content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def parse_degrees(coord): """Parse an encoded geocoordinate value into real degrees. :param float coord: encoded geocoordinate value :return: real degrees :rtype: float """ degrees = int(coord) minutes = coord - degrees return degrees + minutes * 5 / 3
c2c37d8770da2d6c8241dfcc7b0c9c7d889e65e0
337,452
def reshape_nd(data_or_shape, ndim): """Return image array or shape with at least ndim dimensions. Prepend 1s to image shape as necessary. >>> reshape_nd(numpy.empty(0), 1).shape (0,) >>> reshape_nd(numpy.empty(1), 2).shape (1, 1) >>> reshape_nd(numpy.empty((2, 3)), 3).shape (1, 2, 3) >>> reshape_nd(numpy.empty((3, 4, 5)), 3).shape (3, 4, 5) >>> reshape_nd((2, 3), 3) (1, 2, 3) """ is_shape = isinstance(data_or_shape, tuple) shape = data_or_shape if is_shape else data_or_shape.shape if len(shape) >= ndim: return data_or_shape shape = (1,) * (ndim - len(shape)) + shape return shape if is_shape else data_or_shape.reshape(shape)
c71796635a6d97c746eae1554a3e3a123c19f4df
506,690
import json def post_json(client, url, json_dict): """ Send dict to url as json """ return client.post( url, data=json.dumps(json_dict), content_type='application/json' )
087de58fa306a1bf710b3e0be2f71144df2d8562
168,800
import requests def send_get_request(seq_id: str) -> requests.Response: """send_get_request Simple function to send get request for sequence metadata, having this as a function makes testing of different responses easier Args: seq_id: (str) sequence id to retrieve metadata for Returns: (requests.Response): CRAM metadata endpoint response object """ return requests.get( url=f"https://www.ebi.ac.uk/ena/cram/sequence/{seq_id}/metadata", )
ae3df53c129a050ab699c6b8efd1f7b13cba4189
149,921
import requests def get_page(url): """ Download a web page and returns it. Args: url (str): target webpage url Returns: html (str): page html code """ # request HTML page response = requests.get(url) html = response.text return html
4360be62a4de5aac8b897b726980386ecb8f1112
394,937
from typing import List def common_words(sentence1: List[str], sentence2: List[str]) -> List[str]: """ Input: Two sentences - each is a list of words in case insensitive ways. Output: those common words appearing in both sentences. Capital and lowercase words are treated as the same word. If there are duplicate words in the results, just choose one word. Returned words should be sorted by word's length. """ common = [] lower_sentence1 = [word.lower() for word in sentence1] lower_sentence2 = [word.lower() for word in sentence2] for word in lower_sentence1: if word in lower_sentence2: common.append(word) return sorted(list(set(common)), key=len) pass
0002b28f2b4722c7554487db737327e333fbde54
626,879
def Storeligandnames(csv_file): """It identifies the names of the ligands in the csv file PARAMETERS ---------- csv_file : filename of the csv file with the ligands RETURNS ------- lig_list : list of ligand names (list of strings) """ Lig = open(csv_file,"rt") lig_aux = [] for ligand in Lig: lig_aux.append(ligand.replace(" ","_").replace("\n","").lower()) return lig_aux
dc4510a4ea946eaf00152cb445acdc7535ce0379
199
import math def present_value_csv(key, val, values_with_ci): """ Turns a value into a state where it can be presented in a CSV file, including its confidence interval if the column it appears in has confidence intervals somewhere in it. """ if key in values_with_ci: ciDown, ciUp = val.ci() if math.isnan(ciDown): return '%f,%f,%f' % (val.value(), val.value(), val.value()) else: return '%f,%f,%f' % (val.value(), ciDown, ciUp) else: return str(val)
ebfac0668ed9e10dcd71a6ce2a458854626e0e08
172,931
import logging def restore_from_checkpoint(sess, saver, checkpoint_file_path): """ Restore session from checkpoint files. Args: sess: TensorFlow Session object. saver: TensorFlow Saver object. checkpoint_file_path: The checkpoint file path. Return: True if restore successfully and False if fail """ if checkpoint_file_path: logging.info( "Restore session from checkpoint: {}".format(checkpoint_file_path)) saver.restore(sess, checkpoint_file_path) return True else: logging.error("Checkpoint not found: {}".format(checkpoint_file_path)) return False
a6a7b45b601ea8c6763b3c8fa24462f8eedd53b0
597,249
def is_leap (year): """ Checks whether a year is a leap-year or not. IF the year is divisible by 4 it is a leap year, unless it is divisible by 100, unless it is also divisible by 400. 2000 = leap-year: divisible by 4, 100, and 400 - 400 makes it leap 1900 = non-leap : divisible by 4, 100, not 400 2004 = leap-year: divisible by 4, not 100 or 400 """ leap = False if year % 4 == 0 : leap = True if year % 100 == 0 and year % 400 != 0 : leap = False return leap
e157547b8d3575c7a97513efd69fc8e7a07b2675
436,750
def total_points(min_x, max_x, points_per_mz): """ Calculate the number of points for the regular grid based on the full width at half maximum. :param min_x: the lowest m/z value :param max_x: the highest m/z value :param points_per_mz: number of points per fwhm :return: total number of points :rtype: int """ if min_x > max_x: raise ValueError("min_x > max_x") if min(min_x, max_x, points_per_mz) <= 0: raise ValueError("all inputs must be greater than 0") return int((max_x - min_x) * points_per_mz) + 1
e0680e386559a9603b3b23b9627bd8648b23e65a
702,052
def clean_name(value): """ remove bad character from possible file name component """ deletechars = r"\/:*%?\"<>|'" for letter in deletechars: value = value.replace(letter, '') return value
2d9678b4994b85d7b01c91dbf02c87759610e688
283,747
def escape_char(string): """ Escape special characters from string before passing to makefile. Maybe more characters will need to be added. """ string = string.replace("'", "\\'") # escape ' string = string.replace('"', '\\"') # escape " string = string.replace("\n", "\\n") # escape \n return string
b6d97d082fab31ae7c8026be6d99948e0b1040ba
466,966
def get_missing_columns(data, columns, category_column): """ Returns all of the given columns that are not in the given dataframe. Parameters ---------- columns : List[str] the columns to look for category_column : str the category column to look for, or None if there is no category column being used Returns ------- missing : List[str] a list of the missing columns """ data_columns = set(data.columns) if not category_column is None: columns = columns + [category_column] missing = [] for col in columns: if not col in data_columns: missing.append(col) return missing
c6e7682aa4b9ed0078b6273938533df973cc668f
145,600
from random import randint def random_pick(board, available_nodes): """ Offers a node at random. """ index = randint(0, len(available_nodes) - 1) return index
746567fe4b66a9b111a24d6ce6823357c8dc290d
514,711
def bps_to_mbps(value): """Bits per second to Mbit/sec""" return round(int(value) / (1000**2), 3)
156fb45a16f102235b40d9e026b9ae5f62dc6514
228,990
def moment(f, pmf, center=0, n=1): """ Return the nth moment of `f` about `center`, distributed by `pmf`. Explicitly: \sum_i (f(i) - center)**n p(i) Note, `pmf` is the joint distribution. So n=1 can be used even when calculating covariances such as <xx> and <xy>. The first would actually be a 2nd moment, while the second would be a mixed 1st moment. Parameters ---------- f : array-like The numerical values assigned to each outcome of `p`. pmf : array-like The pmf for a distribution, linear-distributed values. center : float Calculate a centered moment. n : int The moment to calculate. """ return ((f - center)**n * pmf).sum()
bfd5f3d149b232c99b4fc5cd0aa799a05a93a7ee
314,227
from typing import Sequence def _get_needed_orders(rdt_maps: Sequence[dict], feed_down: int) -> Sequence[int]: """Returns the sorted orders needed for correction, based on the order of the RDTs to correct plus the feed-down involved and the order of the corrector, which can be higher than the RDTs in case one wants to correct via feeddown.""" needed_orders = set() for rdt_map in rdt_maps: for rdt, correctors in rdt_map.items(): # get orders from RDTs + feed-down for fd in range(feed_down+1): needed_orders |= {rdt.order + fd, } # get orders from correctors for corrector in correctors: needed_orders |= {int(corrector[1]), } return sorted(needed_orders)
77775574d9085ef58f4924a4e99c3b89af049f04
445,560
def get_luid(my_fn, frame_label, lemma, pos): """ Given a frame, lemma, and pos try to retrieve the lu identifier. :param my_fn: loaded framenet using NLTK's FrameNetCorpusReader :param str frame_label: a frame label :param str lemma: a lemma, e.g., election :param str pos: a FrameNet part of speech tag, e.g., N (see validation_utils.POS for the full set) :return: the lu identifier or None if not found """ lu_ids = set() target = f'{lemma}.{pos.lower()}' for lu_id, lemma_pos in my_fn.lu_ids_and_names().items(): if lemma_pos == target: lu = my_fn.lu(lu_id) frame = lu.frame if frame.name == frame_label: lu_ids.add(lu_id) if len(lu_ids) >= 2: target_lu_id = None reason = f'{lemma}.{pos.lower()} found in multiple frames (lu ids are {lu_ids}' elif len(lu_ids) == 1: target_lu_id = list(lu_ids)[0] reason = 'succes' else: target_lu_id = None reason = f'no lu id found matching {lemma}.{pos.lower()}' return target_lu_id, reason
d0c493e53bba887a39449451415019458d6621b9
351,527
def get_label_yml(label): """Get yml format for label Args: label (dict): dictionnary if labels with keys color, name and description as strings, possibly empty Returns: str: yml formatted dict, as a yml list item """ text = f' - name: "{label["name"]}"\n' text += f' color: "{label["color"]}"\n' text += f' description: "{label["description"]}"\n' return text
be4564dd1865191d02f6d4d5fc929ae1ba21618f
302,703
from typing import List def diagonal_difference(size: int, matrix: List[List[int]]) -> int: """ >>> diagonal_difference(3, [[11, 2, 4], [4, 5, 6], [10, 8, -12]]) 15 """ # prim_diag = sec_diag = 0 # for i in range(size): # prim_diag += matrix[i][i] # sec_diag += matrix[-i-1][i] # matrix[i][(size-1)-i] indexes = enumerate(range(size-1, -1, -1)) diagonals = zip(*((matrix[i][i], matrix[i][s]) for i, s in indexes)) prim_diag, sec_diag = map(sum, diagonals) ret = abs(prim_diag - sec_diag) # type: ignore return ret
1987c8396402d91398c9f8d4424a11583255ed32
162,626
def find_by_uuid(_list: list, uuid: str): """ Finds a user in a leaderboard by their uuid :param (list) _list: The leaderboard list :param (str) uuid: Player's UUID :returns (int) i: Placing of a user in the leaderboard """ for i, dic in enumerate(_list): if dic['uuid'] == uuid: return i return -1
54b5bca4e67e0fc1c2af34f1f8060f582f7c3e08
366,095
import torch def encode_batch(batch, tokenizer, max_seq_length, return_tokens=False): """ Tokenize and encode the given input; stack it in a batch with fixed length according to the longest sequence in the batch. Return a tuple. If asked to return tokens, return the encoded batch and a nested list of the tokenized texts. Otherwise, just return the batch. """ # Truncate input based on the sequence length # before stacking as a batch # Also return a boolean array indicating which tokens are masked encoded_texts = [] for text in batch: encoded_text = torch.tensor(tokenizer.encode(text))[:max_seq_length] encoded_texts.append(encoded_text) encoded_batch = torch.nn.utils.rnn.pad_sequence(encoded_texts, batch_first=True) if return_tokens: tokens = [tokenizer.tokenize(text) for text in batch] return encoded_batch, tokens else: return (encoded_batch,)
20397b9ac8013646a7bca3da2fff7dfa569113f6
259,168
import csv def file_to_position_depths(file_path): """Get the position and depths from one file. Read into memory as a dictionary with (lat, lon) as the key and depth as the value.""" # create the dictionary result = {} # read the position and depth data from the input csv file with open(file_path) as csvfile: contents = csv.reader(csvfile) next(contents) count = 1 # print progress for line in contents: if count % 100_000 == 0: print(count) count += 1 # get the latitude, longitude and depth from the row in the file _, lat, long, depth = line lat_long = (float(lat), float(long)) # if the depth is empty, then continue if depth == '': continue result[lat_long] = float(depth) return result
461b9eac168795e4259f38800caa9c29fe620dec
688,518
import torch def get_loss_and_grads(model, train_x, train_y, flat=True, weights=None, item_loss=True, create_graph=False, retain_graph=False): """Computes loss and gradients Apply model to data (train_x, train_y), compute the loss and obtain the gradients. Parameters ---------- model : nn.Module Neural network. We assume the model has a criterion attribute train_x : torch.Tensor Training inputs train_y : torch.Tensor Training targets Returns ---------- loss torch.Tensor of size (#params in model) containing the loss value if flat=True, else a single float gradients torch.Tensor of size (#params in model) containing gradients w.r.t. all model parameters if flat=True, else a structured list """ model.zero_grad() if weights is None: weights = model.parameters() out = model(train_x) else: out = model.forward_weights(train_x, weights) loss = model.criterion(out, train_y) grads = torch.autograd.grad(loss, weights, create_graph=create_graph, retain_graph=retain_graph) if flat: gradients = torch.cat([p.reshape(-1) for p in grads]) loss = torch.zeros(gradients.size()).to(train_x.device) + loss.item() else: gradients = list(grads) if item_loss: loss = loss.item() return loss, gradients
7abb2a9758ac641c5303583e2609407e84d8f91f
136,928
def partition_nodes(ilist,bitpos): """return a tuple of lists of nodes whose next bit is zero, one or a letter (others)""" zeros = [] ones = [] others = [] zero = '0' one= '1' for inst in ilist: bit = inst.ipattern.bits[bitpos] if bit.value == zero: zeros.append(inst) elif bit.value == one: ones.append(inst) else: others.append(inst) return (ones,zeros,others)
2f8ce1a85d18497512dac4708291d8c94fac7b87
125,799
def copyfragment(fragment0,newobj): """Copy the data in a fragment to another object. The data in the source fragment 'fragment0' is copied to the target object 'newobj', and 'newobj' is returned. 'newobj' should be a fragment object or some subclass of fragment (such as a 'program' object). copyfragment can be used to 'mutate' a fragment into (for example) a program object.""" # Copy attribute data for item in fragment0.attributes(): newobj[item] = fragment0.get_attribute(item) # Copy tables for tbl in fragment0.tables(): newobj.addtable(tbl) # Copy keytexts for i in range(0,fragment0.nkeytexts()): keytext = fragment0.keytext(i) newobj.addkeytext(keytext.name(), keytext.junk_text(), keytext.message()) # Try to copy other attributes that fragment subclasses # have (such as keywords) try: for line in fragment0.keywords(): newobj.addkeyword(line) except AttributeError: # Either the source or target doesn't support # keyword storage pass # Return the populated object return newobj
3d1cf53584052af2aefd283137909e6e3b5b8c35
52,944
def model_to_dict(model, exclude=None): """ Extract a SQLAlchemy model instance to a dictionary :param model: the model to be extracted :param exclude: Any keys to be excluded :return: New dictionary consisting of property-values """ exclude = exclude or [] exclude.append('_sa_instance_state') return {k: v for k, v in model.__dict__.items() if k not in exclude}
9500f5deb7be839196586ec27b4c785be9c9dcc2
189,348
def factorial(integer: int) -> int: """Return the factorial of a given integer. Args: integer (int): the integer whose factorial is going to be calculated Returns: int: the factorial of the provided integer """ if integer in {0, 1}: return 1 return integer * factorial(integer - 1)
4d6457f5c3651d21ba6d831956e26e7522de553a
588,679
def add_team_position_column(df): """Add 'team_position' column to DataFrame.""" tp_pat = r'\w{2,3}\s-\s[A-Z,]+' tp_sr = df['player'].str.findall(tp_pat) tp_lst = [tp[0] for tp in tp_sr] df.insert(1, 'team_position', tp_lst) return df
0517f2f6b49fe26d4794406bd4d7145af2b62998
351,382
from typing import List from typing import Dict def find_values(item, keys: List[str]) -> Dict: """Find values for keys in item, if present. Parameters ---------- item : Any Any item keys : List[str] Keys whose value to retrieve in item Returns ------- Dict Mapping of key -> value for keys found in item. Raises ------ ValueError If one key is found whose value is a tuple, list or dict. """ if isinstance(item, (list, tuple)): values = {} for it in item: values.update(find_values(it, keys)) return values elif isinstance(item, dict): values = dict() for key, value in item.items(): if key in keys: if isinstance(value, (list, tuple, dict)): raise ValueError(f"Cannot find value for '{key}'. Type must be literal but got {type(value)}") values[key] = value else: values.update(find_values(value, keys)) return values else: return {}
bab4c8a9695113390654e4eaf971559a98f4eb71
695,223
def bytes_to_bits(num_bytes: int) -> int: """ Converts number of bytes to bits. :param num_bytes: The n number of bytes to convert. :returns: Number of bits. """ return num_bytes * 8
fab0ab0edee6565a6d76803239ffcff8931c5ffd
518,628
import requests def is_darksky_quota_error(err): """Return Tre if input 'err' is a DarkSky quota error, else False""" tf = False if isinstance(err, requests.exceptions.HTTPError): resp = err.response if resp.status_code == 403 and 'darksky' in resp.url: tf = True return tf
5c6689580370b765d6fdfac884691dccac6768ac
641,486
def _extract_options(line_part): """Return k/v options found in the part of the line The part of the line looks like k=v,k=v,k=2 .""" result = {} pairs = line_part.split(",") for pair in pairs: if "=" not in pair: continue parts = pair.split("=") key = parts[0].strip() value = parts[1].strip() result[key] = value return result
39089175a9f62655e7b60682792b0c7fa99a9f7d
232,953
def fill_with(array, mask, fill): """fill an array where mask is true with fill value""" filled = array.copy() filled[mask] = fill return filled
c7090511bc6dde523b3a88e9d97ec2b97235116e
250,037
def remove_packaging(symbol: str): """Remove package names from lisp such as common-lisp-user:: Args: symbol (str): string to have package name striped Returns: str: symbol input with package name removed (if present) """ split_symbol = symbol.split('::') return symbol if len(split_symbol) == 1 else split_symbol[1]
c1cc0b050d62cd5a5782360223ea426850620277
133,985
import inspect def get_custom_class_mapping(modules): """Find the custom classes in the given modules and return a mapping with class name as key and class as value""" custom_class_mapping = {} for module in modules: for obj_name in dir(module): if not obj_name.endswith("Custom"): continue obj = getattr(module, obj_name) if inspect.isclass(obj): custom_class_mapping[obj_name] = obj return custom_class_mapping
c9682ee84c64019a17c5b4b1f3e12cba71e1463e
654,356
def get_text(value): """Get text from langstring object.""" return value["langstring"]["#text"]
1efaa8e2d5d06cb622227e75955cf2411c5079eb
504,936
def ffmt(number: float) -> int|float: """ convert float to int when there are no decimal places. :param number float: The float :rtype int|float: The return number. """ if int(number) == number: return int(number) return number
68b9507d847047182b71a24c05efd00513623e47
541,960
from typing import Sequence from typing import Any def _get_cont_out_labels(network_structure: Sequence[Sequence]) -> Any: """ Compute the contracted and free labels of `network_structure`. Contracted labels are labels appearing more than once, free labels are labels appearing exactly once. Computed lists are ordered according to int and ASCII ordering for integer and string values, with first entries in each list being ordered integer labels followed by ASCII ordered string labels. Returns: cont_labels, out_labels: The contracted and free labels of `network_structure`. """ flat_labels = [l for sublist in network_structure for l in sublist] out_labels = [l for l in flat_labels if flat_labels.count(l) == 1] int_out_labels = sorted([o for o in out_labels if not isinstance(o, str) ])[::-1] # pylint: disable=unnecessary-lambda str_out_labels = sorted([o for o in out_labels if isinstance(o, str)], key=lambda x: str(x)) cont_labels = [] for l in flat_labels: if (flat_labels.count(l) > 1) and (l not in cont_labels): cont_labels.append(l) int_cont_labels = sorted([o for o in cont_labels if not isinstance(o, str)]) # pylint: disable=unnecessary-lambda str_cont_labels = sorted([o for o in cont_labels if isinstance(o, str)], key=lambda x: str(x)) return int_cont_labels, str_cont_labels, int_out_labels, str_out_labels
f749b67789a00fe1cf0b2491a0a476d3882de9be
698,114
from pathlib import Path import binascii def calculate_file_crc32(filename, block_size=1024 * 16): """ Calculate the crc32 of the contents of a given file path. :type filename: str or Path :param block_size: Number of bytes to read at a time. (for performance: doesn't affect result) :return: String of hex characters. :rtype: str """ m = 0 with Path(filename).open("rb") as f: while True: d = f.read(block_size) if not d: break m = binascii.crc32(d, m) return f"{m & 0xFFFFFFFF:08x}"
c9120fe8e7ce3bf50e7fcb289d78e6615045bb06
439,901
from bs4 import BeautifulSoup import requests def url_to_soup(url: str) -> BeautifulSoup: """URLからBeautifulSoupのオブジェクトを作る Args: url(str): 変換したいURL Returns: :obj:`bs4.BeautifulSoup` : BeautifulSoupのオブジェクト """ r = requests.get(url) soup = BeautifulSoup(r.content, "lxml") return soup
7c5b8a542086758cd1318a34e56e708e926e96a7
326,800
def format_gerald_header(flowcell_info): """ Generate comment describing the contents of the flowcell """ # I'm using '\n# ' to join the lines together, that doesn't include the # first element so i needed to put the # in manually config = ['# FLOWCELL: %s' % (flowcell_info['flowcell_id'])] config += [''] config += ['CONTROL-LANE: %s' % (flowcell_info['control_lane'],)] config += [''] config += ['Flowcell Notes:'] config.extend(flowcell_info['notes'].split('\r\n')) config += [''] for lane_number in sorted(flowcell_info['lane_set']): lane_contents = flowcell_info['lane_set'][lane_number] for lane_info in lane_contents: config += ['Lane%s: %s | %s' % (lane_number, lane_info['library_id'], lane_info['library_name'])] config += [''] return "\n# ".join(config)
0035925bd70cb15d724785b0350beabe54f04073
462,131
from typing import Union from typing import List from typing import Any import math def rewrite_inf_nan( data: Union[float, int, List[Any]] ) -> Union[str, int, float, List[Any]]: """Replaces NaN and Infinity with string representations""" if isinstance(data, float): if math.isnan(data): return 'NaN' if math.isinf(data): return ('+' if data > 0 else '-') + 'inf' return data elif isinstance(data, list): return [rewrite_inf_nan(item) for item in data] else: return data
14d202feb1098fefd9bcb215d9e19355bd236750
208,917
def _get_subsection_of_block(usage_key, block_structure): """ Finds subsection of a block by recursively iterating over its parents :param usage_key: key of the block :param block_structure: block structure :return: sequential block """ parents = block_structure.get_parents(usage_key) if parents: for parent_block in parents: if parent_block.block_type == 'sequential': return parent_block else: return _get_subsection_of_block(parent_block, block_structure)
4a0e6d614ec9e5827d15203e9d0e9ff25824a351
335,009
def sortPkgObj(pkg1 ,pkg2): """sorts a list of yum package objects by name""" if pkg1.name > pkg2.name: return 1 elif pkg1.name == pkg2.name: return 0 else: return -1
5d6004588a076eb599d815ff0da2df9afc44e7ed
414,651
import math def distance(point_one, point_two): """Calculates the Euclidean distance from point_one to point_two """ return math.sqrt((point_two[0] - point_one[0]) ** 2 + (point_two[1] - point_one[1]) ** 2)
92fe5b28046f6eb96fa6552e750ca62010d700da
685,918
def positive_sum(arr): """Return the sum of positive integers in a list of numbers.""" if arr: return sum([a for a in arr if a > 0]) return 0
30467034bdf7548f24e0f519f70b8d2a6cdedcf5
60,596
def fetch_remote_data(db, data_length, uuids): """ Fetch VM data from the central DB. :param db: The database object. :type db: Database :param data_length: The length of data to fetch. :type data_length: int :param uuids: A list of VM UUIDs to fetch data for. :type uuids: list(str) :return: A dictionary of VM UUIDs and the corresponding data. :rtype: dict(str : list(int)) """ result = dict() for uuid in uuids: result[uuid] = db.select_cpu_mhz_for_vm(uuid, data_length) return result
17933bd99b409fd7787f63858c077abd4daf1202
155,417
def modpow(k, n, m): """ Calculate "k^n" modular "m" efficiently. Even with python2 this is 100's of times faster than "(k**n) % m", particularly for large "n". Note however that python's built-in pow() also supports an optional 3rd modular argument and is faster than this. """ ans = 1 while n: if n & 1: ans = (ans*k) % m k = (k*k) % m n >>= 1 return ans
bbe8de33ea07053956b15288f780491c8d24eea2
373,862
from typing import List def write_floats_10e(vals: List[float]) -> List[str]: """writes a series of Nastran formatted 10.3 floats""" vals2 = [] for v in vals: v2 = '%10.3E' % v if v2 in (' 0.000E+00', '-0.000E+00'): v2 = ' 0.0' vals2.append(v2) return vals2
7e2f9b1a9e4560d3d9194c18601d22a57ed0811e
30,782
def get_player_id(first_name, last_name, team): """ Returns a custom player ID of first initial + last name + team i.e. for Tom Brady in New England that is T.Brady-NE """ if (team == None): team = 'None' return first_name[0] + "." + last_name + "-" + team
d44e1275b722e06d63166a750c88a7863246d9ab
132,190
def read_metadata(metadata_file_fp): """Read metadata into dictionary. """ metadata = {} with open(metadata_file_fp) as metadata_file_f: for line in metadata_file_f: line = line.strip().split('\t') sample_id = line[0] if sample_id not in metadata: metadata[sample_id] = line[1:] else: raise ValueError("Duplicate samples: %s" % sample_id) return metadata
e1c4f4e2101cf6fca960158b63d10950c469f751
512,536
def get_milliseconds(time_sec: float) -> int: """ Convertit un temps en secondes sous forme de float en millisecondes sous forme d'un int. Args: time_sec: Le temps en secondes. Returns: Le temps en millisecondes. """ assert isinstance(time_sec, float) return int(round(time_sec * 1000))
4a3c15f926b9faf5934ece8069cdd4651d2efd9c
277,704
def extract_individual_data(data): """ Separate data into different array for each individual """ ids = set(data[:,1]) id_A = min(ids) id_B = max(ids) dataA = data[data[:,1] == id_A, :] dataB = data[data[:,1] == id_B, :] # print(np.shape(dataA)) return dataA, dataB
dd04100bfd5e375736a1219e248741ddd9efeaad
168,730
def reorder_exons(exon_ids): """ Reorder exons if they were out of order. Parameters: exon_ids (list of str): List of exons 'chrom_coord1_coord2_strand_exon' Returns: exons (list of str): List of same exon IDs ordered based on strand and genomic location """ strand = exon_ids[0].split('_')[-2] coords = [int(i.split('_')[-4]) for i in exon_ids] exons = sorted(zip(exon_ids, coords), key=lambda x: x[1]) exons = [i[0] for i in exons] if strand == '-': exons.reverse() return exons
d3f52a24d4da1a05a1deceaf38927622c141a9ad
27,161
import importlib def get_module_element_from_path(opath): """ Retrieve an element from a python module using its path <package>.<module>.<object>. This can be for example a global function or a class. Args: opath: Object path Returns: Module object """ module, oname = opath.rsplit('.', 1) mod = importlib.import_module(module) return getattr(mod, oname)
fa4d11fee4be5eac12ada83e4820b014591a00cc
316,618
def texture_profile(df_soils): """ Assign mean texture profile for soil categories. - Cl: clay - SiCl: silty clay - SaCl: sandy clay - ClLo: clay loam - SiClLo: silty clay loam - SaClLo: sandy clay loam - Lo: loam - SiLo: silty loam - SaLo: sandy loam - Si: silt - LoSa: loamy sand - Sa: sand Parameters ---------- df_soils : pd.DataFrame Returns ------- df_texture : pd.DataFrame """ df_texture = df_soils.groupby(['texture', 'depth_category']).mean() df_texture = df_texture[['sand', 'silt', 'clay', 'OM', 'dbthirdbar', 'th33', 'th1500']] df_texture.OM = df_texture['OM']/100 df_texture.th33 = df_texture['th33']/100 df_texture.th1500 = df_texture['th1500']/100 return df_texture
a9fe7f8e59e4334df654d6e6d3dbcbfc56cee7aa
273,477
import random def randomize_strata(n_items, group_ids, seed=None): """Perform stratified randomization. Maps a number of items into group ids by dividing the items into strata of length equal to the number of groups, then assigning the group ids randomly within each strata. If the number of items do not divide the number of groups equally, the remaining items are assigned to groups randomly (with equal probability of assignment in each group). Example: randomize_strata(12, [1, 2, 3]) yields a list of 12 group ids, each 1, 2, or 3. There are (3!)^4 = 6^4 = 1296 possible outcomes as there are 12 / 3 = 4 strata, and within each strata there are 3! = 6 different ways to assign the items into groups. Therefore, the first 3 items of the list (that is, positions 0, 1, and 2) can be mapped only to the 3!=6 different mappings: [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2] or [3, 2, 1]. Args: n_items: (int) Number of items to assign to groups. group_ids: A list of group ids that are typically integers or strings, but can be of any type. seed: (int) Random seed, applied to a local instance of class random.Random; if not specified, the global random instance is used instead. Returns: A list of length n_items, consisting of the group ids whose positions in the list correspond to the items. """ if seed is None: random_sampler = random.sample else: random_sampler = random.Random(seed).sample n_groups = len(group_ids) n_strata = n_items // n_groups groups = [] for _ in range(n_strata): groups.extend(random_sampler(group_ids, n_groups)) remaining = n_items - len(groups) if remaining > 0: groups.extend(random_sampler(group_ids, remaining)) return groups
0f830a9171837f3022ea131036ef8f498fdaffba
454,386
def strike_through(text: str) -> str: """Returns a strike-through version of the input text""" result = '' for c in text: result = result + c + '\u0336' return result
a178dd99d124f537bc98bcf36cdc0690862fb0bd
663,271
import math def get_simple_distance(coords1, coords2): """ Calculates the simple distance between two x,y points :param coords1: (Tuple) of x and y coordinates :param coords2: (Tuple) of x and y coordinates :return: (float) The distance between the two points """ return math.sqrt((coords1[0]-coords2[0])**2 + (coords1[1]-coords2[1])**2)
504ccd5d5d30bf1cebba2bc23644136767ccd46c
399,336
def load_smarts_fdef(fname): """ Load custom feature definitions from a txt file. The file must contain a SMARTS string follwed by the feature name. Example: # Aromatic a1aaaaa1 Aromatic a1aaaa1 Aromatic Lines started with # are considered as comments Parameters ---------- fname: str Name of the file containing the smarts feature definitions Returns ------- features: dict Dictionary which keys are SMARTS strings and values are feature names """ features = {} # Load custom features file with open(fname, "r") as file: for line in file: if line[0] == "#" or line[0] == '\n': continue line = line.split(' ') feat_def = line[0] feat_name = line[1].rstrip() features[feat_def] = feat_name return features
c629b4ebde56c906e80a1599ea58e13c99578ae6
339,900
def get_eps(dist, x): """Z = (X - mu) / sigma.""" return (x - dist.loc) / dist.scale
882208f782e7c30075d40c79cec6ea62310fa0fe
329,311
def capture_group(s): """ Places parentheses around s to form a capure group (a tagged piece of a regular expression), unless it is already a capture group. """ return s if (s.startswith('(') and s.endswith(')')) else ('(%s)' % s)
17da31a3403522fe0f852ca64684c1b5ea8d315c
490,693
def index_select_multidim_nojit(input, indices): """ Like torch.index_select, but on multiple dimensions, on first dimensions only (0, 1, ...) NB: Clamp indices if out of range @param input tensor of size (n_1, .., n_k, ...u) @param indices tensor of integers of size (...v, k) @return tensor of size (...v, ...u) """ n = indices.size()[-1] input_size = input.size() tpl = tuple( indices[...,i].clamp(0, s-1) for i, s in enumerate(input_size[:n]) ) return input[(*tpl, ...)]
7d778d31ac87aafc326bb2930e6d8db5873c91a7
232,964
def lcs_recursive(s1, s2): """ Given two strings s1 and s2, find their longest common subsequence (lcs). Basic idea of algorithm is to split on whether the first characters of the two strings match, and use recursion. Time complexity: If n1 = len(s1) and n2 = len(s2), the runtime is O(2^(n1+n2)). The depth of the recursion is at most n1+n2, by alternately removing the first letter of s1, then s2, then s1, and so on. One function call makes at most two subsequent recursive calls, so the total number of calls is at most 2^(recursion depth), or 2^(n1+n2). This bound is also the time complexity of the brute force approach of enumerating all 2^n1 subsequences of s1 and all 2^n2 subsequences of s2, and comparing all (2^n1)*(2^n2) pairs. Space complexity: As noted above, the recursion depth is at most n1+n2, which is achieved in the worst case of an empty lcs, so the space complexity is Omega(n1+n2). """ if len(s1)==0 or len(s2) == 0: return "" if s1[0] == s2[0]: #If 1st character is the same, it is part of the #longest common subsequence. return s1[0] + lcs_recursive(s1[1:],s2[1:]) #If 1st characters are different, need to consider two cases seq1 = lcs_recursive(s1, s2[1:]) seq2 = lcs_recursive(s1[1:], s2) #Return whichever sequence is longer return seq1 if len(seq1) > len(seq2) else seq2
45ce789716d4f6194b89efa1745ee7587c17179b
204,772
def word_capital(text): """ Capitalizes the first character of each word, it converts a string into titlecase by making words start with an uppercase character and keep the remaining characters. """ if text and len(text) > 0: return ' '.join([s[0].upper() + s[1:] for s in text.split(' ') if len(s) > 0]) else: return text
fbb20324204f62344af5b76f74fad98810f6fee0
19,346
def add_log_parser_arguments(parser): """Add log arguments to command line parser. Defines the following command line arguments: --log: path to log file (if any) -v: verbosity level. More => more verbose log messages. Args: parser (argparse.ArgumentParser): parser to add arguments to. Returns: parser (argparse.ArgumentParser): parser with log arguments added. """ parser.add_argument( '--log', nargs='?', default=None, help='Path to log file.' ) parser.add_argument( '-v', action='count', default=0, help='Verbosity of log messages.' ) return parser
5b083364262f836247fda4a8e89e4dfc5f3a2335
478,631
def format_variant(variant): """ Return None for null variant and strips trailing whitespaces. Parameters ---------- variant : str, optional. HGVS_ formatted string. Returns ------- str """ if variant is None: return variant return variant.strip()
f88050c62c8efd1798f1ea909f366e38544ae7b6
451,845
def get_all_image_class_ids(self): """ Retrieves class ids for every image as a list (used as inputs for BalancedBatchSampler)""" return [image_info['class_id'] for image_info in self.image_infos.values()]
26bbe7f6b9e8474ce16e499300ae7fccb66600e1
134,036
def HasRootMotionBone(obj, rootBoneName): """ Returns True if the root bone is named @rootBoneName @obj (bpy.types.Object). Object.type is assumed to be 'ARMATURE' @rootBoneName (string). Name of the root motion bone to compare with """ bones = obj.data.bones for bone in bones: #print(bone.name, len(bone.children), bone.parent) if (bone.parent is None) and (bone.name==rootBoneName): return True return False
d58a61fb7902d5f6e7303de099db7e665d5d2508
92,184
def check_template_sample(template_object, sample_set): """ check_template_sample checks if a template has a sample associated in the samples/ folder Args: template_object: the template dict to check, which got parsed from the file content sample_set: set of sample kinds (string) built by build_sample_set Raises: yaml.YAMLError if the input template or any sample file is not a valid YAML file Returns: Boolean - True if a sample was found for this template, False otherwise. """ # retrieve the template kind template_kind = template_object["spec"]["crd"]["spec"]["names"]["kind"] sample_found = template_kind in sample_set # if not, error out if not sample_found: print("No sample found for template {}".format(template_kind)) return sample_found
547a9240b06b943a578e773b020b8701fb75278e
181,774
def read_dict(filename, div='='): """Read file into dict. A file containing: foo = bar baz = bog results in a dict { 'foo': 'bar', 'baz': 'bog' } Arguments: filename (str): path to file div (str): deviders between dict keys and values Returns: (dict) generated dictionary """ d = {} with open(filename, 'r') as f: for line in f: key, val = line.split(div) d[key.strip()] = val.strip() return d
26bc9ec287d8e338cd7a5fef3a9f0de49ebf6138
673,856
import re def chuvaSateliteONS(nomeArquivo): """ Lê arquivos texto com chuvas verificadas por satélite. Estes arquivos são disponibilizados pelo ONS. Argumento --------- nomeArquivo : caminho completo para o arquivo de chuvas verificada por satélite. Retorno ------- Listas simples com longitudes, latitudes e chuvas. Estas listas precisam ser tratada caso se deseje utilizar modelos de mapa tipo 'contornos'. Recomenda-se utilizar o tipo de mapa 'xy' para este tipo de dado. """ # Listas para acomodares os dados a serem lidos do arquivo txt do ONS. chuva = [] lons = [] lats = [] try: with open(nomeArquivo, 'r') as f: for line in f: #nomePosto = line[0:10] # Uso futuro valores = line[10:] tmp = re.findall(r'[-+]?\d*\.\d+|\d+', valores) lons.append(float(tmp[1])) lats.append(float(tmp[0])) chuva.append(float(tmp[2])) except: raise NameError('Erro ao tentar abrir/acessar arquivo: {}'.format(nomeArquivo)) return lons, lats, chuva
6254962976cb04c2eecf5aceaef45d4566cadfd9
79,415
import re def strip_variable_text(rdf_text): """ Return rdf_text stripped from variable parts such as rdf nodeids """ replace_nid = re.compile('rdf:nodeID="[^\"]*"').sub rdf_text = replace_nid('', rdf_text) replace_creation = re.compile('<ns1:creationInfo>.*</ns1:creationInfo>', re.DOTALL).sub rdf_text = replace_creation('', rdf_text) replace_pcc = re.compile('<ns1:packageVerificationCode>.*</ns1:packageVerificationCode>', re.DOTALL).sub rdf_text = replace_pcc('', rdf_text) return rdf_text
2c4ac4aa5d6dca534f03e501398863445c8977ea
451,159
def resize(bbox, in_size, out_size): """Resize bouding boxes according to image resize operation. Parameters ---------- bbox : numpy.ndarray Numpy.ndarray with shape (N, 4+) where N is the number of bounding boxes. The second axis represents attributes of the bounding box. Specifically, these are :math:`(x_{min}, y_{min}, x_{max}, y_{max})`, we allow additional attributes other than coordinates, which stay intact during bounding box transformations. in_size : tuple Tuple of length 2: (width, height) for input. out_size : tuple Tuple of length 2: (width, height) for output. Returns ------- numpy.ndarray Resized bounding boxes with original shape. """ if not len(in_size) == 2: raise ValueError("in_size requires length 2 tuple, given {}".format(len(in_size))) if not len(out_size) == 2: raise ValueError("out_size requires length 2 tuple, given {}".format(len(out_size))) bbox = bbox.copy() x_scale = out_size[0] / in_size[0] y_scale = out_size[1] / in_size[1] bbox[:, 1] = y_scale * bbox[:, 1] bbox[:, 3] = y_scale * bbox[:, 3] bbox[:, 0] = x_scale * bbox[:, 0] bbox[:, 2] = x_scale * bbox[:, 2] return bbox
621eb71ad28eecab3d80131b4b429f35ec8b4a13
341,703
def remote_nodes(graph): """ Return remote nodes Remote nodes are isolated nodes that are not connected to anything :param graph: :return: """ return [u for u in graph.nodes() if len(list(graph.neighbors(u))) == 0]
af05c209cde7bb8f9a2e498ea0b4150debfaa245
563,886
def DecodeContent(data: bytes): """Convert utf-8 encoded bytes to a string.""" unpadded = data.rstrip(b"\00") content = unpadded.decode("utf-8", "strict") return content
387de22ba6d70da36085457d7ebc3cbb332e0ca4
410,882
def hyphen_last(s): """Converts '-foo' to 'foo-', so that 'foo-' comes after 'foo' which is useful for sorting.""" if s.startswith('-'): return s[1:] + '-' return s
b791ac758eb5a9e6949a83576a2fa19c09154324
135,352
def get_line_list(path) -> list: """ Returns a file as a list of lines. """ return path.read_text().splitlines()
c1ef2c648dc0ede205d96db857eb221505035bc8
188,000
from io import StringIO def ase_to_xyz(atoms, comment="", file=True): """Convert ASE to xyz This function is useful to save xyz to DataFrame. """ xyz = StringIO() symbols = atoms.get_chemical_symbols() natoms = len(symbols) xyz.write("%d\n%s\n" % (natoms, comment)) for s, (x, y, z) in zip(symbols, atoms.positions): xyz.write("%-2s %22.15f %22.15f %22.15f\n" % (s, x, y, z)) if file: return xyz else: return xyz.getvalue()
dcacdb5550c1cea2706190912556d84acae0094d
43,446
def get_isa_field_name(field): """ Return the name of an ISA field. In case of an ontology reference, returns field['name']. :param field: Field of an ISA Django model :return: String """ if type(field) == dict: return field['name'] return field
79480fb09a1f2a717d1c54472748207b8bf3f6f3
653,176
def run_program(codes, noun = None, verb = None): """ >>> run_program([1, 0, 0, 0, 99]) [2, 0, 0, 0, 99] >>> run_program([2, 3, 0, 3, 99]) [2, 3, 0, 6, 99] >>> run_program([2, 4, 4, 5, 99, 0]) [2, 4, 4, 5, 99, 9801] >>> run_program([1, 1, 1, 4, 99, 5, 6, 0, 99]) [30, 1, 1, 4, 2, 5, 6, 0, 99] """ ip = 0 prog = codes.copy() prog[1] = noun if noun != None else prog[1] prog[2] = verb if verb != None else prog[2] while prog[ip] != 99: if prog[ip] == 1: prog[prog[ip+3]] = prog[prog[ip+1]] + prog[prog[ip+2]] elif prog[ip] == 2: prog[prog[ip+3]] = prog[prog[ip+1]] * prog[prog[ip+2]] ip += 4 return prog
a016feacf662f3e8f0b53659ff7d317e9bc2eb31
200,678
def f4(x): """Evaluate the estimate x**4+x**3+x**2+x.""" return x*(x*(x*x+x)+x)+x
6a5e258d77992e8c15a6dddb04627a7d5c8467d9
16,278
def is_valid_port(port): """Check if given port is valid""" return(0 <= int(port) <= 65535)
5318f312573f68e364a4e8b80a92af4038f5bdf1
405,739
def check_in(position, info_pos_line_pairs): """ Check if position corresponds to the starting position of a pair in info_pos_line_pairs (return pair if found, empty list otherwise) :param position: list :param info_pos_line_pairs: list of lists :return: list """ # pos_pair form: [info, [in_line_position_1, line_number_1], [in_line_position_2, line_number_2]] for i in info_pos_line_pairs: if position[0] == i[1][0] and position[1] == i[1][1]: return i return []
26231ec22468e6fccd14d55b30b818a8c1773b78
685,235
def in_permissions(permissions, value): """ Given a permissions mask, check if the specified permission value is within those permissions. :param permissions: permissions set as integer mask :param value: permission value to look for :type permissions: int :type value: int :return: is value in permissions? """ return bool(permissions & value)
50a4a0db406c24799caf17e0f109a82a480ea100
570,812
def ret_start_point(pn: str, keyword: bytes): """ 1) return cid and tid from this example line CALLID[3] TID[3756] IJ T2M 0x63621040->0x65cf6450(avformat-gp-57.dll!avformat_open_input+0x0) 2) for now, this function is case sensitive """ with open(pn, 'rb') as f: lines = f.readlines() for line in lines: if keyword in line and b"0x0" in line: cid = int(line.split(b"CALLID[")[1].split(b"]")[0]) tid = int(line.split(b"TID[")[1].split(b"]")[0]) return cid, tid raise Exception("Cannot find the starting function from the trace file")
435fa2f5a65b93ca427d6afb0b1e817f44bfef10
76,758
def get_diff(url, client): """Uses client to return file diff from a given URL.""" return client.get(url)
e2fce7d01f4eee2e806393c865e54dd5ffe1a339
54,174
def write_tag_file_text(tags, delimiter="\n"): """ Write the text entries for a lit of tags. Parameters ---------- tags: list delimiter: str Returns ------- text: str """ text = "" for t in tags: text += f"{t}{delimiter}" return text
1a7a7133a672d9183361813dde38e8819755b76c
443,185
def kl_div(mean, logvar): """Computes KL Divergence between a given normal distribution and a standard normal distribution Parameters ---------- mean : torch.tensor mean of the normal distribution of shape (batch_size x latent_dim) logvar : torch.tensor diagonal log variance of the normal distribution of shape (batch_size x latent_dim) Returns ------- loss : torch.tensor KL Divergence loss computed in a closed form solution """ batch_loss = 0.5 * (mean.pow(2) + logvar.exp() - logvar - 1).mean(dim=0) loss = batch_loss.sum() return loss
39fc74df4190a023e5b03132cd3102dc562a0401
659,646
import math def get_page_total(total_number, per_page_number): """ Given a total page number and number of items per page, calculate the page total Parameters ---------- total_number: int Total number of pages per_page_number: int Number of items per page Returns ------- Integer representing the total number of pages """ return int(math.ceil(float(total_number)/per_page_number))
99e50a600051090db233b50081f52942d4938713
507,530
import collections def combine_dicts(dict_list): """Combines the dictionaries in dict_list. Args: dict_list: A list of dicts. Each dict maps integers to lists. Returns: combined: A dict that has for every key the 'combined' values of all dicts in dict list that have that key. Combining the values for a key amounts to concatenating the corresponding lists. """ combined = collections.defaultdict(list) for d in dict_list: for k, v in d.items(): combined[k].extend(v) return combined
197636dca7070c6aba53ad3e1f32d0f7db8d545e
256,100
def split_evr(version): """ Return a tuple of epoch, version, release from a version string """ if '~' in version: epoch, version = version.split('~', 1) else: epoch, version = ('0', version) release = None if '-' in version: version, release = version.rsplit('-', 1) else: version, release = (version, None) return epoch, version, release
9e437c473b3fb0275f62b5fbf9dad64058d56b50
50,146
def bytes_coutwildrnp_zip(path_coutwildrnp_zip): """The zip file's bytes""" with open(path_coutwildrnp_zip, 'rb') as src: return src.read()
bd62d1ce2a2b20570ca45a8361e5ddb19c269725
543,419
def get_partial_index(df, start=None, end=None): """Get partial time index according to start and end Parameters ---------- df: pd.DatFrame or pd.Series start: str, optional, e.g., '2000-01-01' end: str, optional, e.g., '2017-08-31' Returns ------- pd.DatetimeIndex """ if start is not None: df = df.loc[df.index >= start] if end is not None: df = df.loc[df.index <= end] return df.index
17b2426ae29eb5ba9a10a1d672bc9b954c69f504
628,006
def read_lines(filename): """Read all lines from a given file.""" with open(filename) as fp: return fp.readlines()
f3005b1e1bc8a98fe543a1e364eec70ad4d85188
678,789
def is_valid_read(read): """Check if a read is properly mapped.""" if (read.mapping_quality >= 20 and read.reference_end and read.reference_start): return True return False
1ad54406c86a5375b880d6cc00afad3a173fda58
642,079
def sum_arithmetic_sequence(a_n: int) -> int: """ Returns 1 + 2 + ... + a_n. >>> sum_arithmetic_sequence(4) 10 >>> sum_arithmetic_sequence(5) 15 """ return int((a_n * (a_n + 1)) / 2)
1a70e88c5defe674dc0bf3067252b6133148584e
200,762
def IncludeCompareKey(line): """Sorting comparator key used for comparing two #include lines. Returns the filename without the #include/#import prefix. """ for prefix in ('#include ', '#import '): if line.startswith(prefix): return line[len(prefix):] return line
85f3cf7f4cdd3910e78a0239d9c3c566447869d5
569,128