, 0.7975000143051147, 0.13680000603199005, 0.3939000070095062, 0.5224999785423279, 0.3061999976634979, 0.27709999680519104, 0.0885000005364418, 0.16779999434947968, 0.15760000050067902, 0.20319999754428864 ], "y_min": [ 0.15719999372959137, 0.155799999833107, 0.15379999577999115, 0.17679999768733978, 0.1776999980211258, 0.2572999894618988, 0.25679999589920044, 0.27489998936653137, 0.2939000129699707, 0.29350000619888306, 0.29249998927116394, 0.30959999561309814, 0.5820000171661377, 0.5820000171661377, 0.600600004196167, 0.6025000214576721, 0.6011000275611877, 0.6161999702453613, 0.6195999979972839, 0.6352999806404114, 0.635699987411499, 0.6532999873161316, 0.6542999744415283, 0.6542999744415283, 0.6542999744415283, 0.7378000020980835, 0.8217999935150146, 0.8198000192642212, 0.09960000216960907, 0.20309999585151672, 0.3353999853134155, 0.4180000126361847, 0.76419997215271, 0.8467000126838684 ], "x_max": [ 0.20110000669956207, 0.5548999905586243, 0.7098000049591064, 0.1298999935388565, 0.3544999957084656, 0.15070000290870667, 0.574999988079071, 0.7448999881744385, 0.37389999628067017, 0.4325999915599823, 0.8486999869346619, 0.1720999926328659, 0.1859000027179718, 0.8465999960899353, 0.19619999825954437, 0.40639999508857727, 0.8424000144004822, 0.23909999430179596, 0.42500001192092896, 0.5486999750137329, 0.9031999707221985, 0.302700012922287, 0.3815000057220459, 0.6468999981880188, 0.8264999985694885, 0.1665000021457672, 0.4043000042438507, 0.6248000264167786, 0.6586999893188477, 0.6904000043869019, 0.854200005531311, 0.7957000136375427, 0.810699999332428, 0.7616000175476074 ], "y_max": [ 0.17329999804496765, 0.17339999973773956, 0.17630000412464142, 0.19189999997615814, 0.19089999794960022, 0.27390000224113464, 0.27000001072883606, 0.2870999872684479, 0.3061000108718872, 0.30720001459121704, 0.3086000084877014, 0.32420000433921814, 0.5957000255584717, 0.5957000255584717, 0.6157000064849854, 0.6151999831199646, 0.6166999936103821, 0.6338000297546387, 0.6323000192642212, 0.6509000062942505, 0.6513000130653381, 0.667900025844574, 0.6675000190734863, 0.6685000061988831, 0.6664999723434448, 0.7505000233650208, 0.832099974155426, 0.8349000215530396, 0.13920000195503235, 0.24220000207424164, 0.3763999938964844, 0.5687000155448914, 0.8051999807357788, 0.8858000040054321 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001113_page04
{ "latex": [ "$\\delta ^m$", "$B_{\\bar N}$", "$\\sigma $", "$\\sigma ^\\dagger $", "$v$", "$\\Xi _0=\\Xi |_{v=0}$", "$S^{\\rm eff}$", "$h^{MN}=g^{MN}-\\eta ^{MN}$", "$\\eta ^{MN}={\\rm diag}(1,-1,-1,-1,-1,-1)$", "$w$", "$\\Delta |_{h^{MN}=0,w=0}\\equiv \\Delta _0$", "$\\Delta _0$", "$\\Delta _0^{\\rm sp}$", "$\\Delta _0^{\\rm ex}$", "$x^\\mu $", "$x^m$", "$\\Delta _0$", "$\\Delta _0^{\\rm V}$", "$\\Delta _0^{\\rm S}$", "$B^\\mu $", "$(S^{(1)},S^{(2)},S^{(3)},S^{(4)})=(B^5,B^6,\\sigma ,\\sigma ^\\dagger )$", "$\\square \\,= \\eta ^{\\mu \\nu }\\partial _\\mu \\partial _\\nu $", "$V_k$", "$S_k^{(0)}$", "${m_k}^2$", "${m'_k}^2$", "$\\Delta _{\\rm int}$", "$\\Delta '_{\\rm int}$", "$h^{\\mu \\nu }$", "$w$", "\\begin {eqnarray} &&\\hskip -5mm \\Phi ^\\dagger =(B^{\\bar M},\\sigma ,\\sigma ^\\dagger ), \\\\ &&\\hskip -5mm \\Xi =\\sqrt {-g}(\\nabla _{\\bar M}v, \\ w_m x^m \\widetilde \\phi ^{0\\dagger }/J_0, \\ w_m x^m \\widetilde \\phi ^0/J_0), \\\\ &&\\hskip -5mm \\Delta =\\sqrt {-g} \\\\ &&\\hskip-5mm \\times \\begin{pmatrix} \\hskip-1mm \\eta _{\\bar M \\bar N}\\left (\\frac {1}{2}\\nabla _L\\nabla ^L+e^2|\\phi ^0|^2\\right ) & ieD_{\\bar M}^0\\phi ^{0\\dagger } & -ieD_{\\bar M}^0\\phi ^{0} \\cr -ieD_{\\bar N}^0\\phi ^{0} & \\hskip -3mm\\frac {1}{2}D_L^0 D^{0L} +\\frac {a}{2}-2b|\\phi ^0|^2+\\delta _{11}^mw_m & -b(\\phi ^0)^2+\\delta _{12}^m w_m \\cr ieD_{\\bar N}^0\\phi ^{0\\dagger } & -b(\\phi ^0\\dagger )^2+\\delta _{21}^m w_m & \\hskip -3mm\\frac {1}{2}D_L^0 D^{0L} +\\frac {a}{2}-2b|\\phi ^0|^2+\\delta _{22}^mw_m \\end{pmatrix} \\end {eqnarray}", "\\begin {equation} \\delta ^m (x,x') = \\frac {1}{2J_0}x^m\\delta (x-x') +\\frac {1}{2{J_0}^2}(x^m+x'^m) \\begin{pmatrix} \\widetilde \\phi ^0(x)\\cr \\widetilde \\phi ^0(x)^\\dagger \\end{pmatrix} \\begin{pmatrix} \\widetilde \\phi ^0(x')^\\dagger &\\widetilde \\phi ^0(x') \\end{pmatrix} \\label {19} \\end {equation}", "\\begin {equation} S^{\\rm eff} = \\frac {1}{2}i{\\rm Tr}\\ln \\Delta +\\frac {1}{2}i{\\rm Tr}\\ln \\left [\\partial _M\\sqrt {-g}(\\Delta ^{-1})^{MN}\\sqrt {-g}\\partial _N\\right ] -\\frac {1}{4}\\int \\Xi _0^\\dagger \\Delta ^{-1}\\Xi _0d^6x \\label {20} \\end {equation}", "\\begin {eqnarray} &&\\hskip -13mm \\Delta _0^{\\rm V,sp}=\\frac {1}{2}\\ \\square \\,, \\ \\ \\^^M\\Delta _0^{\\rm S,sp}=\\frac {1}{2}\\ \\square \\,, \\ \\ \\^^M\\Delta _0^{\\rm V,ex}=-\\frac {1}{2}\\partial _l \\partial _l+e^2|\\phi ^0|^2, \\cr &&\\hskip -13mm \\Delta _0^{\\rm S,ex} =\\begin{pmatrix} \\left (-\\frac {1}{2}\\partial _l\\partial _l+e^2|\\phi ^0|^2\\right )\\eta _{mn} & ieD_{n}^0\\phi ^{0\\dagger } & -ieD_{n}^0\\phi ^{0} \\cr -ieD_{m}^0\\phi ^{0} & -\\frac {1}{2}D_l^0 D_l^0 +\\frac {a}{2}-b|\\phi ^0|^2 & -b(\\phi ^0)^2 \\cr ieD_{m}^0\\phi ^{0\\dagger } & -b(\\phi ^{0\\dagger })^2 & -\\frac {1}{2}D_l^0 D_l^0 +\\frac {a}{2}-b|\\phi ^0|^2 \\end{pmatrix} \\end {eqnarray}", "\\begin {eqnarray} \\left [({\\Delta _0^{\\rm V}})^{-1}\\right ]^{\\mu \\nu } &=&\\eta ^{\\mu \\nu }\\sum _{k(}\\,\\square \\,+{m_k}^2)^{-1}V_k(x^m)V_k(x'^m), \\cr \\left [({\\Delta _0^{\\rm V}})^{-1}\\right ]^{\\mu \\nu } &=&\\sum _{k(}\\,\\square \\,+{m'_k}^2)^{-1}S_k^{(a)}(x^m)S_k^{(b)}(x'^m), \\end {eqnarray}", "\\begin {equation} \\Delta _0^{\\rm V,ex} V_k = {m_k}^2 V_k, \\ \\ \\ \\^^M\\Delta _0^{{\\rm S,ex}(a)(b)} S_k^{(b)} = {m'_k}^2 S_k^{(a)}. \\label {23} \\end {equation}", "\\begin {eqnarray} &&\\hskip -10mm \\Delta =\\Delta _0(1+\\Delta _0^{-1}\\Delta _{\\rm int}), \\\\ &&\\hskip -10mm \\partial _M\\sqrt {-g}(\\Delta ^{-1})^{MN}\\sqrt {-g}\\partial _N =1+{\\Delta '_0}^{-1} +\\partial _m(\\Delta _0^{-1})^{mn}\\partial _n+\\Delta '_{\\rm int}, \\end {eqnarray}", "\\begin {equation} {\\Delta '_0}^{-1}=\\sum _k {m_k}^2(\\,\\square \\,+{m_k}^2)^{-1}V_k(x^m)V_k(x'^m). \\label {26} \\end {equation}" ], "latex_norm": [ "$ \\delta ^ { m } $", "$ B _ { \\bar { N } } $", "$ \\sigma $", "$ \\sigma ^ { \\dagger } $", "$ v $", "$ \\Xi _ { 0 } = \\Xi \\vert _ { v = 0 } $", "$ S ^ { e f f } $", "$ h ^ { M N } = g ^ { M N } - \\eta ^ { M N } $", "$ \\eta ^ { M N } = d i a g ( 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) $", "$ w $", "$ \\Delta \\vert _ { h ^ { M N } = 0 , w = 0 } \\equiv \\Delta _ { 0 } $", "$ \\Delta _ { 0 } $", "$ \\Delta _ { 0 } ^ { s p } $", "$ \\Delta _ { 0 } ^ { e x } $", "$ x ^ { \\mu } $", "$ x ^ { m } $", "$ \\Delta _ { 0 } $", "$ \\Delta _ { 0 } ^ { V } $", "$ \\Delta _ { 0 } ^ { S } $", "$ B ^ { \\mu } $", "$ ( S ^ { ( 1 ) } , S ^ { ( 2 ) } , S ^ { ( 3 ) } , S ^ { ( 4 ) } ) = ( B ^ { 5 } , B ^ { 6 } , \\sigma , \\sigma ^ { \\dagger } ) $", "$ \\square \\, = \\eta ^ { \\mu \\nu } \\partial _ { \\mu } \\partial _ { \\nu } $", "$ V _ { k } $", "$ S _ { k } ^ { ( 0 ) } $", "$ { m _ { k } } ^ { 2 } $", "$ { m _ { k } ^ { \\prime } } ^ { 2 } $", "$ \\Delta _ { i n t } $", "$ \\Delta _ { i n t } ^ { \\prime } $", "$ h ^ { \\mu \\nu } $", "$ w $", "\\begin{align*} & & \\hspace{-14.23pt} \\Phi ^ { \\dagger } = ( B ^ { \\bar { M } } , \\sigma , \\sigma ^ { \\dagger } ) , \\\\ & & \\hspace{-14.23pt} \\Xi = \\sqrt { - g } ( \\nabla _ { \\bar { M } } v , ~ w _ { m } x ^ { m } \\widetilde { \\phi } ^ { 0 \\dagger } \\slash J _ { 0 } , ~ w _ { m } x ^ { m } \\widetilde { \\phi } ^ { 0 } \\slash J _ { 0 } ) , \\\\ & & \\hspace{-14.23pt} \\Delta = \\sqrt { - g } \\\\ \\hspace{-14.23pt} \\times ( \\begin{array}{ccc} \\hspace{-2.85pt} \\eta _ { \\bar { M } \\bar { N } } ( \\frac { 1 } { 2 } \\nabla _ { L } \\nabla ^ { L } + e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } ) & i e D _ { \\bar { M } } ^ { 0 } \\phi ^ { 0 \\dagger } & - i e D _ { \\bar { M } } ^ { 0 } \\phi ^ { 0 } \\\\ - i e D _ { \\bar { N } } ^ { 0 } \\phi ^ { 0 } & \\hspace{-8.54pt} \\frac { 1 } { 2 } D _ { L } ^ { 0 } D ^ { 0 L } + \\frac { a } { 2 } - 2 b \\vert \\phi ^ { 0 } \\vert ^ { 2 } + \\delta _ { 1 1 } ^ { m } w _ { m } & - b ( \\phi ^ { 0 } ) ^ { 2 } + \\delta _ { 1 2 } ^ { m } w _ { m } \\\\ i e D _ { \\bar { N } } ^ { 0 } \\phi ^ { 0 \\dagger } & - b ( \\phi ^ { 0 } \\dagger ) ^ { 2 } + \\delta _ { 2 1 } ^ { m } w _ { m } & \\hspace{-8.54pt} \\frac { 1 } { 2 } D _ { L } ^ { 0 } D ^ { 0 L } + \\frac { a } { 2 } - 2 b \\vert \\phi ^ { 0 } \\vert ^ { 2 } + \\delta _ { 2 2 } ^ { m } w _ { m } \\end{array} ) \\end{align*}", "\\begin{align*} \\delta ^ { m } ( x , x ^ { \\prime } ) = \\frac { 1 } { 2 J _ { 0 } } x ^ { m } \\delta ( x - x ^ { \\prime } ) + \\frac { 1 } { 2 { J _ { 0 } } ^ { 2 } } ( x ^ { m } + x ^ { \\prime m } ) ( \\begin{array}{c} \\widetilde { \\phi } ^ { 0 } ( x ) \\\\ \\widetilde { \\phi } ^ { 0 } ( x ) ^ { \\dagger } \\end{array} ) ( \\begin{array}{cc} \\widetilde { \\phi } ^ { 0 } ( x ^ { \\prime } ) ^ { \\dagger } & \\widetilde { \\phi } ^ { 0 } ( x ^ { \\prime } ) \\end{array} ) \\end{align*}", "\\begin{equation*} S ^ { e f f } = \\frac { 1 } { 2 } i T r \\operatorname { l n } \\Delta + \\frac { 1 } { 2 } i T r \\operatorname { l n } [ \\partial _ { M } \\sqrt { - g } ( \\Delta ^ { - 1 } ) ^ { M N } \\sqrt { - g } \\partial _ { N } ] - \\frac { 1 } { 4 } \\int \\Xi _ { 0 } ^ { \\dagger } \\Delta ^ { - 1 } \\Xi _ { 0 } d ^ { 6 } x \\end{equation*}", "\\begin{align*} & \\hspace{-36.99pt} \\Delta _ { 0 } ^ { V , s p } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\Delta _ { 0 } ^ { S , s p } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\Delta _ { 0 } ^ { V , e x } = - \\frac { 1 } { 2 } \\partial _ { l } \\partial _ { l } + e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } , \\\\ \\hspace{-36.99pt} \\Delta _ { 0 } ^ { S , e x } = ( \\begin{array}{ccc} & i e D _ { n } ^ { 0 } \\phi ^ { 0 \\dagger } & - i e D _ { n } ^ { 0 } \\phi ^ { 0 } \\\\ - i e D _ { m } ^ { 0 } \\phi ^ { 0 } & - \\frac { 1 } { 2 } D _ { l } ^ { 0 } D _ { l } ^ { 0 } + \\frac { a } { 2 } - b \\vert \\phi ^ { 0 } \\vert ^ { 2 } & - b ( \\phi ^ { 0 } ) ^ { 2 } \\\\ i e D _ { m } ^ { 0 } \\phi ^ { 0 \\dagger } & - b ( \\phi ^ { 0 \\dagger } ) ^ { 2 } & - \\frac { 1 } { 2 } D _ { l } ^ { 0 } D _ { l } ^ { 0 } + \\frac { a } { 2 } - b \\vert \\phi ^ { 0 } \\vert ^ { 2 } \\end{array} ) \\end{align*}", "\\begin{align*} { [ ( \\Delta _ { 0 } ^ { V } ) ^ { - 1 } ] } ^ { \\mu \\nu } & = & \\eta ^ { \\mu \\nu } \\sum _ { k ( } \\, \\square \\, + { m _ { k } } ^ { 2 } ) ^ { - 1 } V _ { k } ( x ^ { m } ) V _ { k } ( x ^ { \\prime m } ) , \\\\ { [ ( \\Delta _ { 0 } ^ { V } ) ^ { - 1 } ] } ^ { \\mu \\nu } & = & \\sum _ { k ( } \\, \\square \\, + { m _ { k } ^ { \\prime } } ^ { 2 } ) ^ { - 1 } S _ { k } ^ { ( a ) } ( x ^ { m } ) S _ { k } ^ { ( b ) } ( x ^ { \\prime m } ) , \\end{align*}", "\\begin{equation*} \\Delta _ { 0 } ^ { V , e x } V _ { k } = { m _ { k } } ^ { 2 } V _ { k } , ~ ~ ~ ~ \\Delta _ { 0 } ^ { S , e x ( a ) ( b ) } S _ { k } ^ { ( b ) } = { m _ { k } ^ { \\prime } } ^ { 2 } S _ { k } ^ { ( a ) } . \\end{equation*}", "\\begin{align*} & & \\hspace{-28.45pt} \\Delta = \\Delta _ { 0 } ( 1 + \\Delta _ { 0 } ^ { - 1 } \\Delta _ { i n t } ) , \\\\ & & \\hspace{-28.45pt} \\partial _ { M } \\sqrt { - g } ( \\Delta ^ { - 1 } ) ^ { M N } \\sqrt { - g } \\partial _ { N } = 1 + { \\Delta _ { 0 } ^ { \\prime } } ^ { - 1 } + \\partial _ { m } ( \\Delta _ { 0 } ^ { - 1 } ) ^ { m n } \\partial _ { n } + \\Delta _ { i n t } ^ { \\prime } , \\end{align*}", "\\begin{equation*} { \\Delta _ { 0 } ^ { \\prime } } ^ { - 1 } = \\sum _ { k } { m _ { k } } ^ { 2 } ( \\, \\square \\, + { m _ { k } } ^ { 2 } ) ^ { - 1 } V _ { k } ( x ^ { m } ) V _ { k } ( x ^ { \\prime m } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitdelta ^ { \\mitm } $", "$ \\mitB _ { \\bar { \\mitN } } $", "$ \\mitsigma $", "$ \\mitsigma ^ { \\dagger } $", "$ \\mitv $", "$ \\mupXi _ { 0 } = \\mupXi \\vert _ { \\mitv = 0 } $", "$ \\mitS ^ { \\mathrm { e f f } } $", "$ \\Planckconst ^ { \\mitM \\mitN } = \\mitg ^ { \\mitM \\mitN } - \\miteta ^ { \\mitM \\mitN } $", "$ \\miteta ^ { \\mitM \\mitN } = \\mathrm { d i a g } ( 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) $", "$ \\mitw $", "$ \\mupDelta \\vert _ { \\Planckconst ^ { \\mitM \\mitN } = 0 , \\mitw = 0 } \\equiv \\mupDelta _ { 0 } $", "$ \\mupDelta _ { 0 } $", "$ \\mupDelta _ { 0 } ^ { \\mathrm { s p } } $", "$ \\mupDelta _ { 0 } ^ { \\mathrm { e x } } $", "$ \\mitx ^ { \\mitmu } $", "$ \\mitx ^ { \\mitm } $", "$ \\mupDelta _ { 0 } $", "$ \\mupDelta _ { 0 } ^ { \\mathrm { V } } $", "$ \\mupDelta _ { 0 } ^ { \\mathrm { S } } $", "$ \\mitB ^ { \\mitmu } $", "$ ( \\mitS ^ { ( 1 ) } , \\mitS ^ { ( 2 ) } , \\mitS ^ { ( 3 ) } , \\mitS ^ { ( 4 ) } ) = ( \\mitB ^ { 5 } , \\mitB ^ { 6 } , \\mitsigma , \\mitsigma ^ { \\dagger } ) $", "$ \\square \\, = \\miteta ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mitpartial _ { \\mitnu } $", "$ \\mitV _ { \\mitk } $", "$ \\mitS _ { \\mitk } ^ { ( 0 ) } $", "$ { \\mitm _ { \\mitk } } ^ { 2 } $", "$ { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } $", "$ \\mupDelta _ { \\mathrm { i n t } } $", "$ \\mupDelta _ { \\mathrm { i n t } } ^ { \\prime } $", "$ \\Planckconst ^ { \\mitmu \\mitnu } $", "$ \\mitw $", "\\begin{align*} & & \\displaystyle \\hspace{-14.23pt} \\mupPhi ^ { \\dagger } = ( \\mitB ^ { \\bar { \\mitM } } , \\mitsigma , \\mitsigma ^ { \\dagger } ) , \\\\ & & \\displaystyle \\hspace{-14.23pt} \\mupXi = \\sqrt { - \\mitg } ( \\nabla _ { \\bar { \\mitM } } \\mitv , ~ \\mitw _ { \\mitm } \\mitx ^ { \\mitm } \\widetilde { \\mitphi } ^ { 0 \\dagger } \\slash \\mitJ _ { 0 } , ~ \\mitw _ { \\mitm } \\mitx ^ { \\mitm } \\widetilde { \\mitphi } ^ { 0 } \\slash \\mitJ _ { 0 } ) , \\\\ & & \\displaystyle \\hspace{-14.23pt} \\mupDelta = \\sqrt { - \\mitg } \\\\ \\displaystyle \\hspace{-14.23pt} \\times \\left( \\begin{array}{ccc} \\hspace{-2.85pt} \\miteta _ { \\bar { \\mitM } \\bar { \\mitN } } \\left( \\frac { 1 } { 2 } \\nabla _ { \\mitL } \\nabla ^ { \\mitL } + \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } \\right) & \\miti \\mite \\mitD _ { \\bar { \\mitM } } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\miti \\mite \\mitD _ { \\bar { \\mitM } } ^ { 0 } \\mitphi ^ { 0 } \\\\ - \\miti \\mite \\mitD _ { \\bar { \\mitN } } ^ { 0 } \\mitphi ^ { 0 } & \\hspace{-8.54pt} \\frac { 1 } { 2 } \\mitD _ { \\mitL } ^ { 0 } \\mitD ^ { 0 \\mitL } + \\frac { \\mita } { 2 } - 2 \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitdelta _ { 1 1 } ^ { \\mitm } \\mitw _ { \\mitm } & - \\mitb ( \\mitphi ^ { 0 } ) ^ { 2 } + \\mitdelta _ { 1 2 } ^ { \\mitm } \\mitw _ { \\mitm } \\\\ \\miti \\mite \\mitD _ { \\bar { \\mitN } } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\mitb ( \\mitphi ^ { 0 } \\dagger ) ^ { 2 } + \\mitdelta _ { 2 1 } ^ { \\mitm } \\mitw _ { \\mitm } & \\hspace{-8.54pt} \\frac { 1 } { 2 } \\mitD _ { \\mitL } ^ { 0 } \\mitD ^ { 0 \\mitL } + \\frac { \\mita } { 2 } - 2 \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitdelta _ { 2 2 } ^ { \\mitm } \\mitw _ { \\mitm } \\end{array} \\right) \\end{align*}", "\\begin{align*} \\displaystyle \\mitdelta ^ { \\mitm } ( \\mitx , \\mitx ^ { \\prime } ) = \\frac { 1 } { 2 \\mitJ _ { 0 } } \\mitx ^ { \\mitm } \\mitdelta ( \\mitx - \\mitx ^ { \\prime } ) + \\frac { 1 } { 2 { \\mitJ _ { 0 } } ^ { 2 } } ( \\mitx ^ { \\mitm } + \\mitx ^ { \\prime \\mitm } ) \\left( \\begin{array}{c} \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ) \\\\ \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ) ^ { \\dagger } \\end{array} \\right) \\left( \\begin{array}{cc} \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ^ { \\prime } ) ^ { \\dagger } & \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ^ { \\prime } ) \\end{array} \\right) \\end{align*}", "\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = \\frac { 1 } { 2 } \\miti \\mathrm { T r } \\operatorname { l n } \\mupDelta + \\frac { 1 } { 2 } \\miti \\mathrm { T r } \\operatorname { l n } \\left[ \\mitpartial _ { \\mitM } \\sqrt { - \\mitg } ( \\mupDelta ^ { - 1 } ) ^ { \\mitM \\mitN } \\sqrt { - \\mitg } \\mitpartial _ { \\mitN } \\right] - \\frac { 1 } { 4 } \\int \\mupXi _ { 0 } ^ { \\dagger } \\mupDelta ^ { - 1 } \\mupXi _ { 0 } \\mitd ^ { 6 } \\mitx \\end{equation*}", "\\begin{align*} & \\displaystyle \\hspace{-36.99pt} \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { s p } } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { s p } } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { e x } } = - \\frac { 1 } { 2 } \\mitpartial _ { \\mitl } \\mitpartial _ { \\mitl } + \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } , \\\\ \\displaystyle \\hspace{-36.99pt} \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { e x } } = \\left( \\begin{array}{ccc} & \\miti \\mite \\mitD _ { \\mitn } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\miti \\mite \\mitD _ { \\mitn } ^ { 0 } \\mitphi ^ { 0 } \\\\ - \\miti \\mite \\mitD _ { \\mitm } ^ { 0 } \\mitphi ^ { 0 } & - \\frac { 1 } { 2 } \\mitD _ { \\mitl } ^ { 0 } \\mitD _ { \\mitl } ^ { 0 } + \\frac { \\mita } { 2 } - \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } & - \\mitb ( \\mitphi ^ { 0 } ) ^ { 2 } \\\\ \\miti \\mite \\mitD _ { \\mitm } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\mitb ( \\mitphi ^ { 0 \\dagger } ) ^ { 2 } & - \\frac { 1 } { 2 } \\mitD _ { \\mitl } ^ { 0 } \\mitD _ { \\mitl } ^ { 0 } + \\frac { \\mita } { 2 } - \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } \\end{array} \\right) \\end{align*}", "\\begin{align*} \\displaystyle { \\left[ ( \\mupDelta _ { 0 } ^ { \\mathrm { V } } ) ^ { - 1 } \\right] } ^ { \\mitmu \\mitnu } & = & \\displaystyle \\miteta ^ { \\mitmu \\mitnu } \\sum _ { \\mitk ( } \\, \\square \\, + { \\mitm _ { \\mitk } } ^ { 2 } ) ^ { - 1 } \\mitV _ { \\mitk } ( \\mitx ^ { \\mitm } ) \\mitV _ { \\mitk } ( \\mitx ^ { \\prime \\mitm } ) , \\\\ \\displaystyle { \\left[ ( \\mupDelta _ { 0 } ^ { \\mathrm { V } } ) ^ { - 1 } \\right] } ^ { \\mitmu \\mitnu } & = & \\displaystyle \\sum _ { \\mitk ( } \\, \\square \\, + { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } ) ^ { - 1 } \\mitS _ { \\mitk } ^ { ( \\mita ) } ( \\mitx ^ { \\mitm } ) \\mitS _ { \\mitk } ^ { ( \\mitb ) } ( \\mitx ^ { \\prime \\mitm } ) , \\end{align*}", "\\begin{equation*} \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { e x } } \\mitV _ { \\mitk } = { \\mitm _ { \\mitk } } ^ { 2 } \\mitV _ { \\mitk } , ~ ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { e x } ( \\mita ) ( \\mitb ) } \\mitS _ { \\mitk } ^ { ( \\mitb ) } = { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } \\mitS _ { \\mitk } ^ { ( \\mita ) } . \\end{equation*}", "\\begin{align*} & & \\hspace{-28.45pt} \\mupDelta = \\mupDelta _ { 0 } ( 1 + \\mupDelta _ { 0 } ^ { - 1 } \\mupDelta _ { \\mathrm { i n t } } ) , \\\\ & & \\hspace{-28.45pt} \\mitpartial _ { \\mitM } \\sqrt { - \\mitg } ( \\mupDelta ^ { - 1 } ) ^ { \\mitM \\mitN } \\sqrt { - \\mitg } \\mitpartial _ { \\mitN } = 1 + { \\mupDelta _ { 0 } ^ { \\prime } } ^ { - 1 } + \\mitpartial _ { \\mitm } ( \\mupDelta _ { 0 } ^ { - 1 } ) ^ { \\mitm \\mitn } \\mitpartial _ { \\mitn } + \\mupDelta _ { \\mathrm { i n t } } ^ { \\prime } , \\end{align*}", "\\begin{equation*} \\displaystyle { \\mupDelta _ { 0 } ^ { \\prime } } ^ { - 1 } = \\sum _ { \\mitk } { \\mitm _ { \\mitk } } ^ { 2 } ( \\, \\square \\, + { \\mitm _ { \\mitk } } ^ { 2 } ) ^ { - 1 } \\mitV _ { \\mitk } ( \\mitx ^ { \\mitm } ) \\mitV _ { \\mitk } ( \\mitx ^ { \\prime \\mitm } ) . \\end{equation*}" ], "x_min": [ 0.13410000503063202, 0.3822000026702881, 0.42289999127388, 0.446399986743927, 0.5162000060081482, 0.652400016784668, 0.07739999890327454, 0.4242999851703644, 0.5964000225067139, 0.11540000140666962, 0.5016999840736389, 0.6730999946594238, 0.16380000114440918, 0.23770000040531158, 0.6075000166893005, 0.07739999890327454, 0.4050000011920929, 0.7815999984741211, 0.8568999767303467, 0.3621000051498413, 0.5652999877929688, 0.13410000503063202, 0.13410000503063202, 0.16590000689029694, 0.21080000698566437, 0.2888999879360199, 0.13410000503063202, 0.2134999930858612, 0.5555999875068665, 0.6288999915122986, 0.08709999918937683, 0.16380000114440918, 0.17069999873638153, 0.11800000071525574, 0.25850000977516174, 0.2874999940395355, 0.21220000088214874, 0.2971999943256378 ], "y_min": [ 0.20020000636577606, 0.2768999934196472, 0.28029999136924744, 0.27489998936653137, 0.28029999136924744, 0.2759000062942505, 0.3495999872684479, 0.3495999872684479, 0.3495999872684479, 0.37209999561309814, 0.3677000105381012, 0.3686999976634979, 0.384799987077713, 0.385699987411499, 0.3862000107765198, 0.4032999873161316, 0.4027999937534332, 0.4009000062942505, 0.4009000062942505, 0.41990000009536743, 0.41749998927116394, 0.5630000233650208, 0.6726999878883362, 0.6675000190734863, 0.6711999773979187, 0.6697999835014343, 0.814300000667572, 0.8137999773025513, 0.814300000667572, 0.8181999921798706, 0.06790000200271606, 0.22460000216960907, 0.30219998955726624, 0.46480000019073486, 0.5893999934196472, 0.7020999789237976, 0.7581999897956848, 0.84170001745224 ], "x_max": [ 0.15760000050067902, 0.41119998693466187, 0.43529999256134033, 0.4657999873161316, 0.5266000032424927, 0.7457000017166138, 0.10779999941587448, 0.5845999717712402, 0.8949000239372253, 0.1306000053882599, 0.6593000292778015, 0.6980000138282776, 0.1949000060558319, 0.2687999904155731, 0.6288999915122986, 0.1023000031709671, 0.42989999055862427, 0.8098999857902527, 0.8824999928474426, 0.38769999146461487, 0.8824999928474426, 0.24330000579357147, 0.15479999780654907, 0.19910000264644623, 0.24469999969005585, 0.32280001044273376, 0.16930000483989716, 0.24809999763965607, 0.5845999717712402, 0.64410001039505, 0.885699987411499, 0.8003000020980835, 0.7975000143051147, 0.8191999793052673, 0.7035999894142151, 0.6800000071525574, 0.7360000014305115, 0.6711000204086304 ], "y_max": [ 0.21050000190734863, 0.29010000824928284, 0.2870999872684479, 0.2870999872684479, 0.2870999872684479, 0.2904999852180481, 0.3617999851703644, 0.36469998955726624, 0.365200012922287, 0.3788999915122986, 0.3833000063896179, 0.3813999891281128, 0.399399995803833, 0.399399995803833, 0.3959999978542328, 0.413100004196167, 0.4154999852180481, 0.4165000021457672, 0.4165000021457672, 0.4302000105381012, 0.4341000020503998, 0.5776000022888184, 0.6854000091552734, 0.6861000061035156, 0.6854000091552734, 0.6869000196456909, 0.8270000219345093, 0.828000009059906, 0.8245999813079834, 0.8245000243186951, 0.18690000474452972, 0.26019999384880066, 0.33489999175071716, 0.5511000156402588, 0.656499981880188, 0.7240999937057495, 0.8029999732971191, 0.8744000196456909 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001113_page05
{ "latex": [ "$h^{\\mu \\nu }$", "$w$", "$\\Lambda $", "$\\sqrt {a}$", "$N_0$", "$N_1$", "$\\alpha _0$", "$\\alpha _1$", "$\\beta _0$", "$\\beta _1$", "$O(1)$", "$\\alpha _c$", "$\\beta _c$", "${\\cal L}_0$", "\\begin {equation} S^{\\rm eff} = \\int \\sqrt {-g}\\left [ (N_0\\alpha _0+N_1\\alpha _1+\\alpha _c)\\Lambda ^4+ (N_0\\beta _0+N_1\\beta _1+\\beta _c)\\Lambda ^2R\\right ] d^4x \\label {27} \\end {equation}", "\\begin {equation} S = \\int \\sqrt {-g}\\left (\\lambda + \\frac {1}{16\\pi G}R\\right )d^4x \\label {28} \\end {equation}", "\\begin {equation} \\lambda = \\int {\\cal L}_0 dx^5 dx^6 + (N_0\\alpha _0+N_1\\alpha _1+\\alpha _c)\\Lambda ^4, \\ \\ \\ \\^^M\\frac {1}{16\\pi G}=(N_0\\beta _0+N_1\\beta _1+\\beta _c)\\Lambda ^2. \\label {29} \\end {equation}" ], "latex_norm": [ "$ h ^ { \\mu \\nu } $", "$ w $", "$ \\Lambda $", "$ \\sqrt { a } $", "$ N _ { 0 } $", "$ N _ { 1 } $", "$ \\alpha _ { 0 } $", "$ \\alpha _ { 1 } $", "$ \\beta _ { 0 } $", "$ \\beta _ { 1 } $", "$ O ( 1 ) $", "$ \\alpha _ { c } $", "$ \\beta _ { c } $", "$ L _ { 0 } $", "\\begin{equation*} S ^ { e f f } = \\int \\sqrt { - g } [ ( N _ { 0 } \\alpha _ { 0 } + N _ { 1 } \\alpha _ { 1 } + \\alpha _ { c } ) \\Lambda ^ { 4 } + ( N _ { 0 } \\beta _ { 0 } + N _ { 1 } \\beta _ { 1 } + \\beta _ { c } ) \\Lambda ^ { 2 } R ] d ^ { 4 } x \\end{equation*}", "\\begin{equation*} S = \\int \\sqrt { - g } ( \\lambda + \\frac { 1 } { 1 6 \\pi G } R ) d ^ { 4 } x \\end{equation*}", "\\begin{equation*} \\lambda = \\int L _ { 0 } d x ^ { 5 } d x ^ { 6 } + ( N _ { 0 } \\alpha _ { 0 } + N _ { 1 } \\alpha _ { 1 } + \\alpha _ { c } ) \\Lambda ^ { 4 } , ~ ~ ~ ~ \\frac { 1 } { 1 6 \\pi G } = ( N _ { 0 } \\beta _ { 0 } + N _ { 1 } \\beta _ { 1 } + \\beta _ { c } ) \\Lambda ^ { 2 } . \\end{equation*}" ], "latex_expand": [ "$ \\Planckconst ^ { \\mitmu \\mitnu } $", "$ \\mitw $", "$ \\mupLambda $", "$ \\sqrt { \\mita } $", "$ \\mitN _ { 0 } $", "$ \\mitN _ { 1 } $", "$ \\mitalpha _ { 0 } $", "$ \\mitalpha _ { 1 } $", "$ \\mitbeta _ { 0 } $", "$ \\mitbeta _ { 1 } $", "$ \\mitO ( 1 ) $", "$ \\mitalpha _ { \\mitc } $", "$ \\mitbeta _ { \\mitc } $", "$ \\mitL _ { 0 } $", "\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = \\int \\sqrt { - \\mitg } \\left[ ( \\mitN _ { 0 } \\mitalpha _ { 0 } + \\mitN _ { 1 } \\mitalpha _ { 1 } + \\mitalpha _ { \\mitc } ) \\mupLambda ^ { 4 } + ( \\mitN _ { 0 } \\mitbeta _ { 0 } + \\mitN _ { 1 } \\mitbeta _ { 1 } + \\mitbeta _ { \\mitc } ) \\mupLambda ^ { 2 } \\mitR \\right] \\mitd ^ { 4 } \\mitx \\end{equation*}", "\\begin{equation*} \\mitS = \\int \\sqrt { - \\mitg } \\left( \\mitlambda + \\frac { 1 } { 1 6 \\mitpi \\mitG } \\mitR \\right) \\mitd ^ { 4 } \\mitx \\end{equation*}", "\\begin{equation*} \\mitlambda = \\int \\mitL _ { 0 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } + ( \\mitN _ { 0 } \\mitalpha _ { 0 } + \\mitN _ { 1 } \\mitalpha _ { 1 } + \\mitalpha _ { \\mitc } ) \\mupLambda ^ { 4 } , ~ ~ ~ ~ \\frac { 1 } { 1 6 \\mitpi \\mitG } = ( \\mitN _ { 0 } \\mitbeta _ { 0 } + \\mitN _ { 1 } \\mitbeta _ { 1 } + \\mitbeta _ { \\mitc } ) \\mupLambda ^ { 2 } . \\end{equation*}" ], "x_min": [ 0.819599986076355, 0.07739999890327454, 0.2702000141143799, 0.4456999897956848, 0.3628000020980835, 0.4332999885082245, 0.3621000051498413, 0.39739999175071716, 0.4318999946117401, 0.4650999903678894, 0.7325999736785889, 0.3808000087738037, 0.446399986743927, 0.5224999785423279, 0.1859000027179718, 0.349700003862381, 0.15070000290870667 ], "y_min": [ 0.04050000011920929, 0.061500001698732376, 0.07519999891519547, 0.07320000231266022, 0.1898999959230423, 0.1898999959230423, 0.21089999377727509, 0.21089999377727509, 0.2070000022649765, 0.2070000022649765, 0.20649999380111694, 0.2451000064611435, 0.24169999361038208, 0.2587999999523163, 0.14790000021457672, 0.28119999170303345, 0.3452000021934509 ], "x_max": [ 0.8485999703407288, 0.09260000288486481, 0.2847000062465668, 0.4733000099658966, 0.3869999945163727, 0.45750001072883606, 0.38350000977516174, 0.4180999994277954, 0.4512999951839447, 0.48510000109672546, 0.7741000056266785, 0.4007999897003174, 0.4643999934196472, 0.5446000099182129, 0.7815999984741211, 0.6177999973297119, 0.8169000148773193 ], "y_max": [ 0.05119999870657921, 0.06780000030994415, 0.08550000190734863, 0.08879999816417694, 0.20260000228881836, 0.20260000228881836, 0.21969999372959137, 0.21969999372959137, 0.2206999957561493, 0.2206999957561493, 0.22110000252723694, 0.2538999915122986, 0.2549000084400177, 0.27149999141693115, 0.17820000648498535, 0.31439998745918274, 0.37790000438690186 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001125_page02
{ "latex": [ "\\( 2\\pi \\alpha ' \\)", "\\( A_{\\mu } \\)", "\\( h_{ab} \\)", "\\( \\partial {\\cal M} \\)", "\\( G_{\\mu \\nu }=\\delta _{\\mu \\nu } \\)", "\\( B \\)", "\\( N^{a} \\)", "\\( \\partial {\\cal M} \\)", "\\( N_{a}dz^{a},\\, d\\tau \\)", "\\( i \\)", "\\( \\sqrt {-h}\\rightarrow i\\sqrt {h} \\)", "\\( A_{\\mu } \\)", "\\( iA_{\\mu } \\)", "\\( i \\)", "\\begin {equation} S=\\frac {1}{2\\pi \\alpha ' }\\left [ \\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h} h^{ab}\\partial _{a}X_{\\mu }\\partial _{b}X^{\\mu } +\\int _{\\partial {\\cal M}}d\\tau A_{\\mu }\\partial _{\\tau } X^{\\mu }\\right ] \\plabel {act} \\end {equation}" ], "latex_norm": [ "$ 2 \\pi \\alpha ^ { \\prime } $", "$ A _ { \\mu } $", "$ h _ { a b } $", "$ \\partial M $", "$ G _ { \\mu \\nu } = \\delta _ { \\mu \\nu } $", "$ B $", "$ N ^ { a } $", "$ \\partial M $", "$ N _ { a } d z ^ { a } , \\, d \\tau $", "$ i $", "$ \\sqrt { - h } \\rightarrow i \\sqrt { h } $", "$ A _ { \\mu } $", "$ i A _ { \\mu } $", "$ i $", "\\begin{equation*} S = \\frac { 1 } { 2 \\pi \\alpha ^ { \\prime } } [ \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } h ^ { a b } \\partial _ { a } X _ { \\mu } \\partial _ { b } X ^ { \\mu } + \\int _ { \\partial M } d \\tau A _ { \\mu } \\partial _ { \\tau } X ^ { \\mu } ] \\end{equation*}" ], "latex_expand": [ "$ 2 \\mitpi \\mitalpha ^ { \\prime } $", "$ \\mitA _ { \\mitmu } $", "$ \\Planckconst _ { \\mita \\mitb } $", "$ \\mitpartial \\mitM $", "$ \\mitG _ { \\mitmu \\mitnu } = \\mitdelta _ { \\mitmu \\mitnu } $", "$ \\mitB $", "$ \\mitN ^ { \\mita } $", "$ \\mitpartial \\mitM $", "$ \\mitN _ { \\mita } \\mitd \\mitz ^ { \\mita } , \\, \\mitd \\mittau $", "$ \\miti $", "$ \\sqrt { - \\Planckconst } \\rightarrow \\miti \\sqrt { \\Planckconst } $", "$ \\mitA _ { \\mitmu } $", "$ \\miti \\mitA _ { \\mitmu } $", "$ \\miti $", "\\begin{equation*} \\mitS = \\frac { 1 } { 2 \\mitpi \\mitalpha ^ { \\prime } } \\left[ \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\Planckconst ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mitX _ { \\mitmu } \\mitpartial _ { \\mitb } \\mitX ^ { \\mitmu } + \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\mitA _ { \\mitmu } \\mitpartial _ { \\mittau } \\mitX ^ { \\mitmu } \\right] \\end{equation*}" ], "x_min": [ 0.30550000071525574, 0.41670000553131104, 0.14509999752044678, 0.396699994802475, 0.321399986743927, 0.14509999752044678, 0.3537999987602234, 0.6082000136375427, 0.7491000294685364, 0.6869000196456909, 0.5073000192642212, 0.3393000066280365, 0.3959999978542328, 0.2799000144004822, 0.2460000067949295 ], "y_min": [ 0.5619999766349792, 0.5800999999046326, 0.5971999764442444, 0.5971999764442444, 0.6312999725341797, 0.6488999724388123, 0.6660000085830688, 0.6830999851226807, 0.6830999851226807, 0.7348999977111816, 0.7480000257492065, 0.7689999938011169, 0.7689999938011169, 0.7865999937057495, 0.5098000168800354 ], "x_max": [ 0.3456000089645386, 0.4415999948978424, 0.17139999568462372, 0.4325999915599823, 0.40709999203681946, 0.16169999539852142, 0.3808000087738037, 0.64410001039505, 0.8355000019073486, 0.6937999725341797, 0.6281999945640564, 0.36419999599456787, 0.4271000027656555, 0.2874999940395355, 0.7332000136375427 ], "y_max": [ 0.573199987411499, 0.5942999720573425, 0.6098999977111816, 0.6079000234603882, 0.6459000110626221, 0.6592000126838684, 0.6762999892234802, 0.6934000253677368, 0.6963000297546387, 0.744700014591217, 0.7641000151634216, 0.7832000255584717, 0.7832000255584717, 0.7964000105857849, 0.5473999977111816 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001125_page05
{ "latex": [ "\\( b_{0},\\, b_{1},\\, b_{2},\\, \\gamma ,\\, \\sigma _{1} \\)", "\\( b_{0} \\)", "\\( \\sigma _{1} \\)", "\\( b_{0}+\\sigma _{1}\\Gamma ^{2} \\)", "\\( k_{ij}\\Gamma ^{i}\\Gamma ^{j}=k\\Gamma ^{2} \\)", "\\( \\zeta \\)", "\\( D \\)", "\\( s \\)", "\\( \\zeta _{D}(0)=a_{1}(1,D,{\\mathcal {B}}) \\)", "\\( s\\rightarrow 0 \\)", "\\( (1/2\\pi )\\int _{\\partial {\\cal M}}d\\tau \\, G_{\\mu }\\dot {\\bar {X}}^{\\mu } \\)", "\\( i \\)", "\\begin {eqnarray} && \\gamma =\\frac {1}{4}\\left [ \\frac {2}{\\sqrt {1+\\Gamma ^{2}}}-1\\right ]\\,, \\\\ && b_{1}=\\frac {1}{\\sqrt {-\\Gamma ^{2}}}{\\textrm {Artanh}} (\\sqrt {-\\Gamma ^{2}})-\\frac {1}{2}\\,,\\\\ && b_{2}=\\frac {2}{1+\\Gamma ^{2}}\\,,\\\\ && b_{0}+\\sigma _{1}\\Gamma ^{2}=\\frac {1}{3}\\, \\,, \\end {eqnarray}", "\\begin {equation} \\zeta _{D}(s)={\\textrm {Tr}}(D^{-s})\\, \\, .\\plabel {defzeta} \\end {equation}", "\\begin {equation} W=-\\frac {1}{2s}\\zeta _{D}(0)-\\frac {1}{2}\\zeta ' _{D}(0)\\,,\\label {W2} \\end {equation}", "\\begin {equation} W_{{\\mbox {\\scriptsize {div}}}}=-\\frac {1}{2s}\\frac {1}{4\\pi } \\int _{\\partial {\\cal M}}d\\tau \\, \\left [ -\\dot {\\bar {X}}^{\\rho }(\\partial _{\\nu }F_{\\mu \\rho } +\\partial _{\\mu }F_{\\nu \\rho })(1+F^{2})^{-1}_{\\nu \\mu } +\\frac {1}{3}k\\delta _{\\nu }^{\\nu }\\right ] .\\label {Wdiv} \\end {equation}", "\\begin {equation} \\beta _{\\mu }^{A}\\propto (\\partial _{\\rho }F_{\\nu \\mu })(1+F^{2})^{-1}_{\\nu \\rho }\\,.\\label {beta} \\end {equation}" ], "latex_norm": [ "$ b _ { 0 } , \\, b _ { 1 } , \\, b _ { 2 } , \\, \\gamma , \\, \\sigma _ { 1 } $", "$ b _ { 0 } $", "$ \\sigma _ { 1 } $", "$ b _ { 0 } + \\sigma _ { 1 } \\Gamma ^ { 2 } $", "$ k _ { i j } \\Gamma ^ { i } \\Gamma ^ { j } = k \\Gamma ^ { 2 } $", "$ \\zeta $", "$ D $", "$ s $", "$ \\zeta _ { D } ( 0 ) = a _ { 1 } ( 1 , D , B ) $", "$ s \\rightarrow 0 $", "$ ( 1 \\slash 2 \\pi ) \\int _ { \\partial M } d \\tau \\, G _ { \\mu } \\dot { \\bar { X } } ^ { \\mu } $", "$ i $", "\\begin{align*} & & \\gamma = \\frac { 1 } { 4 } [ \\frac { 2 } { \\sqrt { 1 + \\Gamma ^ { 2 } } } - 1 ] \\, , \\\\ & & b _ { 1 } = \\frac { 1 } { \\sqrt { - \\Gamma ^ { 2 } } } A r t a n h ( \\sqrt { - \\Gamma ^ { 2 } } ) - \\frac { 1 } { 2 } \\, , \\\\ & & b _ { 2 } = \\frac { 2 } { 1 + \\Gamma ^ { 2 } } \\, , \\\\ & & b _ { 0 } + \\sigma _ { 1 } \\Gamma ^ { 2 } = \\frac { 1 } { 3 } \\, \\, , \\end{align*}", "\\begin{equation*} \\zeta _ { D } ( s ) = T r ( D ^ { - s } ) \\, \\, . \\end{equation*}", "\\begin{equation*} W = - \\frac { 1 } { 2 s } \\zeta _ { D } ( 0 ) - \\frac { 1 } { 2 } \\zeta _ { D } ^ { \\prime } ( 0 ) \\, , \\end{equation*}", "\\begin{equation*} W _ { d i v } = - \\frac { 1 } { 2 s } \\frac { 1 } { 4 \\pi } \\int _ { \\partial M } d \\tau \\, [ - \\dot { \\bar { X } } ^ { \\rho } ( \\partial _ { \\nu } F _ { \\mu \\rho } + \\partial _ { \\mu } F _ { \\nu \\rho } ) ( 1 + F ^ { 2 } ) _ { \\nu \\mu } ^ { - 1 } + \\frac { 1 } { 3 } k \\delta _ { \\nu } ^ { \\nu } ] . \\end{equation*}", "\\begin{equation*} \\beta _ { \\mu } ^ { A } \\propto ( \\partial _ { \\rho } F _ { \\nu \\mu } ) ( 1 + F ^ { 2 } ) _ { \\nu \\rho } ^ { - 1 } \\, . \\end{equation*}" ], "latex_expand": [ "$ \\mitb _ { 0 } , \\, \\mitb _ { 1 } , \\, \\mitb _ { 2 } , \\, \\mitgamma , \\, \\mitsigma _ { 1 } $", "$ \\mitb _ { 0 } $", "$ \\mitsigma _ { 1 } $", "$ \\mitb _ { 0 } + \\mitsigma _ { 1 } \\mupGamma ^ { 2 } $", "$ \\mitk _ { \\miti \\mitj } \\mupGamma ^ { \\miti } \\mupGamma ^ { \\mitj } = \\mitk \\mupGamma ^ { 2 } $", "$ \\mitzeta $", "$ \\mitD $", "$ \\mits $", "$ \\mitzeta _ { \\mitD } ( 0 ) = \\mita _ { 1 } ( 1 , \\mitD , \\mscrB ) $", "$ \\mits \\rightarrow 0 $", "$ ( 1 \\slash 2 \\mitpi ) \\int \\nolimits _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\mitG _ { \\mitmu } \\dot { \\bar { \\mitX } } ^ { \\mitmu } $", "$ \\miti $", "\\begin{align*} & & \\mitgamma = \\frac { 1 } { 4 } \\left[ \\frac { 2 } { \\sqrt { 1 + \\mupGamma ^ { 2 } } } - 1 \\right] \\, , \\\\ & & \\mitb _ { 1 } = \\frac { 1 } { \\sqrt { - \\mupGamma ^ { 2 } } } \\mathrm { A r t a n h } ( \\sqrt { - \\mupGamma ^ { 2 } } ) - \\frac { 1 } { 2 } \\, , \\\\ & & \\mitb _ { 2 } = \\frac { 2 } { 1 + \\mupGamma ^ { 2 } } \\, , \\\\ & & \\mitb _ { 0 } + \\mitsigma _ { 1 } \\mupGamma ^ { 2 } = \\frac { 1 } { 3 } \\, \\, , \\end{align*}", "\\begin{equation*} \\mitzeta _ { \\mitD } ( \\mits ) = \\mathrm { T r } ( \\mitD ^ { - \\mits } ) \\, \\, . \\end{equation*}", "\\begin{equation*} \\mitW = - \\frac { 1 } { 2 \\mits } \\mitzeta _ { \\mitD } ( 0 ) - \\frac { 1 } { 2 } \\mitzeta _ { \\mitD } ^ { \\prime } ( 0 ) \\, , \\end{equation*}", "\\begin{equation*} \\mitW _ { \\mathrm { d i v } } = - \\frac { 1 } { 2 \\mits } \\frac { 1 } { 4 \\mitpi } \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\left[ - \\dot { \\bar { \\mitX } } ^ { \\mitrho } ( \\mitpartial _ { \\mitnu } \\mitF _ { \\mitmu \\mitrho } + \\mitpartial _ { \\mitmu } \\mitF _ { \\mitnu \\mitrho } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitmu } ^ { - 1 } + \\frac { 1 } { 3 } \\mitk \\mitdelta _ { \\mitnu } ^ { \\mitnu } \\right] . \\end{equation*}", "\\begin{equation*} \\mitbeta _ { \\mitmu } ^ { \\mitA } \\propto ( \\mitpartial _ { \\mitrho } \\mitF _ { \\mitnu \\mitmu } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitrho } ^ { - 1 } \\, . \\end{equation*}" ], "x_min": [ 0.3912000060081482, 0.4291999936103821, 0.4921000003814697, 0.3172000050544739, 0.5529000163078308, 0.36629998683929443, 0.2888999879360199, 0.6254000067710876, 0.30480000376701355, 0.16859999299049377, 0.6952000260353088, 0.41600000858306885, 0.367000013589859, 0.41190001368522644, 0.37459999322891235, 0.18799999356269836, 0.3822000026702881 ], "y_min": [ 0.1348000019788742, 0.31450000405311584, 0.31839999556541443, 0.33059999346733093, 0.33009999990463257, 0.4790000021457672, 0.4961000084877014, 0.6317999958992004, 0.6615999937057495, 0.6801999807357788, 0.7548999786376953, 0.8389000296592712, 0.16110000014305115, 0.5214999914169312, 0.5814999938011169, 0.7031000256538391, 0.8022000193595886 ], "x_max": [ 0.5196999907493591, 0.4465000033378601, 0.5115000009536743, 0.3986999988555908, 0.6744999885559082, 0.3767000138759613, 0.3061999976634979, 0.6351000070571899, 0.4740999937057495, 0.21969999372959137, 0.871399998664856, 0.42289999127388, 0.6434000134468079, 0.5708000063896179, 0.6047000288963318, 0.7595000267028809, 0.600600004196167 ], "y_max": [ 0.14800000190734863, 0.3271999955177307, 0.3271999955177307, 0.3447999954223633, 0.34619998931884766, 0.49219998717308044, 0.5063999891281128, 0.6381000280380249, 0.6761999726295471, 0.6899999976158142, 0.7753999829292297, 0.8486999869346619, 0.3010999858379364, 0.5404999852180481, 0.6141999959945679, 0.7411999702453613, 0.8237000107765198 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001125_page06
{ "latex": [ "\\( A_{\\mu } \\)", "\\( F_{\\mu \\nu } \\)", "\\( \\delta _{\\nu }^{\\nu } \\)", "\\( F \\)", "\\( \\mathcal {M} \\)", "\\( {\\cal M} \\)", "\\( 2\\pi \\chi (\\mathcal {M})=\\int _{\\partial {\\cal M}}d\\tau k \\)", "\\( \\delta h_{ab}=(\\delta k)h_{ab} \\)", "\\( \\delta k \\)", "\\( W_{{\\mbox {\\scriptsize {ren}}}} \\)", "\\( N_{a}dz^{a},d\\tau \\)", "\\( \\zeta \\)", "\\( \\delta \\zeta _{D_{k}}(s)=s\\mbox {Tr}(D^{-s}\\delta k) \\)", "\\( \\zeta (0|\\delta k,D)=a_{1}(\\delta k,D,{\\mathcal {B}}) \\)", "\\begin {equation} \\delta W_{{\\mbox {\\scriptsize {ren}}}}= \\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h}\\delta h^{ab}T_{ab} =-\\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h}\\delta k(x)T_{a}^{a}(x)\\,,\\label {T} \\end {equation}", "\\begin {eqnarray} && \\Delta \\rightarrow (1-k+\\dots )\\Delta ,\\\\ && {\\mathcal {B}}\\rightarrow (1-\\frac {k}{2}+\\dots ){\\mathcal {B}}\\,. \\end {eqnarray}", "\\begin {equation} \\zeta (s|\\delta k,D)={\\textrm {Tr}}(\\delta kD^{-s})\\plabel {varW} \\end {equation}", "\\begin {equation} \\plabel {TX}\\delta W_{{\\mbox {\\scriptsize {ren}}}}=-\\frac {1}{2}\\zeta (0|\\delta k,D)\\quad , \\end {equation}", "\\begin {equation} \\zeta (0|\\delta k,D)=\\int d^{2}z\\sqrt {h}\\delta k(z)T_{a}^{a}(x)\\; .\\plabel {T2} \\end {equation}", "\\begin {eqnarray} && \\int _{\\cal M}\\sqrt {h}d^{2}zf(z)T_{a}^{a}(z)= \\frac {1}{4\\pi }\\int _{\\partial {\\cal M}}d\\tau \\, \\left [ f(\\tau )\\left ( \\frac {1}{3}k\\delta _{\\nu }^{\\nu } -2\\dot {\\bar {X}}^{\\rho }(\\partial _{\\nu }F_{\\mu \\rho }) (1+F^{2})^{-1}_{\\nu \\mu }\\right ) \\right . \\\\ && \\qquad \\qquad \\left . +(\\nabla _{N}f)\\left ( (-F^{2})_{\\mu \\nu }^{-1/2}{\\textrm {Artanh}}(\\sqrt {-F^{2}})_{\\nu \\mu }- \\frac {1}{2}\\delta _{\\mu }^{\\mu }\\right ) \\right ]\\,. \\end {eqnarray}" ], "latex_norm": [ "$ A _ { \\mu } $", "$ F _ { \\mu \\nu } $", "$ \\delta _ { \\nu } ^ { \\nu } $", "$ F $", "$ M $", "$ M $", "$ 2 \\pi \\chi ( M ) = \\int _ { \\partial M } d \\tau k $", "$ \\delta h _ { a b } = ( \\delta k ) h _ { a b } $", "$ \\delta k $", "$ W _ { r e n } $", "$ N _ { a } d z ^ { a } , d \\tau $", "$ \\zeta $", "$ \\delta \\zeta _ { D _ { k } } ( s ) = s T r ( D ^ { - s } \\delta k ) $", "$ \\zeta ( 0 \\vert \\delta k , D ) = a _ { 1 } ( \\delta k , D , B ) $", "\\begin{equation*} \\delta W _ { r e n } = \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } \\delta h ^ { a b } T _ { a b } = - \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } \\delta k ( x ) T _ { a } ^ { a } ( x ) \\, , \\end{equation*}", "\\begin{align*} & & \\Delta \\rightarrow ( 1 - k + \\ldots \\, ) \\Delta , \\\\ & & B \\rightarrow ( 1 - \\frac { k } { 2 } + \\ldots \\, ) B \\, . \\end{align*}", "\\begin{equation*} \\zeta ( s \\vert \\delta k , D ) = T r ( \\delta k D ^ { - s } ) \\end{equation*}", "\\begin{equation*} \\delta W _ { r e n } = - \\frac { 1 } { 2 } \\zeta ( 0 \\vert \\delta k , D ) \\quad , \\end{equation*}", "\\begin{equation*} \\zeta ( 0 \\vert \\delta k , D ) = \\int d ^ { 2 } z \\sqrt { h } \\delta k ( z ) T _ { a } ^ { a } ( x ) \\; . \\end{equation*}", "\\begin{align*} & & \\int _ { M } \\sqrt { h } d ^ { 2 } z f ( z ) T _ { a } ^ { a } ( z ) = \\frac { 1 } { 4 \\pi } \\int _ { \\partial M } d \\tau \\, [ f ( \\tau ) ( \\frac { 1 } { 3 } k \\delta _ { \\nu } ^ { \\nu } - 2 \\dot { \\bar { X } } ^ { \\rho } ( \\partial _ { \\nu } F _ { \\mu \\rho } ) ( 1 + F ^ { 2 } ) _ { \\nu \\mu } ^ { - 1 } ) \\\\ & & \\qquad \\qquad + ( \\nabla _ { N } f ) ( ( - F ^ { 2 } ) _ { \\mu \\nu } ^ { - 1 \\slash 2 } A r t a n h ( \\sqrt { - F ^ { 2 } } ) _ { \\nu \\mu } - \\frac { 1 } { 2 } \\delta _ { \\mu } ^ { \\mu } ) ] \\, . \\end{align*}" ], "latex_expand": [ "$ \\mitA _ { \\mitmu } $", "$ \\mitF _ { \\mitmu \\mitnu } $", "$ \\mitdelta _ { \\mitnu } ^ { \\mitnu } $", "$ \\mitF $", "$ \\mscrM $", "$ \\mitM $", "$ 2 \\mitpi \\mitchi ( \\mscrM ) = \\int \\nolimits _ { \\mitpartial \\mitM } \\mitd \\mittau \\mitk $", "$ \\mitdelta \\Planckconst _ { \\mita \\mitb } = ( \\mitdelta \\mitk ) \\Planckconst _ { \\mita \\mitb } $", "$ \\mitdelta \\mitk $", "$ \\mitW _ { \\mathrm { r e n } } $", "$ \\mitN _ { \\mita } \\mitd \\mitz ^ { \\mita } , \\mitd \\mittau $", "$ \\mitzeta $", "$ \\mitdelta \\mitzeta _ { \\mitD _ { \\mitk } } ( \\mits ) = \\mits \\mathrm { T r } ( \\mitD ^ { - \\mits } \\mitdelta \\mitk ) $", "$ \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) = \\mita _ { 1 } ( \\mitdelta \\mitk , \\mitD , \\mscrB ) $", "\\begin{equation*} \\mitdelta \\mitW _ { \\mathrm { r e n } } = \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\Planckconst ^ { \\mita \\mitb } \\mitT _ { \\mita \\mitb } = - \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\mitk ( \\mitx ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitx ) \\, , \\end{equation*}", "\\begin{align*} & & \\mupDelta \\rightarrow ( 1 - \\mitk + \\ldots \\, ) \\mupDelta , \\\\ & & \\mscrB \\rightarrow ( 1 - \\frac { \\mitk } { 2 } + \\ldots \\, ) \\mscrB \\, . \\end{align*}", "\\begin{equation*} \\mitzeta ( \\mits \\vert \\mitdelta \\mitk , \\mitD ) = \\mathrm { T r } ( \\mitdelta \\mitk \\mitD ^ { - \\mits } ) \\end{equation*}", "\\begin{equation*} \\mitdelta \\mitW _ { \\mathrm { r e n } } = - \\frac { 1 } { 2 } \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) \\quad , \\end{equation*}", "\\begin{equation*} \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) = \\int \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\mitk ( \\mitz ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitx ) \\; . \\end{equation*}", "\\begin{align*} & & \\int _ { \\mitM } \\sqrt { \\Planckconst } \\mitd ^ { 2 } \\mitz \\mitf ( \\mitz ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitz ) = \\frac { 1 } { 4 \\mitpi } \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\left[ \\mitf ( \\mittau ) \\left( \\frac { 1 } { 3 } \\mitk \\mitdelta _ { \\mitnu } ^ { \\mitnu } - 2 \\dot { \\bar { \\mitX } } ^ { \\mitrho } ( \\mitpartial _ { \\mitnu } \\mitF _ { \\mitmu \\mitrho } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitmu } ^ { - 1 } \\right) \\right. \\\\ & & \\qquad \\qquad \\left. + ( \\nabla _ { \\mitN } \\mitf ) \\left( ( - \\mitF ^ { 2 } ) _ { \\mitmu \\mitnu } ^ { - 1 \\slash 2 } \\mathrm { A r t a n h } ( \\sqrt { - \\mitF ^ { 2 } } ) _ { \\mitnu \\mitmu } - \\frac { 1 } { 2 } \\mitdelta _ { \\mitmu } ^ { \\mitmu } \\right) \\right] \\, . \\end{align*}" ], "x_min": [ 0.5999000072479248, 0.489300012588501, 0.4036000072956085, 0.6082000136375427, 0.3199999928474426, 0.2881999909877777, 0.32690000534057617, 0.2370000034570694, 0.583299994468689, 0.23360000550746918, 0.678600013256073, 0.487199991941452, 0.27570000290870667, 0.5619000196456909, 0.24050000309944153, 0.4147000014781952, 0.38769999146461487, 0.3801000118255615, 0.3407000005245209, 0.18310000002384186 ], "y_min": [ 0.1348000019788742, 0.16940000653266907, 0.20309999585151672, 0.20360000431537628, 0.2378000020980835, 0.2549000084400177, 0.25290000438690186, 0.288100004196167, 0.2890999913215637, 0.37599998712539673, 0.4975999891757965, 0.5663999915122986, 0.6869999766349792, 0.7562999725341797, 0.3280999958515167, 0.4325999915599823, 0.5889000296592712, 0.6435999870300293, 0.7099999785423279, 0.7958999872207642 ], "x_max": [ 0.6248000264167786, 0.5196999907493591, 0.4223000109195709, 0.6241000294685364, 0.3449000120162964, 0.31310001015663147, 0.4982999861240387, 0.3668999969959259, 0.6047000288963318, 0.2736999988555908, 0.7621999979019165, 0.4975999891757965, 0.4657000005245209, 0.7829999923706055, 0.7387999892234802, 0.5992000102996826, 0.5950000286102295, 0.5999000072479248, 0.6427000164985657, 0.8271999955177307 ], "y_max": [ 0.149399995803833, 0.18359999358654022, 0.21729999780654907, 0.21389999985694885, 0.24809999763965607, 0.2651999890804291, 0.27000001072883606, 0.30320000648498535, 0.29980000853538513, 0.388700008392334, 0.5113000273704529, 0.5795999765396118, 0.7020999789237976, 0.7709000110626221, 0.36419999599456787, 0.4875999987125397, 0.6079000234603882, 0.6758000254631042, 0.745199978351593, 0.8773999810218811 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001125_page07
{ "latex": [ "\\( F\\rightarrow 0 \\)", "\\( F_{\\mu \\nu } \\)", "\\( F_{\\mu \\nu } \\)", "$F_{\\mu \\nu }$" ], "latex_norm": [ "$ F \\rightarrow 0 $", "$ F _ { \\mu \\nu } $", "$ F _ { \\mu \\nu } $", "$ F _ { \\mu \\nu } $" ], "latex_expand": [ "$ \\mitF \\rightarrow 0 $", "$ \\mitF _ { \\mitmu \\mitnu } $", "$ \\mitF _ { \\mitmu \\mitnu } $", "$ \\mitF _ { \\mitmu \\mitnu } $" ], "x_min": [ 0.25850000977516174, 0.45399999618530273, 0.44920000433921814, 0.6496000289916992 ], "y_min": [ 0.1348000019788742, 0.5054000020027161, 0.5396000146865845, 0.5907999873161316 ], "x_max": [ 0.32420000433921814, 0.4844000041484833, 0.4796000123023987, 0.6800000071525574 ], "y_max": [ 0.14550000429153442, 0.519599974155426, 0.5537999868392944, 0.605400025844574 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded" ] }
0001129_page01
{ "latex": [ "${\\cal A}^{(n)}$", "$n$", "${\\cal A}^{(0)}$" ], "latex_norm": [ "$ A ^ { ( n ) } $", "$ n $", "$ A ^ { ( 0 ) } $" ], "latex_expand": [ "$ \\mitA ^ { ( \\mitn ) } $", "$ \\mitn $", "$ \\mitA ^ { ( 0 ) } $" ], "x_min": [ 0.4174000024795532, 0.6061000227928162, 0.71670001745224 ], "y_min": [ 0.5166000127792358, 0.5220000147819519, 0.5166000127792358 ], "x_max": [ 0.44850000739097595, 0.6158000230789185, 0.7457000017166138 ], "y_max": [ 0.5268999934196472, 0.5268999934196472, 0.5268999934196472 ], "expr_type": [ "embedded", "embedded", "embedded" ] }
0001129_page02
{ "latex": [ "$S$", "$S(g)\\>(g\\in {\\cal D}(\\RR ^4))$", "$g$", "$g\\rightarrow S(g)$", "$S$", "$\\hbar $", "$S$", "\\begin {equation} (\\w +m^2)\\varphi =0\\label {2.1} \\end {equation}" ], "latex_norm": [ "$ S $", "$ S ( g ) \\> ( g \\in D ( R ^ { 4 } ) ) $", "$ g $", "$ g \\rightarrow S ( g ) $", "$ S $", "$ \\hbar $", "$ S $", "\\begin{equation*} ( \\square + m ^ { 2 } ) \\varphi = 0 \\end{equation*}" ], "latex_expand": [ "$ \\mitS $", "$ \\mitS ( \\mitg ) \\> ( \\mitg \\in \\mitD ( \\BbbR ^ { 4 } ) ) $", "$ \\mitg $", "$ \\mitg \\rightarrow \\mitS ( \\mitg ) $", "$ \\mitS $", "$ \\hslash $", "$ \\mitS $", "\\begin{equation*} ( \\square + \\mitm ^ { 2 } ) \\mitvarphi = 0 \\end{equation*}" ], "x_min": [ 0.49549999833106995, 0.5812000036239624, 0.3248000144958496, 0.23569999635219574, 0.6545000076293945, 0.3359000086784363, 0.6704000234603882, 0.44440001249313354 ], "y_min": [ 0.3813000023365021, 0.3799000084400177, 0.3984000086784363, 0.42329999804496765, 0.45210000872612, 0.5659000277519226, 0.7720000147819519, 0.8223000168800354 ], "x_max": [ 0.5072000026702881, 0.7117999792098999, 0.33379998803138733, 0.30480000376701355, 0.6661999821662903, 0.3449000120162964, 0.6862999796867371, 0.5557000041007996 ], "y_max": [ 0.39010000228881836, 0.39309999346733093, 0.4066999852657318, 0.43549999594688416, 0.4609000086784363, 0.5746999979019165, 0.7842000126838684, 0.8393999934196472 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001129_page03
{ "latex": [ "$\\Delta _{\\rm ret,av}$", "$(\\w +m^2)$", "$\\bar V_\\pm $", "$\\Delta =\\Delta _{\\rm ret}-\\Delta _{\\rm av}$", "$\\Delta =\\Delta _{\\rm ret}-\\Delta _{\\rm av}$", "${\\cal A}$", "$\\varphi (f),\\> f\\in {\\cal D}(\\RR ^4)$", "$\\varphi (f),\\> f\\in {\\cal D}(\\RR ^4)$", "$<f,g>=\\int d^4x f(x)g(x)$", "${\\cal A}$", "$*$", "$\\pi $", "$\\omega _0$", "$\\omega _0:{\\cal A}\\to \\CC $", "$\\Delta _+$", "$\\Delta $", "${\\cal H}$", "$\\Omega $", "${\\cal H}$", "$\\varphi $", "$\\pi $", "${\\cal D}\\subset {\\cal H}$", "$A$", "${\\cal H}$", "$\\varphi $", "${\\cal B}$", "${\\cal B}$", "$A$", "$-\\tau $", "$\\tau $", "$\\tau >0$", "${\\rm supp}\\>g\\, \\subset \\,(-\\tau ,\\tau )\\times {\\rm R}^3$", "$S$", "\\begin {equation} (\\w +m^2)\\Delta _{\\rm ret,av} =\\delta , \\quad \\quad {\\rm supp}\\>\\Delta _{\\rm ret,av}\\subset \\bar V_\\pm ,\\label {2.2} \\end {equation}", "\\begin {eqnarray} &&f\\mapsto \\varphi (f) {\\rm \\ is \\ linear },\\\\ &&\\varphi ((\\w +m^2) f)=0,\\\\ &&\\varphi (f)^{*}=\\varphi (\\bar f),\\\\ &&[\\varphi (f),\\varphi (g)]=i<f,\\Delta *g>.\\end {eqnarray}", "\\begin {equation} \\omega _0(\\varphi (f)\\varphi (g))=i<f,\\Delta _+ *g>\\label {2.7} \\end {equation}", "\\begin {displaymath} (\\Omega ,\\pi (A)\\Omega )=\\omega _{0}(A)\\ ,\\ A\\in {\\cal A}\\ . \\end {displaymath}", "\\begin {eqnarray} &&(i)\\> \\varphi (f)\\in {\\rm End}({\\cal D})\\\\ &&(ii)\\> f\\mapsto \\varphi (f)\\Phi \\quad \\quad {\\rm \\ is \\ continuous}\\quad \\forall \\Phi \\in {\\cal D}.\\end {eqnarray}", "\\begin {equation} [A(f),\\varphi (g)]=0\\quad \\quad {\\rm if}\\quad (x-y)^2<0\\quad \\forall (x,y)\\in ({\\rm supp}\\>f\\times {\\rm supp}\\>g).\\label {2.8} \\end {equation}", "\\begin {equation} H_I(t)=-\\int d^3x\\,g(t,{\\vec x})A(t,{\\vec x}),\\quad \\quad g\\in {\\cal D}(\\RR ^4),\\label {2.9} \\end {equation}", "\\begin {equation} S(g)={\\bf 1}+\\sum _{n=1}^\\infty \\frac {i^n}{n!}\\int dx_1...dx_n\\, T\\bigl ( A(x_1)...A(x_n)\\bigr ) g(x_1)...g(x_n).\\label {2.10} \\end {equation}" ], "latex_norm": [ "$ \\Delta _ { r e t , a v } $", "$ ( \\square + m ^ { 2 } ) $", "$ \\bar { V } _ { \\pm } $", "$ \\Delta = \\Delta _ { r e t } - \\Delta _ { a v } $", "$ \\Delta = \\Delta _ { r e t } - \\Delta _ { a v } $", "$ A $", "$ \\varphi ( f ) , \\> f \\in D ( R ^ { 4 } ) $", "$ \\varphi ( f ) , \\> f \\in D ( R ^ { 4 } ) $", "$ < f , g > = \\int d ^ { 4 } x f ( x ) g ( x ) $", "$ A $", "$ \\ast $", "$ \\pi $", "$ \\omega _ { 0 } $", "$ \\omega _ { 0 } : A \\rightarrow C $", "$ \\Delta _ { + } $", "$ \\Delta $", "$ H $", "$ \\Omega $", "$ H $", "$ \\varphi $", "$ \\pi $", "$ D \\subset H $", "$ A $", "$ H $", "$ \\varphi $", "$ B $", "$ B $", "$ A $", "$ - \\tau $", "$ \\tau $", "$ \\tau > 0 $", "$ s u p p \\> g \\, \\subset \\, ( - \\tau , \\tau ) \\times R ^ { 3 } $", "$ S $", "\\begin{equation*} ( \\square + m ^ { 2 } ) \\Delta _ { r e t , a v } = \\delta , \\quad \\quad s u p p \\> \\Delta _ { r e t , a v } \\subset \\bar { V } _ { \\pm } , \\end{equation*}", "\\begin{align*} & & f \\mapsto \\varphi ( f ) ~ i s ~ l i n e a r , \\\\ & & \\varphi ( ( \\square + m ^ { 2 } ) f ) = 0 , \\\\ & & \\varphi ( f ) ^ { \\ast } = \\varphi ( \\bar { f } ) , \\\\ & & [ \\varphi ( f ) , \\varphi ( g ) ] = i < f , \\Delta \\ast g > . \\end{align*}", "\\begin{equation*} \\omega _ { 0 } ( \\varphi ( f ) \\varphi ( g ) ) = i < f , \\Delta _ { + } \\ast g > \\end{equation*}", "\\begin{equation*} ( \\Omega , \\pi ( A ) \\Omega ) = \\omega _ { 0 } ( A ) ~ , ~ A \\in A ~ . \\end{equation*}", "\\begin{align*} & & ( i ) \\> \\varphi ( f ) \\in E n d ( D ) \\\\ & & ( i i ) \\> f \\mapsto \\varphi ( f ) \\Phi \\quad \\quad ~ i s ~ c o n t i n u o u s \\quad \\forall \\Phi \\in D . \\end{align*}", "\\begin{equation*} [ A ( f ) , \\varphi ( g ) ] = 0 \\quad \\quad i f \\quad ( x - y ) ^ { 2 } < 0 \\quad \\forall ( x , y ) \\in ( s u p p \\> f \\times s u p p \\> g ) . \\end{equation*}", "\\begin{equation*} H _ { I } ( t ) = - \\int d ^ { 3 } x \\, g ( t , \\vec { x } ) A ( t , \\vec { x } ) , \\quad \\quad g \\in D ( R ^ { 4 } ) , \\end{equation*}", "\\begin{equation*} S ( g ) = 1 + \\sum _ { n = 1 } ^ { \\infty } \\frac { i ^ { n } } { n ! } \\int d x _ { 1 } . . . d x _ { n } \\, T ( A ( x _ { 1 } ) . . . A ( x _ { n } ) ) g ( x _ { 1 } ) . . . g ( x _ { n } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } $", "$ ( \\square + \\mitm ^ { 2 } ) $", "$ \\bar { \\mitV } _ { \\pm } $", "$ \\mupDelta = \\mupDelta _ { \\mathrm { r e t } } - \\mupDelta _ { \\mathrm { a v } } $", "$ \\mupDelta = \\mupDelta _ { \\mathrm { r e t } } - \\mupDelta _ { \\mathrm { a v } } $", "$ \\mitA $", "$ \\mitvarphi ( \\mitf ) , \\> \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ \\mitvarphi ( \\mitf ) , \\> \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ < \\mitf , \\mitg > = \\int \\nolimits \\mitd ^ { 4 } \\mitx \\mitf ( \\mitx ) \\mitg ( \\mitx ) $", "$ \\mitA $", "$ \\ast $", "$ \\mitpi $", "$ \\mitomega _ { 0 } $", "$ \\mitomega _ { 0 } : \\mitA \\rightarrow \\BbbC $", "$ \\mupDelta _ { + } $", "$ \\mupDelta $", "$ \\mitH $", "$ \\mupOmega $", "$ \\mitH $", "$ \\mitvarphi $", "$ \\mitpi $", "$ \\mitD \\subset \\mitH $", "$ \\mitA $", "$ \\mitH $", "$ \\mitvarphi $", "$ \\mitB $", "$ \\mitB $", "$ \\mitA $", "$ - \\mittau $", "$ \\mittau $", "$ \\mittau > 0 $", "$ \\mathrm { s u p p } \\> \\mitg \\, \\subset \\, ( - \\mittau , \\mittau ) \\times \\mathrm { R } ^ { 3 } $", "$ \\mitS $", "\\begin{equation*} ( \\square + \\mitm ^ { 2 } ) \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } = \\mitdelta , \\quad \\quad \\mathrm { s u p p } \\> \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } \\subset \\bar { \\mitV } _ { \\pm } , \\end{equation*}", "\\begin{align*} & & \\mitf \\mapsto \\mitvarphi ( \\mitf ) \\mathrm { ~ i s ~ l i n e a r } , \\\\ & & \\mitvarphi ( ( \\square + \\mitm ^ { 2 } ) \\mitf ) = 0 , \\\\ & & \\mitvarphi ( \\mitf ) ^ { \\ast } = \\mitvarphi ( \\bar { \\mitf } ) , \\\\ & & [ \\mitvarphi ( \\mitf ) , \\mitvarphi ( \\mitg ) ] = \\miti < \\mitf , \\mupDelta \\ast \\mitg > . \\end{align*}", "\\begin{equation*} \\mitomega _ { 0 } ( \\mitvarphi ( \\mitf ) \\mitvarphi ( \\mitg ) ) = \\miti < \\mitf , \\mupDelta _ { + } \\ast \\mitg > \\end{equation*}", "\\begin{equation*} ( \\mupOmega , \\mitpi ( \\mitA ) \\mupOmega ) = \\mitomega _ { 0 } ( \\mitA ) ~ , ~ \\mitA \\in \\mitA ~ . \\end{equation*}", "\\begin{align*} & & ( \\miti ) \\> \\mitvarphi ( \\mitf ) \\in \\mathrm { E n d } ( \\mitD ) \\\\ & & ( \\miti \\miti ) \\> \\mitf \\mapsto \\mitvarphi ( \\mitf ) \\mupPhi \\quad \\quad \\mathrm { ~ i s ~ c o n t i n u o u s } \\quad \\forall \\mupPhi \\in \\mitD . \\end{align*}", "\\begin{equation*} [ \\mitA ( \\mitf ) , \\mitvarphi ( \\mitg ) ] = 0 \\quad \\quad \\mathrm { i f } \\quad ( \\mitx - \\mity ) ^ { 2 } < 0 \\quad \\forall ( \\mitx , \\mity ) \\in ( \\mathrm { s u p p } \\> \\mitf \\times \\mathrm { s u p p } \\> \\mitg ) . \\end{equation*}", "\\begin{equation*} \\mitH _ { \\mitI } ( \\mitt ) = - \\int \\mitd ^ { 3 } \\mitx \\, \\mitg ( \\mitt , \\vec { \\mitx } ) \\mitA ( \\mitt , \\vec { \\mitx } ) , \\quad \\quad \\mitg \\in \\mitD ( \\BbbR ^ { 4 } ) , \\end{equation*}", "\\begin{equation*} \\mitS ( \\mitg ) = 1 + \\sum _ { \\mitn = 1 } ^ { \\infty } \\frac { \\miti ^ { \\mitn } } { \\mitn ! } \\int \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitn } \\, \\mitT \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) \\mitg ( \\mitx _ { 1 } ) . . . \\mitg ( \\mitx _ { \\mitn } ) . \\end{equation*}" ], "x_min": [ 0.4361000061035156, 0.30709999799728394, 0.25920000672340393, 0.7540000081062317, 0.2093999981880188, 0.487199991941452, 0.7200999855995178, 0.2093999981880188, 0.5044999718666077, 0.2660999894142151, 0.326200008392334, 0.46790000796318054, 0.4699000120162964, 0.5860000252723694, 0.2563999891281128, 0.515500009059906, 0.6917999982833862, 0.2093999981880188, 0.23909999430179596, 0.33379998803138733, 0.6585999727249146, 0.6039999723434448, 0.37459999322891235, 0.4174000024795532, 0.23010000586509705, 0.5120999813079834, 0.3012999892234802, 0.6108999848365784, 0.541100025177002, 0.5916000008583069, 0.6621000170707703, 0.24459999799728394, 0.44780001044273376, 0.33660000562667847, 0.40700000524520874, 0.3801000118255615, 0.38769999146461487, 0.3544999957084656, 0.2556999921798706, 0.326200008392334, 0.2736999988555908 ], "y_min": [ 0.1543000042438507, 0.1673000007867813, 0.21580000221729279, 0.21729999780654907, 0.2313999980688095, 0.2313999980688095, 0.23000000417232513, 0.24410000443458557, 0.3467000126838684, 0.36230000853538513, 0.36469998955726624, 0.37940001487731934, 0.3935999870300293, 0.3905999958515167, 0.45410001277923584, 0.45410001277923584, 0.45410001277923584, 0.4683000147342682, 0.5311999917030334, 0.5342000126838684, 0.5342000126838684, 0.5454000234603882, 0.6122999787330627, 0.6122999787330627, 0.6294000148773193, 0.6758000254631042, 0.6894999742507935, 0.76419997215271, 0.7939000129699707, 0.7958999872207642, 0.7935000061988831, 0.8051999807357788, 0.8070999979972839, 0.1875, 0.2632000148296356, 0.4253000020980835, 0.5048999786376953, 0.5630000233650208, 0.6455000042915344, 0.7226999998092651, 0.826200008392334 ], "x_max": [ 0.4851999878883362, 0.362199991941452, 0.28060001134872437, 0.7975000143051147, 0.2827000021934509, 0.5002999901771545, 0.7961000204086304, 0.2556999921798706, 0.6869000196456909, 0.2799000144004822, 0.3352000117301941, 0.4790000021457672, 0.4885999858379364, 0.6703000068664551, 0.28200000524520874, 0.5299999713897705, 0.7070000171661377, 0.22179999947547913, 0.25360000133514404, 0.3449000120162964, 0.6690000295639038, 0.6543999910354614, 0.38769999146461487, 0.4318999946117401, 0.24120000004768372, 0.5238000154495239, 0.31369999051094055, 0.6236000061035156, 0.5631999969482422, 0.6013000011444092, 0.7063000202178955, 0.4041999876499176, 0.4595000147819519, 0.6607000231742859, 0.6233000159263611, 0.6151000261306763, 0.609499990940094, 0.6765000224113464, 0.7443000078201294, 0.6704000234603882, 0.7264000177383423 ], "y_max": [ 0.1665000021457672, 0.17949999868869781, 0.2290000021457672, 0.2280000001192093, 0.24210000038146973, 0.2401999980211258, 0.24320000410079956, 0.2572999894618988, 0.36039999127388, 0.3711000084877014, 0.3709999918937683, 0.38530001044273376, 0.40139999985694885, 0.40130001306533813, 0.4652999937534332, 0.46239998936653137, 0.46239998936653137, 0.4771000146865845, 0.5400000214576721, 0.5425000190734863, 0.5400999784469604, 0.5547000169754028, 0.6211000084877014, 0.6211000084877014, 0.6377000212669373, 0.6840999722480774, 0.6983000040054321, 0.7730000019073486, 0.8022000193595886, 0.8012999892234802, 0.801800012588501, 0.8184000253677368, 0.8159000277519226, 0.20509999990463257, 0.3357999920845032, 0.4408999979496002, 0.5185999870300293, 0.6004999876022339, 0.6625999808311462, 0.753000020980835, 0.864799976348877 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
End of preview. Expand in Data Studio

IBEM Full: Mathematical Expression Annotations on Scientific Pages

A structured version of the IBEM Dataset (Anitei et al., 2023), designed for training and evaluation of mathematical expression detection models. This variant retains full page images and provides bounding box annotations for all mathematical expressions, enabling end-to-end layout analysis and object detection tasks.

Dataset Summary

This dataset is derived from the original IBEM corpus by preserving full-page scientific document images and annotating all mathematical expressions using their corresponding bounding boxes and LaTeX transcriptions. It is intended for:

  • Mathematical expression detection (localization and classification)
  • Document understanding and layout parsing
  • End-to-end systems for recognizing math expressions in context

Each record in the dataset includes:

  • A full-page image from a LaTeX source document

  • A unique page identifier

  • A list of expressions (expressions), where each item contains:

    • The raw LaTeX string (latex)
    • A normalized version of the LaTeX string (latex_norm)
    • An expanded version with macros resolved (latex_expand)
    • Normalized bounding box coordinates (x_min, y_min, x_max, y_max) relative to image dimensions
    • The expression type (expr_type: either "isolated" or "embedded")

Dataset Structure

Features

features = Features({
    "image": Image(),
    "page_id": Value("string"),
    "expressions": Sequence({
        "latex": Value("string"),
        "latex_norm": Value("string"),
        "latex_expand": Value("string"),
        "x_min": Value("float32"),
        "y_min": Value("float32"),
        "x_max": Value("float32"),
        "y_max": Value("float32"),
        "expr_type": Value("string"),
    }),
})

Splits

The dataset is split into train, val, and test subsets using the official partition files (Tr*.lst, Va*.lst, Ts*.lst) provided by the original authors.

Source

Citation:

Anitei, D., Sánchez, J. A., & Benedí, J. M. (2023). The IBEM Dataset: a large printed scientific image dataset for indexing and searching mathematical expressions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7963703

Original Dataset Description

The original IBEM dataset consists of 600 LaTeX documents with a total of 8,272 pages, containing:

  • 29,603 isolated (displayed) mathematical expressions
  • 137,089 embedded (in-line) mathematical expressions

It was created by parsing LaTeX source files from the KDD Cup Collection and supports a wide range of tasks such as:

  • Mathematical expression detection and extraction
  • LaTeX OCR / recognition
  • Search and indexing in scientific literature

Preprocessing Notes

  • Bounding boxes are provided in relative coordinates (percentage of image width/height).
  • No cropping was applied — images retain their full-page content.
  • Multiple expressions per page are stored in a single list under "expressions".
  • Expression-level latex, latex_expand, and latex_norm were directly taken from the original ground truth.
  • Expressions split across lines are preserved with their full content.

Licensing

This dataset is distributed under the same license as the original IBEM dataset: Creative Commons Attribution 4.0 International (CC BY 4.0)

Downloads last month
60