content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def basic_name_formatter(name):
"""Basic formmater turning '_' in ' ' and capitalising.
"""
return name.replace('_', ' ').capitalize()
|
4b87af7df7bfc23c8c63d958e29a4fe614780fa8
| 33,295 |
def no_inference(csp, var, assignment, removals):
""" If we do not implement an inference algorithm, just return that everything is ok."""
return True
|
6bea7afca66a73a5236ef7667e857b746b4c95a4
| 33,297 |
def geojson_to_polygons(geojson):
"""
Convert geojson as generated by geojs's annotation layer.
:param geojson: geojson record.
:returns: an array of polygons, each of which is an array of points.
"""
polys = []
for feature in geojson['features']:
if feature.get('geometry', {}).get('type') == 'Polygon':
polys.append(feature['geometry']['coordinates'])
return polys
|
6b82742335841897511640fc9323c5e4895bf367
| 33,302 |
def int_or_none(arg):
"""Returns None or int from a `int_or_none` input argument.
"""
if arg is None or str(arg).lower() == 'none':
return None
return int(arg)
|
651168240209540966ced78a5a2642a5979022fd
| 33,305 |
def pluralize(count, singular, plural):
"""Return singular or plural based on count"""
return singular if count == 1 else plural
|
752b744ea80571e2a01332dd5a050ee4919d5637
| 33,307 |
def column_exists(df, col):
"""Check the column name exists in the DataFrame.
Args:
df (:obj:`DataFrame`): Pandas DataFrame.
col (str): Column name.
Returns:
bool: True if exists, False if not exists.
"""
if col and (col not in df.columns):
print("The specify column `{0!s}` not found in the input file"
.format(col))
return False
else:
return True
|
18a1d5c9e1b40bdab38332e9aee17911d1fe153e
| 33,309 |
def get_file_name(file_url):
""" Extracts file name from the file path url """
file_name = None
if file_url.find('/'):
file_name = file_url.rsplit('/', 1)[1]
return file_name
|
3d62696506ad27e8d84ba8d2a8c17b1ff6706553
| 33,321 |
from pathlib import Path
import shutil
def copy_assembly(src, dst):
"""
Copy the directory passed to src to the dst directory and return the destination path.
An exception is raised if the dst directory already exists.
Args:
src (str): The path of the directory that is copied.
dst (str): The path of the destination directory.
Returns:
The path of the destination directory
"""
dst = Path(dst)
if dst.exists() and dst.is_dir():
raise Exception('destination folder already exists')
src = Path(src)
shutil.copytree(src, dst)
return dst
|
66334040447907c99cbcd7e3dab884c5fd5a0da7
| 33,322 |
def _prune_dockerfile(string, comment_char="#"):
"""Remove comments, emptylines, and last layer (serialize to JSON)."""
json_removed = '\n\n'.join(string.split('\n\n')[:-1])
return '\n'.join(row for row in json_removed.split('\n')
if not row.startswith(comment_char) and row)
|
484b1113dff432c56c23a36da507063561ec4a90
| 33,323 |
def eq_operator(one: object, another: object) -> bool:
"""
Compare whether one value equals another.
Function equivalent to the equals (`__eq__`) operator.
:param one: One value to compare
:param another: Another value to compare
:returns: `True` if `one == another`.
"""
return one == another
|
118ed13401b5d3b9a0446197c1f056e3e60c08c4
| 33,324 |
def need_attention(status_msg):
"""Return True if a repo status is not exactly same as that of remote"""
msg = ["not staged", "behind", "ahead", "Untracked"]
if any([each in status_msg for each in msg]):
return True
return False
|
c0a28b32313ce4c6c0b079c27a7274545bf48a80
| 33,326 |
def initMyGraph(ctor):
"""Constructs and returns a hard-coded sample graph.
ctor must be a callable that gets the number of vertices and
creates a graph with the given number of vertces and with no edges"""
g = ctor(5)
g.addEdge(0, 1)
g.addEdge(1, 0)
g.addEdge(1, 1)
g.addEdge(1, 2)
g.addEdge(4, 0)
g.addEdge(4, 2)
return g
|
4fecca553d2b6d8accadd2f1ce6ccb2a1baed2d7
| 33,331 |
def doc_wrapper(squad_para, title=""):
"""
This function wrap paragraphs into a document.
:param squad_para: paragraphs in SQuAD format.
:param title: the title of paragraphs.
:return: wrap of title and paragraphs
"""
squad_doc = {
'title': title,
'paragraphs': [squad_para]
}
return squad_doc
|
bcc513bbaa2ba885d242009eaae72e7c5b04aea3
| 33,337 |
def smart_round_format(number, precision):
"""
Args:
number (float):
precision (int):
Returns:
str:
Examples:
>>> smart_round_format(258.658, 2)
'258.66'
>>> smart_round_format(0.258658, 2)
'0.26'
>>> smart_round_format(0.0000258658, 2)
'2.59e-05'
"""
if number >= 0.1:
return str(round(number, 2))
else:
return ('{:0.' + str(precision) + 'e}').format(number)
|
9bc2cac03892e868a83e90a0df987692ad2d0a1e
| 33,340 |
import pickle
def get_earlier_cpds(month):
""" Finds all compounds which were inputted into SureChemBL prior to or equal
to a given month
Args:
month (string): Month, in the form YYYY-MM
Returns:
pandas dataframe: dataframe containing SureChemBL patent id, month of
first entry, and igraph index
"""
#Read in master compound-date-index dataframe
agave_fp = "Data/Cpd_Data/master_cpd_date_index_df.p"
#drive_fp = "G:/Shared drives/SureChemBL_Patents/Cpd_Data/master_cpd_date_index_df.p"
df = pickle.load(file=open(agave_fp, "rb"))
# #Small dataframe analysis
# check_indicies(df)
return df[df["Month"] <= month]
|
b6f7c976d523f3c308eb647bb31851b99a8b7856
| 33,341 |
def function_example(point_cloud,bool_flag=False):
""" Returns the given point cloud, with the potential to raise errors if the input is too large.
Parameters
----------
point_cloud : (n,3) numpy array
Array containing the x-y-z coords of a 3d point cloud.
bool_flag : boolean, optional
A boolean flag to toggle error checking.
Returns
-------
out : (n,3) numpy array
Array containing the x-y-z coords of a 3d point cloud.
Raises
------
ValueError
If the length of our point cloud exceeds 10,000.
"""
if bool and len(point_cloud) > 10000:
raise ValueError('length of point_cloud cannot exceed 10,000 points')
out = point_cloud
return out
|
d4449ea8d9ea9db61a712679236ddcb903c41adc
| 33,343 |
def make_aa_to_codon_backtable(codontable):
"""Convert a codontable for use with convert_seq_to_seqspace()
Returns a codontable (dict) in the format `{'F': ['TTT', 'TTC'], 'L': ['TTA', ...`
Parameters
----------
codontable
dict of codons in the format `{'TTT': 'F', 'TTC': 'F', 'TTA': 'L', ...`
"""
aa_list = list(set(codontable.values()))
backtable = {key: [] for key in aa_list}
for codon, aa in codontable.items():
backtable[aa] = backtable[aa] + [codon]
return backtable
|
3bd8327e639a11742a1914bf7234769b3f240e6e
| 33,344 |
def fitness(bits):
"""
Gets a numeric value corresponding to the fitness of a given solution
:param bits: A solution
:return: A fitness value
"""
return sum(bits)
|
ecc86a1e91298f6ecd1aebb3796afdfbf9ab628d
| 33,345 |
def calc_eval_metrics(aa_match_binary_list, orig_total_num_aa, pred_total_num_aa):
"""
Calculate evaluation metrics using amino acid matches
Parameters
----------
aa_match_binary_list : list of lists
List of amino acid matches in each predicted peptide
orig_total_num_aa : int
Number of amino acids in the original peptide sequences
pred_total_num_aa : int
Number of amino acids in the predicted peptide sequences
Returns
-------
aa_precision: float
Number of correct aa predictions divided by all predicted aa
aa_recall: float
Number of correct aa predictions divided by all original aa
pep_recall: float
Number of correct peptide predictions divided by all original peptide
"""
correct_aa_count = sum([sum(pred_tuple[0]) for pred_tuple in aa_match_binary_list])
aa_recall = correct_aa_count/(orig_total_num_aa+1e-8)
aa_precision = correct_aa_count/(pred_total_num_aa+1e-8)
pep_recall = sum([pred_tuple[1] for pred_tuple in aa_match_binary_list])/(len(aa_match_binary_list)+1e-8)
return aa_precision, aa_recall, pep_recall
|
c0c843a3bc26587bdd6607dde4ad958e01fe38a2
| 33,351 |
import math
def find_first_divisor(N):
"""Finds the first divisor of N
Args:
N: an integer to be factored
Returns:
an integer representing the first divisor of N
"""
for i in range(2, int(math.sqrt(N)) + 1):
if N % i == 0:
return i
return N
|
8ea0aa52341ce3d11ef27e7eafd6665a93e201ca
| 33,352 |
def token_value(token):
"""Get the value from a token."""
return token.value
|
32b0697328b30df5c36e88db426b78e495be3c72
| 33,355 |
def to_dict_index(df):
"""
Pandas dataframe to dictionary (index method)
Parameters
---------------
df
Dataframe
Returns
--------------
dict
dict like {index -> {column -> value}}
"""
return df.to_dict('index')
|
b30a84b581c2ea7392958a3b0752a3126d360c61
| 33,356 |
def proxied_attribute(local_attr, proxied_attr, doc):
"""Create a property that proxies attribute ``proxied_attr`` through
the local attribute ``local_attr``.
"""
def fget(self):
return getattr(getattr(self, local_attr), proxied_attr)
def fset(self, value):
setattr(getattr(self, local_attr), proxied_attr, value)
def fdel(self):
delattr(getattr(self, local_attr), proxied_attr)
return property(fget, fset, fdel, doc)
|
0a751a980db6de45bbafd12a24aeb743284750a3
| 33,358 |
import six
import re
def listsearch(query, item):
"""Return match with query on an item from the list of input/output files
The lists of input and output files can consist either of file names
(strings), or lists containing the filename and the hash of the file (if
hashing is enabled). This function provides a transparent interface to
these two options.
Parameters:
query : str
The search query
item : str or list containing two strings
A file name or a list containing a file name and hash
Returns:
boolean
"""
fh = ''
if not isinstance(item, six.string_types):
fh = item[1]
item = item[0]
return bool(re.search(query, item) or
re.search(query, fh))
|
143debe27f3a206021aa42272da08763a8cae425
| 33,360 |
def get_type_qualname(cls):
"""Get a string uniquely identifying the supplied class"""
if isinstance(cls, str):
return cls
if cls.__module__ == "__main__":
return cls.__qualname__
return f"{cls.__module__}.{cls.__qualname__}"
|
968346708d2f0f8be6c92d84e3d65e4050904f86
| 33,363 |
def split_indices(a: int, b: int, val_split=0.15, test_split=0.15):
"""
Calculate the necessary indices for splitting a dataset into
training, validation and test set in a diversified manner.
:param a: First index.
:param b: Last index.
:param val_split: Float describing the fraction used for validation.
:param test_split: Float describing the fraction used for testing.
:return: A 7-tuple of integers with the following values:
a: First index for training data
val1: Starting index of first validation split
test1: Starting index of first testset split
data: Second index for training data
val2: Starting index of second validation split
test2: Starting index of second testset split
b: Last index of the data
"""
half = int((b - a) / 2)
val_len = int(half * val_split)
test_len = int(half * test_split)
val1 = a + half - val_len - test_len
test1 = a + half - test_len
data = a + half
val2 = b - val_len - test_len
test2 = b - test_len
return a, val1, test1, data, val2, test2, b
|
6054e171d67405c2ba2bd653a2f9e08e8781c4f4
| 33,364 |
import math
def calc_spec_smh(T, specs):
"""Calculate standard-state entropies minus enthalpies for all species.
Parameters
----------
T : float
Temperature of gas mixture.
specs : list of SpecInfo
List of species.
Returns
-------
spec_smh : list of float
List of species' standard-state entropies minus enthalpies.
"""
spec_smh = []
Tlog = math.log(T)
T2 = T * T
T3 = T2 * T
T4 = T3 * T
Thalf = T / 2.0
T2 = T2 / 6.0
T3 = T3 / 12.0
T4 = T4 / 20.0
for sp in specs:
if T <= sp.Trange[1]:
smh = (sp.lo[0] * (Tlog - 1.0) + sp.lo[1] * Thalf + sp.lo[2] *
T2 + sp.lo[3] * T3 + sp.lo[4] * T4 - (sp.lo[5] / T) +
sp.lo[6]
)
else:
smh = (sp.hi[0] * (Tlog - 1.0) + sp.hi[1] * Thalf + sp.hi[2] *
T2 + sp.hi[3] * T3 + sp.hi[4] * T4 - (sp.hi[5] / T) +
sp.hi[6]
)
spec_smh.append(smh)
return (spec_smh)
|
c773a0807fa5b4b199e3db775f6b455d15b643be
| 33,384 |
import requests
def get_resolution(pdb_id):
"""
Get the resolution for a PDB id, or None case it doesn't have.
"""
ret = requests.post(
"https://data.rcsb.org/graphql",
json={
"query": f"""
{{
entry(entry_id: "{pdb_id}") {{
pdbx_vrpt_summary {{
PDB_resolution
}}
}}
}}
"""
},
)
data = ret.json()
resol = data["data"]["entry"]["pdbx_vrpt_summary"]["PDB_resolution"]
return resol
|
76249898e0b159235e8c9e5a3e6ede2c23c0e565
| 33,388 |
def calculate_deployment_wait_time(test_obj, failure_count=0):
""" Calculates wait time based potentially a number of factors.
If we need an exponential backoff this is the place.
possbilities:
deploy_results.avg_response_time,
deploy_results.last_response_time
failure_count
outstanding_deployments
current_scale
max response time is 10s, as we approach that bad things happen
return time in seconds to wait
"""
deploy_results = test_obj.deploy_results
wait_time = 1
if deploy_results.last_response_time < 1:
wait_time = 1
elif deploy_results.last_response_time > 8:
wait_time = 5
if failure_count > 3 and failure_count < 7:
wait_time = wait_time + 5
elif failure_count > 7:
wait_time = wait_time + 10
return wait_time
|
d6f195c3963686e5ad955c1770587de374893b09
| 33,389 |
import gzip
import json
def load_gzip(file):
"""
Read a gzip file.
:param file: file to read
:return: the dictionary contained in the gzip file
"""
with gzip.open(file, "rb") as f:
data = f.read()
d = json.loads(data)
return d
|
10b2639b30fd90a06c9182ad15a0beb5c09e8efd
| 33,393 |
import csv
def _csv_sniff(f):
"""
Sniff using csv module whether or not a csv file (csv or gz) has a header.
Arguments:
f (filehandle) :
filehandle of the file to be read
"""
sniff_size = 2**20 - 1
dialect = csv.Sniffer().sniff(f.read(sniff_size))
f.seek(0)
has_header = csv.Sniffer().has_header(f.read(sniff_size))
f.seek(0)
return dialect, has_header
|
f03f684d00fff20ac0f8c17fbbd4811c32aae9aa
| 33,394 |
def _arch_file_filter(arch_members, fname=None):
"""Filter func to return one archive member with name 'fname' of an archive
"""
return [f for f in arch_members if f.name == fname]
|
6a19c3b8f7d2faa410a21922b5a5f6f3e0fd380c
| 33,397 |
def prepend_dollar_sign_to_ticker(list, str):
"""Add a dollar sign character to the beginning of each ticker in the list"""
str += '{0}'
list = [str.format(i) for i in list]
return(list)
|
d192e5450dc7d7793a7daf06a8578433fefda35e
| 33,398 |
def banner() -> None:
""" Return an ascii art """
with open("src/interface/art.txt", "r") as file:
return print(f"[red]{file.read()}[/]")
|
5e3e0dab46e7e6e33fad90a516490151c80f3719
| 33,399 |
def linear_interpolate(a, b, v1, v2, i):
"""Linear interpolation"""
if v1 == v2:
return a
else:
return a + (b - a) * (i - v1) / (v2 - v1)
|
dd686797f5311ff08ef5c0f7bb3642344ce8c705
| 33,401 |
def cat_from(strlist, v, suf):
"""
Concatenate sublist of strings
:param strlist: list of strings
:param v: sublist starting position
:param suf: glue string
:return: concatenated string
"""
# return ''.join(map(lambda s: s + suf, strlist[v:]))
return suf.join(strlist[v:])
|
1c4e2c0a4e7e8861c477bfd75e23c36a8ec8c370
| 33,405 |
def p2roundup(val: int, align: int) -> int:
"""
Round up `val` to the next `align` boundary.
"""
return ((val - 1) | (align - 1)) + 1
|
639793ab502297ecdfbf243084ccba31fdcc2a31
| 33,411 |
import inspect
def list_functions(module):
"""
List top-level function name & function
:param module: the module
:return: dict of all functions
"""
return dict(inspect.getmembers(module, inspect.isfunction))
|
5c0b97101de64c4c48db92209547c9e1c2675a29
| 33,412 |
import re
def has_drm_match(ocr_result, drm):
"""
Checks if a drm matches the ocr_result format.
Args:
ocr_result (str): OCR result string;
drm (dict): DRM dict object for parsing the OCR string.
Returns:
(bool): Returns True if the DRM identifier matches with
OCR result string.
"""
id_regexps = drm["identifiers"]
for id_regexp in id_regexps:
regexp = re.compile(id_regexp, re.IGNORECASE)
if not re.search(regexp, ocr_result):
return False
return True
|
2f0f067bee08ce9a309ccacd76c07fb81681675f
| 33,422 |
def forward_segment(text, dic):
"""
正向最长匹配的中文分词算法
:param text:待分词的文本
:param dic:词典
:return:单词列表
"""
word_list = []
i = 0
while i < len(text):
longest_word = text[i]
for j in range(i + 1, len(text) + 1):
word = text[i:j]
if (word in dic) and (len(word) > len(longest_word)):
longest_word = word
word_list.append(longest_word) # 正向搜索,越先找到的单词排在越前面
i += len(longest_word)
return word_list
|
24c1158551563e82ea856de1322b65512d1aceaa
| 33,427 |
def wulffmaker_gamma(energy):
"""
Returns the string to be used for the Wulffmaker default gamma values.
Arguments
---------
energy: iterable
Any iterable that holds the surface energies
Returns
-------
str
String to be copied to wulffmaker for the surface energies.
"""
gamma_string = "pickGamma[i_] :=\n"
gamma_string += "Which[\n"
idx = 1
for idx,value in enumerate(energy):
idx += 1
gamma_string += "i=={},\n".format(idx)
gamma_string += "{:.4f},\n".format(value)
gamma_string += "True,\n"
gamma_string += "1]"
return gamma_string
|
756bd972cab96ef143303c3084e293d0c4e82c28
| 33,430 |
def check_repetitive(combination, df_main):
"""Check to avoid repetitive combinations
Parameters
----------
combination:
combinations that want to be checked
df_main: pandas.DataFrame
source dataframe
Returns
-------
boolean:
True: it exists in df_main
False: it's not
"""
comparison_df = df_main.merge(combination, indicator=True, how='outer')
if 'both' in comparison_df._merge.unique():
return False
else:
return True
|
8d6a40e2e233c5b04c27fee0db851bde52694cfd
| 33,442 |
def result_pks(response, cast=None):
"""
returns ids from wagtail admin search result
:param cast: cast pks to a type, default int
:param response: webtest response
:return: ids list
"""
cast = cast or int
result_rows = response.lxml.xpath('.//tr[@data-object-pk]/@data-object-pk')
return [
cast(r) for r in result_rows
]
|
c46373733cf1451ccb7dbadd842726445112c9f2
| 33,450 |
from typing import Tuple
def format_xml_property(
metric_type: str, summary_method: str, metric_value: float
) -> Tuple[str, float]:
"""
Formats metric summary into XML name-value tuple in the form of
(metric_type[summary_method], metric_value)
ex: (cpu_util[avg], 88.23)
"""
return f"{metric_type}[{summary_method}]", metric_value
|
f26bfdefae85e220b9f4285a1122501ee7b7329a
| 33,451 |
import re
def split(text):
""" Split text into arguments accounting for muti-word arguments
which are double quoted """
# Cleanup text
text = text.strip()
text = re.sub('\s+', ' ', text) # collpse multiple spaces
space, quote, parts = ' ', '"', []
part, quoted = '', False
for char in text:
# Encoutered beginning double quote
if char is quote and quoted is False:
quoted = True
continue
# Encountered the ending double quote
if char is quote and quoted is True:
quoted = False
parts.append(part.strip())
part = ''
continue
# Found space in quoted
if char is space and quoted is True:
part += char
continue
# Found space but not quoted
if char is space:
if part:
parts.append(part)
part = ''
continue
# Found other character
if char is not space:
part += char
continue
if part:
parts.append(part.strip())
return parts
|
061f76fefc7888b16cda87a1f6f4219bf5a74af6
| 33,452 |
def get_conn_args(database="mydb", user="user", password="password", host="mydb", port="5432"):
"""
Get arguments for the connection to the PostgreSQL database server
Parameters
----------
database: str
String of the database (default: "mydb")
user: str
String of the user (default: "user")
password: str
String of the password (default: "password")
host: str
String of the host (default: "mydb"), "mydb" in docker and "localhost" in local
port: str
String of the port (default: 5432)
Returns
-------
conn_args: dict
Dictionnary for the connection to the PostgreSQL database server
"""
conn_args = {
"database": database,
"user": user,
"password": password,
"host": host,
"port": port
}
return conn_args
|
e6898449371a477bdc103e8011ccf53f922a7705
| 33,454 |
def thresholdForIdentity(identity, colors):
"""
Get the best identity threshold for a specific identity value.
@param identity: A C{float} nucleotide identity.
@param colors: A C{list} of (threshold, color) tuples, where threshold is a
C{float} and color is a C{str} to be used as a cell background. This
is as returned by C{parseColors}.
@return: The first C{float} threshold that the given identity is at least
as big as.
"""
for threshold, _ in colors:
if identity >= threshold:
return threshold
raise ValueError('This should never happen! Last threshold is not 0.0?')
|
34d4f84ae7339fda68c2bf3fbaa1a1ef7cbd6e95
| 33,455 |
def __prefixNumber(num, leading):
"""
Prefixes "num" with %leading zeroes.
"""
length = int(leading)+1
num = str(num)
while len(num) < length:
num = '0' + num
return num
|
55a3745a993ffd75b0186d918dbf2a2b74771f2e
| 33,460 |
import requests
from bs4 import BeautifulSoup
def scrap_page(slug):
"""
Scrape the documentation page body text.
:param slug: Documentation URL slug eg. 'the-lead-page'
:return: Documentation page body text if it exists
"""
url = f"https://help.close.com/docs/{slug}"
response = requests.get(url)
document = BeautifulSoup(response.text, 'html.parser')
containers = document.select('#content-container')
if containers:
return containers[0].get_text()
|
c11279d6292d9a0f7171a8bc5ed94b1f5cdc363d
| 33,463 |
def stations_by_river(stations):
"""for Task1D, to return a dictionary that maps rivers to stations"""
dict_1d={}
for i in range(len(stations)):
if stations[i].river in dict_1d:
dict_1d[stations[i].river].append(stations[i].name)
else:
dict_1d[stations[i].river]=[]
dict_1d[stations[i].river].append(stations[i].name)
return dict_1d
|
f3fe723813552b6bdf40410c700aab7a66a7b894
| 33,468 |
def Shift(xs, shift):
"""Adds a constant to a sequence of values.
Args:
xs: sequence of values
shift: value to add
Returns:
sequence of numbers
"""
return [x+shift for x in xs]
|
e3e3f8b32c0cc4633ef09bbd1dbb2ef197ed79e6
| 33,471 |
def decode_story(id2word, result):
"""
:param id2word: vocab
:param result: (batch_size, story_size, seq_length)
:return:
out: a list of stories. the size of the list is batch_size
"""
batch_size, story_size, seq_length = result.size()
out = []
for i in range(batch_size):
txt = ''
for j in range(story_size):
for k in range(seq_length):
vocab_id = result[i, j, k]
if vocab_id != 2:
txt = txt + ' ' + id2word[int(vocab_id.item())]
else:
break
out.append(txt)
return out
|
0ad315bfde06904a1ca2590f32781361e75f1edd
| 33,472 |
def get_computed_response_parameter_number(response):
"""
extract the number of parameters from the Dialogflow response, fallback: 0
"""
try:
return len(response.query_result.parameters)
except:
return 0
|
4a469c2a543662d4b1826c3cba309d216db0e831
| 33,473 |
from typing import Dict
from typing import Any
def _get_nested_metadata(dataset: Dict[str, Any],
prefix: str) -> Dict[str, Any]:
"""Generate a metadata dictionary using flattened metadata keys.
Args:
dataset: dictionary containing the dataset keys and values. Keys are
flatened.
prefix: common prefix of the metadata fields.
Returns:
Nested dictionary with the episode metadata.
If the dataset contains:
{
'metadata/v1/v2': 1,
'metadata/v3': 2,
}
and prefix='metadata', it returns:
{
'v1':{
'v2': 1,
}
'v3': 2,
}
It assumes that the flattened metadata keys are well-formed.
"""
episode_metadata = {}
for k in dataset.keys():
if f'{prefix}/' not in k:
continue
keys = k.split('/')[1:]
nested_dict = episode_metadata
leaf_value = dataset[k]
for index, nested_key in enumerate(keys):
if index == (len(keys) - 1):
nested_dict[nested_key] = leaf_value
else:
if nested_key not in nested_dict:
nested_dict[nested_key] = {}
nested_dict = nested_dict[nested_key]
return episode_metadata
|
6c2e2b430cc8a977c5cf2136ad456f3f533afe22
| 33,478 |
import base64
def str2b64(string: str)->str:
"""
字符串转base64
:param string: 源字符串
:return: base64编码的字符串
"""
return base64.b64encode(string.encode("utf8")).decode()
|
2d6c0fc14df29426c64c91690db63bb49f5807da
| 33,481 |
def vvo2max(vo2max):
"""
Calculates velocity (kilometers/hour) at a specified VO2Max (mL/(kg*min))
args:
vo2max (float): VO2Max, given in mL/(kg * min)
Returns:
float: kilometers / hour
"""
return vo2max / 3.5
|
a90c8fc20710782d991731324483d37e7cbf3a54
| 33,484 |
import numbers
def get_dtype(item):
"""
Attempt to get the datatype from an item.
>>> get_dtype(1)
'float32'
>>> get_dtype(True)
'bool'
>>> get_dtype(1.1)
'float32'
>>> get_dtype([1])
'float32'
>>> get_dtype([[[1, 2, 3]]])
'float32'
>>> get_dtype(np.array([True, False, True], dtype=bool))
'bool'
"""
if hasattr(item, "dtype"):
return item.dtype.name
elif isinstance(item, bool):
return "bool"
elif isinstance(item, str):
return "str"
elif isinstance(item, numbers.Real):
return "float32"
else:
try:
return get_dtype(item[0])
except:
return None
|
9f908527af2c508c331f692c86f214d30c6b2dc0
| 33,487 |
import torch
def quat_to_rmat(quaternion: torch.Tensor) -> torch.Tensor:
"""Converts quaternion(s) to rotation matrix.
The quaternion should be in (w, x, y, z) format.
Args:
quaternion (torch.Tensor): a tensor containing a quaternion to be
converted. The tensor can be of shape (*, 4).
Return:
torch.Tensor: the rotation matrix of shape (*, 3, 3).
"""
if not isinstance(quaternion, torch.Tensor):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError(
"Input must be a tensor of shape (*, 4). Got {}".format(
quaternion.shape))
# unpack the normalized quaternion components
w, x, y, z = torch.chunk(quaternion, chunks=4, dim=-1)
# compute the actual conversion
tx: torch.Tensor = 2.0 * x
ty: torch.Tensor = 2.0 * y
tz: torch.Tensor = 2.0 * z
twx: torch.Tensor = tx * w
twy: torch.Tensor = ty * w
twz: torch.Tensor = tz * w
txx: torch.Tensor = tx * x
txy: torch.Tensor = ty * x
txz: torch.Tensor = tz * x
tyy: torch.Tensor = ty * y
tyz: torch.Tensor = tz * y
tzz: torch.Tensor = tz * z
one: torch.Tensor = torch.tensor(1., device=quaternion.device)
matrix: torch.Tensor = torch.stack([
one - (tyy + tzz), txy - twz, txz + twy,
txy + twz, one - (txx + tzz), tyz - twx,
txz - twy, tyz + twx, one - (txx + tyy)
], dim=-1)
shape = quaternion.shape[:-1] + (3, 3)
return matrix.view(shape)
|
83f86b41842843b316c2b9ca13f5c1d1eab38dd9
| 33,489 |
def citem2higher(citem):
"""This gets the higher representation of a given :class:``citem``, \
that is, a :class:``cinsn_t`` or :class:``cexpr_t``
:param citem: a :class:``citem`` object
:type citem: :class:``citem``
"""
if citem.is_expr():
return citem.cexpr
return citem.cinsn
|
5055467250308a01cfc82ea980b63066cfdecb5b
| 33,491 |
def parse_modified(full_dict, ignored_keys=('#', '?')):
"""
Extract 'staged' and 'modified' counts from Git status lines.
Arguments
---------
full_dict: dict
full meta data dictionary
ignored_keys: iterable
keys that should not contribute towards the staged and modified counts
(e.g., branch meta data or untracked files)
Returns
-------
list
a list of two counts: [num_staged, num_modified]
"""
counts = [0, 0]
for k in full_dict:
if k not in ignored_keys:
values = [x.split()[1].index('.') for x in full_dict[k]]
for v in values:
counts[v] += 1
return counts
|
d8d05a3afd5c57d8f2e10bb2992a0dfd1b7a0363
| 33,493 |
import re
def _add_folders_to_path(path_line, folders_to_add_list):
"""Ensures that the given list of folders are inside the given line (for
the PATH environment variable).
Args:
path_line(str): line in /etc/environment for the PATH environment variable
folder_to_add_list(list of str): list of strings, where each string is a
folder that must be present in the PATH environment variable. This list is
assumed to be free of duplicate folders.
Returns:
(bool, str): The boolean value indicates if the line for the PATH
environment variable has been modified; true means modified, false means
not modified. The string value is the new line for the PATH environment
variable, with all the folders in the `folders_to_add_list`
"""
PATH_STRING_TEMPLATE = "PATH=\"{folders}\""
# strip off surrounding quotes
match_obj = re.match(r"""^PATH=['"]*(.*)$""", path_line)
existing_folders_line = None
if match_obj is None:
return (True, PATH_STRING_TEMPLATE.format(
folders=":".join(folders_to_add_list)
),)
else:
# strip trailing quotes.
# We cannot just add a ['"]* to the above regex due to how greedy matching
# works. It's possible to use non-greedy pattern matching but we do not do
# that here.
existing_folders_line = re.sub(r"""['"]*$""", "", match_obj.group(1))
# obtain existing folders
existing_folders_list = [
folder for folder in existing_folders_line.split(":")
if folder.strip() != ""
]
existing_folders_set = set(existing_folders_list)
path_line_modified = False
for folder in folders_to_add_list:
if folder not in existing_folders_set:
path_line_modified = True
existing_folders_list.append(folder)
existing_folders_set.add(folder)
return (path_line_modified, PATH_STRING_TEMPLATE.format(
folders=":".join(existing_folders_list)
),)
|
d7d1940c4794f483eebcf6c70ae120de222c7034
| 33,498 |
def tuple_to_m_list(tup: tuple, c: str = '') -> str:
"""Return a string representation of a tuple to be used as an NBT list in Minecraft."""
if type(tup[0]) is float:
return '[' + ', '.join(tuple('{:f}'.format(i) + c for i in tup)) + ']'
else:
return '[' + ', '.join(tuple(str(i) + c for i in tup)) + ']'
|
7d4346e288d7751a6e710b605aed0a1fc50521c7
| 33,499 |
def get_distance(cell1, cell2):
"""Calculates the distance between two cells."""
return abs(cell1.position - cell2.position)
|
e1845663c40a97bc6e4bcf56867cc9268632fa17
| 33,500 |
def convert(stat):
"""Convert byte value to pretty string"""
size = 1024 * 1024 * 1024 * 1024 * 1024
for mag in ['P', 'T', 'G', 'M', 'K']:
if stat > size:
return "%10.2f %s" % (float(stat) / size, mag)
size = size / 1024
return "%10d " % stat
|
619e228fa652dd876a42958e39bb5dd9c000c020
| 33,504 |
import torch
def parse_alignment(line):
"""
Parses a single line from the alingment file.
Args:
line (str): String containing the alignment of the format:
<src_idx_1>-<tgt_idx_1> <src_idx_2>-<tgt_idx_2> ..
<src_idx_m>-<tgt_idx_m>. All indices are 0 indexed.
Returns:
torch.IntTensor: packed alignments of shape (2 * m).
"""
alignments = line.strip().split()
parsed_alignment = torch.IntTensor(2 * len(alignments))
for idx, alignment in enumerate(alignments):
src_idx, tgt_idx = alignment.split("-")
parsed_alignment[2 * idx] = int(src_idx)
parsed_alignment[2 * idx + 1] = int(tgt_idx)
return parsed_alignment
|
4f2953b331eb81bffb3fc7cda19fe3d96826cadb
| 33,509 |
def update_dict(old_dict, values):
""" Update dictionary without change the original object """
new_dict = old_dict.copy()
new_dict.update(values)
return new_dict
|
c1246e1849904ea23864d5e11f734497c6ff1e09
| 33,511 |
def c2st_rfi(acc_prop,
acc_base,
M_prop,
M_base,
g):
"""
Args:
acc_prop (float): Proposed model accuracy.
acc_base (float): Baseline model accuracy.
M_prop (int): Number of parameters for proposed model.
M_base (int): Number of parameters for baseline model.
g (function): Scalar-valued function.
"""
delta_prop = g(acc_prop - 0.5)
delta_base = g(acc_base - 0.5)
return 1 - (M_prop / M_base) * (delta_prop / delta_base)
|
383c89bb6488c8a3564a950990e275b02d887133
| 33,512 |
def render_template(template, context):
"""
Generate an HTML test report.
Args:
template (Template): Jinja2 Template object containing the template to render
context (dict): the context to pass to the template
Returns:
str: the contents of the rendered template
"""
return template.render(context)
|
5cf0b16855a62439b6b4b76f383bea684fb9b4ec
| 33,514 |
import hashlib
def create_base_url(softwareversion):
"""
Make the root URL for production server files.
:param softwareversion: Software version to hash.
:type softwareversion: str
"""
# Hash software version
swhash = hashlib.sha1(softwareversion.encode('utf-8'))
hashedsoftwareversion = swhash.hexdigest()
# Root of all urls
baseurl = "http://cdn.fs.sl.blackberry.com/fs/qnx/production/{0}".format(hashedsoftwareversion)
return baseurl
|
cda1283505f5e31208f39e12d422ccb99826c702
| 33,515 |
def num2char(numpair, key):
"""Takes in a numpair like '34', and returns the character in row 3 (actually 4th row)
and column 4 (actually 5th column) of the key"""
row_num = int(numpair[0])
column_num = int(numpair[1])
return(key[row_num][column_num])
|
a86cf1ef327d2f1fbedf8b661e812c4d486fb3ac
| 33,521 |
def draw_labels(ax,
labels,
positions,
scores=None,
class_names=None,
color='w',
font_size=8,
scales=None,
horizontal_alignment='left'):
"""Draw labels on the axes.
Args:
ax (matplotlib.Axes): The input axes.
labels (ndarray): The labels with the shape of (n, ).
positions (ndarray): The positions to draw each labels.
scores (ndarray): The scores for each labels.
class_names (list[str]): The class names.
color (list[tuple] | matplotlib.color): The colors for labels.
font_size (int): Font size of texts. Default: 8.
scales (list[float]): Scales of texts. Default: None.
horizontal_alignment (str): The horizontal alignment method of
texts. Default: 'left'.
Returns:
matplotlib.Axes: The result axes.
"""
for i, (pos, label) in enumerate(zip(positions, labels)):
label_text = class_names[
label] if class_names is not None else f'class {label}'
if scores is not None:
label_text += f'|{scores[i]:.02f}'
text_color = color[i] if isinstance(color, list) else color
font_size_mask = font_size if scales is None else font_size * scales[i]
ax.text(
pos[0],
pos[1],
f'{label_text}',
bbox={
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
},
color=text_color,
fontsize=font_size_mask,
verticalalignment='top',
horizontalalignment=horizontal_alignment)
return ax
|
1d8551bce6421e4e697dc33667a51111a0d2c9d4
| 33,522 |
import base64
def basic_auth_creds(request):
"""
Extract any HTTP Basic authentication credentials for the request.
Returns a tuple with the HTTP Basic access authentication credentials
``(username, password)`` if provided, otherwise ``None``.
:param request: the request object
:type request: pyramid.request.Request
:returns: a tuple of (username, password) or None
:rtype: tuple or NoneType
"""
try:
authtype, value = request.authorization
except TypeError: # no authorization header
return None
if authtype.lower() != 'basic':
return None
try:
user_pass_bytes = base64.standard_b64decode(value)
except TypeError: # failed to decode
return None
try:
# See the lengthy comment in the tests about why we assume UTF-8
# encoding here.
user_pass = user_pass_bytes.decode('utf-8')
except UnicodeError: # not UTF-8
return None
try:
username, password = user_pass.split(':', 1)
except ValueError: # not enough values to unpack
return None
return (username, password)
|
285e9732d77ebc5cd0ac96f8579d743b7bf527f0
| 33,528 |
def bottom_index_iter(shape):
"""Iterator for the bottom boundary indices of a structured grid."""
return range(0, shape[1])
|
ee952e8c5129a4f504414756361ce55e0f85a095
| 33,531 |
def qit(fmpp, f0pp, fmf0=4.88):
"""Calculate qIt
qIt = (fmf0 / ((fmpp / f0pp) - 1)) - 1
:param fmpp: Fm''
:param f0pp: F0''
:param fmf0: Fv/Fm (default: 4.88)
:returns: qIt (float)
"""
return (fmf0 / ((fmpp / f0pp) - 1)) - 1
|
4fc18ff9604b7514ff4bd8f6df0c8640b7514fbe
| 33,534 |
def map_msg_extent(msg):
"""
Returns the extent of the map in world coordinates
:param msg: ((nav_msgs.OccupancyMap|gmapping.doubleMap) A map message.
:return: (list) The extents of the map in world coordinates [x0, x1, y0, y1]
"""
w = msg.info.width
h = msg.info.height
# Set the plot's extension in world coordinates for meaningful plot ticks
delta = msg.info.resolution
x0 = msg.info.origin.position.x
y0 = msg.info.origin.position.y
x1 = x0 + w * delta
y1 = y0 + h * delta
extent = [x0, x1, y0, y1]
return extent
|
0e597bd77a7c64bea2a689718574944307facf1b
| 33,537 |
def set_invenio(ctx, production):
"""Add Invenio details: api urls, communities, to context object
Parameters
----------
ctx: click context obj
Api details
production: bool
If True using production api, if False using sandbox
Returns
-------
ctx: click context obj
Api details with url and community added
"""
if production:
base_url = 'https://oneclimate.dmponline.cloud.edu.au/api'
else:
base_url = 'https://test.dmponline.cloud.edu.au/api'
ctx.obj['url'] = f'{base_url}/records'
ctx.obj['deposit'] = f'{base_url}/records'
ctx.obj['communities'] = f'{base_url}/communities'
return ctx
|
f34d0c2806f9a8594d4cc07037daa6288686f786
| 33,538 |
def map_range(
x: float, in_min: float, in_max: float, out_min: float, out_max: float
) -> float:
"""
Maps a number from one range to another. Somewhat similar to the Arduino ``map()`` function,
but returns a floating point result, and constrains the output value to be between
``out_min`` and ``out_max``.
If ``in_min`` is greater than ``in_max`` or ``out_min`` is greater than ``out_max``,
the corresponding range is reversed, allowing, for example, mapping a range of 0-10 to 50-0.
:param float in_min: Start value of input range.
:param float in_max: End value of input range.
:param float out_min: Start value of output range.
:param float out_max: End value of output range.
:return: Returns value mapped to new range.
:rtype: float
"""
in_range = in_max - in_min
in_delta = x - in_min
if in_range != 0:
mapped = in_delta / in_range
elif in_delta != 0:
mapped = in_delta
else:
mapped = 0.5
mapped *= out_max - out_min
mapped += out_min
if out_min <= out_max:
return max(min(mapped, out_max), out_min)
return min(max(mapped, out_max), out_min)
|
d85affb68b711236fcf455876c5fd6f8f3d9940c
| 33,540 |
def flatten_nested_lists(activation_maps):
"""Flattens a nested list of depth 3 in a row major order.
Args:
activation_maps: list of list of list of z3.ExprRef with dimensions
(channels, activation_map_size, activation_map_size), activation_maps.
Returns:
list of z3.ExprRef.
"""
flattened_activation_maps = []
for activation_map in activation_maps:
for activation_map_row in activation_map:
flattened_activation_maps.extend(activation_map_row)
return flattened_activation_maps
|
7eee52d809dbc659f94623634814ccaacd575183
| 33,541 |
def recursive_conditional_map(xr, f, condition):
"""Walks recursively through iterable data structure ``xr``. Applies ``f`` on objects that satisfy ``condition``."""
return tuple(f(x) if condition(x) else recursive_conditional_map(x, f, condition) for x in xr)
|
807a9ce5ac42cd10ad7cfbcb42f1912bb7fca1a0
| 33,543 |
import queue
def get_messages_from_queue(mp_queue, timeout=0.01):
"""Safely get all messages from a multiprocessing queue.
Args:
mp_queue (queue): a multiprocess Queue instance
timeout (float): seconds to block other processes out from the queue
Returns:
list: List of messages or an empty list if there weren't any
"""
msgs = []
# According to the python docs https://docs.python.org/2/library/multiprocessing.html
# after putting an object on an empty queue there may be an
# infinitesimal delay before the queue's empty() method returns False
#
# We've actually run into this (SPT-1354) so we'll first kick the
# tires with a get() and then see if there are more using empty()
try:
msgs.append(mp_queue.get(True, timeout))
except queue.Empty:
pass
else:
while not mp_queue.empty():
msgs.append(mp_queue.get_nowait())
return msgs
|
1d9aa7f404f87206d48c881d4ed50dcde8b8006a
| 33,544 |
def filter_sql_query(log):
"""Extract SQL statements from log"""
sqls = []
in_sql = False
for q in log:
if 'sqlalchemy.engine.base.Engine' in q:
# Remove '2017-11-22 15:17:14,810 INFO [sqlalchemy.engine.base.Engine] '
q = q[61:].strip()
sqls.append(q)
in_sql = True
elif in_sql and not q.startswith('2017-'):
# Rest of previous SQL query: append to previous sql
sqls[-1] = sqls[-1] + ' ' + q.strip()
else:
in_sql = False
return sqls
|
b0340b73408ee7dce3ebbcb34f75ac225114d611
| 33,551 |
from datetime import datetime
def parse_iso(timestamp: str) -> datetime:
"""A function to convert the ISO 8601 timestamp to :class:`datetime`.
Parameters
----------
timestamp: str
The ISO 8601 timestamp to be converted.
Returns
-------
datetime
The converted :class:`datetime` timestamp.
"""
return datetime.strptime(timestamp, '%Y-%m-%dT%H:%M:%S.%f%z')
|
54a313a1100d67b3411452aa60f79826bce8ab66
| 33,558 |
def mplayer_cmd( song, volume=100 ):
"""
defines a command string to launch mplayer
"""
return "mplayer %s -volume %.3f"%(song, volume)
|
e33e2439d43d7becf30a0e355fe238687635fc53
| 33,560 |
def parse_fasta_header(header):
"""
Parses a FASTA format header (with our without the initial '>') and returns a
tuple of sequence id and sequence name/description.
If NCBI SeqID format (gi|gi-number|gb|accession etc, is detected
the first id in the list is used as the canonical id (see see
http://www.ncbi.nlm.nih.gov/books/NBK21097/#A631 ).
"""
if header[0] == '>':
header = header[1:]
tokens = header.split('|')
# check to see if we have an NCBI-style header
if header.find("|") != -1 and len(tokens[0]) <= 3:
# "gi|ginumber|gb|accession bla bla" becomes "gi|ginumber"
seqid = "%s|%s" % (tokens[0], tokens[1].split()[0])
name = tokens[-1:][0].strip()
# otherwise just split on spaces & hope for the best
else:
tokens = header.split()
seqid = tokens[0]
name = header[0:-1].strip()
return seqid, name
|
ee51e9aab6ae75d7d0a59ff3e2adc6211e2cf897
| 33,562 |
import torch
def pack(inputs, is_tensor=False):
"""Pack the inputs into tuple if they were a single tensor"""
single = torch.is_tensor(inputs)
outputs = (inputs, ) if single else inputs
return (outputs, single) if is_tensor else outputs
|
14c1f7c16e0871d1fa7ec265e4db062cdc62b82d
| 33,570 |
def convert_signature_id(sigid):
"""Standardize the signature ID to XXX-XXX if info is available."""
escaped_sigid = sigid.replace(' ', '').replace('-', '').upper()
if len(escaped_sigid) == 6:
return "%s-%s" % (escaped_sigid[:3], escaped_sigid[3:])
else:
return sigid.upper()
|
63f0af55415d58a7db4791f716e35a6dbacc8e89
| 33,572 |
def get_srid(crs):
"""Returns the SRID for the provided CRS definition
The CRS can be defined in the following formats
- urn:ogc:def:crs:EPSG::4326
- EPSG:4326
- 4326
"""
if ':' in crs:
crs = crs.split(':')
srid = crs[len(crs)-1]
else:
srid = crs
return int(srid)
|
7780ed484ddb7d653b99198f15e1d8178e60aced
| 33,575 |
def find_matching_paren(string, index, lparen='(', rparen=')'):
"""Find the closing paren corresponding to the open paren at <index>
in <string>. Optionally, can provide other characters to match on.
If found, returns the index of the matching parenthesis. If not found,
returns -1.
"""
if not string[index] == lparen:
raise ValueError("Character at index %d is '%s'. Expected '%s'"
% (index, string[index], lparen))
index += 1
count = 1
while index < len(string) and count > 0:
while index < len(string) and string[index] not in (lparen, rparen):
index += 1
if string[index] == lparen:
count += 1
elif string[index] == rparen:
count -= 1
if count == 0:
return index
else:
return -1
|
3216a020403eb33f557f3f032f0986e078384421
| 33,580 |
import json
def from_json(text):
"""Parse text as json.
"""
# If `text` is a byte string, decode it as utf-8.
if isinstance(text, bytes):
text = text.decode('utf-8')
return json.loads(text)
|
3374c29a5e36dd096f4cb1c3d6692bb9af242386
| 33,583 |
def is_success(code):
"""List of status codes considered to be successful."""
okay = [200, 202]
return code in okay
|
442ac0b94a14afe31be26cee454f7a4e69e46d7c
| 33,589 |
def exponential_smoothing(series, alpha):
"""
:define: Exponential smoothing weights all of the observations, while exponentially decreasing the weights as we move further back in time.
:define2: Exponentiality is hidden in the resuriveness of the function: y-hat = a * y-not + (1-a) * (previous y-not)
:param series: dataframe with time stamps
:param alpha: float [0.0, 1.0], smoothing parameter. The smaller alpha is, the more influence the previous observations have, and the smoother the series is
:return: exponentially smoothed dataframe, predicts one observation in the future
"""
result = [series[0]] # first value is same as series
for n in range(1, len(series)):
result.append(alpha * series[n] + (1 - alpha) * result[n - 1])
return result
|
0d62b329daea56355ba81e0bff5cac9b65858877
| 33,590 |
def _iterate_over_nested_obj(obj, key):
"""It iterates over the nested dict object.
It iterates over two types of data
* list
* dict
for the rest data type it returns the value
Args:
obj (any type): object to process
key (str, int): key to find in object
"""
if isinstance(obj, dict):
if obj.get(key):
return obj[key]
elif isinstance(obj, list):
for item in obj:
value = _iterate_over_nested_obj(item, key)
if value:
return value
return None
else:
return None
|
7b6352d6f24a8753b700c2c6491455460d5a4274
| 33,593 |
def ExperimentTemplate() -> str:
"""A template with Markdown syntax.
:return: str with Markdown template
"""
return """
Experiment
==========
Any [markdown code](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet) can be used to describe this experiment.
For instance, you can find the automatically generated used settings of this run below.
Current Settings
----------------
| Argument | Value |
| -------- | ----- |
"""
|
302d41a33dc9bfebfdca53980a87c8c77e8f475a
| 33,600 |
def encode_bool(value: bool) -> bytes:
"""Encodes a boolean.
"""
return bytes([int(value)])
|
fdfc695dcede9df5e79df8789837cd30a1deb0f8
| 33,603 |
def std_label(value):
"""Given Crystal specific uppercase species names, returns the capitalized
versions.
"""
labels = []
for label in value:
labels.append(label.lower().capitalize())
return labels
|
ffad92d9ed272bf9fabcc650e2e9b1e967d00246
| 33,614 |
import hashlib
def compute_hash(filepath: str) -> str:
"""Compute an MD5 hash for a filepath string."""
h = hashlib.md5()
h.update(filepath.encode())
return h.hexdigest()
|
ac311fd236a5250402231e506387a2a42073af3e
| 33,618 |
def add_pem_headfoot(public_key):
"""
Return string, representing PEM text for a public key
Keyword Parameters:
public_key -- String, representing the public key text
>>> add_pem_headfoot('foo')
'-----BEGIN PUBLIC KEY-----\\nfoo\\n-----END PUBLIC KEY-----'
"""
preamble = "-----BEGIN PUBLIC KEY-----\n"
suffix = "\n-----END PUBLIC KEY-----"
return preamble+public_key+suffix
|
dcb093f942d47f6a11bd2dc82441ba6e82f55b01
| 33,619 |
import functools
import operator
def prod(it):
"""Product of an iterable.
"""
return functools.reduce(operator.mul, it)
|
e20df189d56656f680782579759c5080e6cb75c8
| 33,620 |
def extract_dict_key(dataframe, column, key, new_column=None, separator='.'):
"""
Extract values of ``key`` into ``new_column``. If key is missing, ``None`` is added to
the column.
.. code-block:: python
>>> df = DataFrame({
... 'trial_num': [1, 2, 1, 2],
... 'subject': [1, 1, 2, 2],
... 'samples': [
... {'A': 1, 'B': 2, 'C': None},
... {'A': 3, 'B': 4, 'C': 5},
... {'A': 6, 'B': 7, 'C': None},
... None,
... ]
...})
>>>df.pipe(extract_dict_key, 'samples', key='A')
trial_num subject samples.A samples
0 1 1 1 {'A': 1, 'B': 2, 'C': None}
1 2 1 3 {'A': 3, 'B': 4, 'C': 5}
2 1 2 6 {'A': 6, 'B': 7, 'C': None}
3 2 2 NaN NaN
:param dataframe: The DataFrame object to work on.
:type dataframe: :class:`DataFrame <pandas.DataFrame>`
:param str column: The name of the column which should be extracted.
:param str key: Key that should be extracted.
:param str new_column: Name of the new column. By default, ``column`` will be applied as
prefix to ``key``.
:param str separator: The separator between ``column`` and ``key`` if ``new_column`` is
not specified.
:returns: The extracted DataFrame
:rtype: :class:`DataFrame <pandas.DataFrame>`
"""
new_column = new_column or '{}{}{}'.format(column, separator, key) if new_column != "" else key
dataframe.loc[:, new_column] = dataframe[column].apply(
lambda x: x.get(key) if isinstance(x, dict) else x
).rename(new_column)
return dataframe
|
5567a3e8e837e45b851779942e2c9729d4fe856c
| 33,622 |
def compression(path):
"""
Based on filename, is compression being used?
"""
compress = None
ext = path.suffix
if ext == ".gz":
compress = True
elif ext == ".dil":
compress = False
else:
raise Exception(f"invalid file extension [{ext}], must be .dil or .dil.gz")
return compress
|
37d556c149bf15876b352979e00f12033c40b796
| 33,623 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.