content
stringlengths
22
815k
id
int64
0
4.91M
def test_assistant_config_no_config_file(fs): """Test whether an `AssistantConfig` object raises `AssistantConfigNotFoundError` when there's no assistant configuration found in the search path. """ with pytest.raises(AssistantConfigNotFoundError): assistant_config = AssistantConfig()
8,400
def is_open(state: int) -> bool: """Return whether a given position (x, y) is open.""" return state == states_id.OPEN
8,401
def gen_model_for_cp2k_simple(molten_salt_system): """ Description: generate initial configuration for pure halide salt by pymatgen module, and transfer cif format to pdb format by Openbabel module Args: molten_salt_system: the simulated system Returns: no return """ global dir_molten_salt_system global total_atoms os.chdir(dir_molten_salt_system) ICSD_para_list = get_info_from_ICSD_file(molten_salt_system) spacegroup, unit_cell_list, element_list, fraction_coords_list, Z_number = get_structure_parameters(ICSD_para_list) print(spacegroup, unit_cell_list, element_list, fraction_coords_list, Z_number) # use pymatgen module to build initial configuration lattice = pmg.Lattice.from_parameters(a=unit_cell_list[0], b=unit_cell_list[1], c=unit_cell_list[2], alpha=unit_cell_list[3], beta=unit_cell_list[4], gamma=unit_cell_list[5]) struct = pmg.Structure.from_spacegroup(spacegroup, lattice, element_list, fraction_coords_list) # determine supercell according to total_atoms Nx = Ny = Nz = round(pow(total_atoms/struct.num_sites, 1/3)) # make supercell, cif format struct.make_supercell([Nx, Ny, Nz]) # write structure into a cif file w = cif.CifWriter(struct) w.write_file(molten_salt_system+'.cif') # transfer cif format to pdb format by Openbabel module os.system('obabel -icif '+molten_salt_system+'.cif -opdb -O '+molten_salt_system+'.pdb') # make necessary modify, e.g. delete excess bonds、angles and impropers modify_pdb(molten_salt_system) # if initial configuration is nonorthogonal, then make a transformation by put the nonorthogonal system into a big orthogonal box using packmol module and get a orthogonal pdb file which is used by cp2k if unit_cell_list[3] != 90 or unit_cell_list[4] != 90 or unit_cell_list[5] != 90: print('nonorthogonal system! need transfored to orthogonal system!') change2orthogonal(molten_salt_system, unit_cell_list, Nx, Ny, Nz)
8,402
def sendJabber(sender, password, receivers, body, senderDomain=NOTIFY_IM_DOMAIN_SENDER, receiverDomain=NOTIFY_IM_DOMAIN_RECEIVER): """ Sends an instant message to the inputted receivers from the given user. The senderDomain is an override to be used when no domain is supplied, same for the receiverDomain. :param sender <str> :param password <str> :param receivers <list> [ <str>, .. ] :param body <str> :param senderDomain <str> :param receiverDomain <str> :return <bool> success """ import xmpp # make sure there is a proper domain as part of the sender if '@' not in sender: sender += '@' + senderDomain # create a jabber user connection user = xmpp.protocol.JID(sender) # create a connection to an xmpp client client = xmpp.Client(user.getDomain(), debug=[]) connection = client.connect(secure=0, use_srv=False) if not connection: text = 'Could not create a connection to xmpp (%s)' % sender err = errors.NotifyError(text) logger.error(err) return False # authenticate the session auth = client.auth(user.getNode(), password, user.getResource()) if not auth: text = 'Jabber not authenticated: (%s, %s)' % (sender, password) err = errors.NotifyError(text) logger.error(err) return False count = 0 # send the message to the inputted receivers for receiver in receivers: if '@' not in receiver: receiver += '@' + receiverDomain # create the message msg = xmpp.protocol.Message(receiver, body) # create the html message html_http = {'xmlns': 'http://jabber.org/protocol/xhtml-im'} html_node = xmpp.Node('html', html_http) enc_msg = body.encode('utf-8') xml = '<body xmlns="http://www.w3.org/1999/xhtml">%s</body>' % enc_msg html_node.addChild(node=xmpp.simplexml.XML2Node(xml)) msg.addChild(node=html_node) client.send(msg) count += 1 return count > 0
8,403
def loss_plot(model, model_str: str, color: str): """Plot the loss plots.""" f, ax = plt.subplots(1, 2, figsize=(18, 6)) ax[0].plot(model.history["loss"], label=f"{model_str} loss", color=color) ax[0].plot( model.history["val_loss"], label=f"{model_str} val loss", color=color, ls="--", ) ax[0].legend() ax[1].plot(model.history["mae"], label=f"{model_str} MAE", color=color) ax[1].plot( model.history["val_mae"], label=f"{model_str} val MAE", color=color, ls="--", ) ax[1].legend() return
8,404
def variant_sanity_check(m): """Convenience function. Given an initialized model try and do a sanity check test with it.""" ref_seq = ref[1]['seq'] pos, stop, refs, alts, p = m.get_variants(ref_seq, seed=10) if len(pos) == 0: raise SkipTest('The defaults do not yield any variants to test') for p, s, r, a in zip(pos, stop, refs, alts): assert r[0] == ref_seq[p] if len(r) != len(a): assert a[0] == ref_seq[p] assert s == p + len(r)
8,405
def directory_log_summary(config): """ Summarise the input and out diretories and key information as text log from matsim config When submitting jobs via the Bitsim Orchestration """ message = [] # add the date message.append(f"Date:{date.today()}") # add paths of the input files message.append("{:=^100s}".format("input files")) message.append(f"network_path:{config['network']['inputNetworkFile']}") message.append(f"plans_path:{config['plans']['inputPlansFile']}") message.append(f"schedule_path:{config['transit']['transitScheduleFile']}") message.append(f"vehicles_path:{config['transit']['vehiclesFile']}") # add paths of the output diretory message.append("{:=^100s}".format("output directory")) message.append(f"output_directory:{config['controler']['outputDirectory']}") # add mobsim setting summary message.append("{:=^100s}".format("mobsim setting")) message.append(f"mobsim:{config['controler']['mobsim']}") message.append(f"Flow_Capacity_Factor:{config[config['controler']['mobsim']]['flowCapacityFactor']}") message.append(f"Storage_Capacity_Factor:{config[config['controler']['mobsim']]['storageCapacityFactor']}") return message
8,406
def search(): """ Searches for users with their name. Excludes the logged in user. """ data = json.loads(request.data) search_term = data['search_term'] this_user = interface.get_user_by_id(get_jwt_identity()) users = interface.search_users(search_term) result = [user.get_public_data() for user in users if not user.id == this_user.id] return {"result": result}, 200
8,407
def test_export_excel(): """Test set the data in an excel file""" reference = pandas.read_csv("tests/tracking.txt", sep='\t') tracking = load.Load("tests/tracking.txt") tracking.export("tests/test.xlsx", fmt="excel") test = pandas.read_excel("tests/test.xlsx") pandas.testing.assert_frame_equal(reference, test) tracking.export("tests/test.xlsx", keys=["imageNumber"], fmt="excel") test = pandas.read_excel("tests/test.xlsx") pandas.testing.assert_frame_equal(reference[["imageNumber"]], test) tracking.export("tests/test.xlsx", indexes=[1], fmt="excel") test = pandas.read_excel("tests/test.xlsx") pandas.testing.assert_frame_equal( reference[reference.imageNumber == 1].reset_index(drop=True), test) tracking.export("tests/test.xlsx", ids=[0], fmt="excel") test = pandas.read_excel("tests/test.xlsx") pandas.testing.assert_frame_equal( reference[reference.id == 0].reset_index(drop=True), test) tracking.export("tests/test.xlsx", ids=[0], indexes=[0], fmt="excel") test = pandas.read_excel("tests/test.xlsx") pandas.testing.assert_frame_equal(reference[(reference.id == 0) & ( reference.imageNumber == 0)].reset_index(drop=True), test)
8,408
def get_optics_mode(optics_mode, energy=energy): """Return magnet strengths of a given opics mode.""" if optics_mode == 'M0': # 2019-08-01 Murilo # tunes fitted to [19.20433 7.31417] for new dipoles segmented model qf_high_en = 1.65458216649285 qd_high_en = -0.11276026973021 qs_high_en = 0.0 sf_high_en = 11.30745884748409 sd_high_en = 10.52221952522381 qf_low_en = 1.65380213538720 qd_low_en = -0.00097311784326 qs_low_en = 0.0 sf_low_en = 11.32009586848142 sd_low_en = 10.37672159358045 else: raise _pyacc_acc.AcceleratorException('Optics mode not recognized.') coeff = (energy-0.15e9)/(3e9-0.15e9) strengths = { 'qf' : qf_low_en + coeff*(qf_high_en - qf_low_en), 'qd' : qd_low_en + coeff*(qd_high_en - qd_low_en), 'qs' : qs_low_en + coeff*(qs_high_en - qs_low_en), 'sf' : sf_low_en + coeff*(sf_high_en - sf_low_en), 'sd' : sd_low_en + coeff*(sd_high_en - sd_low_en), } return strengths
8,409
def load_stock_order(): """加载csv文件,导入并备份为 [.yyyy-mm-dd HH_MM_SS.bak 结尾的文件""" base_dir = './auto_order_dir' file_name_list = os.listdir(base_dir) if file_name_list is None: log.info('No file') data_df = None for file_name in file_name_list: file_base_name, file_extension = os.path.splitext(file_name) if file_extension != '.csv': continue file_path = os.path.join(base_dir, file_name) data_df_tmp = pd.read_csv(file_path, index_col='CodeDigit', header=0, skipinitialspace=True) if data_df is None: data_df_tmp.index = ['%06d' % stock_code for stock_code in data_df_tmp.index] data_df = data_df_tmp else: data_df = data_df.append(data_df_tmp) backup_file_name = file_base_name + datetime.now().strftime('%Y-%m-%d %H_%M_%S') + file_extension + '.bak' os.rename(file_path, os.path.join(base_dir, backup_file_name)) if data_df is not None: has_error = False # data_df.rename(columns={k1: k2 for k1, k2 in # zip(data_df.columns, ['final_position', 'ref_price', 'wap_mode'])}, inplace=True) # 重复数据检测 for name, index in data_df.groupby(level=0).groups.items(): if len(index) > 1: has_error = True log.error('%s 存在%d条重复数据', name, len(index)) col_name_set = set(data_df.columns) for col_name in {'Lot', 'TargetPrice', 'Algo'}: if col_name not in col_name_set: has_error = True log.error('stock_target_df should has %s column', col_name) if has_error: raise ValueError('csv 文件存在格式或内容问题') data_df.rename(columns={ 'Lot': 'final_position', 'TargetPrice': 'ref_price', 'Algo': 'wap_mode', }, inplace=True) return data_df
8,410
def _get_last_block_in_previous_epoch( constants: ConsensusConstants, sub_height_to_hash: Dict[uint32, bytes32], sub_blocks: Dict[bytes32, SubBlockRecord], prev_sb: SubBlockRecord, ) -> SubBlockRecord: """ Retrieves the last block (not sub-block) in the previous epoch, which is infused before the last sub-block in the epoch. This will be used for difficulty adjustment. Args: constants: consensus constants being used for this chain sub_height_to_hash: sub-block height to header hash map for sub-blocks in peak path sub_blocks: dict from header hash to sub-block of all relevant sub-blocks prev_sb: last-sub-block in the current epoch. prev epoch surpassed prev epoch started epoch sur. epoch started v v v v |.B...B....B. B....B...|......B....B.....B...B.|.B.B.B..|..B...B.B.B...|.B.B.B. B.|........ PREV EPOCH CURR EPOCH NEW EPOCH The sub-blocks selected for the timestamps are the last sub-block which is also a block, and which is infused before the final sub-block in the epoch. Block at height 0 is an exception. # TODO: check edge cases here """ height_in_next_epoch = prev_sb.sub_block_height + constants.MAX_SUB_SLOT_SUB_BLOCKS + 3 height_epoch_surpass: uint32 = uint32(height_in_next_epoch - (height_in_next_epoch % constants.EPOCH_SUB_BLOCKS)) height_prev_epoch_surpass: uint32 = uint32(height_epoch_surpass - constants.EPOCH_SUB_BLOCKS) if (height_in_next_epoch - height_epoch_surpass) > (3 * constants.MAX_SUB_SLOT_SUB_BLOCKS): raise ValueError( f"Height at {prev_sb.sub_block_height + 1} should not create a new epoch, it is far past the epoch barrier" ) if height_prev_epoch_surpass == 0: # The genesis block is an edge case, where we measure from the first block in epoch (height 0), as opposed to # the last sub-block in the previous epoch, which would be height -1 return _get_blocks_at_height(sub_height_to_hash, sub_blocks, prev_sb, uint32(0))[0] # If the prev slot is the first slot, the iterations start at 0 # We will compute the timestamps of the last block in epoch, as well as the total iterations at infusion first_sb_in_epoch: SubBlockRecord prev_slot_start_iters: uint128 prev_slot_time_start: uint64 fetched_blocks = _get_blocks_at_height( sub_height_to_hash, sub_blocks, prev_sb, uint32(height_prev_epoch_surpass - constants.MAX_SUB_SLOT_SUB_BLOCKS - 1), uint32(2 * constants.MAX_SUB_SLOT_SUB_BLOCKS + 1), ) # This is the last sb in the slot at which we surpass the height. The last block in epoch will be before this. fetched_index: int = constants.MAX_SUB_SLOT_SUB_BLOCKS last_sb_in_slot: SubBlockRecord = fetched_blocks[fetched_index] fetched_index += 1 assert last_sb_in_slot.sub_block_height == height_prev_epoch_surpass - 1 curr_b: SubBlockRecord = fetched_blocks[fetched_index] assert curr_b.sub_block_height == height_prev_epoch_surpass # Wait until the slot finishes with a challenge chain infusion at start of slot # Note that there are no overflow blocks at the start of new epochs while curr_b.sub_epoch_summary_included is None: last_sb_in_slot = curr_b curr_b = fetched_blocks[fetched_index] fetched_index += 1 # Backtrack to find the last block before the signage point curr_b = sub_blocks[last_sb_in_slot.prev_hash] while curr_b.total_iters > last_sb_in_slot.sp_total_iters(constants) or not curr_b.is_block: curr_b = sub_blocks[curr_b.prev_hash] return curr_b
8,411
def get_current_user(): """Gets the current logged in user""" user = User.get_one_by_field('id', value=get_jwt_identity()) response = { 'name': user['name'], 'username': user['username'], } return jsonify(response)
8,412
def test_dynamism2a(): """ parent.val 17 parent.val 18 parent.val 29 [17, 18, 29] """ n = Node() n1 = Node() n2 = Node() res = [] def func(*events): for ev in events: if n.parent: res.append(n.parent.val) else: res.append(None) n.reaction(func, 'parent.val') loop.iter() with loop: # does not get trigger, because n1.val was not set n.set_parent(n1) n.set_val(42) with loop: n1.set_val(17) n2.set_val(27) with loop: n1.set_val(18) n2.set_val(28) with loop: # does not trigger n.set_parent(n2) with loop: n1.set_val(19) n2.set_val(29) with loop: n.set_parent(None) with loop: n1.set_val(11) n2.set_val(21) print(res)
8,413
def create_kv_store(vm_name, vmdk_path, opts): """ Create the metadata kv store for a volume """ vol_meta = {kv.STATUS: kv.DETACHED, kv.VOL_OPTS: opts, kv.CREATED: time.asctime(time.gmtime()), kv.CREATED_BY: vm_name} return kv.create(vmdk_path, vol_meta)
8,414
def main(): """ Main Program """ pygame.init() # Set the height and width of the screen size = [SCREEN_WIDTH, SCREEN_HEIGHT] screen = pygame.display.set_mode(size) pygame.display.set_caption("SSSSSnake") # Loop until the user clicks the close button. done = False # Used to manage how fast the screen updates clock = pygame.time.Clock() items=[vector(5,5,0)] grid = Grid(35,35) snake = Snake(grid) # -------- Main Program Loop ----------- while not done: for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == 276: newdir=vector(-1,0,0) if event.key == 273: newdir = vector(0, -1, 0) if event.key == 275: newdir = vector(1, 0, 0) if event.key == 274: newdir = vector(0, 1, 0) if snake.head+newdir != snake.poslist[-2]: snake.dir=newdir if event.type == pygame.QUIT: done = True if grid.outside(snake.head+snake.dir) or snake.head+snake.dir in snake.poslist: break screen.fill(WHITE) snake.move(grid, items) grid.draw(screen, snake, items) # ALL CODE TO DRAW SHOULD GO ABOVE THIS COMMENT # Limit to 60 frames per second clock.tick(7+(snake.length-3)/15) # Go ahead and update the screen with what we've drawn. pygame.display.flip() # Be IDLE friendly. If you forget this line, the program will 'hang' # on exit. pygame.quit()
8,415
def mapdict(itemfunc, dictionary): """ Much like the builtin function 'map', but works on dictionaries. *itemfunc* should be a function which takes one parameter, a (key, value) pair, and returns a new (or same) (key, value) pair to go in the dictionary. """ return dict(map(itemfunc, dictionary.items()))
8,416
def get_backup_temp(): """ This is the function for if the BMP280 malfunctions """ try: temp = BNO055.temperature logging.warning("Got backup temperature") return temp except RuntimeError: logging.error("BNO055 not connected") return get_backup_temp_2() except Exception as error: logging.error(error) temp = get_backup_temp_2() return temp
8,417
def test_graph(example): """ Use our example data to see that the dot output produced matches what we expect. """ # The examples won't be byte-for-byte identical with what we produce unless # we sort the lines with open(example + ".dot") as f: expect = "".join([l.strip() for l in f.readlines()]) with open(example + ".json") as f: g = salt_state_graph.Graph(f) got = "".join(g.render("dot").splitlines()) assert got.strip() == expect.strip()
8,418
def on_key_event(event): """ Keyboard interaction :param event: :return: """ key = event.key if key.find("alt") == 0: key = key.split("+")[1] curAxis = plt.gca() if key in "aeiou": curAxis.set_title("Well done!") plt.pause(1) plt.close() else: curAxis.set_title(key + "is not a vowel: try again to find a vowel ...") plt.draw()
8,419
def density_matrix(M, row_part, col_part): """ Given a sparse matrix M, row labels, and column labels, constructs a block matrix where each entry contains the proportion of 1-entries in the corresponding rows and columns. """ m, n = M.shape if m <= 0 or n <= 0: raise ValueError("Matrix M has dimensions with 0 or negative value.") if m != len(row_part): raise ValueError("Row labels must be the same length as the number of rows in M.") if n != len(col_part): raise ValueError("Column labels must be the same length as the number of columns in M.") row_groups = Counter(row_part).keys() col_groups = Counter(col_part).keys() #print row_groups, col_groups row_part = np.array(row_part) col_part = np.array(col_part) row_idx = [np.where(row_part == a)[0] for a in row_groups] col_idx = [np.where(col_part == b)[0] for b in col_groups] #print [len(a) for a in row_idx] #print [len(b) for b in col_idx] density_matrix = [[np.sum(M[row_idx[i]][:, col_idx[j]]) / float(len(row_idx[i]) * len(col_idx[j])) for j in range(len(col_groups))] for i in range(len(row_groups))] return density_matrix
8,420
def isAddressInMyAddressBookSubscriptionsListOrWhitelist(address): """ Am I subscribed to this address, is it in my addressbook or whitelist? """ if isAddressInMyAddressBook(address): return True queryreturn = sqlQuery( '''SELECT address FROM whitelist where address=?''' ''' and enabled = '1' ''', address) if queryreturn != []: return True queryreturn = sqlQuery( '''select address from subscriptions where address=?''' ''' and enabled = '1' ''', address) if queryreturn != []: return True return False
8,421
def GetDateTimeFromTimeStamp(timestamp, tzinfo=None): """Returns the datetime object for a UNIX timestamp. Args: timestamp: A UNIX timestamp in int or float seconds since the epoch (1970-01-01T00:00:00.000000Z). tzinfo: A tzinfo object for the timestamp timezone or None for the local timezone. Returns: The datetime object for a UNIX timestamp. """ return datetime.datetime.fromtimestamp(timestamp, tzinfo)
8,422
def success(parsed_args): """ :param :py:class:`argparse.Namespace` parsed_args: :return: Nowcast system message type :rtype: str """ logger.info( f"FVCOM {parsed_args.model_config} {parsed_args.run_type} run boundary condition " f'file for {parsed_args.run_date.format("YYYY-MM-DD")} ' f"created on {parsed_args.host_name}" ) msg_type = f"success {parsed_args.model_config} {parsed_args.run_type}" return msg_type
8,423
def _kv_to_dict(kv_string): """ Simple splitting of a key value string to dictionary in "Name: <Key>, Values: [<value>]" form :param kv_string: String in the form of "key:value" :return Dictionary of values """ dict = {} if ":" not in kv_string: log.error(f'Keyvalue parameter not in the form of "key:value"') raise ValueError kv = kv_string.split(':') dict['Name'] = f'tag:{kv[0]}' dict['Values'] = [kv[1]] return dict
8,424
def get_column_names(df: pd.DataFrame) -> List[str]: """Get number of particles from the DataFrame, and return a list of column names Args: df: DataFrame Returns: List of columns (e.g. PID_xx) """ c = df.shape[1] if c <= 0: raise IndexError("Please ensure the DataFrame isn't empty!") return ["PID_{0}".format(x + 1) for x in range(c)]
8,425
def get_default(schema, key): """Get default value for key in voluptuous schema.""" for k in schema.keys(): if k == key: if k.default == vol.UNDEFINED: return None return k.default()
8,426
async def send_websocket_messages_from_queue(): """ runs in the background and sends messages to all clients. This is a janus queue, so it can be filled by sync code""" try: while True: item = await app['message_queue'].async_q.get() if len (app['websockets']) == 0: log.debug(f"{datetime.datetime.now()}: there is message to send but no clients") for subscriber in app['websockets']: await subscriber.send_str(item) #assume is it json.dumps already log.info (f"{datetime.datetime.now()}: sent message from queue ") except asyncio.CancelledError: pass finally: print("Cleanup 2")
8,427
def get_font_loader_class(): """Get the font loader associated to the current platform Returns: FontLoader: specialized version of the font loader class. """ if "linux" in sys.platform: return FontLoaderLinux if "win" in sys.platform: return FontLoaderWindows raise NotImplementedError( "This operating system ({}) is not currently supported".format(sys.platform) )
8,428
def _map_tensor_names(original_tensor_name): """ Tensor name mapping """ global_tensor_map = { "model/wte": "word_embedder/w", "model/wpe": "position_embedder/w", "model/ln_f/b": "transformer_decoder/beta", "model/ln_f/g": "transformer_decoder/gamma", } if original_tensor_name in global_tensor_map: return global_tensor_map[original_tensor_name] original_tensor_name_split = original_tensor_name.split('/') layer_tensor_map = { "ln_1/b": "beta", "ln_1/g": "gamma", "ln_2/b": "past_poswise_ln/beta", "ln_2/g": "past_poswise_ln/gamma", "mlp/c_fc/b": "ffn/conv1/bias", "mlp/c_fc/w": "ffn/conv1/kernel", "mlp/c_proj/b": "ffn/conv2/bias", "mlp/c_proj/w": "ffn/conv2/kernel", "attn/c_proj/b": "self_attention/multihead_attention/output/bias", "attn/c_proj/w": "self_attention/multihead_attention/output/kernel", } layer_num = int(original_tensor_name_split[1][1:]) layer_feature = '/'.join(original_tensor_name.split('/')[2:]) if layer_feature in layer_tensor_map: layer_feature_ = layer_tensor_map[layer_feature] tensor_name_ = '/'.join( [ 'transformer_decoder', 'layer_{}'.format(layer_num), layer_feature_ ]) return tensor_name_ else: return original_tensor_name
8,429
def setplot(plotdata=None): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ from clawpack.visclaw import colormaps, geoplot from numpy import linspace if plotdata is None: from clawpack.visclaw.data import ClawPlotData plotdata = ClawPlotData() plotdata.clearfigures() # clear any old figures,axes,items data plotdata.format = 'binary' def timeformat(t): from numpy import mod hours = int(t/3600.) tmin = mod(t,3600.) min = int(tmin/60.) sec = int(mod(tmin,60.)) timestr = '%s:%s:%s' % (hours,str(min).zfill(2),str(sec).zfill(2)) return timestr def title_hours(current_data): from pylab import title t = current_data.t timestr = timeformat(t) title('%s after earthquake' % timestr) #----------------------------------------- # Figure for surface #----------------------------------------- plotfigure = plotdata.new_plotfigure(name='Computational domain', figno=0) plotfigure.kwargs = {'figsize':(8,7)} plotfigure.show = True # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes('pcolor') plotaxes.title = 'Surface' plotaxes.scaled = True def aa(current_data): from pylab import ticklabel_format, xticks, gca, cos, pi, savefig gca().set_aspect(1.) title_hours(current_data) ticklabel_format(useOffset=False) xticks(rotation=20) plotaxes.afteraxes = aa # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') #plotitem.plot_var = geoplot.surface plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = cmin plotitem.pcolor_cmax = cmax plotitem.add_colorbar = True plotitem.colorbar_shrink = 0.7 plotitem.amr_celledges_show = [0,0,0] plotitem.amr_patchedges_show = [0,0,0,0] plotitem.amr_data_show = [1,1,1,1,1,0,0] # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = cmax_land plotitem.add_colorbar = False plotitem.amr_celledges_show = [0] plotitem.amr_patchedges_show = [0,0,0,0] plotitem.amr_data_show = [1,1,1,1,1,0,0] # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = linspace(-3000,-3000,1) plotitem.amr_contour_colors = ['y'] # color on each level plotitem.kwargs = {'linestyles':'solid','linewidths':2} plotitem.amr_contour_show = [1,0,0] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 #----------------------------------------- # Figure for coastal area #----------------------------------------- x1,x2,y1,y2 = [-0.005, 0.016, -0.01, 0.01] plotfigure = plotdata.new_plotfigure(name="coastal area", figno=11) plotfigure.show = True plotfigure.kwargs = {'figsize': (6,7)} # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.scaled = False plotaxes.xlimits = [x1, x2] plotaxes.ylimits = [y1, y2] def aa_withbox(current_data): from pylab import plot x1,x2,y1,y2 = (-0.009259, 0.013796, -0.005093, 0.005000) if current_data.t > 5*60.: plot([x1,x1,x2,x2,x1], [y1,y2,y2,y1,y1], 'w--') aa(current_data) plotaxes.afteraxes = aa_withbox # Water plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.surface #plotitem.plot_var = geoplot.surface_or_depth plotitem.pcolor_cmap = geoplot.tsunami_colormap plotitem.pcolor_cmin = cmin plotitem.pcolor_cmax = cmax plotitem.add_colorbar = True plotitem.colorbar_shrink = 0.4 plotitem.amr_celledges_show = [0,0,0] plotitem.patchedges_show = 0 # Land plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor') plotitem.plot_var = geoplot.land plotitem.pcolor_cmap = geoplot.land_colors plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = cmax_land plotitem.add_colorbar = False plotitem.amr_celledges_show = [0] plotitem.patchedges_show = 0 # add contour lines of bathy if desired: plotitem = plotaxes.new_plotitem(plot_type='2d_contour') #plotitem.show = False plotitem.plot_var = geoplot.topo plotitem.contour_levels = [-2,-1,0,1,2] plotitem.amr_contour_colors = ['yellow'] # color on each level plotitem.kwargs = {'linestyles':'solid','linewidths':1} plotitem.amr_contour_show = [0,0,1,0] plotitem.celledges_show = 0 plotitem.patchedges_show = 0 # Plots of timing (CPU and wall time): def make_timing_plots(plotdata): import os from clawpack.visclaw import plot_timing_stats try: timing_plotdir = plotdata.plotdir + '/_timing_figures' os.system('mkdir -p %s' % timing_plotdir) units = {'comptime':'hours', 'simtime':'hours', 'cell':'billions'} plot_timing_stats.make_plots(outdir=plotdata.outdir, make_pngs=True, plotdir=timing_plotdir, units=units) os.system('cp %s/timing.* %s' % (plotdata.outdir, timing_plotdir)) except: print('*** Error making timing plots') otherfigure = plotdata.new_otherfigure(name='timing', fname='_timing_figures/timing.html') otherfigure.makefig = make_timing_plots #----------------------------------------- # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_gaugenos = 'all' # list of gauges to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html' # pointer for top of index plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 2 # layout of plots plotdata.latex_framesperline = 1 # layout of plots plotdata.latex_makepdf = False # also run pdflatex? plotdata.parallel = True # make multiple frame png's at once return plotdata
8,430
def test_skeleton(opts): """ Template of unittest for skeleton.py :param opts: mapping parameters as dictionary :return: file content as string """ template = get_template("test_skeleton") return template.substitute(opts)
8,431
def get_classpath(obj): """ Return the full module and class path of the obj. For instance, kgof.density.IsotropicNormal Return a string. """ return obj.__class__.__module__ + "." + obj.__class__.__name__
8,432
def bill_content(bill_version: str) -> str: """ Returns the bill text, broken down by the way the XML was structured Args: bill_version (str): bill_version_id used as a fk on the BillContent table Returns: str: String json array of bills """ results = get_bill_contents(bill_version) results = [x.to_dict() for x in results] return json.dumps(results)
8,433
def has_default(column: Column) -> bool: """Column has server or Sqlalchemy default value.""" if has_server_default(column) or column.default: return True else: return False
8,434
def iterations_median(benchmark_result): """A function to calculate the median of the amount of iterations. Parameters ---------- benchmark_result : list of list of list of namedtuple The result from a benchmark. Returns ------- numpy.ndarray A 2D array containing the median of the amount of iterations for every algorithm-problem pair. Note that the indices of a certain algorithm-problem pair in the benchmark_result will be the same as the indices one needs to get the results for that pair. """ return _func_on_data(benchmark_result, statistics.median, 1)
8,435
def _make_list(input_list, proj_ident): """Used by other functions, takes input_list and returns a list with items converted""" if not input_list: return [] output_list = [] for item in input_list: if item is None: output_list.append(None) elif item == '': output_list.append('') elif isinstance(item, list): output_list.append(_make_list(item, proj_ident)) elif isinstance(item, dict): output_list.append(_make_dictionary(item, proj_ident)) elif item is True: output_list.append(True) elif item is False: output_list.append(False) elif isinstance(item, skiboot.Ident): if item.proj == proj_ident: output_list.append(item.num) else: # ident is another project, put the full ident output_list.append([item.proj, item.num]) else: output_list.append(str(item)) return output_list
8,436
def another_method(): """ Another method! :return: """ pass
8,437
def impala_service(docker_ip, docker_services): """Ensure that Impala service is up and responsive.""" runner = CliEntryBasedTestRunner(impala_plugin) # give the server some time to start before checking if it is ready # before adding this sleep there were intermittent fails of the CI/CD with error: # requests.exceptions.ConnectionError: # ('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer')) # More info: https://stackoverflow.com/questions/383738/104-connection-reset-by-peer-socket-error-or-when-does-closing-a-socket-resu time.sleep(3) docker_services.wait_until_responsive( timeout=90.0, pause=0.3, check=lambda: _is_responsive(runner) ) time.sleep(10)
8,438
def monthly_ndvi(): """Get monthly NDVI from MOD13C2 products.""" mod13c2_dir = os.path.join(DATA_DIR, 'raw', 'MOD13C2') months = [m for m in range(1, 13)] cities = [city.id for city in CASE_STUDIES] ndvi = pd.DataFrame(index=cities, columns=months) for city, month in product(CASE_STUDIES, months): aoi = city.aoi['geometry'] raster_path = os.path.join( mod13c2_dir, 'mod13c2_{}.tif'.format(str(month).zfill(2)) ) # Mask MOD13C2 data based on the AOI with rasterio.open(raster_path) as src: data, _ = mask(src, [aoi], crop=True) pixels = data[0, :, :].ravel() # MOD13C2 valid range: -2000 - 10000 pixels = pixels[pixels >= -2000] pixels = pixels[pixels <= 10000] # MOD13C2 scale factor: 0.0001 pixels = pixels.astype(np.float) pixels = pixels * 0.0001 ndvi.at[(city.id, month)] = pixels.mean() return ndvi
8,439
def dvds_s(P, s): """ Derivative of specific volume [m^3 kg K/ kg kJ] w.r.t specific entropy at constant pressure""" T = T_s(P, s) return dvdT(P, T) / dsdT(P, T)
8,440
def serialize(_cls=None, *, ctor_args: Tuple[str, ...] = ()): """Class decorator to register a Proxy class for serialization. Args: - ctor_args: names of the attributes to pass to the constructor when deserializing """ global _registry def wrapped(cls): try: _serialize = cls._serialize if not isinstance(_serialize, (tuple, list)): raise EncodeError(f"Expected tuple or list for _serialize, got {type(_serialize)} for {cls}") except AttributeError: cls._serialize = () _registry[cls.__name__] = (cls, ctor_args) return cls if _cls is None: return wrapped else: return wrapped(_cls)
8,441
def runcmd(args): """ Run a given program/shell command and return its output. Error Handling ============== If the spawned proccess returns a nonzero exit status, it will print the program's ``STDERR`` to the running Python iterpreter's ``STDERR``, cause Python to exit with a return status of 1. """ proc = subprocess.Popen( args, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) if proc.wait() == 1: print(proc.stdout.read().decode()) die(proc.stderr.read().decode()) return proc.stdout.read()
8,442
def get_as_by_asn(asn_): """Return an AS by id. Args: asn: ASN """ try: as_ = Asn.get_by_asn(asn_) except AsnNotFoundError as e: raise exceptions.AsnDoesNotExistException(str(e)) return as_
8,443
def spoken_form(text: str) -> str: """Convert ``text`` into a format compatible with speech lists.""" # TODO: Replace numeric digits with spoken digits return _RE_NONALPHABETIC_CHAR.sub(" ", text.replace("'", " ")).strip()
8,444
def get_default_group_type(): """Get the default group type.""" name = CONF.default_group_type grp_type = {} if name is not None: ctxt = context.get_admin_context() try: grp_type = get_group_type_by_name(ctxt, name) except exception.GroupTypeNotFoundByName: # Couldn't find group type with the name in default_group_type # flag, record this issue and move on LOG.exception('Default group type is not found. ' 'Please check default_group_type config.') return grp_type
8,445
def toHVal(op: Any, suggestedType: Optional[HdlType]=None): """Convert python or hdl value/signal object to hdl value/signal object""" if isinstance(op, Value) or isinstance(op, SignalItem): return op elif isinstance(op, InterfaceBase): return op._sig else: if isinstance(op, int): if suggestedType is not None: return suggestedType.fromPy(op) if op >= 1 << 31: raise TypeError( "Number %d is too big to fit in 32 bit integer of HDL" " use Bits type instead" % op) elif op < -(1 << 31): raise TypeError( "Number %d is too small to fit in 32 bit integer" " of HDL use Bits type instead" % op) try: hType = defaultPyConversions[type(op)] except KeyError: hType = None if hType is None: raise TypeError("Unknown hardware type for %s" % (op.__class__)) return hType.fromPy(op)
8,446
def _make_readiness_probe(port: int) -> Dict[str, Any]: """Generate readiness probe. Args: port (int): service port. Returns: Dict[str, Any]: readiness probe. """ return { "httpGet": { "path": "/openmano/tenants", "port": port, }, "periodSeconds": 10, "timeoutSeconds": 5, "successThreshold": 1, "failureThreshold": 3, }
8,447
def compute_embeddings_and_distances_from_region_adjacency(g,info, metric='euclidean', norm_type = 2, n_jobs=1): """ This method runs local graph clustering for each node in the region adjacency graph. Returns the embeddings for each node in a matrix X. Each row corresponds to an embedding of a node in the region adjacency graph. It also returns the pairwise distance matrix Z. For example, component Z[i,j] is the distance between nodes i and j. Parameters ---------- g: GraphLocal info: list of lists Each element of the list is another list with two elements. The first element is the indices of the a segment, while the second element is the vector representation of that segment. Parameters (optional) --------------------- metric: str Default = 'euclidean' Metric for measuring distances among nodes. For details check: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html norm_type: int Default = 2 Norm for normalization of the embeddings. njobs: int Default = 1 Number of jobs to be run in parallel Returns ------- X: csc matrix The embeddings matrix. Each row corresponds to an embedding of a node in the regiona adjacency graph. Z: 2D np.ndarray The pairwise distance matrix Z. For example, component Z[i,j] is the distance between nodes i and j. """ sum_ = 0 JA = [0] IA = [] A = [] for data in info: vec = data[1]/np.linalg.norm(data[1],norm_type) how_many = len(data[0]) sum_ += how_many JA.append(sum_) IA.extend(list(data[0])) A.extend(list(vec)) X = sp.sparse.csc_matrix((A, IA, JA), shape=(g._num_vertices, len(info))) X = X.transpose() Z = pairwise_distances(X, metric='euclidean', n_jobs=6) return X, Z
8,448
def test_get_worst_rating_shortterm_with_explicit_rating_provider( rtg_inputs_shortterm, ): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_worst_ratings( rtg_inputs_shortterm, rating_provider_input=["SP", "Moody", "Fitch"], tenor="short-term", ) expectations = pd.Series( data=["A-2", "B", "A-1", "D", "B", np.nan, "A-2", "A-3"], name="worst_rtg" ) pd.testing.assert_series_equal(actual, expectations)
8,449
def _parse_assoc(lexer: shlex.shlex) -> AssociativeArray: """Parse an associative Bash array.""" assert lexer.get_token() == "(" result = {} while True: token = lexer.get_token() assert token != lexer.eof if token == ")": break assert token == "[" key = lexer.get_token() assert lexer.get_token() == "]" assert lexer.get_token() == "=" value = _parse_string(lexer.get_token()) result[key] = value return result
8,450
def test_html_whitelist_caption(): """The caption element represents the title of its parent table.""" check_html_output_contains_text(""" <p>The caption provides context to the table.</p> <table> <caption> Table 1. This shows the possible results of flipping two coins. </caption> <tbody> <tr> <th></th> <th>H</th> <th>T</th> </tr> </tbody> </table> """, "<caption>Table 1. This shows the possible results of flipping two coins.</caption>")
8,451
def get_addon_by_name(addon_short_name): """get Addon object from Short Name.""" for addon in osf_settings.ADDONS_AVAILABLE: if addon.short_name == addon_short_name: return addon
8,452
def test_setter_factory(): """Test using a factory setter. """ class FactoryTester(DummyParent): state = False feat = Feature(setter=conditional('1 if driver.state else 2', True)) driver = FactoryTester() driver.feat = None assert driver.d_set_cmd == 2 driver.state = True driver.feat = True assert driver.d_set_cmd == 1
8,453
def _normpdf(x): """Probability density function of a univariate standard Gaussian distribution with zero mean and unit variance. """ return 1.0 / np.sqrt(2.0 * np.pi) * np.exp(-(x * x) / 2.0)
8,454
def scalar_mult(x, y): """A function that computes the product between complex matrices and scalars, complex vectors and scalars or two complex scalars. """ y = y.to(x) re = real(x) * real(y) - imag(x) * imag(y) im = real(x) * imag(y) + imag(x) * real(y) return to_complex(re, im)
8,455
def train_trajectory_encoder(trajectories): """ Train a fixed neural-network encoder that maps variable-length trajectories (of states) into fixed length vectors, trained to reconstruct said trajectories. Returns TrajectoryEncoder. Parameters: trajectories (List of np.ndarray): A list of trajectories, each of shape (?, D), where D is dimension of a state. Returns: encoder (TrajectoryEncoder). """ state_dim = trajectories[0].shape[1] network = TrajectoryEncoder(state_dim) optimizer = th.optim.Adam(network.parameters()) num_trajectories = len(trajectories) num_batches_per_epoch = num_trajectories // BATCH_SIZE # Copy trajectories as we are about to shuffle them in-place trajectories = [x for x in trajectories] for epoch in range(EPOCHS): random.shuffle(trajectories) total_loss = 0 for batch_i in range(num_batches_per_epoch): batch_trajectories = trajectories[batch_i * BATCH_SIZE:(batch_i + 1) * BATCH_SIZE] loss = network.vae_reconstruct_loss(batch_trajectories) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() print("Epoch {}, Avrg loss {}".format(epoch, total_loss / num_batches_per_epoch)) return network
8,456
def flatten_list(x): """Flatten a nested list. Parameters ---------- x : list nested list of lists to flatten Returns ------- x : list flattened input """ if isinstance(x, list): return [a for i in x for a in flatten_list(i)] else: return [x]
8,457
def check_vpg_statuses(url, session, verify): """ Return a list of VPGs which meet the SLA and a list of those which don't """ good, bad = [], [] for vpg in get_api(url, session, "vpgs", verify): name = vpg['VpgName'] status = vpg_statuses(vpg['Status']) if status == vpg_statuses.meeting_sla: good.append(name) else: bad.append(name) return good, bad
8,458
def get_hits(adj_matrix, EPSILON = 0.001): """[summary] hubs & authorities calculation Arguments: adj_matrix {float[][]} -- [input Adjacent matrix lists like [[1, 0], [0, 1]] Keyword Arguments EPSILON {float} -- [factor of change comparision] (default: {0.001}) Returns: [(float[], float[])] -- [return hubs & authorities] """ # initialize to all 1's is_coverage = False hubs = np.ones(adj_matrix.shape[0]) authorities = np.ones(adj_matrix.shape[0]) while not is_coverage: # a = A.T h, h = A a, new_authorities = np.dot(adj_matrix.T, hubs) new_hubs = np.dot(adj_matrix, authorities) # normalize normalize_auth = lambda x: x / sum(new_authorities) normalize_hubs = lambda x: x / sum(new_hubs) new_authorities = normalize_auth(new_authorities) new_hubs = normalize_hubs(new_hubs) # check is coverage diff = abs(sum(new_hubs - hubs) + sum(new_authorities - authorities)) if diff < EPSILON: is_coverage = True else: authorities = new_authorities hubs = new_hubs return (new_hubs, new_authorities)
8,459
def quicksort(seq): """ seq is a list of unsorted numbers return a sorted list of numbers """ ##stop condition: if len(seq) <= 1: return seq ##get the next nodes and process the current node --> call the partition else: low, pivot, high = partition(seq) ## self-call to get the sorted left and sorted right ## to return the sorted list by concantating the sorted left, pivot, and the sorted right return quicksort(low) + [pivot] + quicksort(high)
8,460
def scan_resource( location_rid, scanners, timeout=DEFAULT_TIMEOUT, with_timing=False, with_threading=True, ): """ Return a tuple of: (location, rid, scan_errors, scan_time, scan_results, timings) by running the `scanners` Scanner objects for the file or directory resource with id `rid` at `location` provided as a `location_rid` tuple of (location, rid) for up to `timeout` seconds. If `with_threading` is False, threading is disabled. The returned tuple has these values: - `location` and `rid` are the original arguments. - `scan_errors` is a list of error strings. - `scan_results` is a mapping of scan results from all scanners. - `scan_time` is the duration in seconds to run all scans for this resource. - `timings` is a mapping of scan {scanner.name: execution time in seconds} tracking the execution duration each each scan individually. `timings` is empty unless `with_timing` is True. All these values MUST be serializable/pickable because of the way multi- processing/threading works. """ scan_time = time() location, rid = location_rid results = {} scan_errors = [] timings = {} if with_timing else None if not with_threading: interruptor = fake_interruptible else: interruptor = interruptible # The timeout is a soft deadline for a scanner to stop processing # and start returning values. The kill timeout is otherwise there # as a gatekeeper for runaway processes. # run each scanner in sequence in its own interruptible for scanner in scanners: if with_timing: start = time() try: # pass a deadline that the scanner can opt to honor or not if timeout: deadline = time() + int(timeout / 2.5) else: deadline = sys.maxsize runner = partial(scanner.function, location, deadline=deadline) error, values_mapping = interruptor(runner, timeout=timeout) if error: msg = 'ERROR: for scanner: ' + scanner.name + ':\n' + error scan_errors.append(msg) # the return value of a scanner fun MUST be a mapping if values_mapping: results.update(values_mapping) except Exception: msg = 'ERROR: for scanner: ' + scanner.name + ':\n' + traceback.format_exc() scan_errors.append(msg) finally: if with_timing: timings[scanner.name] = time() - start scan_time = time() - scan_time return location, rid, scan_errors, scan_time, results, timings
8,461
def insert_dummy(): """ This function fills a existing database with dummy data that is red from dummyData.sql """ cnx = get_db() #cnx = mysql.connector.connect(user='tom', password='jerry', # host='127.0.0.1', # database=DB_NAME) cursor = cnx.cursor() click.echo("Insert dummy") with current_app.open_resource('dummyData.sql', 'r') as f: try: for line in f.readlines(): click.echo("line: {}".format(line)) cursor.execute(line) cnx.commit() except mysql.connector.Error as err: click.echo("Failed inserting dummy data: {}".format(err)) exit(1) #cnx.commit() cursor.close()
8,462
def label_generator(df_well, df_tops, column_depth, label_name): """ Generate Formation (or other) Labels to Well Dataframe (useful for machine learning and EDA purpose) Input: df_well is your well dataframe (that originally doesn't have the intended label) df_tops is your label dataframe (this dataframe should ONLY have 2 columns) 1st column is the label name (e.g. formation top names) 2nd column is the depth of each label name column_depth is the name of depth column on your df_well dataframe label_name is the name of label that you want to produce (e.g. FM. LABEL) Output: df_well is your dataframe that now has the labels (e.g. FM. LABEL) """ import numpy as np import pandas as pd # generate list of formation depths and top names fm_tops = df_tops.iloc[:,0] fm_depths = df_tops.iloc[:,1] # create FM. LABEL column to well dataframe # initiate with NaNs df_well[label_name] = np.full(len(df_well), np.nan) indexes = [] topnames = [] for j in range(len(fm_depths)): # search index at which the DEPTH in the well df equals to OR # larger than the DEPTH of each pick in the pick df if (df_well[column_depth].iloc[-1] > fm_depths[j]): index = df_well.index[(df_well[column_depth] >= fm_depths[j])][0] top = fm_tops[j] indexes.append(index) topnames.append(top) # replace the NaN in the LABEL column of well df # at the assigned TOP NAME indexes df_well[label_name].loc[indexes] = topnames # Finally, using pandas "ffill" to fill all the rows # with the TOP NAMES df_well = df_well.fillna(method='ffill') return df_well
8,463
def tclexec(tcl_code): """Run tcl code""" g[TCL][REQUEST] = tcl_code g[TCL][RESULT] = tkeval(tcl_code) return g[TCL][RESULT]
8,464
def cleanFiles(direct, CWD=os.getcwd()): """ removes the year and trailing white space, if there is a year direct holds the file name for the file of the contents of the directory @return list of the cleaned data """ SUBDIR = CWD + "output/" # change directory to ouput folder contents = os.listdir(SUBDIR) LOGDIR = CWD + "log/" # change directory for logging log = open(f"{LOGDIR}log.txt", "w") # opens log file for i in range(0, len(contents)): contents[i] = contents[i].strip("\n") # remove trailing \n if ( "(" in contents[i] or ")" in contents[i] ): # if '(' or ')'exists in the file name to signify if there is a year old = contents[i] # holds the name of the movie for logging purposes contents[i] = contents[i][ :-7 ] # truncates the string to remove year and trailing whitespace log.write( f"Removing date from {old} -> {contents[i]})\n" ) # writes to the log file log.close() return contents
8,465
def test_labels(test_project_data): """A list of labels that correspond to SEED_LABELS.""" labels = [] for label in SEED_LABELS: labels.append(Label.objects.create(name=label, project=test_project_data)) return labels
8,466
def unravel_index_2d(indices, dims): """Unravel index, for 2D inputs only. See Numpy's unravel. Args: indices: <int32> [num_elements], coordinates into 2D row-major tensor. dims: (N, M), dimensions of the 2D tensor. Returns: coordinates: <int32> [2, num_elements], row (1st) and column (2nd) indices. """ row_inds = tf.floordiv(indices, dims[1]) col_inds = tf.floormod(indices, dims[1]) return tf.stack([row_inds, col_inds], axis=0)
8,467
def np_xcycwh_to_xy_min_xy_max(bbox: np.array) -> np.array: """ Convert bbox from shape [xc, yc, w, h] to [xmin, ymin, xmax, ymax] Args: bbox A (tf.Tensor) list a bbox (n, 4) with n the number of bbox to convert Returns: The converted bbox """ # convert the bbox from [xc, yc, w, h] to [xmin, ymin, xmax, ymax]. bbox_xy = np.concatenate([bbox[:, :2] - (bbox[:, 2:] / 2), bbox[:, :2] + (bbox[:, 2:] / 2)], axis=-1) return bbox_xy
8,468
def wmedian(spec, wt, cfwidth=100): """ Performs a weighted median filtering of a 1d spectrum Operates using a cumulative sum curve Parameters ---------- spec : numpy.ndarray Input 1d spectrum to be filtered wt : numpy.ndarray A spectrum of equal length as the input array to provide the weights. cfwidth : int or float Window size for the continuum filter, for the SVD computation. Default to 100. """ # ignore the warning (feature not a bug) old_settings = np.seterr(divide='ignore') spec = np.pad(spec, (cfwidth, cfwidth), 'constant', constant_values=0) wt = np.abs(wt) wt = np.pad(wt, (cfwidth, cfwidth), 'constant', constant_values=(np.min(wt) / 1000., np.min(wt) / 1000.)) # do some striding for speed swin = rolling_window(spec, cfwidth) # create window container array wwin = rolling_window(wt, cfwidth) # create window container array # sort based on data srt = np.argsort(swin, axis=-1) ind = np.ogrid[0:swin.shape[0], 0:swin.shape[1]] sdata = swin[ind[0], srt] swt = wwin[ind[0], srt] # calculate accumulated weights awt = np.cumsum(swt, axis=-1) # new weightsort for normalization and consideration of data nw = (awt - 0.5 * swt) / awt[:, -1][:, np.newaxis] # find the midpoint in the new weight sort s = np.argmin(np.abs(nw - 0.5), axis=-1) sl = np.arange(len(s)) nws = nw[sl, s] nws1 = nw[sl, s - 1] f1 = (nws - 0.5) / (nws - nws1) f2 = (0.5 - nws1) / (nws - nws1) wmed = sdata[sl, s - 1] * f1 + sdata[sl, s] * f2 width = cfwidth // 2 wmed = wmed[width:-width - 1] np.seterr(old_settings['divide']) return wmed
8,469
def execute_command(cmd, logfile): """ Function to execute a non-interactive command and return the output of the command if there is some """ try: rows, columns = subprocess.check_output(["stty", "size"]).decode().split() child = pexpect.spawn( "/bin/bash", ["-c", cmd.strip()], logfile=logfile, encoding="utf-8", timeout=300, ) child.setwinsize(int(rows), int(columns)) child.expect(pexpect.EOF) child.close() return child.before except pexpect.exceptions.ExceptionPexpect as e: print(e) print("Error in command: " + cmd) return None
8,470
def _read(filename, format=None, **kwargs): """ Reads a single event file into a ObsPy Catalog object. """ catalog, format = _read_from_plugin('event', filename, format=format, **kwargs) for event in catalog: event._format = format return catalog
8,471
def compute_encrypted_key_powers(s, k): """ Compute the powers of the custody key s, encrypted using Paillier. The validator (outsourcer) gives these to the provider so they can compute the proof of custody for them. """ spower = 1 enc_spowers = [] for i in range(k + 2): enc_spowers.append(encrypt(spower)) spower = spower * s % r return enc_spowers
8,472
def idiosyncratic_var_vector(returns, idiosyncratic_var_matrix): """ Get the idiosyncratic variance vector Parameters ---------- returns : DataFrame Returns for each ticker and date idiosyncratic_var_matrix : DataFrame Idiosyncratic variance matrix Returns ------- idiosyncratic_var_vector : DataFrame Idiosyncratic variance Vector """ #TODO: Implement function return pd.DataFrame(data=np.diag(idiosyncratic_var_matrix),index=returns.columns)
8,473
def get_ticker_quote_type(ticker: str) -> str: """Returns the quote type of ticker symbol Parameters ---------- ticker : str ticker symbol of organization Returns ------- str quote type of ticker """ yf_ticker = yf.Ticker(ticker) info = yf_ticker.info return info["quoteType"] if "quoteType" in info else ""
8,474
def sensitivity_score(y_true, y_pred): """ Compute classification sensitivity score Classification sensitivity (also named true positive rate or recall) measures the proportion of actual positives (class 1) that are correctly identified as positives. It is defined as follows: TP sensitivity = --------- TP + FN Parameters ---------- y_true : numpy array 1D labels array of ground truth labels y_pred : numpy array 1D labels array of predicted labels Returns ------- Score value (float) """ # Compute the sensitivity score return recall_score(y_true, y_pred)
8,475
def report_tacacs_failure(username: str, existing_fail_count: int, existing_fail_times: list, redis: Redis) -> None: """ Given a failure count and list of timestamps, increment them and stash the results in Redis :param username: Who dun goofed? :param existing_fail_count: How many failures were in the data (before this one we're reporting) :param existing_fail_times: List of failure times (before this one) :param redis: What instantiated Redis object/connection are we using :return: """ # Update the timestamps list with a failure for right now existing_fail_times.append(datetime.now()) # Pickle this list for Redis insertion failure_timestamps = dumps(existing_fail_times) # Setup our failed dict we're stashing in Redis: failed_dict = {"failure_count": existing_fail_count + 1, "failure_timestamps": failure_timestamps} redis.hmset("naas_failures_" + username, failed_dict)
8,476
def wrap_compute_softmax(topi_compute): """Wrap softmax topi compute""" def _compute_softmax(attrs, inputs, out_type): axis = attrs.get_int("axis") return [topi_compute(inputs[0], axis)] return _compute_softmax
8,477
def post(url: str, **kwargs: Any) -> dict: """Helper function for performing a POST request.""" return __make_request(requests.post, url, **kwargs)
8,478
def vote92(path): """Reports of voting in the 1992 U.S. Presidential election. Survey data containing self-reports of vote choice in the 1992 U.S. Presidential election, with numerous covariates, from the 1992 American National Election Studies. A data frame with 909 observations on the following 10 variables. `vote` a factor with levels `Perot` `Clinton` `Bush` `dem` a numeric vector, 1 if the respondent reports identifying with the Democratic party, 0 otherwise. `rep` a numeric vector, 1 if the respondent reports identifying with the Republican party, 0 otherwise `female` a numeric vector, 1 if the respondent is female, 0 otherwise `persfinance` a numeric vector, -1 if the respondent reports that their personal financial situation has gotten worse over the last 12 months, 0 for no change, 1 if better `natlecon` a numeric vector, -1 if the respondent reports that national economic conditions have gotten worse over the last 12 months, 0 for no change, 1 if better `clintondis` a numeric vector, squared difference between respondent's self-placement on a scale measure of political ideology and the respondent's placement of the Democratic candidate, Bill Clinton `bushdis` a numeric vector, squared ideological distance of the respondent from the Republican candidate, President George H.W. Bush `perotdis` a numeric vector, squared ideological distance of the respondent from the Reform Party candidate, Ross Perot Alvarez, R. Michael and Jonathan Nagler. 1995. Economics, issues and the Perot candidacy: Voter choice in the 1992 Presidential election. *American Journal of Political Science*. 39:714-44. Miller, Warren E., Donald R. Kinder, Steven J. Rosenstone and the National Election Studies. 1999. *National Election Studies, 1992: Pre-/Post-Election Study*. Center for Political Studies, University of Michigan: Ann Arbor, Michigan. Inter-University Consortium for Political and Social Research. Study Number 1112. http://dx.doi.org/10.3886/ICPSR01112. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `vote92.csv`. Returns: Tuple of np.ndarray `x_train` with 909 rows and 9 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'vote92.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/pscl/vote92.csv' maybe_download_and_extract(path, url, save_file_name='vote92.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
8,479
def root_title(inst, attr, value): """ Require a title for the defined API. """ if not value: msg = "RAML File does not define an API title." raise InvalidRootNodeError(msg)
8,480
def csr_full_col_slices(arr_data,arr_indices,arr_indptr,indptr,row): """ This algorithm is used for when all column dimensions are full slices with a step of one. It might be worth it to make two passes over the array and use static arrays instead of lists. """ indices = [] data = [] for i,r in enumerate(row,1): indices.extend(arr_indices[arr_indptr[r]:arr_indptr[r+1]]) data.extend(arr_data[arr_indptr[r]:arr_indptr[r+1]]) indptr[i] = indptr[i-1] + len(arr_indices[arr_indptr[r]:arr_indptr[r+1]]) data = np.array(data) indices = np.array(indices) return (data,indices,indptr)
8,481
def slide_period(scraping_period, vacancies): """Move upper period boundary to the value equal to the timestamp of the last found vacancy.""" if not vacancies: # for cases when key 'total' = 0 return None period_start, period_end = scraping_period log(f'Change upper date {strtime_from_unixtime(period_end)}') period_end = define_oldest_vacancy_unixtime(vacancies) return period_start, period_end
8,482
def merge_to_many(gt_data, oba_data, tolerance): """ Merge gt_data dataframe and oba_data dataframe using the nearest value between columns 'gt_data.GT_DateTimeOrigUTC' and 'oba_data.Activity Start Date and Time* (UTC)'. Before merging, the data is grouped by 'GT_Collector' on gt_data and each row on gt_data will be paired with one or none of the rows on oba_data grouped by userId. :param tolerance: maximum allowed difference (seconds) between 'gt_data.GT_DateTimeOrigUTC' and 'oba_data.Activity Start Date and Time* (UTC)'. :param gt_data: dataframe with preprocessed data from ground truth XLSX data file :param oba_data: dataframe with preprocessed data from OBA firebase export CSV data file :return: dataframe with the merged data. """ # List of unique collectors and and unique users list_collectors = gt_data['GT_Collector'].unique() list_oba_users = oba_data['User ID'].unique() # Create empty dataframes to be returned merged_df = pd.DataFrame() matches_df = pd.DataFrame() all_unmatched_trips_df = pd.DataFrame() list_total_trips = [] for collector in list_collectors: print("Merging data for collector ", collector) # Create dataframe for a collector on list_collectors gt_data_collector = gt_data[gt_data["GT_Collector"] == collector] # Make sure dataframe is sorted by 'ClosesTime' gt_data_collector.sort_values('GT_DateTimeOrigUTC', inplace=True) # Add total trips per collector list_total_trips.append(len(gt_data_collector)) i = 0 for oba_user in list_oba_users: # Create a dataframe with the oba_user activities only oba_data_user = oba_data[oba_data["User ID"] == oba_user] # Make sure dataframes is sorted by 'Activity Start Date and Time* (UTC)' oba_data_user.sort_values('Activity Start Date and Time* (UTC)', inplace=True) # Create df for OBA trips without GT Data match oba_unmatched_trips_df = oba_data_user.copy() # Iterate over each trip of one collector to match it with zero to many activities of an oba_data_user for index, row in gt_data_collector.iterrows(): bunch_of_matches = oba_data_user[(oba_data_user['Activity Start Date and Time* (UTC)'] >= row['GT_DateTimeOrigUTC']) & (oba_data_user['Activity Start Date and Time* (UTC)'] <= row['GT_DateTimeDestUTC']) ] # Get the size of bunch_of_matches to create a repeated dataframe to concatenate with if bunch_of_matches.empty: len_bunch = 1 else: len_bunch = bunch_of_matches.shape[0] # Remove matched rows from unmatched trips df oba_unmatched_trips_df = pd.merge(oba_unmatched_trips_df, bunch_of_matches, indicator=True, how='outer').\ query('_merge=="left_only"').drop('_merge', axis=1) subset_df = gt_data_collector.loc[[index], :] # Repeat the firs row `len_bunch` times. new_df = pd.DataFrame(np.repeat(subset_df.values, len_bunch, axis=0)) new_df.columns = gt_data_collector.columns # Add backup Start Time Columns new_df['GT_DateTimeOrigUTC_Backup'] = new_df['GT_DateTimeOrigUTC'] # Remove (Fill with NaN) repeated GT rows unless required no to if len_bunch > 1 and not command_line_args.repeatGtRows: new_df.loc[1:, new_df.columns.difference(['GT_DateTimeOrigUTC', 'GT_LatOrig', 'GT_LonOrig', 'GT_TourID', 'GT_TripID'])] = np.NaN temp_merge = pd.concat([new_df.reset_index(drop=True), bunch_of_matches.reset_index(drop=True)], axis=1) # Make sure the bunch of matches has the 'User Id' even for the empty rows temp_merge["User ID"] = oba_user # Merge running matches with current set of found matches merged_df = pd.concat([merged_df, temp_merge], ignore_index=True) # Add oba_user and number of many matches to the matches_df subset_df["User ID"] = oba_user[-4:] subset_df["GT_NumberOfTransitions"] = 0 if bunch_of_matches.empty else len_bunch matches_df = pd.concat([matches_df, subset_df], ignore_index=True) # Reorder the OBA columns oba_unmatched_trips_df= oba_unmatched_trips_df[constants.OBA_UNMATCHED_NEW_COLUMNS_ORDER] # Add Collector and device to unmatched trips oba_unmatched_trips_df['User ID'] = oba_user[-4:] # oba_unmatched_trips_df['GT_Collector'] = collector oba_unmatched_trips_df.insert(loc=0, column='GT_Collector', value=collector) # Append the unmatched trips per collector/device to the all unmatched df all_unmatched_trips_df = pd.concat([all_unmatched_trips_df, oba_unmatched_trips_df], ignore_index=True) return merged_df, matches_df, all_unmatched_trips_df
8,483
def returnDevPage(): """ Return page for the development input. :return: rendered dev.html web page """ return render_template("dev.html")
8,484
def main(): """Setup.py entry point.""" setuptools.setup( name='ucs_detect', version='0.0.4', description=( "Detects the Unicode Version of an interactive terminal for export"), long_description=codecs.open( _get_here('README.rst'), 'rb', 'utf8').read(), author='Jeff Quast', author_email='contact@jeffquast.com', install_requires=('blessed>=1.17.6<2'), license='MIT', packages=['ucs_detect'], url='https://github.com/jquast/ucs-detect', package_data={ '': ['LICENSE', '*.rst'], }, zip_safe=True, classifiers=[ 'Intended Audience :: Developers', 'Natural Language :: English', 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Localization', 'Topic :: Software Development :: Internationalization', 'Topic :: Terminals', 'Topic :: Text Processing :: General', ], entry_points={ 'console_scripts': ['ucs-detect=ucs_detect:main'], }, keywords=[ 'cjk', 'combining', 'console', 'eastasian', 'emoji' 'emulator', 'terminal', 'unicode', 'wcswidth', 'wcwidth', 'xterm', ], )
8,485
def toeplitz(c, r=None): """Construct a Toeplitz matrix. The Toeplitz matrix has constant diagonals, with ``c`` as its first column and ``r`` as its first row. If ``r`` is not given, ``r == conjugate(c)`` is assumed. Args: c (cupy.ndarray): First column of the matrix. Whatever the actual shape of ``c``, it will be converted to a 1-D array. r (cupy.ndarray, optional): First row of the matrix. If None, ``r = conjugate(c)`` is assumed; in this case, if ``c[0]`` is real, the result is a Hermitian matrix. r[0] is ignored; the first row of the returned matrix is ``[c[0], r[1:]]``. Whatever the actual shape of ``r``, it will be converted to a 1-D array. Returns: cupy.ndarray: The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. .. seealso:: :func:`cupyx.scipy.linalg.circulant` .. seealso:: :func:`cupyx.scipy.linalg.hankel` .. seealso:: :func:`cupyx.scipy.linalg.solve_toeplitz` .. seealso:: :func:`cupyx.scipy.linalg.fiedler` .. seealso:: :func:`scipy.linalg.toeplitz` """ c = c.ravel() r = c.conjugate() if r is None else r.ravel() return _create_toeplitz_matrix(c[::-1], r[1:])
8,486
def get_humbug_integrations(args: argparse.Namespace) -> None: """ Get list of Humbug integrations. """ session = SessionLocal() try: query = session.query(HumbugEvent) if args.id is not None: query = query.filter(HumbugEvent.id == args.id) if args.group is not None: query = query.filter(HumbugEvent.group_id == args.group) if args.journal is not None: query = query.filter(HumbugEvent.journal_id == args.journal) events = query.all() events_response = HumbugIntegrationListResponse( integrations=[ HumbugIntegrationResponse( id=event.id, group_id=event.group_id, journal_id=event.journal_id, created_at=event.created_at, updated_at=event.updated_at, ) for event in events ] ) print(events_response.json()) except Exception as e: print(str(e)) finally: session.close()
8,487
def download_and_unzip(url, zip_path, csv_path, data_folder): """Downloads and unzips an online csv file. Args: url: Web address zip_path: Path to download zip file csv_path: Expected path to csv file data_folder: Folder in which data is stored. """ download_from_url(url, zip_path) unzip(zip_path, csv_path, data_folder) print('Done.')
8,488
def generate_config(config_fp, **kwargs): """ Creates a config file. :param config_fp: Filepath to the config :param \*\*kwargs: Source for the config data """ _local = {} for k, v in kwargs.items(): _local[k] = v with open(config_fp, 'w') as c: _dump(_local, c, indent=2)
8,489
def download_private_id_set_from_gcp(public_storage_bucket, storage_base_path): """Downloads private ID set file from cloud storage. Args: public_storage_bucket (google.cloud.storage.bucket.Bucket): google storage bucket where private_id_set.json is stored. storage_base_path (str): The storage base path of the bucket. Returns: str: private ID set file full path. """ storage_id_set_path = os.path.join(storage_base_path, 'content/private_id_set.json') if storage_base_path else \ 'content/private_id_set.json' private_artifacts_path = '/home/runner/work/content-private/content-private/content/artifacts' private_id_set_path = private_artifacts_path + '/private_id_set.json' if not os.path.exists(private_artifacts_path): os.mkdir(private_artifacts_path) is_private_id_set_file_exist = id_set_file_exists_in_bucket(public_storage_bucket, storage_id_set_path) if is_private_id_set_file_exist: index_blob = public_storage_bucket.blob(storage_id_set_path) index_blob.download_to_filename(private_id_set_path) else: create_empty_id_set_in_artifacts(private_id_set_path) return private_id_set_path if os.path.exists(private_id_set_path) else ''
8,490
def get_inflows_from_parent_model(parent_reach_data, inset_reach_data, mf2005_parent_sfr_outputfile, mf6_parent_sfr_budget_file, inset_grid, active_area=None): """Get places in an inset model SFR network where the parent SFR network crosses the inset model boundary, using common line ID numbers from parent and inset reach datasets. MF2005 or MF6 supported; if either dataset contains only reach numbers (is MODFLOW-6), the reach numbers are used as segment numbers, with each segment only having one reach. Parameters ---------- parent_reach_data : str (filepath) or DataFrame SFR reach data for parent model. Must include columns: line_id : int; unique identifier for hydrography line that each reach is based on rno : int; unique identifier for each reach. Optional if iseg and ireach columns are included. iseg : int; unique identifier for each segment. Optional if rno is included. ireach : int; unique identifier for each reach. Optional if rno is included. geometry : shapely.geometry object representing location of each reach inset_reach_data : str (filepath) or DataFrame SFR reach data for inset model. Same columns as parent_reach_data, except a geometry column isn't needed. line_id values must correspond to same source hydrography as those in parent_reach_data. mf2005_parent_sfr_outputfile : str (filepath) Modflow-2005 style SFR text file budget output. mf6_parent_sfr_budget_file : str (filepath) Modflow-6 style SFR binary budget output inset_grid : flopy.discretization.StructuredGrid instance describing model grid Must be in same coordinate system as geometries in parent_reach_data. Required only if active_area is None. active_area : shapely.geometry.Polygon object Describes the area of the inset model where SFR is applied. Used to find inset reaches from parent model. Must be in same coordinate system as geometries in parent_reach_data. Required only if inset_grid is None. Returns ------- inflows : DataFrame Columns: parent_segment : parent model segment parent_reach : parent model reach parent_rno : parent model reach number line_id : unique identifier for hydrography line that each reach is based on """ locations = get_inflow_locations_from_parent_model(parent_reach_data=parent_reach_data, inset_reach_data=inset_reach_data, inset_grid=inset_grid, active_area=active_area) df = read_sfr_output(mf2005_sfr_outputfile=mf2005_parent_sfr_outputfile, mf6_sfr_stage_file=None, mf6_sfr_budget_file=mf6_parent_sfr_budget_file, model=None) j=2
8,491
def test_load_simulated(test_file): """Test joining simulation info onto telescope events""" from ctapipe.io.tableloader import TableLoader _, dl1_file = test_file with TableLoader(dl1_file, load_simulated=True) as table_loader: table = table_loader.read_subarray_events() assert "true_energy" in table.colnames table = table_loader.read_telescope_events([25]) assert "true_energy" in table.colnames
8,492
def matmul_op_select(x1_shape, x2_shape, transpose_x1, transpose_x2): """select matmul op""" x1_dim, x2_dim = len(x1_shape), len(x2_shape) if x1_dim == 1 and x2_dim == 1: matmul_op = P.Mul() elif x1_dim <= 2 and x2_dim <= 2: transpose_x1 = False if x1_dim == 1 else transpose_x1 transpose_x2 = False if x2_dim == 1 else transpose_x2 matmul_op = P.MatMul(transpose_x1, transpose_x2) elif x1_dim == 1 and x2_dim > 2: matmul_op = P.BatchMatMul(False, transpose_x2) elif x1_dim > 2 and x2_dim == 1: matmul_op = P.BatchMatMul(transpose_x1, False) else: matmul_op = P.BatchMatMul(transpose_x1, transpose_x2) return matmul_op
8,493
def test_set_proxy_windows(): """ Test to make sure that we correctly set the proxy info on Windows """ calls = [ call( hive="HKEY_CURRENT_USER", key="SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Internet Settings", vname="ProxyServer", vdata=( "http=192.168.0.1:3128;https=192.168.0.1:3128;ftp=192.168.0.1:3128;" ), ), call( hive="HKEY_CURRENT_USER", key="SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Internet Settings", vname="ProxyEnable", vdata=1, vtype="REG_DWORD", ), call( hive="HKEY_CURRENT_USER", key="SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Internet Settings", vname="ProxyOverride", vdata="<local>;.moo.com;.salt.com", ), ] mock_reg = MagicMock() mock_cmd = MagicMock() with patch.dict(proxy.__grains__, {"os": "Windows"}), patch.dict( proxy.__utils__, {"reg.set_value": mock_reg} ), patch.dict(proxy.__salt__, {"cmd.run": mock_cmd}): out = proxy.set_proxy_win( server="192.168.0.1", port=3128, bypass_hosts=[".moo.com", ".salt.com"], ) mock_reg.assert_has_calls(calls) mock_cmd.assert_called_once_with("netsh winhttp import proxy source=ie") assert out
8,494
def Align4(i): """Round up to the nearest multiple of 4. See unit tests.""" return ((i-1) | 3) + 1
8,495
def poggendorff_parameters(illusion_strength=0, difference=0): """Compute Parameters for Poggendorff Illusion. Parameters ---------- illusion_strength : float The strength of the line tilt in biasing the perception of an uncontinuous single line. Specifically, the orientation of the lines in degrees, 0 being vertical and larger values (in magnitude; no change with positive or negative sign) rotating clockwise. difference : float The objective magnitude of the lines discontinuity. Specifically, the amount of displacement of the right line relative to the left line. A positive sign represents the right line displaced higher up, and a negative sign represents it displaced lower down. Returns ------- dict Dictionary of parameters of the Poggendorff illusion. """ y_offset = difference # Coordinates of left line angle = 90 - illusion_strength angle = angle if illusion_strength >= 0 else -angle coord, _, _ = _coord_line(x1=0, y1=0, angle=-angle, length=0.75) left_x1, left_y1, left_x2, left_y2 = coord # Right line coord, _, _ = _coord_line(x1=0, y1=y_offset, angle=180 - angle, length=0.75) right_x1, right_y1, right_x2, right_y2 = coord parameters = { "Illusion": "Poggendorff", "Illusion_Strength": illusion_strength, "Difference": difference, "Illusion_Type": "Congruent" if illusion_strength > 0 else "Incongruent", "Left_x1": left_x1, "Left_y1": left_y1, "Left_x2": left_x2, "Left_y2": left_y2, "Right_x1": right_x1, "Right_y1": right_y1, "Right_x2": right_x2, "Right_y2": right_y2, "Angle": angle, "Rectangle_Height": 1.75, "Rectangle_Width": 0.5, "Rectangle_y": 0, } return parameters
8,496
def download_blobs(blobs: List[storage.Blob]) -> List[Tuple[str, str]]: """Download blobs from bucket.""" files_list = [] for blob in blobs: tmp_file_name = "-".join(blob.name.split("/")[1:]) file_name = blob.name.split("/")[-1] tmp_file_path = f"/tmp/{tmp_file_name}" blob.download_to_filename(tmp_file_path) files_list.append((file_name, tmp_file_path)) return files_list
8,497
def _test_kron_col_single_matrix(n, k, m): """Do one matrix test of utils.kron_col().""" X = np.random.random((n,k)) Y = np.random.random((m,k)) XY = roi.utils.kron_col(X, Y) assert XY.ndim == 2 assert XY.shape[0] == X.shape[0] * Y.shape[0] assert XY.shape[1] == X.shape[1] for i in range(n): assert np.allclose(XY[i*m:(i+1)*m], X[i]*Y)
8,498
def testMarkov2(X, ns, alpha, verbose=True): """Test second-order Markovianity of symbolic sequence X with ns symbols. Null hypothesis: first-order MC <=> p(X[t+1] | X[t], X[t-1]) = p(X[t+1] | X[t], X[t-1], X[t-2]) cf. Kullback, Technometrics (1962), Table 10.2. Args: x: symbolic sequence, symbols = [0, 1, 2, ...] ns: number of symbols alpha: significance level Returns: p: p-value of the Chi2 test for independence """ if verbose: print("\nSECOND-ORDER MARKOVIANITY:") n = len(X) f_ijkl = np.zeros((ns,ns,ns,ns)) f_ijk = np.zeros((ns,ns,ns)) f_jkl = np.zeros((ns,ns,ns)) f_jk = np.zeros((ns,ns)) for t in range(n-3): i = X[t] j = X[t+1] k = X[t+2] l = X[t+3] f_ijkl[i,j,k,l] += 1.0 f_ijk[i,j,k] += 1.0 f_jkl[j,k,l] += 1.0 f_jk[j,k] += 1.0 T = 0.0 for i, j, k, l in np.ndindex(f_ijkl.shape): f = f_ijkl[i,j,k,l]*f_ijk[i,j,k]*f_jkl[j,k,l]*f_jk[j,k] if (f > 0): num_ = f_ijkl[i,j,k,l]*f_jk[j,k] den_ = f_ijk[i,j,k]*f_jkl[j,k,l] T += (f_ijkl[i,j,k,l]*np.log(num_/den_)) T *= 2.0 df = ns*ns*(ns-1)*(ns-1) #p = chi2test(T, df, alpha) p = chi2.sf(T, df, loc=0, scale=1) if verbose: print(f"p: {p:.2e} | t: {T:.3f} | df: {df:.1f}") return p
8,499