Datasets:
image
image | page_id
string | expressions
sequence |
---|---|---|
0001015_page02 | {
"latex": [
"$S(\\phi )$",
"$\\phi $",
"$\\exp (-Ht)$",
"$\\psi (x)$",
"$d\\mu $",
"$x$",
"$x(t)$",
"$V$",
"$H= L +V(x)$",
"$L$",
"$x(t)$",
"\\begin {equation} H = \\half p^2 + V(x) \\end {equation}",
"\\begin {equation}\\label {EVeq} \\exp (-Ht) \\psi (x) = \\int d\\mu \\exp \\left ( -\\int _0^t V((x(s)) ds \\right ) \\psi (x(t)) \\end {equation}"
],
"latex_norm": [
"$ S ( \\phi ) $",
"$ \\phi $",
"$ e x p ( - H t ) $",
"$ \\psi ( x ) $",
"$ d \\mu $",
"$ x $",
"$ x ( t ) $",
"$ V $",
"$ H = L + V ( x ) $",
"$ L $",
"$ x ( t ) $",
"\\begin{equation*} H = \\frac { 1 } { 2 } p ^ { 2 } + V ( x ) \\end{equation*}",
"\\begin{equation*} \\operatorname { e x p } ( - H t ) \\psi ( x ) = \\int d \\mu \\operatorname { e x p } ( - \\int _ { 0 } ^ { t } V ( ( x ( s ) ) d s ) \\psi ( x ( t ) ) \\end{equation*}"
],
"latex_expand": [
"$ \\mitS ( \\mitphi ) $",
"$ \\mitphi $",
"$ \\mathrm { e x p } ( - \\mitH \\mitt ) $",
"$ \\mitpsi ( \\mitx ) $",
"$ \\mitd \\mitmu $",
"$ \\mitx $",
"$ \\mitx ( \\mitt ) $",
"$ \\mitV $",
"$ \\mitH = \\mitL + \\mitV ( \\mitx ) $",
"$ \\mitL $",
"$ \\mitx ( \\mitt ) $",
"\\begin{equation*} \\mitH = \\frac { 1 } { 2 } \\mitp ^ { 2 } + \\mitV ( \\mitx ) \\end{equation*}",
"\\begin{equation*} \\operatorname { e x p } ( - \\mitH \\mitt ) \\mitpsi ( \\mitx ) = \\int \\mitd \\mitmu \\operatorname { e x p } \\left( - \\int _ { 0 } ^ { \\mitt } \\mitV ( ( \\mitx ( \\mits ) ) \\mitd \\mits \\right) \\mitpsi ( \\mitx ( \\mitt ) ) \\end{equation*}"
],
"x_min": [
0.22939999401569366,
0.484499990940094,
0.6917999982833862,
0.29789999127388,
0.227400004863739,
0.579800009727478,
0.6371999979019165,
0.44780001044273376,
0.5569999814033508,
0.7554000020027161,
0.6068000197410583,
0.22179999947547913,
0.22179999947547913
],
"y_min": [
0.15770000219345093,
0.1581999957561493,
0.5814999938011169,
0.5985999703407288,
0.6729000210762024,
0.676800012588501,
0.6723999977111816,
0.6904000043869019,
0.7407000064849854,
0.7416999936103821,
0.7583000063896179,
0.5375999808311462,
0.6220999956130981
],
"x_max": [
0.2694999873638153,
0.4968999922275543,
0.7781999707221985,
0.33869999647140503,
0.2502000033855438,
0.5909000039100647,
0.6711000204086304,
0.4643999934196472,
0.6897000074386597,
0.7692000269889832,
0.6406999826431274,
0.3675999939441681,
0.6973000168800354
],
"y_max": [
0.17229999601840973,
0.17190000414848328,
0.5965999960899353,
0.6136999726295471,
0.6866000294685364,
0.6836000084877014,
0.6869999766349792,
0.7006999850273132,
0.7558000087738037,
0.7523999810218811,
0.7728999853134155,
0.5698000192642212,
0.6607000231742859
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
} |
|
0001015_page03 | {
"latex": [
"$x: I \\to M$",
"$I$",
"$[0,t]$",
"$M$",
"$n$",
"$g$",
"$\\omega =dh$",
"$M$",
"$\\omega = \\Omu (x) d\\Xmu $",
"$\\omega = \\Omu (x) d\\Xmu $",
"$\\dot {x}^{\\mu }(t')= \\frac {d{x}^{\\mu }}{d t'}$",
"$S[x(.)] = i(h(x(t))-h(x(0)))$",
"$x(t)$",
"$\\omega =0$",
"$h$",
"$M$",
"$\\omega =dh$",
"$\\Pmu $",
"$\\Xmu $",
"$n$",
"$H(p,x)= \\Pmu \\Xmu - \\Lag (x,\\dot {x})$",
"$H(p,x)= \\Pmu \\Xmu - \\Lag (x,\\dot {x})$",
"$\\omega $",
"$\\Pb {\\Tmu }{T_{\\nu }}=0$",
"$\\Pb {\\Tmu }{H_c}=0$",
"$\\Tmu $",
"$\\psi (x)$",
"$\\Pmu =-i \\Dmu $",
"$\\Pmu $",
"$-i\\DDmu $",
"$\\XXmu \\psi =0$",
"$\\XXmu =g^{\\mu \\nu } (p_{\\nu } + i\\omega _{\\nu })$",
"\\begin {equation}\\label {ACeq} S[x(.)] = \\Intot i\\Omu (x(t'))\\dot {x}^{\\mu }(t') \\, dt' \\end {equation}",
"\\begin {equation}\\label {MOMeq} \\Pmu = \\frac {\\delta \\Lag }{\\delta \\dot {x}^\\mu } = i\\Omu , \\end {equation}",
"\\begin {equation} \\Tmu \\equiv \\Pmu - i\\Omu . \\end {equation}",
"\\begin {equation}\\label {GTeq} \\delta _{\\epsilon }\\psi (x) =-i \\epsilon (\\Dmu \\psi (x) + \\Omu (x) \\psi (x)) \\end {equation}"
],
"latex_norm": [
"$ x : I \\rightarrow M $",
"$ I $",
"$ [ 0 , t ] $",
"$ M $",
"$ n $",
"$ g $",
"$ \\omega = d h $",
"$ M $",
"$ \\omega = \\omega _ { \\mu } ( x ) d x ^ { \\mu } $",
"$ \\omega = \\omega _ { \\mu } ( x ) d x ^ { \\mu } $",
"$ \\dot { x } ^ { \\mu } ( t ^ { \\prime } ) = \\frac { d x ^ { \\mu } } { d t ^ { \\prime } } $",
"$ S [ x ( . ) ] = i ( h ( x ( t ) ) - h ( x ( 0 ) ) ) $",
"$ x ( t ) $",
"$ \\omega = 0 $",
"$ h $",
"$ M $",
"$ \\omega = d h $",
"$ p _ { \\mu } $",
"$ x ^ { \\mu } $",
"$ n $",
"$ H ( p , x ) = p _ { \\mu } x ^ { \\mu } - L ( x , \\dot { x } ) $",
"$ H ( p , x ) = p _ { \\mu } x ^ { \\mu } - L ( x , \\dot { x } ) $",
"$ \\omega $",
"$ \\{ T _ { \\mu } , T _ { \\nu } \\} = 0 $",
"$ \\{ T _ { \\mu } , H _ { c } \\} = 0 $",
"$ T _ { \\mu } $",
"$ \\psi ( x ) $",
"$ p _ { \\mu } = - i \\partial _ { \\mu } $",
"$ p _ { \\mu } $",
"$ - i \\nabla _ { \\mu } $",
"$ X ^ { \\mu } \\psi = 0 $",
"$ X ^ { \\mu } = g ^ { \\mu \\nu } ( p _ { \\nu } + i \\omega _ { \\nu } ) $",
"\\begin{equation*} S [ x ( . ) ] = \\int _ { 0 } ^ { t } i \\omega _ { \\mu } ( x ( t ^ { \\prime } ) ) \\dot { x } ^ { \\mu } ( t ^ { \\prime } ) \\, d t ^ { \\prime } \\end{equation*}",
"\\begin{equation*} p _ { \\mu } = \\frac { \\delta L } { \\delta \\dot { x } ^ { \\mu } } = i \\omega _ { \\mu } , \\end{equation*}",
"\\begin{equation*} T _ { \\mu } \\equiv p _ { \\mu } - i \\omega _ { \\mu } . \\end{equation*}",
"\\begin{equation*} \\delta _ { \\epsilon } \\psi ( x ) = - i \\epsilon ( \\partial _ { \\mu } \\psi ( x ) + \\omega _ { \\mu } ( x ) \\psi ( x ) ) \\end{equation*}"
],
"latex_expand": [
"$ \\mitx : \\mitI \\rightarrow \\mitM $",
"$ \\mitI $",
"$ [ 0 , \\mitt ] $",
"$ \\mitM $",
"$ \\mitn $",
"$ \\mitg $",
"$ \\mitomega = \\mitd \\Planckconst $",
"$ \\mitM $",
"$ \\mitomega = \\mitomega _ { \\mitmu } ( \\mitx ) \\mitd \\mitx ^ { \\mitmu } $",
"$ \\mitomega = \\mitomega _ { \\mitmu } ( \\mitx ) \\mitd \\mitx ^ { \\mitmu } $",
"$ \\dot { \\mitx } ^ { \\mitmu } ( \\mitt ^ { \\prime } ) = \\frac { \\mitd \\mitx ^ { \\mitmu } } { \\mitd \\mitt ^ { \\prime } } $",
"$ \\mitS [ \\mitx ( . ) ] = \\miti ( \\Planckconst ( \\mitx ( \\mitt ) ) - \\Planckconst ( \\mitx ( 0 ) ) ) $",
"$ \\mitx ( \\mitt ) $",
"$ \\mitomega = 0 $",
"$ \\Planckconst $",
"$ \\mitM $",
"$ \\mitomega = \\mitd \\Planckconst $",
"$ \\mitp _ { \\mitmu } $",
"$ \\mitx ^ { \\mitmu } $",
"$ \\mitn $",
"$ \\mitH ( \\mitp , \\mitx ) = \\mitp _ { \\mitmu } \\mitx ^ { \\mitmu } - \\mitL ( \\mitx , \\dot { \\mitx } ) $",
"$ \\mitH ( \\mitp , \\mitx ) = \\mitp _ { \\mitmu } \\mitx ^ { \\mitmu } - \\mitL ( \\mitx , \\dot { \\mitx } ) $",
"$ \\mitomega $",
"$ \\left\\{ \\mitT _ { \\mitmu } , \\mitT _ { \\mitnu } \\right \\} = 0 $",
"$ \\left\\{ \\mitT _ { \\mitmu } , \\mitH _ { \\mitc } \\right \\} = 0 $",
"$ \\mitT _ { \\mitmu } $",
"$ \\mitpsi ( \\mitx ) $",
"$ \\mitp _ { \\mitmu } = - \\miti \\mitpartial _ { \\mitmu } $",
"$ \\mitp _ { \\mitmu } $",
"$ - \\miti \\nabla _ { \\mitmu } $",
"$ \\mitX ^ { \\mitmu } \\mitpsi = 0 $",
"$ \\mitX ^ { \\mitmu } = \\mitg ^ { \\mitmu \\mitnu } ( \\mitp _ { \\mitnu } + \\miti \\mitomega _ { \\mitnu } ) $",
"\\begin{equation*} \\mitS [ \\mitx ( . ) ] = \\int _ { 0 } ^ { \\mitt } \\miti \\mitomega _ { \\mitmu } ( \\mitx ( \\mitt ^ { \\prime } ) ) \\dot { \\mitx } ^ { \\mitmu } ( \\mitt ^ { \\prime } ) \\, \\mitd \\mitt ^ { \\prime } \\end{equation*}",
"\\begin{equation*} \\mitp _ { \\mitmu } = \\frac { \\mitdelta \\mitL } { \\mitdelta \\dot { \\mitx } ^ { \\mitmu } } = \\miti \\mitomega _ { \\mitmu } , \\end{equation*}",
"\\begin{equation*} \\mitT _ { \\mitmu } \\equiv \\mitp _ { \\mitmu } - \\miti \\mitomega _ { \\mitmu } . \\end{equation*}",
"\\begin{equation*} \\mitdelta _ { \\mitepsilon } \\mitpsi ( \\mitx ) = - \\miti \\mitepsilon ( \\mitpartial _ { \\mitmu } \\mitpsi ( \\mitx ) + \\mitomega _ { \\mitmu } ( \\mitx ) \\mitpsi ( \\mitx ) ) \\end{equation*}"
],
"x_min": [
0.4733999967575073,
0.6427000164985657,
0.7892000079154968,
0.21080000698566437,
0.28540000319480896,
0.7084000110626221,
0.1728000044822693,
0.4650999903678894,
0.7892000079154968,
0.1728000044822693,
0.29580000042915344,
0.1728000044822693,
0.7573999762535095,
0.6578999757766724,
0.3068000078201294,
0.5273000001907349,
0.6316999793052673,
0.31029999256134033,
0.44850000739097595,
0.45890000462532043,
0.6717000007629395,
0.1728000044822693,
0.6814000010490417,
0.5612000226974487,
0.7103999853134155,
0.6690000295639038,
0.23149999976158142,
0.2646999955177307,
0.31380000710487366,
0.7186999917030334,
0.7387999892234802,
0.22939999401569366,
0.22179999947547913,
0.22179999947547913,
0.22179999947547913,
0.22179999947547913
],
"y_min": [
0.27149999141693115,
0.27149999141693115,
0.2705000042915344,
0.28859999775886536,
0.2919999957084656,
0.2919999957084656,
0.37599998712539673,
0.37599998712539673,
0.375,
0.3921000063419342,
0.3905999958515167,
0.4092000126838684,
0.4262999892234802,
0.4447999894618988,
0.46140000224113464,
0.461899995803833,
0.46140000224113464,
0.49950000643730164,
0.4966000020503998,
0.5659000277519226,
0.6172000169754028,
0.6342999935150146,
0.6557999849319458,
0.6685000061988831,
0.6685000061988831,
0.6865000128746033,
0.7411999702453613,
0.7588000297546387,
0.7797999978065491,
0.7764000296592712,
0.8105000257492065,
0.82669997215271,
0.326200008392334,
0.5181000232696533,
0.586899995803833,
0.7099999785423279
],
"x_max": [
0.5722000002861023,
0.6538000106811523,
0.8258000016212463,
0.2321999967098236,
0.2978000044822693,
0.7195000052452087,
0.23430000245571136,
0.48649999499320984,
0.8292999863624573,
0.2522999942302704,
0.39809998869895935,
0.4291999936103821,
0.7919999957084656,
0.7124999761581421,
0.31850001215934753,
0.5493999719619751,
0.6952999830245972,
0.3296999931335449,
0.4699000120162964,
0.47130000591278076,
0.8264999985694885,
0.23360000550746918,
0.6952000260353088,
0.6675999760627747,
0.8209999799728394,
0.6904000043869019,
0.27160000801086426,
0.3628000020980835,
0.33320000767707825,
0.7670999765396118,
0.8266000151634216,
0.3953000009059906,
0.492000013589859,
0.36489999294281006,
0.35030001401901245,
0.5245000123977661
],
"y_max": [
0.2818000018596649,
0.2818000018596649,
0.2851000130176544,
0.2989000082015991,
0.298799991607666,
0.3012999892234802,
0.3862999975681305,
0.3862999975681305,
0.39010000228881836,
0.40720000863075256,
0.4081999957561493,
0.4242999851703644,
0.4413999915122986,
0.45509999990463257,
0.47209998965263367,
0.4722000062465668,
0.47209998965263367,
0.510200023651123,
0.5063999891281128,
0.572700023651123,
0.6323000192642212,
0.649399995803833,
0.6625999808311462,
0.6836000084877014,
0.6836000084877014,
0.7006999850273132,
0.7558000087738037,
0.7734000086784363,
0.7904999852180481,
0.7906000018119812,
0.8237000107765198,
0.8417999744415283,
0.36480000615119934,
0.5512999892234802,
0.6044999957084656,
0.728600025177002
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001015_page04 | {
"latex": [
"$\\Etamu $",
"$\\Pimu $",
"$(2n,2n)$",
"$\\Etamu ,\\Pimu $",
"$\\nabla $",
"$\\psi (x,\\eta )$",
"$\\Pmu =-i \\DDmu $",
"$\\Pimu = -i\\frac {\\partial }{\\partial \\Etamu }$",
"$\\psi (x,\\eta )$",
"$(n,n)$",
"$SM$",
"$\\Xmu ,\\Etamu $",
"$Q$",
"$Q=\\Etamu \\Tmu =-i\\Etamu (\\Dmu + \\omega )$",
"$Q=\\Etamu \\Tmu =-i\\Etamu (\\Dmu + \\omega )$",
"$\\chi $",
"$\\chi = \\Pimu \\XXmu = -ig^{\\mu \\nu } \\Pimu (\\nabla _{\\nu }-\\omega _{\\nu })$",
"$M$",
"$\\psi (x,\\eta )$",
"$Q=-i\\Emh d \\Eph $",
"$\\chi = \\Eph \\delta \\Emh $",
"$d$",
"$\\delta = *d*$",
"$h$",
"$\\chi =\\Pimu \\XXmu $",
"$h$",
"$Q$",
"$h$",
"$H_g$",
"\\begin {equation}\\label {SPBeq} d\\Pmu \\wedge d \\Xmu + \\nabla \\Pimu \\wedge \\nabla \\Etamu + \\frac 12 dx^{\\mu } \\wedge dx^{\\nu } \\Curv {\\mu }{\\nu }{\\kappa }{\\lambda }\\eta ^{\\kappa }\\pi _{\\lambda }, \\end {equation}",
"\\begin {eqnarray}\\DDmu \\psi (x,\\eta ) = \\Dmu \\psi (x,\\eta ) + \\Gam {\\mu }{\\nu }{\\lambda } \\eta ^{\\nu } \\frac {\\partial }{\\partial \\eta ^{\\lambda }}\\psi (x,\\eta ). \\end {eqnarray}",
"\\begin {eqnarray}H_g &=& i( Q \\chi + \\chi Q) \\End &=& d \\delta + \\delta d + g^{\\mu \\nu }\\Omu \\omega _{\\nu } -i (\\Pimu \\eta ^{\\nu } - \\eta ^{\\nu }\\Pimu ) \\frac {\\partial ^2 h }{\\partial \\Xmu \\partial x_{\\nu }}. \\end {eqnarray}"
],
"latex_norm": [
"$ \\eta ^ { \\mu } $",
"$ \\pi _ { \\mu } $",
"$ ( 2 n , 2 n ) $",
"$ \\eta ^ { \\mu } , \\pi _ { \\mu } $",
"$ \\nabla $",
"$ \\psi ( x , \\eta ) $",
"$ p _ { \\mu } = - i \\nabla _ { \\mu } $",
"$ \\pi _ { \\mu } = - i \\frac { \\partial } { \\partial \\eta ^ { \\mu } } $",
"$ \\psi ( x , \\eta ) $",
"$ ( n , n ) $",
"$ S M $",
"$ x ^ { \\mu } , \\eta ^ { \\mu } $",
"$ Q $",
"$ Q = \\eta ^ { \\mu } T _ { \\mu } = - i \\eta ^ { \\mu } ( \\partial _ { \\mu } + \\omega ) $",
"$ Q = \\eta ^ { \\mu } T _ { \\mu } = - i \\eta ^ { \\mu } ( \\partial _ { \\mu } + \\omega ) $",
"$ \\chi $",
"$ \\chi = \\pi _ { \\mu } X ^ { \\mu } = - i g ^ { \\mu \\nu } \\pi _ { \\mu } ( \\nabla _ { \\nu } - \\omega _ { \\nu } ) $",
"$ M $",
"$ \\psi ( x , \\eta ) $",
"$ Q = - i e ^ { - h } d e ^ { h } $",
"$ \\chi = e ^ { h } \\delta e ^ { - h } $",
"$ d $",
"$ \\delta = \\ast d \\ast $",
"$ h $",
"$ \\chi = \\pi _ { \\mu } X ^ { \\mu } $",
"$ h $",
"$ Q $",
"$ h $",
"$ H _ { g } $",
"\\begin{equation*} d p _ { \\mu } \\wedge d x ^ { \\mu } + \\nabla \\pi _ { \\mu } \\wedge \\nabla \\eta ^ { \\mu } + \\frac { 1 } { 2 } d x ^ { \\mu } \\wedge d x ^ { \\nu } R _ { \\mu \\nu \\kappa } { } ^ { \\lambda } \\eta ^ { \\kappa } \\pi _ { \\lambda } , \\end{equation*}",
"\\begin{equation*} \\nabla _ { \\mu } \\psi ( x , \\eta ) = \\partial _ { \\mu } \\psi ( x , \\eta ) + \\Gamma _ { \\mu \\nu } ^ { \\lambda } \\eta ^ { \\nu } \\frac { \\partial } { \\partial \\eta ^ { \\lambda } } \\psi ( x , \\eta ) . \\end{equation*}",
"\\begin{align*} H _ { g } & = & i ( Q \\chi + \\chi Q ) \\\\ & = & d \\delta + \\delta d + g ^ { \\mu \\nu } \\omega _ { \\mu } \\omega _ { \\nu } - i ( \\pi _ { \\mu } \\eta ^ { \\nu } - \\eta ^ { \\nu } \\pi _ { \\mu } ) \\frac { \\partial ^ { 2 } h } { \\partial x ^ { \\mu } \\partial x _ { \\nu } } . \\end{align*}"
],
"latex_expand": [
"$ \\miteta ^ { \\mitmu } $",
"$ \\mitpi _ { \\mitmu } $",
"$ ( 2 \\mitn , 2 \\mitn ) $",
"$ \\miteta ^ { \\mitmu } , \\mitpi _ { \\mitmu } $",
"$ \\nabla $",
"$ \\mitpsi ( \\mitx , \\miteta ) $",
"$ \\mitp _ { \\mitmu } = - \\miti \\nabla _ { \\mitmu } $",
"$ \\mitpi _ { \\mitmu } = - \\miti \\frac { \\mitpartial } { \\mitpartial \\miteta ^ { \\mitmu } } $",
"$ \\mitpsi ( \\mitx , \\miteta ) $",
"$ ( \\mitn , \\mitn ) $",
"$ \\mitS \\mitM $",
"$ \\mitx ^ { \\mitmu } , \\miteta ^ { \\mitmu } $",
"$ \\mitQ $",
"$ \\mitQ = \\miteta ^ { \\mitmu } \\mitT _ { \\mitmu } = - \\miti \\miteta ^ { \\mitmu } ( \\mitpartial _ { \\mitmu } + \\mitomega ) $",
"$ \\mitQ = \\miteta ^ { \\mitmu } \\mitT _ { \\mitmu } = - \\miti \\miteta ^ { \\mitmu } ( \\mitpartial _ { \\mitmu } + \\mitomega ) $",
"$ \\mitchi $",
"$ \\mitchi = \\mitpi _ { \\mitmu } \\mitX ^ { \\mitmu } = - \\miti \\mitg ^ { \\mitmu \\mitnu } \\mitpi _ { \\mitmu } ( \\nabla _ { \\mitnu } - \\mitomega _ { \\mitnu } ) $",
"$ \\mitM $",
"$ \\mitpsi ( \\mitx , \\miteta ) $",
"$ \\mitQ = - \\miti \\mite ^ { - \\Planckconst } \\mitd \\mite ^ { \\Planckconst } $",
"$ \\mitchi = \\mite ^ { \\Planckconst } \\mitdelta \\mite ^ { - \\Planckconst } $",
"$ \\mitd $",
"$ \\mitdelta = \\ast \\mitd \\ast $",
"$ \\Planckconst $",
"$ \\mitchi = \\mitpi _ { \\mitmu } \\mitX ^ { \\mitmu } $",
"$ \\Planckconst $",
"$ \\mitQ $",
"$ \\Planckconst $",
"$ \\mitH _ { \\mitg } $",
"\\begin{equation*} \\mitd \\mitp _ { \\mitmu } \\wedge \\mitd \\mitx ^ { \\mitmu } + \\nabla \\mitpi _ { \\mitmu } \\wedge \\nabla \\miteta ^ { \\mitmu } + \\frac { 1 } { 2 } \\mitd \\mitx ^ { \\mitmu } \\wedge \\mitd \\mitx ^ { \\mitnu } \\mitR _ { \\mitmu \\mitnu \\mitkappa } { } ^ { \\mitlambda } \\miteta ^ { \\mitkappa } \\mitpi _ { \\mitlambda } , \\end{equation*}",
"\\begin{equation*} \\nabla _ { \\mitmu } \\mitpsi ( \\mitx , \\miteta ) = \\mitpartial _ { \\mitmu } \\mitpsi ( \\mitx , \\miteta ) + \\mupGamma _ { \\mitmu \\mitnu } ^ { \\mitlambda } \\miteta ^ { \\mitnu } \\frac { \\mitpartial } { \\mitpartial \\miteta ^ { \\mitlambda } } \\mitpsi ( \\mitx , \\miteta ) . \\end{equation*}",
"\\begin{align*} \\mitH _ { \\mitg } & = & \\miti ( \\mitQ \\mitchi + \\mitchi \\mitQ ) \\\\ & = & \\mitd \\mitdelta + \\mitdelta \\mitd + \\mitg ^ { \\mitmu \\mitnu } \\mitomega _ { \\mitmu } \\mitomega _ { \\mitnu } - \\miti ( \\mitpi _ { \\mitmu } \\miteta ^ { \\mitnu } - \\miteta ^ { \\mitnu } \\mitpi _ { \\mitmu } ) \\frac { \\mitpartial ^ { 2 } \\Planckconst } { \\mitpartial \\mitx ^ { \\mitmu } \\mitpartial \\mitx _ { \\mitnu } } . \\end{align*}"
],
"x_min": [
0.43470001220703125,
0.8051000237464905,
0.5522000193595886,
0.41260001063346863,
0.23569999635219574,
0.2224999964237213,
0.5044999718666077,
0.6191999912261963,
0.257099986076355,
0.5009999871253967,
0.7912999987602234,
0.3711000084877014,
0.367000013589859,
0.6115999817848206,
0.1728000044822693,
0.553600013256073,
0.1728000044822693,
0.3898000121116638,
0.5902000069618225,
0.6980000138282776,
0.1728000044822693,
0.33379998803138733,
0.738099992275238,
0.3075000047683716,
0.4499000012874603,
0.6061000227928162,
0.31029999256134033,
0.367000013589859,
0.7276999950408936,
0.22179999947547913,
0.22179999947547913,
0.22179999947547913
],
"y_min": [
0.17630000412464142,
0.17919999361038208,
0.19189999997615814,
0.21040000021457672,
0.29490000009536743,
0.3456999957561493,
0.3467000126838684,
0.3441999852657318,
0.364300012588501,
0.364300012588501,
0.365200012922287,
0.38280001282691956,
0.4706999957561493,
0.46970000863075256,
0.48730000853538513,
0.5088000297546387,
0.5214999914169312,
0.5396000146865845,
0.5386000275611877,
0.5375999808311462,
0.5547000169754028,
0.5565999746322632,
0.5565999746322632,
0.6840999722480774,
0.7529000043869019,
0.7871000170707703,
0.8217999935150146,
0.8384000062942505,
0.8389000296592712,
0.24950000643730164,
0.42100000381469727,
0.598800003528595
],
"x_max": [
0.4546999931335449,
0.8258000016212463,
0.6205999851226807,
0.46239998936653137,
0.2529999911785126,
0.2825999855995178,
0.605400025844574,
0.7228999733924866,
0.3172000050544739,
0.5493999719619751,
0.8264999985694885,
0.42089998722076416,
0.3828999996185303,
0.8258000016212463,
0.19349999725818634,
0.5659999847412109,
0.46860000491142273,
0.41190001368522644,
0.6503000259399414,
0.8209999799728394,
0.2702000141143799,
0.3441999852657318,
0.8058000206947327,
0.3192000091075897,
0.5383999943733215,
0.6177999973297119,
0.32690000534057617,
0.37869998812675476,
0.7526000142097473,
0.64410001039505,
0.5860000252723694,
0.6820999979972839
],
"y_max": [
0.1889999955892563,
0.1898999959230423,
0.20649999380111694,
0.2240999937057495,
0.3052000105381012,
0.3603000044822693,
0.36090001463890076,
0.3637000024318695,
0.3788999915122986,
0.3788999915122986,
0.37549999356269836,
0.3955000042915344,
0.4839000105857849,
0.4853000044822693,
0.5023999810218811,
0.5185999870300293,
0.5365999937057495,
0.5498999953269958,
0.5532000064849854,
0.5526999831199646,
0.5698000192642212,
0.5669000148773193,
0.5669000148773193,
0.6948000192642212,
0.7670999765396118,
0.7973999977111816,
0.8349999785423279,
0.8490999937057495,
0.8531000018119812,
0.2816999852657318,
0.460999995470047,
0.656000018119812
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0001015_page05 | {
"latex": [
"$H_g$",
"$x_t,\\eta _t$",
"$SM$",
"$\\Xmu ,\\Etamu $",
"$b_t$",
"$(\\theta _t,\\rho _t)$",
"$(d+ \\delta )^2$",
"$J$",
"$u:\\Sigma \\to M$",
"$\\Sigma $",
"$2m$",
"$M$",
"$H^{\\alpha }_{\\mu }$",
"$\\Etamu $",
"$\\pi ^{\\alpha }_{\\mu }$",
"$\\alpha =1,2$",
"$\\Sigma $",
"$\\mu =1,\\dots ,2 m$",
"$M$",
"$H$",
"$\\pi $",
"$P^{^{-}}H=0, P^{^{-}}\\pi =0$",
"$P^{^{-}}{}^{\\alpha \\mu }_{\\beta \\nu } =\\delta ^{\\alpha }_{\\beta }\\delta ^{\\mu }_{\\nu }- \\epsilon ^{\\alpha }_{\\beta }J^{\\mu }_{\\nu }$",
"$\\epsilon $",
"$\\Sigma $",
"$J$",
"\\begin {eqnarray} \\Xmu _t &=& \\Xmu + \\Intot e^{\\mu }_{a,s}\\circ db^{a}_s , \\End e^{\\mu }_{a,t}&=& e^{\\mu }_{a} +\\Intot -e^{\\nu }_{a,s} e^{\\lambda }_{b,s} \\Gam {\\nu }{\\lambda }{\\mu }(x_s) \\circ db^{b}_s \\End \\Etamu _t &=& \\Etamu + \\theta ^{a}_t e^{\\mu }_{a,t} \\End +&&\\!\\!\\!\\!\\!\\!\\!\\!\\! \\Intot \\big ( - \\eta ^{\\nu }_s \\Gam {\\nu }{\\lambda }{\\mu } e^{\\lambda }_{b,s} \\circ db^{b}_s - \\theta ^a_t de^{\\mu }_{a,s} +\\frac {1}{4}\\eta ^{\\nu }_s \\Curv {\\nu }{\\lambda }{\\kappa }{\\mu } (x_s)\\eta ^{\\lambda }_s\\rho ^{a}_s e^{\\kappa }_{a,s} ds \\big ), \\end {eqnarray}"
],
"latex_norm": [
"$ H _ { g } $",
"$ x _ { t } , \\eta _ { t } $",
"$ S M $",
"$ x ^ { \\mu } , \\eta ^ { \\mu } $",
"$ b _ { t } $",
"$ ( \\theta _ { t } , \\rho _ { t } ) $",
"$ ( d + \\delta ) ^ { 2 } $",
"$ J $",
"$ u : \\Sigma \\rightarrow M $",
"$ \\Sigma $",
"$ 2 m $",
"$ M $",
"$ H _ { \\mu } ^ { \\alpha } $",
"$ \\eta ^ { \\mu } $",
"$ \\pi _ { \\mu } ^ { \\alpha } $",
"$ \\alpha = 1 , 2 $",
"$ \\Sigma $",
"$ \\mu = 1 , \\ldots , 2 m $",
"$ M $",
"$ H $",
"$ \\pi $",
"$ P ^ { { } ^ { - } } H = 0 , P ^ { { } ^ { - } } \\pi = 0 $",
"$ P ^ { { } ^ { - } } { } _ { \\beta \\nu } ^ { \\alpha \\mu } = \\delta _ { \\beta } ^ { \\alpha } \\delta _ { \\nu } ^ { \\mu } - \\epsilon _ { \\beta } ^ { \\alpha } J _ { \\nu } ^ { \\mu } $",
"$ \\epsilon $",
"$ \\Sigma $",
"$ J $",
"\\begin{align*} x _ { t } ^ { \\mu } & = & x ^ { \\mu } + \\int _ { 0 } ^ { t } e _ { a , s } ^ { \\mu } \\circ d b _ { s } ^ { a } , \\\\ e _ { a , t } ^ { \\mu } & = & e _ { a } ^ { \\mu } + \\int _ { 0 } ^ { t } - e _ { a , s } ^ { \\nu } e _ { b , s } ^ { \\lambda } \\Gamma _ { \\nu \\lambda } ^ { \\mu } ( x _ { s } ) \\circ d b _ { s } ^ { b } \\\\ \\eta _ { t } ^ { \\mu } & = & \\eta ^ { \\mu } + \\theta _ { t } ^ { a } e _ { a , t } ^ { \\mu } \\\\ + & & \\! \\! \\! \\! \\! \\! \\! \\! \\! \\int _ { 0 } ^ { t } ( - \\eta _ { s } ^ { \\nu } \\Gamma _ { \\nu \\lambda } ^ { \\mu } e _ { b , s } ^ { \\lambda } \\circ d b _ { s } ^ { b } - \\theta _ { t } ^ { a } d e _ { a , s } ^ { \\mu } + \\frac { 1 } { 4 } \\eta _ { s } ^ { \\nu } R _ { \\nu \\lambda \\kappa } { } ^ { \\mu } ( x _ { s } ) \\eta _ { s } ^ { \\lambda } \\rho _ { s } ^ { a } e _ { a , s } ^ { \\kappa } d s ) , \\end{align*}"
],
"latex_expand": [
"$ \\mitH _ { \\mitg } $",
"$ \\mitx _ { \\mitt } , \\miteta _ { \\mitt } $",
"$ \\mitS \\mitM $",
"$ \\mitx ^ { \\mitmu } , \\miteta ^ { \\mitmu } $",
"$ \\mitb _ { \\mitt } $",
"$ ( \\mittheta _ { \\mitt } , \\mitrho _ { \\mitt } ) $",
"$ ( \\mitd + \\mitdelta ) ^ { 2 } $",
"$ \\mitJ $",
"$ \\mitu : \\mupSigma \\rightarrow \\mitM $",
"$ \\mupSigma $",
"$ 2 \\mitm $",
"$ \\mitM $",
"$ \\mitH _ { \\mitmu } ^ { \\mitalpha } $",
"$ \\miteta ^ { \\mitmu } $",
"$ \\mitpi _ { \\mitmu } ^ { \\mitalpha } $",
"$ \\mitalpha = 1 , 2 $",
"$ \\mupSigma $",
"$ \\mitmu = 1 , \\ldots , 2 \\mitm $",
"$ \\mitM $",
"$ \\mitH $",
"$ \\mitpi $",
"$ \\mitP ^ { { } ^ { - } } \\mitH = 0 , \\mitP ^ { { } ^ { - } } \\mitpi = 0 $",
"$ \\mitP ^ { { } ^ { - } } { } _ { \\mitbeta \\mitnu } ^ { \\mitalpha \\mitmu } = \\mitdelta _ { \\mitbeta } ^ { \\mitalpha } \\mitdelta _ { \\mitnu } ^ { \\mitmu } - \\mitepsilon _ { \\mitbeta } ^ { \\mitalpha } \\mitJ _ { \\mitnu } ^ { \\mitmu } $",
"$ \\mitepsilon $",
"$ \\mupSigma $",
"$ \\mitJ $",
"\\begin{align*} \\mitx _ { \\mitt } ^ { \\mitmu } & = & \\mitx ^ { \\mitmu } + \\int _ { 0 } ^ { \\mitt } \\mite _ { \\mita , \\mits } ^ { \\mitmu } \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mita } , \\\\ \\mite _ { \\mita , \\mitt } ^ { \\mitmu } & = & \\mite _ { \\mita } ^ { \\mitmu } + \\int _ { 0 } ^ { \\mitt } - \\mite _ { \\mita , \\mits } ^ { \\mitnu } \\mite _ { \\mitb , \\mits } ^ { \\mitlambda } \\mupGamma _ { \\mitnu \\mitlambda } ^ { \\mitmu } ( \\mitx _ { \\mits } ) \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mitb } \\\\ \\miteta _ { \\mitt } ^ { \\mitmu } & = & \\miteta ^ { \\mitmu } + \\mittheta _ { \\mitt } ^ { \\mita } \\mite _ { \\mita , \\mitt } ^ { \\mitmu } \\\\ + & & \\! \\! \\! \\! \\! \\! \\! \\! \\! \\int _ { 0 } ^ { \\mitt } \\big ( - \\miteta _ { \\mits } ^ { \\mitnu } \\mupGamma _ { \\mitnu \\mitlambda } ^ { \\mitmu } \\mite _ { \\mitb , \\mits } ^ { \\mitlambda } \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mitb } - \\mittheta _ { \\mitt } ^ { \\mita } \\mitd \\mite _ { \\mita , \\mits } ^ { \\mitmu } + \\frac { 1 } { 4 } \\miteta _ { \\mits } ^ { \\mitnu } \\mitR _ { \\mitnu \\mitlambda \\mitkappa } { } ^ { \\mitmu } ( \\mitx _ { \\mits } ) \\miteta _ { \\mits } ^ { \\mitlambda } \\mitrho _ { \\mits } ^ { \\mita } \\mite _ { \\mita , \\mits } ^ { \\mitkappa } \\mitd \\mits \\big ) , \\end{align*}"
],
"x_min": [
0.1728000044822693,
0.3124000132083893,
0.5396999716758728,
0.7713000178337097,
0.22939999401569366,
0.5708000063896179,
0.7269999980926514,
0.5493999719619751,
0.3711000084877014,
0.7193999886512756,
0.1728000044822693,
0.5342000126838684,
0.326200008392334,
0.5631999969482422,
0.6295999884605408,
0.7221999764442444,
0.26809999346733093,
0.3434999883174896,
0.6061000227928162,
0.7477999925613403,
0.8141000270843506,
0.33169999718666077,
0.557699978351593,
0.3386000096797943,
0.5777000188827515,
0.6371999979019165,
0.21809999644756317
],
"y_min": [
0.17579999566078186,
0.26510000228881836,
0.2612000107765198,
0.26170000433921814,
0.448199987411499,
0.44780001044273376,
0.4814000129699707,
0.7416999936103821,
0.7592999935150146,
0.7592999935150146,
0.7768999934196472,
0.7764000296592712,
0.7935000061988831,
0.7939000129699707,
0.7939000129699707,
0.7939000129699707,
0.8105000257492065,
0.8109999895095825,
0.8105000257492065,
0.8105000257492065,
0.8140000104904175,
0.8241999745368958,
0.8241999745368958,
0.8485999703407288,
0.8446999788284302,
0.8446999788284302,
0.29829999804496765
],
"x_max": [
0.19769999384880066,
0.3546000123023987,
0.5748999714851379,
0.8210999965667725,
0.24459999799728394,
0.626800000667572,
0.7954000234603882,
0.5631999969482422,
0.48579999804496765,
0.7339000105857849,
0.2003999948501587,
0.5555999875068665,
0.3544999957084656,
0.583899974822998,
0.6517000198364258,
0.7926999926567078,
0.2825999855995178,
0.46860000491142273,
0.6274999976158142,
0.7664999961853027,
0.8258000016212463,
0.4968999922275543,
0.7276999950408936,
0.34689998626708984,
0.592199981212616,
0.6503000259399414,
0.7684000134468079
],
"y_max": [
0.1899999976158142,
0.274399995803833,
0.2718999981880188,
0.274399995803833,
0.4609000086784363,
0.46239998936653137,
0.4970000088214874,
0.7523999810218811,
0.769599974155426,
0.769599974155426,
0.7867000102996826,
0.7867000102996826,
0.8090999722480774,
0.8065999746322632,
0.8090000152587891,
0.8065999746322632,
0.8208000063896179,
0.8237000107765198,
0.8208000063896179,
0.8208000063896179,
0.8208000063896179,
0.8407999873161316,
0.8436999917030334,
0.8549000024795532,
0.8550000190734863,
0.8550000190734863,
0.4366999864578247
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
} |
|
0001015_page06 | {
"latex": [
"$M$",
"$\\delta u^{\\mu } = i \\epsilon \\eta ^{\\mu }$",
"$J$",
"$M$",
"$u:\\Sigma \\to M$",
"$p^{\\alpha }_{\\mu }$",
"$H^{\\alpha }_{\\mu }$",
"${\\cal {P}}_{\\mu }^{\\alpha }$",
"$\\pi ^{\\alpha }_{\\mu }$",
"$J$"
],
"latex_norm": [
"$ M $",
"$ \\delta u ^ { \\mu } = i \\epsilon \\eta ^ { \\mu } $",
"$ J $",
"$ M $",
"$ u : \\Sigma \\rightarrow M $",
"$ p _ { \\mu } ^ { \\alpha } $",
"$ H _ { \\mu } ^ { \\alpha } $",
"$ P _ { \\mu } ^ { \\alpha } $",
"$ \\pi _ { \\mu } ^ { \\alpha } $",
"$ J $"
],
"latex_expand": [
"$ \\mitM $",
"$ \\mitdelta \\mitu ^ { \\mitmu } = \\miti \\mitepsilon \\miteta ^ { \\mitmu } $",
"$ \\mitJ $",
"$ \\mitM $",
"$ \\mitu : \\mupSigma \\rightarrow \\mitM $",
"$ \\mitp _ { \\mitmu } ^ { \\mitalpha } $",
"$ \\mitH _ { \\mitmu } ^ { \\mitalpha } $",
"$ \\mitP _ { \\mitmu } ^ { \\mitalpha } $",
"$ \\mitpi _ { \\mitmu } ^ { \\mitalpha } $",
"$ \\mitJ $"
],
"x_min": [
0.2922999858856201,
0.4090999960899353,
0.24740000069141388,
0.46650001406669617,
0.257099986076355,
0.5722000002861023,
0.31380000710487366,
0.8003000020980835,
0.3808000087738037,
0.367000013589859
],
"y_min": [
0.15870000422000885,
0.1753000020980835,
0.20999999344348907,
0.20999999344348907,
0.31299999356269836,
0.31349998712539673,
0.33009999990463257,
0.33009999990463257,
0.34769999980926514,
0.364300012588501
],
"x_max": [
0.31369999051094055,
0.5009999871253967,
0.2605000138282776,
0.4878999888896942,
0.35179999470710754,
0.5928999781608582,
0.34209999442100525,
0.8259000182151794,
0.4036000072956085,
0.3801000118255615
],
"y_max": [
0.16899999976158142,
0.1889999955892563,
0.22030000388622284,
0.22030000388622284,
0.32330000400543213,
0.3285999894142151,
0.3456999957561493,
0.3456999957561493,
0.3628000020980835,
0.37459999322891235
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001073_page01 | {
"latex": [
"$U(1)$",
"$\\theta $"
],
"latex_norm": [
"$ U ( 1 ) $",
"$ \\theta $"
],
"latex_expand": [
"$ \\mitU ( 1 ) $",
"$ \\mittheta $"
],
"x_min": [
0.3019999861717224,
0.3917999863624573
],
"y_min": [
0.5996000170707703,
0.6226000189781189
],
"x_max": [
0.34279999136924744,
0.40220001339912415
],
"y_max": [
0.6141999959945679,
0.6328999996185303
],
"expr_type": [
"embedded",
"embedded"
]
} |
|
0001073_page02 | {
"latex": [
"$B$",
"$U(2)$",
"$B$",
"$O(\\theta )$",
"$U(1)$",
"$\\phi $",
"$\\mathbb {R}^3\\setminus \\{0\\}$",
"$S^2$",
"$\\pi _1(U(1))=\\mathbb {Z}$",
"$m\\propto 1/g_{\\rm YM}$",
"$O(\\theta ^2)$",
"$U(1)$",
"$A$",
"$\\theta $",
"$U(1)$"
],
"latex_norm": [
"$ B $",
"$ U ( 2 ) $",
"$ B $",
"$ O ( \\theta ) $",
"$ U ( 1 ) $",
"$ \\phi $",
"$ R ^ { 3 } \\setminus \\{ 0 \\} $",
"$ S ^ { 2 } $",
"$ \\pi _ { 1 } ( U ( 1 ) ) = Z $",
"$ m \\propto 1 \\slash g _ { Y M } $",
"$ O ( \\theta ^ { 2 } ) $",
"$ U ( 1 ) $",
"$ A $",
"$ \\theta $",
"$ U ( 1 ) $"
],
"latex_expand": [
"$ \\mitB $",
"$ \\mitU ( 2 ) $",
"$ \\mitB $",
"$ \\mitO ( \\mittheta ) $",
"$ \\mitU ( 1 ) $",
"$ \\mitphi $",
"$ \\BbbR ^ { 3 } \\setminus \\{ 0 \\} $",
"$ \\mitS ^ { 2 } $",
"$ \\mitpi _ { 1 } ( \\mitU ( 1 ) ) = \\BbbZ $",
"$ \\mitm \\propto 1 \\slash \\mitg _ { \\mathrm { Y M } } $",
"$ \\mitO ( \\mittheta ^ { 2 } ) $",
"$ \\mitU ( 1 ) $",
"$ \\mitA $",
"$ \\mittheta $",
"$ \\mitU ( 1 ) $"
],
"x_min": [
0.883899986743927,
0.6420000195503235,
0.13750000298023224,
0.47269999980926514,
0.13750000298023224,
0.41670000553131104,
0.7635999917984009,
0.34279999136924744,
0.4036000072956085,
0.22110000252723694,
0.3772999942302704,
0.17000000178813934,
0.36629998683929443,
0.48170000314712524,
0.5853000283241272
],
"y_min": [
0.08250000327825546,
0.2378000020980835,
0.2612000107765198,
0.30469998717308044,
0.32710000872612,
0.35010001063346863,
0.3711000084877014,
0.3935999870300293,
0.4165000021457672,
0.48339998722076416,
0.7505000233650208,
0.7728999853134155,
0.7738999724388123,
0.7738999724388123,
0.8403000235557556
],
"x_max": [
0.9004999995231628,
0.6834999918937683,
0.15410000085830688,
0.5134999752044678,
0.17829999327659607,
0.42910000681877136,
0.836899995803833,
0.36419999599456787,
0.5203999876976013,
0.328900009393692,
0.42640000581741333,
0.21080000698566437,
0.3813999891281128,
0.4921000003814697,
0.6261000037193298
],
"y_max": [
0.09319999814033508,
0.25290000438690186,
0.27149999141693115,
0.3197999894618988,
0.3416999876499176,
0.36329999566078186,
0.38670000433921814,
0.40529999136924744,
0.4311000108718872,
0.49799999594688416,
0.7656000256538391,
0.7879999876022339,
0.784600019454956,
0.784600019454956,
0.8549000024795532
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001073_page03 | {
"latex": [
"$\\star $",
"$O(\\theta ^2)$",
"$F$",
"$i$",
"$j$",
"$O(\\theta ^2)$",
"$\\theta $",
"$F$",
"$i$",
"$F$",
"$A$",
"$A$",
"$A\\simeq A^0+A^1+A^2$",
"$\\theta $",
"$F_{ij}\\simeq F_{ij}^0+F_{ij}^1+F_{ij}^2$",
"$f^{1, 2}=dA^{1, 2}$",
"$g$",
"$\\ast 1$",
"$F$",
"$\\theta $",
"$f(x)\\star g(x)=\\exp (\\frac {i}{2}\\theta _{ij}\\partial _i\\partial _j') f(x)g(x')|_{x=x'}$",
"$[x_i, x_j]=i\\theta _{ij}$",
"$A_0=0$",
"\\begin {equation} F=dA-\\frac {i}{2}[A, A]_{\\star }. \\end {equation}",
"\\begin {equation} \\label {eq:F_ij} F_{ij}\\simeq \\partial _i A_j-\\partial _j A_i+\\theta _{mn}\\partial _m A_i \\partial _n A_j, \\end {equation}",
"\\begin {eqnarray} F_{ij}^0 & = & \\partial _i A_j^0-\\partial _j A_i^0 \\\\ F_{ij}^1 & = & \\partial _i A_j^1-\\partial _j A_i^1+\\theta _{mn}\\partial _m A_i^0 \\partial _n A_j^0 \\\\ F_{ij}^2 & = & \\partial _i A_j^2-\\partial _j A_i^2+\\theta _{mn}\\partial _m A_i^0 \\partial _n A_j^1+\\theta _{mn}\\partial _m A_i^1 \\partial _n A_j^0. \\end {eqnarray}",
"\\begin {equation} \\label {eq:DF} DF=4\\pi g\\delta ^3(\\vec r\\,)\\ast \\!1 \\end {equation}",
"\\begin {equation} DF=dF-i[A, F]_{\\star }. \\end {equation}",
"\\begin {eqnarray} dF^0 & = & 4\\pi g\\delta ^3(\\vec r\\,)\\ast \\!1 \\\\ dF^1 & = & -\\theta _{mn}\\partial _m A^0\\wedge \\partial _n F^0 \\\\ dF^2 & = & -\\theta _{mn}\\partial _m A^1\\wedge \\partial _n F^0 -\\theta _{mn}\\partial _m A^0\\wedge \\partial _n F^1. \\end {eqnarray}"
],
"latex_norm": [
"$ \\star $",
"$ O ( \\theta ^ { 2 } ) $",
"$ F $",
"$ i $",
"$ j $",
"$ O ( \\theta ^ { 2 } ) $",
"$ \\theta $",
"$ F $",
"$ i $",
"$ F $",
"$ A $",
"$ A $",
"$ A \\sime A ^ { 0 } + A ^ { 1 } + A ^ { 2 } $",
"$ \\theta $",
"$ F _ { i j } \\sime F _ { i j } ^ { 0 } + F _ { i j } ^ { 1 } + F _ { i j } ^ { 2 } $",
"$ f ^ { 1 , 2 } = d A ^ { 1 , 2 } $",
"$ g $",
"$ \\ast 1 $",
"$ F $",
"$ \\theta $",
"$ f ( x ) \\star g ( x ) = e x p ( \\frac { i } { 2 } \\theta _ { i j } \\partial _ { i } \\partial _ { j } ^ { \\prime } ) f ( x ) g ( x ^ { \\prime } ) \\vert _ { x = x ^ { \\prime } } $",
"$ [ x _ { i } , x _ { j } ] = i \\theta _ { i j } $",
"$ A _ { 0 } = 0 $",
"\\begin{equation*} F = d A - \\frac { i } { 2 } [ A , A ] _ { \\star } . \\end{equation*}",
"\\begin{equation*} F _ { i j } \\sime \\partial _ { i } A _ { j } - \\partial _ { j } A _ { i } + \\theta _ { m n } \\partial _ { m } A _ { i } \\partial _ { n } A _ { j } , \\end{equation*}",
"\\begin{align*} F _ { i j } ^ { 0 } & = & \\partial _ { i } A _ { j } ^ { 0 } - \\partial _ { j } A _ { i } ^ { 0 } \\\\ F _ { i j } ^ { 1 } & = & \\partial _ { i } A _ { j } ^ { 1 } - \\partial _ { j } A _ { i } ^ { 1 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 0 } \\partial _ { n } A _ { j } ^ { 0 } \\\\ F _ { i j } ^ { 2 } & = & \\partial _ { i } A _ { j } ^ { 2 } - \\partial _ { j } A _ { i } ^ { 2 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 0 } \\partial _ { n } A _ { j } ^ { 1 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 1 } \\partial _ { n } A _ { j } ^ { 0 } . \\end{align*}",
"\\begin{equation*} D F = 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) \\ast \\! 1 \\end{equation*}",
"\\begin{equation*} D F = d F - i [ A , F ] _ { \\star } . \\end{equation*}",
"\\begin{align*} d F ^ { 0 } & = & 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) \\ast \\! 1 \\\\ d F ^ { 1 } & = & - \\theta _ { m n } \\partial _ { m } A ^ { 0 } \\wedge \\partial _ { n } F ^ { 0 } \\\\ d F ^ { 2 } & = & - \\theta _ { m n } \\partial _ { m } A ^ { 1 } \\wedge \\partial _ { n } F ^ { 0 } - \\theta _ { m n } \\partial _ { m } A ^ { 0 } \\wedge \\partial _ { n } F ^ { 1 } . \\end{align*}"
],
"latex_expand": [
"$ \\star $",
"$ \\mitO ( \\mittheta ^ { 2 } ) $",
"$ \\mitF $",
"$ \\miti $",
"$ \\mitj $",
"$ \\mitO ( \\mittheta ^ { 2 } ) $",
"$ \\mittheta $",
"$ \\mitF $",
"$ \\miti $",
"$ \\mitF $",
"$ \\mitA $",
"$ \\mitA $",
"$ \\mitA \\sime \\mitA ^ { 0 } + \\mitA ^ { 1 } + \\mitA ^ { 2 } $",
"$ \\mittheta $",
"$ \\mitF _ { \\miti \\mitj } \\sime \\mitF _ { \\miti \\mitj } ^ { 0 } + \\mitF _ { \\miti \\mitj } ^ { 1 } + \\mitF _ { \\miti \\mitj } ^ { 2 } $",
"$ \\mitf ^ { 1 , 2 } = \\mitd \\mitA ^ { 1 , 2 } $",
"$ \\mitg $",
"$ \\ast 1 $",
"$ \\mitF $",
"$ \\mittheta $",
"$ \\mitf ( \\mitx ) \\star \\mitg ( \\mitx ) = \\mathrm { e x p } ( \\frac { \\miti } { 2 } \\mittheta _ { \\miti \\mitj } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitj } ^ { \\prime } ) \\mitf ( \\mitx ) \\mitg ( \\mitx ^ { \\prime } ) \\vert _ { \\mitx = \\mitx ^ { \\prime } } $",
"$ [ \\mitx _ { \\miti } , \\mitx _ { \\mitj } ] = \\miti \\mittheta _ { \\miti \\mitj } $",
"$ \\mitA _ { 0 } = 0 $",
"\\begin{equation*} \\mitF = \\mitd \\mitA - \\frac { \\miti } { 2 } [ \\mitA , \\mitA ] _ { \\star } . \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\miti \\mitj } \\sime \\mitpartial _ { \\miti } \\mitA _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } , \\end{equation*}",
"\\begin{align*} \\mitF _ { \\miti \\mitj } ^ { 0 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 0 } \\\\ \\mitF _ { \\miti \\mitj } ^ { 1 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 1 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 1 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 0 } \\\\ \\mitF _ { \\miti \\mitj } ^ { 2 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 2 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 2 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 1 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 1 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 0 } . \\end{align*}",
"\\begin{equation*} \\mitD \\mitF = 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) \\ast \\! 1 \\end{equation*}",
"\\begin{equation*} \\mitD \\mitF = \\mitd \\mitF - \\miti [ \\mitA , \\mitF ] _ { \\star } . \\end{equation*}",
"\\begin{align*} \\mitd \\mitF ^ { 0 } & = & 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) \\ast \\! 1 \\\\ \\mitd \\mitF ^ { 1 } & = & - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 0 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 0 } \\\\ \\mitd \\mitF ^ { 2 } & = & - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 1 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 0 } - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 0 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 1 } . \\end{align*}"
],
"x_min": [
0.45750001072883606,
0.34279999136924744,
0.40290001034736633,
0.19280000030994415,
0.21080000698566437,
0.5645999908447266,
0.15889999270439148,
0.16030000150203705,
0.460999995470047,
0.5169000029563904,
0.7760999798774719,
0.6924999952316284,
0.7387999892234802,
0.47130000591278076,
0.652400016784668,
0.4291999936103821,
0.1949000060558319,
0.45890000462532043,
0.13750000298023224,
0.29580000042915344,
0.1678999960422516,
0.5113999843597412,
0.47269999980926514,
0.43470001220703125,
0.367000013589859,
0.2930000126361847,
0.43810001015663147,
0.4291999936103821,
0.321399986743927
],
"y_min": [
0.15279999375343323,
0.21879999339580536,
0.22020000219345093,
0.29100000858306885,
0.29100000858306885,
0.2890999913215637,
0.31299999356269836,
0.3353999853134155,
0.3353999853134155,
0.3353999853134155,
0.35740000009536743,
0.3799000084400177,
0.3783999979496002,
0.40230000019073486,
0.4009000062942505,
0.5282999873161316,
0.6265000104904175,
0.6234999895095825,
0.6449999809265137,
0.7153000235557556,
0.8270999789237976,
0.8281000256538391,
0.8442000150680542,
0.17239999771118164,
0.25200000405311584,
0.4302999973297119,
0.5820000171661377,
0.6762999892234802,
0.745199978351593
],
"x_max": [
0.46860000491142273,
0.3912000060081482,
0.4194999933242798,
0.2003999948501587,
0.22050000727176666,
0.6136999726295471,
0.16930000483989716,
0.1762000024318695,
0.46860000491142273,
0.532800018787384,
0.7912999987602234,
0.7077000141143799,
0.9004999995231628,
0.48170000314712524,
0.8278999924659729,
0.5376999974250793,
0.20600000023841858,
0.4796000123023987,
0.1534000039100647,
0.3061999976634979,
0.4733999967575073,
0.6082000136375427,
0.5238000154495239,
0.605400025844574,
0.669700026512146,
0.7450000047683716,
0.6025999784469604,
0.6110000014305115,
0.71670001745224
],
"y_max": [
0.15960000455379486,
0.23389999568462372,
0.2304999977350235,
0.3012999892234802,
0.3037000000476837,
0.30469998717308044,
0.32330000400543213,
0.3456999957561493,
0.3456999957561493,
0.3456999957561493,
0.36809998750686646,
0.3901999890804291,
0.3910999894142151,
0.41260001063346863,
0.4180000126361847,
0.542900025844574,
0.6358000040054321,
0.6333000063896179,
0.6553000211715698,
0.7260000109672546,
0.842199981212616,
0.8413000106811523,
0.8549000024795532,
0.20509999990463257,
0.2700999975204468,
0.5072000026702881,
0.6014999747276306,
0.6944000124931335,
0.8187000155448914
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001073_page04 | {
"latex": [
"$\\nabla \\cdot \\vec B^0=4\\pi g\\delta ^3(\\vec r\\,)$",
"$B^0=\\ast F^0$",
"$\\vec B^0=g\\vec r/r^3$",
"$A^0$",
"$A^{1, 2}$",
"$A^0$",
"$i\\to k$",
"$j\\to i$",
"$k\\to j$",
"$m\\leftrightarrow n$",
"$d f^1=0$",
"$f^1=0$",
"$A^1$",
"$A^1$",
"$A^0$",
"$F^1$",
"$-2\\epsilon _{ijk}(\\theta _{mn} \\theta _{pq}\\partial _m A^0_k\\partial _q A^0_j \\partial _n \\partial _p A^0_i)$",
"$j$",
"$k$",
"$d f^2=0$",
"$A^2$",
"$f^{1, 2}$",
"$f^{1, 2}=dA^{1, 2}$",
"$F^0=dA^0$",
"$S^2$",
"$A^0$",
"$A$",
"$A$",
"$g\\simeq g^0+g^1+g^2$",
"$|A^0|\\sim 1/r$",
"$|F^0|\\sim 1/r^2$",
"$|F^1|\\sim 1/r^4$",
"$|F^2|=0$",
"\\begin {eqnarray} \\epsilon _{ijk}\\partial _i f^1_{jk} & = & -\\epsilon _{ijk}\\partial _i (\\theta _{mn}\\partial _m A^0_j\\partial _n A^0_k) -\\epsilon _{ijk}\\theta _{nm}\\partial _n A^0_k\\partial _m F^0_{ij} \\\\ &= & -\\epsilon _{ijk}\\theta _{mn}\\Big (\\partial _m \\partial _i A^0_j \\partial _n A^0_k +\\partial _mA^0_j\\partial _n\\partial _i A^0_k -\\partial _n A^0_k\\partial _m (\\partial _i A_j^0- \\partial _j A_i^0)\\Big ). \\end {eqnarray}",
"\\begin {eqnarray} \\epsilon _{ijk}\\partial _i f^2_{jk} & = & -\\epsilon _{ijk}\\partial _i \\Big (\\theta _{mn}(\\partial _m A^0_j\\partial _n A^1_k- \\partial _m A^0_k\\partial _n A^1_j)\\Big ) \\\\ && -\\epsilon _{ijk}\\theta _{nm}\\partial _n A^1_k\\partial _m F^0_{ij} -\\epsilon _{ijk}\\theta _{mn}\\partial _m A^0_k\\partial _n F^1_{ij}. \\end {eqnarray}",
"\\begin {equation} \\epsilon _{ijk}\\partial _i f^2_{jk}=-\\epsilon _{ijk}\\theta _{mn}\\theta _{pq} \\partial _m A^0_k\\partial _n (\\partial _p A^0_i\\partial _q A^0_j). \\end {equation}",
"\\begin {equation} m=\\int |F|^2 \\sim \\int _0^{\\infty } r^2dr\\left | \\frac {1}{r^2}+\\frac {1}{r^4} \\right |^2=\\infty . \\end {equation}"
],
"latex_norm": [
"$ \\nabla \\cdot \\vec { B } ^ { 0 } = 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) $",
"$ B ^ { 0 } = \\ast F ^ { 0 } $",
"$ \\vec { B } ^ { 0 } = g \\vec { r } \\slash r ^ { 3 } $",
"$ A ^ { 0 } $",
"$ A ^ { 1 , 2 } $",
"$ A ^ { 0 } $",
"$ i \\rightarrow k $",
"$ j \\rightarrow i $",
"$ k \\rightarrow j $",
"$ m \\leftrightarrow n $",
"$ d f ^ { 1 } = 0 $",
"$ f ^ { 1 } = 0 $",
"$ A ^ { 1 } $",
"$ A ^ { 1 } $",
"$ A ^ { 0 } $",
"$ F ^ { 1 } $",
"$ - 2 \\epsilon _ { i j k } ( \\theta _ { m n } \\theta _ { p q } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { q } A _ { j } ^ { 0 } \\partial _ { n } \\partial _ { p } A _ { i } ^ { 0 } ) $",
"$ j $",
"$ k $",
"$ d f ^ { 2 } = 0 $",
"$ A ^ { 2 } $",
"$ f ^ { 1 , 2 } $",
"$ f ^ { 1 , 2 } = d A ^ { 1 , 2 } $",
"$ F ^ { 0 } = d A ^ { 0 } $",
"$ S ^ { 2 } $",
"$ A ^ { 0 } $",
"$ A $",
"$ A $",
"$ g \\sime g ^ { 0 } + g ^ { 1 } + g ^ { 2 } $",
"$ \\vert A ^ { 0 } \\vert \\sim 1 \\slash r $",
"$ \\vert F ^ { 0 } \\vert \\sim 1 \\slash r ^ { 2 } $",
"$ \\vert F ^ { 1 } \\vert \\sim 1 \\slash r ^ { 4 } $",
"$ \\vert F ^ { 2 } \\vert = 0 $",
"\\begin{align*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 1 } & = & - \\epsilon _ { i j k } \\partial _ { i } ( \\theta _ { m n } \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 0 } ) - \\epsilon _ { i j k } \\theta _ { n m } \\partial _ { n } A _ { k } ^ { 0 } \\partial _ { m } F _ { i j } ^ { 0 } \\\\ & = & - \\epsilon _ { i j k } \\theta _ { m n } ( \\partial _ { m } \\partial _ { i } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 0 } + \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } \\partial _ { i } A _ { k } ^ { 0 } - \\partial _ { n } A _ { k } ^ { 0 } \\partial _ { m } ( \\partial _ { i } A _ { j } ^ { 0 } - \\partial _ { j } A _ { i } ^ { 0 } ) ) . \\end{align*}",
"\\begin{align*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 2 } & = & - \\epsilon _ { i j k } \\partial _ { i } ( \\theta _ { m n } ( \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 1 } - \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } A _ { j } ^ { 1 } ) ) \\\\ & & - \\epsilon _ { i j k } \\theta _ { n m } \\partial _ { n } A _ { k } ^ { 1 } \\partial _ { m } F _ { i j } ^ { 0 } - \\epsilon _ { i j k } \\theta _ { m n } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } F _ { i j } ^ { 1 } . \\end{align*}",
"\\begin{equation*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 2 } = - \\epsilon _ { i j k } \\theta _ { m n } \\theta _ { p q } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } ( \\partial _ { p } A _ { i } ^ { 0 } \\partial _ { q } A _ { j } ^ { 0 } ) . \\end{equation*}",
"\\begin{equation*} m = \\int \\vert F \\vert ^ { 2 } \\sim \\int _ { 0 } ^ { \\infty } r ^ { 2 } d r { \\vert \\frac { 1 } { r ^ { 2 } } + \\frac { 1 } { r ^ { 4 } } \\vert } ^ { 2 } = \\infty . \\end{equation*}"
],
"latex_expand": [
"$ \\nabla \\cdot \\vec { \\mitB } ^ { 0 } = 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) $",
"$ \\mitB ^ { 0 } = \\ast \\mitF ^ { 0 } $",
"$ \\vec { \\mitB } ^ { 0 } = \\mitg \\vec { \\mitr } \\slash \\mitr ^ { 3 } $",
"$ \\mitA ^ { 0 } $",
"$ \\mitA ^ { 1 , 2 } $",
"$ \\mitA ^ { 0 } $",
"$ \\miti \\rightarrow \\mitk $",
"$ \\mitj \\rightarrow \\miti $",
"$ \\mitk \\rightarrow \\mitj $",
"$ \\mitm \\leftrightarrow \\mitn $",
"$ \\mitd \\mitf ^ { 1 } = 0 $",
"$ \\mitf ^ { 1 } = 0 $",
"$ \\mitA ^ { 1 } $",
"$ \\mitA ^ { 1 } $",
"$ \\mitA ^ { 0 } $",
"$ \\mitF ^ { 1 } $",
"$ - 2 \\mitepsilon _ { \\miti \\mitj \\mitk } ( \\mittheta _ { \\mitm \\mitn } \\mittheta _ { \\mitp \\mitq } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitq } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitp } \\mitA _ { \\miti } ^ { 0 } ) $",
"$ \\mitj $",
"$ \\mitk $",
"$ \\mitd \\mitf ^ { 2 } = 0 $",
"$ \\mitA ^ { 2 } $",
"$ \\mitf ^ { 1 , 2 } $",
"$ \\mitf ^ { 1 , 2 } = \\mitd \\mitA ^ { 1 , 2 } $",
"$ \\mitF ^ { 0 } = \\mitd \\mitA ^ { 0 } $",
"$ \\mitS ^ { 2 } $",
"$ \\mitA ^ { 0 } $",
"$ \\mitA $",
"$ \\mitA $",
"$ \\mitg \\sime \\mitg ^ { 0 } + \\mitg ^ { 1 } + \\mitg ^ { 2 } $",
"$ \\vert \\mitA ^ { 0 } \\vert \\sim 1 \\slash \\mitr $",
"$ \\vert \\mitF ^ { 0 } \\vert \\sim 1 \\slash \\mitr ^ { 2 } $",
"$ \\vert \\mitF ^ { 1 } \\vert \\sim 1 \\slash \\mitr ^ { 4 } $",
"$ \\vert \\mitF ^ { 2 } \\vert = 0 $",
"\\begin{align*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 1 } & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } ( \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } ) - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitn \\mitm } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitj } ^ { 0 } \\\\ & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\Big ( \\mitpartial _ { \\mitm } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } + \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitpartial _ { \\miti } \\mitA _ { \\mitk } ^ { 0 } - \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitm } ( \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 0 } ) \\Big ) . \\end{align*}",
"\\begin{align*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 2 } & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\Big ( \\mittheta _ { \\mitm \\mitn } ( \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 1 } - \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 1 } ) \\Big ) \\\\ & & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitn \\mitm } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 1 } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitj } ^ { 0 } - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } ^ { 1 } . \\end{align*}",
"\\begin{equation*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 2 } = - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\mittheta _ { \\mitp \\mitq } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } ( \\mitpartial _ { \\mitp } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitq } \\mitA _ { \\mitj } ^ { 0 } ) . \\end{equation*}",
"\\begin{equation*} \\mitm = \\int \\vert \\mitF \\vert ^ { 2 } \\sim \\int _ { 0 } ^ { \\infty } \\mitr ^ { 2 } \\mitd \\mitr { \\left\\vert \\frac { 1 } { \\mitr ^ { 2 } } + \\frac { 1 } { \\mitr ^ { 4 } } \\right\\vert } ^ { 2 } = \\infty . \\end{equation*}"
],
"x_min": [
0.5453000068664551,
0.7706000208854675,
0.29510000348091125,
0.44369998574256897,
0.5465999841690063,
0.6924999952316284,
0.19349999725818634,
0.259799987077713,
0.3248000144958496,
0.4271000027656555,
0.3959999978542328,
0.8438000082969666,
0.7387999892234802,
0.30059999227523804,
0.8093000054359436,
0.13750000298023224,
0.48240000009536743,
0.3359000086784363,
0.3912000060081482,
0.3352000117301941,
0.5286999940872192,
0.31380000710487366,
0.7989000082015991,
0.6420000195503235,
0.16380000114440918,
0.6288999915122986,
0.8852999806404114,
0.8285999894142151,
0.37040001153945923,
0.35249999165534973,
0.4546999931335449,
0.5652999877929688,
0.7084000110626221,
0.19140000641345978,
0.29159998893737793,
0.33660000562667847,
0.3449000120162964
],
"y_min": [
0.08399999886751175,
0.08640000224113464,
0.10639999806880951,
0.10890000313520432,
0.13130000233650208,
0.13130000233650208,
0.2754000127315521,
0.2759000062942505,
0.2754000127315521,
0.27880001068115234,
0.2964000105857849,
0.2964000105857849,
0.3188000023365021,
0.46140000224113464,
0.46140000224113464,
0.4839000105857849,
0.5508000254631042,
0.5752000212669373,
0.5741999745368958,
0.5952000021934509,
0.5952000021934509,
0.6176999807357788,
0.6176999807357788,
0.6401000022888184,
0.6621000170707703,
0.6621000170707703,
0.6859999895095825,
0.7085000276565552,
0.7738999724388123,
0.7958999872207642,
0.7964000105857849,
0.7958999872207642,
0.7958999872207642,
0.1808999925851822,
0.3628000020980835,
0.5131999850273132,
0.8198000192642212
],
"x_max": [
0.7111999988555908,
0.8597000241279602,
0.3939000070095062,
0.46720001101493835,
0.5812000036239624,
0.7160000205039978,
0.2467000037431717,
0.311599999666214,
0.3808000087738037,
0.4921000003814697,
0.4596000015735626,
0.9004999995231628,
0.7616000175476074,
0.32409998774528503,
0.8327999711036682,
0.16169999539852142,
0.7554000020027161,
0.3456000089645386,
0.40290001034736633,
0.40149998664855957,
0.5522000193595886,
0.3456000089645386,
0.9004999995231628,
0.7269999980926514,
0.1859000027179718,
0.6517000198364258,
0.9004999995231628,
0.8438000082969666,
0.5134999752044678,
0.4429999887943268,
0.5534999966621399,
0.6633999943733215,
0.7796000242233276,
0.8458999991416931,
0.7462999820709229,
0.7035999894142151,
0.6952999830245972
],
"y_max": [
0.10209999978542328,
0.09860000014305115,
0.12449999898672104,
0.12060000002384186,
0.14300000667572021,
0.14300000667572021,
0.28610000014305115,
0.28859999775886536,
0.28859999775886536,
0.28610000014305115,
0.3109999895095825,
0.3109999895095825,
0.3305000066757202,
0.4731000065803528,
0.4731000065803528,
0.49559998512268066,
0.5679000020027161,
0.5878999829292297,
0.5849000215530396,
0.6097999811172485,
0.6068999767303467,
0.6323000192642212,
0.6323000192642212,
0.6517999768257141,
0.6743000149726868,
0.6743000149726868,
0.6963000297546387,
0.7188000082969666,
0.7885000109672546,
0.8115000128746033,
0.8115000128746033,
0.8115000128746033,
0.8115000128746033,
0.23579999804496765,
0.4187999963760376,
0.5346999764442444,
0.8603000044822693
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001073_page05 | {
"latex": [
"$\\phi $",
"$\\phi $",
"$\\star $",
"$U(1)$",
"$\\lambda =\\lambda ^0+\\lambda ^1+\\cdots $",
"$\\vec f =q\\vec v\\times \\vec B$",
"$\\delta \\vec f =0$",
"$\\delta B=\\ast \\delta F$",
"$\\rho _{\\rm V}$",
"$\\theta =1/B$",
"$B$",
"$\\theta $",
"$\\rho _{\\rm V}$",
"$B$",
"$B$",
"\\begin {eqnarray} \\delta F & \\simeq & [i\\lambda , F]_{\\star } \\\\ &\\simeq & 0-\\theta _{mn}\\partial _m \\lambda ^0\\partial _n F^0 -(\\theta _{mn}\\partial _m \\lambda ^1\\partial _n F^0 +\\theta _{mn}\\partial _m \\lambda ^0\\partial _n F^1), \\end {eqnarray}",
"\\begin {eqnarray} \\rho _{\\rm V} & = & \\frac {1}{8\\pi }B^2=\\frac {1}{8\\pi \\theta ^2},\\\\ && \\end {eqnarray}"
],
"latex_norm": [
"$ \\phi $",
"$ \\phi $",
"$ \\star $",
"$ U ( 1 ) $",
"$ \\lambda = \\lambda ^ { 0 } + \\lambda ^ { 1 } + \\cdots $",
"$ \\vec { f } = q \\vec { v } \\times \\vec { B } $",
"$ \\delta \\vec { f } = 0 $",
"$ \\delta B = \\ast \\delta F $",
"$ \\rho _ { V } $",
"$ \\theta = 1 \\slash B $",
"$ B $",
"$ \\theta $",
"$ \\rho _ { V } $",
"$ B $",
"$ B $",
"\\begin{align*} \\delta F & \\sime & [ i \\lambda , F ] _ { \\star } \\\\ & \\sime & 0 - \\theta _ { m n } \\partial _ { m } \\lambda ^ { 0 } \\partial _ { n } F ^ { 0 } - ( \\theta _ { m n } \\partial _ { m } \\lambda ^ { 1 } \\partial _ { n } F ^ { 0 } + \\theta _ { m n } \\partial _ { m } \\lambda ^ { 0 } \\partial _ { n } F ^ { 1 } ) , \\end{align*}",
"\\begin{align*} \\rho _ { V } & = & \\frac { 1 } { 8 \\pi } B ^ { 2 } = \\frac { 1 } { 8 \\pi \\theta ^ { 2 } } , \\end{align*}"
],
"latex_expand": [
"$ \\mitphi $",
"$ \\mitphi $",
"$ \\star $",
"$ \\mitU ( 1 ) $",
"$ \\mitlambda = \\mitlambda ^ { 0 } + \\mitlambda ^ { 1 } + \\cdots $",
"$ \\vec { \\mitf } = \\mitq \\vec { \\mitv } \\times \\vec { \\mitB } $",
"$ \\mitdelta \\vec { \\mitf } = 0 $",
"$ \\mitdelta \\mitB = \\ast \\mitdelta \\mitF $",
"$ \\mitrho _ { \\mathrm { V } } $",
"$ \\mittheta = 1 \\slash \\mitB $",
"$ \\mitB $",
"$ \\mittheta $",
"$ \\mitrho _ { \\mathrm { V } } $",
"$ \\mitB $",
"$ \\mitB $",
"\\begin{align*} \\mitdelta \\mitF & \\sime & [ \\miti \\mitlambda , \\mitF ] _ { \\star } \\\\ & \\sime & 0 - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 0 } \\mitpartial _ { \\mitn } \\mitF ^ { 0 } - ( \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 1 } \\mitpartial _ { \\mitn } \\mitF ^ { 0 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 0 } \\mitpartial _ { \\mitn } \\mitF ^ { 1 } ) , \\end{align*}",
"\\begin{align*} \\mitrho _ { \\mathrm { V } } & = & \\frac { 1 } { 8 \\mitpi } \\mitB ^ { 2 } = \\frac { 1 } { 8 \\mitpi \\mittheta ^ { 2 } } , \\end{align*}"
],
"x_min": [
0.3248000144958496,
0.4083999991416931,
0.760200023651123,
0.2184000015258789,
0.19280000030994415,
0.2549999952316284,
0.5383999943733215,
0.6557999849319458,
0.20659999549388885,
0.1817999929189682,
0.8341000080108643,
0.2847000062465668,
0.5695000290870667,
0.883899986743927,
0.49070000648498535,
0.25850000977516174,
0.4291999936103821
],
"y_min": [
0.23880000412464142,
0.2612000107765198,
0.3091000020503998,
0.32710000872612,
0.427700012922287,
0.4916999936103821,
0.4916999936103821,
0.4961000084877014,
0.6557999849319458,
0.6958000063896179,
0.6967999935150146,
0.7188000082969666,
0.7226999998092651,
0.7192000150680542,
0.826200008392334,
0.35910001397132874,
0.76419997215271
],
"x_max": [
0.33649998903274536,
0.42010000348091125,
0.7706000208854675,
0.25920000672340393,
0.33169999718666077,
0.3483000099658966,
0.5964999794960022,
0.742900013923645,
0.22939999401569366,
0.25780001282691956,
0.8507000207901001,
0.29510000348091125,
0.5916000008583069,
0.9004999995231628,
0.5044999718666077,
0.7789000272750854,
0.605400025844574
],
"y_max": [
0.25200000405311584,
0.274399995803833,
0.3158999979496002,
0.3416999876499176,
0.44040000438690186,
0.5092999935150146,
0.5092999935150146,
0.5063999891281128,
0.6650999784469604,
0.7103999853134155,
0.707099974155426,
0.7294999957084656,
0.7325000166893005,
0.7294999957084656,
0.8349999785423279,
0.40220001339912415,
0.7998999953269958
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
} |
|
0001073_page06 | {
"latex": [
"$\\rho _{\\rm V}$",
"\\begin {equation} \\sqrt {\\theta }=\\left (\\frac {1}{8\\pi \\rho _{\\rm V}}\\right )^{1/4}\\simeq \\left (\\frac {1}{8\\pi \\times 10^{-47}\\,\\,\\mathrm {GeV}^4}\\right )^{1/4} \\simeq 5.0\\times 10^{-3}\\,\\,\\mathrm {cm}. \\end {equation}"
],
"latex_norm": [
"$ \\rho _ { V } $",
"\\begin{equation*} \\sqrt { \\theta } = { ( \\frac { 1 } { 8 \\pi \\rho _ { V } } ) } ^ { 1 \\slash 4 } \\sime { ( \\frac { 1 } { 8 \\pi \\times 1 0 ^ { - 4 7 } \\, \\, { G e V } ^ { 4 } } ) } ^ { 1 \\slash 4 } \\sime 5 . 0 \\times 1 0 ^ { - 3 } \\, \\, c m . \\end{equation*}"
],
"latex_expand": [
"$ \\mitrho _ { \\mathrm { V } } $",
"\\begin{equation*} \\sqrt { \\mittheta } = { \\left( \\frac { 1 } { 8 \\mitpi \\mitrho _ { \\mathrm { V } } } \\right) } ^ { 1 \\slash 4 } \\sime { \\left( \\frac { 1 } { 8 \\mitpi \\times 1 0 ^ { - 4 7 } \\, \\, { \\mathrm { G e V } } ^ { 4 } } \\right) } ^ { 1 \\slash 4 } \\sime 5 . 0 \\times 1 0 ^ { - 3 } \\, \\, \\mathrm { c m } . \\end{equation*}"
],
"x_min": [
0.37940001487731934,
0.25220000743865967
],
"y_min": [
0.19480000436306,
0.1128000020980835
],
"x_max": [
0.40220001339912415,
0.7885000109672546
],
"y_max": [
0.2046000063419342,
0.15379999577999115
],
"expr_type": [
"embedded",
"isolated"
]
} |
|
0001073_page07 | {
"latex": [
"$\\mathcal {N}=2$",
"$R^4$",
"$p$"
],
"latex_norm": [
"$ N = 2 $",
"$ R ^ { 4 } $",
"$ p $"
],
"latex_expand": [
"$ \\mscrN = 2 $",
"$ \\mitR ^ { 4 } $",
"$ \\mitp $"
],
"x_min": [
0.6177999973297119,
0.33719998598098755,
0.541100025177002
],
"y_min": [
0.274399995803833,
0.7240999937057495,
0.763700008392334
],
"x_max": [
0.6765000224113464,
0.36070001125335693,
0.5515000224113464
],
"y_max": [
0.2847000062465668,
0.736299991607666,
0.7730000019073486
],
"expr_type": [
"embedded",
"embedded",
"embedded"
]
} |
|
0001101_page01 | {
"latex": [
"$^1$",
"$^2$",
"$^1$",
"$^3$",
"$^1$",
"$^2$",
"$^3$",
"$N=1$",
"$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$"
],
"latex_norm": [
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 3 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 3 } $",
"$ N = 1 $",
"$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $"
],
"latex_expand": [
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 3 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 3 } $",
"$ \\mitN = 1 $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $"
],
"x_min": [
0.33239999413490295,
0.4691999852657318,
0.6018999814987183,
0.7829999923706055,
0.2840000092983246,
0.30550000071525574,
0.3718000054359436,
0.35109999775886536,
0.30820000171661377
],
"y_min": [
0.26030001044273376,
0.26030001044273376,
0.26030001044273376,
0.26030001044273376,
0.288100004196167,
0.32710000872612,
0.3662000000476837,
0.5601000189781189,
0.5961999893188477
],
"x_max": [
0.3407000005245209,
0.47749999165534973,
0.6101999878883362,
0.7912999987602234,
0.2922999858856201,
0.31380000710487366,
0.3801000118255615,
0.39739999175071716,
0.5030999779701233
],
"y_max": [
0.27149999141693115,
0.27149999141693115,
0.27149999141693115,
0.27149999141693115,
0.29980000853538513,
0.33880001306533813,
0.3774000108242035,
0.5688999891281128,
0.6083999872207642
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001101_page02 | {
"latex": [
"$S^1/Z_2$",
"$N=1$",
"$E_{8}$",
"$N=1$",
"$R$",
"$10^{16}$",
"$\\rho $",
"$R$",
"$E_{8}$",
"$3+1$",
"$F_{ab}=F_{\\bar a\\bar b}=g^{a \\bar b}F_{a \\bar b}=0$",
"$N=1$",
"$E_{8}$",
"$G$",
"$G\\times H \\subseteq E_{8}$",
"$E_{8}$",
"$H$",
"$G$",
"$E_{8}$",
"$E_{8}$",
"$E_{6}$",
"$SO(10)$",
"$SU(5)$",
"$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$",
"$E_{8}$",
"$E_{6}$",
"$G=SU(3)$",
"$X$",
"$G\\subseteq E_{8}$"
],
"latex_norm": [
"$ S ^ { 1 } \\slash Z _ { 2 } $",
"$ N = 1 $",
"$ E _ { 8 } $",
"$ N = 1 $",
"$ R $",
"$ 1 0 ^ { 1 6 } $",
"$ \\rho $",
"$ R $",
"$ E _ { 8 } $",
"$ 3 + 1 $",
"$ F _ { a b } = F _ { \\bar { a } \\bar { b } } = g ^ { a \\bar { b } } F _ { a \\bar { b } } = 0 $",
"$ N = 1 $",
"$ E _ { 8 } $",
"$ G $",
"$ G \\times H \\subseteq E _ { 8 } $",
"$ E _ { 8 } $",
"$ H $",
"$ G $",
"$ E _ { 8 } $",
"$ E _ { 8 } $",
"$ E _ { 6 } $",
"$ S O ( 1 0 ) $",
"$ S U ( 5 ) $",
"$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $",
"$ E _ { 8 } $",
"$ E _ { 6 } $",
"$ G = S U ( 3 ) $",
"$ X $",
"$ G \\subseteq E _ { 8 } $"
],
"latex_expand": [
"$ \\mitS ^ { 1 } \\slash \\mitZ _ { 2 } $",
"$ \\mitN = 1 $",
"$ \\mitE _ { 8 } $",
"$ \\mitN = 1 $",
"$ \\mitR $",
"$ 1 0 ^ { 1 6 } $",
"$ \\mitrho $",
"$ \\mitR $",
"$ \\mitE _ { 8 } $",
"$ 3 + 1 $",
"$ \\mitF _ { \\mita \\mitb } = \\mitF _ { \\bar { \\mita } \\bar { \\mitb } } = \\mitg ^ { \\mita \\bar { \\mitb } } \\mitF _ { \\mita \\bar { \\mitb } } = 0 $",
"$ \\mitN = 1 $",
"$ \\mitE _ { 8 } $",
"$ \\mitG $",
"$ \\mitG \\times \\mitH \\subseteq \\mitE _ { 8 } $",
"$ \\mitE _ { 8 } $",
"$ \\mitH $",
"$ \\mitG $",
"$ \\mitE _ { 8 } $",
"$ \\mitE _ { 8 } $",
"$ \\mitE _ { 6 } $",
"$ \\mitS \\mitO ( 1 0 ) $",
"$ \\mitS \\mitU ( 5 ) $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $",
"$ \\mitE _ { 8 } $",
"$ \\mitE _ { 6 } $",
"$ \\mitG = \\mitS \\mitU ( 3 ) $",
"$ \\mitX $",
"$ \\mitG \\subseteq \\mitE _ { 8 } $"
],
"x_min": [
0.24529999494552612,
0.3711000084877014,
0.4325999915599823,
0.1949000060558319,
0.5992000102996826,
0.7630000114440918,
0.2833000123500824,
0.420199990272522,
0.17900000512599945,
0.5590999722480774,
0.120899997651577,
0.33309999108314514,
0.35589998960494995,
0.5860000252723694,
0.669700026512146,
0.8859999775886536,
0.4519999921321869,
0.7885000109672546,
0.8334000110626221,
0.7027999758720398,
0.7795000076293945,
0.8126999735832214,
0.120899997651577,
0.5342000126838684,
0.2134999930858612,
0.2605000138282776,
0.36559998989105225,
0.7954000234603882,
0.695900022983551
],
"y_min": [
0.1615999937057495,
0.16359999775886536,
0.16359999775886536,
0.2890999913215637,
0.3100999891757965,
0.30809998512268066,
0.33399999141693115,
0.3310999870300293,
0.4146000146865845,
0.4359999895095825,
0.47360000014305115,
0.47749999165534973,
0.4984999895095825,
0.5189999938011169,
0.5189999938011169,
0.5189999938011169,
0.5400000214576721,
0.5400000214576721,
0.5400000214576721,
0.5609999895095825,
0.5820000171661377,
0.5810999870300293,
0.6021000146865845,
0.6021000146865845,
0.6234999895095825,
0.6234999895095825,
0.6230000257492065,
0.7285000085830688,
0.7494999766349792
],
"x_max": [
0.29510000348091125,
0.4221999943256378,
0.4546999931335449,
0.24879999458789825,
0.6136999726295471,
0.7968999743461609,
0.2930000126361847,
0.43470001220703125,
0.20110000669956207,
0.6013000011444092,
0.3206000030040741,
0.38839998841285706,
0.3779999911785126,
0.6004999876022339,
0.7817000150680542,
0.9081000089645386,
0.4693000018596649,
0.8036999702453613,
0.8554999828338623,
0.7249000072479248,
0.8015999794006348,
0.8720999956130981,
0.1712999939918518,
0.755299985408783,
0.23559999465942383,
0.2825999855995178,
0.4546999931335449,
0.8126999735832214,
0.7588000297546387
],
"y_max": [
0.1762000024318695,
0.1729000061750412,
0.17479999363422394,
0.29840001463890076,
0.31940001249313354,
0.31929999589920044,
0.34279999136924744,
0.34040001034736633,
0.42579999566078186,
0.4458000063896179,
0.490200012922287,
0.4867999851703644,
0.5097000002861023,
0.5288000106811523,
0.5307000279426575,
0.5307000279426575,
0.5497999787330627,
0.5497999787330627,
0.5511999726295471,
0.5722000002861023,
0.5932000279426575,
0.5947999954223633,
0.6158000230789185,
0.6158000230789185,
0.635200023651123,
0.635200023651123,
0.6362000107765198,
0.7378000020980835,
0.760699987411499
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001101_page03 | {
"latex": [
"$G$",
"$X$",
"$SU(n)\\subset E_{8}$",
"$SU(n)$",
"$SU(n)$",
"$E_{6}$",
"$SO(10)$",
"$SU(5)$",
"$SU(3)$",
"$SU(4)$",
"$SU(5)$",
"$E_{8}$",
"$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$",
"$SU(5)$",
"$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$"
],
"latex_norm": [
"$ G $",
"$ X $",
"$ S U ( n ) \\subset E _ { 8 } $",
"$ S U ( n ) $",
"$ S U ( n ) $",
"$ E _ { 6 } $",
"$ S O ( 1 0 ) $",
"$ S U ( 5 ) $",
"$ S U ( 3 ) $",
"$ S U ( 4 ) $",
"$ S U ( 5 ) $",
"$ E _ { 8 } $",
"$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $",
"$ S U ( 5 ) $",
"$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $"
],
"latex_expand": [
"$ \\mitG $",
"$ \\mitX $",
"$ \\mitS \\mitU ( \\mitn ) \\subset \\mitE _ { 8 } $",
"$ \\mitS \\mitU ( \\mitn ) $",
"$ \\mitS \\mitU ( \\mitn ) $",
"$ \\mitE _ { 6 } $",
"$ \\mitS \\mitO ( 1 0 ) $",
"$ \\mitS \\mitU ( 5 ) $",
"$ \\mitS \\mitU ( 3 ) $",
"$ \\mitS \\mitU ( 4 ) $",
"$ \\mitS \\mitU ( 5 ) $",
"$ \\mitE _ { 8 } $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $",
"$ \\mitS \\mitU ( 5 ) $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $"
],
"x_min": [
0.7269999980926514,
0.7878000140190125,
0.3718000054359436,
0.47620001435279846,
0.120899997651577,
0.2418999969959259,
0.274399995803833,
0.37389999628067017,
0.17970000207424164,
0.24050000309944153,
0.33169999718666077,
0.7975000143051147,
0.33660000562667847,
0.8568999767303467,
0.6039999723434448
],
"y_min": [
0.17139999568462372,
0.17190000414848328,
0.3174000084400177,
0.3379000127315521,
0.4009000062942505,
0.44339999556541443,
0.44290000200271606,
0.44290000200271606,
0.46389999985694885,
0.46389999985694885,
0.46389999985694885,
0.4643999934196472,
0.48489999771118164,
0.7773000001907349,
0.79830002784729
],
"x_max": [
0.7422000169754028,
0.8044000267982483,
0.4740999937057495,
0.5286999940872192,
0.17339999973773956,
0.2639999985694885,
0.33379998803138733,
0.42500001192092896,
0.23010000586509705,
0.29159998893737793,
0.38280001282691956,
0.819599986076355,
0.5570999979972839,
0.9079999923706055,
0.8209999799728394
],
"y_max": [
0.18119999766349792,
0.18119999766349792,
0.33059999346733093,
0.3515999913215637,
0.4146000146865845,
0.45509999990463257,
0.4560999870300293,
0.4560999870300293,
0.4771000146865845,
0.4771000146865845,
0.4771000146865845,
0.47609999775886536,
0.49810001254081726,
0.7910000085830688,
0.8119999766349792
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001101_page04 | {
"latex": [
"$N=1$",
"$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$",
"$3+1$",
"$3+1$",
"$Z=X/\\tau _{X}$",
"$\\pi _{1}(Z)=\\ZZ _{2}$",
"$SU(5)$",
"$\\pi _{1}(Z)=\\ZZ _{2}$",
"$SU(5)$",
"$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$",
"$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$",
"$B=F_{2}$",
"$B=dP_{3}$",
"$SU(n)$",
"$n$",
"$N=1$",
"$SU(3)_{C}\\times SU(2)_{L}\\times U(1)_{Y}$",
"$X$",
"$Z=X/\\tau _X$",
"$E_8$",
"$X$",
"$\\sigma $",
"$\\xi $",
"$B$",
"$X$",
"$X$"
],
"latex_norm": [
"$ N = 1 $",
"$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $",
"$ 3 + 1 $",
"$ 3 + 1 $",
"$ Z = X \\slash \\tau _ { X } $",
"$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $",
"$ S U ( 5 ) $",
"$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $",
"$ S U ( 5 ) $",
"$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $",
"$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $",
"$ B = F _ { 2 } $",
"$ B = d P _ { 3 } $",
"$ S U ( n ) $",
"$ n $",
"$ N = 1 $",
"$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $",
"$ X $",
"$ Z = X \\slash \\tau _ { X } $",
"$ E _ { 8 } $",
"$ X $",
"$ \\sigma $",
"$ \\xi $",
"$ B $",
"$ X $",
"$ X $"
],
"latex_expand": [
"$ \\mitN = 1 $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $",
"$ 3 + 1 $",
"$ 3 + 1 $",
"$ \\mitZ = \\mitX \\slash \\mittau _ { \\mitX } $",
"$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $",
"$ \\mitS \\mitU ( 5 ) $",
"$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $",
"$ \\mitS \\mitU ( 5 ) $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $",
"$ \\mitB = \\mitF _ { 2 } $",
"$ \\mitB = \\mitd \\mitP _ { 3 } $",
"$ \\mitS \\mitU ( \\mitn ) $",
"$ \\mitn $",
"$ \\mitN = 1 $",
"$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $",
"$ \\mitX $",
"$ \\mitZ = \\mitX \\slash \\mittau _ { \\mitX } $",
"$ \\mitE _ { 8 } $",
"$ \\mitX $",
"$ \\mitsigma $",
"$ \\mitxi $",
"$ \\mitB $",
"$ \\mitX $",
"$ \\mitX $"
],
"x_min": [
0.3779999911785126,
0.19900000095367432,
0.2046000063419342,
0.7635999917984009,
0.27709999680519104,
0.120899997651577,
0.8521000146865845,
0.17069999873638153,
0.6309999823570251,
0.8258000016212463,
0.120899997651577,
0.38909998536109924,
0.6807000041007996,
0.5266000032424927,
0.6122999787330627,
0.14509999752044678,
0.2791999876499176,
0.120899997651577,
0.5059000253677368,
0.47749999165534973,
0.7781999707221985,
0.26809999346733093,
0.31859999895095825,
0.6855999827384949,
0.7249000072479248,
0.8141000270843506
],
"y_min": [
0.10890000313520432,
0.14990000426769257,
0.17239999771118164,
0.17239999771118164,
0.3589000105857849,
0.3799000084400177,
0.3799000084400177,
0.4009000062942505,
0.4009000062942505,
0.4009000062942505,
0.4219000041484833,
0.44339999556541443,
0.4643999934196472,
0.5654000043869019,
0.5698000192642212,
0.5874000191688538,
0.6074000000953674,
0.6499000191688538,
0.6704000234603882,
0.6919000148773193,
0.7445999979972839,
0.7685999870300293,
0.7651000022888184,
0.7651000022888184,
0.7651000022888184,
0.7860999703407288
],
"x_max": [
0.42910000681877136,
0.42149999737739563,
0.24740000069141388,
0.8058000206947327,
0.3628000020980835,
0.21209999918937683,
0.9024999737739563,
0.2687999904155731,
0.6814000010490417,
0.9079999923706055,
0.25839999318122864,
0.44850000739097595,
0.7498000264167786,
0.5791000127792358,
0.6240000128746033,
0.20180000364780426,
0.4975999891757965,
0.13750000298023224,
0.5936999917030334,
0.49959999322891235,
0.7954999804496765,
0.2791999876499176,
0.32829999923706055,
0.7008000016212463,
0.7422000169754028,
0.8313999772071838
],
"y_max": [
0.11869999766349792,
0.16359999775886536,
0.18219999969005585,
0.18219999969005585,
0.3725999891757965,
0.3935999870300293,
0.3935999870300293,
0.4146000146865845,
0.4146000146865845,
0.4146000146865845,
0.43560001254081726,
0.45509999990463257,
0.47609999775886536,
0.5791000127792358,
0.5756999850273132,
0.5967000126838684,
0.6211000084877014,
0.6596999764442444,
0.6836000084877014,
0.7035999894142151,
0.7538999915122986,
0.7749000191688538,
0.7773000001907349,
0.7749000191688538,
0.7749000191688538,
0.7958999872207642
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001101_page05 | {
"latex": [
"$\\tau _{B}$",
"$B$",
"$a$",
"$b$",
"$\\tau _{B}$",
"$\\tau _{X}$",
"$X$",
"$\\mathcal {F}_{\\tau _B}$",
"$\\tau _{B}$",
"$V$",
"$X$",
"$\\eta $",
"$B$",
"$\\lambda $",
"$\\kappa _i$",
"$m$",
"$B$",
"$V$",
"$V_{Z}$",
"$Z$",
"$\\eta $",
"$B$",
"$\\k _i$",
"$V_{Z}$",
"$Z$",
"$N_{\\text {gen}}=3$",
"$V$",
"$X$",
"\\begin {equation} g_{2} = 4(a^{2}-b) , \\qquad g_{3} = 4ab . \\label {eq:43} \\end {equation}",
"\\begin {equation} \\Delta = \\Delta _{1}\\Delta _{2}^{2} , \\label {eq:44} \\end {equation}",
"\\begin {equation} \\Delta _{1} = a^{2}-4b , \\qquad \\Delta _{2}=4(2a^{2}+b) . \\label {eq:45} \\end {equation}",
"\\begin {equation} \\mathcal {F}_{\\tau _B} \\cap \\{\\Delta =0\\} = \\emptyset . \\label {eq:46} \\end {equation}",
"\\begin {equation} \\l - \\sfrac {1}{2} \\in \\ZZ , \\qquad \\k _i - \\shf m \\in \\ZZ , \\label {eq:47} \\end {equation}",
"\\begin {equation} \\eta \\text { is effective} \\label {eq:47A} \\end {equation}",
"\\begin {equation} \\begin {aligned} \\tau _{B}(\\eta ) &= \\eta , \\\\ \\sum _i \\k _i &= \\eta \\cdot c_1 \\end {aligned} \\label {eq:48} \\end {equation}",
"\\begin {equation} N_{\\text {gen}} = \\sfrac {1}{2}c_{3}(V_{Z}) . \\label {eq:49} \\end {equation}"
],
"latex_norm": [
"$ \\tau _ { B } $",
"$ B $",
"$ a $",
"$ b $",
"$ \\tau _ { B } $",
"$ \\tau _ { X } $",
"$ X $",
"$ F _ { \\tau _ { B } } $",
"$ \\tau _ { B } $",
"$ V $",
"$ X $",
"$ \\eta $",
"$ B $",
"$ \\lambda $",
"$ \\kappa _ { i } $",
"$ m $",
"$ B $",
"$ V $",
"$ V _ { Z } $",
"$ Z $",
"$ \\eta $",
"$ B $",
"$ \\kappa _ { i } $",
"$ V _ { Z } $",
"$ Z $",
"$ N _ { g e n } = 3 $",
"$ V $",
"$ X $",
"\\begin{equation*} g _ { 2 } = 4 ( a ^ { 2 } - b ) , \\qquad g _ { 3 } = 4 a b . \\end{equation*}",
"\\begin{equation*} \\Delta = \\Delta _ { 1 } \\Delta _ { 2 } ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\Delta _ { 1 } = a ^ { 2 } - 4 b , \\qquad \\Delta _ { 2 } = 4 ( 2 a ^ { 2 } + b ) . \\end{equation*}",
"\\begin{equation*} F _ { \\tau _ { B } } \\cap \\{ \\Delta = 0 \\} = \\emptyset . \\end{equation*}",
"\\begin{equation*} \\lambda - \\frac { 1 } { 2 } \\in Z , \\qquad \\kappa _ { i } - \\frac { 1 } { 2 } m \\in Z , \\end{equation*}",
"\\begin{equation*} \\eta ~ i s ~ e f f e c t i v e \\end{equation*}",
"\\begin{align*} \\begin{array}{rl} \\tau _ { B } ( \\eta ) & = \\eta , \\\\ \\sum _ { i } \\kappa _ { i } & = \\eta \\cdot c _ { 1 } \\end{array} \\end{align*}",
"\\begin{equation*} N _ { g e n } = \\frac { 1 } { 2 } c _ { 3 } ( V _ { Z } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mittau _ { \\mitB } $",
"$ \\mitB $",
"$ \\mita $",
"$ \\mitb $",
"$ \\mittau _ { \\mitB } $",
"$ \\mittau _ { \\mitX } $",
"$ \\mitX $",
"$ \\mscrF _ { \\mittau _ { \\mitB } } $",
"$ \\mittau _ { \\mitB } $",
"$ \\mitV $",
"$ \\mitX $",
"$ \\miteta $",
"$ \\mitB $",
"$ \\mitlambda $",
"$ \\mitkappa _ { \\miti } $",
"$ \\mitm $",
"$ \\mitB $",
"$ \\mitV $",
"$ \\mitV _ { \\mitZ } $",
"$ \\mitZ $",
"$ \\miteta $",
"$ \\mitB $",
"$ \\mitkappa _ { \\miti } $",
"$ \\mitV _ { \\mitZ } $",
"$ \\mitZ $",
"$ \\mitN _ { \\mathrm { g e n } } = 3 $",
"$ \\mitV $",
"$ \\mitX $",
"\\begin{equation*} \\mitg _ { 2 } = 4 ( \\mita ^ { 2 } - \\mitb ) , \\qquad \\mitg _ { 3 } = 4 \\mita \\mitb . \\end{equation*}",
"\\begin{equation*} \\mupDelta = \\mupDelta _ { 1 } \\mupDelta _ { 2 } ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\mupDelta _ { 1 } = \\mita ^ { 2 } - 4 \\mitb , \\qquad \\mupDelta _ { 2 } = 4 ( 2 \\mita ^ { 2 } + \\mitb ) . \\end{equation*}",
"\\begin{equation*} \\displaystyle \\mscrF _ { \\mittau _ { \\mitB } } \\cap \\{ \\mupDelta = 0 \\} = \\varnothing . \\end{equation*}",
"\\begin{equation*} \\mitlambda - { \\textstyle \\frac { 1 } { 2 } } \\in \\BbbZ , \\qquad \\mitkappa _ { \\miti } - { \\textstyle \\frac { 1 } { 2 } } \\mitm \\in \\BbbZ , \\end{equation*}",
"\\begin{equation*} \\miteta ~ \\mathrm { i s } ~ \\mathrm { e f f e c t i v e } \\end{equation*}",
"\\begin{align*} \\begin{array}{rl} \\mittau _ { \\mitB } ( \\miteta ) & = \\miteta , \\\\ \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } & = \\miteta \\cdot \\mitc _ { 1 } \\end{array} \\end{align*}",
"\\begin{equation*} \\mitN _ { \\mathrm { g e n } } = { \\textstyle \\frac { 1 } { 2 } } \\mitc _ { 3 } ( \\mitV _ { \\mitZ } ) . \\end{equation*}"
],
"x_min": [
0.8618000149726868,
0.16660000383853912,
0.3677000105381012,
0.42089998722076416,
0.6151000261306763,
0.25290000438690186,
0.3061999976634979,
0.5598000288009644,
0.6488999724388123,
0.7193999886512756,
0.7774999737739563,
0.6115999817848206,
0.7193999886512756,
0.16660000383853912,
0.2190999984741211,
0.20800000429153442,
0.27300000190734863,
0.515500009059906,
0.7864999771118164,
0.8555999994277954,
0.2093999981880188,
0.2467000037431717,
0.4277999997138977,
0.30959999561309814,
0.3765999972820282,
0.2053000032901764,
0.7580999732017517,
0.8181999921798706,
0.4223000109195709,
0.49000000953674316,
0.3953000009059906,
0.45820000767707825,
0.42089998722076416,
0.487199991941452,
0.48240000009536743,
0.44920000433921814
],
"y_min": [
0.28119999170303345,
0.298799991607666,
0.30219998955726624,
0.298799991607666,
0.30219998955726624,
0.32280001044273376,
0.3197999894618988,
0.3197999894618988,
0.32280001044273376,
0.3905999958515167,
0.3905999958515167,
0.41499999165534973,
0.4115999937057495,
0.43209999799728394,
0.43549999594688416,
0.5015000104904175,
0.5640000104904175,
0.5952000021934509,
0.5952000021934509,
0.5952000021934509,
0.6195999979972839,
0.6161999702453613,
0.6195999979972839,
0.7567999958992004,
0.7567999958992004,
0.8227999806404114,
0.8227999806404114,
0.8227999806404114,
0.13570000231266022,
0.18950000405311584,
0.23880000412464142,
0.3481000065803528,
0.46000000834465027,
0.5278000235557556,
0.6431999802589417,
0.7842000126838684
],
"x_max": [
0.8824999928474426,
0.1817999929189682,
0.3781000077724457,
0.4291999936103821,
0.6358000040054321,
0.2750000059604645,
0.32280001044273376,
0.5916000008583069,
0.6696000099182129,
0.7346000075340271,
0.7947999835014343,
0.6212999820709229,
0.7346000075340271,
0.1776999980211258,
0.23569999635219574,
0.22460000216960907,
0.2881999909877777,
0.5307000279426575,
0.8093000054359436,
0.8701000213623047,
0.21979999542236328,
0.26190000772476196,
0.44440001249313354,
0.33169999718666077,
0.3910999894142151,
0.27649998664855957,
0.7732999920845032,
0.8348000049591064,
0.6552000045776367,
0.5839999914169312,
0.6814000010490417,
0.6184999942779541,
0.6531000137329102,
0.5895000100135803,
0.5943999886512756,
0.5819000005722046
],
"y_max": [
0.28949999809265137,
0.30809998512268066,
0.30809998512268066,
0.30809998512268066,
0.3100000023841858,
0.3310999870300293,
0.32910001277923584,
0.33250001072883606,
0.3310999870300293,
0.39989998936653137,
0.39989998936653137,
0.42329999804496765,
0.42089998722076416,
0.44190001487731934,
0.4438000023365021,
0.5077999830245972,
0.5738000273704529,
0.6050000190734863,
0.6068999767303467,
0.6050000190734863,
0.6279000043869019,
0.6255000233650208,
0.6273999810218811,
0.7684999704360962,
0.7666000127792358,
0.8360000252723694,
0.832099974155426,
0.832099974155426,
0.1543000042438507,
0.2084999978542328,
0.2574000060558319,
0.36570000648498535,
0.4794999957084656,
0.542900025844574,
0.6973000168800354,
0.8036999702453613
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001101_page06 | {
"latex": [
"$[W_{Z}]$",
"$V_{Z1}$",
"$V_{Z2}$",
"$V_{Z2}$",
"$E_{8}$",
"$c_{2}(V_{Z2})$",
"$X$",
"$[W_{Z}]$",
"$Z$",
"$[W_{Z}]$",
"$[W]$",
"$X$",
"$[W]$",
"\\begin {equation} 6 = \\lambda \\eta ( \\eta -nc_{1}) . \\label {eq:50} \\end {equation}",
"\\begin {equation} [W_{Z}] = c_{2}(TZ) - c_{2}(V_{Z1}) - c_{2}(V_{Z2}) , \\label {eq:51} \\end {equation}",
"\\begin {equation} [W_{Z}] = \\frac {1}{2}q_{*}[W] , \\label {eq:51A} \\end {equation}",
"\\begin {equation} [W] = c_{2}(TX) - c_{2}(V) . \\label {eq:52} \\end {equation}",
"\\begin {equation} [W] = \\sigma _{*}W_{B} + c(F-N) + dN \\label {eq:53} \\end {equation}",
"\\begin {equation} W_{B} = 12c_1-\\eta \\label {eq:54} \\end {equation}",
"\\begin {align} c &= c_2 + \\left (\\frac {1}{24}(n^{3}-n)+11\\right )c_1^{2} - \\hf \\left (\\l ^{2}-\\frac {1}{4}\\right ) n\\eta \\left (\\eta -nc_1\\right ) - \\sum _{i}\\k _i^{2} , \\\\ d &= c_2 + \\left (\\frac {1}{24}(n^{3}-n)-1\\right )c_1^{2} - \\hf \\left (\\l ^{2}-\\frac {1}{4}\\right ) n\\eta \\left (\\eta -nc_1\\right ) - \\sum _{i}\\k _i^{2} + \\sum _{i}\\k _i . \\end {align}",
"\\begin {equation} W_{B} \\text { is effective in $B$}, \\quad c \\geq 0, \\quad d \\geq 0 . \\label {eq:57} \\end {equation}"
],
"latex_norm": [
"$ [ W _ { Z } ] $",
"$ V _ { Z 1 } $",
"$ V _ { Z 2 } $",
"$ V _ { Z 2 } $",
"$ E _ { 8 } $",
"$ c _ { 2 } ( V _ { Z 2 } ) $",
"$ X $",
"$ [ W _ { Z } ] $",
"$ Z $",
"$ [ W _ { Z } ] $",
"$ [ W ] $",
"$ X $",
"$ [ W ] $",
"\\begin{equation*} 6 = \\lambda \\eta ( \\eta - n c _ { 1 } ) . \\end{equation*}",
"\\begin{equation*} [ W _ { Z } ] = c _ { 2 } ( T Z ) - c _ { 2 } ( V _ { Z 1 } ) - c _ { 2 } ( V _ { Z 2 } ) , \\end{equation*}",
"\\begin{equation*} [ W _ { Z } ] = \\frac { 1 } { 2 } q _ { \\ast } [ W ] , \\end{equation*}",
"\\begin{equation*} [ W ] = c _ { 2 } ( T X ) - c _ { 2 } ( V ) . \\end{equation*}",
"\\begin{equation*} [ W ] = \\sigma _ { \\ast } W _ { B } + c ( F - N ) + d N \\end{equation*}",
"\\begin{equation*} W _ { B } = 1 2 c _ { 1 } - \\eta \\end{equation*}",
"\\begin{align*} c & = c _ { 2 } + ( \\frac { 1 } { 2 4 } ( n ^ { 3 } - n ) + 1 1 ) c _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } ( \\lambda ^ { 2 } - \\frac { 1 } { 4 } ) n \\eta ( \\eta - n c _ { 1 } ) - \\sum _ { i } \\kappa _ { i } ^ { 2 } , \\\\ d & = c _ { 2 } + ( \\frac { 1 } { 2 4 } ( n ^ { 3 } - n ) - 1 ) c _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } ( \\lambda ^ { 2 } - \\frac { 1 } { 4 } ) n \\eta ( \\eta - n c _ { 1 } ) - \\sum _ { i } \\kappa _ { i } ^ { 2 } + \\sum _ { i } \\kappa _ { i } . \\end{align*}",
"\\begin{equation*} W _ { B } i s ~ e f f e c t i v e ~ i n ~ B , \\quad c \\geq 0 , \\quad d \\geq 0 . \\end{equation*}"
],
"latex_expand": [
"$ [ \\mitW _ { \\mitZ } ] $",
"$ \\mitV _ { \\mitZ 1 } $",
"$ \\mitV _ { \\mitZ 2 } $",
"$ \\mitV _ { \\mitZ 2 } $",
"$ \\mitE _ { 8 } $",
"$ \\mitc _ { 2 } ( \\mitV _ { \\mitZ 2 } ) $",
"$ \\mitX $",
"$ [ \\mitW _ { \\mitZ } ] $",
"$ \\mitZ $",
"$ [ \\mitW _ { \\mitZ } ] $",
"$ [ \\mitW ] $",
"$ \\mitX $",
"$ [ \\mitW ] $",
"\\begin{equation*} 6 = \\mitlambda \\miteta ( \\miteta - \\mitn \\mitc _ { 1 } ) . \\end{equation*}",
"\\begin{equation*} [ \\mitW _ { \\mitZ } ] = \\mitc _ { 2 } ( \\mitT \\mitZ ) - \\mitc _ { 2 } ( \\mitV _ { \\mitZ 1 } ) - \\mitc _ { 2 } ( \\mitV _ { \\mitZ 2 } ) , \\end{equation*}",
"\\begin{equation*} [ \\mitW _ { \\mitZ } ] = \\frac { 1 } { 2 } \\mitq _ { \\ast } [ \\mitW ] , \\end{equation*}",
"\\begin{equation*} [ \\mitW ] = \\mitc _ { 2 } ( \\mitT \\mitX ) - \\mitc _ { 2 } ( \\mitV ) . \\end{equation*}",
"\\begin{equation*} [ \\mitW ] = \\mitsigma _ { \\ast } \\mitW _ { \\mitB } + \\mitc ( \\mitF - \\mitN ) + \\mitd \\mitN \\end{equation*}",
"\\begin{equation*} \\mitW _ { \\mitB } = 1 2 \\mitc _ { 1 } - \\miteta \\end{equation*}",
"\\begin{align*} \\mitc & = \\mitc _ { 2 } + \\left( \\frac { 1 } { 2 4 } ( \\mitn ^ { 3 } - \\mitn ) + 1 1 \\right) \\mitc _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } \\left( \\mitlambda ^ { 2 } - \\frac { 1 } { 4 } \\right) \\mitn \\miteta \\left( \\miteta - \\mitn \\mitc _ { 1 } \\right) - \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } , \\\\ \\mitd & = \\mitc _ { 2 } + \\left( \\frac { 1 } { 2 4 } ( \\mitn ^ { 3 } - \\mitn ) - 1 \\right) \\mitc _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } \\left( \\mitlambda ^ { 2 } - \\frac { 1 } { 4 } \\right) \\mitn \\miteta \\left( \\miteta - \\mitn \\mitc _ { 1 } \\right) - \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } + \\sum _ { \\miti } \\mitkappa _ { \\miti } . \\end{align*}",
"\\begin{equation*} \\mitW _ { \\mitB } \\mathrm { i s ~ e f f e c t i v e ~ i n } \\mitB , \\quad \\mitc \\geq 0 , \\quad \\mitd \\geq 0 . \\end{equation*}"
],
"x_min": [
0.1720999926328659,
0.37040001153945923,
0.4408999979496002,
0.673799991607666,
0.28610000014305115,
0.6585999727249146,
0.4519999921321869,
0.20319999754428864,
0.120899997651577,
0.6614000201225281,
0.32829999923706055,
0.7346000075340271,
0.4000999927520752,
0.4706000089645386,
0.3677000105381012,
0.44850000739097595,
0.42089998722076416,
0.3898000121116638,
0.45399999618530273,
0.18799999356269836,
0.3849000036716461
],
"y_min": [
0.24899999797344208,
0.2709999978542328,
0.2709999978542328,
0.2919999957084656,
0.3125,
0.31200000643730164,
0.40139999985694885,
0.6826000213623047,
0.7045999765396118,
0.7035999894142151,
0.7246000170707703,
0.725600004196167,
0.7768999934196472,
0.1386999934911728,
0.211899995803833,
0.35600000619888306,
0.4311999976634979,
0.486299991607666,
0.5365999937057495,
0.5913000106811523,
0.8086000084877014
],
"x_max": [
0.21150000393390656,
0.4000999927520752,
0.4706000089645386,
0.703499972820282,
0.3075000047683716,
0.7179999947547913,
0.46860000491142273,
0.2425999939441681,
0.13539999723434448,
0.7008000016212463,
0.3587000072002411,
0.7519000172615051,
0.43050000071525574,
0.6061000227928162,
0.6600000262260437,
0.5791000127792358,
0.6108999848365784,
0.6420000195503235,
0.5770000219345093,
0.7940999865531921,
0.6916999816894531
],
"y_max": [
0.26269999146461487,
0.28220000863075256,
0.28220000863075256,
0.30320000648498535,
0.32420000433921814,
0.3257000148296356,
0.41119998693466187,
0.6963000297546387,
0.7139000296592712,
0.7172999978065491,
0.7383000254631042,
0.7348999977111816,
0.7906000018119812,
0.155799999833107,
0.22849999368190765,
0.3862999975681305,
0.44830000400543213,
0.5029000043869019,
0.5516999959945679,
0.6697999835014343,
0.8237000107765198
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001101_page07 | {
"latex": [
"$E_{8}$",
"$G$",
"$H$",
"$E_{8}$",
"$H$",
"$G \\times H \\subset E_{8}$",
"$G$",
"$H$",
"$H$",
"$SU(5)\\times SU(5)\\subset E_{8}$",
"$Z$",
"\\begin {equation} G \\times H \\subset E_{8} . \\label {eq:58} \\end {equation}",
"\\begin {equation} \\eta > nc_{1}. \\label {eq:59} \\end {equation}",
"\\begin {equation} G = SU(5) . \\label {eq:60} \\end {equation}",
"\\begin {equation} H = SU(5) . \\label {eq:61} \\end {equation}",
"\\begin {equation} \\pi _{1}(Z)=\\ZZ _{2} . \\label {eq:62} \\end {equation}",
"\\begin {equation} SU(5) \\rightarrow SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y} , \\label {eq:63} \\end {equation}",
"\\begin {equation} \\mathcal {G} = \\left (\\begin {array}{cc} \\mathbf {1}_3 & \\\\ & -\\mathbf {1}_2 \\end {array}\\right ) . \\label {eq:64} \\end {equation}"
],
"latex_norm": [
"$ E _ { 8 } $",
"$ G $",
"$ H $",
"$ E _ { 8 } $",
"$ H $",
"$ G \\times H \\subset E _ { 8 } $",
"$ G $",
"$ H $",
"$ H $",
"$ S U ( 5 ) \\times S U ( 5 ) \\subset E _ { 8 } $",
"$ Z $",
"\\begin{equation*} G \\times H \\subset E _ { 8 } . \\end{equation*}",
"\\begin{equation*} \\eta > n c _ { 1 } . \\end{equation*}",
"\\begin{equation*} G = S U ( 5 ) . \\end{equation*}",
"\\begin{equation*} H = S U ( 5 ) . \\end{equation*}",
"\\begin{equation*} \\pi _ { 1 } ( Z ) = Z _ { 2 } . \\end{equation*}",
"\\begin{equation*} S U ( 5 ) \\rightarrow S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } , \\end{equation*}",
"\\begin{align*} G = ( \\begin{array}{cc} 1 _ { 3 } & \\\\ & - 1 _ { 2 } \\end{array} ) . \\end{align*}"
],
"latex_expand": [
"$ \\mitE _ { 8 } $",
"$ \\mitG $",
"$ \\mitH $",
"$ \\mitE _ { 8 } $",
"$ \\mitH $",
"$ \\mitG \\times \\mitH \\subset \\mitE _ { 8 } $",
"$ \\mitG $",
"$ \\mitH $",
"$ \\mitH $",
"$ \\mitS \\mitU ( 5 ) \\times \\mitS \\mitU ( 5 ) \\subset \\mitE _ { 8 } $",
"$ \\mitZ $",
"\\begin{equation*} \\mitG \\times \\mitH \\subset \\mitE _ { 8 } . \\end{equation*}",
"\\begin{equation*} \\miteta > \\mitn \\mitc _ { 1 } . \\end{equation*}",
"\\begin{equation*} \\mitG = \\mitS \\mitU ( 5 ) . \\end{equation*}",
"\\begin{equation*} \\mitH = \\mitS \\mitU ( 5 ) . \\end{equation*}",
"\\begin{equation*} \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } . \\end{equation*}",
"\\begin{equation*} \\mitS \\mitU ( 5 ) \\rightarrow \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } , \\end{equation*}",
"\\begin{align*} \\mscrG = \\left( \\begin{array}{cc} \\mbfone _ { 3 } & \\\\ & - \\mbfone _ { 2 } \\end{array} \\right) . \\end{align*}"
],
"x_min": [
0.3946000039577484,
0.1395999938249588,
0.29789999127388,
0.8859999775886536,
0.27639999985694885,
0.3765999972820282,
0.5245000123977661,
0.2142000049352646,
0.2653999924659729,
0.3068000078201294,
0.19769999384880066,
0.46160000562667847,
0.5037999749183655,
0.46720001101493835,
0.4657999873161316,
0.4657999873161316,
0.3614000082015991,
0.45750001072883606
],
"y_min": [
0.10890000313520432,
0.16850000619888306,
0.18950000405311584,
0.23100000619888306,
0.25200000405311584,
0.3012999892234802,
0.3012999892234802,
0.32179999351501465,
0.40720000863075256,
0.42719998955726624,
0.5679000020027161,
0.13529999554157257,
0.35010001063346863,
0.4535999894142151,
0.5131999850273132,
0.5938000082969666,
0.6528000235557556,
0.7451000213623047
],
"x_max": [
0.41670000553131104,
0.15410000085830688,
0.31520000100135803,
0.9081000089645386,
0.2937000095844269,
0.48159998655319214,
0.5396999716758728,
0.23149999976158142,
0.2827000021934509,
0.47609999775886536,
0.21220000088214874,
0.5694000124931335,
0.5735999941825867,
0.5640000104904175,
0.5652999877929688,
0.5652999877929688,
0.6661999821662903,
0.6191999912261963
],
"y_max": [
0.12060000002384186,
0.1777999997138977,
0.1987999975681305,
0.24269999563694,
0.26179999113082886,
0.3125,
0.31060001254081726,
0.33160001039505005,
0.4165000021457672,
0.44040000438690186,
0.5771999955177307,
0.14990000426769257,
0.3637999892234802,
0.4702000021934509,
0.5297999978065491,
0.6104000210762024,
0.6699000000953674,
0.7910000085830688
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001101_page08 | {
"latex": [
"$\\PP ^1$",
"$\\PP ^1$",
"$F_2$",
"$\\cS $",
"$\\cE $",
"$F_2$",
"$\\tau _B$",
"$B$",
"$\\PP ^1$",
"$(u,v)$",
"$\\PP ^1$",
"$(u,v)\\to (-u,v)$",
"$(0,1)$",
"$(1,0)$",
"$u$",
"$\\tau_B$",
"$\\PP ^1$",
"$\\PP ^1$",
"${\\cal {F}}_{\\tau _{B}}$",
"$\\tau_X$",
"$\\tau_B$",
"$a$",
"$b$",
"$K_B^{-2}$",
"$K_B^{-4}$",
"$K_B$",
"$\\tau_B$",
"$X$",
"$a$",
"$b$",
"$\\Delta _{1}$",
"$\\Delta _{2}$",
"$a$",
"$b$",
"\\begin {equation} B = F_2. \\end {equation}",
"\\begin {equation} \\cS \\cdot \\cS = -2, \\qquad \\cS \\cdot \\cE = 1, \\qquad \\cE \\cdot \\cE = 0. \\label {eq:intc2} \\end {equation}",
"\\begin {equation} c_1(F_2) = 2\\cS + 4\\cE , \\label {c1F2} \\end {equation}",
"\\begin {equation} c_2(F_2) = 4. \\label {c2F2} \\end {equation}",
"\\begin {equation} \\D _1 = a^2 - 4b, \\qquad \\D _2 = 4\\left (2a^2 + b\\right ), \\end {equation}",
"\\begin {equation} \\tau _B(a) = a, \\qquad \\tau _B(b) = b. \\label {eq:hi} \\end {equation}"
],
"latex_norm": [
"$ { C P } ^ { 1 } $",
"$ { C P } ^ { 1 } $",
"$ F _ { 2 } $",
"$ S $",
"$ E $",
"$ F _ { 2 } $",
"$ \\tau _ { B } $",
"$ B $",
"$ { C P } ^ { 1 } $",
"$ ( u , v ) $",
"$ { C P } ^ { 1 } $",
"$ ( u , v ) \\rightarrow ( - u , v ) $",
"$ ( 0 , 1 ) $",
"$ ( 1 , 0 ) $",
"$ u $",
"$ \\tau _ { B } $",
"$ { C P } ^ { 1 } $",
"$ { C P } ^ { 1 } $",
"$ F _ { \\tau _ { B } } $",
"$ \\tau _ { X } $",
"$ \\tau _ { B } $",
"$ a $",
"$ b $",
"$ K _ { B } ^ { - 2 } $",
"$ K _ { B } ^ { - 4 } $",
"$ K _ { B } $",
"$ \\tau _ { B } $",
"$ X $",
"$ a $",
"$ b $",
"$ \\Delta _ { 1 } $",
"$ \\Delta _ { 2 } $",
"$ a $",
"$ b $",
"\\begin{equation*} B = F _ { 2 } . \\end{equation*}",
"\\begin{equation*} S \\cdot S = - 2 , \\qquad S \\cdot E = 1 , \\qquad E \\cdot E = 0 . \\end{equation*}",
"\\begin{equation*} c _ { 1 } ( F _ { 2 } ) = 2 S + 4 E , \\end{equation*}",
"\\begin{equation*} c _ { 2 } ( F _ { 2 } ) = 4 . \\end{equation*}",
"\\begin{equation*} \\Delta _ { 1 } = a ^ { 2 } - 4 b , \\qquad \\Delta _ { 2 } = 4 ( 2 a ^ { 2 } + b ) , \\end{equation*}",
"\\begin{equation*} \\tau _ { B } ( a ) = a , \\qquad \\tau _ { B } ( b ) = b . \\end{equation*}"
],
"latex_expand": [
"$ { \\BbbC \\BbbP } ^ { 1 } $",
"$ { \\BbbC \\BbbP } ^ { 1 } $",
"$ \\mitF _ { 2 } $",
"$ \\mscrS $",
"$ \\mscrE $",
"$ \\mitF _ { 2 } $",
"$ \\mittau _ { \\mitB } $",
"$ \\mitB $",
"$ { \\BbbC \\BbbP } ^ { 1 } $",
"$ ( \\mitu , \\mitv ) $",
"$ { \\BbbC \\BbbP } ^ { 1 } $",
"$ ( \\mitu , \\mitv ) \\rightarrow ( - \\mitu , \\mitv ) $",
"$ ( 0 , 1 ) $",
"$ ( 1 , 0 ) $",
"$ \\mitu $",
"$ \\mittau _ { \\mitB } $",
"$ { \\BbbC \\BbbP } ^ { 1 } $",
"$ { \\BbbC \\BbbP } ^ { 1 } $",
"$ \\mitF _ { \\mittau _ { \\mitB } } $",
"$ \\mittau _ { \\mitX } $",
"$ \\mittau _ { \\mitB } $",
"$ \\mita $",
"$ \\mitb $",
"$ \\mitK _ { \\mitB } ^ { - 2 } $",
"$ \\mitK _ { \\mitB } ^ { - 4 } $",
"$ \\mitK _ { \\mitB } $",
"$ \\mittau _ { \\mitB } $",
"$ \\mitX $",
"$ \\mita $",
"$ \\mitb $",
"$ \\mupDelta _ { 1 } $",
"$ \\mupDelta _ { 2 } $",
"$ \\mita $",
"$ \\mitb $",
"\\begin{equation*} \\mitB = \\mitF _ { 2 } . \\end{equation*}",
"\\begin{equation*} \\mscrS \\cdot \\mscrS = - 2 , \\qquad \\mscrS \\cdot \\mscrE = 1 , \\qquad \\mscrE \\cdot \\mscrE = 0 . \\end{equation*}",
"\\begin{equation*} \\mitc _ { 1 } ( \\mitF _ { 2 } ) = 2 \\mscrS + 4 \\mscrE , \\end{equation*}",
"\\begin{equation*} \\mitc _ { 2 } ( \\mitF _ { 2 } ) = 4 . \\end{equation*}",
"\\begin{equation*} \\mupDelta _ { 1 } = \\mita ^ { 2 } - 4 \\mitb , \\qquad \\mupDelta _ { 2 } = 4 \\left( 2 \\mita ^ { 2 } + \\mitb \\right) , \\end{equation*}",
"\\begin{equation*} \\displaystyle \\mittau _ { \\mitB } ( \\mita ) = \\mita , \\qquad \\mittau _ { \\mitB } ( \\mitb ) = \\mitb . \\end{equation*}"
],
"x_min": [
0.6538000106811523,
0.8141000270843506,
0.3779999911785126,
0.583299994468689,
0.7366999983787537,
0.42570000886917114,
0.4733999967575073,
0.8873999714851379,
0.5446000099182129,
0.6082000136375427,
0.120899997651577,
0.43050000071525574,
0.2053000032901764,
0.45399999618530273,
0.5548999905586243,
0.8549000024795532,
0.40639999508857727,
0.6247000098228455,
0.7193999886512756,
0.6281999945640564,
0.7008000016212463,
0.29030001163482666,
0.34139999747276306,
0.4747999906539917,
0.5522000193595886,
0.7498000264167786,
0.4036000072956085,
0.5846999883651733,
0.4056999981403351,
0.4596000015735626,
0.7311999797821045,
0.7989000082015991,
0.39879998564720154,
0.4526999890804291,
0.48170000314712524,
0.3537999987602234,
0.4408999979496002,
0.4699000120162964,
0.367000013589859,
0.41260001063346863
],
"y_min": [
0.20649999380111694,
0.20649999380111694,
0.23000000417232513,
0.23000000417232513,
0.23000000417232513,
0.3003000020980835,
0.42089998722076416,
0.4180000126361847,
0.43650001287460327,
0.43799999356269836,
0.4569999873638153,
0.45899999141693115,
0.47999998927116394,
0.47999998927116394,
0.4839000105857849,
0.4839000105857849,
0.49900001287460327,
0.49900001287460327,
0.5015000104904175,
0.5468999743461609,
0.5468999743461609,
0.6561999917030334,
0.6528000235557556,
0.6503999829292297,
0.6503999829292297,
0.6528000235557556,
0.6772000193595886,
0.673799991607666,
0.7451000213623047,
0.7416999936103821,
0.7416999936103821,
0.7416999936103821,
0.7660999894142151,
0.7627000212669373,
0.17329999804496765,
0.27000001072883606,
0.33149999380111694,
0.38670000433921814,
0.6147000193595886,
0.7050999999046326
],
"x_max": [
0.6862999796867371,
0.8465999960899353,
0.3986999988555908,
0.5957000255584717,
0.7483999729156494,
0.4456999897956848,
0.49410000443458557,
0.9025999903678894,
0.5770999789237976,
0.6510000228881836,
0.1534000039100647,
0.5604000091552734,
0.24609999358654022,
0.49549999833106995,
0.5659999847412109,
0.8755999803543091,
0.43959999084472656,
0.6571999788284302,
0.7512000203132629,
0.6503000259399414,
0.7214999794960022,
0.30070000886917114,
0.349700003862381,
0.510699987411499,
0.588100016117096,
0.7781000137329102,
0.4242999851703644,
0.6019999980926514,
0.4153999984264374,
0.46790000796318054,
0.7554000020027161,
0.8230999708175659,
0.4092000126838684,
0.460999995470047,
0.5493999719619751,
0.6772000193595886,
0.5874000191688538,
0.5611000061035156,
0.6614000201225281,
0.6184999942779541
],
"y_max": [
0.21870000660419464,
0.21870000660419464,
0.24120000004768372,
0.23929999768733978,
0.23929999768733978,
0.31200000643730164,
0.4291999936103821,
0.42730000615119934,
0.448199987411499,
0.451200008392334,
0.4691999852657318,
0.4722000062465668,
0.49320000410079956,
0.49320000410079956,
0.490200012922287,
0.49219998717308044,
0.5112000107765198,
0.5112000107765198,
0.5146999955177307,
0.5547000169754028,
0.5547000169754028,
0.6625000238418579,
0.6625999808311462,
0.6664999723434448,
0.6664999723434448,
0.6644999980926514,
0.6855000257492065,
0.6836000084877014,
0.7513999938964844,
0.7515000104904175,
0.7534000277519226,
0.7534000277519226,
0.7724000215530396,
0.7724999785423279,
0.18790000677108765,
0.2851000130176544,
0.34860000014305115,
0.4032999873161316,
0.6347000002861023,
0.7221999764442444
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001101_page09 | {
"latex": [
"$\\eta $",
"$F_{2}$",
"$\\tau _{B}$",
"$\\cS $",
"$\\cE $",
"$\\eta $",
"$\\cS $",
"$\\cE $",
"$\\eta $",
"$\\tau _{B}(\\eta )=\\eta $",
"$\\eta $",
"$\\l $",
"$\\k _{i}$",
"$\\l $",
"$\\k _i$",
"$i=1,\\dots ,4\\eta \\cdot c_1$",
"$\\sum _i\\k _i^2$",
"$\\sum _i\\k _i=\\eta \\cdot c_1$",
"$n=5$",
"$n=5$",
"$W$",
"$[W]$",
"$c$",
"$d$",
"$F-N$",
"$N$",
"$k$",
"\\begin {equation} \\tau _B(\\cS ) = \\cS , \\qquad \\tau _B(\\cE ) = \\cE . \\label {eq:hello} \\end {equation}",
"\\begin {equation} \\begin {aligned} \\text {solution 1:} & \\quad \\eta = 14\\mathcal {S} + 22\\mathcal {E}, \\quad \\l = \\sfrac {3}{2}, \\\\ {}& \\sum _i\\k _i = \\eta \\cdot c_1 = 44, \\quad \\sum _i \\k _i^2 \\leq 60 , \\\\ \\text {solution 2:} & \\quad \\eta = 24\\mathcal {S} + 30\\mathcal {E}, \\quad \\l = -\\sfrac {1}{2}, \\\\ {}& \\sum _i\\k _i = \\eta \\cdot c_1 = 60, \\quad \\sum _i \\k _i^2 \\leq 76 . \\end {aligned} \\label {solF2} \\end {equation}",
"\\begin {equation} \\begin {aligned} \\text {solution 1:} \\quad & [W] = \\s _{*}\\left (10\\cS +26\\cE \\right ) + \\left (112-k\\right )\\left (F-N\\right ) + \\left (60-k\\right ) N, \\\\ \\text {solution 2:} \\quad & [W] = \\s _{*}\\left (18\\cE \\right ) + \\left (132-k\\right )\\left (F-N\\right ) + \\left (76-k\\right ) N, \\end {aligned} \\label {eq:branes} \\end {equation}",
"\\begin {equation} k = \\sum _i \\k _i^2 \\end {equation}",
"\\begin {equation} \\begin {aligned} \\text {solution 1:} \\quad & W_{B} = 10\\cS + 26\\cE , \\\\ \\text {solution 2:} \\quad & W_{B} = 18\\cE , \\end {aligned} \\end {equation}"
],
"latex_norm": [
"$ \\eta $",
"$ F _ { 2 } $",
"$ \\tau _ { B } $",
"$ S $",
"$ E $",
"$ \\eta $",
"$ S $",
"$ E $",
"$ \\eta $",
"$ \\tau _ { B } ( \\eta ) = \\eta $",
"$ \\eta $",
"$ \\lambda $",
"$ \\kappa _ { i } $",
"$ \\lambda $",
"$ \\kappa _ { i } $",
"$ i = 1 , \\ldots , 4 \\eta \\cdot c _ { 1 } $",
"$ \\sum _ { i } \\kappa _ { i } ^ { 2 } $",
"$ \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } $",
"$ n = 5 $",
"$ n = 5 $",
"$ W $",
"$ [ W ] $",
"$ c $",
"$ d $",
"$ F - N $",
"$ N $",
"$ k $",
"\\begin{equation*} \\tau _ { B } ( S ) = S , \\qquad \\tau _ { B } ( E ) = E . \\end{equation*}",
"\\begin{equation*} \\begin{array}{ll} s o l u t i o n ~ 1 : & \\quad \\eta = 1 4 S + 2 2 E , \\quad \\lambda = \\frac { 3 } { 2 } , \\\\ & \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } = 4 4 , \\quad \\sum _ { i } \\kappa _ { i } ^ { 2 } \\leq 6 0 , \\\\ s o l u t i o n ~ 2 : & \\quad \\eta = 2 4 S + 3 0 E , \\quad \\lambda = - \\frac { 1 } { 2 } , \\\\ & \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } = 6 0 , \\quad \\sum _ { i } \\kappa _ { i } ^ { 2 } \\leq 7 6 . \\end{array} \\end{equation*}",
"\\begin{align*} \\begin{array}{ll} s o l u t i o n ~ 1 : \\quad & [ W ] = \\sigma _ { \\ast } ( 1 0 S + 2 6 E ) + ( 1 1 2 - k ) ( F - N ) + ( 6 0 - k ) N , \\\\ s o l u t i o n ~ 2 : \\quad & [ W ] = \\sigma _ { \\ast } ( 1 8 E ) + ( 1 3 2 - k ) ( F - N ) + ( 7 6 - k ) N , \\end{array} \\end{align*}",
"\\begin{equation*} k = \\sum _ { i } \\kappa _ { i } ^ { 2 } \\end{equation*}",
"\\begin{align*} \\begin{array}{ll} s o l u t i o n ~ 1 : \\quad & W _ { B } = 1 0 S + 2 6 E , \\\\ s o l u t i o n ~ 2 : \\quad & W _ { B } = 1 8 E , \\end{array} \\end{align*}"
],
"latex_expand": [
"$ \\miteta $",
"$ \\mitF _ { 2 } $",
"$ \\mittau _ { \\mitB } $",
"$ \\mscrS $",
"$ \\mscrE $",
"$ \\miteta $",
"$ \\mscrS $",
"$ \\mscrE $",
"$ \\miteta $",
"$ \\mittau _ { \\mitB } ( \\miteta ) = \\miteta $",
"$ \\miteta $",
"$ \\mitlambda $",
"$ \\mitkappa _ { \\miti } $",
"$ \\mitlambda $",
"$ \\mitkappa _ { \\miti } $",
"$ \\miti = 1 , \\ldots , 4 \\miteta \\cdot \\mitc _ { 1 } $",
"$ \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } $",
"$ \\sum _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } $",
"$ \\mitn = 5 $",
"$ \\mitn = 5 $",
"$ \\mitW $",
"$ [ \\mitW ] $",
"$ \\mitc $",
"$ \\mitd $",
"$ \\mitF - \\mitN $",
"$ \\mitN $",
"$ \\mitk $",
"\\begin{equation*} \\displaystyle \\mittau _ { \\mitB } ( \\mscrS ) = \\mscrS , \\qquad \\mittau _ { \\mitB } ( \\mscrE ) = \\mscrE . \\end{equation*}",
"\\begin{equation*} \\begin{array}{ll} \\mathrm { so l u t i o n ~ 1 } : & \\quad \\miteta = 1 4 \\mscrS + 2 2 \\mscrE , \\quad \\mitlambda = { \\textstyle \\frac { 3 } { 2 } } , \\\\ & \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } = 4 4 , \\quad \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\leq 6 0 , \\\\ \\mathrm { s o l u t i o n ~ 2 } : & \\quad \\miteta = 2 4 \\mscrS + 3 0 \\mscrE , \\quad \\mitlambda = - { \\textstyle \\frac { 1 } { 2 } } , \\\\ & \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } = 6 0 , \\quad \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\leq 7 6 . \\end{array} \\end{equation*}",
"\\begin{align*} \\begin{array}{ll} \\mathrm { s o l u t i o n ~ 1 } : \\quad & [ \\mitW ] = \\mitsigma _ { \\ast } \\left( 1 0 \\mscrS + 2 6 \\mscrE \\right) + \\left( 1 1 2 - \\mitk \\right) \\left( \\mitF - \\mitN \\right) + \\left( 6 0 - \\mitk \\right) \\mitN , \\\\ \\mathrm { s o l u t i o n ~ 2 } : \\quad & [ \\mitW ] = \\mitsigma _ { \\ast } \\left( 1 8 \\mscrE \\right) + \\left( 1 3 2 - \\mitk \\right) \\left( \\mitF - \\mitN \\right) + \\left( 7 6 - \\mitk \\right) \\mitN , \\end{array} \\end{align*}",
"\\begin{equation*} \\mitk = \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\end{equation*}",
"\\begin{align*} \\begin{array}{ll} \\mathrm { s o l u t i o n ~ 1 } : \\quad & \\mitW _ { \\mitB } = 1 0 \\mscrS + 2 6 \\mscrE , \\\\ \\mathrm { s o l u t i o n ~ 2 } : \\quad & \\mitW _ { \\mitB } = 1 8 \\mscrE , \\end{array} \\end{align*}"
],
"x_min": [
0.4174000024795532,
0.4553999900817871,
0.802299976348877,
0.32899999618530273,
0.3828999996185303,
0.24529999494552612,
0.46790000796318054,
0.5217999815940857,
0.7415000200271606,
0.8238000273704529,
0.3352000117301941,
0.35589998960494995,
0.4077000021934509,
0.4097999930381775,
0.31029999256134033,
0.37599998712539673,
0.23360000550746918,
0.5210999846458435,
0.20180000364780426,
0.6212999820709229,
0.6607000231742859,
0.4422999918460846,
0.760200023651123,
0.8065000176429749,
0.19900000095367432,
0.2922999858856201,
0.8238000273704529,
0.40639999508857727,
0.33379998803138733,
0.2370000034570694,
0.47269999980926514,
0.3917999863624573
],
"y_min": [
0.11230000108480453,
0.10890000313520432,
0.11230000108480453,
0.1509000062942505,
0.1509000062942505,
0.21969999372959137,
0.21629999577999115,
0.2168000042438507,
0.21969999372959137,
0.21580000221729279,
0.24070000648498535,
0.23729999363422394,
0.24070000648498535,
0.41359999775886536,
0.43799999356269836,
0.4350999891757965,
0.4535999894142151,
0.4546000063419342,
0.4771000146865845,
0.5185999870300293,
0.5390999913215637,
0.6958000063896179,
0.7842000126838684,
0.7807999849319458,
0.801800012588501,
0.801800012588501,
0.801800012588501,
0.17970000207424164,
0.2797999978065491,
0.5791000127792358,
0.6538000106811523,
0.7188000082969666
],
"x_max": [
0.4277999997138977,
0.47540000081062317,
0.8230000138282776,
0.34209999442100525,
0.3953000009059906,
0.2549999952316284,
0.48100000619888306,
0.5335000157356262,
0.7519000172615051,
0.9025999903678894,
0.3456000089645386,
0.367000013589859,
0.4242999851703644,
0.42089998722076416,
0.32690000534057617,
0.5087000131607056,
0.28130000829696655,
0.6288999915122986,
0.2515999972820282,
0.6765999794006348,
0.6807000041007996,
0.47269999980926514,
0.7684999704360962,
0.8169000148773193,
0.2515000104904175,
0.30959999561309814,
0.8342000246047974,
0.6248000264167786,
0.6973000168800354,
0.7940000295639038,
0.5583999752998352,
0.63919997215271
],
"y_max": [
0.12110000103712082,
0.1200999990105629,
0.12060000002384186,
0.16019999980926514,
0.16019999980926514,
0.22849999368190765,
0.22609999775886536,
0.22609999775886536,
0.22849999368190765,
0.22949999570846558,
0.24950000643730164,
0.24709999561309814,
0.24899999797344208,
0.42340001463890076,
0.4458000063896179,
0.44679999351501465,
0.46869999170303345,
0.46880000829696655,
0.48590001463890076,
0.527899980545044,
0.5489000082015991,
0.7095000147819519,
0.7904999852180481,
0.7906000018119812,
0.8125,
0.8116000294685364,
0.8111000061035156,
0.19629999995231628,
0.4004000127315521,
0.6284000277519226,
0.6884999871253967,
0.7681000232696533
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001101_page10 | {
"latex": [
"$n=5$",
"$\\eta > 5c_{1}$",
"$\\eta $",
"$c_{1}$",
"$B=F_{2}$",
"$Z$",
"$\\pi _{1}(Z)=\\ZZ _{2}$",
"$V_{Z}$",
"$N=1$",
"$H=SU(5)$",
"$\\pi _{1}(Z)=\\ZZ _{2}$",
"$Z$",
"\\begin {equation} \\eta > 5c_1 = 10\\cS +20\\cE \\end {equation}",
"\\begin {equation} SU(5) \\rightarrow SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y} , \\end {equation}"
],
"latex_norm": [
"$ n = 5 $",
"$ \\eta > 5 c _ { 1 } $",
"$ \\eta $",
"$ c _ { 1 } $",
"$ B = F _ { 2 } $",
"$ Z $",
"$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $",
"$ V _ { Z } $",
"$ N = 1 $",
"$ H = S U ( 5 ) $",
"$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $",
"$ Z $",
"\\begin{equation*} \\eta > 5 c _ { 1 } = 1 0 S + 2 0 E \\end{equation*}",
"\\begin{equation*} S U ( 5 ) \\rightarrow S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } , \\end{equation*}"
],
"latex_expand": [
"$ \\mitn = 5 $",
"$ \\miteta > 5 \\mitc _ { 1 } $",
"$ \\miteta $",
"$ \\mitc _ { 1 } $",
"$ \\mitB = \\mitF _ { 2 } $",
"$ \\mitZ $",
"$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $",
"$ \\mitV _ { \\mitZ } $",
"$ \\mitN = 1 $",
"$ \\mitH = \\mitS \\mitU ( 5 ) $",
"$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $",
"$ \\mitZ $",
"\\begin{equation*} \\miteta > 5 \\mitc _ { 1 } = 1 0 \\mscrS + 2 0 \\mscrE \\end{equation*}",
"\\begin{equation*} \\mitS \\mitU ( 5 ) \\rightarrow \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } , \\end{equation*}"
],
"x_min": [
0.3310000002384186,
0.652400016784668,
0.41530001163482666,
0.46720001101493835,
0.489300012588501,
0.21289999783039093,
0.6931999921798706,
0.6247000098228455,
0.8568999767303467,
0.8162000179290771,
0.4235999882221222,
0.4036000072956085,
0.43050000071525574,
0.3614000082015991
],
"y_min": [
0.10939999669790268,
0.10939999669790268,
0.20309999585151672,
0.20309999585151672,
0.2206999957561493,
0.24169999361038208,
0.24070000648498535,
0.2831999957561493,
0.2831999957561493,
0.3037000000476837,
0.32420000433921814,
0.43309998512268066,
0.14749999344348907,
0.3540000021457672
],
"x_max": [
0.382099986076355,
0.7181000113487244,
0.42570000886917114,
0.4837999939918518,
0.5486999750137329,
0.227400004863739,
0.7919999957084656,
0.6467999815940857,
0.9079999923706055,
0.9081000089645386,
0.5148000121116638,
0.4180999994277954,
0.6004999876022339,
0.6661999821662903
],
"y_max": [
0.11869999766349792,
0.12110000103712082,
0.211899995803833,
0.21089999377727509,
0.23190000653266907,
0.25099998712539673,
0.25440001487731934,
0.29490000009536743,
0.2930000126361847,
0.31690001487731934,
0.3379000127315521,
0.4424000084400177,
0.16259999573230743,
0.3711000084877014
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
} |
|
0001113_page02 | {
"latex": [
"$F_{MN}=\\partial _MA_N-\\partial _NA_M$",
"$D_M \\phi =\\partial _M +ieA_M$",
"$A(r)$",
"$\\varphi (r)$",
"$O(\\epsilon )$",
"$(\\epsilon =1/\\sqrt {a})$",
"$(X^5,X^6)$",
"$(X^0-X^3)$",
"$a$",
"$R<<a$",
"$A_M^0$",
"$\\phi ^0$",
"$X^M=Y^M(\\xi ^\\mu )$",
"$(\\mu =0-3)$",
"$x^M$",
"$X^M$",
"$n_m^M$",
"$\\Psi _i$",
"$\\Psi _f$",
"\\begin {equation} {\\cal L}=-{1\\over 4}F_{MN}F^{MN}+D_M\\phi ^\\dagger D^M\\phi +a|\\phi |^2-b|\\phi |^4 +c \\label {1} \\end {equation}",
"\\begin {equation} A_M=\\epsilon _{0123MN}A(r)X^N/r,\\ \\phi =\\varphi (r)e^{in\\theta },\\ (r^2=(x^5)^2+(x^6)^2) \\label {2} \\end {equation}",
"\\begin {eqnarray}\\displaystyle &-\\frac {1}{r}\\frac {d}{dr}\\left (r{d \\over dr}\\varphi \\right ) +\\left [\\left ({n \\over r}+eA\\right )^2-a+2b\\varphi ^2\\right ]\\varphi =0\\cr &-{d \\over dr}\\left ({1\\over r}{d \\over dr}rA\\right ) +\\varphi ^2\\left (e^2A^2+{en \\over r}\\right )=0 \\end {eqnarray}",
"\\begin {equation} X^M=Y^M(x^\\mu )+n_m^M x^m,\\ \\ (M=0-3,5,6,\\ \\mu =0-3,\\ m=5,6) \\label {4} \\end {equation}",
"\\begin {equation} A_M^0=\\epsilon _{0123MN}A(r)x^N/r,\\ \\phi ^0=\\varphi (r)e^{in\\theta }.\\ (r^2=x^m x^m) \\label {5} \\end {equation}",
"\\begin {equation} S_{fi}=\\int \\prod _{X^M}dA_Md\\phi d\\phi ^\\dagger \\exp \\left [i\\int {\\cal L}d^6X \\right ]\\Psi _f^*\\Psi _i\\prod _{X^M}\\delta (\\partial _MA^M) \\label {6} \\end {equation}"
],
"latex_norm": [
"$ F _ { M N } = \\partial _ { M } A _ { N } - \\partial _ { N } A _ { M } $",
"$ D _ { M } \\phi = \\partial _ { M } + i e A _ { M } $",
"$ A ( r ) $",
"$ \\varphi ( r ) $",
"$ O ( \\epsilon ) $",
"$ ( \\epsilon = 1 \\slash \\sqrt { a } ) $",
"$ ( X ^ { 5 } , X ^ { 6 } ) $",
"$ ( X ^ { 0 } - X ^ { 3 } ) $",
"$ a $",
"$ R < < a $",
"$ A _ { M } ^ { 0 } $",
"$ \\phi ^ { 0 } $",
"$ X ^ { M } = Y ^ { M } ( \\xi ^ { \\mu } ) $",
"$ ( \\mu = 0 - 3 ) $",
"$ x ^ { M } $",
"$ X ^ { M } $",
"$ n _ { m } ^ { M } $",
"$ \\Psi _ { i } $",
"$ \\Psi _ { f } $",
"\\begin{equation*} L = - \\frac { 1 } { 4 } F _ { M N } F ^ { M N } + D _ { M } \\phi ^ { \\dagger } D ^ { M } \\phi + a \\vert \\phi \\vert ^ { 2 } - b \\vert \\phi \\vert ^ { 4 } + c \\end{equation*}",
"\\begin{equation*} A _ { M } = \\epsilon _ { 0 1 2 3 M N } A ( r ) X ^ { N } \\slash r , ~ \\phi = \\varphi ( r ) e ^ { i n \\theta } , ~ ( r ^ { 2 } = ( x ^ { 5 } ) ^ { 2 } + ( x ^ { 6 } ) ^ { 2 } ) \\end{equation*}",
"\\begin{align*} & - \\frac { 1 } { r } \\frac { d } { d r } ( r \\frac { d } { d r } \\varphi ) + [ { ( \\frac { n } { r } + e A ) } ^ { 2 } - a + 2 b \\varphi ^ { 2 } ] \\varphi = 0 \\\\ & - \\frac { d } { d r } ( \\frac { 1 } { r } \\frac { d } { d r } r A ) + \\varphi ^ { 2 } ( e ^ { 2 } A ^ { 2 } + \\frac { e n } { r } ) = 0 \\end{align*}",
"\\begin{equation*} X ^ { M } = Y ^ { M } ( x ^ { \\mu } ) + n _ { m } ^ { M } x ^ { m } , ~ ~ ( M = 0 - 3 , 5 , 6 , ~ \\mu = 0 - 3 , ~ m = 5 , 6 ) \\end{equation*}",
"\\begin{equation*} A _ { M } ^ { 0 } = \\epsilon _ { 0 1 2 3 M N } A ( r ) x ^ { N } \\slash r , ~ \\phi ^ { 0 } = \\varphi ( r ) e ^ { i n \\theta } . ~ ( r ^ { 2 } = x ^ { m } x ^ { m } ) \\end{equation*}",
"\\begin{equation*} S _ { f i } = \\int \\prod _ { X ^ { M } } d A _ { M } d \\phi d \\phi ^ { \\dagger } \\operatorname { e x p } [ i \\int L d ^ { 6 } X ] \\Psi _ { f } ^ { \\ast } \\Psi _ { i } \\prod _ { X ^ { M } } \\delta ( \\partial _ { M } A ^ { M } ) \\end{equation*}"
],
"latex_expand": [
"$ \\mitF _ { \\mitM \\mitN } = \\mitpartial _ { \\mitM } \\mitA _ { \\mitN } - \\mitpartial _ { \\mitN } \\mitA _ { \\mitM } $",
"$ \\mitD _ { \\mitM } \\mitphi = \\mitpartial _ { \\mitM } + \\miti \\mite \\mitA _ { \\mitM } $",
"$ \\mitA ( \\mitr ) $",
"$ \\mitvarphi ( \\mitr ) $",
"$ \\mitO ( \\mitepsilon ) $",
"$ ( \\mitepsilon = 1 \\slash \\sqrt { \\mita } ) $",
"$ ( \\mitX ^ { 5 } , \\mitX ^ { 6 } ) $",
"$ ( \\mitX ^ { 0 } - \\mitX ^ { 3 } ) $",
"$ \\mita $",
"$ \\mitR < < \\mita $",
"$ \\mitA _ { \\mitM } ^ { 0 } $",
"$ \\mitphi ^ { 0 } $",
"$ \\mitX ^ { \\mitM } = \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) $",
"$ ( \\mitmu = 0 - 3 ) $",
"$ \\mitx ^ { \\mitM } $",
"$ \\mitX ^ { \\mitM } $",
"$ \\mitn _ { \\mitm } ^ { \\mitM } $",
"$ \\mupPsi _ { \\miti } $",
"$ \\mupPsi _ { \\mitf } $",
"\\begin{equation*} \\mitL = - \\frac { 1 } { 4 } \\mitF _ { \\mitM \\mitN } \\mitF ^ { \\mitM \\mitN } + \\mitD _ { \\mitM } \\mitphi ^ { \\dagger } \\mitD ^ { \\mitM } \\mitphi + \\mita \\vert \\mitphi \\vert ^ { 2 } - \\mitb \\vert \\mitphi \\vert ^ { 4 } + \\mitc \\end{equation*}",
"\\begin{equation*} \\mitA _ { \\mitM } = \\mitepsilon _ { 0 1 2 3 \\mitM \\mitN } \\mitA ( \\mitr ) \\mitX ^ { \\mitN } \\slash \\mitr , ~ \\mitphi = \\mitvarphi ( \\mitr ) \\mite ^ { \\miti \\mitn \\mittheta } , ~ ( \\mitr ^ { 2 } = ( \\mitx ^ { 5 } ) ^ { 2 } + ( \\mitx ^ { 6 } ) ^ { 2 } ) \\end{equation*}",
"\\begin{align*} & - \\frac { 1 } { \\mitr } \\frac { \\mitd } { \\mitd \\mitr } \\left( \\mitr \\frac { \\mitd } { \\mitd \\mitr } \\mitvarphi \\right) + \\left[ { \\left( \\frac { \\mitn } { \\mitr } + \\mite \\mitA \\right) } ^ { 2 } - \\mita + 2 \\mitb \\mitvarphi ^ { 2 } \\right] \\mitvarphi = 0 \\\\ & - \\frac { \\mitd } { \\mitd \\mitr } \\left( \\frac { 1 } { \\mitr } \\frac { \\mitd } { \\mitd \\mitr } \\mitr \\mitA \\right) + \\mitvarphi ^ { 2 } \\left( \\mite ^ { 2 } \\mitA ^ { 2 } + \\frac { \\mite \\mitn } { \\mitr } \\right) = 0 \\end{align*}",
"\\begin{equation*} \\mitX ^ { \\mitM } = \\mitY ^ { \\mitM } ( \\mitx ^ { \\mitmu } ) + \\mitn _ { \\mitm } ^ { \\mitM } \\mitx ^ { \\mitm } , ~ ~ ( \\mitM = 0 - 3 , 5 , 6 , ~ \\mitmu = 0 - 3 , ~ \\mitm = 5 , 6 ) \\end{equation*}",
"\\begin{equation*} \\mitA _ { \\mitM } ^ { 0 } = \\mitepsilon _ { 0 1 2 3 \\mitM \\mitN } \\mitA ( \\mitr ) \\mitx ^ { \\mitN } \\slash \\mitr , ~ \\mitphi ^ { 0 } = \\mitvarphi ( \\mitr ) \\mite ^ { \\miti \\mitn \\mittheta } . ~ ( \\mitr ^ { 2 } = \\mitx ^ { \\mitm } \\mitx ^ { \\mitm } ) \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mitf \\miti } = \\int \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitA _ { \\mitM } \\mitd \\mitphi \\mitd \\mitphi ^ { \\dagger } \\operatorname { e x p } \\left[ \\miti \\int \\mitL \\mitd ^ { 6 } \\mitX \\right] \\mupPsi _ { \\mitf } ^ { \\ast } \\mupPsi _ { \\miti } \\prod _ { \\mitX ^ { \\mitM } } \\mitdelta ( \\mitpartial _ { \\mitM } \\mitA ^ { \\mitM } ) \\end{equation*}"
],
"x_min": [
0.13410000503063202,
0.3808000087738037,
0.13410000503063202,
0.2184000015258789,
0.4706000089645386,
0.5162000060081482,
0.07739999890327454,
0.515500009059906,
0.7753999829292297,
0.29580000042915344,
0.8568999767303467,
0.1160999983549118,
0.43470001220703125,
0.5687999725341797,
0.17419999837875366,
0.13199999928474426,
0.44440001249313354,
0.46720001101493835,
0.532800018787384,
0.2639999985694885,
0.22390000522136688,
0.28769999742507935,
0.2046000063419342,
0.2549999952316284,
0.23639999330043793
],
"y_min": [
0.47850000858306885,
0.47850000858306885,
0.5346999764442444,
0.5346999764442444,
0.625,
0.6240000128746033,
0.6410999894142151,
0.6410999894142151,
0.6464999914169312,
0.6601999998092651,
0.6586999893188477,
0.6758000254631042,
0.6753000020980835,
0.6762999892234802,
0.6923999786376953,
0.7490000128746033,
0.7490000128746033,
0.8246999979019165,
0.8246999979019165,
0.4336000084877014,
0.5009999871253967,
0.5590999722480774,
0.7167999744415283,
0.7904999852180481,
0.8471999764442444
],
"x_max": [
0.33660000562667847,
0.5486999750137329,
0.17419999837875366,
0.2563999891281128,
0.5092999935150146,
0.6150000095367432,
0.15410000085830688,
0.6053000092506409,
0.7864999771118164,
0.367000013589859,
0.8880000114440918,
0.13609999418258667,
0.5626000165939331,
0.6682999730110168,
0.20180000364780426,
0.16660000383853912,
0.47269999980926514,
0.4885999858379364,
0.557699978351593,
0.703499972820282,
0.7436000108718872,
0.682200014591217,
0.763700008392334,
0.7124999761581421,
0.7311999797821045
],
"y_max": [
0.4912000000476837,
0.4916999936103821,
0.5493000149726868,
0.5493000149726868,
0.6395999789237976,
0.6395999789237976,
0.6567000150680542,
0.6567000150680542,
0.6532999873161316,
0.6704999804496765,
0.673799991607666,
0.6904000043869019,
0.6909000277519226,
0.6909000277519226,
0.7045999765396118,
0.7612000107765198,
0.7645999789237976,
0.836899995803833,
0.8389000296592712,
0.46630001068115234,
0.5210000276565552,
0.6136999726295471,
0.7368000149726868,
0.8100000023841858,
0.8858000040054321
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001113_page03 | {
"latex": [
"$C^M(\\xi ^\\mu )$",
"$|\\widetilde \\phi |^2$",
"$(\\widetilde \\phi =\\phi -\\sqrt {a/2b})$",
"$N(\\xi ^\\mu )$",
"$x^\\mu =\\xi ^\\mu $",
"$\\prod _{X_{/\\!/}}$",
"$\\xi ^\\mu $",
"$x^M$",
"$A_M$",
"$\\phi $",
"$B_{\\bar N}= A_{\\bar N}-A^0_{\\bar N}$",
"$\\sigma =\\phi -\\phi ^0$",
"$\\widetilde C^\\mu =0$",
"$V^{\\bar N M}$",
"$g^{LM}$",
"$\\nabla _M$",
"$D_M^0=\\nabla _M+ieA_M^0$",
"$J_0=\\int |\\widetilde \\phi ^0|^2dx^5dx^6$",
"${\\cal L}_2$",
"$|\\phi ^0|^2$",
"$g_{m\\mu }=O(R/a)<<1$",
"$g_{mn}=-\\delta _{mn}+O(R/a)$",
"$B_{\\bar M}$",
"$B_{\\bar \\mu }$",
"$B_{\\bar m}$",
"$S^{\\rm eff}$",
"$\\delta $",
"$\\delta =\\int dk e^{ikx}$",
"\\begin {equation} 1=\\int \\prod _{X_{/\\!/}}dY^M(\\xi ^\\mu )\\delta \\left (Y^M(\\xi ^\\mu )-C^M(\\xi ^\\mu )\\right ) \\label {7} \\end {equation}",
"\\begin {equation} C^M(\\xi ^\\mu )=\\int _{N(\\xi ^\\mu )} X^M |\\widetilde \\phi |^2 d^2X_{\\perp }\\Bigg / \\int _{N(\\xi ^\\mu )} |\\widetilde \\phi |^2 d^2X_{\\perp } \\label {8} \\end {equation}",
"\\begin {equation} S_{fi}=\\int \\prod _{X_{/\\!/}}dY^M\\prod _{X^M}dB_{\\bar N} d\\sigma d\\sigma ^\\dagger \\delta (\\sqrt {-g} \\nabla _{\\bar N}B^{\\bar N} \\prod _{X_{/\\!/}}\\delta (\\widetilde C^M) \\exp \\left [i\\int \\left ({\\cal L}_0+{\\cal L}_1 \\right )\\sqrt {-g}d^6x\\right ]\\Psi _f^*\\Psi _i \\label {9} \\end {equation}",
"\\begin {eqnarray} {\\cal L}_0 &=& {\\cal L}(\\phi =\\phi _0, A_M=A_M^0) \\\\ {\\cal L}_2 &=& -\\frac {1}{2}g^{LM}\\nabla _L B_{\\bar N} \\nabla _M B^{\\bar N} +B_{\\bar N} B^{\\bar N} e^2 |\\phi ^0|^2 +g^{LM}(D_L^0\\sigma )^\\dagger (D_M^0\\sigma )\\cr &&-4ieV^{\\bar N M} B_{\\bar N} {\\rm Im} \\left ( \\sigma ^\\dagger D_M^0 \\phi ^0 \\right ) +a|\\sigma |^2 -b\\left [ 4|\\phi ^0\\sigma |^2 +2{\\rm Re}(\\sigma ^\\dagger \\phi ^0)^2\\right ], \\\\ \\widetilde C^m &=& \\int x^m |\\widetilde \\phi |^2 dx^5 dx^6 \\Bigg / \\int |\\widetilde \\phi |^2 dx^5 dx^6 \\\\ &=& \\frac {1}{J_0}\\int x^m \\left [|\\sigma |^2 + {\\rm Re}(\\widetilde \\phi ^0\\sigma ^\\dagger ) \\left \\{1-\\frac {2}{J_0}\\int {\\rm Re}(\\widetilde \\phi ^0\\sigma ^\\dagger )dx^5 dx^6\\right \\}\\right ]dx^5 dx^6, \\end {eqnarray}",
"\\begin {equation} S^{\\rm eff} = -i\\ln \\int \\prod _{X^M}dB_{\\bar N} d\\sigma d\\sigma ^\\dagger \\delta \\left (\\sqrt {-g}\\nabla _{\\bar N}B^{\\bar N}\\right )\\prod _{X_{/\\!/}}\\delta (\\widetilde C^M) \\exp \\left [i\\int \\sqrt {-g}{\\cal L}_2 d^6 x \\right ]. \\label {14} \\end {equation}",
"\\begin {equation} S^{\\rm eff} = -i\\ln \\int \\prod _{\\xi ^\\mu }dw_m\\prod _{x^M}dB_{\\bar M} d\\sigma d\\sigma ^\\dagger dv \\exp \\left [i\\int (\\Xi \\Phi +\\Phi ^\\dagger \\Delta \\Phi )d^6x\\right ] \\label {15} \\end {equation}"
],
"latex_norm": [
"$ C ^ { M } ( \\xi ^ { \\mu } ) $",
"$ \\vert \\widetilde { \\phi } \\vert ^ { 2 } $",
"$ ( \\widetilde { \\phi } = \\phi - \\sqrt { a \\slash 2 b } ) $",
"$ N ( \\xi ^ { \\mu } ) $",
"$ x ^ { \\mu } = \\xi ^ { \\mu } $",
"$ \\prod _ { X _ { \\slash \\! \\slash } } $",
"$ \\xi ^ { \\mu } $",
"$ x ^ { M } $",
"$ A _ { M } $",
"$ \\phi $",
"$ B _ { \\bar { N } } = A _ { \\bar { N } } - A _ { \\bar { N } } ^ { 0 } $",
"$ \\sigma = \\phi - \\phi ^ { 0 } $",
"$ \\widetilde { C } ^ { \\mu } = 0 $",
"$ V ^ { \\bar { N } M } $",
"$ g ^ { L M } $",
"$ \\nabla _ { M } $",
"$ D _ { M } ^ { 0 } = \\nabla _ { M } + i e A _ { M } ^ { 0 } $",
"$ J _ { 0 } = \\int \\vert \\widetilde { \\phi } ^ { 0 } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } $",
"$ L _ { 2 } $",
"$ \\vert \\phi ^ { 0 } \\vert ^ { 2 } $",
"$ g _ { m \\mu } = O ( R \\slash a ) < < 1 $",
"$ g _ { m n } = - \\delta _ { m n } + O ( R \\slash a ) $",
"$ B _ { \\bar { M } } $",
"$ B _ { \\bar { \\mu } } $",
"$ B _ { \\bar { m } } $",
"$ S ^ { e f f } $",
"$ \\delta $",
"$ \\delta = \\int d k e ^ { i k x } $",
"\\begin{equation*} 1 = \\int \\prod _ { X _ { \\slash \\! \\slash } } d Y ^ { M } ( \\xi ^ { \\mu } ) \\delta ( Y ^ { M } ( \\xi ^ { \\mu } ) - C ^ { M } ( \\xi ^ { \\mu } ) ) \\end{equation*}",
"\\begin{equation*} C ^ { M } ( \\xi ^ { \\mu } ) = \\int _ { N ( \\xi ^ { \\mu } ) } X ^ { M } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d ^ { 2 } X _ { \\perp } \\slash \\int _ { N ( \\xi ^ { \\mu } ) } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d ^ { 2 } X _ { \\perp } \\end{equation*}",
"\\begin{equation*} S _ { f i } = \\int \\prod _ { X _ { \\slash \\! \\slash } } d Y ^ { M } \\prod _ { X ^ { M } } d B _ { \\bar { N } } d \\sigma d \\sigma ^ { \\dagger } \\delta ( \\sqrt { - g } \\nabla _ { \\bar { N } } B ^ { \\bar { N } } \\prod _ { X _ { \\slash \\! \\slash } } \\delta ( \\widetilde { C } ^ { M } ) \\operatorname { e x p } [ i \\int ( L _ { 0 } + L _ { 1 } ) \\sqrt { - g } d ^ { 6 } x ] \\Psi _ { f } ^ { \\ast } \\Psi _ { i } \\end{equation*}",
"\\begin{align*} L _ { 0 } & = & L ( \\phi = \\phi _ { 0 } , A _ { M } = A _ { M } ^ { 0 } ) \\\\ L _ { 2 } & = & - \\frac { 1 } { 2 } g ^ { L M } \\nabla _ { L } B _ { \\bar { N } } \\nabla _ { M } B ^ { \\bar { N } } + B _ { \\bar { N } } B ^ { \\bar { N } } e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } + g ^ { L M } ( D _ { L } ^ { 0 } \\sigma ) ^ { \\dagger } ( D _ { M } ^ { 0 } \\sigma ) \\\\ & & - 4 i e V ^ { \\bar { N } M } B _ { \\bar { N } } I m ( \\sigma ^ { \\dagger } D _ { M } ^ { 0 } \\phi ^ { 0 } ) + a \\vert \\sigma \\vert ^ { 2 } - b [ 4 \\vert \\phi ^ { 0 } \\sigma \\vert ^ { 2 } + 2 R e ( \\sigma ^ { \\dagger } \\phi ^ { 0 } ) ^ { 2 } ] , \\\\ \\widetilde { C } ^ { m } & = & \\int x ^ { m } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } \\slash \\int \\vert \\widetilde { \\phi } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } \\\\ & = & \\frac { 1 } { J _ { 0 } } \\int x ^ { m } [ \\vert \\sigma \\vert ^ { 2 } + R e ( \\widetilde { \\phi } ^ { 0 } \\sigma ^ { \\dagger } ) \\{ 1 - \\frac { 2 } { J _ { 0 } } \\int R e ( \\widetilde { \\phi } ^ { 0 } \\sigma ^ { \\dagger } ) d x ^ { 5 } d x ^ { 6 } \\} ] d x ^ { 5 } d x ^ { 6 } , \\end{align*}",
"\\begin{equation*} S ^ { e f f } = - i \\operatorname { l n } \\int \\prod _ { X ^ { M } } d B _ { \\bar { N } } d \\sigma d \\sigma ^ { \\dagger } \\delta ( \\sqrt { - g } \\nabla _ { \\bar { N } } B ^ { \\bar { N } } ) \\prod _ { X _ { \\slash \\! \\slash } } \\delta ( \\widetilde { C } ^ { M } ) \\operatorname { e x p } [ i \\int \\sqrt { - g } L _ { 2 } d ^ { 6 } x ] . \\end{equation*}",
"\\begin{equation*} S ^ { e f f } = - i \\operatorname { l n } \\int \\prod _ { \\xi ^ { \\mu } } d w _ { m } \\prod _ { x ^ { M } } d B _ { \\bar { M } } d \\sigma d \\sigma ^ { \\dagger } d v \\operatorname { e x p } [ i \\int ( \\Xi \\Phi + \\Phi ^ { \\dagger } \\Delta \\Phi ) d ^ { 6 } x ] \\end{equation*}"
],
"latex_expand": [
"$ \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) $",
"$ \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } $",
"$ ( \\widetilde { \\mitphi } = \\mitphi - \\sqrt { \\mita \\slash 2 \\mitb } ) $",
"$ \\mitN ( \\mitxi ^ { \\mitmu } ) $",
"$ \\mitx ^ { \\mitmu } = \\mitxi ^ { \\mitmu } $",
"$ \\prod _ { \\mitX _ { \\slash \\! \\slash } } $",
"$ \\mitxi ^ { \\mitmu } $",
"$ \\mitx ^ { \\mitM } $",
"$ \\mitA _ { \\mitM } $",
"$ \\mitphi $",
"$ \\mitB _ { \\bar { \\mitN } } = \\mitA _ { \\bar { \\mitN } } - \\mitA _ { \\bar { \\mitN } } ^ { 0 } $",
"$ \\mitsigma = \\mitphi - \\mitphi ^ { 0 } $",
"$ \\widetilde { \\mitC } ^ { \\mitmu } = 0 $",
"$ \\mitV ^ { \\bar { \\mitN } \\mitM } $",
"$ \\mitg ^ { \\mitL \\mitM } $",
"$ \\nabla _ { \\mitM } $",
"$ \\mitD _ { \\mitM } ^ { 0 } = \\nabla _ { \\mitM } + \\miti \\mite \\mitA _ { \\mitM } ^ { 0 } $",
"$ \\mitJ _ { 0 } = \\int \\nolimits \\vert \\widetilde { \\mitphi } ^ { 0 } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } $",
"$ \\mitL _ { 2 } $",
"$ \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } $",
"$ \\mitg _ { \\mitm \\mitmu } = \\mitO ( \\mitR \\slash \\mita ) < < 1 $",
"$ \\mitg _ { \\mitm \\mitn } = - \\mitdelta _ { \\mitm \\mitn } + \\mitO ( \\mitR \\slash \\mita ) $",
"$ \\mitB _ { \\bar { \\mitM } } $",
"$ \\mitB _ { \\bar { \\mitmu } } $",
"$ \\mitB _ { \\bar { \\mitm } } $",
"$ \\mitS ^ { \\mathrm { e f f } } $",
"$ \\mitdelta $",
"$ \\mitdelta = \\int \\nolimits \\mitd \\mitk \\mite ^ { \\miti \\mitk \\mitx } $",
"\\begin{equation*} 1 = \\int \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitd \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) \\mitdelta \\left( \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) - \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) \\right) \\end{equation*}",
"\\begin{equation*} \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) = \\int _ { \\mitN ( \\mitxi ^ { \\mitmu } ) } \\mitX ^ { \\mitM } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd ^ { 2 } \\mitX _ { \\perp } \\Biggl / \\int _ { \\mitN ( \\mitxi ^ { \\mitmu } ) } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd ^ { 2 } \\mitX _ { \\perp } \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mitf \\miti } = \\int \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitd \\mitY ^ { \\mitM } \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitN } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitdelta ( \\sqrt { - \\mitg } \\nabla _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitdelta ( \\widetilde { \\mitC } ^ { \\mitM } ) \\operatorname { e x p } \\left[ \\miti \\int \\left( \\mitL _ { 0 } + \\mitL _ { 1 } \\right) \\sqrt { - \\mitg } \\mitd ^ { 6 } \\mitx \\right] \\mupPsi _ { \\mitf } ^ { \\ast } \\mupPsi _ { \\miti } \\end{equation*}",
"\\begin{align*} \\mitL _ { 0 } & = & \\mitL ( \\mitphi = \\mitphi _ { 0 } , \\mitA _ { \\mitM } = \\mitA _ { \\mitM } ^ { 0 } ) \\\\ \\mitL _ { 2 } & = & - \\frac { 1 } { 2 } \\mitg ^ { \\mitL \\mitM } \\nabla _ { \\mitL } \\mitB _ { \\bar { \\mitN } } \\nabla _ { \\mitM } \\mitB ^ { \\bar { \\mitN } } + \\mitB _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitg ^ { \\mitL \\mitM } ( \\mitD _ { \\mitL } ^ { 0 } \\mitsigma ) ^ { \\dagger } ( \\mitD _ { \\mitM } ^ { 0 } \\mitsigma ) \\\\ & & - 4 \\miti \\mite \\mitV ^ { \\bar { \\mitN } \\mitM } \\mitB _ { \\bar { \\mitN } } \\mathrm { I m } \\left( \\mitsigma ^ { \\dagger } \\mitD _ { \\mitM } ^ { 0 } \\mitphi ^ { 0 } \\right) + \\mita \\vert \\mitsigma \\vert ^ { 2 } - \\mitb \\left[ 4 \\vert \\mitphi ^ { 0 } \\mitsigma \\vert ^ { 2 } + 2 \\mathrm { R e } ( \\mitsigma ^ { \\dagger } \\mitphi ^ { 0 } ) ^ { 2 } \\right] , \\\\ \\widetilde { \\mitC } ^ { \\mitm } & = & \\int \\mitx ^ { \\mitm } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\Biggl / \\int \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\\\ & = & \\frac { 1 } { \\mitJ _ { 0 } } \\int \\mitx ^ { \\mitm } \\left[ \\vert \\mitsigma \\vert ^ { 2 } + \\mathrm { R e } ( \\widetilde { \\mitphi } ^ { 0 } \\mitsigma ^ { \\dagger } ) \\left\\{ 1 - \\frac { 2 } { \\mitJ _ { 0 } } \\int \\mathrm { R e } ( \\widetilde { \\mitphi } ^ { 0 } \\mitsigma ^ { \\dagger } ) \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\right\\} \\right] \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } , \\end{align*}",
"\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = - \\miti \\operatorname { l n } \\int \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitN } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitdelta \\left( \\sqrt { - \\mitg } \\nabla _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\right) \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitdelta ( \\widetilde { \\mitC } ^ { \\mitM } ) \\operatorname { e x p } \\left[ \\miti \\int \\sqrt { - \\mitg } \\mitL _ { 2 } \\mitd ^ { 6 } \\mitx \\right] . \\end{equation*}",
"\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = - \\miti \\operatorname { l n } \\int \\prod _ { \\mitxi ^ { \\mitmu } } \\mitd \\mitw _ { \\mitm } \\prod _ { \\mitx ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitM } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitd \\mitv \\operatorname { e x p } \\left[ \\miti \\int ( \\mupXi \\mupPhi + \\mupPhi ^ { \\dagger } \\mupDelta \\mupPhi ) \\mitd ^ { 6 } \\mitx \\right] \\end{equation*}"
],
"x_min": [
0.1348000019788742,
0.5238000154495239,
0.5619000196456909,
0.07739999890327454,
0.2881999909877777,
0.11060000211000443,
0.5555999875068665,
0.7172999978065491,
0.34279999136924744,
0.420199990272522,
0.7056000232696533,
0.07739999890327454,
0.11749999970197678,
0.8016999959945679,
0.15960000455379486,
0.373199999332428,
0.673799991607666,
0.07739999890327454,
0.40290001034736633,
0.5092999935150146,
0.7269999980926514,
0.10090000182390213,
0.349700003862381,
0.621999979019165,
0.7975000143051147,
0.13680000603199005,
0.3939000070095062,
0.5224999785423279,
0.3061999976634979,
0.27709999680519104,
0.0885000005364418,
0.16779999434947968,
0.15760000050067902,
0.20319999754428864
],
"y_min": [
0.15719999372959137,
0.155799999833107,
0.15379999577999115,
0.17679999768733978,
0.1776999980211258,
0.2572999894618988,
0.25679999589920044,
0.27489998936653137,
0.2939000129699707,
0.29350000619888306,
0.29249998927116394,
0.30959999561309814,
0.5820000171661377,
0.5820000171661377,
0.600600004196167,
0.6025000214576721,
0.6011000275611877,
0.6161999702453613,
0.6195999979972839,
0.6352999806404114,
0.635699987411499,
0.6532999873161316,
0.6542999744415283,
0.6542999744415283,
0.6542999744415283,
0.7378000020980835,
0.8217999935150146,
0.8198000192642212,
0.09960000216960907,
0.20309999585151672,
0.3353999853134155,
0.4180000126361847,
0.76419997215271,
0.8467000126838684
],
"x_max": [
0.20110000669956207,
0.5548999905586243,
0.7098000049591064,
0.1298999935388565,
0.3544999957084656,
0.15070000290870667,
0.574999988079071,
0.7448999881744385,
0.37389999628067017,
0.4325999915599823,
0.8486999869346619,
0.1720999926328659,
0.1859000027179718,
0.8465999960899353,
0.19619999825954437,
0.40639999508857727,
0.8424000144004822,
0.23909999430179596,
0.42500001192092896,
0.5486999750137329,
0.9031999707221985,
0.302700012922287,
0.3815000057220459,
0.6468999981880188,
0.8264999985694885,
0.1665000021457672,
0.4043000042438507,
0.6248000264167786,
0.6586999893188477,
0.6904000043869019,
0.854200005531311,
0.7957000136375427,
0.810699999332428,
0.7616000175476074
],
"y_max": [
0.17329999804496765,
0.17339999973773956,
0.17630000412464142,
0.19189999997615814,
0.19089999794960022,
0.27390000224113464,
0.27000001072883606,
0.2870999872684479,
0.3061000108718872,
0.30720001459121704,
0.3086000084877014,
0.32420000433921814,
0.5957000255584717,
0.5957000255584717,
0.6157000064849854,
0.6151999831199646,
0.6166999936103821,
0.6338000297546387,
0.6323000192642212,
0.6509000062942505,
0.6513000130653381,
0.667900025844574,
0.6675000190734863,
0.6685000061988831,
0.6664999723434448,
0.7505000233650208,
0.832099974155426,
0.8349000215530396,
0.13920000195503235,
0.24220000207424164,
0.3763999938964844,
0.5687000155448914,
0.8051999807357788,
0.8858000040054321
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001113_page04 | {
"latex": [
"$\\delta ^m$",
"$B_{\\bar N}$",
"$\\sigma $",
"$\\sigma ^\\dagger $",
"$v$",
"$\\Xi _0=\\Xi |_{v=0}$",
"$S^{\\rm eff}$",
"$h^{MN}=g^{MN}-\\eta ^{MN}$",
"$\\eta ^{MN}={\\rm diag}(1,-1,-1,-1,-1,-1)$",
"$w$",
"$\\Delta |_{h^{MN}=0,w=0}\\equiv \\Delta _0$",
"$\\Delta _0$",
"$\\Delta _0^{\\rm sp}$",
"$\\Delta _0^{\\rm ex}$",
"$x^\\mu $",
"$x^m$",
"$\\Delta _0$",
"$\\Delta _0^{\\rm V}$",
"$\\Delta _0^{\\rm S}$",
"$B^\\mu $",
"$(S^{(1)},S^{(2)},S^{(3)},S^{(4)})=(B^5,B^6,\\sigma ,\\sigma ^\\dagger )$",
"$\\square \\,= \\eta ^{\\mu \\nu }\\partial _\\mu \\partial _\\nu $",
"$V_k$",
"$S_k^{(0)}$",
"${m_k}^2$",
"${m'_k}^2$",
"$\\Delta _{\\rm int}$",
"$\\Delta '_{\\rm int}$",
"$h^{\\mu \\nu }$",
"$w$",
"\\begin {eqnarray} &&\\hskip -5mm \\Phi ^\\dagger =(B^{\\bar M},\\sigma ,\\sigma ^\\dagger ), \\\\ &&\\hskip -5mm \\Xi =\\sqrt {-g}(\\nabla _{\\bar M}v, \\ w_m x^m \\widetilde \\phi ^{0\\dagger }/J_0, \\ w_m x^m \\widetilde \\phi ^0/J_0), \\\\ &&\\hskip -5mm \\Delta =\\sqrt {-g} \\\\ &&\\hskip-5mm \\times \\begin{pmatrix} \\hskip-1mm \\eta _{\\bar M \\bar N}\\left (\\frac {1}{2}\\nabla _L\\nabla ^L+e^2|\\phi ^0|^2\\right ) & ieD_{\\bar M}^0\\phi ^{0\\dagger } & -ieD_{\\bar M}^0\\phi ^{0} \\cr -ieD_{\\bar N}^0\\phi ^{0} & \\hskip -3mm\\frac {1}{2}D_L^0 D^{0L} +\\frac {a}{2}-2b|\\phi ^0|^2+\\delta _{11}^mw_m & -b(\\phi ^0)^2+\\delta _{12}^m w_m \\cr ieD_{\\bar N}^0\\phi ^{0\\dagger } & -b(\\phi ^0\\dagger )^2+\\delta _{21}^m w_m & \\hskip -3mm\\frac {1}{2}D_L^0 D^{0L} +\\frac {a}{2}-2b|\\phi ^0|^2+\\delta _{22}^mw_m \\end{pmatrix} \\end {eqnarray}",
"\\begin {equation} \\delta ^m (x,x') = \\frac {1}{2J_0}x^m\\delta (x-x') +\\frac {1}{2{J_0}^2}(x^m+x'^m) \\begin{pmatrix} \\widetilde \\phi ^0(x)\\cr \\widetilde \\phi ^0(x)^\\dagger \\end{pmatrix} \\begin{pmatrix} \\widetilde \\phi ^0(x')^\\dagger &\\widetilde \\phi ^0(x') \\end{pmatrix} \\label {19} \\end {equation}",
"\\begin {equation} S^{\\rm eff} = \\frac {1}{2}i{\\rm Tr}\\ln \\Delta +\\frac {1}{2}i{\\rm Tr}\\ln \\left [\\partial _M\\sqrt {-g}(\\Delta ^{-1})^{MN}\\sqrt {-g}\\partial _N\\right ] -\\frac {1}{4}\\int \\Xi _0^\\dagger \\Delta ^{-1}\\Xi _0d^6x \\label {20} \\end {equation}",
"\\begin {eqnarray} &&\\hskip -13mm \\Delta _0^{\\rm V,sp}=\\frac {1}{2}\\ \\square \\,, \\ \\ \\^^M\\Delta _0^{\\rm S,sp}=\\frac {1}{2}\\ \\square \\,, \\ \\ \\^^M\\Delta _0^{\\rm V,ex}=-\\frac {1}{2}\\partial _l \\partial _l+e^2|\\phi ^0|^2, \\cr &&\\hskip -13mm \\Delta _0^{\\rm S,ex} =\\begin{pmatrix} \\left (-\\frac {1}{2}\\partial _l\\partial _l+e^2|\\phi ^0|^2\\right )\\eta _{mn} & ieD_{n}^0\\phi ^{0\\dagger } & -ieD_{n}^0\\phi ^{0} \\cr -ieD_{m}^0\\phi ^{0} & -\\frac {1}{2}D_l^0 D_l^0 +\\frac {a}{2}-b|\\phi ^0|^2 & -b(\\phi ^0)^2 \\cr ieD_{m}^0\\phi ^{0\\dagger } & -b(\\phi ^{0\\dagger })^2 & -\\frac {1}{2}D_l^0 D_l^0 +\\frac {a}{2}-b|\\phi ^0|^2 \\end{pmatrix} \\end {eqnarray}",
"\\begin {eqnarray} \\left [({\\Delta _0^{\\rm V}})^{-1}\\right ]^{\\mu \\nu } &=&\\eta ^{\\mu \\nu }\\sum _{k(}\\,\\square \\,+{m_k}^2)^{-1}V_k(x^m)V_k(x'^m), \\cr \\left [({\\Delta _0^{\\rm V}})^{-1}\\right ]^{\\mu \\nu } &=&\\sum _{k(}\\,\\square \\,+{m'_k}^2)^{-1}S_k^{(a)}(x^m)S_k^{(b)}(x'^m), \\end {eqnarray}",
"\\begin {equation} \\Delta _0^{\\rm V,ex} V_k = {m_k}^2 V_k, \\ \\ \\ \\^^M\\Delta _0^{{\\rm S,ex}(a)(b)} S_k^{(b)} = {m'_k}^2 S_k^{(a)}. \\label {23} \\end {equation}",
"\\begin {eqnarray} &&\\hskip -10mm \\Delta =\\Delta _0(1+\\Delta _0^{-1}\\Delta _{\\rm int}), \\\\ &&\\hskip -10mm \\partial _M\\sqrt {-g}(\\Delta ^{-1})^{MN}\\sqrt {-g}\\partial _N =1+{\\Delta '_0}^{-1} +\\partial _m(\\Delta _0^{-1})^{mn}\\partial _n+\\Delta '_{\\rm int}, \\end {eqnarray}",
"\\begin {equation} {\\Delta '_0}^{-1}=\\sum _k {m_k}^2(\\,\\square \\,+{m_k}^2)^{-1}V_k(x^m)V_k(x'^m). \\label {26} \\end {equation}"
],
"latex_norm": [
"$ \\delta ^ { m } $",
"$ B _ { \\bar { N } } $",
"$ \\sigma $",
"$ \\sigma ^ { \\dagger } $",
"$ v $",
"$ \\Xi _ { 0 } = \\Xi \\vert _ { v = 0 } $",
"$ S ^ { e f f } $",
"$ h ^ { M N } = g ^ { M N } - \\eta ^ { M N } $",
"$ \\eta ^ { M N } = d i a g ( 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) $",
"$ w $",
"$ \\Delta \\vert _ { h ^ { M N } = 0 , w = 0 } \\equiv \\Delta _ { 0 } $",
"$ \\Delta _ { 0 } $",
"$ \\Delta _ { 0 } ^ { s p } $",
"$ \\Delta _ { 0 } ^ { e x } $",
"$ x ^ { \\mu } $",
"$ x ^ { m } $",
"$ \\Delta _ { 0 } $",
"$ \\Delta _ { 0 } ^ { V } $",
"$ \\Delta _ { 0 } ^ { S } $",
"$ B ^ { \\mu } $",
"$ ( S ^ { ( 1 ) } , S ^ { ( 2 ) } , S ^ { ( 3 ) } , S ^ { ( 4 ) } ) = ( B ^ { 5 } , B ^ { 6 } , \\sigma , \\sigma ^ { \\dagger } ) $",
"$ \\square \\, = \\eta ^ { \\mu \\nu } \\partial _ { \\mu } \\partial _ { \\nu } $",
"$ V _ { k } $",
"$ S _ { k } ^ { ( 0 ) } $",
"$ { m _ { k } } ^ { 2 } $",
"$ { m _ { k } ^ { \\prime } } ^ { 2 } $",
"$ \\Delta _ { i n t } $",
"$ \\Delta _ { i n t } ^ { \\prime } $",
"$ h ^ { \\mu \\nu } $",
"$ w $",
"\\begin{align*} & & \\hspace{-14.23pt} \\Phi ^ { \\dagger } = ( B ^ { \\bar { M } } , \\sigma , \\sigma ^ { \\dagger } ) , \\\\ & & \\hspace{-14.23pt} \\Xi = \\sqrt { - g } ( \\nabla _ { \\bar { M } } v , ~ w _ { m } x ^ { m } \\widetilde { \\phi } ^ { 0 \\dagger } \\slash J _ { 0 } , ~ w _ { m } x ^ { m } \\widetilde { \\phi } ^ { 0 } \\slash J _ { 0 } ) , \\\\ & & \\hspace{-14.23pt} \\Delta = \\sqrt { - g } \\\\ \\hspace{-14.23pt} \\times ( \\begin{array}{ccc} \\hspace{-2.85pt} \\eta _ { \\bar { M } \\bar { N } } ( \\frac { 1 } { 2 } \\nabla _ { L } \\nabla ^ { L } + e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } ) & i e D _ { \\bar { M } } ^ { 0 } \\phi ^ { 0 \\dagger } & - i e D _ { \\bar { M } } ^ { 0 } \\phi ^ { 0 } \\\\ - i e D _ { \\bar { N } } ^ { 0 } \\phi ^ { 0 } & \\hspace{-8.54pt} \\frac { 1 } { 2 } D _ { L } ^ { 0 } D ^ { 0 L } + \\frac { a } { 2 } - 2 b \\vert \\phi ^ { 0 } \\vert ^ { 2 } + \\delta _ { 1 1 } ^ { m } w _ { m } & - b ( \\phi ^ { 0 } ) ^ { 2 } + \\delta _ { 1 2 } ^ { m } w _ { m } \\\\ i e D _ { \\bar { N } } ^ { 0 } \\phi ^ { 0 \\dagger } & - b ( \\phi ^ { 0 } \\dagger ) ^ { 2 } + \\delta _ { 2 1 } ^ { m } w _ { m } & \\hspace{-8.54pt} \\frac { 1 } { 2 } D _ { L } ^ { 0 } D ^ { 0 L } + \\frac { a } { 2 } - 2 b \\vert \\phi ^ { 0 } \\vert ^ { 2 } + \\delta _ { 2 2 } ^ { m } w _ { m } \\end{array} ) \\end{align*}",
"\\begin{align*} \\delta ^ { m } ( x , x ^ { \\prime } ) = \\frac { 1 } { 2 J _ { 0 } } x ^ { m } \\delta ( x - x ^ { \\prime } ) + \\frac { 1 } { 2 { J _ { 0 } } ^ { 2 } } ( x ^ { m } + x ^ { \\prime m } ) ( \\begin{array}{c} \\widetilde { \\phi } ^ { 0 } ( x ) \\\\ \\widetilde { \\phi } ^ { 0 } ( x ) ^ { \\dagger } \\end{array} ) ( \\begin{array}{cc} \\widetilde { \\phi } ^ { 0 } ( x ^ { \\prime } ) ^ { \\dagger } & \\widetilde { \\phi } ^ { 0 } ( x ^ { \\prime } ) \\end{array} ) \\end{align*}",
"\\begin{equation*} S ^ { e f f } = \\frac { 1 } { 2 } i T r \\operatorname { l n } \\Delta + \\frac { 1 } { 2 } i T r \\operatorname { l n } [ \\partial _ { M } \\sqrt { - g } ( \\Delta ^ { - 1 } ) ^ { M N } \\sqrt { - g } \\partial _ { N } ] - \\frac { 1 } { 4 } \\int \\Xi _ { 0 } ^ { \\dagger } \\Delta ^ { - 1 } \\Xi _ { 0 } d ^ { 6 } x \\end{equation*}",
"\\begin{align*} & \\hspace{-36.99pt} \\Delta _ { 0 } ^ { V , s p } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\Delta _ { 0 } ^ { S , s p } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\Delta _ { 0 } ^ { V , e x } = - \\frac { 1 } { 2 } \\partial _ { l } \\partial _ { l } + e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } , \\\\ \\hspace{-36.99pt} \\Delta _ { 0 } ^ { S , e x } = ( \\begin{array}{ccc} & i e D _ { n } ^ { 0 } \\phi ^ { 0 \\dagger } & - i e D _ { n } ^ { 0 } \\phi ^ { 0 } \\\\ - i e D _ { m } ^ { 0 } \\phi ^ { 0 } & - \\frac { 1 } { 2 } D _ { l } ^ { 0 } D _ { l } ^ { 0 } + \\frac { a } { 2 } - b \\vert \\phi ^ { 0 } \\vert ^ { 2 } & - b ( \\phi ^ { 0 } ) ^ { 2 } \\\\ i e D _ { m } ^ { 0 } \\phi ^ { 0 \\dagger } & - b ( \\phi ^ { 0 \\dagger } ) ^ { 2 } & - \\frac { 1 } { 2 } D _ { l } ^ { 0 } D _ { l } ^ { 0 } + \\frac { a } { 2 } - b \\vert \\phi ^ { 0 } \\vert ^ { 2 } \\end{array} ) \\end{align*}",
"\\begin{align*} { [ ( \\Delta _ { 0 } ^ { V } ) ^ { - 1 } ] } ^ { \\mu \\nu } & = & \\eta ^ { \\mu \\nu } \\sum _ { k ( } \\, \\square \\, + { m _ { k } } ^ { 2 } ) ^ { - 1 } V _ { k } ( x ^ { m } ) V _ { k } ( x ^ { \\prime m } ) , \\\\ { [ ( \\Delta _ { 0 } ^ { V } ) ^ { - 1 } ] } ^ { \\mu \\nu } & = & \\sum _ { k ( } \\, \\square \\, + { m _ { k } ^ { \\prime } } ^ { 2 } ) ^ { - 1 } S _ { k } ^ { ( a ) } ( x ^ { m } ) S _ { k } ^ { ( b ) } ( x ^ { \\prime m } ) , \\end{align*}",
"\\begin{equation*} \\Delta _ { 0 } ^ { V , e x } V _ { k } = { m _ { k } } ^ { 2 } V _ { k } , ~ ~ ~ ~ \\Delta _ { 0 } ^ { S , e x ( a ) ( b ) } S _ { k } ^ { ( b ) } = { m _ { k } ^ { \\prime } } ^ { 2 } S _ { k } ^ { ( a ) } . \\end{equation*}",
"\\begin{align*} & & \\hspace{-28.45pt} \\Delta = \\Delta _ { 0 } ( 1 + \\Delta _ { 0 } ^ { - 1 } \\Delta _ { i n t } ) , \\\\ & & \\hspace{-28.45pt} \\partial _ { M } \\sqrt { - g } ( \\Delta ^ { - 1 } ) ^ { M N } \\sqrt { - g } \\partial _ { N } = 1 + { \\Delta _ { 0 } ^ { \\prime } } ^ { - 1 } + \\partial _ { m } ( \\Delta _ { 0 } ^ { - 1 } ) ^ { m n } \\partial _ { n } + \\Delta _ { i n t } ^ { \\prime } , \\end{align*}",
"\\begin{equation*} { \\Delta _ { 0 } ^ { \\prime } } ^ { - 1 } = \\sum _ { k } { m _ { k } } ^ { 2 } ( \\, \\square \\, + { m _ { k } } ^ { 2 } ) ^ { - 1 } V _ { k } ( x ^ { m } ) V _ { k } ( x ^ { \\prime m } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitdelta ^ { \\mitm } $",
"$ \\mitB _ { \\bar { \\mitN } } $",
"$ \\mitsigma $",
"$ \\mitsigma ^ { \\dagger } $",
"$ \\mitv $",
"$ \\mupXi _ { 0 } = \\mupXi \\vert _ { \\mitv = 0 } $",
"$ \\mitS ^ { \\mathrm { e f f } } $",
"$ \\Planckconst ^ { \\mitM \\mitN } = \\mitg ^ { \\mitM \\mitN } - \\miteta ^ { \\mitM \\mitN } $",
"$ \\miteta ^ { \\mitM \\mitN } = \\mathrm { d i a g } ( 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) $",
"$ \\mitw $",
"$ \\mupDelta \\vert _ { \\Planckconst ^ { \\mitM \\mitN } = 0 , \\mitw = 0 } \\equiv \\mupDelta _ { 0 } $",
"$ \\mupDelta _ { 0 } $",
"$ \\mupDelta _ { 0 } ^ { \\mathrm { s p } } $",
"$ \\mupDelta _ { 0 } ^ { \\mathrm { e x } } $",
"$ \\mitx ^ { \\mitmu } $",
"$ \\mitx ^ { \\mitm } $",
"$ \\mupDelta _ { 0 } $",
"$ \\mupDelta _ { 0 } ^ { \\mathrm { V } } $",
"$ \\mupDelta _ { 0 } ^ { \\mathrm { S } } $",
"$ \\mitB ^ { \\mitmu } $",
"$ ( \\mitS ^ { ( 1 ) } , \\mitS ^ { ( 2 ) } , \\mitS ^ { ( 3 ) } , \\mitS ^ { ( 4 ) } ) = ( \\mitB ^ { 5 } , \\mitB ^ { 6 } , \\mitsigma , \\mitsigma ^ { \\dagger } ) $",
"$ \\square \\, = \\miteta ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mitpartial _ { \\mitnu } $",
"$ \\mitV _ { \\mitk } $",
"$ \\mitS _ { \\mitk } ^ { ( 0 ) } $",
"$ { \\mitm _ { \\mitk } } ^ { 2 } $",
"$ { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } $",
"$ \\mupDelta _ { \\mathrm { i n t } } $",
"$ \\mupDelta _ { \\mathrm { i n t } } ^ { \\prime } $",
"$ \\Planckconst ^ { \\mitmu \\mitnu } $",
"$ \\mitw $",
"\\begin{align*} & & \\displaystyle \\hspace{-14.23pt} \\mupPhi ^ { \\dagger } = ( \\mitB ^ { \\bar { \\mitM } } , \\mitsigma , \\mitsigma ^ { \\dagger } ) , \\\\ & & \\displaystyle \\hspace{-14.23pt} \\mupXi = \\sqrt { - \\mitg } ( \\nabla _ { \\bar { \\mitM } } \\mitv , ~ \\mitw _ { \\mitm } \\mitx ^ { \\mitm } \\widetilde { \\mitphi } ^ { 0 \\dagger } \\slash \\mitJ _ { 0 } , ~ \\mitw _ { \\mitm } \\mitx ^ { \\mitm } \\widetilde { \\mitphi } ^ { 0 } \\slash \\mitJ _ { 0 } ) , \\\\ & & \\displaystyle \\hspace{-14.23pt} \\mupDelta = \\sqrt { - \\mitg } \\\\ \\displaystyle \\hspace{-14.23pt} \\times \\left( \\begin{array}{ccc} \\hspace{-2.85pt} \\miteta _ { \\bar { \\mitM } \\bar { \\mitN } } \\left( \\frac { 1 } { 2 } \\nabla _ { \\mitL } \\nabla ^ { \\mitL } + \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } \\right) & \\miti \\mite \\mitD _ { \\bar { \\mitM } } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\miti \\mite \\mitD _ { \\bar { \\mitM } } ^ { 0 } \\mitphi ^ { 0 } \\\\ - \\miti \\mite \\mitD _ { \\bar { \\mitN } } ^ { 0 } \\mitphi ^ { 0 } & \\hspace{-8.54pt} \\frac { 1 } { 2 } \\mitD _ { \\mitL } ^ { 0 } \\mitD ^ { 0 \\mitL } + \\frac { \\mita } { 2 } - 2 \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitdelta _ { 1 1 } ^ { \\mitm } \\mitw _ { \\mitm } & - \\mitb ( \\mitphi ^ { 0 } ) ^ { 2 } + \\mitdelta _ { 1 2 } ^ { \\mitm } \\mitw _ { \\mitm } \\\\ \\miti \\mite \\mitD _ { \\bar { \\mitN } } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\mitb ( \\mitphi ^ { 0 } \\dagger ) ^ { 2 } + \\mitdelta _ { 2 1 } ^ { \\mitm } \\mitw _ { \\mitm } & \\hspace{-8.54pt} \\frac { 1 } { 2 } \\mitD _ { \\mitL } ^ { 0 } \\mitD ^ { 0 \\mitL } + \\frac { \\mita } { 2 } - 2 \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitdelta _ { 2 2 } ^ { \\mitm } \\mitw _ { \\mitm } \\end{array} \\right) \\end{align*}",
"\\begin{align*} \\displaystyle \\mitdelta ^ { \\mitm } ( \\mitx , \\mitx ^ { \\prime } ) = \\frac { 1 } { 2 \\mitJ _ { 0 } } \\mitx ^ { \\mitm } \\mitdelta ( \\mitx - \\mitx ^ { \\prime } ) + \\frac { 1 } { 2 { \\mitJ _ { 0 } } ^ { 2 } } ( \\mitx ^ { \\mitm } + \\mitx ^ { \\prime \\mitm } ) \\left( \\begin{array}{c} \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ) \\\\ \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ) ^ { \\dagger } \\end{array} \\right) \\left( \\begin{array}{cc} \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ^ { \\prime } ) ^ { \\dagger } & \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ^ { \\prime } ) \\end{array} \\right) \\end{align*}",
"\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = \\frac { 1 } { 2 } \\miti \\mathrm { T r } \\operatorname { l n } \\mupDelta + \\frac { 1 } { 2 } \\miti \\mathrm { T r } \\operatorname { l n } \\left[ \\mitpartial _ { \\mitM } \\sqrt { - \\mitg } ( \\mupDelta ^ { - 1 } ) ^ { \\mitM \\mitN } \\sqrt { - \\mitg } \\mitpartial _ { \\mitN } \\right] - \\frac { 1 } { 4 } \\int \\mupXi _ { 0 } ^ { \\dagger } \\mupDelta ^ { - 1 } \\mupXi _ { 0 } \\mitd ^ { 6 } \\mitx \\end{equation*}",
"\\begin{align*} & \\displaystyle \\hspace{-36.99pt} \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { s p } } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { s p } } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { e x } } = - \\frac { 1 } { 2 } \\mitpartial _ { \\mitl } \\mitpartial _ { \\mitl } + \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } , \\\\ \\displaystyle \\hspace{-36.99pt} \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { e x } } = \\left( \\begin{array}{ccc} & \\miti \\mite \\mitD _ { \\mitn } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\miti \\mite \\mitD _ { \\mitn } ^ { 0 } \\mitphi ^ { 0 } \\\\ - \\miti \\mite \\mitD _ { \\mitm } ^ { 0 } \\mitphi ^ { 0 } & - \\frac { 1 } { 2 } \\mitD _ { \\mitl } ^ { 0 } \\mitD _ { \\mitl } ^ { 0 } + \\frac { \\mita } { 2 } - \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } & - \\mitb ( \\mitphi ^ { 0 } ) ^ { 2 } \\\\ \\miti \\mite \\mitD _ { \\mitm } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\mitb ( \\mitphi ^ { 0 \\dagger } ) ^ { 2 } & - \\frac { 1 } { 2 } \\mitD _ { \\mitl } ^ { 0 } \\mitD _ { \\mitl } ^ { 0 } + \\frac { \\mita } { 2 } - \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } \\end{array} \\right) \\end{align*}",
"\\begin{align*} \\displaystyle { \\left[ ( \\mupDelta _ { 0 } ^ { \\mathrm { V } } ) ^ { - 1 } \\right] } ^ { \\mitmu \\mitnu } & = & \\displaystyle \\miteta ^ { \\mitmu \\mitnu } \\sum _ { \\mitk ( } \\, \\square \\, + { \\mitm _ { \\mitk } } ^ { 2 } ) ^ { - 1 } \\mitV _ { \\mitk } ( \\mitx ^ { \\mitm } ) \\mitV _ { \\mitk } ( \\mitx ^ { \\prime \\mitm } ) , \\\\ \\displaystyle { \\left[ ( \\mupDelta _ { 0 } ^ { \\mathrm { V } } ) ^ { - 1 } \\right] } ^ { \\mitmu \\mitnu } & = & \\displaystyle \\sum _ { \\mitk ( } \\, \\square \\, + { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } ) ^ { - 1 } \\mitS _ { \\mitk } ^ { ( \\mita ) } ( \\mitx ^ { \\mitm } ) \\mitS _ { \\mitk } ^ { ( \\mitb ) } ( \\mitx ^ { \\prime \\mitm } ) , \\end{align*}",
"\\begin{equation*} \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { e x } } \\mitV _ { \\mitk } = { \\mitm _ { \\mitk } } ^ { 2 } \\mitV _ { \\mitk } , ~ ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { e x } ( \\mita ) ( \\mitb ) } \\mitS _ { \\mitk } ^ { ( \\mitb ) } = { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } \\mitS _ { \\mitk } ^ { ( \\mita ) } . \\end{equation*}",
"\\begin{align*} & & \\hspace{-28.45pt} \\mupDelta = \\mupDelta _ { 0 } ( 1 + \\mupDelta _ { 0 } ^ { - 1 } \\mupDelta _ { \\mathrm { i n t } } ) , \\\\ & & \\hspace{-28.45pt} \\mitpartial _ { \\mitM } \\sqrt { - \\mitg } ( \\mupDelta ^ { - 1 } ) ^ { \\mitM \\mitN } \\sqrt { - \\mitg } \\mitpartial _ { \\mitN } = 1 + { \\mupDelta _ { 0 } ^ { \\prime } } ^ { - 1 } + \\mitpartial _ { \\mitm } ( \\mupDelta _ { 0 } ^ { - 1 } ) ^ { \\mitm \\mitn } \\mitpartial _ { \\mitn } + \\mupDelta _ { \\mathrm { i n t } } ^ { \\prime } , \\end{align*}",
"\\begin{equation*} \\displaystyle { \\mupDelta _ { 0 } ^ { \\prime } } ^ { - 1 } = \\sum _ { \\mitk } { \\mitm _ { \\mitk } } ^ { 2 } ( \\, \\square \\, + { \\mitm _ { \\mitk } } ^ { 2 } ) ^ { - 1 } \\mitV _ { \\mitk } ( \\mitx ^ { \\mitm } ) \\mitV _ { \\mitk } ( \\mitx ^ { \\prime \\mitm } ) . \\end{equation*}"
],
"x_min": [
0.13410000503063202,
0.3822000026702881,
0.42289999127388,
0.446399986743927,
0.5162000060081482,
0.652400016784668,
0.07739999890327454,
0.4242999851703644,
0.5964000225067139,
0.11540000140666962,
0.5016999840736389,
0.6730999946594238,
0.16380000114440918,
0.23770000040531158,
0.6075000166893005,
0.07739999890327454,
0.4050000011920929,
0.7815999984741211,
0.8568999767303467,
0.3621000051498413,
0.5652999877929688,
0.13410000503063202,
0.13410000503063202,
0.16590000689029694,
0.21080000698566437,
0.2888999879360199,
0.13410000503063202,
0.2134999930858612,
0.5555999875068665,
0.6288999915122986,
0.08709999918937683,
0.16380000114440918,
0.17069999873638153,
0.11800000071525574,
0.25850000977516174,
0.2874999940395355,
0.21220000088214874,
0.2971999943256378
],
"y_min": [
0.20020000636577606,
0.2768999934196472,
0.28029999136924744,
0.27489998936653137,
0.28029999136924744,
0.2759000062942505,
0.3495999872684479,
0.3495999872684479,
0.3495999872684479,
0.37209999561309814,
0.3677000105381012,
0.3686999976634979,
0.384799987077713,
0.385699987411499,
0.3862000107765198,
0.4032999873161316,
0.4027999937534332,
0.4009000062942505,
0.4009000062942505,
0.41990000009536743,
0.41749998927116394,
0.5630000233650208,
0.6726999878883362,
0.6675000190734863,
0.6711999773979187,
0.6697999835014343,
0.814300000667572,
0.8137999773025513,
0.814300000667572,
0.8181999921798706,
0.06790000200271606,
0.22460000216960907,
0.30219998955726624,
0.46480000019073486,
0.5893999934196472,
0.7020999789237976,
0.7581999897956848,
0.84170001745224
],
"x_max": [
0.15760000050067902,
0.41119998693466187,
0.43529999256134033,
0.4657999873161316,
0.5266000032424927,
0.7457000017166138,
0.10779999941587448,
0.5845999717712402,
0.8949000239372253,
0.1306000053882599,
0.6593000292778015,
0.6980000138282776,
0.1949000060558319,
0.2687999904155731,
0.6288999915122986,
0.1023000031709671,
0.42989999055862427,
0.8098999857902527,
0.8824999928474426,
0.38769999146461487,
0.8824999928474426,
0.24330000579357147,
0.15479999780654907,
0.19910000264644623,
0.24469999969005585,
0.32280001044273376,
0.16930000483989716,
0.24809999763965607,
0.5845999717712402,
0.64410001039505,
0.885699987411499,
0.8003000020980835,
0.7975000143051147,
0.8191999793052673,
0.7035999894142151,
0.6800000071525574,
0.7360000014305115,
0.6711000204086304
],
"y_max": [
0.21050000190734863,
0.29010000824928284,
0.2870999872684479,
0.2870999872684479,
0.2870999872684479,
0.2904999852180481,
0.3617999851703644,
0.36469998955726624,
0.365200012922287,
0.3788999915122986,
0.3833000063896179,
0.3813999891281128,
0.399399995803833,
0.399399995803833,
0.3959999978542328,
0.413100004196167,
0.4154999852180481,
0.4165000021457672,
0.4165000021457672,
0.4302000105381012,
0.4341000020503998,
0.5776000022888184,
0.6854000091552734,
0.6861000061035156,
0.6854000091552734,
0.6869000196456909,
0.8270000219345093,
0.828000009059906,
0.8245999813079834,
0.8245000243186951,
0.18690000474452972,
0.26019999384880066,
0.33489999175071716,
0.5511000156402588,
0.656499981880188,
0.7240999937057495,
0.8029999732971191,
0.8744000196456909
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001113_page05 | {
"latex": [
"$h^{\\mu \\nu }$",
"$w$",
"$\\Lambda $",
"$\\sqrt {a}$",
"$N_0$",
"$N_1$",
"$\\alpha _0$",
"$\\alpha _1$",
"$\\beta _0$",
"$\\beta _1$",
"$O(1)$",
"$\\alpha _c$",
"$\\beta _c$",
"${\\cal L}_0$",
"\\begin {equation} S^{\\rm eff} = \\int \\sqrt {-g}\\left [ (N_0\\alpha _0+N_1\\alpha _1+\\alpha _c)\\Lambda ^4+ (N_0\\beta _0+N_1\\beta _1+\\beta _c)\\Lambda ^2R\\right ] d^4x \\label {27} \\end {equation}",
"\\begin {equation} S = \\int \\sqrt {-g}\\left (\\lambda + \\frac {1}{16\\pi G}R\\right )d^4x \\label {28} \\end {equation}",
"\\begin {equation} \\lambda = \\int {\\cal L}_0 dx^5 dx^6 + (N_0\\alpha _0+N_1\\alpha _1+\\alpha _c)\\Lambda ^4, \\ \\ \\ \\^^M\\frac {1}{16\\pi G}=(N_0\\beta _0+N_1\\beta _1+\\beta _c)\\Lambda ^2. \\label {29} \\end {equation}"
],
"latex_norm": [
"$ h ^ { \\mu \\nu } $",
"$ w $",
"$ \\Lambda $",
"$ \\sqrt { a } $",
"$ N _ { 0 } $",
"$ N _ { 1 } $",
"$ \\alpha _ { 0 } $",
"$ \\alpha _ { 1 } $",
"$ \\beta _ { 0 } $",
"$ \\beta _ { 1 } $",
"$ O ( 1 ) $",
"$ \\alpha _ { c } $",
"$ \\beta _ { c } $",
"$ L _ { 0 } $",
"\\begin{equation*} S ^ { e f f } = \\int \\sqrt { - g } [ ( N _ { 0 } \\alpha _ { 0 } + N _ { 1 } \\alpha _ { 1 } + \\alpha _ { c } ) \\Lambda ^ { 4 } + ( N _ { 0 } \\beta _ { 0 } + N _ { 1 } \\beta _ { 1 } + \\beta _ { c } ) \\Lambda ^ { 2 } R ] d ^ { 4 } x \\end{equation*}",
"\\begin{equation*} S = \\int \\sqrt { - g } ( \\lambda + \\frac { 1 } { 1 6 \\pi G } R ) d ^ { 4 } x \\end{equation*}",
"\\begin{equation*} \\lambda = \\int L _ { 0 } d x ^ { 5 } d x ^ { 6 } + ( N _ { 0 } \\alpha _ { 0 } + N _ { 1 } \\alpha _ { 1 } + \\alpha _ { c } ) \\Lambda ^ { 4 } , ~ ~ ~ ~ \\frac { 1 } { 1 6 \\pi G } = ( N _ { 0 } \\beta _ { 0 } + N _ { 1 } \\beta _ { 1 } + \\beta _ { c } ) \\Lambda ^ { 2 } . \\end{equation*}"
],
"latex_expand": [
"$ \\Planckconst ^ { \\mitmu \\mitnu } $",
"$ \\mitw $",
"$ \\mupLambda $",
"$ \\sqrt { \\mita } $",
"$ \\mitN _ { 0 } $",
"$ \\mitN _ { 1 } $",
"$ \\mitalpha _ { 0 } $",
"$ \\mitalpha _ { 1 } $",
"$ \\mitbeta _ { 0 } $",
"$ \\mitbeta _ { 1 } $",
"$ \\mitO ( 1 ) $",
"$ \\mitalpha _ { \\mitc } $",
"$ \\mitbeta _ { \\mitc } $",
"$ \\mitL _ { 0 } $",
"\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = \\int \\sqrt { - \\mitg } \\left[ ( \\mitN _ { 0 } \\mitalpha _ { 0 } + \\mitN _ { 1 } \\mitalpha _ { 1 } + \\mitalpha _ { \\mitc } ) \\mupLambda ^ { 4 } + ( \\mitN _ { 0 } \\mitbeta _ { 0 } + \\mitN _ { 1 } \\mitbeta _ { 1 } + \\mitbeta _ { \\mitc } ) \\mupLambda ^ { 2 } \\mitR \\right] \\mitd ^ { 4 } \\mitx \\end{equation*}",
"\\begin{equation*} \\mitS = \\int \\sqrt { - \\mitg } \\left( \\mitlambda + \\frac { 1 } { 1 6 \\mitpi \\mitG } \\mitR \\right) \\mitd ^ { 4 } \\mitx \\end{equation*}",
"\\begin{equation*} \\mitlambda = \\int \\mitL _ { 0 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } + ( \\mitN _ { 0 } \\mitalpha _ { 0 } + \\mitN _ { 1 } \\mitalpha _ { 1 } + \\mitalpha _ { \\mitc } ) \\mupLambda ^ { 4 } , ~ ~ ~ ~ \\frac { 1 } { 1 6 \\mitpi \\mitG } = ( \\mitN _ { 0 } \\mitbeta _ { 0 } + \\mitN _ { 1 } \\mitbeta _ { 1 } + \\mitbeta _ { \\mitc } ) \\mupLambda ^ { 2 } . \\end{equation*}"
],
"x_min": [
0.819599986076355,
0.07739999890327454,
0.2702000141143799,
0.4456999897956848,
0.3628000020980835,
0.4332999885082245,
0.3621000051498413,
0.39739999175071716,
0.4318999946117401,
0.4650999903678894,
0.7325999736785889,
0.3808000087738037,
0.446399986743927,
0.5224999785423279,
0.1859000027179718,
0.349700003862381,
0.15070000290870667
],
"y_min": [
0.04050000011920929,
0.061500001698732376,
0.07519999891519547,
0.07320000231266022,
0.1898999959230423,
0.1898999959230423,
0.21089999377727509,
0.21089999377727509,
0.2070000022649765,
0.2070000022649765,
0.20649999380111694,
0.2451000064611435,
0.24169999361038208,
0.2587999999523163,
0.14790000021457672,
0.28119999170303345,
0.3452000021934509
],
"x_max": [
0.8485999703407288,
0.09260000288486481,
0.2847000062465668,
0.4733000099658966,
0.3869999945163727,
0.45750001072883606,
0.38350000977516174,
0.4180999994277954,
0.4512999951839447,
0.48510000109672546,
0.7741000056266785,
0.4007999897003174,
0.4643999934196472,
0.5446000099182129,
0.7815999984741211,
0.6177999973297119,
0.8169000148773193
],
"y_max": [
0.05119999870657921,
0.06780000030994415,
0.08550000190734863,
0.08879999816417694,
0.20260000228881836,
0.20260000228881836,
0.21969999372959137,
0.21969999372959137,
0.2206999957561493,
0.2206999957561493,
0.22110000252723694,
0.2538999915122986,
0.2549000084400177,
0.27149999141693115,
0.17820000648498535,
0.31439998745918274,
0.37790000438690186
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0001125_page02 | {
"latex": [
"\\( 2\\pi \\alpha ' \\)",
"\\( A_{\\mu } \\)",
"\\( h_{ab} \\)",
"\\( \\partial {\\cal M} \\)",
"\\( G_{\\mu \\nu }=\\delta _{\\mu \\nu } \\)",
"\\( B \\)",
"\\( N^{a} \\)",
"\\( \\partial {\\cal M} \\)",
"\\( N_{a}dz^{a},\\, d\\tau \\)",
"\\( i \\)",
"\\( \\sqrt {-h}\\rightarrow i\\sqrt {h} \\)",
"\\( A_{\\mu } \\)",
"\\( iA_{\\mu } \\)",
"\\( i \\)",
"\\begin {equation} S=\\frac {1}{2\\pi \\alpha ' }\\left [ \\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h} h^{ab}\\partial _{a}X_{\\mu }\\partial _{b}X^{\\mu } +\\int _{\\partial {\\cal M}}d\\tau A_{\\mu }\\partial _{\\tau } X^{\\mu }\\right ] \\plabel {act} \\end {equation}"
],
"latex_norm": [
"$ 2 \\pi \\alpha ^ { \\prime } $",
"$ A _ { \\mu } $",
"$ h _ { a b } $",
"$ \\partial M $",
"$ G _ { \\mu \\nu } = \\delta _ { \\mu \\nu } $",
"$ B $",
"$ N ^ { a } $",
"$ \\partial M $",
"$ N _ { a } d z ^ { a } , \\, d \\tau $",
"$ i $",
"$ \\sqrt { - h } \\rightarrow i \\sqrt { h } $",
"$ A _ { \\mu } $",
"$ i A _ { \\mu } $",
"$ i $",
"\\begin{equation*} S = \\frac { 1 } { 2 \\pi \\alpha ^ { \\prime } } [ \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } h ^ { a b } \\partial _ { a } X _ { \\mu } \\partial _ { b } X ^ { \\mu } + \\int _ { \\partial M } d \\tau A _ { \\mu } \\partial _ { \\tau } X ^ { \\mu } ] \\end{equation*}"
],
"latex_expand": [
"$ 2 \\mitpi \\mitalpha ^ { \\prime } $",
"$ \\mitA _ { \\mitmu } $",
"$ \\Planckconst _ { \\mita \\mitb } $",
"$ \\mitpartial \\mitM $",
"$ \\mitG _ { \\mitmu \\mitnu } = \\mitdelta _ { \\mitmu \\mitnu } $",
"$ \\mitB $",
"$ \\mitN ^ { \\mita } $",
"$ \\mitpartial \\mitM $",
"$ \\mitN _ { \\mita } \\mitd \\mitz ^ { \\mita } , \\, \\mitd \\mittau $",
"$ \\miti $",
"$ \\sqrt { - \\Planckconst } \\rightarrow \\miti \\sqrt { \\Planckconst } $",
"$ \\mitA _ { \\mitmu } $",
"$ \\miti \\mitA _ { \\mitmu } $",
"$ \\miti $",
"\\begin{equation*} \\mitS = \\frac { 1 } { 2 \\mitpi \\mitalpha ^ { \\prime } } \\left[ \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\Planckconst ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mitX _ { \\mitmu } \\mitpartial _ { \\mitb } \\mitX ^ { \\mitmu } + \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\mitA _ { \\mitmu } \\mitpartial _ { \\mittau } \\mitX ^ { \\mitmu } \\right] \\end{equation*}"
],
"x_min": [
0.30550000071525574,
0.41670000553131104,
0.14509999752044678,
0.396699994802475,
0.321399986743927,
0.14509999752044678,
0.3537999987602234,
0.6082000136375427,
0.7491000294685364,
0.6869000196456909,
0.5073000192642212,
0.3393000066280365,
0.3959999978542328,
0.2799000144004822,
0.2460000067949295
],
"y_min": [
0.5619999766349792,
0.5800999999046326,
0.5971999764442444,
0.5971999764442444,
0.6312999725341797,
0.6488999724388123,
0.6660000085830688,
0.6830999851226807,
0.6830999851226807,
0.7348999977111816,
0.7480000257492065,
0.7689999938011169,
0.7689999938011169,
0.7865999937057495,
0.5098000168800354
],
"x_max": [
0.3456000089645386,
0.4415999948978424,
0.17139999568462372,
0.4325999915599823,
0.40709999203681946,
0.16169999539852142,
0.3808000087738037,
0.64410001039505,
0.8355000019073486,
0.6937999725341797,
0.6281999945640564,
0.36419999599456787,
0.4271000027656555,
0.2874999940395355,
0.7332000136375427
],
"y_max": [
0.573199987411499,
0.5942999720573425,
0.6098999977111816,
0.6079000234603882,
0.6459000110626221,
0.6592000126838684,
0.6762999892234802,
0.6934000253677368,
0.6963000297546387,
0.744700014591217,
0.7641000151634216,
0.7832000255584717,
0.7832000255584717,
0.7964000105857849,
0.5473999977111816
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
} |
|
0001125_page05 | {
"latex": [
"\\( b_{0},\\, b_{1},\\, b_{2},\\, \\gamma ,\\, \\sigma _{1} \\)",
"\\( b_{0} \\)",
"\\( \\sigma _{1} \\)",
"\\( b_{0}+\\sigma _{1}\\Gamma ^{2} \\)",
"\\( k_{ij}\\Gamma ^{i}\\Gamma ^{j}=k\\Gamma ^{2} \\)",
"\\( \\zeta \\)",
"\\( D \\)",
"\\( s \\)",
"\\( \\zeta _{D}(0)=a_{1}(1,D,{\\mathcal {B}}) \\)",
"\\( s\\rightarrow 0 \\)",
"\\( (1/2\\pi )\\int _{\\partial {\\cal M}}d\\tau \\, G_{\\mu }\\dot {\\bar {X}}^{\\mu } \\)",
"\\( i \\)",
"\\begin {eqnarray} && \\gamma =\\frac {1}{4}\\left [ \\frac {2}{\\sqrt {1+\\Gamma ^{2}}}-1\\right ]\\,, \\\\ && b_{1}=\\frac {1}{\\sqrt {-\\Gamma ^{2}}}{\\textrm {Artanh}} (\\sqrt {-\\Gamma ^{2}})-\\frac {1}{2}\\,,\\\\ && b_{2}=\\frac {2}{1+\\Gamma ^{2}}\\,,\\\\ && b_{0}+\\sigma _{1}\\Gamma ^{2}=\\frac {1}{3}\\, \\,, \\end {eqnarray}",
"\\begin {equation} \\zeta _{D}(s)={\\textrm {Tr}}(D^{-s})\\, \\, .\\plabel {defzeta} \\end {equation}",
"\\begin {equation} W=-\\frac {1}{2s}\\zeta _{D}(0)-\\frac {1}{2}\\zeta ' _{D}(0)\\,,\\label {W2} \\end {equation}",
"\\begin {equation} W_{{\\mbox {\\scriptsize {div}}}}=-\\frac {1}{2s}\\frac {1}{4\\pi } \\int _{\\partial {\\cal M}}d\\tau \\, \\left [ -\\dot {\\bar {X}}^{\\rho }(\\partial _{\\nu }F_{\\mu \\rho } +\\partial _{\\mu }F_{\\nu \\rho })(1+F^{2})^{-1}_{\\nu \\mu } +\\frac {1}{3}k\\delta _{\\nu }^{\\nu }\\right ] .\\label {Wdiv} \\end {equation}",
"\\begin {equation} \\beta _{\\mu }^{A}\\propto (\\partial _{\\rho }F_{\\nu \\mu })(1+F^{2})^{-1}_{\\nu \\rho }\\,.\\label {beta} \\end {equation}"
],
"latex_norm": [
"$ b _ { 0 } , \\, b _ { 1 } , \\, b _ { 2 } , \\, \\gamma , \\, \\sigma _ { 1 } $",
"$ b _ { 0 } $",
"$ \\sigma _ { 1 } $",
"$ b _ { 0 } + \\sigma _ { 1 } \\Gamma ^ { 2 } $",
"$ k _ { i j } \\Gamma ^ { i } \\Gamma ^ { j } = k \\Gamma ^ { 2 } $",
"$ \\zeta $",
"$ D $",
"$ s $",
"$ \\zeta _ { D } ( 0 ) = a _ { 1 } ( 1 , D , B ) $",
"$ s \\rightarrow 0 $",
"$ ( 1 \\slash 2 \\pi ) \\int _ { \\partial M } d \\tau \\, G _ { \\mu } \\dot { \\bar { X } } ^ { \\mu } $",
"$ i $",
"\\begin{align*} & & \\gamma = \\frac { 1 } { 4 } [ \\frac { 2 } { \\sqrt { 1 + \\Gamma ^ { 2 } } } - 1 ] \\, , \\\\ & & b _ { 1 } = \\frac { 1 } { \\sqrt { - \\Gamma ^ { 2 } } } A r t a n h ( \\sqrt { - \\Gamma ^ { 2 } } ) - \\frac { 1 } { 2 } \\, , \\\\ & & b _ { 2 } = \\frac { 2 } { 1 + \\Gamma ^ { 2 } } \\, , \\\\ & & b _ { 0 } + \\sigma _ { 1 } \\Gamma ^ { 2 } = \\frac { 1 } { 3 } \\, \\, , \\end{align*}",
"\\begin{equation*} \\zeta _ { D } ( s ) = T r ( D ^ { - s } ) \\, \\, . \\end{equation*}",
"\\begin{equation*} W = - \\frac { 1 } { 2 s } \\zeta _ { D } ( 0 ) - \\frac { 1 } { 2 } \\zeta _ { D } ^ { \\prime } ( 0 ) \\, , \\end{equation*}",
"\\begin{equation*} W _ { d i v } = - \\frac { 1 } { 2 s } \\frac { 1 } { 4 \\pi } \\int _ { \\partial M } d \\tau \\, [ - \\dot { \\bar { X } } ^ { \\rho } ( \\partial _ { \\nu } F _ { \\mu \\rho } + \\partial _ { \\mu } F _ { \\nu \\rho } ) ( 1 + F ^ { 2 } ) _ { \\nu \\mu } ^ { - 1 } + \\frac { 1 } { 3 } k \\delta _ { \\nu } ^ { \\nu } ] . \\end{equation*}",
"\\begin{equation*} \\beta _ { \\mu } ^ { A } \\propto ( \\partial _ { \\rho } F _ { \\nu \\mu } ) ( 1 + F ^ { 2 } ) _ { \\nu \\rho } ^ { - 1 } \\, . \\end{equation*}"
],
"latex_expand": [
"$ \\mitb _ { 0 } , \\, \\mitb _ { 1 } , \\, \\mitb _ { 2 } , \\, \\mitgamma , \\, \\mitsigma _ { 1 } $",
"$ \\mitb _ { 0 } $",
"$ \\mitsigma _ { 1 } $",
"$ \\mitb _ { 0 } + \\mitsigma _ { 1 } \\mupGamma ^ { 2 } $",
"$ \\mitk _ { \\miti \\mitj } \\mupGamma ^ { \\miti } \\mupGamma ^ { \\mitj } = \\mitk \\mupGamma ^ { 2 } $",
"$ \\mitzeta $",
"$ \\mitD $",
"$ \\mits $",
"$ \\mitzeta _ { \\mitD } ( 0 ) = \\mita _ { 1 } ( 1 , \\mitD , \\mscrB ) $",
"$ \\mits \\rightarrow 0 $",
"$ ( 1 \\slash 2 \\mitpi ) \\int \\nolimits _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\mitG _ { \\mitmu } \\dot { \\bar { \\mitX } } ^ { \\mitmu } $",
"$ \\miti $",
"\\begin{align*} & & \\mitgamma = \\frac { 1 } { 4 } \\left[ \\frac { 2 } { \\sqrt { 1 + \\mupGamma ^ { 2 } } } - 1 \\right] \\, , \\\\ & & \\mitb _ { 1 } = \\frac { 1 } { \\sqrt { - \\mupGamma ^ { 2 } } } \\mathrm { A r t a n h } ( \\sqrt { - \\mupGamma ^ { 2 } } ) - \\frac { 1 } { 2 } \\, , \\\\ & & \\mitb _ { 2 } = \\frac { 2 } { 1 + \\mupGamma ^ { 2 } } \\, , \\\\ & & \\mitb _ { 0 } + \\mitsigma _ { 1 } \\mupGamma ^ { 2 } = \\frac { 1 } { 3 } \\, \\, , \\end{align*}",
"\\begin{equation*} \\mitzeta _ { \\mitD } ( \\mits ) = \\mathrm { T r } ( \\mitD ^ { - \\mits } ) \\, \\, . \\end{equation*}",
"\\begin{equation*} \\mitW = - \\frac { 1 } { 2 \\mits } \\mitzeta _ { \\mitD } ( 0 ) - \\frac { 1 } { 2 } \\mitzeta _ { \\mitD } ^ { \\prime } ( 0 ) \\, , \\end{equation*}",
"\\begin{equation*} \\mitW _ { \\mathrm { d i v } } = - \\frac { 1 } { 2 \\mits } \\frac { 1 } { 4 \\mitpi } \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\left[ - \\dot { \\bar { \\mitX } } ^ { \\mitrho } ( \\mitpartial _ { \\mitnu } \\mitF _ { \\mitmu \\mitrho } + \\mitpartial _ { \\mitmu } \\mitF _ { \\mitnu \\mitrho } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitmu } ^ { - 1 } + \\frac { 1 } { 3 } \\mitk \\mitdelta _ { \\mitnu } ^ { \\mitnu } \\right] . \\end{equation*}",
"\\begin{equation*} \\mitbeta _ { \\mitmu } ^ { \\mitA } \\propto ( \\mitpartial _ { \\mitrho } \\mitF _ { \\mitnu \\mitmu } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitrho } ^ { - 1 } \\, . \\end{equation*}"
],
"x_min": [
0.3912000060081482,
0.4291999936103821,
0.4921000003814697,
0.3172000050544739,
0.5529000163078308,
0.36629998683929443,
0.2888999879360199,
0.6254000067710876,
0.30480000376701355,
0.16859999299049377,
0.6952000260353088,
0.41600000858306885,
0.367000013589859,
0.41190001368522644,
0.37459999322891235,
0.18799999356269836,
0.3822000026702881
],
"y_min": [
0.1348000019788742,
0.31450000405311584,
0.31839999556541443,
0.33059999346733093,
0.33009999990463257,
0.4790000021457672,
0.4961000084877014,
0.6317999958992004,
0.6615999937057495,
0.6801999807357788,
0.7548999786376953,
0.8389000296592712,
0.16110000014305115,
0.5214999914169312,
0.5814999938011169,
0.7031000256538391,
0.8022000193595886
],
"x_max": [
0.5196999907493591,
0.4465000033378601,
0.5115000009536743,
0.3986999988555908,
0.6744999885559082,
0.3767000138759613,
0.3061999976634979,
0.6351000070571899,
0.4740999937057495,
0.21969999372959137,
0.871399998664856,
0.42289999127388,
0.6434000134468079,
0.5708000063896179,
0.6047000288963318,
0.7595000267028809,
0.600600004196167
],
"y_max": [
0.14800000190734863,
0.3271999955177307,
0.3271999955177307,
0.3447999954223633,
0.34619998931884766,
0.49219998717308044,
0.5063999891281128,
0.6381000280380249,
0.6761999726295471,
0.6899999976158142,
0.7753999829292297,
0.8486999869346619,
0.3010999858379364,
0.5404999852180481,
0.6141999959945679,
0.7411999702453613,
0.8237000107765198
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001125_page06 | {
"latex": [
"\\( A_{\\mu } \\)",
"\\( F_{\\mu \\nu } \\)",
"\\( \\delta _{\\nu }^{\\nu } \\)",
"\\( F \\)",
"\\( \\mathcal {M} \\)",
"\\( {\\cal M} \\)",
"\\( 2\\pi \\chi (\\mathcal {M})=\\int _{\\partial {\\cal M}}d\\tau k \\)",
"\\( \\delta h_{ab}=(\\delta k)h_{ab} \\)",
"\\( \\delta k \\)",
"\\( W_{{\\mbox {\\scriptsize {ren}}}} \\)",
"\\( N_{a}dz^{a},d\\tau \\)",
"\\( \\zeta \\)",
"\\( \\delta \\zeta _{D_{k}}(s)=s\\mbox {Tr}(D^{-s}\\delta k) \\)",
"\\( \\zeta (0|\\delta k,D)=a_{1}(\\delta k,D,{\\mathcal {B}}) \\)",
"\\begin {equation} \\delta W_{{\\mbox {\\scriptsize {ren}}}}= \\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h}\\delta h^{ab}T_{ab} =-\\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h}\\delta k(x)T_{a}^{a}(x)\\,,\\label {T} \\end {equation}",
"\\begin {eqnarray} && \\Delta \\rightarrow (1-k+\\dots )\\Delta ,\\\\ && {\\mathcal {B}}\\rightarrow (1-\\frac {k}{2}+\\dots ){\\mathcal {B}}\\,. \\end {eqnarray}",
"\\begin {equation} \\zeta (s|\\delta k,D)={\\textrm {Tr}}(\\delta kD^{-s})\\plabel {varW} \\end {equation}",
"\\begin {equation} \\plabel {TX}\\delta W_{{\\mbox {\\scriptsize {ren}}}}=-\\frac {1}{2}\\zeta (0|\\delta k,D)\\quad , \\end {equation}",
"\\begin {equation} \\zeta (0|\\delta k,D)=\\int d^{2}z\\sqrt {h}\\delta k(z)T_{a}^{a}(x)\\; .\\plabel {T2} \\end {equation}",
"\\begin {eqnarray} && \\int _{\\cal M}\\sqrt {h}d^{2}zf(z)T_{a}^{a}(z)= \\frac {1}{4\\pi }\\int _{\\partial {\\cal M}}d\\tau \\, \\left [ f(\\tau )\\left ( \\frac {1}{3}k\\delta _{\\nu }^{\\nu } -2\\dot {\\bar {X}}^{\\rho }(\\partial _{\\nu }F_{\\mu \\rho }) (1+F^{2})^{-1}_{\\nu \\mu }\\right ) \\right . \\\\ && \\qquad \\qquad \\left . +(\\nabla _{N}f)\\left ( (-F^{2})_{\\mu \\nu }^{-1/2}{\\textrm {Artanh}}(\\sqrt {-F^{2}})_{\\nu \\mu }- \\frac {1}{2}\\delta _{\\mu }^{\\mu }\\right ) \\right ]\\,. \\end {eqnarray}"
],
"latex_norm": [
"$ A _ { \\mu } $",
"$ F _ { \\mu \\nu } $",
"$ \\delta _ { \\nu } ^ { \\nu } $",
"$ F $",
"$ M $",
"$ M $",
"$ 2 \\pi \\chi ( M ) = \\int _ { \\partial M } d \\tau k $",
"$ \\delta h _ { a b } = ( \\delta k ) h _ { a b } $",
"$ \\delta k $",
"$ W _ { r e n } $",
"$ N _ { a } d z ^ { a } , d \\tau $",
"$ \\zeta $",
"$ \\delta \\zeta _ { D _ { k } } ( s ) = s T r ( D ^ { - s } \\delta k ) $",
"$ \\zeta ( 0 \\vert \\delta k , D ) = a _ { 1 } ( \\delta k , D , B ) $",
"\\begin{equation*} \\delta W _ { r e n } = \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } \\delta h ^ { a b } T _ { a b } = - \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } \\delta k ( x ) T _ { a } ^ { a } ( x ) \\, , \\end{equation*}",
"\\begin{align*} & & \\Delta \\rightarrow ( 1 - k + \\ldots \\, ) \\Delta , \\\\ & & B \\rightarrow ( 1 - \\frac { k } { 2 } + \\ldots \\, ) B \\, . \\end{align*}",
"\\begin{equation*} \\zeta ( s \\vert \\delta k , D ) = T r ( \\delta k D ^ { - s } ) \\end{equation*}",
"\\begin{equation*} \\delta W _ { r e n } = - \\frac { 1 } { 2 } \\zeta ( 0 \\vert \\delta k , D ) \\quad , \\end{equation*}",
"\\begin{equation*} \\zeta ( 0 \\vert \\delta k , D ) = \\int d ^ { 2 } z \\sqrt { h } \\delta k ( z ) T _ { a } ^ { a } ( x ) \\; . \\end{equation*}",
"\\begin{align*} & & \\int _ { M } \\sqrt { h } d ^ { 2 } z f ( z ) T _ { a } ^ { a } ( z ) = \\frac { 1 } { 4 \\pi } \\int _ { \\partial M } d \\tau \\, [ f ( \\tau ) ( \\frac { 1 } { 3 } k \\delta _ { \\nu } ^ { \\nu } - 2 \\dot { \\bar { X } } ^ { \\rho } ( \\partial _ { \\nu } F _ { \\mu \\rho } ) ( 1 + F ^ { 2 } ) _ { \\nu \\mu } ^ { - 1 } ) \\\\ & & \\qquad \\qquad + ( \\nabla _ { N } f ) ( ( - F ^ { 2 } ) _ { \\mu \\nu } ^ { - 1 \\slash 2 } A r t a n h ( \\sqrt { - F ^ { 2 } } ) _ { \\nu \\mu } - \\frac { 1 } { 2 } \\delta _ { \\mu } ^ { \\mu } ) ] \\, . \\end{align*}"
],
"latex_expand": [
"$ \\mitA _ { \\mitmu } $",
"$ \\mitF _ { \\mitmu \\mitnu } $",
"$ \\mitdelta _ { \\mitnu } ^ { \\mitnu } $",
"$ \\mitF $",
"$ \\mscrM $",
"$ \\mitM $",
"$ 2 \\mitpi \\mitchi ( \\mscrM ) = \\int \\nolimits _ { \\mitpartial \\mitM } \\mitd \\mittau \\mitk $",
"$ \\mitdelta \\Planckconst _ { \\mita \\mitb } = ( \\mitdelta \\mitk ) \\Planckconst _ { \\mita \\mitb } $",
"$ \\mitdelta \\mitk $",
"$ \\mitW _ { \\mathrm { r e n } } $",
"$ \\mitN _ { \\mita } \\mitd \\mitz ^ { \\mita } , \\mitd \\mittau $",
"$ \\mitzeta $",
"$ \\mitdelta \\mitzeta _ { \\mitD _ { \\mitk } } ( \\mits ) = \\mits \\mathrm { T r } ( \\mitD ^ { - \\mits } \\mitdelta \\mitk ) $",
"$ \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) = \\mita _ { 1 } ( \\mitdelta \\mitk , \\mitD , \\mscrB ) $",
"\\begin{equation*} \\mitdelta \\mitW _ { \\mathrm { r e n } } = \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\Planckconst ^ { \\mita \\mitb } \\mitT _ { \\mita \\mitb } = - \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\mitk ( \\mitx ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitx ) \\, , \\end{equation*}",
"\\begin{align*} & & \\mupDelta \\rightarrow ( 1 - \\mitk + \\ldots \\, ) \\mupDelta , \\\\ & & \\mscrB \\rightarrow ( 1 - \\frac { \\mitk } { 2 } + \\ldots \\, ) \\mscrB \\, . \\end{align*}",
"\\begin{equation*} \\mitzeta ( \\mits \\vert \\mitdelta \\mitk , \\mitD ) = \\mathrm { T r } ( \\mitdelta \\mitk \\mitD ^ { - \\mits } ) \\end{equation*}",
"\\begin{equation*} \\mitdelta \\mitW _ { \\mathrm { r e n } } = - \\frac { 1 } { 2 } \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) \\quad , \\end{equation*}",
"\\begin{equation*} \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) = \\int \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\mitk ( \\mitz ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitx ) \\; . \\end{equation*}",
"\\begin{align*} & & \\int _ { \\mitM } \\sqrt { \\Planckconst } \\mitd ^ { 2 } \\mitz \\mitf ( \\mitz ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitz ) = \\frac { 1 } { 4 \\mitpi } \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\left[ \\mitf ( \\mittau ) \\left( \\frac { 1 } { 3 } \\mitk \\mitdelta _ { \\mitnu } ^ { \\mitnu } - 2 \\dot { \\bar { \\mitX } } ^ { \\mitrho } ( \\mitpartial _ { \\mitnu } \\mitF _ { \\mitmu \\mitrho } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitmu } ^ { - 1 } \\right) \\right. \\\\ & & \\qquad \\qquad \\left. + ( \\nabla _ { \\mitN } \\mitf ) \\left( ( - \\mitF ^ { 2 } ) _ { \\mitmu \\mitnu } ^ { - 1 \\slash 2 } \\mathrm { A r t a n h } ( \\sqrt { - \\mitF ^ { 2 } } ) _ { \\mitnu \\mitmu } - \\frac { 1 } { 2 } \\mitdelta _ { \\mitmu } ^ { \\mitmu } \\right) \\right] \\, . \\end{align*}"
],
"x_min": [
0.5999000072479248,
0.489300012588501,
0.4036000072956085,
0.6082000136375427,
0.3199999928474426,
0.2881999909877777,
0.32690000534057617,
0.2370000034570694,
0.583299994468689,
0.23360000550746918,
0.678600013256073,
0.487199991941452,
0.27570000290870667,
0.5619000196456909,
0.24050000309944153,
0.4147000014781952,
0.38769999146461487,
0.3801000118255615,
0.3407000005245209,
0.18310000002384186
],
"y_min": [
0.1348000019788742,
0.16940000653266907,
0.20309999585151672,
0.20360000431537628,
0.2378000020980835,
0.2549000084400177,
0.25290000438690186,
0.288100004196167,
0.2890999913215637,
0.37599998712539673,
0.4975999891757965,
0.5663999915122986,
0.6869999766349792,
0.7562999725341797,
0.3280999958515167,
0.4325999915599823,
0.5889000296592712,
0.6435999870300293,
0.7099999785423279,
0.7958999872207642
],
"x_max": [
0.6248000264167786,
0.5196999907493591,
0.4223000109195709,
0.6241000294685364,
0.3449000120162964,
0.31310001015663147,
0.4982999861240387,
0.3668999969959259,
0.6047000288963318,
0.2736999988555908,
0.7621999979019165,
0.4975999891757965,
0.4657000005245209,
0.7829999923706055,
0.7387999892234802,
0.5992000102996826,
0.5950000286102295,
0.5999000072479248,
0.6427000164985657,
0.8271999955177307
],
"y_max": [
0.149399995803833,
0.18359999358654022,
0.21729999780654907,
0.21389999985694885,
0.24809999763965607,
0.2651999890804291,
0.27000001072883606,
0.30320000648498535,
0.29980000853538513,
0.388700008392334,
0.5113000273704529,
0.5795999765396118,
0.7020999789237976,
0.7709000110626221,
0.36419999599456787,
0.4875999987125397,
0.6079000234603882,
0.6758000254631042,
0.745199978351593,
0.8773999810218811
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001125_page07 | {
"latex": [
"\\( F\\rightarrow 0 \\)",
"\\( F_{\\mu \\nu } \\)",
"\\( F_{\\mu \\nu } \\)",
"$F_{\\mu \\nu }$"
],
"latex_norm": [
"$ F \\rightarrow 0 $",
"$ F _ { \\mu \\nu } $",
"$ F _ { \\mu \\nu } $",
"$ F _ { \\mu \\nu } $"
],
"latex_expand": [
"$ \\mitF \\rightarrow 0 $",
"$ \\mitF _ { \\mitmu \\mitnu } $",
"$ \\mitF _ { \\mitmu \\mitnu } $",
"$ \\mitF _ { \\mitmu \\mitnu } $"
],
"x_min": [
0.25850000977516174,
0.45399999618530273,
0.44920000433921814,
0.6496000289916992
],
"y_min": [
0.1348000019788742,
0.5054000020027161,
0.5396000146865845,
0.5907999873161316
],
"x_max": [
0.32420000433921814,
0.4844000041484833,
0.4796000123023987,
0.6800000071525574
],
"y_max": [
0.14550000429153442,
0.519599974155426,
0.5537999868392944,
0.605400025844574
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001129_page01 | {
"latex": [
"${\\cal A}^{(n)}$",
"$n$",
"${\\cal A}^{(0)}$"
],
"latex_norm": [
"$ A ^ { ( n ) } $",
"$ n $",
"$ A ^ { ( 0 ) } $"
],
"latex_expand": [
"$ \\mitA ^ { ( \\mitn ) } $",
"$ \\mitn $",
"$ \\mitA ^ { ( 0 ) } $"
],
"x_min": [
0.4174000024795532,
0.6061000227928162,
0.71670001745224
],
"y_min": [
0.5166000127792358,
0.5220000147819519,
0.5166000127792358
],
"x_max": [
0.44850000739097595,
0.6158000230789185,
0.7457000017166138
],
"y_max": [
0.5268999934196472,
0.5268999934196472,
0.5268999934196472
],
"expr_type": [
"embedded",
"embedded",
"embedded"
]
} |
|
0001129_page02 | {
"latex": [
"$S$",
"$S(g)\\>(g\\in {\\cal D}(\\RR ^4))$",
"$g$",
"$g\\rightarrow S(g)$",
"$S$",
"$\\hbar $",
"$S$",
"\\begin {equation} (\\w +m^2)\\varphi =0\\label {2.1} \\end {equation}"
],
"latex_norm": [
"$ S $",
"$ S ( g ) \\> ( g \\in D ( R ^ { 4 } ) ) $",
"$ g $",
"$ g \\rightarrow S ( g ) $",
"$ S $",
"$ \\hbar $",
"$ S $",
"\\begin{equation*} ( \\square + m ^ { 2 } ) \\varphi = 0 \\end{equation*}"
],
"latex_expand": [
"$ \\mitS $",
"$ \\mitS ( \\mitg ) \\> ( \\mitg \\in \\mitD ( \\BbbR ^ { 4 } ) ) $",
"$ \\mitg $",
"$ \\mitg \\rightarrow \\mitS ( \\mitg ) $",
"$ \\mitS $",
"$ \\hslash $",
"$ \\mitS $",
"\\begin{equation*} ( \\square + \\mitm ^ { 2 } ) \\mitvarphi = 0 \\end{equation*}"
],
"x_min": [
0.49549999833106995,
0.5812000036239624,
0.3248000144958496,
0.23569999635219574,
0.6545000076293945,
0.3359000086784363,
0.6704000234603882,
0.44440001249313354
],
"y_min": [
0.3813000023365021,
0.3799000084400177,
0.3984000086784363,
0.42329999804496765,
0.45210000872612,
0.5659000277519226,
0.7720000147819519,
0.8223000168800354
],
"x_max": [
0.5072000026702881,
0.7117999792098999,
0.33379998803138733,
0.30480000376701355,
0.6661999821662903,
0.3449000120162964,
0.6862999796867371,
0.5557000041007996
],
"y_max": [
0.39010000228881836,
0.39309999346733093,
0.4066999852657318,
0.43549999594688416,
0.4609000086784363,
0.5746999979019165,
0.7842000126838684,
0.8393999934196472
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
} |
|
0001129_page03 | {
"latex": [
"$\\Delta _{\\rm ret,av}$",
"$(\\w +m^2)$",
"$\\bar V_\\pm $",
"$\\Delta =\\Delta _{\\rm ret}-\\Delta _{\\rm av}$",
"$\\Delta =\\Delta _{\\rm ret}-\\Delta _{\\rm av}$",
"${\\cal A}$",
"$\\varphi (f),\\> f\\in {\\cal D}(\\RR ^4)$",
"$\\varphi (f),\\> f\\in {\\cal D}(\\RR ^4)$",
"$<f,g>=\\int d^4x f(x)g(x)$",
"${\\cal A}$",
"$*$",
"$\\pi $",
"$\\omega _0$",
"$\\omega _0:{\\cal A}\\to \\CC $",
"$\\Delta _+$",
"$\\Delta $",
"${\\cal H}$",
"$\\Omega $",
"${\\cal H}$",
"$\\varphi $",
"$\\pi $",
"${\\cal D}\\subset {\\cal H}$",
"$A$",
"${\\cal H}$",
"$\\varphi $",
"${\\cal B}$",
"${\\cal B}$",
"$A$",
"$-\\tau $",
"$\\tau $",
"$\\tau >0$",
"${\\rm supp}\\>g\\, \\subset \\,(-\\tau ,\\tau )\\times {\\rm R}^3$",
"$S$",
"\\begin {equation} (\\w +m^2)\\Delta _{\\rm ret,av} =\\delta , \\quad \\quad {\\rm supp}\\>\\Delta _{\\rm ret,av}\\subset \\bar V_\\pm ,\\label {2.2} \\end {equation}",
"\\begin {eqnarray} &&f\\mapsto \\varphi (f) {\\rm \\ is \\ linear },\\\\ &&\\varphi ((\\w +m^2) f)=0,\\\\ &&\\varphi (f)^{*}=\\varphi (\\bar f),\\\\ &&[\\varphi (f),\\varphi (g)]=i<f,\\Delta *g>.\\end {eqnarray}",
"\\begin {equation} \\omega _0(\\varphi (f)\\varphi (g))=i<f,\\Delta _+ *g>\\label {2.7} \\end {equation}",
"\\begin {displaymath} (\\Omega ,\\pi (A)\\Omega )=\\omega _{0}(A)\\ ,\\ A\\in {\\cal A}\\ . \\end {displaymath}",
"\\begin {eqnarray} &&(i)\\> \\varphi (f)\\in {\\rm End}({\\cal D})\\\\ &&(ii)\\> f\\mapsto \\varphi (f)\\Phi \\quad \\quad {\\rm \\ is \\ continuous}\\quad \\forall \\Phi \\in {\\cal D}.\\end {eqnarray}",
"\\begin {equation} [A(f),\\varphi (g)]=0\\quad \\quad {\\rm if}\\quad (x-y)^2<0\\quad \\forall (x,y)\\in ({\\rm supp}\\>f\\times {\\rm supp}\\>g).\\label {2.8} \\end {equation}",
"\\begin {equation} H_I(t)=-\\int d^3x\\,g(t,{\\vec x})A(t,{\\vec x}),\\quad \\quad g\\in {\\cal D}(\\RR ^4),\\label {2.9} \\end {equation}",
"\\begin {equation} S(g)={\\bf 1}+\\sum _{n=1}^\\infty \\frac {i^n}{n!}\\int dx_1...dx_n\\, T\\bigl ( A(x_1)...A(x_n)\\bigr ) g(x_1)...g(x_n).\\label {2.10} \\end {equation}"
],
"latex_norm": [
"$ \\Delta _ { r e t , a v } $",
"$ ( \\square + m ^ { 2 } ) $",
"$ \\bar { V } _ { \\pm } $",
"$ \\Delta = \\Delta _ { r e t } - \\Delta _ { a v } $",
"$ \\Delta = \\Delta _ { r e t } - \\Delta _ { a v } $",
"$ A $",
"$ \\varphi ( f ) , \\> f \\in D ( R ^ { 4 } ) $",
"$ \\varphi ( f ) , \\> f \\in D ( R ^ { 4 } ) $",
"$ < f , g > = \\int d ^ { 4 } x f ( x ) g ( x ) $",
"$ A $",
"$ \\ast $",
"$ \\pi $",
"$ \\omega _ { 0 } $",
"$ \\omega _ { 0 } : A \\rightarrow C $",
"$ \\Delta _ { + } $",
"$ \\Delta $",
"$ H $",
"$ \\Omega $",
"$ H $",
"$ \\varphi $",
"$ \\pi $",
"$ D \\subset H $",
"$ A $",
"$ H $",
"$ \\varphi $",
"$ B $",
"$ B $",
"$ A $",
"$ - \\tau $",
"$ \\tau $",
"$ \\tau > 0 $",
"$ s u p p \\> g \\, \\subset \\, ( - \\tau , \\tau ) \\times R ^ { 3 } $",
"$ S $",
"\\begin{equation*} ( \\square + m ^ { 2 } ) \\Delta _ { r e t , a v } = \\delta , \\quad \\quad s u p p \\> \\Delta _ { r e t , a v } \\subset \\bar { V } _ { \\pm } , \\end{equation*}",
"\\begin{align*} & & f \\mapsto \\varphi ( f ) ~ i s ~ l i n e a r , \\\\ & & \\varphi ( ( \\square + m ^ { 2 } ) f ) = 0 , \\\\ & & \\varphi ( f ) ^ { \\ast } = \\varphi ( \\bar { f } ) , \\\\ & & [ \\varphi ( f ) , \\varphi ( g ) ] = i < f , \\Delta \\ast g > . \\end{align*}",
"\\begin{equation*} \\omega _ { 0 } ( \\varphi ( f ) \\varphi ( g ) ) = i < f , \\Delta _ { + } \\ast g > \\end{equation*}",
"\\begin{equation*} ( \\Omega , \\pi ( A ) \\Omega ) = \\omega _ { 0 } ( A ) ~ , ~ A \\in A ~ . \\end{equation*}",
"\\begin{align*} & & ( i ) \\> \\varphi ( f ) \\in E n d ( D ) \\\\ & & ( i i ) \\> f \\mapsto \\varphi ( f ) \\Phi \\quad \\quad ~ i s ~ c o n t i n u o u s \\quad \\forall \\Phi \\in D . \\end{align*}",
"\\begin{equation*} [ A ( f ) , \\varphi ( g ) ] = 0 \\quad \\quad i f \\quad ( x - y ) ^ { 2 } < 0 \\quad \\forall ( x , y ) \\in ( s u p p \\> f \\times s u p p \\> g ) . \\end{equation*}",
"\\begin{equation*} H _ { I } ( t ) = - \\int d ^ { 3 } x \\, g ( t , \\vec { x } ) A ( t , \\vec { x } ) , \\quad \\quad g \\in D ( R ^ { 4 } ) , \\end{equation*}",
"\\begin{equation*} S ( g ) = 1 + \\sum _ { n = 1 } ^ { \\infty } \\frac { i ^ { n } } { n ! } \\int d x _ { 1 } . . . d x _ { n } \\, T ( A ( x _ { 1 } ) . . . A ( x _ { n } ) ) g ( x _ { 1 } ) . . . g ( x _ { n } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } $",
"$ ( \\square + \\mitm ^ { 2 } ) $",
"$ \\bar { \\mitV } _ { \\pm } $",
"$ \\mupDelta = \\mupDelta _ { \\mathrm { r e t } } - \\mupDelta _ { \\mathrm { a v } } $",
"$ \\mupDelta = \\mupDelta _ { \\mathrm { r e t } } - \\mupDelta _ { \\mathrm { a v } } $",
"$ \\mitA $",
"$ \\mitvarphi ( \\mitf ) , \\> \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) $",
"$ \\mitvarphi ( \\mitf ) , \\> \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) $",
"$ < \\mitf , \\mitg > = \\int \\nolimits \\mitd ^ { 4 } \\mitx \\mitf ( \\mitx ) \\mitg ( \\mitx ) $",
"$ \\mitA $",
"$ \\ast $",
"$ \\mitpi $",
"$ \\mitomega _ { 0 } $",
"$ \\mitomega _ { 0 } : \\mitA \\rightarrow \\BbbC $",
"$ \\mupDelta _ { + } $",
"$ \\mupDelta $",
"$ \\mitH $",
"$ \\mupOmega $",
"$ \\mitH $",
"$ \\mitvarphi $",
"$ \\mitpi $",
"$ \\mitD \\subset \\mitH $",
"$ \\mitA $",
"$ \\mitH $",
"$ \\mitvarphi $",
"$ \\mitB $",
"$ \\mitB $",
"$ \\mitA $",
"$ - \\mittau $",
"$ \\mittau $",
"$ \\mittau > 0 $",
"$ \\mathrm { s u p p } \\> \\mitg \\, \\subset \\, ( - \\mittau , \\mittau ) \\times \\mathrm { R } ^ { 3 } $",
"$ \\mitS $",
"\\begin{equation*} ( \\square + \\mitm ^ { 2 } ) \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } = \\mitdelta , \\quad \\quad \\mathrm { s u p p } \\> \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } \\subset \\bar { \\mitV } _ { \\pm } , \\end{equation*}",
"\\begin{align*} & & \\mitf \\mapsto \\mitvarphi ( \\mitf ) \\mathrm { ~ i s ~ l i n e a r } , \\\\ & & \\mitvarphi ( ( \\square + \\mitm ^ { 2 } ) \\mitf ) = 0 , \\\\ & & \\mitvarphi ( \\mitf ) ^ { \\ast } = \\mitvarphi ( \\bar { \\mitf } ) , \\\\ & & [ \\mitvarphi ( \\mitf ) , \\mitvarphi ( \\mitg ) ] = \\miti < \\mitf , \\mupDelta \\ast \\mitg > . \\end{align*}",
"\\begin{equation*} \\mitomega _ { 0 } ( \\mitvarphi ( \\mitf ) \\mitvarphi ( \\mitg ) ) = \\miti < \\mitf , \\mupDelta _ { + } \\ast \\mitg > \\end{equation*}",
"\\begin{equation*} ( \\mupOmega , \\mitpi ( \\mitA ) \\mupOmega ) = \\mitomega _ { 0 } ( \\mitA ) ~ , ~ \\mitA \\in \\mitA ~ . \\end{equation*}",
"\\begin{align*} & & ( \\miti ) \\> \\mitvarphi ( \\mitf ) \\in \\mathrm { E n d } ( \\mitD ) \\\\ & & ( \\miti \\miti ) \\> \\mitf \\mapsto \\mitvarphi ( \\mitf ) \\mupPhi \\quad \\quad \\mathrm { ~ i s ~ c o n t i n u o u s } \\quad \\forall \\mupPhi \\in \\mitD . \\end{align*}",
"\\begin{equation*} [ \\mitA ( \\mitf ) , \\mitvarphi ( \\mitg ) ] = 0 \\quad \\quad \\mathrm { i f } \\quad ( \\mitx - \\mity ) ^ { 2 } < 0 \\quad \\forall ( \\mitx , \\mity ) \\in ( \\mathrm { s u p p } \\> \\mitf \\times \\mathrm { s u p p } \\> \\mitg ) . \\end{equation*}",
"\\begin{equation*} \\mitH _ { \\mitI } ( \\mitt ) = - \\int \\mitd ^ { 3 } \\mitx \\, \\mitg ( \\mitt , \\vec { \\mitx } ) \\mitA ( \\mitt , \\vec { \\mitx } ) , \\quad \\quad \\mitg \\in \\mitD ( \\BbbR ^ { 4 } ) , \\end{equation*}",
"\\begin{equation*} \\mitS ( \\mitg ) = 1 + \\sum _ { \\mitn = 1 } ^ { \\infty } \\frac { \\miti ^ { \\mitn } } { \\mitn ! } \\int \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitn } \\, \\mitT \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) \\mitg ( \\mitx _ { 1 } ) . . . \\mitg ( \\mitx _ { \\mitn } ) . \\end{equation*}"
],
"x_min": [
0.4361000061035156,
0.30709999799728394,
0.25920000672340393,
0.7540000081062317,
0.2093999981880188,
0.487199991941452,
0.7200999855995178,
0.2093999981880188,
0.5044999718666077,
0.2660999894142151,
0.326200008392334,
0.46790000796318054,
0.4699000120162964,
0.5860000252723694,
0.2563999891281128,
0.515500009059906,
0.6917999982833862,
0.2093999981880188,
0.23909999430179596,
0.33379998803138733,
0.6585999727249146,
0.6039999723434448,
0.37459999322891235,
0.4174000024795532,
0.23010000586509705,
0.5120999813079834,
0.3012999892234802,
0.6108999848365784,
0.541100025177002,
0.5916000008583069,
0.6621000170707703,
0.24459999799728394,
0.44780001044273376,
0.33660000562667847,
0.40700000524520874,
0.3801000118255615,
0.38769999146461487,
0.3544999957084656,
0.2556999921798706,
0.326200008392334,
0.2736999988555908
],
"y_min": [
0.1543000042438507,
0.1673000007867813,
0.21580000221729279,
0.21729999780654907,
0.2313999980688095,
0.2313999980688095,
0.23000000417232513,
0.24410000443458557,
0.3467000126838684,
0.36230000853538513,
0.36469998955726624,
0.37940001487731934,
0.3935999870300293,
0.3905999958515167,
0.45410001277923584,
0.45410001277923584,
0.45410001277923584,
0.4683000147342682,
0.5311999917030334,
0.5342000126838684,
0.5342000126838684,
0.5454000234603882,
0.6122999787330627,
0.6122999787330627,
0.6294000148773193,
0.6758000254631042,
0.6894999742507935,
0.76419997215271,
0.7939000129699707,
0.7958999872207642,
0.7935000061988831,
0.8051999807357788,
0.8070999979972839,
0.1875,
0.2632000148296356,
0.4253000020980835,
0.5048999786376953,
0.5630000233650208,
0.6455000042915344,
0.7226999998092651,
0.826200008392334
],
"x_max": [
0.4851999878883362,
0.362199991941452,
0.28060001134872437,
0.7975000143051147,
0.2827000021934509,
0.5002999901771545,
0.7961000204086304,
0.2556999921798706,
0.6869000196456909,
0.2799000144004822,
0.3352000117301941,
0.4790000021457672,
0.4885999858379364,
0.6703000068664551,
0.28200000524520874,
0.5299999713897705,
0.7070000171661377,
0.22179999947547913,
0.25360000133514404,
0.3449000120162964,
0.6690000295639038,
0.6543999910354614,
0.38769999146461487,
0.4318999946117401,
0.24120000004768372,
0.5238000154495239,
0.31369999051094055,
0.6236000061035156,
0.5631999969482422,
0.6013000011444092,
0.7063000202178955,
0.4041999876499176,
0.4595000147819519,
0.6607000231742859,
0.6233000159263611,
0.6151000261306763,
0.609499990940094,
0.6765000224113464,
0.7443000078201294,
0.6704000234603882,
0.7264000177383423
],
"y_max": [
0.1665000021457672,
0.17949999868869781,
0.2290000021457672,
0.2280000001192093,
0.24210000038146973,
0.2401999980211258,
0.24320000410079956,
0.2572999894618988,
0.36039999127388,
0.3711000084877014,
0.3709999918937683,
0.38530001044273376,
0.40139999985694885,
0.40130001306533813,
0.4652999937534332,
0.46239998936653137,
0.46239998936653137,
0.4771000146865845,
0.5400000214576721,
0.5425000190734863,
0.5400999784469604,
0.5547000169754028,
0.6211000084877014,
0.6211000084877014,
0.6377000212669373,
0.6840999722480774,
0.6983000040054321,
0.7730000019073486,
0.8022000193595886,
0.8012999892234802,
0.801800012588501,
0.8184000253677368,
0.8159000277519226,
0.20509999990463257,
0.3357999920845032,
0.4408999979496002,
0.5185999870300293,
0.6004999876022339,
0.6625999808311462,
0.753000020980835,
0.864799976348877
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
IBEM Full: Mathematical Expression Annotations on Scientific Pages
A structured version of the IBEM Dataset (Anitei et al., 2023), designed for training and evaluation of mathematical expression detection models. This variant retains full page images and provides bounding box annotations for all mathematical expressions, enabling end-to-end layout analysis and object detection tasks.
Dataset Summary
This dataset is derived from the original IBEM corpus by preserving full-page scientific document images and annotating all mathematical expressions using their corresponding bounding boxes and LaTeX transcriptions. It is intended for:
- Mathematical expression detection (localization and classification)
- Document understanding and layout parsing
- End-to-end systems for recognizing math expressions in context
Each record in the dataset includes:
A full-page image from a LaTeX source document
A unique page identifier
A list of expressions (
expressions
), where each item contains:- The raw LaTeX string (
latex
) - A normalized version of the LaTeX string (
latex_norm
) - An expanded version with macros resolved (
latex_expand
) - Normalized bounding box coordinates (
x_min
,y_min
,x_max
,y_max
) relative to image dimensions - The expression type (
expr_type
: either"isolated"
or"embedded"
)
- The raw LaTeX string (
Dataset Structure
Features
features = Features({
"image": Image(),
"page_id": Value("string"),
"expressions": Sequence({
"latex": Value("string"),
"latex_norm": Value("string"),
"latex_expand": Value("string"),
"x_min": Value("float32"),
"y_min": Value("float32"),
"x_max": Value("float32"),
"y_max": Value("float32"),
"expr_type": Value("string"),
}),
})
Splits
The dataset is split into train
, val
, and test
subsets using the official partition files (Tr*.lst
, Va*.lst
, Ts*.lst
) provided by the original authors.
Source
Citation:
Anitei, D., Sánchez, J. A., & Benedí, J. M. (2023). The IBEM Dataset: a large printed scientific image dataset for indexing and searching mathematical expressions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7963703
Original Dataset Description
The original IBEM dataset consists of 600 LaTeX documents with a total of 8,272 pages, containing:
- 29,603 isolated (displayed) mathematical expressions
- 137,089 embedded (in-line) mathematical expressions
It was created by parsing LaTeX source files from the KDD Cup Collection and supports a wide range of tasks such as:
- Mathematical expression detection and extraction
- LaTeX OCR / recognition
- Search and indexing in scientific literature
Preprocessing Notes
- Bounding boxes are provided in relative coordinates (percentage of image width/height).
- No cropping was applied — images retain their full-page content.
- Multiple expressions per page are stored in a single list under
"expressions"
. - Expression-level
latex
,latex_expand
, andlatex_norm
were directly taken from the original ground truth. - Expressions split across lines are preserved with their full content.
Licensing
This dataset is distributed under the same license as the original IBEM dataset: Creative Commons Attribution 4.0 International (CC BY 4.0)
- Downloads last month
- 60