content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import torch
def collate_fn(data):
"""Construct a bacth by padding the sequence to the size of the longest.
Args:
data (tuple): tensors
Returns:
tuple: padded tensors
"""
# Construct a bacth by padding the sequence to the size of the longest
size = [len(_x) for _x in list(zip(*data))[0]]
pad_data = [torch.zeros(len(size), max(size)) for _ in zip(*data)]
pad_mask = torch.ones(len(size), max(size))
for i, _data in enumerate(data):
end = size[i]
pad_mask[i, :end] = 0
for j, d in enumerate(_data):
pad_data[j][i, :end] = d
return [d.type(torch.int64)
for d in pad_data] + [pad_mask.type(torch.bool)]
# not yet supported by yapf and black formatter (allowed in Python 3.8)
# return *[d.type(torch.int64) for d in pad_data],
# pad_mask.type(torch.bool)
|
0dffeac33a95a7001a1898299a329b12b1b29ffe
| 43,295 |
def SmoothBrokenPowerLaw(x, norm=1., gamma_low=1., gamma_high=1., break_freq=1.):
"""
Smooth broken power law function,
implemented using astropy.modeling.models custom model
Parameters
----------
x: numpy.ndarray
non-zero frequencies
norm: float
normalization frequency
gamma_low: float
power law index for f --> zero
gamma_high: float
power law index for f --> infinity
break_freq: float
break frequency
Returns
-------
model: astropy.modeling.Model
generalized smooth broken power law psd model
"""
return norm * x**(-gamma_low) / (1. + (x / break_freq)**2)**(-(gamma_low - gamma_high) / 2)
|
e5d40a987d4427a5f6dac1a7727e908aa78ec95e
| 43,297 |
def format_exts(exts: list):
""" Returns a formatted list of extentions. """
return ", ".join(["." + ext for ext in exts])
|
e1ab9f8cf039291a9344111308ef72715ae19188
| 43,298 |
import configparser
def configurations(path):
"""Parses and reads the configuration file named found at path. Returns
a configparser Object."""
# create config parsing object
config = configparser.ConfigParser()
# read config
config.read(path)
return config
|
de3177feee980f1ffa3be9b1b330ed780304108f
| 43,301 |
def adjust(val, length=6):
"""
This function left align the numerical value for printing purpose
"""
return str(val).ljust(length)
|
64ac888b308821215bf68cd4d846898d403fdb24
| 43,304 |
def toLower(str):
""" This method just turns the first char of a word to lowercase. """
return str[:1].lower() + str[1:] if str else ''
|
f44d129af901b9ee9781cd4c78b9ec9361e29a84
| 43,306 |
import string
import random
def gen_id(length):
""" Create a well-usable random id """
source = string.ascii_letters + string.digits
return ''.join([random.choice(source) for _ in range(0, length)])
|
6c08f786476ee90d9f9d71fe499be99c93a523d2
| 43,310 |
def prepare_url(valip, valch, valc, valii):
"""
Prepare the URL
"""
## Parameter - IP
url = "http://" + valip
## Parameter - URL - action
url += "/api/v100/dali_devices.ssi?action=get_device"
## Parameter - Channel
url += "&ch=" + valch
## Parameter - Lamp index, group index or channel
if valc == 1:
# Lamp index
url += "&di=" + valii
elif valc == 2:
# Group index
url += "&gi=" + valii
else:
# Channel
url += "&gi=-1"
return url
|
4516e45206a7f681e71856cca5b1e1332c775e68
| 43,314 |
def read_input(ifn):
"""
Read an Abaqus INP file, read its sections.
Return the section headings and the lines.
"""
with open(ifn) as inf:
lines = [ln.strip() for ln in inf.readlines()]
# Remove comments
lines = [ln for ln in lines if not ln.startswith("**")]
# Find section headers
headings = [(ln[1:], n) for n, ln in enumerate(lines) if ln.startswith("*")]
# Filter the headings so that every heading has a start-of-data and
# end-of-data index.
headings.append(("end", -1))
ln = [h[1] for h in headings]
headings = [
(name, start + 1, end) for (name, start), end in zip(headings[:-1], ln[1:])
]
return headings, lines
|
7223dc6d808cb96101cd18e21f09ef013478fa6e
| 43,317 |
def convert_to_float(number_string):
"""Convert comma-delimited real numberts in string format to a float
>>> convert_to_float("-79,1")
-79.1
"""
return(float(number_string.replace(',', '.')))
|
8b30293677af0860f32eb28b544c262a3b1279f4
| 43,325 |
def _darknet_required_attr(attr, key):
"""Check the attribute exists and return if exists, if not return error."""
assert isinstance(attr, dict)
if key not in attr:
raise AttributeError("Required attribute {} not found.".format(key))
return attr[key]
|
938555c55069fafc28a1d43a06b1d316abaea87f
| 43,326 |
def grouper(x):
"""
Given a line number in a fastq file, return a tuple
mapping each line to a read number (modulo 4) and
line number
"""
return int(x[1] / 4), x[0]
|
e61093ec88fc0ab26d7b1e5662d75a1506bb6df8
| 43,330 |
def times2(num):
""" This function returns twice the value of the entered number """
return num * 2
|
a59997b5e94b287c849f1aa3250c2e5b8df7b094
| 43,334 |
def qubit_constraint(ind1, ind2, instructions):
"""
Determine if two instructions have overlap in the used qubits.
"""
if instructions[ind1].used_qubits & instructions[ind2].used_qubits:
return False
else:
return True
|
c8fce40c70977c86a9c86bb1b17d92037571fb36
| 43,335 |
def data_split(data, frac_validate=.2, frac_test=.2):
"""
Split data into train, validatio, train2 and test set.
Args:
data (array or series): data of interest
frac_valid (float): a fraction of data for validation set (default = 0.2)
frac_test (float): a fraction of data for test set (default = 0.2)
Returns:
a tuple of 4 dataframe including train, train2, valid, and test.
"""
n_size = data.shape[0]
n_test = int(n_size*(frac_test))
n_validate = int(n_size*(frac_validate))
n_train = n_size - n_test - n_validate
train = data.iloc[:n_train].dropna()
validate = data.iloc[n_train:-n_test]
train2 = data.iloc[:-n_test]
test = data.iloc[-n_test:]
return train, validate, train2, test
|
6f391aee009bbc95a6216b6b42d53fcbf71cb5ad
| 43,337 |
def latticeWrapIdx(index, lattice_shape):
"""
Returns periodic lattice index for a given iterable index
:param index: List of cells
:param lattice_shape: Oxygen distribution in lattice array shape
:return: Modified indexes
"""
if not hasattr(index, '__iter__'): return index # handle integer slices
if len(index) != len(lattice_shape): return index # must reference a scalar
if any(type(i) == slice for i in index): return index # slices not supported
if len(index) == len(lattice_shape): # periodic indexing of scalars
mod_index = tuple(((i % s + s) % s for i, s in zip(index, lattice_shape)))
return mod_index
raise ValueError('Unexpected index: {}'.format(index))
|
80d4caf99770548f7d0edf3f6aaac2e7a904ecec
| 43,341 |
def range_union(ranges):
"""
Returns total size of ranges, expect range as (chr, left, right)
>>> ranges = [("1", 30, 45), ("1", 40, 50), ("1", 10, 50)]
>>> range_union(ranges)
41
>>> ranges = [("1", 30, 45), ("2", 40, 50)]
>>> range_union(ranges)
27
>>> ranges = [("1", 30, 45), ("1", 45, 50)]
>>> range_union(ranges)
21
>>> range_union([])
0
"""
if not ranges:
return 0
ranges.sort()
total_len = 0
cur_chr, cur_left, cur_right = ranges[0] # left-most range
for r in ranges:
# open new range if left > cur_right or chr != cur_chr
if r[1] > cur_right or r[0] != cur_chr:
total_len += cur_right - cur_left + 1
cur_chr, cur_left, cur_right = r
else:
# update cur_right
cur_right = max(r[2], cur_right)
# the last one
total_len += cur_right - cur_left + 1
return total_len
|
3fa8aa251c207d2576d3739116c0d33378716bee
| 43,343 |
import base64
def readDataOrPath(dataStr):
"""
Reads in either base64 data or a path.
"""
if dataStr.startswith('base64:'):
dataPath = None
dataContents = base64.b64decode(dataStr[7:])
else:
dataPath = dataStr
with open(dataStr, 'rb') as stream:
dataContents = stream.read()
return dataPath, dataContents
|
0b18eaa4affdb409455e7575a6938963df1f1db1
| 43,344 |
def truncate_chars(val: str, num: int, end: str = "...") -> str:
"""Truncates a string if it is longer than the specified number of characters.
Truncated strings will end with `end`, an ellipsis by default."""
val_length = len(val)
end_length = len(end)
if val_length < num:
return val
return f"{val[:num-end_length]}{end}"
|
fc5ba4950e4a7562b1a0d97850048c35d3f3518c
| 43,345 |
def full_to_one(full):
"""
Convert full amino acid name to one-letter amino acid code.
"""
assert full.lower() in [
"phenylalanine",
"leucine",
"serine",
"tyrosine",
"stop",
"cysteine",
"tryptophan",
"proline",
"histidine",
"glutamine",
"arginine",
"isoleucine",
"methionine",
"threonine",
"asparagine",
"lysine",
"valine",
"alanine",
"aspartic acid",
"glutamic acid",
"glycine",
"unnatural aa",
], (
"Error, %s is not a valid amino acid" % full
)
AA = {
"phenylalanine": "F",
"leucine": "L",
"serine": "S",
"tyrosine": "Y",
"stop": "*",
"cysteine": "C",
"tryptophan": "W",
"proline": "P",
"histidine": "H",
"glutamine": "Q",
"arginine": "R",
"isoleucine": "I",
"methionine": "M",
"threonine": "T",
"asparagine": "N",
"lysine": "K",
"valine": "V",
"alanine": "A",
"aspartic acid": "D",
"glutamic acid": "E",
"glycine": "G",
"unnatural aa": "U",
}
return AA[full.lower()]
|
182438900416a7a0be9bb799648c822597670e32
| 43,349 |
def print_failure(filename, failure, colored=False, verbose=False):
"""
Pretty prints a failure
:param filename: str, path to file tested
:param failure: Failure
:param colored: bool, prints with ansi colors according to failure severity
"""
def color_string(message, severity):
RED = '31m'
YELLOW = '33m'
BLUE = '34m'
WHITE = '37m'
RESET = '0m'
color_map = {
'ERROR': RED,
'WARNING': YELLOW,
'INFO': BLUE,
}
return f'\033[{color_map.get(severity, WHITE)}{message}\033[{RESET}'
message = f'[{failure.role}] {filename}:{failure.line}: {failure.element}: {failure.message}'
if verbose:
message += f'\n location: {failure.location}\n test: {failure.test}'
if colored:
message = color_string(message, failure.role)
# print(message)
return message
|
f402ea84316a6e2b48cb0632d8a5f8421650a128
| 43,351 |
import yaml
def load_yaml(filename):
"""Load a yaml file.
Args:
filename (str): Filename.
Returns:
dict: Dictionary.
"""
try:
with open(filename, "r") as f:
config = yaml.load(f, yaml.SafeLoader)
return config
except FileNotFoundError: # for file not found
raise
except Exception as e: # for other exceptions
raise IOError("load {0} error!".format(filename))
|
702ff5ca3321c7ec2ffc3d09363b6c4e22092837
| 43,353 |
def make_args(pcls):
"""
Returns an args tuple for the parameter class pcls.
"""
return tuple(range(1, len(pcls.__rndargs__) + 1))
|
5aed1d6b40ac40bef6d94a915c803875066e0833
| 43,360 |
def rds_product_engine_match(product, engine):
""" Check whether an RDS reservation 'product' matches a running instance 'engine' """
return (product, engine) in (('postgresql','postgres'),
('mysql','mysql'), # note: not sure if this is correct
)
|
4373ba6a51e5a5d80aeb4a410f60064becf2ede1
| 43,369 |
import yaml
def load_config(config_path):
"""Load configuration file in YAML format
Args :
config_path (string) : path to configuration file
Returns :
config (dict) : configuration in dictionary format
"""
with open(config_path) as file:
config = yaml.safe_load(file)
return config
|
3d018b5df5e88d697e4ba55712422dd11ed287bd
| 43,371 |
import re
def to_np(url):
"""Return a comment url converted to the np subdomain."""
return re.sub("https?://.*reddit\.com", "https://np.reddit.com", url)
|
72a8efaf2f5c77184ae9d80bf268aa06aa414e7e
| 43,375 |
import base64
def download_link(object_to_download, filename, download_link_text):
"""
Generates a link to download the given object_to_download.
Args:
object_to_download: str.
filename: str. filename and extension of file.
download_link_text: str. Text to display for download link.
Examples:
download_link(our_string, 'my_file.txt', 'Click here to download your text!')
"""
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{filename}">{download_link_text}</a>'
|
a98d42f90370f73bd2282e042ab9c8a7ec2d7766
| 43,380 |
def MyGrep(hash_list, index_name, iname):
"""
hash_list: (list<subdict>)
subdict: (dict)
header -> value
index_name: (str) key in subdict that maps to index names
iname: (str) the index name we want.
Returns:
list<dict> minimized such that only dicts with wanted index name
are in it.
"""
new_list = []
for h in hash_list:
if h[index_name] == iname:
new_list.append(h)
return new_list
|
34f346f80bfcac423ec89ae06c616dfc082fa2b0
| 43,381 |
def intersection(list1, list2):
"""
Compute and return the elements common to list1 and list2.
`list1` and `list2` can be sets, lists, or pandas.Series.
"""
return list(set(list1).intersection(set(list2)))
|
dab9e5c597316070e452505980381a0251ef3385
| 43,383 |
def timeseries_wrapper(timeseries, starttimeind=0):
"""Decorator to convert a list or numpy array into a function which accepts a timeind."""
def out(timeind):
return timeseries[timeind-starttimeind]
return out
|
f09036ea7b6f7dbecca5468e60b3c908bf159417
| 43,387 |
import re
def camel_to_snake_case(name):
"""Converts camelCase to the snake_case
Args:
name (str): Camel case name
Returns:
str: Name in stake case
"""
cunder = re.sub(r"(.)([A-Z][a-z]+)", r"\1_\2", name)
return re.sub(r"([a-z0-9])([A-Z])", r"\1_\2", cunder).lower()
|
7997a25ed8ac751d935d05078cf9b5f8d3251b9b
| 43,389 |
def laplace(f, g_inv, g_det, X):
"""
Calculates Laplace(f), using the inverse metric g_inv, the determinant of
the metric g_det, all in variables X.
"""
r = 0
for i in range(len(X)):
for j in range(len(X)):
r += g_inv[i, j]*f.diff(X[i]).diff(X[j])
for sigma in range(len(X)):
for alpha in range(len(X)):
r += g_det.diff(X[sigma]) * g_inv[sigma, alpha] * \
f.diff(X[alpha]) / (2*g_det)
return r
|
47bebab77205c47eabe2e7450263274a10a44c2f
| 43,390 |
import re
def _check_if_item_allowed(item_name, allow_patterns, disallow_patterns):
"""
Check if an item with ``item_name`` is allowed based on ``allow_patterns``
and ``disallow_patterns``.
Parameters
----------
item_name: str
Name of the item.
allow_patterns: list(str)
Selected item should match at least one of the re patterns. If the value is ``[None]``
then all items are selected. If ``[]``, then no items are selected.
disallow_patterns: list(str)
Items are deselected based on re patterns in the list: if an item matches at least one
of the patterns, it is deselected. If the value is ``[None]`` or ``[]`` then no items
are deselected.
Returns
-------
boolean
Indicates if the item is permitted based on ``allow_patterns`` and ``disallow_patterns``.
"""
item_is_allowed = False
if allow_patterns:
if allow_patterns[0] is None:
item_is_allowed = True
else:
for pattern in allow_patterns:
if re.search(pattern, item_name):
item_is_allowed = True
break
if item_is_allowed:
if disallow_patterns and (disallow_patterns[0] is not None):
for pattern in disallow_patterns:
if re.search(pattern, item_name):
item_is_allowed = False
break
return item_is_allowed
|
6a14239913140130eb8ce0d12a797039a7625172
| 43,394 |
def py_opp(x):
"""
Function for python unary operator ``-``.
@param x floats
@return `-x`
"""
return -x
|
4d7f6260da54eaa9ea3d6e71a10cdb61d4bba8c1
| 43,396 |
import logging
def query_stream_log_handler(logger):
"""Query stream handler from logger."""
if len(logger.handlers):
ch = logger.handlers[0]
else:
ch = logging.StreamHandler()
logger.addHandler(ch)
return ch
|
67fc28298bdfa10c25c0be36eaed0922def3a1a3
| 43,397 |
import re
def validate_cron_string(cron_string, error_on_invalid=False):
"""
Validate that a string is a Unix cron string.
"""
# Note: This is also a Temporal function, but I'm trying to avoid making Temporal a dependency of BTU.
crontab_time_format_regex = re.compile(
r"{0}\s+{1}\s+{2}\s+{3}\s+{4}".format(
r"(?P<minute>\*(\/[0-5]?\d)?|[0-5]?\d)",
r"(?P<hour>\*|[01]?\d|2[0-3])",
r"(?P<day>\*|0?[1-9]|[12]\d|3[01])",
r"(?P<month>\*|0?[1-9]|1[012])",
r"(?P<day_of_week>\*|[0-6](\-[0-6])?)") # end of str.format()
) # end of re.compile()
if crontab_time_format_regex.match(cron_string) is None:
if error_on_invalid:
raise Exception(f"String '{cron_string}' is not a valid Unix cron string.")
return False
return True
|
4cc4594bfc2fd2743f20fa9662a4083497d5e1fc
| 43,399 |
def aws_region_name(request):
""" Returns AWS Region Name """
return request.config.getoption("--aws-region")
|
0400379c336ef156d32448b562b7c011b7eb2894
| 43,400 |
def flatten(data):
"""Flatten out all list items in data."""
flatten_list = []
if type(data) == list:
for item in data:
flatten_list.extend(flatten(item))
return flatten_list
else:
return [data]
|
6a5bea0f99e1c33ef178e0002f71e27d2efc36a0
| 43,403 |
def generate_omim_list(omimfile):
"""
Generate dictionary of genotype id-name key-value pairs.
:omimfile: path to mimTitles.txt
"""
omimlist = {}
with open(omimfile) as file:
for line in file:
# Clean up lines and pick first occurrence of titles
lineparts = line.strip().split('\t')
genotype_id = 'OMIM:' + lineparts[1]
genotype_name = lineparts[2].split(';')[0]
omimlist[genotype_id] = genotype_name
return omimlist
|
aa3bff68005fbd771f2c942c6e15d11c6afd6913
| 43,406 |
def data_cleaning(post: dict):
"""
Functionality to clean up data and pass back only desired fields
:param post: dict content and metadata of a reddit post
:return:
tuple of fields for insertion into database
"""
unwanted_authors = ['[deleted]', '[removed]', 'automoderator']
# skip posts from undesirable authors or posts to personal subreddits
if (post['author'] in unwanted_authors) or (post['subreddit_name_prefixed'].startswith('u/')):
return None
# replace empty string with placeholder for posts with no body content
if post['selftext'] == '':
post['selftext'] = "[NO TEXT]"
# only a subset of the fields are being saved to the db
# adjust the table schema and add fields here if desired
author = post['author'].lower().strip()
if post['author_flair_text']:
author_flair_text = post['author_flair_text'].lower().strip()
else:
author_flair_text = "none"
if post['link_flair_text']:
post_flair_text = post['link_flair_text'].lower().strip()
else:
post_flair_text = "none"
created_utc = post['created_utc']
reddit_id = f"t3_{post['id']}"
num_comments = post['num_comments']
nsfw = post['over_18']
score = post['score']
text = post['selftext']
subreddit = post['subreddit'].lower().strip()
title = post['title']
total_awards_received = post['total_awards_received']
return (author, author_flair_text, post_flair_text, created_utc, reddit_id, num_comments,
nsfw, score, text, subreddit, title, total_awards_received)
|
bfe61ac3689a21731e8aaa194df02c545ed8f840
| 43,409 |
def coords_to_simbad(ra, dec, search_radius):
"""
Get SIMBAD search url for objects within search_radius of ra, dec coordinates.
Args:
ra (float): right ascension in degrees
dec (float): declination in degrees
search_radius (float): search radius around ra, dec in arcseconds
Returns:
(str): SIMBAD database search url for objects at ra, dec
"""
return 'http://simbad.u-strasbg.fr/simbad/sim-coo?Coord={0}+%09{1}&CooFrame=FK5&CooEpoch=2000&CooEqui=2000&CooDefinedFrames=none&Radius={2}&Radius.unit=arcmin&submit=submit+query&CoordList='.format(ra, dec, search_radius)
|
ced846c6962368c937fb2005b59ea5e0b6dc9afd
| 43,410 |
from typing import Optional
def binstr(num: int, width: Optional[int] = None) -> str:
""" Returns the binary representation of an integer.
Parameters
----------
num : int
The number to convert.
width: int, optional
Minimum number of digits used. The default is the global value `BITS`.
Returns
-------
binstr : str
"""
fill = width or 0
return f"{num:0{fill}b}"
|
9f842ad69b7a1cde2ccfb8c31ed806b4a959c766
| 43,414 |
def get_radosgw_username(r_id):
"""Generate a username based on a relation id"""
gw_user = 'juju-' + r_id.replace(":", "-")
return gw_user
|
347ff532464ef568daf753e820fef842084fe753
| 43,422 |
def start_vm(client, resource_group_name, vm_name):
"""
Start a VMware virtual machine.
"""
return client.start(resource_group_name, vm_name)
|
b9ff6fdd9e69f51783585a527fe182e4ec8ea152
| 43,426 |
def circuit_to_bench(c):
"""
Generates a str of Bench code from a `CircuitGraph`.
Parameters
----------
c: Circuit
the circuit to turn into Bench.
Returns
-------
str
Bench code.
"""
inputs = []
outputs = []
insts = []
if c.blackboxes:
raise ValueError(f"Bench format does not support blackboxes: {c.name}")
# gates
const_inp = c.inputs().pop()
for n in c.nodes():
if c.type(n) in ["xor", "xnor", "buf", "not", "nor", "or", "and", "nand"]:
fanin = ", ".join(c.fanin(n))
insts.append(f"{n} = {c.type(n).upper()}({fanin})")
elif c.type(n) in ["0"]:
insts.append(f"{n} = XOR({const_inp}, {const_inp})")
elif c.type(n) in ["1"]:
insts.append(f"{n} = XNOR({const_inp}, {const_inp})")
elif c.type(n) in ["input"]:
inputs.append(n)
elif c.type(n) in ["output"]:
fanin = c.fanin(n).pop()
insts.append(f"{n} = BUF({fanin})")
outputs.append(n)
else:
raise ValueError(f"unknown gate type: {c.type(n)}")
bench = f"# {c.name}\n"
bench += "".join(f"INPUT({inp})\n" for inp in inputs)
bench += "\n"
bench += "".join(f"OUTPUT({out};)\n" for out in outputs)
bench += "\n"
bench += "\n".join(insts)
return bench
|
e97caa3b40f40ff0637dec825e1921d1a7c19e86
| 43,427 |
def prefix_filt(d, prefix):
"""return all items in dictionary d with key with given prefix."""
match_list = []
for k in d.keys():
if isinstance(k, str):
if k.startswith(prefix):
match_list.append(k)
return dict([(k, d[k]) for k in match_list])
|
5da37ca9ee7db78959e2cd8cd67cc945b941c43e
| 43,428 |
def from_wsgi_header(header):
"""Convert a WSGI compliant HTTP header into the original header.
See https://www.python.org/dev/peps/pep-3333/#environ-variables for
information from the spec.
"""
HTTP_PREFIX = "HTTP_"
# PEP 333 gives two headers which aren't prepended with HTTP_.
UNPREFIXED_HEADERS = {"CONTENT_TYPE", "CONTENT_LENGTH"}
if header.startswith(HTTP_PREFIX):
header = header[len(HTTP_PREFIX) :]
elif header not in UNPREFIXED_HEADERS:
return None
return header.replace("_", "-").title()
|
7b3b82aaf9c2fc5d6da9428b1f301b996761ca15
| 43,433 |
def unique(S, start, stop):
"""Return True if there are no duplicate elements in slice S[start: stop]"""
print("start = {}, stop = {}".format(start, stop))
if stop - start <= 1: # at most 1 item
return True
elif not unique(S, start, stop-1): # first part has duplicate
print("checking uniqueness in (S, {}, {})".format(start, stop-1))
return False
elif not unique(S, start+1, stop): # second part has duplicate
print("checking uniqueness in (S, {}, {})".format(start+1, stop))
return False
else:
print("Check uniqueness of 1st and last element for start = {} and stop = {}"
.format(start, stop)) # do first and last differ
return S[start] != S[stop] # do first and last differ
|
daf738f83cb7ccc1b33978a25e022638bbfc63fe
| 43,434 |
def split(string,keys):
"""
string :: 需要分割的字符
keys :: 分割关键字 eg. keys = [' ',',','"','.','(',')']
return :: 分割后的字符串数组
"""
out_strings = []
cnt = 0
for i in range(len(string)):
if string[i] in keys:
if cnt != i:
out_strings.append(string[cnt:i])
cnt = i+1
return out_strings
|
d5342606ded40512b185653a9593b0166cd3edff
| 43,436 |
def sort_gtf(giter, chrom_order=None):
""" Sort GTF
Sort GTF records by chromosome and start position
Args:
giter (iterable): List of GTFLine or GTFCluster objects
chrom_order (list): Chromosome sort order. Default is alphabetical.
Returns:
list: Sorted GTF records.
"""
ret = sorted(giter, key=lambda x:x.start)
if chrom_order is None:
ret.sort(key=lambda x:x.chrom)
else:
c_d = {k:i for i,k in enumerate(chrom_order)}
ret.sort(key=lambda x:c_d[x.chrom] if x.chrom in c_d else x.chrom)
return ret
|
60f8edbeedd5f60d55d8d43affa0f8e02bfcfe3f
| 43,437 |
def cap_str(line):
"""
capitalize a string
:param str line:
:return str:
"""
return line.upper()
|
119a7637c57f3e8ee6481897cc46cd0f9c177b0f
| 43,440 |
def calculate_freq(idx):
"""
Estimate the sampling frequency of a pandas datetime index
"""
cfreq = (idx.max()-idx.min())/(len(idx)-1)
cfreq = cfreq.seconds/60
print("Calculated frequency is " + "{:5.3f}".format(cfreq) + " minutes")
print("Rounding to " + str(round(cfreq)) + 'min')
return str(round(cfreq)) + "min"
|
e78018a3d7f580e89fd7121d3c07d38acb117552
| 43,443 |
from io import StringIO
def ase_to_xyz(atoms, comment="", file=True):
"""Convert ASE to xyz
This function is useful to save xyz to DataFrame.
"""
xyz = StringIO()
symbols = atoms.get_chemical_symbols()
natoms = len(symbols)
xyz.write("%d\n%s\n" % (natoms, comment))
for s, (x, y, z) in zip(symbols, atoms.positions):
xyz.write("%-2s %22.15f %22.15f %22.15f\n" % (s, x, y, z))
if file:
return xyz
else:
return xyz.getvalue()
|
dcacdb5550c1cea2706190912556d84acae0094d
| 43,446 |
import re
def read_gtf(file_name, query_gene_name):
"""Given a GTF file and a gene name to query for,
return a dictionary where the keys are transcript IDs
and the values are arrays of start and end offsets of the
exons present in that transcript, e.g.,
{ 'tr1' : [[10,12],[17,27]] }"""
def read_gtf_keyvalues(keyvaluestr):
parts = keyvaluestr.split(";")
for keyvalue in parts:
m = re.match(r'\s*(\S+)\s*"(\S+)"', keyvalue)
if m:
yield (m.group(1), m.group(2))
matching_transcripts = {}
with open(file_name) as f:
for line in f:
parts = re.split(r"\s", line, maxsplit=8)
if parts[2] in ["exon", "CDS", "UTR"]:
gene_name, transcript_id = "", ""
for k, v in read_gtf_keyvalues(parts[8]):
if k == "gene_name":
gene_name = v
elif k == "transcript_id":
transcript_id = v
if gene_name == query_gene_name:
if transcript_id not in matching_transcripts:
matching_transcripts[transcript_id] = {
"exons": [],
"CDSs": [],
"UTRs": [],
}
start_and_end_offset = (int(parts[3]), int(parts[4]))
if parts[2] == "exon":
matching_transcripts[transcript_id]["exons"].append(
start_and_end_offset
)
elif parts[2] == "CDS":
matching_transcripts[transcript_id]["CDSs"].append(
start_and_end_offset
)
elif parts[2] == "UTR":
matching_transcripts[transcript_id]["UTRs"].append(
start_and_end_offset
)
return matching_transcripts
|
f66448b52a5cd73b25de606c3a22a6e58ee4cadd
| 43,448 |
def _clean_name(net, name):
""" Clear prefix and some suffixes for name """
# prefix = net._prefix
# name = name.replace(prefix, "")
if name.endswith("_fwd_output"):
name = name[:-len("_fwd_output")]
elif name.endswith("_fwd"):
name = name[:-len("_fwd")]
elif name.endswith("_output"):
name = name[:-len("_output")]
return name
|
5be69e1b073f7da970dcf784cb1c37382231e418
| 43,449 |
def zfp_expert_opts(minbits, maxbits, maxprec, minexp):
"""Create compression options for ZFP in "expert" mode
See the ZFP docs for the meaning of the parameters.
"""
zfp_mode_expert = 4
return zfp_mode_expert, 0, minbits, maxbits, maxprec, minexp
|
11bdfddd1ff2a75e62f417deab8867d2e71b69b7
| 43,453 |
def cygwin_to_win_path(path):
"""
Converts a Cygwin path to a Windows path.
Only paths starting with "/cygdrive/" can be converted.
:param path: Cygwin path to convert.
Must be an absolute path.
:type path: str
:returns: Windows path.
:rtype: str
:raises ValueError: Cannot convert the path.
"""
if not path.startswith("/cygdrive/"):
raise ValueError(
"Only paths starting with \"/cygdrive/\" can be converted.")
drive = path[10].upper()
path = path[11:]
i = 0
r = []
while i < len(path):
c = path[i]
if c == "\\":
r.append( path[i+1:i+2] )
i += 2
continue
if c == "/":
c = "\\"
r.append(c)
i += 1
path = "".join(r)
return "%s:%s" % (drive, path)
|
1d90424208b3c5b42627b1d9ac321d9e40341b1a
| 43,461 |
import math
def extract_source_at_pos(MAP, x_pos, y_pos, PSF_npix_x, PSF_npix_y):
"""
Extract a sub-MAP around the position (x_pos, y_pos)
The shape of the sub-MAP is similar to the PSF_MAP
Parameters
----------
MAP : numpy masked array
The original MAP in which the source as to be extracted
x_pos : float.
The x (first dimension) position of the source
y_pos : float
The y (second dimension) position of the source
PSF_npix_x : integer
The x (fisrt dimension) size of the Point Spread Map
PSF_npix_y : integer
The y (second dimension) size of the Point Spread Map
Returns
-------
SCR_MAP : numpy masked array
The SouRCe MAP. A map of size (npix_x, npix_y) with a source
created according to the PSF_MAP at the position (x_pos, y_pos)
"""
#
cpix_x = int(math.floor(PSF_npix_x / 2))
cpix_y = int(math.floor(PSF_npix_y / 2))
# corner pixels
x_inf = int(round(x_pos)) - cpix_x; x_sup = x_inf + PSF_npix_x
y_inf = int(round(y_pos)) - cpix_y; y_sup = y_inf + PSF_npix_y
# extract map
SRC_MAP = MAP[x_inf:x_sup, y_inf:y_sup]
#
return SRC_MAP
|
7a6549f5537336d467d403b4437128836927d141
| 43,465 |
def applyLatticeLimit(lattice, bounds):
"""Remove lattice points outside the data bounds. For 2D and 3D data.
Parameters
---------
lattice : ndarray; (N, 2) or (N, 3)
From lattice2D
bounds : tuple,
Minimum and maximum for axes 0 and 1
(min0, max0, min1, max1) or axes 0, 1 and 2
(min0, max0, min1, max1, min2, max2)
Returns
-------
: ndarray; (M, 2) or (M, 3)
Same as lattice input except only containing
points within the bounds specified. M <= N
"""
if len(bounds) == 4:
goodUVs = ((lattice[:, 0] > bounds[0]) & (lattice[:, 0] < bounds[1])) & (
(lattice[:, 1] > bounds[2]) & (lattice[:, 1] < bounds[3])
)
elif len(bounds) == 6:
goodUVs = (
((lattice[:, 0] > bounds[0]) & (lattice[:, 0] < bounds[1]))
& ((lattice[:, 1] > bounds[2]) & (lattice[:, 1] < bounds[3]))
& ((lattice[:, 2] > bounds[4]) & (lattice[:, 2] < bounds[5]))
)
else:
print("Bounds needs be be either 4 or 6 value tuple.")
return None
return lattice[goodUVs, :]
|
98a280830ecf9f838eafc8cc78fccf8f13fc3f4e
| 43,468 |
def _get_popinfo(popinfo_file):
"""
Helper function for make_data_dict_vcf. Takes an open file that contains
information on the population designations of each sample within a VCF file,
and returns a dictionary containing {"SAMPLE_NAME" : "POP_NAME"} pairs.
The file should be formatted as a table, with columns delimited by
whitespace, and rows delimited by new lines. Lines beginning with '#' are
considered comments and will be ignored. Each sample must appear on its own
line. If no header information is provided, the first column will be assumed
to be the SAMPLE_NAME column, while the second column will be assumed to be
the POP_NAME column. If a header is present, it must be the first
non-comment line of the file. The column positions of the words "SAMPLE" and
"POP" (ignoring case) in this header will be used to determine proper
positions of the SAMPLE_NAME and POP_NAME columns in the table.
popinfo_file : An open text file of the format described above.
"""
popinfo_dict = {}
sample_col = 0
pop_col = 1
header = False
# check for header info
for line in popinfo_file:
if line.startswith('#'):
continue
cols = [col.lower() for col in line.split()]
if 'sample' in cols:
header = True
sample_col = cols.index('sample')
if 'pop' in cols:
header = True
pop_col = cols.index('pop')
break
# read in population information for each sample
popinfo_file.seek(0)
for line in popinfo_file:
if line.startswith('#'):
continue
cols = line.split()
sample = cols[sample_col]
pop = cols[pop_col]
# avoid adding header to dict
if (sample.lower() == 'sample' or pop.lower() == 'pop') and header:
header = False
continue
popinfo_dict[sample] = pop
return popinfo_dict
|
01b1ce7d45bbaace42ab3cc13e6ab9c29353e8bf
| 43,469 |
def diff(it1, it2):
"""Find the differences between two iterables"""
s2 = set(it2)
diff = [x for x in it1 if x not in s2]
return diff
|
163a445679bcaee0ce8aa7db320456ecee49d794
| 43,472 |
def is_file_of_extension(entry, *args):
"""
Checks if the given directory entry is a file
and ends in one of the given extensions.
Extensions are passed in the args parameter and
must be prefixed by a dot.
"""
if not entry.is_file():
return False
if not args:
return True
for arg in args:
if entry.name.endswith(arg):
return True
return False
|
e40390b88b0485323e96b328810abd3dbedf0155
| 43,475 |
def backward(my_string):
"""Return the reverse of the string 'my_string'.
Examples:
>>> backward("python")
'nohtyp'
>>> backward("ipython")
'nohtypi'
"""
return my_string[::-1]
|
5414027b87240863764f84163757b2090fbdae72
| 43,478 |
import click
def command_option(func):
"""Add a command option."""
return click.option('-c', '--command', metavar='COMMAND',
help='Command to run remotely after operation is complete.')(func)
|
7e050a33e454499bf1519ef9af7a5400aa546bc8
| 43,485 |
def get_seq_lengths_from_seqs_dic(seqs_dic):
"""
Given a dictionary of sequences, return dictionary of sequence lengths.
Mapping is sequence ID -> sequence length.
"""
seq_len_dic = {}
assert seqs_dic, "sequence dictionary seems to be empty"
for seq_id in seqs_dic:
seq_l = len(seqs_dic[seq_id])
seq_len_dic[seq_id] = seq_l
return seq_len_dic
|
13baeef01c1fc4825781b72939a3e6d284aa4762
| 43,487 |
import ast
def parse(path):
"""parse a file at path and returns an AST tree structure
Args:
path (str): filepath of the file to parse
Returns:
ast.Module: ast tree of the parsed file
"""
with open(path) as source_code:
return ast.parse(source_code.read(), path)
|
67fffbf3c694203a84cb15a5e75c0410f9f45e9e
| 43,489 |
def get_format(path):
"""
Get the file's format by path.
:param path: (str) The path of the file.
:return: (str) The format of the file.
"""
return path.split('.')[-1]
|
b5cf501a8b73a2114c82eb84915249dbf7e88a97
| 43,491 |
def l_to_q(liter):
"""
Convert liters to quarts US
"""
return liter * 1.056688
|
8dafbe2ebf86b7df94d2fcf5f55fff2aa10b17f9
| 43,492 |
def check_position_detection(bounds):
"""Check whether the specified range of 5 intervals has the right
proportions to correspond to a slice through a position detection pattern.
An ideal slice through a position detection pattern consists of
5 intervals colored B,W,B,W,B with lengths proportional to 1,1,3,1,1.
Returns:
(center_coord, pixels_per_module) if this could be a position
detection pattern, otherwise (0, 0).
"""
# Expected relative positions of black/white boundaries
# within the position detection pattern.
expect_bound_pos = [-3.5, -2.5, -1.5, 1.5, 2.5, 3.5]
if (len(bounds) != 6) or (bounds[4] >= bounds[5]):
return (0, 0)
pattern_width = float(bounds[5] - bounds[0])
middle_width = float(bounds[3] - bounds[2])
if (pattern_width < 7) or (middle_width < 3):
return (0, 0)
center = float(sum(bounds)) / 6.0
pitch = (pattern_width + middle_width) / 10.0
good = True
for k in range(6):
rel_bound_pos = (bounds[k] - center) / pitch
if abs(rel_bound_pos - expect_bound_pos[k]) >= 0.5:
good = False
break
if not good:
return (0, 0)
return (center, pitch)
|
c425527405e0452d2069168908a81d713b7c9f33
| 43,493 |
def select_login_form(forms):
"""
Select form having highest probability for login class.
:param dict forms: Nested dict containing label probabilities for each
form.
:returns: (login form, login meta)
:rtype: tuple
"""
login_form = None
login_meta = None
login_prob = 0
for form, meta in forms:
for type_, prob in meta["form"].items():
if type_ == "login" and prob > login_prob:
login_form = form
login_meta = meta
login_prob = prob
return login_form, login_meta
|
8e2b95b6d575f8044d248ad38b77782cccdeedf8
| 43,499 |
from typing import Dict
from typing import Any
from typing import Optional
def find_nested_field_path(
field_name: str, mapping_definition: Dict[str, Any]
) -> Optional[str]:
"""
Given a field name, find the nested path if any related to field name
definition in provided mapping definition
Parameters
----------
field_name:
The field name
mapping_definition:
A mapping definition where field name is defined
Returns
-------
The found nested path if any, None otherwise
"""
def build_flatten_properties_map(
properties: Dict[str, Any], prefix: str = ""
) -> Dict[str, Any]:
results = {}
for prop_name, prop_value in properties.items():
if prefix:
prop_name = f"{prefix}.{prop_name}"
if "type" in prop_value:
results[prop_name] = prop_value["type"]
if "properties" in prop_value:
results.update(
build_flatten_properties_map(
prop_value["properties"], prefix=prop_name
)
)
return results
properties_map = build_flatten_properties_map(mapping_definition)
for prop in properties_map:
if properties_map[prop] == "nested" and field_name.startswith(prop):
return prop
return None
|
6b60b2cfd0bbb255f100e8ed8ccf2c4cca2ef804
| 43,501 |
import re
def findDirectives(code):
"""Find testing directives"""
finder = re.compile("^'\s*VB2PY-Test\s*:\s*(\w+)\s*=\s*(.*)$", re.MULTILINE)
return finder.findall(code)
|
8e98ba7453ba119a4ae7cabaeb67e74814bef008
| 43,503 |
def get_fileno(file):
"""Get the os-level fileno of a file-like object.
This function decodes several common file wrapper structures in an attempt
to determine the underlying OS-level fileno for an object.
"""
while not hasattr(file,"fileno"):
if hasattr(file,"file"):
file = file.file
elif hasattr(file,"_file"):
file = file._file
elif hasattr(file,"_fileobj"):
file = file._fileobj
else:
raise AttributeError
return file.fileno()
|
ede197cee9e8b97bc62b14c46d5a91241a002f6f
| 43,505 |
def convert_percentage_string_to_float(percentage_string):
"""Converts a string of the form 'xx.xx%' to its equivalent decimal value.
:param percentage_string: A string in percentage form to be converted.
:returns: A floating-point number rounded to 4 decimal places (2 decimals in percentage form).
"""
return round(float(percentage_string.replace('%', '')) / 100, 4)
|
16fe6aa1475a922c15a13168400cc4a655ad544a
| 43,508 |
import re
def get_platform(source = '<PLT_1>'):
"""A function to extract the platform from a source string.
Args:
source (str, optional): source string that is usually contains the platform that is used to post the tweet. Defaults to '<PLT_1>'.
Returns:
str: the platform if found, otherwise the stamp PLT_1. This stamp is used for any further updates.
"""
platform = 'PLT_1'
try:
platform = re.sub('[<>]', '\t', source).split('\t')[2]
platform = platform.replace('Twitter for','').replace('Twitter','')
except:
platform = 'PLT_1'
return platform.strip()
|
c12c7fd02b53b24a70a6f5343f9bc031c5d0f513
| 43,510 |
def read_raw_message(raw_data: bytes) -> tuple:
"""Splits the message header from the data bytes of the message.
:param raw_data: Full UDP packet
:type raw_data: bytes
:raises ValueError: When there header line is not present.
:return: (Header, Data bytes)
:rtype: Tuple
"""
for i in range(len(raw_data)):
if raw_data[i] == ord("\n"):
return raw_data[0:i].decode("utf-8"), raw_data[i + 1 :]
raise ValueError("Unable to find the end of line")
|
e69dfb570b524a2b3f2c83ae7abf59aafb616f2d
| 43,511 |
def convert_snake_case(target):
"""
文字列をスネークケースに変換する。
:param target: 変換対象の文字列
:type target: str
:return: 変換後の文字列
:rtype: str
"""
# 文字列をスネークケースに変換する
return target.lower().replace(' ', '_')
|
a5116f16ff08545f2ce6654c6e3e5b8534168085
| 43,514 |
def is_feature_extractor_model(model_config):
"""
If the model is a feature extractor model:
- evaluation model is on
- trunk is frozen
- number of features specified for features extraction > 0
"""
return (
model_config.FEATURE_EVAL_SETTINGS.EVAL_MODE_ON
and (
model_config.FEATURE_EVAL_SETTINGS.FREEZE_TRUNK_ONLY
or model_config.FEATURE_EVAL_SETTINGS.FREEZE_TRUNK_AND_HEAD
)
and len(model_config.FEATURE_EVAL_SETTINGS.LINEAR_EVAL_FEAT_POOL_OPS_MAP) > 0
)
|
53c9b398efb09099bbe8257f875720a2ec41a495
| 43,515 |
def create_friedman_line(point0,point1):
"""
Determines the second point needed to form the Friedman line
:param point0: First point on glenoid line, anatomically defined as a
point on the anterior margin of glenoid
:param point1: Second point on glenoid line anatomically defined as a
point on the posterior margin of glenoid
:raises: Value Error if the z values of point0 and point1 are not equal
:returns: The midpoint of the glenoid line, which is the second point of
the Friedman line
"""
if point0[2] != point1[2]:
raise ValueError("For Friedman method points must have equal z values")
midpoint_x = (point0[0] + point1[0])/2
midpoint_y = (point0[1] + point1[1])/2
midpoint = [midpoint_x, midpoint_y,point0[2]]
return midpoint
|
64c9f74985651d23cfabd6a68089a18d89f6ecfe
| 43,523 |
def int_to_signed_byte(x):
"""
Converts the signed integer to a 2s-complement byte.
"""
if x > 0:
return x & 0xff
elif x < 0:
return ((-x) ^ 0xff) + 1
else:
return 0
|
9b7cf347c48558ffcfe31ceba9884e9a703ccce2
| 43,524 |
import click
def d_reduce_options(f):
"""Create common options for dimensionality reduction"""
f = click.option('--axes', nargs=2, type=click.Tuple([int, int]),
help='Plot the projection along which projection axes.',
default=[0, 1])(f)
f = click.option('--dimension', '-d',
help='Number of the dimensions to keep in the output XYZ file.',
default=10)(f)
f = click.option('--scale/--no-scale',
help='Standard scaling of the coordinates.',
default=True)(f)
return f
|
97577d5d52b777ea33d4d47a80cbacc0f394ad00
| 43,525 |
def normalize(D, value=1):
"""normalize.
Normalize the coefficients to a maximum magnitude.
Parameters
----------
D : dict or subclass of dict.
value : float (optional, defaults to 1).
Every coefficient value will be normalized such that the
coefficient with the maximum magnitude will be +/- 1.
Return
------
res : same as type(D).
``D`` but with coefficients that are normalized to be within +/- value.
Examples
--------
>>> from qubovert.utils import DictArithmetic, normalize
>>> d = {(0, 1): 1, (1, 2, 'x'): 4}
>>> print(normalize(d))
{(0, 1): 0.25, (1, 2, 'x'): 1}
>>> from qubovert.utils import DictArithmetic, normalize
>>> d = {(0, 1): 1, (1, 2, 'x'): -4}
>>> print(normalize(d))
{(0, 1): 0.25, (1, 2, 'x'): -1}
>>> from qubovert import PUBO
>>> d = PUBO({(0, 1): 1, (1, 2, 'x'): 4})
>>> print(normalize(d))
{(0, 1): 0.25, (1, 2, 'x'): 1}
>>> from qubovert.utils import PUBO
>>> d = PUBO({(0, 1): 1, (1, 2, 'x'): -4})
>>> print(normalize(d))
{(0, 1): 0.25, (1, 2, 'x'): -1}
"""
res = type(D)()
mult = value / max(abs(v) for v in D.values())
for k, v in D.items():
res[k] = mult * v
return res
|
d8dcce6a35254790e82f948608a3f848f1a80286
| 43,527 |
def comment_lines_ocaml(text, start='(* ', end=' *)'):
"""
Build an OCaml comment line from input text.
Parameters
----------
text : str
Text to comment out.
start : str
Character to open the multi-line comment.
end : str
Character to close the multi-line comment.
"""
return start + ('\n').join(text.split('\n')) + end
|
13cd5de355bfbb8b9861016c1d95541d6aa0dbe2
| 43,530 |
def calculate_delta_time_series(times, valid_dt):
"""
calculate_delta_time_series
This function calculates the differences between all the elements of a timeseries and
compares the differences with a valid time difference.
True is returned if all the differences are valid; i.e. equal to the valid time difference argument
False is returned if any of the difference fail to match the valid the time difference argument
:param times: List of times
:param valid_dt: Valid time difference, usually scalar, list of valid times supported
:return: boolean [True for success]
"""
return_msg = ""
for t in range(len(times)-1):
t_diff = times[t+1] - times[t]
if t_diff not in valid_dt:
return_msg = "Time difference {} is irregular or not in allowed values {}".format(t_diff, valid_dt)
return False, return_msg
return True, return_msg
|
c1f42e185b6b2bb9c71942222998e46758db7ff1
| 43,532 |
from typing import Dict
from typing import Callable
def dict_subset(adict: Dict, predicate: Callable):
"""Return a dict that is a subset of ``adict`` using a filter function.
The signature of the filter is: ``predicate(key, val) -> bool``
"""
return {k: v for k, v in adict.items() if predicate(k, v)}
|
2ee1b2b2a20665222440cc43fdbb99a5151386cb
| 43,534 |
from typing import List
def asciiRowToStrings(filename: str) -> List[str]:
"""Extract and returns a list of strings from the first row of the file.
Args:
filename
Returns:
list of string
"""
f = open(filename, "r")
line = f.readline()
f.close()
if "," in line:
line = line.replace(",", " ")
strings = line.split()
return strings
|
8e9c5d181e542fd2c80186394ea98c50ad1fbd44
| 43,536 |
def calculate_boundbox(list_coordinates):
"""
coordinates are inverted x: colums y :rows
list_coordinates: list of the form [ [x2,y1], [x2,y2], . . . ]
returns top left point (x,y) and width (w) and heigth (h) of rectangle
"""
x = int(min(list_coordinates[:,0]))
y = int(min(list_coordinates[:,1]))
w =int(max(list_coordinates[:,0]) - x)
h = int(max(list_coordinates[:,1]) - y)
return x,y,w,h
|
bbabdd81e88dd4304293712aff389bfd568f4772
| 43,538 |
def _get_time_signature(e):
"""
Get the time signature and return
Returns
-------
tuple (mumber, number) OR None
the tuple is (beats, beat_type). `beats` is the numerator,
`beat_type` is the denominator of the key signature fraction.
"""
if e.find('time/beats') is not None and e.find('time/beat-type') is not None:
beats = int(e.find('time/beats').text)
beat_type = int(e.find('time/beat-type').text)
return (beats, beat_type)
else:
return None
|
bf1ba2b885ed55c7793fa3a355eadbad1d287987
| 43,553 |
def is_observed_custom_module(module):
""" Check if a module is marked as observed custom module
or not
"""
return hasattr(module, '_is_observed_custom_module') and \
module._is_observed_custom_module
|
b5455ba014d397849bbae637e9367dda1d53c94a
| 43,555 |
def _temp_pad(F, x, padding=1, zeros=True):
"""
Pads a 3D input along temporal axis by repeating edges or zeros
Args:
x: dim 5 b,t,c,w,h
padding: the number of dim to add on each side
zeros: pad with zeros?
Returns: padded x
"""
first = x.slice_axis(axis=1, begin=0, end=1) # symbol compatible indexing
last = x.slice_axis(axis=1, begin=-1, end=None)
if zeros:
first = first * 0
last = last * 0
if padding > 1:
first = first.repeat(repeats=padding, axis=1)
last = last.repeat(repeats=padding, axis=1)
x = F.concat(first, x, dim=1)
x = F.concat(x, last, dim=1)
return x
|
192c11c9aa694755f309237294ad55397fb24a34
| 43,557 |
def infinite(smaj, smin, bpa):
"""
If the beam is not correctly fitted by AWimager, one or more parameters
will be recorded as infinite.
:param smaj: Semi-major axis (arbitrary units)
:param smin: Semi-minor axis
:param bpa: Postion angle
"""
return smaj == float('inf') or smin == float('inf') or bpa == float('inf')
|
87a67ed9b880287def798fdfddd5c42c483e3b7d
| 43,559 |
def clip_paths(paths, bounds):
"""Return the paths that overlap the bounds."""
return [path for path in paths if path.bounds().overlap(bounds)]
|
c19d099673e1270fe10a9daf1b60e1da240e9660
| 43,562 |
def zerocase(case):
"""Check if the binary string is all zeroes"""
if int(case, 2) == 0:
return True
else:
return False
|
4227ff69e8ccd4250f519de4d09d498dfc13289e
| 43,566 |
def parts_to_uri(base_uri, uri_parts):
"""
Converts uri parts to valid uri.
Example: /memebers, ['profile', 'view'] => /memembers/profile/view
"""
uri = "/".join(map(lambda x: str(x).rstrip('/'), [base_uri] + uri_parts))
return uri
|
7fd45dba18152aed9dd18d6b2757c4f449d10930
| 43,569 |
def create_ids(data):
"""Generate IDs for the species in the dataset, by combining:
- original species name
- trait
- reference
- latitude
- longitude"""
ids = {}
for row in data:
species = row[0]
reference = row[2]
trait = row[3]
lat = row[7]
lon = row[8]
ids[species + reference + trait +
str(lat) + str(lon)] = [species, reference, trait, lat, lon]
return ids
|
3488e65358278c1cb97162bf9f8a4a8b06e54223
| 43,571 |
from functools import reduce
def mac_aton(s):
"""Convert a Mac address to an integer."""
try:
mac = list(map(lambda x: int(x, 16), s.split(':')))
mac = reduce(lambda a,b: a+b, [mac[i] << (5-i)*8 for i in range(6)])
except (ValueError, IndexError):
raise ValueError('illegal Mac: {0}'.format(s))
return mac
|
dd29c6e99998bfd0676ae9e7200f02500c2eed0d
| 43,575 |
from typing import Optional
from pathlib import Path
def get_resource(filename: str, path: Optional[str] = None) -> str:
"""A utility method to get the absolute path to a resource in the test suite.
Args:
filename: the name of the file to get.
path: an optional path relative to the root of the test suite.
Returns:
The absolute path of the file.
"""
root = Path(__file__).parent
full_path = root if path is None else root / Path(path)
return str(full_path / filename)
|
d2341484fb46dc4da2d00b9b62092d0f5b52339e
| 43,579 |
def check_input(prompt, assertion=None, default=None):
"""Get input from cmdline, ensuring that it passes the given assertion.
assertion: a function that if given a value will return None if the check
should pass, otherwise returning a helpful error message as a string."""
if default is not None:
prompt += " [default=%s]: " % str(default)
while True:
value = input(prompt).strip()
if value == "" and default is not None:
value = default
if assertion is not None:
check = assertion(value)
if check is not None:
error_msg = '\tInvalid input'
if not isinstance(check, bool):
error_msg += ': ' + str(check)
print(error_msg)
continue
return value
|
9cb72146a931974c186a8473a9f0b75e2f2515d6
| 43,583 |
import math
def project_gdf(gdf, to_crs=None, to_latlong=False):
"""
Project a GeoDataFrame from its current CRS to another.
If to_crs is None, project to the UTM CRS for the UTM zone in which the
GeoDataFrame's centroid lies. Otherwise project to the CRS defined by
to_crs. The simple UTM zone calculation in this function works well for
most latitudes, but may not work for some extreme northern locations like
Svalbard or far northern Norway.
Parameters
----------
gdf : geopandas.GeoDataFrame
the GeoDataFrame to be projected
to_crs : dict or string or pyproj.CRS
if None, project to UTM zone in which gdf's centroid lies, otherwise
project to this CRS
to_latlong : bool
if True, project to settings.default_crs and ignore to_crs
Returns
-------
gdf_proj : geopandas.GeoDataFrame
the projected GeoDataFrame
"""
if gdf.crs is None or len(gdf) < 1:
raise ValueError("GeoDataFrame must have a valid CRS and cannot be empty")
# if to_latlong is True, project the gdf to latlong
if to_latlong:
gdf_proj = gdf.to_crs({"init": "epsg:4326"})
# utils.log(f"Projected GeoDataFrame to {settings.default_crs}")
# else if to_crs was passed-in, project gdf to this CRS
elif to_crs is not None:
gdf_proj = gdf.to_crs(to_crs)
# utils.log(f"Projected GeoDataFrame to {to_crs}")
# otherwise, automatically project the gdf to UTM
else:
# if CRS.from_user_input(gdf.crs).is_projected:
# raise ValueError("Geometry must be unprojected to calculate UTM zone")
# calculate longitude of centroid of union of all geometries in gdf
avg_lng = gdf["geometry"].unary_union.centroid.x
# calculate UTM zone from avg longitude to define CRS to project to
utm_zone = int(math.floor((avg_lng + 180) / 6.0) + 1)
utm_crs = (
f"+proj=utm +zone={utm_zone} +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
)
# project the GeoDataFrame to the UTM CRS
gdf_proj = gdf.to_crs(utm_crs)
# utils.log(f"Projected GeoDataFrame to {gdf_proj.crs}")
return gdf_proj
|
d25ee19f834bb7befbee05a344c4581f872eb8dd
| 43,588 |
def list_experiment_names(exp_file_path):
"""Retrieve experiment names from the given file."""
def helper():
with open(exp_file_path, "r") as ef:
for line in ef:
exp_name = line.rstrip("\n")
yield exp_name
return [x for x in helper()]
|
143d958629c85926018f225d1b61427f7eceb30f
| 43,591 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.