content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def mask_to_surface_type(ds, surface_type, surface_type_var="land_sea_mask"):
"""
Args:
ds: xarray dataset, must have variable slmsk
surface_type: one of ['sea', 'land', 'seaice', 'global']
Returns:
input dataset masked to the surface_type specified
"""
if surface_type == "global":
return ds
elif surface_type not in ["sea", "land", "seaice"]:
raise ValueError(
"Must mask to surface_type in ['sea', 'land', 'seaice', 'global']."
)
surface_type_codes = {"sea": 0, "land": 1, "seaice": 2}
mask = ds[surface_type_var].astype(int) == surface_type_codes[surface_type]
ds_masked = ds.where(mask)
return ds_masked
|
0ee07b852c142d0041841288c54bbc68afdd65f8
| 16,108 |
def clip(value, lower, upper):
""" clip a value between lower and upper """
if upper < lower:
lower, upper = upper, lower # Swap variables
return min(max(value, lower), upper)
|
c7324ecd1e6e734a613071c26c2c00c33d2c487e
| 16,112 |
import asyncio
async def do_after_sleep(delay: float, coro, *args, **kwargs):
"""
Performs an action after a set amount of time.
This function only calls the coroutine after the delay,
preventing asyncio complaints about destroyed coros.
:param delay: Time in seconds
:param coro: Coroutine to run
:param args: Arguments to pass to coroutine
:param kwargs: Keyword arguments to pass to coroutine
:return: Whatever the coroutine returned.
"""
await asyncio.sleep(delay)
return await coro(*args, **kwargs)
|
913998318c8438b2afaf9fcb6e687c4e4a8149e6
| 16,115 |
from typing import Dict
def extract_tags(repo_info: Dict) -> Dict:
"""Extracts the tags from a repository's metadata.
Args:
repo_info: The repository's metadata.
Returns:
The repository's tags.
"""
tags = {}
repo_tags = repo_info.get("tags")
if repo_tags:
for repo_tag in repo_tags:
# Restrict splitting to the first ":" in case the value also contains a ":"
split_tags = repo_tag.split(":", maxsplit=1)
if len(split_tags) == 2:
tags[split_tags[0]] = split_tags[1]
return tags
|
108e343a84e7a076a6d42e4a3c2cdf0c12389e6b
| 16,117 |
def xgcd(a: int, b: int) -> tuple:
"""Extended Euclidean (GCD) algorithm
gcd(a, b) = u*a + v*b
Returns gdc, u, v
"""
x, x1, y, y1 = 1, 0, 0, 1
while b:
q, a, b = a // b, b, a % b
x, x1 = x1, x - q * x1
y, y1 = y1, y - q * y1
return a, x, y
|
3dba9fee305f2c423f84607177ca1b9025d33978
| 16,118 |
def flatten(data):
"""Recursively flatten lists"""
result = []
for item in data:
if isinstance(item, list):
result.append(flatten(item))
else:
result.append(item)
return result
|
bb4a7a91f921f67bed3d70e74246e1cc8eec825c
| 16,120 |
def get_train_test_modifiers(modifier=None):
"""Append the modifier to 'train' and 'test'"""
modifier_train = 'train'
modifier_test = 'test'
if modifier is not None:
modifier_train = modifier_train + '_' + modifier
modifier_test = modifier_test + '_' + modifier
return modifier_train, modifier_test
|
6adb8e2a6bb427de059ef7cd127476342ba39a3f
| 16,123 |
def logp_gradient(variable, calculation_set=None):
"""
Calculates the gradient of the joint log posterior with respect to variable.
Calculation of the log posterior is restricted to the variables in calculation_set.
"""
return variable.logp_partial_gradient(variable, calculation_set) + sum(
[child.logp_partial_gradient(variable, calculation_set) for child in variable.children])
|
8c1dd9207e1c08826d51053cb887a86d06306367
| 16,124 |
def mock_db_url(tmpdir):
"""Fixture to provide mock db url
This url is intended to be the location of where to place the local sqlite
databases for each unit test"""
dbname="dcae_cli.test.db"
config_dir = tmpdir.mkdir("config")
return "/".join(["sqlite://", str(config_dir), dbname])
|
a6f06b15edfb685ebb0ff38ae421091f06039563
| 16,125 |
def reproject_extent(extent, current_extent):
"""
Changes an extent from its current spatial reference to the spatial reference on another extent object
:param extent:
:param current_extent:
:return:
"""
return extent.projectAs(current_extent.spatialReference)
|
b64e98c15cda62e1a4855050a63b7ff7fcd38610
| 16,129 |
def _get_feature_help(module: object) -> str:
"""
Get the docstring of the imported module
:param module: the imported module object
:return: The docstring as string
"""
return module.__doc__ or "[ERROR] Missing the module docstring"
|
804f3586137adf7a22231225bd326fff2fcbd704
| 16,130 |
def get_model_parameters(model):
"""FUNCTION::GET_MODEL_PARAMETERS: Gets all the parameters of a model.
---
Arguments:
---
>- model {keras.Model} -- The model to analyze.
Returns:
---
>- {list[string]} -- layer Names
>- {list[np.array]} -- layer Weights
>- {list[tensor]} -- layer Outputs
>- {list[tensor]} -- layer Activations."""
layerNames = []; layerOutputs = []; layerWeights = []; layerAct = []
for layer in model.layers:
layerNames.append(layer.name)
layerOutputs.append(layer.output)
layerAct.append(layer.activation)
layerWeights.append(layer.get_weights)
return layerNames,layerWeights,layerOutputs,layerAct
|
96341de438b0359425381ebed400ab38da35304a
| 16,132 |
def two_letter_language_code(feed):
"""
feed.language conforms to
http://www.rssboard.org/rss-language-codes
sometimes it is of the form de-de, de-au providing a hint of dialect
thus, we only pick the first two letters of this code
:param feed:
:return:
"""
return feed.language[:2]
|
f4da54d15e73a1c317a90cce08de4a44d55ae273
| 16,135 |
from typing import Type
import importlib
def _string_to_class(string: str) -> Type:
"""
Parse a string into a Python class.
Args:
string: a fully qualified string of a class, e.g. 'mypackage.foo.MyClass'.
Returns:
The class.
"""
components = string.split(".")
class_name = components[-1]
module_name = ".".join(components[:-1])
module = importlib.import_module(module_name)
cls = getattr(module, class_name)
assert isinstance(cls, type)
return cls
|
e756b35a5d34aaeffa8ddc4e96130da3a3bc5d04
| 16,137 |
def roundup(val, width):
"""roundup a value to N x width-bits"""
x = (width >> 3) - 1
return (val + x) & ~x
|
45a303ca8f2ba5312fe89e73542606dbe68ed627
| 16,142 |
def sum_keep_digits(m: int, n: int, digit_count: int) -> int:
"""Finds the last base-10 digits of the sum of two non-negative integers.
Args:
m: The first non-negative integer addend.
n: The second non-negative integer addend.
digit_count: The number of least significant digits of the resulting
sum that should be preserved.
Returns:
An integer consisting of the last ``digit_count`` digits (from most to
least significant) of the sum ``m + n`` when written in base 10.
"""
mod = 10**digit_count
return ((m % mod) + (n % mod)) % mod
|
c09bf6a9bf681deae133bb787e2f1b50711dd24a
| 16,150 |
def split_layouts_by_arrow(s: str) -> tuple:
"""
Splits a layout string by first arrow (->).
:param s: string to split
:return: tuple containing source and target layouts
"""
arrow = s.find('->')
if arrow != -1:
source_layout = s[:arrow]
target_layout = s[arrow + 2:]
if source_layout == '':
source_layout = None
if target_layout == '':
target_layout = None
return source_layout, target_layout
else:
return s, None
|
30781f9a5d7b8b342c2a7d9fefb2085b2e990994
| 16,157 |
import pathlib
def parse_bind_volume(bind_arg):
"""unpack volume bind bind_arg (e.g., /foo:/bar) to dict where the key is a
resolve pathlib.Path and the value is an unresolved (in-container)
pathlib.PosixPath."""
# can be up to three, but we only want the first two
bind_arg = bind_arg.split(":")
src, dst = bind_arg[:2]
assert len(bind_arg) < 4, "unexpected number of bind_arg"
return {pathlib.Path(src).resolve(): pathlib.PosixPath(dst)}
|
ea2b4ac8ba03e3829ab4db69684ebf49767e0c94
| 16,158 |
def strip_lines(s, side='r'):
"""
Splits the given string into lines (at newlines), strips each line
and rejoins. Is careful about last newline and default to stripping
on the right only (side='r'). Use 'l' for left strip or anything
else to strip both sides.
"""
strip = (str.rstrip if side == 'r' else str.lstrip if side == 'l'
else str.strip)
end = '\n' if s.endswith('\n') else ''
return '\n'.join([strip(line) for line in s.splitlines()]) + end
|
4995710e9df31e7e210621b3f9be0af38642324e
| 16,160 |
def _draw_bbox_pil(canvas, bbox, color, stroke):
"""Draws BBox onto PIL.ImageDraw
:param bbox: BBoxDiim
:param color: Color
:param stroke: int
:returns PIL.ImageDraw
"""
xyxy = bbox.xyxy_int
if stroke == -1:
canvas.rectangle(xyxy, fill=color.rgb_int)
else:
canvas.rectangle(xyxy, outline=color.rgb_int, width=stroke)
return canvas
|
a5dd958cd18a9f9129567af55d5057b105d4fe59
| 16,162 |
def _prepare_url_params(tile_id, bbox, end_date, start_date, absolute_orbit):
""" Constructs dict with URL params
:param tile_id: original tile identification string provided by ESA (e.g.
'S2A_OPER_MSI_L1C_TL_SGS__20160109T230542_A002870_T10UEV_N02.01')
:type tile_id: str
:param bbox: bounding box of requested area in WGS84 CRS
:type bbox: common.BBox
:param start_date: beginning of time range in ISO8601 format
:type start_date: str
:param end_date: end of time range in ISO8601 format
:type end_date: str
:param absolute_orbit: An absolute orbit number of Sentinel-2 L1C products as defined by ESA
:type absolute_orbit: int
:return: dictionary with parameters as properties when arguments not None
:rtype: dict
"""
url_params = {
'identifier': tile_id,
'startDate': start_date,
'completionDate': end_date,
'orbitNumber': absolute_orbit,
'box': bbox
}
return {key: str(value) for key, value in url_params.items() if value}
|
029d6b2ecd0871fde521a98d3edb09f2a6bf947b
| 16,164 |
def padding_string(pad, pool_size):
"""Get string defining the border mode.
Parameters
----------
pad: tuple[int]
Zero-padding in x- and y-direction.
pool_size: list[int]
Size of kernel.
Returns
-------
padding: str
Border mode identifier.
"""
if pad == (0, 0):
padding = 'valid'
elif pad == (pool_size[0] // 2, pool_size[1] // 2):
padding = 'same'
elif pad == (pool_size[0] - 1, pool_size[1] - 1):
padding = 'full'
else:
raise NotImplementedError(
"Padding {} could not be interpreted as any of the ".format(pad) +
"supported border modes 'valid', 'same' or 'full'.")
return padding
|
985828faf9c072b623776be23e8ef0b7c680aba8
| 16,166 |
def apply_eqn(x, eqn):
"""
Given a value "x" and an equation tuple in the format:
(m, b)
where m is the slope and b is the y-intercept,
return the "y" generated by:
y = mx + b
"""
m, b = eqn
return (m * x) + b
|
1d5078905a20e6b83c2186f6aefbedaa70863fea
| 16,167 |
def ext_euclid_alg (m, n):
""" Extended Euclidean algorithm for gcd.
Finds the greatest common divisor of
two integers a and bm and solves for integer
x, y such that ax + by = 1. From Knuth, TAOCP
vol. I, p. 14.
Variables --
q, r -- quotient and remainder
a, b -- am + bn = gcd
apme, bpme -- a prime and b prime
t -- temporary
"""
m, n = abs(m), abs(n)
q, r = m // n, m % n
apme = b = 1
a = bpme = 0
while r != 0:
m, n = n, r
t = apme
apme = a
a = t - q * a
t = bpme
bpme = b
b = t - q * b
""" reset q and r """
q, r = m // n, m % n
return (n, a, b)
|
f6ee18c045dd6c26023ff70ab43dde550071023c
| 16,168 |
import torch
def get_prior_precision(args, device):
""" Obtain the prior precision parameter from the cmd arguments """
if type(args.prior_precision) is str: # file path
prior_precision = torch.load(args.prior_precision, map_location=device)
elif type(args.prior_precision) is float:
prior_precision = args.prior_precision
else:
raise ValueError('Algorithm not happy with inputs prior precision :(')
return prior_precision
|
b3a34d3831c42b490f1750c47de06743e5ff0b8a
| 16,170 |
def to_redfish_version(ver32):
"""
Converts a PLDM ver32 number to a Redfish version in the format vMajor_Minor_Errata
"""
if ver32 == 0xFFFFFFFF: # un-versioned
return ''
else:
return 'v'+str((ver32 >> 24) & 0x0F)+'_'+str((ver32 >> 16) & 0x0F)+'_'+str((ver32 >> 8) & 0x0F)
|
56ccd29c01b7307fa8ee47ae5e7fa4fb89163523
| 16,185 |
def restrictToHostsOnCurrentStage(statsboardData, hostsOnCurrentStage):
"""
Removes data for hosts not on current stage from statsboardData, and
returns the new version.
:param statsboardData:
:param hostsOnCurrentStage:
:return:
"""
# NOTE: can be optimized if necessary.
newData = []
for dataSlice in statsboardData:
if "tags" in dataSlice:
if "host" in dataSlice["tags"]:
if dataSlice["tags"]["host"] in hostsOnCurrentStage:
newData.append(dataSlice)
return newData
|
740f2c55a14472c36b3f6109fe2e89ef5880e04b
| 16,187 |
def POUF_unblind(params, ai, zi):
""" Unblind the messages to recover the raw outputs of the POUF """
G, g, o = params
xi = [a.mod_inverse(o) * z for a,z in zip(ai, zi)]
return xi
|
2fb5d1e2d758422dd7df9ff16baa1c834e320f7b
| 16,188 |
from typing import List
def align_lines(lines: list, column_separator: str = "|") -> List[str]:
"""
Pads lines so that all rows in single column match. Columns separated by '|' in every line.
:param lines: list of lines
:param column_separator: column separator. default is '|'
:return: list of lines
"""
rows = []
col_len: List[int] = []
for line in lines:
line = str(line)
cols = []
for col_index, col in enumerate(line.split(column_separator)):
col = str(col).strip()
cols.append(col)
if col_index >= len(col_len):
col_len.append(0)
col_len[col_index] = max(col_len[col_index], len(col))
rows.append(cols)
lines_out: List[str] = []
for row in rows:
cols_out = []
for col_index, col in enumerate(row):
if col_index == 0:
col = col.ljust(col_len[col_index])
else:
col = col.rjust(col_len[col_index])
cols_out.append(col)
lines_out.append(" ".join(cols_out))
return lines_out
|
2ec537752bfce3d261d7202e9b9266a9ae0dd87f
| 16,189 |
from typing import SupportsIndex
def ireplace(text: str, old_: str, new_: str, count_: SupportsIndex = -1) -> str:
"""Case-insensitive :py:meth:`str.replace` alternative.
:param text: String to search through.
:param old_: Case-insensitive substring to look for.
:param new_: Case-sensitive substring to replace with.
:param count_: Maximum number of occurrences to replace. -1 (the default value) means replace all occurrences.
:return: A string with all substrings matching old_ replaced with new_.
"""
index: int = 0
if not old_:
return text.replace('', new_)
if text.lower() == old_.lower() and count_.__index__() != 0:
return new_
while index < len(text) and count_.__index__() < 0:
index_l = text.lower().find(old_.lower(), index)
if index_l == -1:
return text
text = text[:index_l] + new_ + text[index_l + len(old_):]
index = index_l + len(new_)
return text
|
8509314192458c867b6471a381dc6470a2546902
| 16,192 |
def alpha(requestContext, seriesList, alpha):
"""
Assigns the given alpha transparency setting to the series. Takes a float value between 0 and 1.
"""
for series in seriesList:
series.options['alpha'] = alpha
return seriesList
|
25ef9bad1b39549585bdb175e487236591d0816f
| 16,194 |
def ask_yes_no_question(question):
"""Prints a question on the CLI that the user must respond
with a yes or no.
:param question: Text of the question. Include question mark on it.
:type question: str
:return: Whether the user said 'y' (True) or 'n' (False).
:rtype: bool
"""
answer = ''
while answer not in ('y', 'n'):
print(f'{question} [y/n](n):')
answer = input()
if not answer:
answer = 'n'
if answer == 'y':
return True
return False
|
6a70b135879e0fcd27ba6bc7fbc330a0660bd729
| 16,196 |
def akmcsInfocheck(akmcsInfo):
""" Helper function to check the AKMCS dictionary.
Checks akmcsInfo dict and sets default values, if required
parameters are not supplied.
Args:
akmcsInfo (dict): Dictionary that contains AKMCS information.
Returns:
akmcsInfo: Checked/Modified AKMCS Information.
"""
if "init_samp" not in akmcsInfo:
raise ValueError('akmcsInfo["init_samp"] must be defined')
else:
pass
if "maxupdate" not in akmcsInfo:
akmcsInfo["maxupdate"] = 120
print("Maximum update is set to ", akmcsInfo["maxupdate"])
else:
print("Maximum update is set to ", akmcsInfo["maxupdate"], " by user.")
if "problem" not in akmcsInfo:
raise ValueError('akmcsInfo["problem"] must be defined')
else:
pass
return akmcsInfo
|
5e70785cb2c6050f9e10b8936e64ed19b71cf4d5
| 16,204 |
def is_null(value, replace: str = ""):
"""
Checks if something is empty and will replace it with the given value
Parameters
----------
value
A thing to check if empty
replace : string
The thing to replace it with
"""
return value if value else replace
|
ae81cf7842de03653b7496984f577d67c3edecf2
| 16,205 |
def mean(values):
"""
Mean function.
"""
m = 0.0
for value in values:
m = m + value/len(values)
return m
|
4415b4f9aa373b54418683301ffe751249270d4c
| 16,207 |
def set_pianoroll_shape(pianoroll, data_shape):
"""Set the pianoroll shape and return the pianoroll."""
pianoroll.set_shape(data_shape)
return pianoroll
|
ca326624a83252411aa996b31bd6cfd8dd6c5baa
| 16,209 |
def evs_to_policy(search_policy_evs, *, temperature=1.0, use_softmax=True):
"""Compute policy targets from EVs.
Args:
search_policy_evs: Float tensor [T, B, 7, max_actions]. Invalid values are marked with -1.
temperature: temperature for softmax. Ignored if softmax is not used.
use_softmax: whether to apply exp() before normalizing.
Returns:
search_policy_probs: Float tensor [T, B, 7, max_actions].
"""
search_policy_probs = search_policy_evs.clone().float()
invalid_mask = search_policy_evs < -0.5
if use_softmax:
search_policy_probs /= temperature
# Using -1e8 instead of -inf so that softmax is defined even if all
# orders are masked out.
search_policy_probs[invalid_mask] = -1e8
search_policy_probs = search_policy_probs.softmax(-1)
else:
search_policy_probs.masked_fill_(invalid_mask, 0.0)
search_policy_probs /= (invalid_mask + 1e-20).sum(-1, keepdim=True)
return search_policy_probs.to(search_policy_evs.dtype)
|
46ac6e9fee0a8c010aef23519cbc594f0c0eb09d
| 16,210 |
def extract_list (data_str, to_float=False):
""" Extract a list of floating point values from a string
"""
split_str = data_str.split(',')
if to_float == True:
split_str = [float(x) for x in split_str]
return split_str
|
09825f9d7533bfbe9812bd6956b096cc33cb0be1
| 16,211 |
def prompt(message, values=None):
"""Prompt a message and return the user input.
Set values to None for binary input ('y' or 'n'), to 0 for integer input, or to a list of possible inputs.
"""
if values is None:
message += ' (y/n)'
message += ' > '
while 1:
ans = input(message)
if values is None:
if ans.lower() == 'y':
return True
elif ans.lower() == 'n':
return False
elif values == 0:
try:
read = int(ans)
except:
continue
return read
elif ans in values:
return ans
|
4d6b87b84ed1dfd95722e0055a8df3b1b34f1e84
| 16,212 |
def words_vec(w2v, words, use_norm=False):
"""
Return a dict that maps the given words to their embeddings.
"""
if callable(getattr(w2v, 'words_vec', None)):
return w2v.words_vec(words, use_norm)
return {word: w2v.wv.word_vec(word, use_norm) for word in words if word in w2v.wv}
|
46447f389800e36d7149da245fb0d38be24bbbe3
| 16,213 |
import asyncio
def in_async_call(loop, default=False):
"""Whether this call is currently within an async call"""
try:
return loop.asyncio_loop is asyncio.get_running_loop()
except RuntimeError:
# No *running* loop in thread. If the event loop isn't running, it
# _could_ be started later in this thread though. Return the default.
if not loop.asyncio_loop.is_running():
return default
return False
|
9ed888e0d8ee27d18c843a184071d9596880c039
| 16,216 |
def dictlist_lookup(dictlist, key, value):
"""
From a list of dicts, retrieve those elements for which <key> is <value>.
"""
return [el for el in dictlist if el.get(key)==value]
|
94e90b29c8f4034357be2b8683115f725c24b374
| 16,218 |
def df_to_geojson(df, geometry, coordinates, properties):
"""
Convert a pandas DataFrame to a GeoJson dictionary.
Parameters
----------
df : pandas DataFrame
DataFrame containing the geojson's informations.
geometry : String
The type of the geometry (Point, Polygon, etc.).
coordinates : String
The DataFrame column's name of the coordinates.
properties : list of String eelements.
The DataFrame column's names of the properties attributes.
Returns
-------
geojson : Dict
GeoJson dictionary with the geometry, coordinates, and properties elements.
"""
geojson = {'type': 'FeatureCollection', 'features': []}
for _, row in df.iterrows():
feature = {'type':'Feature',
'properties':{},
'geometry': {'type': geometry,
'coordinates': coordinates}}
for prop in properties:
normalize_prop = prop.lower().split('.')[-1]
feature['properties'][normalize_prop] = row[prop]
geojson['features'].append(feature)
return geojson
|
75fa808dca18b89e2e259425b9b9e67bb8ac2415
| 16,221 |
def get_bytes(block_nums):
"""
Takes an array of block integers and turns them back into a bytes object.
Decodes using base 256.
:param block_nums: Blocks (list of ints)
:return: Original data (bytes)
"""
message = []
for block in block_nums:
block_text = []
while block:
message_num = block % 256
block = block // 256
block_text.append(bytes([message_num]))
block_text.reverse()
message.extend(block_text)
return b''.join(message)
|
429325cd37a3f821b751237659626907eb19d4a9
| 16,222 |
def check_positive_int(string):
"""Convert a string to integer and check if it's positive.
Raise an error if not. Return the int.
"""
if int(string) > 0:
return int(string)
else:
raise RuntimeError("Integer must be positive.")
|
1e32994a2d9d58b1361a9228b78210398c19c94e
| 16,225 |
def clamp_value(my_value, min_value, max_value):
"""Limit value by min_value and max_value."""
return max(min(my_value, max_value), min_value)
|
f3478b08f3e2e38ba3459d487adc9c462468c32e
| 16,226 |
def _buses_with_gens(gens):
"""
Return a list of buses with generators
"""
buses_with_gens = list()
for gen_name, gen in gens.items():
if not gen['bus'] in buses_with_gens:
buses_with_gens.append(gen['bus'])
return buses_with_gens
|
5cf9e918a55e140053bceb538cd1f15b331c253d
| 16,229 |
import hashlib
def get_key(model_params, mw_range, bins):
"""
Generate a hash key based on the model parameters used and the fited
mw_range and number of bins.
"""
hasher = hashlib.md5()
hasher.update(bytes(str(model_params), 'ASCII'))
hasher.update(bytes(str(mw_range), 'ASCII'))
hasher.update(bytes(str(bins), 'ASCII'))
key = hasher.hexdigest()
return key
|
50fe5d13bf9f897c76ee144c576212ec483e1948
| 16,230 |
from typing import Any
import hashlib
def md5(item: Any) -> str:
"""Compute the MD5 hash of an object.
Args:
item:
The object to compute the MD5 hash on.
Returns:
The MD5 hash of the object.
"""
return hashlib.md5(str(item).encode()).hexdigest()
|
5589eb0a38b9f099a7f4b418d719b9c089110d5a
| 16,237 |
def SortLists(sortbylist,otherlists,reverse=False):
"""This function sorts lists similar to each list being a column
of data in a spreadsheet program and choosing one column to sort
by.
The sortbylist is the column or list that you wish to sort by and
otherlists is a list of the other lists or columns to sort.
Reverse is passed to the sort method of sortbylist."""
newlist=sortbylist[:]
newlist.sort(reverse=reverse)
bigoutlist=[]
for list in otherlists:
curlist=[]
for curitem in newlist:
ind=sortbylist.index(curitem)
curlist.append(list[ind])
bigoutlist.append(curlist)
return (newlist,)+tuple(bigoutlist)
|
132678fa35f008e4f987ffca57e729840438ca72
| 16,244 |
from typing import Any
def is_json_string(value: Any) -> bool:
"""Check if the provided string looks like json."""
# NOTE: we do not use json.loads here as it is not strict enough
return isinstance(value, str) and value.startswith("{") and value.endswith("}")
|
16418c37fc1d348e4d1e5805c485f181e514d537
| 16,249 |
def get_filediff_encodings(filediff, encoding_list=None):
"""Return a list of encodings to try for a FileDiff's source text.
If the FileDiff already has a known encoding stored, then it will take
priority. The provided encoding list, or the repository's list of
configured encodingfs, will be provided as fallbacks.
Args:
filediff (reviewboard.diffviewer.models.filediff.FileDiff):
The FileDiff to return encodings for.
encoding_list (list of unicode, optional):
An explicit list of encodings to try. If not provided, the
repository's list of encodings will be used instead (which is
generally preferred).
Returns:
list of unicode:
The list of encodings to try for the source file.
"""
filediff_encoding = filediff.encoding
encodings = []
if encoding_list is None:
encoding_list = filediff.get_repository().get_encoding_list()
if filediff_encoding:
encodings.append(filediff_encoding)
encodings += [
encoding
for encoding in encoding_list
if encoding != filediff_encoding
]
else:
encodings += encoding_list
return encodings
|
5c951bbc6266daa058de58bdeb1382ea6dc93ada
| 16,254 |
def get_group_command_url(environment: str,
enterprise_id: str,
group_id: str) -> str:
"""
Build and return pipeline url for scapi endpoint
:param environment:
:param enterprise_id:
:param group_id:
:return: Url
"""
url = f'https://{environment}-api.esper.cloud/api/enterprise/{enterprise_id}/devicegroup/{group_id}/command/'
return url
|
34402dbe263ddd5cd4b04b247beb09701f2b2cc6
| 16,256 |
def mutate_query_params(request, mutations):
"""
Return a mutated version of the query string of the request.
The values of the `mutations` dict are interpreted thus:
* `None`, `False`: Remove the key.
* Any other value: Replace with this value.
:param request: A HTTP request.
:type request: django.http.HttpRequest
:param mutations: A mutation dict.
:type mutations: dict[str, object]
:return: query string
"""
new_qs = request.GET.copy()
for key, value in mutations.items():
if value in (None, False):
new_qs.pop(key, None)
else:
new_qs[key] = value
return new_qs.urlencode()
|
215a79ce82859eb415454876c1c80cdfdb34d7f6
| 16,257 |
import math
import random
def Move(Location, xT):
"""
This function will return the new location (as a tuple) of a particle after it has
isotropically scattered
Location: Location of particle before scattering
xT: Total cross section of medium
"""
# Sample distance to collision
Distance = (1/xT)*math.log(random.random())
# Sample new direction
phi = 2*math.pi*random.random()
u = 2*random.random() - 1
v = math.sqrt(1-u*u)*math.cos(phi)
w = math.sqrt(1-u*u)*math.sin(phi)
# Move particle
x = Location[0] + Distance*u
y = Location[1] + Distance*v
z = Location[2] + Distance*w
return (x, y, z)
|
5902de845db37e5848fbf64954f971fcdce60c89
| 16,258 |
def get_color(col, color):
"""Function needed for backwards compatibility with the old "col" argument in
plt functions. It returns the default color 'C0' if both arguments are None.
If 'color' is not None, it always uses that. If 'color' is None and
'col' is an integer, it returns the corresponding 'CN' color. If 'col' is
neither None nor integer, an error is raised."""
if color is None and col is None:
return 'C0'
if col is None:
return color
if not isinstance(col, int):
raise ValueError("`col` must be an integer. Consider using `color` instead.")
return 'C{}'.format(col)
|
b4e7cbeacca0e730cb2fa5f320318da83cabfc1a
| 16,261 |
def stations_by_river(stations):
"""Creates a dictionary of stations that are located on the same river. The river is the key for this dictionary"""
river_dictionary = {}
for i in stations:
station_list = []
for j in stations:
if i.river == j.river:
station_list.append(j.name)
river_dictionary[i.river] = station_list
return river_dictionary
|
cf6d324c10ecb756dfa4c506adbbd16316a0d500
| 16,267 |
def get_margin(length):
"""Add enough tabs to align in two columns"""
if length > 23:
margin_left = "\t"
chars = 1
elif length > 15:
margin_left = "\t\t"
chars = 2
elif length > 7:
margin_left = "\t\t\t"
chars = 3
else:
margin_left = "\t\t\t\t"
chars = 4
return margin_left
|
c50b1253a737d787f696216a22250fb2268216ab
| 16,275 |
def unique_list(it):
"""
Create a list from an iterable with only unique element and where
the order is preserved.
Parameters
----------
it : iterable
Items should be hashable and comparable
Returns : list
All items in the list is unique and the order of the iterable
is preserved.
"""
unique = set()
return [i for i in it if i not in unique and unique.add(i) is None]
|
5122b3fdb7a489df856ad6ff4a17da58a99a8160
| 16,277 |
def f4(x):
"""Evaluate the estimate x**4+x**3+x**2+x."""
return x*(x*(x*x+x)+x)+x
|
6a5e258d77992e8c15a6dddb04627a7d5c8467d9
| 16,278 |
import re
def _is_private_name(name):
""" Return true if the given variable name is considered private.
Parameters
----------
name : str
Variable name to check
"""
# e.g. __name__ is considered public.
is_reserved_public_name = re.match(r"__[a-zA-Z0-9_]+__$", name) is not None
return name.startswith("_") and not is_reserved_public_name
|
1232f6a52ffc9d07d7ed286771c3c75bc80db8b7
| 16,280 |
import shlex
def shell_join(argv, delim=" "):
"""Join strings together in a way that is an inverse of `shlex` shell parsing into `argv`.
Basically, if the resulting string is passed as a command line argument then `sys.argv` will equal `argv`.
Parameters
----------
argv : list(str)
List of arguments to collect into command line string. It will be escaped accordingly.
delim : str
Whitespace delimiter to join the strings.
Returns
-------
cmd : str
Properly escaped and joined command line string.
"""
vv = [shlex.quote(vv) for vv in argv]
cmd = delim.join(vv)
assert shlex.split(cmd) == list(argv)
return cmd
|
d58fb2d899bc1f72adf0dd22bdc55ddc9ffeecfb
| 16,282 |
def inverted_index_add(inverted, doc_id, doc_index):
"""
Add Invertd-Index doc_index of the document doc_id to the
Multi-Document Inverted-Index (inverted),
using doc_id as document identifier.
{word:{doc_id:[locations]}}
"""
for word, locations in doc_index.items():
indices = inverted.setdefault(word, {})
indices[doc_id] = locations
return inverted
|
4ef0cad9892a09dfaeb730487f413836ba72b7d3
| 16,283 |
def append(xs, ys):
"""
Adds all the elements of xs and ys and returns a combined list.
"""
return xs + ys
|
e629ece09214a88465d780bb82f2b6f1a82af18a
| 16,289 |
import re
def get_all_text(elem):
"""Returns all texts in the subtree of the lxml.etree._Element, which is
returned by Document.cssselect() etc.
"""
text = ''.join(elem.itertext())
return re.sub(r'\s+', ' ', text).strip()
|
1c8e2e8743147fd3b09488445d8578a89f5346d7
| 16,294 |
def _collect_mexp_symbols(value):
"""Get symbols in a math expression.
:param value: The math expression.
:rtype : list of str
:return: A list of symbols.
"""
# Get symbols.
fsm = value.free_symbols
# Initialize symbol list.
ret = []
# Pop symbols.
while len(fsm) != 0:
ret.append(fsm.pop().name)
return ret
|
c031212e3af5bd485dc572c4cf9bb31cfc2be3db
| 16,297 |
def _inBoundaries(value, bounds):
"""
Tell if an integer value is within a range.
Parameters
----------
value : int
A value to be tested.
bounds : int | tuple(int, int)
Low boundary of the range, or a tuple of the form (low, high+1).
Returns
-------
boolean
Whether or not the value fell within the range
"""
if type(bounds) is tuple:
assert 2 == len(bounds)
return bounds[0] <= value < bounds[1]
else:
assert type(bounds) is int
return bounds <= value
|
dcc9fcf993ee7b25bb0f6b8cb8acea7b0474fad5
| 16,298 |
def has_neighbor(prop1: str, prop2: str) -> str:
"""
Builds the statements required for: The person who `prop1` has a neighbor who `prop2`.
For example, "The Norwegian lives next to the Blue house."
We can solve this by doing a disjunction of all satisfying possibilities. Because we've
previously stated that, for example, there's only one Norwegian and only one blue house,
we don't need to conjoin to prevent duplicates. Thus, we can say:
```ignore
(assert (or
(and (norwegian 1) (blue 2))
(and (norwegian 2) (blue 1))
(and (norwegian 2) (blue 3))
(and (norwegian 3) (blue 2))
(and (norwegian 3) (blue 4))
...
))
```
"""
ands = []
for i in range(1, 6):
for j in range(1, 6):
if abs(i-j) == 1:
ands.append(f' (and ({prop1} {i}) ({prop2} {j}))')
return '(assert (or\n' \
+ '\n'.join(ands) \
+ '))\n'
|
d63dd6e09ce822cdcd87970dd205ee34857ad8f4
| 16,300 |
def bl_little_mock(url, request):
"""
Mock for bundle lookup, small output.
"""
littlebody = b'<?xml version="1.0" encoding="UTF-8"?><availableBundlesResponse version="1.0.0" sessionId="7762de1a-909c-4afb-88fe-57acb69e9049"><data authEchoTS="1366644680359"><status code="0"><friendlyMessage>Success</friendlyMessage><technicalMessage>Success</technicalMessage></status><content><bundle version="10.3.1.2726"><type>system:os</type><type>system:radio</type><type>application</type></bundle></content></data><signature><root><cipher>EC521R1</cipher><shaType>SHA512</shaType><sigR>AN80t5quXy/WiTy0Lw0llAIGmRVogdfRttDOCbWh6uUquvAvAt2YAN1OOCLJbOOFn5SppytUJi34wXOxiopv2RjX</sigR><sigS>APPbsvblhDzEhpef8wQBgxCrTJ851e/BeVBLUzlGG7ovy220QdQHeG8ahk9bMeoTmnIkWc6f/kCs+h7hGkel+OYT</sigS></root><chain ordinal="1"><cipher>EC521R1</cipher><shaType>SHA512</shaType><publicKey notValidUntil="1434252700605" notValidAfter="1434684700605">BAHbALLG0oyfF7ZvmxOjz1NFODaTEd9gvdqaqgSwuTi39Jv87q0ZWfY7kVSxWAyuumQYfIpy+9ruTd4z7cNvXJ0u8ACJvuo3xzNpgCah74Wpqcvr+EuNGkVe0IAZDXZSGPeZC739vkPitYiqJDP8joOuFTIdpUop/qJj+YckijR9RujdUw==</publicKey><sigR>Aaou0PAOGD7njwYckvvAGlepOmDSbRV2clsaskubz01+sQ9YlLhwctCAPS9n9kpdnnYbg2TDvh6XN3lUFgmfGvJl</sigR><sigS>AN34KjWeSGVIBz4KTlHzMGMpKfDKsOQPT5UVsy+tczBhKdAeDYGaU5Yc/YFaAOz7RuxjIbHkohuHESqDcXCnvif6</sigS></chain></signature></availableBundlesResponse>'
return {'status_code': 200, 'content': littlebody}
|
0b35d1e30c32b89351341103ba9013ca95c0ba2e
| 16,307 |
from typing import Optional
def _transform_op(op: Optional[str]) -> str:
"""Transforms an operator for MongoDB compatibility.
This method takes an operator (as specified in a keyword argument) and transforms it
to a ``$`` prefixed camel case operator for MongoDB.
"""
if op is None:
return "$eq"
camel = op[0].lower() + op.title()[1:].replace("_", "")
return f"${camel}"
|
6168e84387ade258b2907445e5d3536228053521
| 16,309 |
def stop_server(proc):
"""
Stop server process.
proc: ShellProc
Process of server to stop.
"""
return proc.terminate(timeout=10)
|
c126ca840b56407f1eea8af943f4602532df13df
| 16,318 |
def get_oct(value):
"""
Convert an integer number to an octal string.
"""
try:
return oct(value)
except:
return value
|
0e07b02f7a727c5942c1f6f1d7d1ca12506328f4
| 16,327 |
import torch
def compute_distance_histograms(a, dx, b, dy):
"""
Computes the squared distance between histograms of distance of two
mm-spaces. The histograms are obtained by normalising measures to be
probabilities.
Parameters
----------
a: torch.Tensor of size [Batch, size_X]
Input measure of the first mm-space.
dx: torch.Tensor of size [Batch, size_X, size_X]
Input metric of the first mm-space.
b: torch.Tensor of size [Batch, size_Y]
Input measure of the second mm-space.
dy: torch.Tensor of size [Batch, size_X, size_X]
Input metric of the first mm-space.
Returns
-------
lcost: torch.Tensor of size [size_X, size_Y]
distances between metric histograms
"""
h_x = torch.einsum('ij, j->i', dx, a / a.sum())
h_y = torch.einsum('ij, j->i', dy, b / b.sum())
lcost = (h_x ** 2)[:, None] + (h_y ** 2)[None, :]
lcost = lcost - 2 * h_x[:, None] * h_y[None, :]
return lcost
|
7758c15cea89d9eabba2fbf95decd6252bec532d
| 16,329 |
def gather_3rd(params, indices):
"""Special case of tf.gather_nd where indices.shape[-1] == 3
Check https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/gather_nd
for details.
Args:
params: Tensor, shaped [B, d_1, ..., d_i], di >= 2
indices: LongTensor, shaped [B, i_1, ...,i_{k-1}, 3]
Returns:
Tensor, of shape indices.shape[:-1] + params.shape[indices.shape[-1]:]
"""
return params[indices[..., 0], indices[..., 1], indices[..., 2]]
|
948acdbb83b283cc0bef743d679e7d30fbaa0ad6
| 16,330 |
def apply_date_format(in_data):
""" This routine adds the default UTC zone format to the input date time string
If a timezone (strting with + or -) is found, all the following chars
are replaced by +00, otherwise +00 is added.
Note: if the input zone is +02:00 no date conversion is done,
at the time being this routine expects UTC date time values.
Examples:
2018-05-28 16:56:55 ==> 2018-05-28 16:56:55.000000+00
2018-05-28 13:42:28.84 ==> 2018-05-28 13:42:28.840000+00
2018-03-22 17:17:17.166347 ==> 2018-03-22 17:17:17.166347+00
2018-03-22 17:17:17.166347+00:00 ==> 2018-03-22 17:17:17.166347+00
2018-03-22 17:17:17.166347+00 ==> 2018-03-22 17:17:17.166347+00
2018-03-22 17:17:17.166347+02:00 ==> 2018-03-22 17:17:17.166347+00
Args:
the date time string to format
Returns:
the newly formatted datetime string
"""
# Look for timezone start with '-' a the end of the date (-XY:WZ)
zone_index = in_data.rfind("-")
# If index is less than 10 we don't have the trailing zone with -
if (zone_index < 10):
# Look for timezone start with '+' (+XY:ZW)
zone_index = in_data.rfind("+")
if zone_index == -1:
if in_data.rfind(".") == -1:
# there are no milliseconds in the date
in_data += ".000000"
# Pads with 0 if needed
in_data = in_data.ljust(26, '0')
# Just add +00
timestamp = in_data + "+00"
else:
# Remove everything after - or + and add +00
timestamp = in_data[:zone_index] + "+00"
return timestamp
|
2a9cd63f1b0a341c3c859d80b538af5ecf56d21d
| 16,332 |
def near(array, value):
"""Find the nearest point within the array and return its index"""
idx = (abs(array - value)).argmin()
return idx
|
0e683e8a94a54cd4e53f6d147ca8d4d907ec84c2
| 16,338 |
import time
def bench_from_sample( distribution, sample, n=1000 ):
"""Bench the training of a probability distribution."""
tic = time.time()
for i in range(n):
distribution.summarize( sample )
return time.time() - tic
|
c9d97badda06a9b5340dc360e1ba7d043a6e2c29
| 16,339 |
def packal_username(author):
"""Format usernames for Packal."""
user = author.lower()
user = user.replace(" ", "-")
return user
|
c8f9c5ab67deb95775a787a5cb8cceab67ea73f1
| 16,341 |
def _get_all_nearest_neighbors(method, structure):
"""Get the nearest neighbor list of a structure
Args:
method (NearNeighbor) - Method used to compute nearest neighbors
structure (IStructure) - Structure to study
Returns:
Output of `method.get_all_nn_info(structure)`
"""
return method.get_all_nn_info(structure)
|
5e1e33c7b06951933d8603a75006c6895b742293
| 16,345 |
def rolling_average(n, data):
"""
Function to calculate an n day rolling average given a list of covid data pts
@param n: an int representing the number of points to average into the past
@param data: a list of dictionaries representing covid data pts
@return: the n day death, death increase, infected, and infected increase averages
"""
# 10 day rolling average data
death_total, inc_death_total, inf_total, inc_inf_total = 0,0,0,0
# Get the last n days and add to total counters
for i in range(n):
curr = data[i]
death_total += curr['death']
inc_death_total += curr['deathIncrease']
inf_total += curr['positive']
inc_inf_total += curr['positiveIncrease']
# Divide total counters by n to get n-day average
return death_total/n, inc_death_total/n, inf_total/n, inc_inf_total/n
|
ba02b006176d8b37ed53e5f2cd46c64a92b7dcc2
| 16,353 |
def checkPW(md5str: str, USER_PASSWD: str):
"""检查本地数据库中密码和计算后的密码是否一致
:param md5str: 计算后的密码(字符串)
:param USER_PASSWD: 本地的存的密码(字符串)
:return: bool
"""
return md5str == USER_PASSWD
|
2bbe3864493700ff907b00ff9f82c45723e1a2d7
| 16,355 |
def count_letters(word,find):
"""
Example function with types documented in the docstring.
Ce code doit retourner le nombre d'occurences d'un caractère passé en paramètre dans un mot donné également
Parameters
----------
param1 : str
Le 1er paramètre est une chaine de caractères
param2 : char
Le 2ème paramètre est un caractère
Returns
-------
int
Nombre d'occurences du caractère
Exemples
--------
>>> count_letters(abracadabra,a)
5
>>> count_letters(momomotus,u)
1
"""
count=0
for i in range(len(word)):
if word.find(find,i)!=0:
count+=1
return count
|
327e6b4fd99d03b27473b9620d6147909d0cf6e4
| 16,357 |
def one_space(value):
""""Removes empty spaces, tabs and new lines from a string and adds a space between words when necessary.
Example:
>>> from phanterpwa.tools import one_space
>>> one_space(" My long \r\n text. \tTabulation, spaces, spaces. ")
'My long text. Tabulation, spaces, spaces.'
"""
result = ""
if isinstance(value, str):
value = value.strip()
value = value.replace("\n", " ").replace("\t", " ").replace("\r", " ")
spl = value.split(" ")
result = " ".join([x for x in spl if x])
return result
|
ff3ce941437186c734bd2815fff9d23ba581bec7
| 16,360 |
def small_push_dir(tmpdir):
"""Create a small pg data directory-alike"""
contents = 'abcdefghijlmnopqrstuvwxyz\n' * 10000
push_dir = tmpdir.join('push-from').ensure(dir=True)
push_dir.join('arbitrary-file').write(contents)
# Construct a symlink a non-existent path. This provoked a crash
# at one time.
push_dir.join('pg_xlog').mksymlinkto('/tmp/wal-e-test-must-not-exist')
# Holy crap, the tar segmentation code relies on the directory
# containing files without a common prefix...the first character
# of two files must be distinct!
push_dir.join('holy-smokes').ensure()
return push_dir
|
6f3fa0f6b291f4d18a8f33624ad55045c45b7261
| 16,361 |
def create_cmnd(
analysis, sim_start_date, sim_end_date, use_sim_manager, attributes, no_close
):
"""Create a command string for automatic processing."""
args = []
if use_sim_manager:
args.append("UseSimManager")
if sim_start_date:
args.append(f"SimStartDate {sim_start_date[0]} {sim_start_date[1]}")
if sim_end_date:
args.append(f"SimEndDate {sim_end_date[0]} {sim_end_date[1]}")
if attributes:
args.extend([f"ChangeAttributeValue {attr} {val}" for attr, val in attributes])
if no_close:
args.extend(["NoClose"])
types = {
"eplus": "miGSS",
"sbem": "miGCalculate",
"dsm": "miGCalculate", # not working
}
if analysis == "none":
# this is used for cases when it's desired
# only to update bunch of models
pass
else:
try:
args.append(types[analysis])
except KeyError:
raise KeyError("Incorrect analysis type: '{}'.".format(analysis))
args.append("miTUpdate")
if len(args) == 1:
cmnd = "/process=" + args[0]
else:
cmnd = "/process=" + ", ".join(args)
print(f"Running batch using '{cmnd}' command args. ")
return cmnd
|
b95fc466a9c61a125bf09d6fc5dd77bf4575756d
| 16,365 |
def SplitCoordinates(xyz_str):
"""
Function to split coord. str in float list
xyz_str: (str) a list input of "x,y,z" coordinates
"""
xyz = []
for i in range (len(xyz_str)):
x_,y_,z_ = xyz_str[i].split(",")
xyz.append([float(x_),float(y_),float(z_)])
return(xyz)
|
808a3c73783d8f36a2ecd70d128fca49fc7f7e1e
| 16,368 |
def vectorOFRightDirection(OFvect, FOE):
"""Returns True if OF vector is pointing away from the FOE, False otherwise."""
# Get points of optical flow vector
a1, b1, c1, d1 = OFvect
# If left side of FOE
if a1 <= FOE[0]:
if c1 <= a1:
return False
# If right side of FOE
else:
if c1 >= a1:
return False
return True
|
febe984f172ffbcf6557bbad0829d52e83c94dd7
| 16,372 |
def get_best_model(comparison_result, metric="fmeasure", reverse=False):
"""
Returns the model row in dataframe which has the best performance on a given metric
:param comparison_result: a dataframe containing evaluation info about various models
:param metric: metric on which a comparison is be made, defaults to "fmeasure"
:return: a dataframe row corresponding to the model which has the best score on the given metric
"""
if reverse:
model_row = comparison_result[
comparison_result[metric] == comparison_result[metric].min()
]
else:
model_row = comparison_result[
comparison_result[metric] == comparison_result[metric].max()
]
return model_row.iloc[0]
|
fd4deb629386c537b59552528e99ee27391d7aa3
| 16,374 |
import re
def is_timeline_speed_request(text):
"""
Returns true if the specified text requests the home timeline speed.
"""
tlspeed_re = '流速'
return not re.search(tlspeed_re, text) is None
|
9c14ed5f095043dd02aa8fc254a45e702925eeef
| 16,376 |
def wprota(self, thxy="", thyz="", thzx="", **kwargs):
"""Rotates the working plane.
APDL Command: WPROTA
Parameters
----------
thxy
First rotation about the working plane Z axis (positive X toward
Y).
thyz
Second rotation about working plane X axis (positive Y toward Z).
thzx
Third rotation about working plane Y axis (positive Z toward X).
Notes
-----
The specified angles (in degrees) are relative to the orientation of
the working plane.
This command is valid in any processor.
"""
command = f"WPROTA,{thxy},{thyz},{thzx}"
return self.run(command, **kwargs)
|
ef0dd188ad663d190f85490d9229d28bdb5b3fce
| 16,379 |
from typing import List
import itertools
def generate_combinations(urls: List[str], params: List[dict]) -> List[tuple]:
"""
Private method to combine urls and parameter
dictionaries in tuples to pass to the download
method.
Args:
- urls (List[str]): list of urls
- params (List[dict]): list of parameter dictionaries
Returns:
List[tuple]: list of tuples in the format (url, parameters)
"""
# assert len(urls) == len(params)
return list(itertools.product(urls, params))
|
4e24e85a49a685c810b3d4089886abac7c785bfb
| 16,383 |
from typing import Union
from typing import Tuple
from typing import List
from typing import Any
def deep_tuple_to_list(inp: Union[Tuple, List]) -> List[Any]:
"""Transform a nested tuple to a nested list.
Parameters
----------
inp: Union[Tuple, List]
The input object.
Returns
-------
ret: List[Any]
The nested list.
"""
return list(map(deep_tuple_to_list, inp)) if isinstance(inp, (list, tuple)) else inp
|
770b4f653b734ecd2caf1d6b56ac090e4ffe3208
| 16,387 |
from pathlib import Path
from typing import Dict
import json
def make_temporary_features_json(
make_temporary_folders_and_files: Path,
test_input_json: Dict,
test_input_json_filename: str,
) -> Path:
"""Make a temporary features JSON file."""
# Define the list of folders and filenames for possible removal
# Define the file path for the temporary features JSON file, then write its contents
temp_json_path = make_temporary_folders_and_files.joinpath(test_input_json_filename)
temp_json_path.touch()
with open(temp_json_path, "w", encoding="utf-8") as f:
json.dump(test_input_json, f)
return temp_json_path
|
5e7274e33d5ca6cda29798c6e80f782129788a9b
| 16,388 |
def word16be(data):
"""return data[0] and data[1] as a 16-bit Big Ended Word"""
return (data[1] << 8) | data[0]
|
4f9c05993980ed95ffdd6fe26389a9025c41f7c9
| 16,389 |
def is_latitude_norther_than(lat_a, lat_b):
"""
Check if lat_a is norther than lat_b
"""
is_latitude_a_negative = lat_a < 0
is_latitude_b_negative = lat_b < 0
same_sign = is_latitude_a_negative == is_latitude_b_negative
if not is_latitude_a_negative and is_latitude_b_negative:
return True
if is_latitude_a_negative and not is_latitude_b_negative:
return False
if same_sign:
return lat_a > lat_b
return lat_a < lat_b
|
290c0a4f298290bb375170c6748515b7a7218d95
| 16,392 |
from typing import Tuple
from typing import List
def get_metadata(description: str) -> Tuple[str, List[str], str]:
"""Returns a tuple of (description, tags, category) from a docstring.
metadata should be of the form key: value, e.g. category: Category Name"""
tags: List[str] = []
category: str = ""
lines: List[str] = description.split("\n")
description_trimmed: List[str] = []
for index, line in enumerate(lines):
line_stripped: str = line.strip().lower()
if line_stripped.startswith("tags:"):
tags = line[line.find(":") + 1 :].split(",")
tags = list(map(lambda t: t.strip(), tags))
continue
elif line_stripped.startswith("category:"):
category = line[line.find(":") + 1 :].strip()
continue
else:
description_trimmed.append(line)
return "\n".join(description_trimmed), tags, category
|
21e28d7a3c802d2513f2bf8eaeccc215070a2e24
| 16,394 |
def get_repo_dicts(r):
"""Return a set of dicts representing the most popular repositories."""
response_dict = r.json()
repo_dicts = response_dict['items']
return repo_dicts
|
822a0dc0674b2eda5210fdd88257d894c3dc902c
| 16,398 |
def _partition(array, low, high):
"""Choose the first element of `array`, put to the left of it
all elements which are smaller, and to the right all elements which
are bigger than it.
Return the final position of this element.
"""
if low >= high:
return
i = low + 1
j = high
while i <= j:
if array[i] <= array[low]:
i += 1
else:
array[i], array[j] = array[j], array[i]
j -= 1
array[low], array[j] = array[j], array[low]
return j
|
89f23c2e0c14c9a516e8b895e888936773fbfe94
| 16,400 |
def db_to_power(decibel):
"""
Returns power value from a decibel value.
"""
return 10**(decibel/10)
|
5188d8d646f2421546cf894ad45d2bdd30d97e53
| 16,402 |
def _get_rid_for_name(entries, name):
"""Get the rid of the entry with the given name."""
for entry in entries.values():
if entry['name'] == name:
return entry['rid']
raise ValueError(u'No entry with name {} found in entries {}'.format(name, entries))
|
0791f3185404ca59417fd9196467c8aef69c429c
| 16,404 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.