content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def make_sharded_tf_record_path(base_path, num_shards): """Makes a sharded tf.Record path with the given number of shards. Args: base_path: a path like "/path/to/tf.record" num_shards: the desired number of shards Returns: a sharded path like "/path/to/tf.record-????-of-1000" """ num_shards_str = str(num_shards) num_digits = len(num_shards_str) return base_path + "-" + "?" * num_digits + "-of-" + num_shards_str
17c766aa982c5335a78d4227d5ea90cf4eea7fce
85,944
from typing import List import torch def collate_fn(batch_items: List[dict]): """ Collate and pad fields in dataset items """ x, y = [], [] input_specs_lengths, output_text_lengths = [], [] texts = [] audios = [] sample_rates = [] for i in range(len(batch_items)): x.append(batch_items[i]["spectrogram"].squeeze(0).t()) y.append(batch_items[i]["text_encoded"].squeeze(0)) input_specs_lengths.append(x[-1].shape[0]) output_text_lengths.append(y[-1].shape[0]) texts.append(batch_items[i]["text"]) audios.append(batch_items[i]["audio"]) sample_rates.append(batch_items[i]["sample_rate"]) x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True, padding_value=0.) y = torch.nn.utils.rnn.pad_sequence(y, batch_first=True) return {"spectrogram": x, "text_encoded": y, "spectrogram_length": torch.tensor(input_specs_lengths, dtype=torch.int32), "text_encoded_length": torch.tensor(output_text_lengths, dtype=torch.int32), "text": texts, "audio": audios, "sample_rate": sample_rates}
cfb36a8ad0033f435d8b8ffa369d3cf85e7b27ca
73,839
def nl_to_break( text ): """ Text may have newlines, which we want to convert to <br /> when formatting for HTML display """ text=text.replace("<", "&lt;") # To avoid HTML insertion text=text.replace("\r", "") text=text.replace("\n", "<br />") return text
d2baf1c19fae686ae2c4571416b4cad8be065474
709,912
def human_time(seconds): """Returns a human-friendly representation of the number of seconds.""" assert seconds >= 0 hours = seconds / (60 * 60) minutes = (seconds / 60) % 60 seconds = seconds % 60 return '%02d:%02d:%02d' % (hours, minutes, seconds)
ee339ab652a3a715a15514b2d40a75eb46f05e1f
665,001
import gc import logging def train_classifier(classifier, X_train, y_train): """ Fits a classifier on the given data. :param classifier: classifier :param X_train: training attribute values :param y_train: training classes :return: a fitted model """ gc.collect() logging.info("Training...") # Experimental - to reduce memory consumption # y_train, y_train_filename = mmap(y_train, 'y_train') classifier.fit(X_train, y_train) # Experimental - to reduce memory consumption # X_train, X_train_filename = mmap(X_train, 'X_train') gc.collect() return classifier
eafeb18fd1c3a2f6d0bc7a849b3814ca4d4dd4fb
316,255
def _convert_from_boto3_format(record): """Convert From Boto3 Kinesis client record format to Kinesis Stream record format. record - Raw Boto3 Kinesis client record to deaggregate. (dict) return value - Each yield returns a single Kinesis user record. (dict)""" new_record = { 'kinesis': { 'kinesisSchemaVersion': '1.0', 'sequenceNumber': record['SequenceNumber'], 'partitionKey': record['PartitionKey'], 'approximateArrivalTimestamp': record['ApproximateArrivalTimestamp'], 'data': record['Data'] } } return new_record
997dfbebb86163c683c45bdb6c9530230bfe0855
434,148
import pickle def load_classifier(file_path): """Load Classifier from pickle""" with open(file_path, "rb") as in_file: classifier = pickle.load(in_file) return classifier
3ef1d426ca77d70555ab5b24d0faddc4f368cca0
368,114
def _interval_sv_overlap(xs, x1, x2): """Return the indices of subvoxels that overlap with interval [x1, x2]. Parameters ---------- xs : numpy.ndarray Array of subvoxel boundaries. x1 : float Start/end point of the interval. x2 : float End/start point of the interval. Returns ------- ll : float Lowest subvoxel index of the overlapping subvoxels. ul : float Highest subvoxel index of the overlapping subvoxels. """ xmin = min(x1, x2) xmax = max(x1, x2) if xmin <= xs[0]: ll = 0 elif xmin >= xs[-1]: ll = len(xs) - 1 else: ll = 0 for i, x in enumerate(xs): if x > xmin: ll = i - 1 break if xmax >= xs[-1]: ul = len(xs) - 1 elif xmax <= xs[0]: ul = 0 else: ul = len(xs) - 1 for i, x in enumerate(xs): if not x < xmax: ul = i break if ll != ul: return ll, ul else: if ll != len(xs) - 1: return ll, ul + 1 else: return ll - 1, ul
8617486aa3061193c83d3893af3b0e152b8b7ae8
435,391
def pulse(time, start, duration): """ Implements vensim's PULSE function. Parameters ---------- time: function Function that returns the current time. start: float Starting time of the pulse. duration: float Duration of the pulse. Returns ------- float: - In range [-inf, start): returns 0 - In range [start, start + duration): returns 1 - In range [start + duration, +inf]: returns 0 """ t = time() return 1 if start <= t < start + duration else 0
1034bd8a4da4bf53468b0c5a2e41d97631f89198
281,703
def item_location_tags(ptree, location): """Return a tags at item location Parameters ---------- ptree : PageTree location : ItemLocation Returns ------- List[HtmlTag] """ last = location[-1] end = max(last + 1, ptree.match[last]) if end >= len(ptree.index): end = ptree.index[-1] else: end = ptree.index[end] tags = ptree.page.parsed_body[ptree.index[location[0]]:end] return tags
cc87649d833917eab43e6bbef60a8cf538be61f4
496,311
import json def make_control_event(control_type, timestamp): """Make a control event.""" return { 'event': 'message', 'data': json.dumps({ 'id':'TVUsxaabHs:0:0', 'clientId':'pri:MzM0ODI1MTkxMw==', 'timestamp': timestamp, 'encoding':'json', 'channel':'[?occupancy=metrics.publishers]control_pri', 'data': json.dumps({ 'type': 'CONTROL', 'controlType': control_type, }) }) }
845bf1b28a92ea37f5e3d4d1dfc25c739f1c27cf
55,970
import string def alpha_enum(value): """Convert integer to ordinal letter code (a, b, c, ... z, aa, bb, ...).""" max_len = len(string.ascii_lowercase) return str(string.ascii_lowercase[value % max_len] * (value / max_len + 1))
ec106ef8ad22aced160521bfaad8f7e17e0cd848
595,699
def parse_anything(text, match=None, match_start=0): """ Provides a generic type converter that accepts anything and returns the text (unchanged). :param text: Text to convert (as string). :return: Same text (as string). """ # pylint: disable=unused-argument return text
c1b8362bbe052ef57e798ab5a44a11892784811e
445,456
def to_camel_case(snake_str): """ Transforms a snake_case string into camelCase. Parameters ---------- snake_str : str Returns ------- str """ parts = snake_str.split("_") # We capitalize the first letter of each component except the first one # with the 'title' method and join them together. return parts[0] + "".join(x.title() for x in parts[1:])
02e28889da2a92fc5e085ad955b11519b5069dc4
689,093
def _is_command(line: str) -> bool: """ Return whether the given line is a command. Returns False for comments and empty lines. Empty lines behave similar to comments, for example continue a multi-line command. """ stripped = line.strip() return bool(stripped) and not stripped.startswith("#")
50d01053fec019b34aad033f2df371dd1ad158a4
264,485
def reverse_string_recursive(s): """ Returns the reverse of the input string Time complexity: O(n^2) = O(n) slice * O(n) recursive call stack Space complexity: O(n) """ if len(s) < 2: return s # String slicing is O(n) operation return reverse_string_recursive(s[1:]) + s[0]
a8d22e88b1506c56693aa1a8cd346695e2b160b2
9,932
def u_global(name, prefix='u_', suffix=''): """Returns the uncertainty corresponding to a column. For example, the column ('roi_atoms', 'Fz', '', '') has uncertainties in the column ('roi_atoms', 'u_Fz', '', '') """ if type(name) == tuple: i = len(name)-1 while not name[i]: i -= 1 t = name[:i] t += (prefix + name[i] + suffix,) t += name[i+1:] return t elif type(name) == str: return prefix + name + suffix else: return None
047ef38d2031b98c5f759481c006e92ab47d4523
60,103
def get_one_hot_index_from_ints(tonic, quality, num_qualities=3): """ Get the one-hot index of a chord with the given tonic and quality. Parameters ========== tonic : int The tonic of the chord, where 0 is C. None represents a chord with no tonic. quality : int The quality of the chord, where 0 is major, 1 is minor, and 2 is diminished. num_qualities : int The number of allowable qualities in this set of chords. Defaults to 3. Returns ======= index : int The one-hot index of the given chord and quality. A chord with no tonic returns an index of 36. """ try: return tonic + 12 * quality except: return 12 * num_qualities
bdd96249b11379d03a11986ef08e1fca1323a64a
162,151
def abs2rel_name(domain, rsetname): """convert rsetname from absolute form foo.bar.tld. to the name relative to the domain. For IPA, if domain is rsetname, then use "@" as the relative name. If rsetname does not end with a subset of the domain, the just return the raw rsetname """ if rsetname.endswith(domain): idx = rsetname.rfind(domain) if idx == 0: rsetname = "@" elif idx > 0: rsetname = rsetname[:idx].rstrip(".") return rsetname
a76601f844a6f6af0686e5a1f4a203fb4981e291
312,178
import math def include_revision(revision_num, skip_factor=1.1): """Decide whether to include a revision. If the number of revisions is large, we exclude some revisions to avoid a quadratic blowup in runtime, since the article is likely also large. We make the ratio between consecutive included revision numbers appproximately equal to "factor". Args: revision_num: an integer skip_factor: a floating point number >= 1.0 Returns: a boolean """ if skip_factor <= 1.0: return True return (int(math.log1p(revision_num) / math.log(skip_factor)) != int( math.log(revision_num + 2.0) / math.log(skip_factor)))
791789624887940bbb8db5de1157b69ededd0988
603,371
import re def make_system_call_noninteractive( line ): """ Make calls to os.system non-interactive. Return non-interacive line. Some shell commands called via os.system require user interaction, such as more. Make these shell calls noninteractive. Replacements: 1) Replace more with cat, 2) [Add other replacements here...] * line = a python statement """ command = '' newCommand = '' # Extract the system command from the os.system statement pattern = r'''os.system\ *\(\ *(['"])(.*)\1\ *\)''' matchObj = re.match( pattern, line ) if matchObj: command = matchObj.group(2) command = command.strip() # Replace more with cat pattern2 = r'''^more\ ''' newCommand = re.sub( pattern2, 'cat ', command ) # Add additional substutions here... newLine = line.replace( command, newCommand, 1 ) return newLine
3d8b0dfc3b8683a3181474dafa08c46e118e56a0
254,363
import torch def isPD(B): """Check whether a matrix is positive definite. Args: B ([torch.Tensor]): [Input matrix.] Returns: [bool]: [Returns True if matrix is positive definite, otherwise False.] """ try: _ = torch.cholesky(B) return True except RuntimeError: return False
c51dc4f6f48ac7417f49ef41b81f3b04816b9279
703,950
def get_kp(frame,do,c,s): """ Returns the keypoints for a single frame of video. Parameters ---------- frame : numpy.ndarray The frame of video to be analysed. do : function Function provided by Hourglass code for inference. c : tuple of int The coordinates for the centre of the image. s : float The scale of the image such that height/scale = 200. Returns ------- keypoints : numpy.ndarray The keypoints of the frame consisting of an x, y and confidence value for each keypoint. """ pred = do(frame,c,s); kps = pred[0]["keypoints"]; return kps;
6a422e794ff9da9d8f4bafa712f4ce6f1124c255
426,115
import six def _normalize_channels(*channels): """ Converts a list of types, strings, or whatever else into a list of strings. >>> _normalize_channels() [] >>> _normalize_channels('') [] >>> _normalize_channels(' ') [] >>> _normalize_channels(None) [] >>> _normalize_channels('topic-one', 'topic-two') ['topic-one', 'topic-two'] >>> _normalize_channels('repeated-topic', 'repeated-topic') ['repeated-topic'] >>> _normalize_channels('topic-left', None, 'topic-right', None) ['topic-left', 'topic-right'] >>> _normalize_channels('', 'topic-left', '', 'topic-right') ['topic-left', 'topic-right'] >>> _normalize_channels(' ', ' topic-padded-left', ' ', 'topic-padded-right ', ' ') ['topic-padded-left', 'topic-padded-right'] >>> _normalize_channels(type) ['type'] >>> _normalize_channels(dict) ['dict'] >>> _normalize_channels(dict(foo="bar")) ["{'foo': 'bar'}"] """ normalized_channels = [] for topic in channels: if topic is not None: if isinstance(topic, type): normalized_channels.append(topic.__name__) elif isinstance(topic, six.string_types): topic = topic.strip() if topic != '': normalized_channels.append(topic) else: normalized_channels.append(str(topic)) return list(set(normalized_channels))
b4b46def9ed0ce7017c7749e2ecd23b42b63e76b
562,539
def get_full_job_description_text(job): """Returns the job_description as a continuous text, concatenated from the separate lines.""" job_text = "" for line in job['description']: job_text += (line + " ") # EOL " " to help date extraction return job_text.replace(" ", " ")
0a13db6de3e63ba1ff4e57134a03d0557c525fae
148,066
def sub2ind(shape, row_sub, col_sub): """ Return the linear index equivalents to the row and column subscripts for given matrix shape. :param shape: Preferred matrix shape for subscripts conversion. :type shape: `tuple` :param row_sub: Row subscripts. :type row_sub: `list` :param col_sub: Column subscripts. :type col_sub: `list` """ assert len(row_sub) == len( col_sub), "Row and column subscripts do not match." res = [j * shape[0] + i for i, j in zip(row_sub, col_sub)] return res
bd3e640171f23f80c21a66c92e4d5e3292cddea7
73,776
import csv def loadcsv(filename): """ Reads an input CSV file. Args: filename (str): input file path. Returns: List containing all rows from the CSV file without headers. """ with open(filename, "r", encoding="utf-8") as f: return list(filter(None, list(csv.reader(f))[1:]))
442d0fdf7bcc160e98c83d7c848ec9477cf757fe
12,919
def genome_dic(g_file): """ Make a dictionary of chromosome sizes from a .chrom.sizes file e.g. {chrom_name:chrom_size} """ gdict = {} with open(g_file) as ifile: for i in ifile: i = i.split() gdict[i[0]] = int(i[1]) return gdict
1289b5da4f31d5847d35926e08f196b078b4ee8e
318,691
def calculate_expected_wins(win_rate, num_games): """Calculate current expected wins""" expected_wins = win_rate * float(num_games) result = int(round(expected_wins, 0)) return result
5f979a861a0fae1e0fe654c9cc4c9ccf6583b35e
678,484
def _GetAttr(obj, attr, default_value): """Gets a specified attribute of an object (if exist). Args: obj: Object. attr: Attribute name (string). default_value: Default value to return if object does not have attribute specified. Returns: Specified attribute value if exists, else default value. """ if hasattr(obj, attr): return obj.__getattribute__(attr) else: return default_value
7d45b62523ad4d15f525463d46ae320f6741d8f8
478,505
def _get_atoms_from_blocks(blocks, master_blocks): """Get list of atoms in a set of blocks""" atoms_nested = [master_blocks[blk] for blk in blocks] atoms = [at for sublist in atoms_nested for at in sublist] return atoms
ec6d032e7aa4d71618c5510fac60c44beec950bd
363,208
def auth_set(hashed_sks, auth_set_indices, height, hashfun): """Return the authentication set defined by the given indices. Keyword arguments: hashed_sks -- the hased secret key components which form the leaves of the tree auth_set_indices -- A list of tuples (h, i) defining the height and index of the nodes that should end up in the authentication set height -- the height of the binary tree hashfun -- a hash function of 2n -> n that is used to produce the parent node from its two child nodes Returns: A list containing tuples ((h, i), hash), the height, index, and hash of the node in the authentication set. The order of the nodes in the returned list is equal to the order of the nodes in auth_set_indices. """ tree = [None] * height tree[0] = hashed_sks # the leaves for current_height in range(1, height): # We don't need to compute the root, # otherwise this would be off by one num_nodes = 2**(height - current_height) tree[current_height] = [None] * num_nodes for index in range(0, num_nodes): left = tree[current_height - 1][2*index] right = tree[current_height - 1][2*index + 1] tree[current_height][index] = hashfun(left, right) return [((h, i), tree[h][i]) for h, i in auth_set_indices]
0f4565d4aa399ab534a962b6f3ec89fb3325cdb5
29,725
def eastPlaceCheck(shipSize, xIndexStart, yStart, xAxis): """Given a start position on the x index and a ship size will check if if the y position is a valid location. Args: shipSize (INT): Ship size taken from Ship Class xIndexStart (INT): Start index location yStart (STR): The start position on the Y Axis, is a letter yAxis ([INT]): The x x axis range in a list Returns: [List]: If range is a valid location for the y axis start will return the valid list, else it will return false. """ eastShipPlace = [] tempLastIndex = xIndexStart + shipSize if tempLastIndex >= 0 and tempLastIndex <= 10: for i in range(xIndexStart, tempLastIndex): eastShipPlace.append(f'{yStart}:{xAxis[i]}') return eastShipPlace else: return False
838681e92636246742df52e85983f04d20701731
489,613
def double_day(bday_1, bday_2, n=2): """Return the day when one person is twice as old as the other, given their birthdays. Optionally find when one person is n times older. bday_1, bday_2: date (or datetime) objects. Must be the same type. n: number, > 1 """ # Double day will be when the younger person's age is the # same as their difference in age. # The n-1 factor will just be 1 and have no effect if we're # doubling (n=2). # younger = older - diff. So if older = n * younger, # younger = n*younger - diff ==> younger = diff/(n-1). # So we just need the date when younger's age is diff/(n-1). diff = abs(bday_2 - bday_1) return max(bday_1, bday_2) + diff / (n-1)
95510f8edba658e9a7f532edb057fc9ffc75545e
59,031
def lambda_handler(event, context): """ Expecting: [ Input, [ O1, ..., On-1 ], [On, ... On+r ] ] Returns: [ Input, [ O1, ... On+r ] ] """ return [ event[0], event[1] + event[2] ]
c6b5686aeeb0bdedb627a6d6bd854a3b0786b975
378,097
def __clean_key(key): """ modify name of the key in order to be usable in file store :param key: key of the data :return: key with : replaces by __ """ return str(key).replace(':', '__')
5dfcb181c271ececad7b195db0a6027bffab97a9
117,429
def get_guess(guesses): """ This function will get the user's guess. """ # Get the user's guess. guess = input("------\nGuess a letter: ") # Check if the user has already guessed the letter. if guess in guesses: print("You've already guessed that letter.") return get_guess(guesses) # Return the guess. return guess
04b559d3850421ef91fa1ce5d9850b2f4852f917
8,180
def quoteList(strns): """Given a list of strings, return a single string like '"string1", "string2",...' Note: in SQLite, double quotes are for escaping table and column names; single quotes are for string literals. """ return ','.join(['"'+s+'"' for s in strns])
82b56c96e822e80524a1b14aae033d5c7a78685a
105,169
def unwrap(text): """Unwrap a hard-wrapped paragraph of text. """ return ' '.join(text.splitlines())
ad84e184524f1f77a6ce3b490d0471f916199cac
59,001
def reverse_bit(value): """Calculate the value of the reverse binary representation of the given integer.""" result = 0 while value: result = (result << 1) + (value & 1) value >>= 1 return result
6e09b7eede8a8ee4d93355bf93993a87992bd230
470,245
def genapp_second_customer_response() -> bytes: """Returns a matching customer lookup result""" return b'{"LGCMAREA":{"CA_REQUEST_SPECIFIC":"Scott Tracey 1965-09-30Tracey Island 1 TB14TV 000 001 911911 REFROOM@TBHOLDINGS.COM","CA_CUSTOMER_REQUEST":{"CA_DOB":"1965-09-30","CA_FIRST_NAME":"Scott","CA_POLICY_DATA":" 001 911911 REFROOM@TBHOLDINGS.COM","CA_LAST_NAME":"Tracey","CA_HOUSE_NAME":"Tracey Island","CA_NUM_POLICIES":0,"CA_HOUSE_NUM":"1","CA_POSTCODE":"TB14TV"},"CA_RETURN_CODE":0,"CA_CUSTOMER_NUM":2}}'
389d818ca0ceb51a9083e3d9ee6515741781f074
223,888
def split_task_parameters(line): """ Split a string of comma separated words.""" if line is None: result = [] else: result = [parameter.strip() for parameter in line.split(",")] return result
edbd778c496464ba2e86d8efb00f4a6c78da8fe4
544,278
from typing import Dict def add_resources(dict1: Dict[str, float], dict2: Dict[str, float]) -> Dict[str, float]: """Add the values in two dictionaries. Returns: dict: A new dictionary (inputs remain unmodified). """ new_dict = dict1.copy() for k, v in dict2.items(): new_dict[k] = v + new_dict.get(k, 0) return new_dict
501a30b9e71049d9418dd6daf7bd98d96ea8fe0f
58,723
def return_list_of(cls, data): """ Returns a list of instances of the class type found in the response. :param cls: class The class type we want to instantiate :param data: list The data containing the list of the dictionaries we want to return as objects :return: A list of objects of the type specified found in the response """ return [cls(x) for x in data]
ab8491202c02f1a10c8bb9e32eb5b9f268a1b976
136,707
import pytz from datetime import datetime def unixepoch2datetime(unixepoch): """Given a timestamp in milliseconds, it returns a datetime object. Parameters ---------- unixepoch : int Timestamp at millisecond precision Returns ------- time : datetime Datetime object corresponding to the original timestamp """ unixepoch = float(unixepoch) / 1000.0 time = pytz.UTC.localize(datetime.utcfromtimestamp(unixepoch)) return time
c1e227a10d5e2e4e772ba1ea080d0f617e9c244c
272,612
import math def _remove_edge_blobs(blobs, image_shape): """Remove blobs detected around the edge of the image. :param blobs: list of blobs detected from the image :param image_shape: shape of the image. Provides the bounds to check. :returns: list of filtered blobs """ img_height, img_width = image_shape def check_within_image(blob): y, x, r = blob r = math.ceil(r) return not ((x - r < 0 or x + r >= img_width) or (y - r < 0 or y + r >= img_height)) return filter(check_within_image, blobs)
15bb099c13102a138bb43def8fb00c8c944cdb90
599,766
import torch def cross_entropy(input, target, size_average=True): """ Cross entropy that accepts soft targets Args: pred: predictions for neural network targets: targets, can be soft size_average: if false, sum is returned instead of mean Examples:: input = torch.FloatTensor([[1.1, 2.8, 1.3], [1.1, 2.1, 4.8]]) input = torch.autograd.Variable(out, requires_grad=True) target = torch.FloatTensor([[0.05, 0.9, 0.05], [0.05, 0.05, 0.9]]) target = torch.autograd.Variable(y1) loss = cross_entropy(input, target) loss.backward() """ logsoftmax = torch.nn.LogSoftmax(dim=1) if size_average: return torch.mean(torch.sum(-target * logsoftmax(input), dim=1)) else: return torch.sum(torch.sum(-target * logsoftmax(input), dim=1))
b82f02b5d16ac6a572a724ae494802cfd4860a2c
545,194
def log_stability(x): """Log-stability for computing loss :param x: Input value :type x: float :return: Scaled value where :math:`\\hat{x} \\in (0, 1)` :rtype: float """ if x == 0: return 10e-9 elif x == 1: return 1.0-10e-9 else: return x
df653857b7ce620bcfc16c686e7a65b63d639195
441,826
from io import StringIO import traceback def _get_traceback_text(exc_type, value, tb) -> str: """return the text that would be printed by traceback.print_exception. """ sio = StringIO() traceback.print_exception(exc_type, value, tb, file=sio) return sio.getvalue()
fbddac64f88335b1e19e3e6690dacac2a1bedf8d
436,938
def read_data(filename): """ Reads and parses data from a txt file with a map data. The format that the function expects is the one followed in the uwaterloo TSP web archive (math.uwaterloo.ca/tsp/world/countries.html), ignoring the first description lines that have to be manually removed. The method searches for the filename in the assets folder. :param filename: the path to the file to be parsed :return: the cities as a list of (x, y) coordinates """ cities = [] path = 'assets/{}.txt'.format(filename) with open(path, 'r') as f: for line in f: city = list(map(float, line.split()[1:])) cities.append((city[1], city[0])) return cities
86267ac4cfd9069c87764bb63db8031671cc1e46
402,579
import random def random_system(tree): """Returns random system node. """ systems = tree.xpath('.//system') idx = random.randrange(0,len(systems)) return systems[idx]
97d16be47082fb7cf56ac8a3ba9dc2b31298854c
661,216
def get_keys_of_max_n(dict_obj, n): """Returns the keys that maps to the top n max values in the given dict. Example: -------- >>> dict_obj = {'a':2, 'b':1, 'c':5} >>> get_keys_of_max_n(dict_obj, 2) ['a', 'c'] """ return sorted([ item[0] for item in sorted( dict_obj.items(), key=lambda item: item[1], reverse=True )[:n] ])
16b51090ac086a708deccf6876201857e06ef0fc
639,000
def value_to_zero_ten(confidence_value): """ This method will transform an integer value into the 0-10 scale string representation. The scale for this confidence representation is the following: .. list-table:: STIX Confidence to 0-10 :header-rows: 1 * - Range of Values - 0-10 Scale * - 0-4 - 0 * - 5-14 - 1 * - 15-24 - 2 * - 25-34 - 3 * - 35-44 - 4 * - 45-54 - 5 * - 55-64 - 6 * - 65-74 - 7 * - 75-84 - 8 * - 95-94 - 9 * - 95-100 - 10 Args: confidence_value (int): An integer value between 0 and 100. Returns: str: A string corresponding to the 0-10 scale. Raises: ValueError: If `confidence_value` is out of bounds. """ if 4 >= confidence_value >= 0: return '0' elif 14 >= confidence_value >= 5: return '1' elif 24 >= confidence_value >= 15: return '2' elif 34 >= confidence_value >= 25: return '3' elif 44 >= confidence_value >= 35: return '4' elif 54 >= confidence_value >= 45: return '5' elif 64 >= confidence_value >= 55: return '6' elif 74 >= confidence_value >= 65: return '7' elif 84 >= confidence_value >= 75: return '8' elif 94 >= confidence_value >= 85: return '9' elif 100 >= confidence_value >= 95: return '10' else: raise ValueError("Range of values out of bounds: %s" % confidence_value)
130b26d5c367b7300566044ea2befb3ad888bb56
171,267
def onedim_index(index, axis, ndim): """Return an index from a 1-dimensional index along the given axis >>> index = onedim_index(np.index_exp[1,2], 1, 3) >>> A=np.eye(3) >>> A[index] array([[ 0., 0.], [ 1., 0.], [ 0., 1.]]) """ return (slice(None),) * (axis % ndim) + (index,)
763cce64b8b1d3583ac395cd5e3308edcfc3cc1b
438,864
def dict_slice(Dict, *keys): """Returns a shallow copy of the subset of a given dict (or a dict-like object) with a given set of keys. The return object is a dict. No keys may be missing from Dict. Example: if d = {'abc': 12, 'def': 7, 'ghi': 32, 'jkl': 98 } then dict_slice(d, 'abc', 'ghi') will yield {'abc': 12, 'ghi': 32 } """ return dict([ (k, Dict[k]) for k in keys ])
4c5fc3a548b2e46853810487fe77655d00584761
57,953
def filter_by_length(lst, length): """ This function removes from a list of strings all those elements which are shorter than or as long as the specified length Arguments lst : a list of strings length : (int) min length of the strings to keep Returns filtered list """ return list(filter(lambda x: len(str(x)) > length, lst))
ba21175ae55ceb591a3c985897fc0d04aa520112
468,334
def build_array(text): """Returns an array of parsed lines from the input text Array elements are in the format: (min, max, character, string) """ array = [] with open(text, 'r') as f: for line in f: _range, char, s = line.strip().split() n, m = _range.split('-') array.append((int(n), int(m), char[0], s)) return array
2a46b5f09bb08bc146c56d94b175a9c0fbc407ab
75,837
import base64 def _get_creds_from_token(token): """ Decode ecr token into username and password. """ cred_string = base64.b64decode(token).decode("ascii") username, password = str(cred_string).split(":") return username, password
46f1457c9eb3df5d21fa5b2d414b44ed6f5ae7aa
144,041
def find_in_string(sub, string): """Check if a substring is contained in another string. :param sub: Substring :type: str :param string: String which is checked if the substring is contained :type: str :return: Result if the substring is contained in the string :rtype: boolean """ sub_l = sub.lower() string_l = string.lower() if sub_l in string_l or string_l in sub_l: return 1 else: return 0
e16567e39f29771d98b2a8280fb0a066d21db20f
606,661
def part_decode(part): """Decode a part of a JSON pointer. >>> part_decode("foo") 'foo' >>> part_decode("~0foo") '~foo' >>> part_decode("foo~0") 'foo~' >>> part_decode("~1foo") '/foo' >>> part_decode("foo~1") 'foo/' >>> part_decode("f~1o~0o") 'f/o~o' >>> part_decode("~00") '~0' >>> part_decode("~01") '~1' >>> part_decode("0") '0' """ return part.replace("~1", "/").replace("~0", "~")
ccb527f2e8e671dca08894089dbd8f86ce52c39a
356,119
import re def parse_stylesheet_header(css): """Get WordPress theme data from CSS file contents via the comment header. :param css: The contents of the CSS file :type css: string :return: Theme info. See https://codex.wordpress.org/File_Header :rtype: dict """ headers = [ 'Theme Name', 'Theme URI', 'Description', 'Author', 'Author URI', 'Version', 'Template', 'Template Version', 'Status', 'Tags', 'Text Domain', 'Domain Path' ] result = {} for header in headers: regex = re.escape(header + ':') + r'(.*)' match = re.search(regex, css, flags=re.IGNORECASE) if match: result[header.lower().replace(' ', '_')] = match.group(1).strip() return result
115a3bd734ee122dfc6e4b5f76cfad0d655138a3
86,148
def custom_input_number(prompt=''): """ Take in user input. This deals with real number only. See below for a function that deals with purely alphabetic strings. :param prompt: a customizable prompt :return: no: a real number """ cF = True while cF: try: no = float(input(prompt)) float(no) return no except ValueError: print('Cannot be converted to a string') continue
bd93ccfe432496110511fd9148169e1e1f7f9a74
211,420
def sort_dict(dictionary): """utility function that from a dictionary returns a list of tuples ordered by dictionary values""" d = dict(dictionary) l = [] for key in d.keys(): l.append((d[key], key)) l.sort(reverse=True) return l
5d0125d8d90b61a4d8a9c4f611fa58103a6b181f
464,773
def get_uid_warning(uid: str) -> str: """ Returns the templated message for the warning of existing `UID`, while creating a `Student` """ uid_href = f"/students/{uid}/#:~:text={uid}" msg = f"Student with UID <a class=\"alert-link text-secondary font-weight-medium text-decoration-none\"\ href=\"{uid_href}\" target=\"_blank\">{uid}</a> already exists.. maybe you mistyped!" return msg
a701b6d42ca78e93121903251d5887155fb73835
632,963
def champion_dictionary(obj): """Converts champion.json to a dictionary that is useful to us.""" champions = {} for champion in obj["data"]: name = champion.lower() champions[int(obj["data"][champion]["key"])] = name return champions
13e0177f23adb557e2db3b4e3967311765504fd3
329,862
def max_dict(d): """Return dictionary key with the maximum value""" if d: return max(d, key=lambda key: d[key]) else: return None
446c185a2e986c8a58672d0571f0f100340be7e4
26,758
import time def gen_time(s): """ Takes a string in YYYY/MM/DD hh:mm format and converts it to a float of seconds since the epoch. For example: >>> gen_time("2007/02/14 14:14") 1171480440.0 """ return time.mktime(time.strptime(s, "%Y/%m/%d %H:%M"))
6d0bc96cfc525756e059a6ad1635fe0543a39b45
245,281
def combine_dicts(new_dict, old_dict): """ returns a dictionary with all key, value pairs from new_dict. also returns key, value pairs from old_dict, if that key does not exist in new_dict. if a key is present in both new_dict and old_dict, the new_dict value will take precedence. """ old_data_keys = list(old_dict.keys()) new_data_keys = list(new_dict.keys()) all_keys = set(old_data_keys).union(new_data_keys) combined_data_dict = {} for k in all_keys: try: combined_data_dict[k] = new_dict[k] except KeyError: combined_data_dict[k] = old_dict[k] return combined_data_dict
fe3a619235e30d801aa8d75585dcbd80eab21512
66,821
import requests import time def render_analysis(response, operation_url, headers): """ This function waits for the analysis of the response image, so it runs a loop until the text detection is complete Arguments: response {Object} -- The response passed operation_url {String} -- The Operation url obtained from response Returns: [json] : The analysis json containing the detected text """ analysis = {} poll = True while (poll): response_final = requests.get( response.headers["Operation-Location"], headers=headers) analysis = response_final.json() time.sleep(1) if ("recognitionResult" in analysis): poll= False if ("status" in analysis and analysis['status'] == 'Failed'): poll= False return(analysis)
b80210cede55ac2482c054a3e5dda830fa55a5bd
443,761
def has_common_column(a, b): """ Returns: True if A & B have at least one common column """ columns_a = [(c.name, c.data_type) for c in a.columns.columns] columns_b = [(c.name, c.data_type) for c in b.columns.columns] if list(set(columns_a) & set(columns_b)): return True return False
d560e4b994315fc81ee9eecbce9f8a1d8aac40d6
152,611
def euler_problem_26(n=1000): """ A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given: 1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10= 0.1 Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle. Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part. """ # a bit of mathematical insight is helpful here. # if d is divisible by 2 or 5, d has the same number of digits in the 1/d recurring cycle as (d/2) or (d/5) respectively. # assuming that d is not divisible by 2 or 5, then the smallest m with (10^m - 1) divisible by d gives the length of the recurring cycle. def remove_2_5_factors(num): """ Divide a number by 2 and 5 until it becomes coprime with 2 and 5. """ if num % 2 == 0: return remove_2_5_factors(num // 2) if num % 5 == 0: return remove_2_5_factors(num // 5) return num cache_cycle_length = {} for d in range(2, n): d_equivalent = remove_2_5_factors(d) # base case: d has no prime factors other than 2 and 5 if d_equivalent == 1: cache_cycle_length[d] = 0 # recursive case: d is divisible by 2 or 5 but has other prime factors elif d_equivalent in cache_cycle_length.keys(): cache_cycle_length[d] = cache_cycle_length[d_equivalent] # base case: d is not divisible by 2 or 5 else: # one should be alerted if the for loop fails to update the cycle length. cache_cycle_length[d] = -1 for m in range(1, 1000): if (10 ** m - 1) % d == 0: cache_cycle_length[d] = m break if min(cache_cycle_length.values()) < 0: print("Warning: some number has longer cycle length than we screened for.") d_to_return = max(cache_cycle_length.keys(), key=lambda x: cache_cycle_length[x]) return d_to_return, cache_cycle_length[d_to_return]
b85723cbb35303f383ac19dd6d2d94fe9b60bc74
78,764
def no_client_alias_in_test_cases(filename, logical_line): """Check that test cases don't use "self.client" to define a client. P103 """ if "patrole_tempest_plugin/tests/api" in filename: if "self.client" in logical_line or "cls.client" in logical_line: return 0, "Do not use 'self.client' as a service client alias"
f43c8c4a01c6ab5a52aa8b37cfb9b6ea03605d91
203,425
def get_permission_for_model(model, action): """ Resolve the named permission for a given model (or instance) and action (e.g. view or add). :param model: A model or instance :param action: View, add, change, or delete (string) """ if action not in ('view', 'add', 'change', 'delete'): raise ValueError(f"Unsupported action: {action}") return '{}.{}_{}'.format( model._meta.app_label, action, model._meta.model_name )
efc889a981bfb528095697b50d1b12a18e3daee8
483,335
def _path_to_str(path): """Converts a path (tuple of strings) to a printable string.""" return ":".join(str(field) for field in path)
b290d53a8bfb1f34c2ce4ec01083475bf217ed59
394,925
def diff2uni(l_v, r_v, L, R): """ Convert differential to unicycle :param l_v: left velocity :param r_v: right velocity :param L: Wheel base (or track) wdith :param R: Wheel radius :return: Linear/Angular velocity """ v = (l_v + r_v) * (R / 2) try: w = (r_v - l_v) * (R / L) except ZeroDivisionError: v, w = 0, 0 return v, w
85cc9498ed7579a077c94e2f395df7ad108acf10
303,256
import socket def dnsResolve(host): """ Resolves the given DNS hostname into an IP address, and returns it in the dot separated format as a string. Returns an empty string if there is an error :param str host: hostname to resolve :return: Resolved IP address, or empty string if resolution failed. :rtype: str """ try: return socket.gethostbyname(host) except socket.gaierror: return ''
b8046c14919c5de59d262e9a6b34eb97d570d640
317,714
def copy_of(board): """ Returns a copy of a board """ copy = [] for row_num in range(10): row = [] for col_num in range(10): row.append(board[row_num][col_num]) copy.append(row) return copy
dc4f383455165f7b2cc9f7d7ec900485d4cf539e
636,028
from typing import Dict def split_entry(entry: str) -> Dict[str, str]: """ Splits a given entry into a dictionary of parameters :param entry: An entry as a formatted string :return: A dictionary of key value pairs """ entries = entry.split(" ") return {key: value for key, value in [entry.split(":") for entry in entries]}
4dfe41869a5a8b3191a17d9140f0b0da450823d7
662,650
def chunks(seq, size): """Breaks a sequence of bytes into chunks of provided size :param seq: sequence of bytes :param size: chunk size :return: generator that yields tuples of sequence chunk and boolean that indicates if chunk is the last one """ length = len(seq) return ((seq[pos:pos + size], (pos + size < length)) for pos in range(0, length, size))
25abe8afdb032af0e2b10dbd3c03b369d862813f
702,342
import re def normalize_double_n(str): """ Normalize double n. """ # Replace double n with n' str = re.sub("nn", "n'", str) # Remove unnecessary apostrophes str = re.sub("n'(?=[^aiueoyn]|$)", "n", str) return str
75c09aa64c8c3d1ab65364ef1a0ceabeef5a50e7
337,528
def replace_string(text, to_find, replacement): """Search for items in strings and replace. Search for characters or sequences of charaters in a string and replace them i.e. replace all commas. Args: text (str): The string to be searched. to_find (str): The character or sequence of characters to replace. replacement (str): The string to replace the character(s) with. Returns: String with characters replaced. """ return text.replace(to_find, replacement)
1d52e3c461768400474307571a97f6081d5a1612
543,712
def is_null_str(value): """ Indicate if a string is None or 'None' or 'N/A' :param value: A string value :return: True if a string is None or 'None' or 'N/A' """ return not value or value == str(None) or value == 'N/A'
e8edb22c77ddf712a039f92529d453b7a4947173
23,298
def get_picam(c): """ Return a dict of the attributes in a PiCamera""" d = {} if type(c).__name__ == "PiCamera": all_settings = ['analog_gain', 'awb_mode', 'awb_gains', 'contrast', 'drc_strength', 'digital_gain', 'exposure_mode', 'exposure_speed', 'framerate', 'hflip', 'iso', 'meter_mode', 'rotation', 'sharpness', 'shutter_speed', 'sensor_mode', 'saturation', 'still_stats', 'zoom', 'vflip'] for s in all_settings: d[s] = getattr(c, s) return d
f24b87e81fe094dc0df874585ef890d76453a7f7
668,434
def New_Dataframe(old_df,indicator_name): """ create a new dataframe that is composed of only one indicator Args: old_df (dataframe): general dataframe from which we extract the new one indicator_name (string): Name onf the indicator that will composed the new dataframe Returns: (dataframe): dataframe composed of only the chosen indicator """ return old_df.loc[old_df.Indicator == indicator_name]
5ccd394a01a70b39b64d2a12ed0aac6f39296a0a
6,866
def helper(A, k, left, right): """binary search of k in A[left:right], return True if found, False otherwise""" print(f'so far ==> left={left}, right={right}, k={k}, A={A}') #1- base case if left > right: # if empty list there is nothing to search return False #2- solve the subproblems mid = (right - left)//2 + left if A[mid] < k: left = mid + 1 # -> search right return helper(A, k, left, right) elif A[mid] > k: right = mid - 1 # -> search left return helper(A, k, left, right) else: return True #3- combine the sub-solutions # nothing to combine --> tail recursion(stay tunned for more)
3df455e6bf232b7f427c2e0763de1e848e7245e5
674,560
def subsumes(paradigm_cell, morpheme): """Check if a vocabulary item subsumes the features in a paradigm cell. >>> cell = [['Nom', '+1', '-pl'], ['Acc', '+3', '-pl']] >>> subsumes(cell, [['+1', '-pl']]) True >>> subsumes(cell, [['+3', '-pl']]) True >>> subsumes(cell, [['+3'], ['+1']]) True >>> subsumes(cell, [['+1', '+3']]) False >>> subsumes(cell, [['+3'], ['+2']]) False >>> subsumes([['+intr', '+1', '-2', '-3', '-sg', '+pl']], ... [['+1', '+pl', '+intr']]) True """ for mstruct in morpheme: if not any(set(mstruct) <= set(pstruct) for pstruct in paradigm_cell): return False return True
f4c7c9c0ad6744ace3eb83f0f30e20ae89dcdce3
521,551
def hammingDistance(str1, str2): """ Returns the number of `i`th characters in `str1` that don't match the `i`th character in `str2`. Args --- `str1 : string` The first string `str2 : string` The second string Returns --- `differences : int` The differences between `str1` and `str2` """ # Convert strings to arrays a = list(str1) b = list(str2) # Determine what n equals if len(a) < len(b): n = len(a) else: n = len(b) # Increment the number of distances for each difference differences = 0 for i in range(n): if a[i] != b[i]: differences += 1 return differences
ad35cc79f89171c75a16a13ec6862a2a4abdbd61
8,032
def trapezoid_area(height, top, bottom): """ Computes the area of a trapezoid with the given height and top/bottom lengths. """ return ( # triangle based on longer - shorter of the top/bottom 0.5 * abs(top - bottom) * height # plus parallelogram based on shorter edge + min(top, bottom) * height )
c5d654806a8c6aaab41c7fe4014293ebd26da303
258,348
from typing import Any def decode_answer(response_data: dict) -> Any: """ Decode the answer described by *response_data*, a substructure of an enrollment document. Returns a string, number, tuple of strings, or None. """ answer = response_data["answer"] if answer["type"] in ["String", "Number"]: return answer["value"] elif answer["type"] == "Option": chosen_options = map(int, answer["chosenOptions"]) option_tokens = [ option["token"] for option in response_data["options"] ] return tuple( option_tokens[chosen] for chosen in chosen_options) elif answer["type"] == "Declined": return None else: raise ValueError(f"Unknown response answer type {answer['type']}")
e0c88644f09412a95ab6df929f691d6936140fc3
661,425
def wf_levenshtein(string_1, string_2): """ Calculates the Levenshtein distance between two strings. This version uses the Wagner-Fischer algorithm. Usage:: >>> wf_levenshtein('kitten', 'sitting') 3 >>> wf_levenshtein('kitten', 'kitten') 0 >>> wf_levenshtein('', '') 0 """ len_1 = len(string_1) + 1 len_2 = len(string_2) + 1 d = [0] * (len_1 * len_2) for i in range(len_1): d[i] = i for j in range(len_2): d[j * len_1] = j for j in range(1, len_2): for i in range(1, len_1): if string_1[i - 1] == string_2[j - 1]: d[i + j * len_1] = d[i - 1 + (j - 1) * len_1] else: d[i + j * len_1] = min( d[i - 1 + j * len_1] + 1, # deletion d[i + (j - 1) * len_1] + 1, # insertion d[i - 1 + (j - 1) * len_1] + 1, # substitution ) return d[-1]
1e92ea31bc284732251989bc46303017c87015e8
549,947
def is_numeric(series, max_unique=16): """Flag if series is numeric.""" if len(set(series.values[:3000])) > max_unique: return True return False
8f3b492b8eb7a230f8dd01d628b12b39a517332a
661,719
def number(number: str, fsep: str, tsep: str) -> str: """ Format a number using the provided float and thousands separators. >>> number("1 000 000 000 000", ",", " ") '1 000 000 000 000' >>> number("1000000", ",", " ") '1 000 000' >>> number("1000000", ".", "") '1000000' >>> number("1000000", ".", ",") '1,000,000' >>> number("-1000000", ",", " ") 'βˆ’1 000 000' >>> number("-1000000", "", "") 'βˆ’1000000' >>> number("βˆ’1000000", ".", ",") 'βˆ’1,000,000' >>> number("4.54609", "," , " ") '4,54609' >>> number("4.54609", "." , ",") '4.54609' >>> number("22905", "," , ".") '22.905' """ # Remove superfluous spaces number = number.replace(" ", "") # Handle unicode minus U+2212 character before doing the conversion number = number.replace("βˆ’", "-") # Convert try: # Integer res = f"{int(number):,}" except ValueError: # Float res = f"{float(number):,}" # Replace the current thousands separator with "|"; # then replace the dot with the float separator; # and lastly replace the "|" with the deisred thousands separator. # This 3-steps-replacement is needed for when separators are replacing each other. res = res.replace(",", "|").replace(".", fsep).replace("|", tsep) # Always return unicode minus U+2212 character for negative numbers return res.replace("-", "βˆ’")
eb68d3e7fc344ed3eab94ccb0ccaf9a493c89d27
99,921
import logging def identity(image): """Return the image as is.""" logging.info("identity({})".format(repr(image))) return image
a82c2d2b70d8c7de14568b3a34f503086f50c072
604,491
def box(text, gen_text=None): """Create an HTML box of text""" if gen_text: raw_html = '<div style="padding:8px;font-size:28px;margin-top:28px;margin-bottom:14px;">' + str( text) + '<span style="color: red">' + str(gen_text) + '</div>' else: raw_html = '<div style="border-bottom:1px inset black;border-top:1px inset black;padding:8px;font-size: 28px;">' + str( text) + '</div>' return raw_html
bed47c8431e9e37a774f53704e33765a0b354a6e
539,546
import math def get_col_row(length: int) -> tuple: """ The size of the rectangle (r x c) should be decided by the length of the message, such that c >= r and c - r <= 1, where c is the number of columns and r is the number of rows. :param length: :return: """ r = int(math.sqrt(length)) c = int(math.ceil(math.sqrt(length))) if r * c < length: r += 1 return c, r
f6615c3781706ddd73f78f072c9f7b3669a6460a
622,133
def find_valid_edges(components, valid_edges): """Find all edges between two components in a complete undirected graph. Args: components: A [V]-shaped array of boolean component ids. This assumes there are exactly two nonemtpy components. valid_edges: An uninitialized array where output is written. On return, the subarray valid_edges[:end] will contain edge ids k for all valid edges. Returns: The number of valid edges found. """ k = 0 end = 0 for v2, c2 in enumerate(components): for v1 in range(v2): if c2 ^ components[v1]: valid_edges[end] = k end += 1 k += 1 return end
83d6a8237c45c74bd695d2f54371b19ae81e493e
682,644
def parse_alias(alias, quote_char): """ Extract the alias if available. :param alias: antlr context :parma quote_char: which string quote character to use """ if alias: alias = alias.ID().getText().strip(quote_char) else: alias = None return alias
dae32ca0f9409d60a0711950c5cf527f53e8cf98
478,586
from typing import List def is_image(file_name: str, ext_list_image: List[str]) -> bool: """Determine if file is image based on known file name extensions.""" ext_list_lower = [ext.lower() for ext in ext_list_image] fn_lower = file_name.lower() is_image = fn_lower.endswith(tuple(ext_list_lower)) return is_image
959938bdc60bc5ee6304c3c8578cc60a6a1a00ff
558,747
def etcd_unpack(obj): """Take a JSON response object (as a dict) from etcd, and transform into a dict without the associated etcd cruft. >>> etcd_unpack({}) {} >>> etcd_unpack({'node': { 'key': 'a', 'value': 'AA'}}) {'a': 'AA'} >>> etcd_unpack({'node': {'nodes': [{'value': 'a', 'key': 'A'}, {'value': 'B', 'key': 'b'}], 'dir': True, 'key': 'pa'}}) {'pa': {'A': 'a', 'b': 'B'}} >>> etcd_unpack( {'node': {'nodes': [{'nodes': [{'value': 'a', 'key': 'A'}], 'dir': True, 'key': 'pa'}], 'dir': True, 'key': 'paa'}} ) {'paa': {'pa': {'A': 'a'}}} >>> etcd_unpack({'node': {'dir': True, 'key': '/resource/flow'}}) {'/resource/flow': {}} """ def _unpack_lst(n): rv = {} for v in n: if 'dir' not in v: rv[v['key']] = v['value'] elif 'nodes' in v: rv[v['key']] = _unpack_lst(v['nodes']) else: rv[v['key']] = {} return rv if 'node' not in obj: return {} cn = obj['node'] # current node pn = None if 'prevNode' in obj: pn = obj['prevNode'] # previous node retVal = {} for n in [cn, pn]: pc = '' if n is cn: pc = 'node' if n is pn: pc = 'prevNode' if n: if not n['key'] in retVal: retVal[n['key']] = {} if 'dir' not in n and 'value' in n: retVal[n['key']][pc] = n['value'] elif not 'dir' and 'value' not in n: retVal[n['key']][pc] = '{}' elif 'nodes' in n: retVal[n['key']][pc] = _unpack_lst(n['nodes']) else: retVal[n['key']][pc] = '{}' return retVal
05f6f313574d9b8578045c5946ed674bd1877f72
193,382
def get_shapefile_srs_from_ds(datasource): """Get the spatial reference object of the shapefile :param datasource: The shapefile datasource :return: The spatial reference object """ layer = datasource.GetLayerByIndex(0) spatial_ref = layer.GetSpatialRef() return spatial_ref
44e35868fa2ee230dc9e3e3f2f14dbf0eaf99d3e
155,158