content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar):
"""Estimate the spherical variance values.
Parameters
----------
responsibilities : array-like of shape (n_samples, n_components)
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
means : array-like of shape (n_components, n_features)
reg_covar : float
Returns
-------
variances : array, shape (n_components,)
The variance values of each components.
"""
return _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar).mean(1)
| 6,200 |
def parsed_codebook_importer(codebook):
"""
Import the parsed CPS codebook
Parameters:
codebook (str): the filename of the parsed codebook
Returns:
dataframe
"""
path_finder('codebooks')
skip = row_skipper(codebook)
codebook = pd.read_csv(codebook, sep='\t', skiprows=skip).dropna()
os.chdir('..')
return codebook
| 6,201 |
def put_job_failure(job, message):
"""Notify CodePipeline of a failed job
Args:
job: The CodePipeline job ID
message: A message to be logged relating to the job status
Raises:
Exception: Any exception thrown by .put_job_failure_result()
"""
print('Putting job failure')
print(message)
code_pipeline.put_job_failure_result(jobId=job, failureDetails={'message': message, 'type': 'JobFailed'})
| 6,202 |
def get_html(url):
"""Returns html content of the url. Retries until successful without overloading the server."""
while True:
# Retry until succesful
try:
sleep(2)
debug('Crawling %s' % url)
html = urllib2.urlopen(url).read()
return html
except urllib2.HTTPError, e:
warn('HTTP error %s while crawling %s. Trying again.' % (e, url))
sleep(5)
continue
except urllib2.URLError, e:
warn('URL error %s while crawling %s. Trying again.' % (e, url))
sleep(5)
continue
| 6,203 |
def clear_cache():
"""Clears featurization cache."""
global SMILES_TO_GRAPH
SMILES_TO_GRAPH = {}
| 6,204 |
def map_min(process):
"""
"""
param_dict = {'ignore_nodata': 'bool'}
return map_default(process, 'min', 'reduce', param_dict)
| 6,205 |
def geoname_exhaustive_search(request, searchstring):
"""
List all children of a geoname filtered by a list of featurecodes
"""
if request.query_params.get('fcode'):
fcodes = [ s.upper() for s in request.query_params.get('fcode').split(',')]
else:
fcodes = []
limit = request.query_params.get('limit') or 50
if request.method == 'GET':
geonames = Geoname.objects \
.filter(
Q(englishname__startswith=searchstring) |
Q(alternatenames__alternatename__startswith=searchstring,
alternatenames__iscolloquial=0
)
) \
.order_by('-population','-fcode__searchorder_detail').distinct()
if len(fcodes) > 0:
geonames = geonames.filter(fcode__code__in=fcodes)
if limit:
geonames = geonames[:limit]
serializer = GeonameSearchSerializer(geonames,many=True)
return JsonResponse(serializer.data, safe=False)
| 6,206 |
def guess_temperature_sensor():
"""
Try guessing the location of the installed temperature sensor
"""
devices = listdir(DEVICE_FOLDER)
devices = [device for device in devices if device.startswith('28-')]
if devices:
# print "Found", len(devices), "devices which maybe temperature sensors."
return DEVICE_FOLDER + devices[0] + DEVICE_SUFFIX
else:
sys.exit("Sorry, no temperature sensors found")
| 6,207 |
def help_systempowerlimit(self, commands):
"""
Show:
limit: Shows the power limit for a server
=======================================================
Usage:
show system power limit -i {serverid}
-i -- serverid, the target server number. Typically 1-48
[-h] -help; display the correct syntax
########################################################
Set:
limit: Sets the power limit for a server
=======================================================
Usage:
set system power limit -i {serverid} -l {powerlimit}
-i -- serverid, the target server number. Typically 1-48
-l -- Power limit per server in watts
[-h] -help; display the correct syntax
"""
| 6,208 |
def count_reads(regions_list, params):
""" Count reads from bam within regions (counts position of cutsite to prevent double-counting) """
bam_f = params.bam
read_shift = params.read_shift
bam_obj = pysam.AlignmentFile(bam_f, "rb")
log_q = params.log_q
logger = TobiasLogger("", params.verbosity, log_q) #sending all logger calls to log_q
#Count per region
read_count = 0
logger.spam("Started counting region_chunk ({0} -> {1})".format("_".join([str(element) for element in regions_list[0]]), "_".join([str(element) for element in regions_list[-1]])))
for region in regions_list:
read_lst = ReadList().from_bam(bam_obj, region)
for read in read_lst:
read.get_cutsite(read_shift)
if read.cutsite > region.start and read.cutsite < region.end: #only reads within borders
read_count += 1
logger.spam("Finished counting region_chunk ({0} -> {1})".format("_".join([str(element) for element in regions_list[0]]), "_".join([str(element) for element in regions_list[-1]])))
bam_obj.close()
return(read_count)
| 6,209 |
def rgbImage2grayVector(img):
""" Turns a row and column rgb image into a 1D grayscale vector """
gray = []
for row_index in range(0, len(img)):
for pixel_index, pixel in enumerate(img[row_index]):
gray.append(rgbPixel2grayscaleValue(pixel))
return gray
| 6,210 |
def compute_MSE(predicted, observed):
""" predicted is scalar and observed as array"""
if len(observed) == 0:
return 0
err = 0
for o in observed:
err += (predicted - o)**2/predicted
return err/len(observed)
| 6,211 |
def log_sum(log_u):
"""Compute `log(sum(exp(log_u)))`"""
if len(log_u) == 0:
return NEG_INF
maxi = np.argmax(log_u)
max = log_u[maxi]
if max == NEG_INF:
return max
else:
exp = log_u - max
np.exp(exp, out = exp)
return np.log1p(np.sum(exp[:maxi]) + np.sum(exp[maxi + 1:])) + max
| 6,212 |
def rand_2d(rand, width: int, height: int):
"""
Infinite stream of coordinates on a 2D plane from the random source provided.
Assumes indexing [(0, width - 1), (0, height - 1)].
:param rand: Random source with method <i>randint(min, max)</i> with [min, max].
:param width: Width, first dimension
:param height: Height, second dimension
"""
width -= 1
height -= 1
while True:
yield rand.randint(0, width), rand.randint(0, height)
| 6,213 |
def gather_basic_file_info(filename: str):
"""
Build out the basic file metadata that can be gathered from any file on the file system.
Parameters
----------
filename
full file path to a file
Returns
-------
dict
basic file attributes as dict
"""
if not os.path.exists(filename):
raise EnvironmentError('{} does not exist'.format(filename))
elif not os.path.isfile(filename):
raise EnvironmentError('{} is not a file'.format(filename))
last_modified_time = None
created_time = None
filesize = None
time_added = None
try:
stat_blob = os.stat(filename)
last_modified_time = datetime.fromtimestamp(stat_blob.st_mtime, tz=timezone.utc)
created_time = datetime.fromtimestamp(stat_blob.st_ctime, tz=timezone.utc)
filesize = np.around(stat_blob.st_size / 1024, 3) # size in kB
time_added = datetime.now(tz=timezone.utc)
except FileNotFoundError:
print('Unable to read from {}'.format(filename))
return {'file_path': filename, 'last_modified_time_utc': last_modified_time,
'created_time_utc': created_time, 'file_size_kb': filesize, 'time_added': time_added}
| 6,214 |
def special_value_sub(lhs, rhs):
""" Subtraction between special values or between special values and
numbers """
if is_nan(lhs):
return FP_QNaN(lhs.precision)
elif is_nan(rhs):
return FP_QNaN(rhs.precision)
elif (is_plus_infty(lhs) and is_plus_infty(rhs)) or \
(is_minus_infty(lhs) and is_minus_infty(rhs)):
return FP_QNaN(lhs.precision)
elif is_plus_infty(lhs) and is_minus_infty(rhs):
return lhs
elif is_minus_infty(lhs) and is_plus_infty(rhs):
return lhs
elif is_infty(lhs) and is_zero(rhs):
return lhs
elif is_infty(lhs):
# invalid inf - inf excluded previous
return lhs
elif is_infty(rhs):
return -rhs
else:
return lhs + (-rhs)
| 6,215 |
def parse_git_repo(git_repo):
"""Parse a git repository URL.
git-clone(1) lists these as examples of supported URLs:
- ssh://[user@]host.xz[:port]/path/to/repo.git/
- git://host.xz[:port]/path/to/repo.git/
- http[s]://host.xz[:port]/path/to/repo.git/
- ftp[s]://host.xz[:port]/path/to/repo.git/
- rsync://host.xz/path/to/repo.git/
- [user@]host.xz:path/to/repo.git/
- ssh://[user@]host.xz[:port]/~[user]/path/to/repo.git/
- git://host.xz[:port]/~[user]/path/to/repo.git/
- [user@]host.xz:/~[user]/path/to/repo.git/
- /path/to/repo.git/
- file:///path/to/repo.git/
This function doesn't support the <transport>::<address> syntax, and it
doesn't understand insteadOf shortcuts from ~/.gitconfig.
"""
if '://' in git_repo:
return urlparse.urlparse(git_repo)
if ':' in git_repo:
netloc, colon, path = git_repo.partition(':')
return urlparse.ParseResult('ssh', netloc, path, '', '', '')
else:
return urlparse.ParseResult('file', '', git_repo, '', '', '')
| 6,216 |
def make_wavefunction_list(circuit, include_initial_wavefunction=True):
""" simulate the circuit, keeping track of the state vectors at ench step"""
wavefunctions = []
simulator = cirq.Simulator()
for i, step in enumerate(simulator.simulate_moment_steps(circuit)):
wavefunction_scrambled = step.state_vector()
wavefunction = unscramble_wavefunction(wavefunction_scrambled)
wavefunctions.append(wavefunction)
if include_initial_wavefunction:
initial_wavefunction = wavefunctions[0]*0 # create a blank vector
initial_wavefunction[0] = 1
wavefunctions = [initial_wavefunction]+wavefunctions
return wavefunctions
| 6,217 |
def if_else(cond, a, b):
"""Work around Python 2.4
"""
if cond: return a
else: return b
| 6,218 |
def _update_machine_metadata(esh_driver, esh_machine, data={}):
"""
NOTE: This will NOT WORK for TAGS until openstack
allows JSONArrays as values for metadata!
"""
if not hasattr(esh_driver._connection, 'ex_set_image_metadata'):
logger.info(
"EshDriver %s does not have function 'ex_set_image_metadata'" %
esh_driver._connection.__class__
)
return {}
try:
# Possible metadata that could be in 'data'
# * application uuid
# * application name
# * specific machine version
# TAGS must be converted from list --> String
logger.info("New metadata:%s" % data)
meta_response = esh_driver._connection.ex_set_image_metadata(
esh_machine, data
)
esh_machine.invalidate_machine_cache(esh_driver.provider, esh_machine)
return meta_response
except Exception as e:
logger.exception("Error updating machine metadata")
if 'incapable of performing the request' in e.message:
return {}
else:
raise
| 6,219 |
def timedelta_to_time(data: pd.Series) -> pd.Series:
"""Convert ``datetime.timedelta`` data in a series ``datetime.time`` data.
Parameters
----------
data : :class:`~pandas.Series`
series with data as :class:`datetime.timedelta`
Returns
-------
:class:`~pandas.Series`
series with data converted into :class:`datetime.time`
"""
data_cpy = data.copy()
# ensure pd.Timedelta
data = data + pd.Timedelta("0h")
# convert to datetime
data = datetime.datetime.min + data.dt.to_pytimedelta()
# convert to time
data = [d.time() if d is not pd.NaT else None for d in data]
data = pd.Series(np.array(data), index=data_cpy.index, name=data_cpy.name)
return data
| 6,220 |
def bzr_wc_target_exists_version():
"""
Test updating a working copy when a target already exists.
"""
test = 'bzr_wc_target_exists_version'
wt = '%s-test-%s' % (DIR, test)
puts(magenta('Executing test: %s' % test))
from fabric.api import run
from fabtools.files import is_dir
from fabtools import require
assert not is_dir(wt)
require.bazaar.working_copy(REMOTE_URL, wt, version='2')
require.bazaar.working_copy(REMOTE_URL, wt, version='4', update=True)
assert_wc_exists(wt)
assert run('bzr revno %s' % wt) == '4'
| 6,221 |
def nms(boxes, scores, iou_thresh, max_output_size):
"""
Input:
boxes: (N,4,2) [x,y]
scores: (N)
Return:
nms_mask: (N)
"""
box_num = len(boxes)
output_size = min(max_output_size, box_num)
sorted_indices = sorted(range(len(scores)), key=lambda k: -scores[k])
selected = []
for i in range(box_num):
if len(selected) >= output_size:
break
should_select = True
for j in range(len(selected) - 1, -1, -1):
if (
polygon_iou(boxes[sorted_indices[i]], boxes[selected[j]])[0]
> iou_thresh
):
should_select = False
break
if should_select:
selected.append(sorted_indices[i])
return np.array(selected, dtype=np.int32)
| 6,222 |
def get_db():
"""Connect to the application's configured database. The connection
is unique for each request and will be reused if this is called
again
"""
if 'db' not in g:
g.db = pymysql.connect(
host='localhost',
port=3306,
user='root',
password='',
database='qm',
charset='utf8'
)
return g.db
| 6,223 |
def read_stb(library, session):
"""Reads a status byte of the service request.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:return: Service request status byte.
"""
status = ViUInt16()
library.viReadSTB(session, byref(status))
return status.value
| 6,224 |
def will_expire(certificate, days):
"""
Returns a dict containing details of a certificate and whether
the certificate will expire in the specified number of days.
Input can be a PEM string or file path.
.. versionadded:: 2016.11.0
certificate:
The certificate to be read. Can be a path to a certificate file,
or a string containing the PEM formatted text of the certificate.
CLI Example:
.. code-block:: bash
salt '*' x509.will_expire "/etc/pki/mycert.crt" days=30
"""
ret = {}
if os.path.isfile(certificate):
try:
ret["path"] = certificate
ret["check_days"] = days
cert = _get_certificate_obj(certificate)
_check_time = datetime.datetime.utcnow() + datetime.timedelta(days=days)
_expiration_date = cert.get_not_after().get_datetime()
ret["cn"] = _parse_subject(cert.get_subject())["CN"]
if _expiration_date.strftime("%Y-%m-%d %H:%M:%S") <= _check_time.strftime(
"%Y-%m-%d %H:%M:%S"
):
ret["will_expire"] = True
else:
ret["will_expire"] = False
except ValueError:
pass
return ret
| 6,225 |
def write_reset_reg(rst_reg_addr, rst_reg_space_id, rst_reg_val, config):
"""Write reset register info
:param rst_reg_addr: reset register address
:param rst_reg_space_id: reset register space id
:param rst_reg_val: reset register value
:param config: file pointer that opened for writing board config information
"""
print("\t{0}".format("<RESET_REGISTER_INFO>"), file=config)
print("\t#define RESET_REGISTER_ADDRESS 0x{:0>2X}UL".format(
rst_reg_addr), file=config)
print("\t#define RESET_REGISTER_SPACE_ID {0}".format(
SPACE_ID[rst_reg_space_id]), file=config)
print("\t#define RESET_REGISTER_VALUE {0}U".format(
rst_reg_val), file=config)
print("\t{0}\n".format("</RESET_REGISTER_INFO>"), file=config)
| 6,226 |
def one_particle_quasilocal(sp, chli, chlo, Es=None):
"""
Calculate the one-particle irreducible T-matrix T(1).
Parameters
----------
s : Setup
Setup object describing the setup
chi : int
Input schannel
cho : int
Output channel
Es : ndarray
List of particle energies
"""
T1 = np.zeros((Es.shape), dtype=np.complex128)
# guess a suitable range of energies to probe
if Es is None:
maxt = np.max(np.abs(sp.model.links)) + np.max(np.abs(sp.model.omegas)) + 1
Es = np.linspace(- maxt, maxt, 1000)
for i, E in enumerate(Es):
# single particle eigenenergies
E1, _, _ = sp.eigenbasis(1, E)
# numerators
num1 = sp.transition(0, chli, 1, E)
num2 = sp.transition(1, chlo, 0, E)
# initialize the matrix
# num = sp.gs[chli] * sp.gs[chlo] * num2.T * num1
num = num2.T * num1
for k in range(len(E1)):
T1[i] += num[k] / (E - E1[k])
return Es, T1
| 6,227 |
def _CreateIssueForFlake(issue_generator, target_flake, create_or_update_bug):
"""Creates a monorail bug for a single flake.
This function is used to create bugs for detected flakes and flake analysis
results.
Args:
create_or_update_bug (bool): True to create or update monorail bug,
otherwise False. Should always look for existing bugs for flakes, even if
cannot update the bug.
"""
monorail_project = issue_generator.GetMonorailProject()
# Re-uses an existing open bug if possible.
issue_id = SearchOpenIssueIdForFlakyTest(target_flake.normalized_test_name,
monorail_project)
if not issue_id:
# Reopens a recently closed bug if possible.
issue_id = SearchRecentlyClosedIssueIdForFlakyTest(
target_flake.normalized_test_name, monorail_project)
if issue_id:
logging.info('An existing issue %s was found, attach it to flake: %s.',
FlakeIssue.GetLinkForIssue(monorail_project, issue_id),
target_flake.key)
_AssignIssueToFlake(issue_id, target_flake)
if create_or_update_bug:
monorail_util.UpdateIssueWithIssueGenerator(
issue_id=issue_id, issue_generator=issue_generator, reopen=True)
return issue_id
if not create_or_update_bug:
# No existing bug found, and cannot create bug, bail out.
return None
logging.info('No existing open issue was found, create a new one.')
issue_id = monorail_util.CreateIssueWithIssueGenerator(
issue_generator=issue_generator)
if not issue_id:
logging.warning('Failed to create monorail bug for flake: %s.',
target_flake.key)
return None
logging.info('%s was created for flake: %s.',
FlakeIssue.GetLinkForIssue(monorail_project, issue_id),
target_flake.key)
_AssignIssueToFlake(issue_id, target_flake)
return issue_id
| 6,228 |
def get_spilled_samples(spills: List, train_dataset: Dataset):
"""
Returns the actual data that was spilled. Notice that it
returns everything that the __getitem__ returns ie. data and labels
and potentially other stuff. This is done to be more
general, not just work with datasets that return: (data, label),
but also for datasets with (data, label, third_thing) or similar.
Notice that the function only takes in one dataset but spill
is a tuple with indexes for two datasets (the other is ignored).
:param spills:
:param train_dataset:
:return: spilled_samples:
"""
spilled_samples = []
for spill in spills:
spill_inx = spill[0]
spilled_samples.append(train_dataset.__getitem__(spill_inx))
return spilled_samples
| 6,229 |
def reshard(
inputs: List[Path],
output: Path,
tmp: Path = None,
free_original: bool = False,
rm_original: bool = False,
) -> Path:
"""Read the given files and concatenate them to the output file.
Can remove original files on completion, or just write dummy content into them to free disk.
"""
if tmp is None:
tmp = _get_tmp(output)
logging.info(f"Resharding {inputs} to {tmp}, will move later to {output}")
jsonql.run_pipes(file=inputs, output=tmp)
tmp.replace(output)
tmp_index = get_index(tmp)
if tmp_index.exists():
tmp_index.replace(get_index(output))
if not (free_original or rm_original):
return output
for _input in inputs:
if rm_original:
_input.unlink()
elif free_original:
# Overwrite the previous file.
# This frees up disk space and allows doit to properly track the success.
_input.write_text(f"Resharded into {output}")
if get_index(_input).is_file():
get_index(_input).unlink()
return output
| 6,230 |
def on_intent(intent_request, session):
""" Called when the user specifies an intent for this skill """
print("on_intent requestId=" + intent_request['requestId'] + ", sessionId=" + session['sessionId'])
intent = intent_request['intent']
intent_name = intent_request['intent']['name']
# Dispatch to your skill's intent handlers
if intent_name == "StartIntent":
'''if "attributes" in session.keys():
return answer_question(intent,session)
'''
return start_feedback(intent, session)
elif intent_name == "AnswerIntent":
return answer_question(intent, session)
elif intent_name == "AMAZON.ResumeIntent":
return resume_feedback(intent, session)
elif intent_name == "AMAZON.PauseIntent":
return pause_feedback(intent, session)
elif intent_name == "AMAZON.HelpIntent":
return get_welcome_response()
elif intent_name == "AMAZON.CancelIntent" or intent_name == "AMAZON.StopIntent":
return handle_session_end_request(session)
else:
raise ValueError("Invalid intent")
| 6,231 |
def load_twitter(path, shuffle=True, rnd=1):
"""
load text files from twitter data
:param path: path of the root directory of the data
:param subset: what data will be loaded, train or test or all
:param shuffle:
:param rnd: random seed value
:param vct: vectorizer
:return: :raise ValueError:
"""
data = bunch.Bunch()
data = convert_tweet_2_data(path, rnd)
data = minimum_size_sraa(data)
if shuffle:
random_state = np.random.RandomState(rnd)
indices = np.arange(data.target.shape[0])
random_state.shuffle(indices)
data.target = data.target[indices]
# Use an object array to shuffle: avoids memory copy
data_lst = np.array(data.data, dtype=object)
data_lst = data_lst[indices]
data.data = data_lst
return data
| 6,232 |
def parse_vtables(f):
"""
Parse a given file f and constructs or extend the vtable function dicts of the module specified in f.
:param f: file containing a description of the vtables in a module (*_vtables.txt file)
:return: the object representing the module specified in f
"""
marx_module = Module(f.readline().strip())
for line in f:
tokens = line.split()
vtable = marx_module.vtables[int(tokens.pop(0), 16)]
vtable.offset_to_top = int(tokens.pop(0))
index = 0
for target_address in tokens:
if index not in vtable.functions:
vtable.functions[index] = Addressable(int(target_address, 16), marx_module)
index += 1
return marx_module
| 6,233 |
def getCifar10Dataset(root, isTrain=True):
"""Cifar-10 Dataset"""
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
if isTrain:
trans = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
])
else:
trans = transforms.Compose([
transforms.ToTensor(),
normalize,
])
return datasets.CIFAR10(root=root, train=isTrain, transform=trans, download=isTrain)
| 6,234 |
def histogram(layer, num_bins : int = 256, minimum = None, maximum = None, use_cle=True):
"""
This function determines a histogram for a layer and caches it within the metadata of the layer. If the same
histogram is requested, it will be taken from the cache.
:return:
"""
if "bc_histogram_num_bins" in layer.metadata.keys() and "bc_histogram" in layer.metadata.keys():
if num_bins == layer.metadata["bc_histogram_num_bins"]:
return layer.metadata["bc_histogram"]
data = layer.data
if "dask" in str(type(data)): # ugh
data = np.asarray(data)
intensity_range = None
if minimum is not None and maximum is not None:
intensity_range = (minimum, maximum)
if use_cle:
try:
import pyclesperanto_prototype as cle
hist = np.asarray(cle.histogram(data, num_bins=num_bins, minimum_intensity=minimum, maximum_intensity=maximum, determine_min_max=False))
except ImportError:
use_cle = False
if not use_cle:
hist, _ = np.histogram(data, bins=num_bins, range=intensity_range)
# cache result
if hasattr(layer.data, "bc_histogram_num_bins") and hasattr(layer.data, "bc_histogram"):
if num_bins == layer.data.bc_histogram_num_bins:
return layer.data.bc_histogram_num_bins
# delete cache when data is changed
def _refresh_data(event):
reset_histogram_cache(layer)
layer.events.data.disconnect(_refresh_data)
layer.events.data.connect(_refresh_data)
layer.metadata["bc_histogram_num_bins"] = num_bins
layer.metadata["bc_histogram"] = hist
return hist
| 6,235 |
def get_tbl_type(num_tbl, num_cols, len_tr, content_tbl):
"""
obtain table type based on table features
"""
count_very_common = len([i for i, x in enumerate(content_tbl) if re.match(r'^very common',x) ])
count_common = len([i for i, x in enumerate(content_tbl) if re.match(r'^common',x) ])
count_uncommon = len([i for i, x in enumerate(content_tbl) if re.match(r'^uncommon',x) ])
count_rare = len([i for i, x in enumerate(content_tbl) if re.match(r'^rare',x) ])
count_very_rare = len([i for i, x in enumerate(content_tbl) if re.match(r'^very rare',x) ])
count_unknown = len([i for i, x in enumerate(content_tbl) if "known" in x])
count_feats = [count_very_common,count_common,count_uncommon,count_rare,count_very_rare,count_unknown]
if num_cols>3 and sum(count_feats) > num_cols+5:
tbl_type = 'table type: vertical'
elif ((all(i <2 for i in count_feats) and num_tbl<=5) or num_cols>4) and len_tr>2:
tbl_type = 'table type: horizontal'
else:
tbl_type = 'table type: vertical'
return tbl_type
| 6,236 |
def decode_EAN13(codes):
"""
คืนสตริงของเลขที่ได้จากการถอดรหัสจากสตริง 0/1 ที่เก็บใน codes แบบ EAN-13
ถ้าเกิดกรณีต่อไปนี้ ให้คืนสตริงว่าง (สาเหตุเหล่านี้มักมาจากเครื่องอ่านบาร์โค้ดอ่านรหัส 0 และ 1 มาผิด)
codes เก็บจำนวนบิต หรือรูปแบบไม่ตรงข้อกำหนด
รหัสบางส่วนแปลงเป็นตัวเลขไม่ได้
เลขหลักที่ 13 ที่อ่านได้ ไม่ตรงกับค่า check digit ที่คำนวณได้
หมายเหตุ: เป็นไปได้ว่า ผู้ใช้เครื่องบาร์โค้ด อาจสแกนบาร์โค้ดที่วางกลับหัวก็ได้ ฟังก์ชันนี้ก็ต้องรองรับกรณีเช่นนี้ด้วย
Doctest :
>>> c = '10100100110011001010011100110110010111001001101010111001010111001001110110011011101001101100101'
>>> decode_EAN13(c)
'3210292045192'
>>> c = '10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111101'
>>> decode_EAN13(c)
''
"""
result = ''
try:
if len(codes) != 95:
return ''
else:
number_group1 = digits_of(codes[3:45])
code_group1 = digits_from(codes[3:45])
number_group2 = digits_of(codes[50:-3])
code_group2 = digits_from(codes[50:-3])
if code_group2 == 'RRRRRR':
result = str(return_group1(code_group1)) + number_group1 + number_group2
elif code_group1 == 'RRRRRR':
result = str(return_group1(code_group1)) + number_group1 + number_group2
else:
# Support when barcode reader read a barcode upside down
reverse_codes = codes
reverse_codes.reverse()
number_group1 = digits_of(codes[3:45])
code_group1 = digits_from(codes[3:45])
number_group2 = digits_of(codes[50:-3])
code_group2 = digits_from(codes[50:-3])
if code_group2 == 'RRRRRR':
result = str(return_group1(code_group1)) + number_group1 + number_group2
elif code_group1 == 'RRRRRR':
result = str(return_group1(code_group1)) + number_group1 + number_group2
return result
except:
return ''
| 6,237 |
def GiveNewT2C(Hc, T2C):
""" The main routine, which computes T2C that diagonalized Hc, and is close to the previous
T2C transformation, if possible, and it makes the new orbitals Y_i = \sum_m T2C[i,m] Y_{lm} real,
if possible.
"""
ee = linalg.eigh(Hc)
Es = ee[0]
Us0= ee[1]
Us = matrix(ee[1])
#print 'In Eigensystem:'
#mprint(Us.H * Hc * Us)
# Us.H * Hc * Us === diagonal
print 'Eigenvalues=', Es.tolist()
print 'Starting with transformation in crystal harmonics='
mprint(Us)
print
# Finds if there are any degeneracies in eigenvalues.
deg = FindDegeneracies(Es)
print 'deg=', deg
for ig in deg:
if len(ig)>1:
# Two or more states are degenerate, we transform them with a unitary transformation,
# so that they are close to previous set of eigenvectors.
# This is not necessary, but convenient to keep the character similar to previous iteration. This is useful
# in particular when H has small off-diagonal elements, which we would like to eliminate, and we call this
# routine iteratively
Us = TransformToSimilar(ig, Us, Es)
print 'Next, the transformation in crystal harmonics='
mprint(Us)
print
final = array( Us.T*T2C )
print 'And the same transformation in spheric harmonics='
mprint( final )
# Here we will try to make the transformation real, so that ctqmc will have minimal sign problem even when Full is used.
for ig in deg:
final = TransformToReal(final, ig, Es)
# finally checking if all transformations are real
for ig in deg:
i0 = ig[0]
i2 = ig[-1]+1
#print 'Checking the set of orbitals:', Es[i0:i2]
UtU = ComputeUtU(final[i0:i2,:], ig)
if allclose( UtU, identity(len(ig)), rtol=1e-04, atol=1e-04 ):
print ':SUCCESS For orbital', ig, 'the final transformation is real'
else:
print """:WARNING: The set of rbitals """, ig, """ could not be made purely real. You should use only Coulomb='Ising' and avoid Coulomb='Full' """
print 'UtU=',
mprint(UtU)
print
return final
| 6,238 |
def normalize(form, text):
"""Return the normal form form for the Unicode string unistr.
Valid values for form are 'NFC', 'NFKC', 'NFD', and 'NFKD'.
"""
return unicodedata.normalize(form, text)
| 6,239 |
def handle_internal_validation_error(error):
"""
Error handler to use when a InternalValidationError is raised.
Alert message can be modified here as needed.
:param error: The error that is handled.
:return: an error view
"""
alert_message = format_alert_message(error.__class__.__name__, str(error))
return _handle_error(alert_message)
| 6,240 |
def bbox_encode(bboxes, targets):
"""
:param bboxes: bboxes
:param targets: target ground truth boxes
:return: deltas
"""
bw = bboxes[:, 2] - bboxes[:, 0] + 1.0
bh = bboxes[:, 3] - bboxes[:, 1] + 1.0
bx = bboxes[:, 0] + 0.5 * bw
by = bboxes[:, 1] + 0.5 * bh
tw = targets[:, 2] - targets[:, 0] + 1.0
th = targets[:, 3] - targets[:, 1] + 1.0
tx = targets[:, 0] + 0.5 * tw
ty = targets[:, 1] + 0.5 * th
dx = (tx - bx) / bw
dy = (ty - by) / bh
dw = np.log(tw / bw)
dh = np.log(th / bh)
deltas = np.vstack((dx, dy, dw, dh)).transpose()
return deltas
| 6,241 |
def cipher(text: str, key: str, charset: str = DEFAULT_CHARSET) -> str:
""" Cipher given text using Vigenere method.
Be aware that different languages use different charsets. Default charset
is for english language, if you are using any other you should use a proper
dataset. For instance, if you are ciphering an spanish text, you should use
a charset with "ñ" character.
This module uses only lowercase charsets. That means that caps will be kept
but lowercase and uppercase will follow ths same substitutions.
:param text: Text to be ciphered.
:param key: Secret key. Both ends should know this and
use the same one. The longer key you use the harder to break ciphered text.
:param charset: Charset used for Vigenere method. Both ends, ciphering
and deciphering, should use the same charset or original text won't be properly
recovered.
:return: Ciphered text.
"""
ciphered_text = _vigenere_offset(text, key, Vigenere.CIPHER, charset)
return ciphered_text
| 6,242 |
def product_delete(product_id):
"""
Delete product from database
"""
product_name = product_get_name(product_id)
res = False
# Delete product from database
if product_name:
mongo.db.products.delete_one({"_id": (ObjectId(product_id))})
flash(
product_name +
" succesfully deleted from products", "success")
res = True
return res
| 6,243 |
def alpha_072(enddate, index='all'):
"""
Inputs:
enddate: 必选参数,计算哪一天的因子
index: 默认参数,股票指数,默认为所有股票'all'
Outputs:
Series:index 为成分股代码,values为对应的因子值
公式:
(rank(decay_linear(correlation(((high + low) / 2), adv40, 8.93345), 10.1519)) / rank(decay_linear(correlation(Ts_Rank(vwap, 3.72469), Ts_Rank(volume, 18.5188), 6.86671), 2.95011)))
"""
enddate = to_date_str(enddate)
func_name = sys._getframe().f_code.co_name
return JQDataClient.instance().get_alpha_101(**locals())
| 6,244 |
def update_input():
""" update all / reads the input and stores it to be returned by read_input() """
global UP, DOWN, LEFT, RIGHT, NEXT, BACK, pygame_events
global up_state, down_state, left_state, right_state, next_state, back_state
global up_state_prev, down_state_prev, left_state_prev, right_state_prev, next_state_prev, back_state_prev
if gl.os_is_linux:
global UP_BT, DOWN_BT, LEFT_BT, RIGHT_BT, NEXT_BT, BACK_BT
# refresh previous states
up_state_prev, down_state_prev, left_state_prev, right_state_prev, next_state_prev, back_state_prev = up_state, down_state, left_state, right_state, next_state, back_state
# read current state
if gl.os_is_linux: # for the raspberry pi / buttons on gpio
up_state = not UP_BT.is_pressed # read every input
down_state = not DOWN_BT.is_pressed
left_state = not LEFT_BT.is_pressed
right_state = not RIGHT_BT.is_pressed
next_state = not NEXT_BT.is_pressed
back_state = not BACK_BT.is_pressed
# for keyboard
for event in pygame_events:
if event.type == pygame.KEYDOWN: # if pressed down
if(event.key == pygame.K_UP): up_state = True
if(event.key == pygame.K_DOWN): down_state = True
if(event.key == pygame.K_LEFT): left_state = True
if(event.key == pygame.K_RIGHT): right_state = True
if(event.key == pygame.K_RETURN): next_state = True
if(event.key == pygame.K_DELETE): back_state = True
if event.type == pygame.KEYUP: # if released
if(event.key == pygame.K_UP): up_state = False
if(event.key == pygame.K_DOWN): down_state = False
if(event.key == pygame.K_LEFT): left_state = False
if(event.key == pygame.K_RIGHT): right_state = False
if(event.key == pygame.K_RETURN): next_state = False
if(event.key == pygame.K_DELETE): back_state = False
# check for credits (activate by either pressing all button down at once or pressing tab)
# it only test for one key first to save time
if (not up_state and gl.os_is_linux == True) or (event.type == pygame.KEYDOWN and event.key == pygame.K_TAB):
if not down_state and not left_state and not right_state and not next_state and not back_state or (event.type == pygame.KEYDOWN and event.key == pygame.K_TAB):
print("[IO UI] go to credits")
gl.cr_prev_pos = gl.prog_pos
gl.prog_pos = 'cr'
| 6,245 |
def getBoxFolderPathName(annotationDict, newWidth, newHeight):
"""
getBoxFolderPathName returns the folder name which contains the
resized image files for an original image file.
Given image 'n02085620_7', you can find the resized images at:
'F:/dogs/images/n02085620-Chihuahua/boxes_64_64/'
input:
annotationDict: dictionary, contains filename
newWidth: int, the new width for the image
newHeight: int, the new height for the image
output:
returns a string, the folder path for the resized images
"""
folderName = getImageFolderPathName(annotationDict)
boxFolder = BOX_FOLDER + str(newWidth) + '_' + str(newHeight)
return IMAGE_PATH + folderName + '/' + boxFolder + '/'
| 6,246 |
def _download_artifact_from_uri(artifact_uri, output_path=None):
"""
:param artifact_uri: The *absolute* URI of the artifact to download.
:param output_path: The local filesystem path to which to download the artifact. If unspecified,
a local output path will be created.
"""
store = _get_store(artifact_uri=artifact_uri)
artifact_path_module =\
get_artifact_repository(artifact_uri, store).get_path_module()
artifact_src_dir = artifact_path_module.dirname(artifact_uri)
artifact_src_relative_path = artifact_path_module.basename(artifact_uri)
artifact_repo = get_artifact_repository(
artifact_uri=artifact_src_dir, store=store)
return artifact_repo.download_artifacts(
artifact_path=artifact_src_relative_path, dst_path=output_path)
| 6,247 |
def api_get_project_members(request, key=None, hproPk=True):
"""Return the list of project members"""
if not check_api_key(request, key, hproPk):
return HttpResponseForbidden
if settings.PIAPI_STANDALONE:
if not settings.PIAPI_REALUSERS:
users = [generate_user(pk="-1"), generate_user(pk="-2"), generate_user(pk="-3")]
else:
users = DUser.object.all()
else:
(_, _, hproject) = getPlugItObject(hproPk)
users = []
for u in hproject.getMembers():
u.ebuio_member = True
u.ebuio_admin = hproject.isMemberWrite(u)
u.subscription_labels = _get_subscription_labels(u, hproject)
users.append(u)
liste = []
for u in users:
retour = {}
for prop in settings.PIAPI_USERDATA:
if hasattr(u, prop):
retour[prop] = getattr(u, prop)
retour['id'] = str(retour['pk'])
liste.append(retour)
return HttpResponse(json.dumps({'members': liste}), content_type="application/json")
| 6,248 |
def sic_or_lm_silhoutte(image, sensor):
"""
:param sensor: string with the sensor to be used, options:
- mw_sic
- lm
"""
print "Preparing silhoutte for {0} using {1}".format(image, sensor)
if sensor == 'mw_sic':
img = SIC(image)
if sensor == 'lm':
img = LM(image)
silhoutte(img)
| 6,249 |
def backtest_chart3(Results, title='Portfolio Backtests', figsize=(15, 9), save=False, show=True, colormap='jet'):
"""
Plots the performance for all efficient frontier portfolios.
:param Results: (object) Results object from bt.backtest.Result(*backtests). Refer to the following documentation
https://pmorissette.github.io/bt/bt.html?highlight=display#bt.backtest.Result
:param figsize: (float, float) Optional, multiple by which to multiply the maximum weighting constraints at the ticker level.
Defaults to (15, 9).
:param save: (bool) Optional, width, height in inches. Defaults to False.
:param show: (bool) Optional, displays plot. Defaults to True.
:param colormap: (str or matplotlib colormap object) Colormap to select colors from. If string, load colormap with
that name from matplotlib. Defaults to 'jet'.
:return: (fig) Plot of performance for all efficient frontier portfolios.
"""
plot = Results.plot(title=title, figsize=figsize, colormap=colormap)
fig = plot.get_figure()
plt.legend(loc="upper left")
if save == True: plt.savefig(
'../charts/linechart_{}.png'.format(datetime.today().strftime('%m-%d-%Y')), bbox_inches='tight')
if show == False: plt.close()
| 6,250 |
def random(n, mind):
"""Does not guarantee that it's connected (TODO)!"""
return bidirectional({i: sample(range(n), mind) for i in range(n)})
| 6,251 |
def process_tare_drag(nrun, plot=False):
"""Processes a single tare drag run."""
print("Processing tare drag run", nrun)
times = {0.2: (15, 120),
0.3: (10, 77),
0.4: (10, 56),
0.5: (8, 47),
0.6: (10, 40),
0.7: (8, 33),
0.8: (5, 31),
0.9: (8, 27),
1.0: (6, 24),
1.1: (9, 22),
1.2: (8, 21),
1.3: (7, 19),
1.4: (6, 18)}
rdpath = os.path.join(raw_data_dir, "Tare-drag", str(nrun))
with open(os.path.join(rdpath, "metadata.json")) as f:
metadata = json.load(f)
speed = float(metadata["Tow speed (m/s)"])
nidata = loadhdf(os.path.join(rdpath, "nidata.h5"))
time_ni = nidata["time"]
drag = nidata["drag_left"] + nidata["drag_right"]
drag = drag - np.mean(drag[:2000])
t1, t2 = times[speed]
meandrag, x = ts.calcstats(drag, t1, t2, 2000)
print("Tare drag =", meandrag, "N at", speed, "m/s")
if plot:
plt.figure()
plt.plot(time_ni, drag, 'k')
plt.show()
return speed, meandrag
| 6,252 |
def _alpha_blend_numexpr1(rgb1, alpha1, rgb2, alpha2):
""" Alternative. Not well optimized """
import numexpr
alpha1_ = alpha1[..., None] # NOQA
alpha2_ = alpha2[..., None] # NOQA
alpha3 = numexpr.evaluate('alpha1 + alpha2 * (1.0 - alpha1)')
alpha3_ = alpha3[..., None] # NOQA
rgb3 = numexpr.evaluate('((rgb1 * alpha1_) + (rgb2 * alpha2_ * (1.0 - alpha1_))) / alpha3_')
rgb3[alpha3 == 0] = 0
| 6,253 |
def chunks(arr: list, n: int) -> Generator:
"""
Yield successive n-sized chunks from arr.
:param arr
:param n
:return generator
"""
for i in range(0, len(arr), n):
yield arr[i:i + n]
| 6,254 |
def test_serialize_unknown_type():
"""Check that RuleSerializeError is raised on attempt to serialize rule of unknown type.
1. Create rule factory.
2. Register new rule type.
3. Try to serialize a rule with unregistered type.
4. Check that RuleSerializeError is raised.
5. Check the message of the error.
"""
rule_factory = RuleFactory()
serializer = lambda *args, **kwargs: None
rule_factory.register_rule(rule_type="Test", parser=None, serializer=serializer)
rule = RuleClass(rule_type="NonExistentType", parameters={})
with pytest.raises(RuleSerializeError) as exception_info:
rule_factory.serialize_rule(rule=rule)
expected_message = "Failed to serialize rule {0}. Unknown type 'NonExistentType'".format(rule)
assert exception_info.value.args[0] == expected_message, "Wrong error message"
| 6,255 |
def clean_weight(v):
"""Clean the weight variable
Args:
v (pd.Series): Series containing all weight values
Returns:
v (pd.Series): Series containing all cleaned weight values
"""
# Filter out erroneous non-float values
indices = v.astype(str).apply(
lambda x: not re.match(reg_exps['re_lab_vals'], x))
v.loc[indices] = None
# Convert values to float
v = v.astype(float)
# Sometimes the value is given in grams -- convert to kg
indices_g = v > 100
v.loc[indices_g] = v[indices_g].apply(lambda x: x / 1000)
return v
| 6,256 |
def step_matcher(name):
"""
DEPRECATED, use :func:`use_step_matcher()` instead.
"""
# -- BACKWARD-COMPATIBLE NAME: Mark as deprecated.
warnings.warn("deprecated: Use 'use_step_matcher()' instead",
DeprecationWarning, stacklevel=2)
use_step_matcher(name)
| 6,257 |
def get_yield(category):
"""
Get the primitive yield node of a syntactic category.
"""
if isinstance(category, PrimitiveCategory):
return category
elif isinstance(category, FunctionalCategory):
return get_yield(category.res())
else:
raise ValueError("unknown category type with instance %r" % category)
| 6,258 |
def box(type_):
"""Create a non-iterable box type for an object.
Parameters
----------
type_ : type
The type to create a box for.
Returns
-------
box : type
A type to box values of type ``type_``.
"""
class c(object):
__slots__ = 'value',
def __init__(self, value):
if not isinstance(value, type_):
raise TypeError(
"values must be of type '%s' (received '%s')" % (
type_.__name__, type(value).__name__,
),
)
self.value = value
c.__name__ = 'Boxed%s' + type_.__name__
return c
| 6,259 |
def cmorization(in_dir, out_dir, cfg, _):
"""Cmorization func call."""
cmorizer = OSICmorizer(in_dir, out_dir, cfg, 'sh')
cmorizer.cmorize()
| 6,260 |
def test__reac__elimination():
""" test elimination functionality
"""
rct_smis = ['CCCO[O]']
prd_smis = ['CC=C', 'O[O]']
rxn_objs = automol.reac.rxn_objs_from_smiles(rct_smis, prd_smis)
rxn, geo, _, _ = rxn_objs[0]
# reaction object aligned to z-matrix keys
# (for getting torsion coordinate names)
zma, zma_keys, dummy_key_dct = automol.reac.ts_zmatrix(rxn, geo)
zrxn = automol.reac.relabel_for_zmatrix(rxn, zma_keys, dummy_key_dct)
# You can also do this to determine linear atoms from zmatrix:
# bnd_keys = automol.reac.rotational_bond_keys(zrxn, zma=zma)
bnd_keys = automol.reac.rotational_bond_keys(zrxn)
names = {automol.zmat.torsion_coordinate_name(zma, *k) for k in bnd_keys}
assert names == {'D9'}
print(automol.zmat.string(zma, one_indexed=False))
print(names)
scan_name = automol.reac.scan_coordinate(zrxn, zma)
const_names = automol.reac.constraint_coordinates(zrxn, zma)
assert scan_name == 'R2'
assert const_names == ()
print(scan_name)
print(const_names)
# graph aligned to geometry keys
# (for getting rotational groups and symmetry numbers)
geo, gdummy_key_dct = automol.zmat.geometry_with_conversion_info(zma)
grxn = automol.reac.relabel_for_geometry(zrxn)
print(automol.geom.string(geo))
# Check that the reaction object can be converted back, if needed
old_zrxn = zrxn
zrxn = automol.reac.insert_dummy_atoms(grxn, gdummy_key_dct)
assert zrxn == old_zrxn
gbnd_keys = automol.reac.rotational_bond_keys(grxn)
assert len(gbnd_keys) == len(bnd_keys)
axes = sorted(map(sorted, gbnd_keys))
groups_lst = [automol.reac.rotational_groups(grxn, *a) for a in axes]
sym_nums = [
automol.reac.rotational_symmetry_number(grxn, *a) for a in axes]
assert sym_nums == [3]
for axis, groups, sym_num in zip(axes, groups_lst, sym_nums):
print('axis:', axis)
print('\tgroup 1:', groups[0])
print('\tgroup 2:', groups[1])
print('\tsymmetry number:', sym_num)
# Extra test cases:
rxn_smis_lst = [
(['CCC'], ['CC', '[CH2]']),
]
for rct_smis, prd_smis in rxn_smis_lst:
rxn_objs = automol.reac.rxn_objs_from_smiles(rct_smis, prd_smis)
rxn, geo, _, _ = rxn_objs[0]
# reaction object aligned to z-matrix keys
# (for getting torsion coordinate names)
zma, zma_keys, dummy_key_dct = automol.reac.ts_zmatrix(rxn, geo)
zrxn = automol.reac.relabel_for_zmatrix(rxn, zma_keys, dummy_key_dct)
# You can also do this to determine linear atoms from zmatrix:
# bnd_keys = automol.reac.rotational_bond_keys(zrxn, zma=zma)
bnd_keys = automol.reac.rotational_bond_keys(zrxn)
names = {automol.zmat.torsion_coordinate_name(zma, *k)
for k in bnd_keys}
print(automol.zmat.string(zma, one_indexed=True))
print(names)
scan_name = automol.reac.scan_coordinate(zrxn, zma)
const_names = automol.reac.constraint_coordinates(zrxn, zma)
print(scan_name)
print(const_names)
# graph aligned to geometry keys
# (for getting rotational groups and symmetry numbers)
geo, _ = automol.zmat.geometry_with_conversion_info(zma)
grxn = automol.reac.relabel_for_geometry(zrxn)
print(automol.geom.string(geo))
gbnd_keys = automol.reac.rotational_bond_keys(grxn)
axes = sorted(map(sorted, gbnd_keys))
for axis in axes:
print('axis:', axis)
groups = automol.reac.rotational_groups(grxn, *axis)
print('\tgroup 1:', groups[0])
print('\tgroup 2:', groups[1])
sym_num = automol.reac.rotational_symmetry_number(grxn, *axis)
print('\tsymmetry number:', sym_num)
| 6,261 |
def rssError(yArr, yHatArr):
"""
Desc:
计算分析预测误差的大小
Args:
yArr:真实的目标变量
yHatArr:预测得到的估计值
Returns:
计算真实值和估计值得到的值的平方和作为最后的返回值
"""
return ((yArr - yHatArr) ** 2).sum()
| 6,262 |
def initialize_vocabulary(vocabulary_file):
"""
Initialize vocabulary from file.
:param vocabulary_file: file containing vocabulary.
:return: vocabulary and reversed vocabulary
"""
if gfile.Exists(vocabulary_file):
rev_vocab = []
with gfile.GFile(vocabulary_file, mode="rb") as f:
rev_vocab.extend(f.readlines())
rev_vocab = [tf.compat.as_bytes(line.strip()) for line in rev_vocab]
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
return vocab, rev_vocab
else:
raise ValueError("Vocabulary file %s doesn't exist.", vocabulary_file)
| 6,263 |
def mock_create_draft(mocker):
"""Mock the createDraft OpenAPI.
Arguments:
mocker: The mocker fixture.
Returns:
The patched mocker and response data.
"""
response_data = {"draftNumber": 1}
return (
mocker.patch(
f"{gas.__name__}.Client.open_api_do", return_value=mock_response(data=response_data)
),
response_data,
)
| 6,264 |
def test_vi_xbuild():
"""
iv = ['7', '19', '23']
opts = {'--build': True}
rv = ['7', '19', '23', '1']
"""
pytest.dbgfunc()
inp, exp = '7.19.23', '7.19.23.1'
assert exp.split('.') == gitr.version_increment(inp.split('.'),
{'--build': True})
| 6,265 |
def to_csv(data_path="data"):
"""Transform data and save as CSV.
Args:
data_path (str, optional): Path to dir holding JSON dumps. Defaults to "data".
save_path (str, optional): Path to save transformed CSV. Defaults to "data_transformed.csv".
"""
elements = []
for data in tqdm(list_data_dir(data_path)):
try:
data = load_json(data)
add_gw_and_download_time(
data["elements"], data["download_time"], get_game_week(data["events"])
)
add_unique_id(data["elements"])
elements.extend(data["elements"])
# Add transformations here
except TypeError:
print(f"Something is wrong in {data}")
return pd.DataFrame(elements)
| 6,266 |
def do_on_subscribe(source: Observable, on_subscribe):
"""Invokes an action on subscription.
This can be helpful for debugging, logging, and other side effects
on the start of an operation.
Args:
on_subscribe: Action to invoke on subscription
"""
def subscribe(observer, scheduler=None):
on_subscribe()
return source.subscribe_(observer.on_next, observer.on_error, observer.on_completed, scheduler)
return Observable(subscribe)
| 6,267 |
def get_language_file_path(language):
"""
:param language: string
:return: string: path to where the language file lies
"""
return "{lang}/localization_{lang}.json".format(lang=language)
| 6,268 |
def json_loader(path: str = None) -> Union[Dict, list]:
"""
Loads json or jsonl data
Args:
path (str, optional): path to file
Returns:
objs : Union[Dict, list]: Returns a list or dict of json data
json_format : format of file (json or jsonl)
"""
check_extension = os.path.splitext(path)[1]
objs = []
json_format = None
with open(path, "r") as file_p:
if check_extension == ".jsonl":
lines = file_p.readlines()
for line in lines:
objs.append(json.loads(line))
json_format = "jsonl"
elif check_extension == ".json":
objs = json.loads(file_p)
json_format = "json"
return objs, json_format
| 6,269 |
def handle_response(request_object):
"""Parses the response from a request object. On an a resolvable
error, raises a DataRequestException with a default error
message.
Parameters
----------
request_object: requests.Response
The response object from an executed request.
Returns
-------
dict, str or None
Note that this function checks the content-type of a response
and returns the appropriate type. A Dictionary parsed from a
JSON object, or a string. Returns None when a 204 is encountered.
Users should be mindful of the expected response body from the
API.
Raises
------
sfa_dash.errors.DataRequestException
If a recoverable 400 level error has been encountered.
The errors attribute will contain a dict of errors.
requests.exceptions.HTTPError
If the status code received from the API could not be
handled.
"""
if not request_object.ok:
errors = {}
if request_object.status_code == 400:
errors = request_object.json()
elif request_object.status_code == 401:
errors = {
'401': "Unauthorized."
}
elif request_object.status_code == 404:
previous_page = request.headers.get('Referer', None)
errors = {'404': (
'The requested object could not be found. You may need to '
'request access from the data owner.')
}
if previous_page is not None and previous_page != request.url:
errors['404'] = errors['404'] + (
f' <a href="{escape(previous_page)}">Return to the '
'previous page.</a>')
elif request_object.status_code == 422:
errors = request_object.json()['errors']
if errors:
raise DataRequestException(request_object.status_code, **errors)
else:
# Other errors should be due to bugs and not by attempts to reach
# inaccessible data. Allow exceptions to be raised
# so that they can be reported to Sentry.
request_object.raise_for_status()
if request_object.request.method == 'GET':
# all GET endpoints should return a JSON object
if request_object.headers['Content-Type'] == 'application/json':
return request_object.json()
else:
return request_object.text
# POST responses should contain a single string uuid of a newly created
# object unless a 204 No Content was returned.
if request_object.request.method == 'POST':
if request_object.status_code != 204:
return request_object.text
| 6,270 |
def _get_zoom_list_recordings_list() -> List[str]:
"""Get the list of all the recordings."""
# The local path for zoom recording is ~/Documents/Zoom
# Get the home directory
file_list = os.listdir(ZOOM_DIR)
files = []
for f in file_list:
files.append(f)
files.append(Separator())
return files
| 6,271 |
def evaluate(expn):
"""
Evaluate a simple mathematical expression.
@rtype: C{Decimal}
"""
try:
result, err = CalcGrammar(expn).apply('expn')
return result
except ParseError:
raise SyntaxError(u'Could not evaluate the provided mathematical expression')
| 6,272 |
def is_device_removable(device):
"""
This function returns whether a given device is removable or not by looking
at the corresponding /sys/block/<device>/removable file
@param device: The filesystem path to the device, e.g. /dev/sda1
"""
# Shortcut the case where the device an SD card. The kernel/udev currently
# consider SD cards (mmcblk devices) to be non-removable.
if os.path.basename(device).startswith("mmcblk"):
return True
path = _get_device_removable_file_path(device)
if not path:
return False
contents = None
try:
with open(path, "r") as f:
contents = f.readline()
except IOError:
return False
if contents.strip() == "1":
return True
return False
| 6,273 |
def get_user(is_external: Optional[bool] = None,
name: Optional[str] = None,
username: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetUserResult:
"""
Use this data source to retrieve information about a Rancher v2 user
## Example Usage
```python
import pulumi
import pulumi_rancher2 as rancher2
foo = rancher2.get_user(username="foo")
```
:param bool is_external: Set is the user if the user is external. Default: `false` (bool)
:param str name: The name of the user (string)
:param str username: The username of the user (string)
"""
__args__ = dict()
__args__['isExternal'] = is_external
__args__['name'] = name
__args__['username'] = username
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('rancher2:index/getUser:getUser', __args__, opts=opts, typ=GetUserResult).value
return AwaitableGetUserResult(
annotations=__ret__.annotations,
enabled=__ret__.enabled,
id=__ret__.id,
is_external=__ret__.is_external,
labels=__ret__.labels,
name=__ret__.name,
principal_ids=__ret__.principal_ids,
username=__ret__.username)
| 6,274 |
def randbytes(size) -> bytes:
"""Custom implementation of random.randbytes, since that's a Python 3.9 feature """
return bytes(random.sample(list(range(0, 255)), size))
| 6,275 |
def path_to_model(path):
"""Return model name from path."""
epoch = str(path).split("phase")[-1]
model = str(path).split("_dir/")[0].split("/")[-1]
return f"{model}_epoch{epoch}"
| 6,276 |
def _cpp_het_stat(amplitude_distribution, t_stop, rates, t_start=0.*pq.ms):
"""
Generate a Compound Poisson Process (CPP) with amplitude distribution
A and heterogeneous firing rates r=r[0], r[1], ..., r[-1].
Parameters
----------
amplitude_distribution : np.ndarray
CPP's amplitude distribution :math:`A`. `A[j]` represents the
probability of a synchronous event of size `j` among the generated
spike trains. The sum over all entries of :math:`A` must be equal to
one.
t_stop : pq.Quantity
The end time of the output spike trains
rates : pq.Quantity
Array of firing rates of each spike train generated with
t_start : pq.Quantity, optional
The start time of the output spike trains
Default: 0 pq.ms
Returns
-------
list of neo.SpikeTrain
List of neo.SpikeTrains with different firing rates, forming
a CPP with amplitude distribution `A`.
"""
# Computation of Parameters of the two CPPs that will be merged
# (uncorrelated with heterog. rates + correlated with homog. rates)
n_spiketrains = len(rates) # number of output spike trains
# amplitude expectation
expected_amplitude = np.dot(
amplitude_distribution, np.arange(n_spiketrains + 1))
r_sum = np.sum(rates) # sum of all output firing rates
r_min = np.min(rates) # minimum of the firing rates
# rate of the uncorrelated CPP
r_uncorrelated = r_sum - n_spiketrains * r_min
# rate of the correlated CPP
r_correlated = r_sum / expected_amplitude - r_uncorrelated
# rate of the hidden mother process
r_mother = r_uncorrelated + r_correlated
# Check the analytical constraint for the amplitude distribution
if amplitude_distribution[1] < (r_uncorrelated / r_mother).rescale(
pq.dimensionless).magnitude:
raise ValueError('A[1] too small / A[i], i>1 too high')
# Compute the amplitude distribution of the correlated CPP, and generate it
amplitude_distribution = \
amplitude_distribution * (r_mother / r_correlated).magnitude
amplitude_distribution[1] = \
amplitude_distribution[1] - r_uncorrelated / r_correlated
compound_poisson_spiketrains = _cpp_hom_stat(
amplitude_distribution, t_stop, r_min, t_start)
# Generate the independent heterogeneous Poisson processes
poisson_spiketrains = \
[StationaryPoissonProcess(
rate=rate - r_min, t_start=t_start, t_stop=t_stop
).generate_spiketrain()
for rate in rates]
# Pool the correlated CPP and the corresponding Poisson processes
return [_pool_two_spiketrains(compound_poisson_spiketrain,
poisson_spiketrain)
for compound_poisson_spiketrain, poisson_spiketrain
in zip(compound_poisson_spiketrains, poisson_spiketrains)]
| 6,277 |
def validate_uncles(state, block):
"""Validate the uncles of this block."""
# Make sure hash matches up
if utils.sha3(rlp.encode(block.uncles)) != block.header.uncles_hash:
raise VerificationFailed("Uncle hash mismatch")
# Enforce maximum number of uncles
if len(block.uncles) > state.config['MAX_UNCLES']:
raise VerificationFailed("Too many uncles")
# Uncle must have lower block number than blockj
for uncle in block.uncles:
if uncle.number >= block.header.number:
raise VerificationFailed("Uncle number too high")
# Check uncle validity
MAX_UNCLE_DEPTH = state.config['MAX_UNCLE_DEPTH']
ancestor_chain = [block.header] + \
[a for a in state.prev_headers[:MAX_UNCLE_DEPTH + 1] if a]
# Uncles of this block cannot be direct ancestors and cannot also
# be uncles included 1-6 blocks ago
ineligible = [b.hash for b in ancestor_chain]
for blknum, uncles in state.recent_uncles.items():
if state.block_number > int(
blknum) >= state.block_number - MAX_UNCLE_DEPTH:
ineligible.extend([u for u in uncles])
eligible_ancestor_hashes = [x.hash for x in ancestor_chain[2:]]
for uncle in block.uncles:
if uncle.prevhash not in eligible_ancestor_hashes:
raise VerificationFailed("Uncle does not have a valid ancestor")
parent = [x for x in ancestor_chain if x.hash == uncle.prevhash][0]
if uncle.difficulty != calc_difficulty(
parent, uncle.timestamp, config=state.config):
raise VerificationFailed("Difficulty mismatch")
if uncle.number != parent.number + 1:
raise VerificationFailed("Number mismatch")
if uncle.timestamp < parent.timestamp:
raise VerificationFailed("Timestamp mismatch")
if uncle.hash in ineligible:
raise VerificationFailed("Duplicate uncle")
if uncle.gas_used > uncle.gas_limit:
raise VerificationFailed("Uncle used too much gas")
if not check_pow(state, uncle):
raise VerificationFailed('uncle pow mismatch')
ineligible.append(uncle.hash)
return True
| 6,278 |
def quote_index(q_t,tr_t):
"""Get start and end index of quote times in `q_t` with the same timestamp as trade times in `tr_t`."""
left, right = get_ind(q_t,tr_t)
right[left<right] -=1 # last quote cannot be traded on, so shift index
left -=1 # consider last quote from before the timestamp of the trade
left[left<0] = 0
return left, right
| 6,279 |
def calculate_learning_curves_train_test(K, y, train_indices, test_indices, sampled_order_train,
tau, stop_t=None):
"""Calculate learning curves (train, test) from running herding algorithm
Using the sampled order from the sampled_order indexing array
calculate the learning curves on the train set using GKRR. Note that we
pass K instead of calculating it on the fly, that's why we don't use
s2 explicitly, it's already used in calculating K.
:param K: (np.ndarray, (n, n)) full kernel matrix from dataset
:param y: (np.ndarray, (n, 1)) output array
:param train_indices: (np.ndarray, (n_train,)) train indices from the original dataset
:param test_indices: (np.ndarray, (n_train,)) test indices from the original dataset
:param sampled_order_train: (np.ndarray, (n_train,)) order of the sampled training indices
:param tau: (float) regularisation parameter used in GKRR
:param stop_t: (int) final step of calculations
:return learning_curve_train: (np.ndarray, (stop_t,)) array of mse for train set
:return learning_curve_test: (np.ndarray, (stop_t,)) array of mse for test set
"""
gaussian_kr = GaussianKernelRidgeRegression(
tau=tau, s2=None, precompute_K=True)
# Index K differently depending on what we do.
# When predicting, we need the kernel matrix to be
# K_mn, where m indexes the set to predict over and
# n indexes the set we train over
K_train = K[np.ix_(train_indices, train_indices)]
K_test = K[np.ix_(test_indices, test_indices)]
K_test_train = K[np.ix_(test_indices, train_indices)]
K_sampled_train = K_train[np.ix_(sampled_order_train, sampled_order_train)]
y_train = y[train_indices]
y_test = y[test_indices]
y_sampled_train = y_train[sampled_order_train]
n_train = K_train.shape[0]
n_test = K_test.shape[0]
if stop_t is None:
stop_t = n_train
learning_curve_train = np.zeros(stop_t)
learning_curve_test = np.zeros(stop_t)
for t in range(stop_t):
K_sampled_train_t = K_sampled_train[0:t+1, 0:t+1]
gaussian_kr.fit(X=K_sampled_train_t, y=y_sampled_train[:t+1])
# Predict for train set
K_xn_train = K_train[np.ix_(
np.arange(n_train), sampled_order_train[:t+1])]
y_train_ = gaussian_kr.predict(K_xn_train)
learning_curve_train[t] = mean_squared_error(y_train, y_train_)
# Then test set
K_xn_test = K_test_train[np.ix_(
np.arange(n_test), sampled_order_train[:t+1])]
y_test_ = gaussian_kr.predict(K_xn_test)
learning_curve_test[t] = mean_squared_error(y_test, y_test_)
return learning_curve_train, learning_curve_test
| 6,280 |
def json2vcf(jsonfile, outputfile):
"""Function to grab variant(s) from JSON file and spit out VCF in outputdir.
Currently this function assumes that there is a chromosome field that
has the chromosome number encoded in 'code'. Hopefully this generalizes."""
# Make the vcf file w/ header
vcf_filename = outputfile
try:
os.remove(vcf_filename)
except OSError:
pass
# Get variant from JSON file
j = json.load(open(jsonfile))
chrom = j['referenceSeq']['chromosome']['coding'][0]['code']
pos = j['variant'][0]['start']
ref = j['variant'][0]['referenceAllele']
alt = j['variant'][0]['observedAllele']
patient = j['patient']['reference']
rspos = j['repository'][0]['variantsetId'].find('rs')
rsid = j['repository'][0]['variantsetId'][rspos:]
# Write the entry
with open(vcf_filename, 'a') as v:
# Write the metadata header
v.write('##fileformat=VCFv4.0\n')
v.write(('##source=' + jsonfile + '\n'))
v.write('#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\n')
# Write the variant row
v.write('{}\t{}\t{}\t{}\t{}\t.\t.\t.'.format(chrom, pos, rsid, ref,
alt))
| 6,281 |
def _CheckRequirements(requirements_file_path):
"""Checks that all package requirements specified in a file are met.
Args:
requirements_file_path: string. Path to a pip requirements file.
"""
try:
with open(requirements_file_path, 'rb') as fp:
for line in fp:
pkg_resources.require(line)
except (pkg_resources.DistributionNotFound,
pkg_resources.VersionConflict) as e:
# In newer versions of setuptools, these exception classes have a report
# method that provides a readable description of the error.
report = getattr(e, 'report', None)
err_msg = report() if report else str(e)
raise errors.Setup.PythonPackageRequirementUnfulfilled(
'A Python package requirement was not met while checking "{path}": '
'{msg}{linesep}To install required packages, execute the following '
'command:{linesep}pip install -r "{path}"{linesep}To bypass package '
'requirement checks, run PerfKit Benchmarker with the '
'--ignore_package_requirements flag.'.format(
linesep=os.linesep, msg=err_msg, path=requirements_file_path))
| 6,282 |
def create_account(param: CreateAccountParams) -> Transaction:
"""Generate a Transaction that creates a new account."""
raise NotImplementedError("create_account not implemented")
| 6,283 |
def check(datapath, config, output):
"""Cli for apps/morph_check."""
morph_check.main(datapath, config, output)
| 6,284 |
def removeString2(string, removeLen):
"""骚操作 直接使用字符串替换"""
alphaNums = []
for c in string:
if c not in alphaNums:
alphaNums.append(c)
while True:
preLength = len(string)
for c in alphaNums:
replaceStr = c * removeLen
string = string.replace(replaceStr, '')
if preLength == len(string):
break
return string
| 6,285 |
def process_filing(client, file_path: str, filing_buffer: Union[str, bytes] = None, store_raw: bool = False,
store_text: bool = False):
"""
Process a filing from a path or filing buffer.
:param file_path: path to process; if filing_buffer is none, retrieved from here
:param filing_buffer: buffer; if not present, s3_path must be set
:param store_raw:
:param store_text:
:return:
"""
# Log entry
logger.info("Processing filing {0}...".format(file_path))
# Check for existing record first
try:
filing = Filing.objects.get(s3_path=file_path)
if filing is not None:
logger.error("Filing {0} has already been created in record {1}".format(file_path, filing))
return None
except Filing.DoesNotExist:
logger.info("No existing record found.")
except Filing.MultipleObjectsReturned:
logger.error("Multiple existing record found.")
return None
# Get buffer
if filing_buffer is None:
logger.info("Retrieving filing buffer from S3...")
filing_buffer = client.get_buffer(file_path)
# Get main filing data structure
filing_data = openedgar.parsers.edgar.parse_filing(filing_buffer, extract=store_text)
if filing_data["cik"] is None:
logger.error("Unable to parse CIK from filing {0}; assuming broken and halting...".format(file_path))
return None
try:
# Get company
company = Company.objects.get(cik=filing_data["cik"])
logger.info("Found existing company record.")
# Check if record exists for date
try:
_ = CompanyInfo.objects.get(company=company, date=filing_data["date_filed"])
logger.info("Found existing company info record.")
except CompanyInfo.DoesNotExist:
# Create company info record
company_info = CompanyInfo()
company_info.company = company
company_info.name = filing_data["company_name"]
company_info.sic = filing_data["sic"]
company_info.state_incorporation = filing_data["state_incorporation"]
company_info.state_location = filing_data["state_location"]
company_info.date = filing_data["date_filed"].date() if isinstance(filing_data["date_filed"],
datetime.datetime) else \
filing_data["date_filed"]
company_info.save()
logger.info("Created new company info record.")
except Company.DoesNotExist:
# Create company
company = Company()
company.cik = filing_data["cik"]
try:
# Catch race with another task/thread
company.save()
try:
_ = CompanyInfo.objects.get(company=company, date=filing_data["date_filed"])
except CompanyInfo.DoesNotExist:
# Create company info record
company_info = CompanyInfo()
company_info.company = company
company_info.name = filing_data["company_name"]
company_info.sic = filing_data["sic"]
company_info.state_incorporation = filing_data["state_incorporation"]
company_info.state_location = filing_data["state_location"]
company_info.date = filing_data["date_filed"]
company_info.save()
except django.db.utils.IntegrityError:
company = Company.objects.get(cik=filing_data["cik"])
logger.info("Created company and company info records.")
# Now create the filing record
try:
filing = Filing()
filing.form_type = filing_data["form_type"]
filing.accession_number = filing_data["accession_number"]
filing.date_filed = filing_data["date_filed"]
filing.document_count = filing_data["document_count"]
filing.company = company
filing.sha1 = hashlib.sha1(filing_buffer).hexdigest()
filing.s3_path = file_path
filing.is_processed = False
filing.is_error = True
filing.save()
except Exception as e: # pylint: disable=broad-except
logger.error("Unable to create filing record: {0}".format(e))
return None
# Create filing document records
try:
create_filing_documents(client, filing_data["documents"], filing, store_raw=store_raw, store_text=store_text)
filing.is_processed = True
filing.is_error = False
filing.save()
return filing
except Exception as e: # pylint: disable=broad-except
logger.error("Unable to create filing documents for {0}: {1}".format(filing, e))
return None
| 6,286 |
def metadata_file():
"""
Return the path to the first (as per a descending alphabetic sort) .csv file found at the expected location
(<ffmeta_package_dir>/data/*.csv)
This is assumed to be the latest metadata csv file.
:return: The absolute path of the latest metadata csv file.
"""
dirname = os.path.dirname(ffmeta.__file__)
valid_files = list(glob.glob(os.path.join(dirname, 'data', '*.csv')))
if not valid_files:
raise RuntimeError('No valid metadata csv files found.')
else:
return sorted(valid_files)[-1]
| 6,287 |
def determineDicom(importedFile):
""" Determines whether the Dicom file is PET, CT or invalid"""
dicom_info = pydicom.dcmread(importedFile)
# Different file types passes to one of two functions.
if dicom_info.Modality == 'CT':
textArea.insert(END, 'CT Dicom file:\n')
CTdicom(importedFile)
elif dicom_info.Modality == 'PT':
textArea.insert(END, 'PET Dicom file:\n')
PETdicom(importedFile)
else:
textArea.insert(END, 'Not a Dicom or reconstruction parameter log file\n')
| 6,288 |
def _get_anchor_negative_triplet_mask(labels):
"""Return a 2D mask where mask[a, n] is True iff a and n have distinct labels.
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
Returns:
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
"""
# Check if labels[i] != labels[k]
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
return ~(labels.unsqueeze(0) == labels.unsqueeze(1)).all(-1)
| 6,289 |
def add_tax_data(file_location):
"""Adds tax data"""
data = read_csv_file(file_location)
session = setup_session()
list_size = len(data)
list_counter = 0
for entry in data:
if (entry[0] == "QLD"):
list_counter += 1
tax = Tax(
postcode = entry[1],
gross_num = int(entry[5].replace(',', "")),
gross_tax = int(entry[6].replace(',', "")),
medicare_levy = int(entry[8].replace(',', "")),
help_debt = int(entry[14].replace(',', ""))
)
print(tax)
try:
session.add(tax)
print("Adding ({}/{}): {}".format(list_counter, list_size, tax))
session.commit()
except Exception as e:
session.rollback()
print("Could not add entry")
| 6,290 |
async def test_wait_form_displayed_after_checking(hass, smartthings_mock):
"""Test error is shown when the user has not installed the app."""
flow = SmartThingsFlowHandler()
flow.hass = hass
flow.access_token = str(uuid4())
result = await flow.async_step_wait_install({})
assert result['type'] == data_entry_flow.RESULT_TYPE_FORM
assert result['step_id'] == 'wait_install'
assert result['errors'] == {'base': 'app_not_installed'}
| 6,291 |
def test_H():
"""Tests the Hamiltonian.
"""
from pydft.schrodinger import _H
from numpy.matlib import randn
s = [6,6,4]
R = np.array([[6,0,0],[0,6,0],[0,0,6]])
a = np.array(randn(np.prod(s), 1) + 1j*randn(np.prod(s), 1))
b = np.array(randn(np.prod(s), 1) + 1j*randn(np.prod(s), 1))
out1 = np.conj(np.dot(np.conj(a.T),_H(s,R,b)))
out2 = np.dot(np.conj(b.T),_H(s,R,a))
assert np.allclose(out1,out2)
| 6,292 |
def random_k_edge_connected_graph(size, k, p=.1, rng=None):
"""
Super hacky way of getting a random k-connected graph
Example:
>>> from graphid import util
>>> size, k, p = 25, 3, .1
>>> rng = util.ensure_rng(0)
>>> gs = []
>>> for x in range(4):
>>> G = random_k_edge_connected_graph(size, k, p, rng)
>>> gs.append(G)
>>> # xdoc: +REQUIRES(--show)
>>> pnum_ = util.PlotNums(nRows=2, nSubplots=len(gs))
>>> fnum = 1
>>> for g in gs:
>>> util.show_nx(g, fnum=fnum, pnum=pnum_())
"""
for count in it.count(0):
seed = None if rng is None else rng.randint((2 ** 31 - 1))
# Randomly generate a graph
g = nx.fast_gnp_random_graph(size, p, seed=seed)
conn = nx.edge_connectivity(g)
# If it has exactly the desired connectivity we are one
if conn == k:
break
# If it has more, then we regenerate the graph with fewer edges
elif conn > k:
p = p / 2
# If it has less then we add a small set of edges to get there
elif conn < k:
# p = 2 * p - p ** 2
# if count == 2:
aug_edges = list(k_edge_augmentation(g, k))
g.add_edges_from(aug_edges)
break
return g
| 6,293 |
def finish_round():
"""Clean up the folders at the end of the round.
After round N, the cur-round folder is renamed to round-N.
"""
last_round = get_last_round_num()
cur_round = last_round + 1
round_dir = os.path.join("rounds", f"round-{cur_round}")
os.rename(CUR_ROUND_DIR, round_dir)
timestamp = datetime.datetime.now().strftime("%y%m%d%H%M%S")
# Keep only the machines that actually have a team assigned
machine_team = machine2team(cur_round)
for cur_src, cur_team in machine_team.items():
log_name = f"{timestamp}-log"
dst_path = os.path.join(TEAMS_DIR, cur_team, LOGS_SUBDIR, log_name)
copyfile(os.path.join(round_dir, SOURCE_SUBDIR, cur_src, LOGNAME),
dst_path)
# Gather the scores
sink_dir = os.path.join(round_dir, SINK_SUBDIR)
results = defaultdict(dict)
for cur_sink in os.listdir(sink_dir):
with open(os.path.join(sink_dir, cur_sink, SCORE_FILE), 'r') as infile:
reader = csv.reader(infile, delimiter='\t')
for line in reader:
# results: (src, dst, bytes)
results[line[0]][cur_sink] = int(line[1])
# Scores
goals, src2team = load_goals(os.path.join(CONFIGS_DIR,
f"config_round_{cur_round}.csv"))
scores = score_run(goals, results)
# If there is no src entry in the scores, set the score to zero
teamscores = {team: scores[src] if src in scores else 0 for src, team in
src2team.items()}
print(teamscores)
# Send scores to influx
_push_to_influxdb(teamscores, cur_round)
return "Round finished and scores pushed"
| 6,294 |
def _SendGerritJsonRequest(
host: str,
path: str,
reqtype: str = 'GET',
headers: Optional[Dict[str, str]] = None,
body: Any = None,
accept_statuses: FrozenSet[int] = frozenset([200]),
) -> Optional[Any]:
"""Send a request to Gerrit, expecting a JSON response."""
result = _SendGerritHttpRequest(
host, path, reqtype, headers, body, accept_statuses)
# The first line of the response should always be: )]}'
s = result.readline()
if s and s.rstrip() != ")]}'":
raise GerritError(200, 'Unexpected json output: %s' % s)
# Read the rest of the response.
s = result.read()
if not s:
return None
return json.loads(s)
| 6,295 |
def contains_sequence(dna_sequence, subsequence):
"""
Checks if a defined subsequence exists in a sequence of dna.
:param dna_sequence: The dna sequence to check in for a subsequence.
ex: ['a', 't', 'g', ...]
:param subsequence: The subsequence of the dna to check for.
:return: True if the subsequence exists in python.
"""
pass
| 6,296 |
def test_sep_digits():
"""Must separate digits on 1000s."""
func = utils.sep_digits
assert func('12345678') == '12345678'
assert func(12345678) == '12 345 678'
assert func(1234.5678) == '1 234.57'
assert func(1234.5678, precision=4) == '1 234.5678'
assert func(1234.0, precision=4) == '1 234.0000'
assert func(1234.0, precision=0) == '1 234'
| 6,297 |
def readTableRules(p4info_helper, sw, table):
"""
Reads the table entries from all tables on the switch.
:param p4info_helper: the P4Info helper
:param sw: the switch connection
"""
print '\n----- Reading tables rules for %s -----' % sw.name
ReadTableEntries1 = {'table_entries': []}
ReadTableEntries2 = []
for response in sw.ReadTableEntries():
for entity in response.entities:
ReadTableEntry = {}
entry = entity.table_entry
table_name = p4info_helper.get_tables_name(entry.table_id)
if table==None or table==table_name:
# if table==None:
ReadTableEntry['table'] = table_name
print '%s: ' % table_name,
for m in entry.match:
print p4info_helper.get_match_field_name(table_name, m.field_id),
try:
print "\\x00"+"".join("\\x"+"{:02x}".format(ord(c)) for c in "".join([d for d in (p4info_helper.get_match_field_value(m))])),
except:
print '%r' % (p4info_helper.get_match_field_value(m),),
match_name = p4info_helper.get_match_field_name(table_name, m.field_id)
tmp_match_value = (p4info_helper.get_match_field_value(m),)
ReadTableEntry['match']={}
ReadTableEntry['match'][match_name] = tmp_match_value
action = entry.action.action
action_name = p4info_helper.get_actions_name(action.action_id)
ReadTableEntry['action_name'] = action_name
print '->', action_name,
for p in action.params:
print p4info_helper.get_action_param_name(action_name, p.param_id),
print '%r' % p.value,
action_params = p4info_helper.get_action_param_name(action_name, p.param_id)
tmp_action_value = p.value
### possibly needs bytify =>> struct. pack and unpack
ReadTableEntry['action_params'] = {}
ReadTableEntry['action_params'][action_params] = tmp_action_value
print
ReadTableEntries1.setdefault('table_entries',[]).append(ReadTableEntry)
ReadTableEntries2.append(ReadTableEntry)
return ReadTableEntries2
| 6,298 |
def alpha_043(code, end_date=None, fq="pre"):
"""
公式:
SUM((CLOSE>DELAY(CLOSE,1)?VOLUME:(CLOSE<DELAY(CLOSE,1)?-VOLUME:0)),6)
Inputs:
code: 股票池
end_date: 查询日期
Outputs:
因子的值
"""
end_date = to_date_str(end_date)
func_name = sys._getframe().f_code.co_name
return JQDataClient.instance().get_alpha_191(**locals())
| 6,299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.