content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
from typing import Tuple
import ipaddress
def validate_ipv4_net(network: str) -> Tuple[bool, str]:
"""
Checks if string is a valid IPv4 network
:param network: string representation of IPv4 network
:return: tuple of (bool, str). (True, msg) if valid; (False, msg) if invalid
"""
try:
ipaddress.IPv4Network(network)
except (ipaddress.AddressValueError, ipaddress.NetmaskValueError, ValueError) as e:
valid = False
msg = "Provided string is not a valid network: {}.".format(e)
else:
valid = True
msg = "String is a network."
return valid, msg
|
53908b5907eb52b2249edf1a03aa26bba6ebba56
| 542,082 |
import struct
def serialize_port(port):
"""Serializes a port number according to the DNSCrypt specification"""
return struct.pack('!H', port)
|
51463af3eea8161d96110a71e59af7c4ebbe18de
| 321,535 |
def check_int(school, international):
"""
Checks if a school is an international school based on a school list and other criteria
Parameters
----------
school: current school being checked
international: AP/IB school list
Returns
-------
Y or N
"""
# list of criteria that could qualify a school as an international school even if it is not on the school lists
int_criteria = ["International Baccalaureate", "IBDP", "IB", "IB Score", "A Level",
"A-Level", "French Baccalaureate", "A Levels", "A*"]
school_name = school['name']
degree_name = school['degree']
if degree_name is None: degree_name = ''
field_of_study = school['field_of_study']
if field_of_study is None: field_of_study = ''
grades = school['grades']
if grades is None: grades = ''
if any(element.lower() == school_name.lower() for element in international["AP"]):
int_hs = 'Y (AP)'
elif any(element.lower() == school_name.lower() for element in international["IB"]):
int_hs = 'Y (IB)'
elif any(element.lower() in school_name.lower() for element in int_criteria) or \
any(element.lower() in degree_name.lower() for element in int_criteria) or \
any(element.lower() in field_of_study.lower() for element in int_criteria) or \
any(element.lower() in grades.lower() for element in int_criteria):
int_hs = 'Y'
else:
int_hs = 'N'
return int_hs
|
5dd3d6152ad8ac55c70bb508e9b15f1c9a7f5e1b
| 193,614 |
def dehom(x):
""" Convert homogeneous points to affine coordinates """
return x[0:-1, :] / x[-1, :]
|
14e3c6b484513f8633457e7b7a64318040ec24c7
| 417,522 |
def composite(image1, image2, mask):
"""
Create composite image by blending images using a transparency mask.
:param image1: The first image.
:param image2: The second image. Must have the same mode and
size as the first image.
:param mask: A mask image. This image can have mode
"1", "L", or "RGBA", and must have the same size as the
other two images.
"""
image = image2.copy()
image.paste(image1, None, mask)
return image
|
cce01353bde95b88b81110befcea98f0915abc7c
| 119,177 |
def sql_timestamp_pretty_print(ts, lang: str = 'en', humanize: bool = True, with_exact_time: bool = False):
"""
Pretty printing for sql timestamp in dependence of the language.
:param ts: timestamp (arrow) as string
:param lang: language
:param humanize: Boolean
:param with_exact_time: Boolean
:return: String
"""
if humanize:
# if lang == 'de':
ts = ts.to('Europe/Berlin')
# else:
# ts = ts.to('US/Pacific')
return ts.humanize(locale=lang)
else:
if lang == 'de':
return ts.format('DD.MM.YYYY' + (', HH:mm:ss ' if with_exact_time else ''))
else:
return ts.format('YYYY-MM-DD' + (', HH:mm:ss ' if with_exact_time else ''))
|
79efcf545dceb3e6df58fde9f23b8fb023aa974c
| 292,346 |
def geoIsOnSegment(loc, line):
"""
Determine if loc is on line segment
Parameters
----------
loc: list
First location, in [lat, lon] format
line: list of lists
Line segment, in [[lat,lon], [lat,lon]] format
Return
------
boolean
True if loc is on line segment, including two edge vertices
"""
[y1, x1] = [line[0][0], line[0][1]]
[y2, x2] = [loc[0], loc[1]]
[y3, x3] = [line[1][0], line[1][1]]
val = (x2 * y3 + x3 * y1 + x1 * y2) - (x2 * y1 + x3 * y2 + x1 * y3)
if (val == 0 and x2 >= min(x1, x3) and x2 <= max(x1, x3) and y2 >= min(y1, y3) and y2 <= max(y1, y3)):
onSegment = True
else:
onSegment = False
return onSegment
|
435b5fd64ae0057fd60eeec84138c20903881748
| 477,809 |
def calculate_bmi(weight, height):
""" Given weight (pounds), height (inches)
Return BMI
"""
return (weight / (height * height)) * 703.
|
f9574c127f91a6209c19e4329aa2a1eb371933bb
| 199,304 |
def page_not_found(error):
""" Handles 404 errors by simply just returning the code and no page rendering"""
return "", 404
|
8776b26997aca654a1281274d0ed8f35e1a0d8b6
| 496,818 |
def create_error_payload(exception, message, endpoint_id):
"""
Creates an error payload to be send as a response in case of failure
"""
print(f'{exception}: {message}')
error_payload = {
'status': 'MESSAGE_NOT_SENT',
'endpointId': endpoint_id if endpoint_id else 'NO_ENDPOINT_ID',
'message': f'{exception}: {message}'
}
return error_payload
|
90f266d22429d385e828dcdd92fca3d7b2e6df48
| 4,728 |
def is_pythonfile(file):
"""Returns True if file extension is py and if not then false."""
if file.endswith('py'):
return True
else:
return False
|
4f7e1609e3d17d7ca58cdf31bebc27761d1d3fb1
| 437,291 |
def convert_comma_separated_integer_to_float(comma_separated_number_string):
"""Converts a string of the form 'x,xxx,xxx' to its equivalent float value.
:param comma_separated_number_string: A string in comma-separated float form to be converted.
:returns: A float representing the comma-separated number.
"""
return float(comma_separated_number_string.replace(',', ''))
|
daddeaa78a3efb8ffd2d5eac122757f041da5f97
| 694,860 |
def pointToGridIndex(x, y, z, sx=1.0, sy=1.0, sz=1.0, ox=0.0, oy=0.0, oz=0.0):
"""
Convert real point coordinates to index grid:
:param x, y, z: (float) coordinates of a point
:param nx, ny, nz: (int) number of grid cells in each direction
:param sx, sy, sz: (float) cell size in each direction
:param ox, oy, oz: (float) origin of the grid (bottom-lower-left corner)
:return: ix, iy, iz:
(3-tuple) grid node index
in x-, y-, z-axis direction respectively
Warning: no check if the node is within the grid
"""
jx = (x-ox)/sx
jy = (y-oy)/sy
jz = (z-oz)/sz
ix = int(jx)
iy = int(jy)
iz = int(jz)
# round to lower index if between two grid node
if ix == jx and ix > 0:
ix = ix -1
if iy == jy and iy > 0:
iy = iy -1
if iz == jz and iz > 0:
iz = iz -1
return ix, iy, iz
|
8df63aa196ed3bec7bcc0ae6478b51308a2a0ab9
| 619,278 |
import click
def click_option_expand(f):
"""Add expand option to command."""
return click.option(
'--expand',
is_flag=True,
help="Display associated assets details"
)(f)
|
9f2a6edd30649817df28eff57e804f4c851070da
| 266,130 |
def read_str(data, start, length):
"""Extract a string from a position in a sequence."""
return data[start:start+length].decode('utf-8')
|
a2d5426937a9a2e61fe5a993951f7275ca50a460
| 186,236 |
def calc_mean_score(movies):
"""Helper method to calculate mean of list of Movie namedtuples,
round the mean to 1 decimal place"""
scores = [movie.score for movie in movies]
return round(sum(scores) / len(scores), 1)
|
f2923c8dd583b1e4aa54dfd4191c5a7aa5484b88
| 612,681 |
def compose_preprocess_fn(*functions):
"""Compose two or more preprocessing functions.
Args:
*functions: Sequence of preprocess functions to compose.
Returns:
The composed function.
"""
def _composed_fn(x):
for fn in functions:
if fn is not None: # Note: If one function is None, equiv. to identity.
x = fn(x)
return x
return _composed_fn
|
5fde96f972d0d730981e88e44ff4c220c242bcfd
| 304,366 |
def normalize(sentence_sets, word2id, max_sent_len):
"""Normalize the sentences by the following procedure
- word to index
- add unk
- pad/ cut the sentence length
- record the sentence length
Args:
sentence_sets: the set of sentence paraphrase, a list of sentence list
word2id: word index, a dictionary
max_sent_len: maximum sentence length, a integer
"""
sent_sets = []
sent_len_sets = []
max_sent_len = max_sent_len + 1
for st in sentence_sets:
st_ = []
st_len = []
for s in st:
s_ = [word2id["_GOO"]]
for w in s:
if(w in word2id): s_.append(word2id[w])
else: s_.append(word2id["_UNK"])
s_.append(word2id["_EOS"])
s_ = s_[: max_sent_len]
if(len(s_) < max_sent_len):
s_len = len(s_) - 1
for i in range(max_sent_len - len(s_)): s_.append(word2id["_PAD"])
else:
s_[-1] = word2id["_EOS"]
s_len = max_sent_len - 1
st_.append(s_)
st_len.append(s_len)
sent_sets.append(st_)
sent_len_sets.append(st_len)
return sent_sets, sent_len_sets
|
a931e07cf9a4a0d04fa68e7ad28b57c7cdcf37d6
| 502,844 |
def get_mdict_item_or_list(mdict, key):
"""
Return the value for the given key of the multidict.
A werkzeug.datastructures.multidict can have a single
value or a list of items. If there is only one item,
return only this item, else the whole list as a tuple
:param mdict: Multidict to search for the key
:type mdict: werkzeug.datastructures.multidict
:param key: key to look for
:return: the value for the key or None if the Key has not be found
"""
if hasattr(mdict, "getlist"):
v = mdict.getlist(key)
if len(v) == 1:
value = v[0]
# Special case for empty strings, treat them as "no-value"
if value == "":
value = None
return value
elif len(v) == 0:
return None
else:
return tuple(v)
return None
|
d330d3555a989f4b7f0b3e9b17cf5190f9244b70
| 519,390 |
def parse(afile, sep=' '):
"""Parse contact file.
@param afile contact file
@param sep separator of contact file (default=' ')
Ensures: Output is sorted by confidence score.
@return [(score, residue a, residue b)]
"""
contacts = []
for aline in afile:
if aline.strip() != '':
line_arr = aline.strip().split(sep)
if line_arr[0].startswith('E'):
continue
i = int(line_arr[0])
j = int(line_arr[1])
score = float(line_arr[-1])
if abs(i - j) > 4:
contacts.append((score, i, j))
afile.close()
contacts.sort(key=lambda x: x[0], reverse=True)
return contacts
|
1dcf1bea41d4b79c297f29485e8f053c55052d3e
| 269,924 |
def split(array, n):
"""
Splits an array into two pieces.
Args:
array: The array to be split.
n: An integer or float.
If n is an integer, one of the arrays will contain n elements, the other will contain every other element.
If n is a float, it needs to be between 0 and 1. The split will be such that one of the arrays will
contain n*len(array) elements, the other will contain every other element.
Returns:
Two lists a, b.
a is the list with the specified size.
b is the list with all the other elements.
"""
array = list(array)
if isinstance(n, float):
length = len(array)
n = int(n * length)
return array[:n], array[n:]
|
095dab4f6f88bf3bb132771bf3d20abd9d239c49
| 512,324 |
def _get_session_id_from_cookie(request, cookie_name, cookie_signer):
"""
Attempts to retrieve and return a session ID from a session cookie in the
current request. Returns None if the cookie isn't found or the value cannot
be deserialized for any reason.
"""
cookieval = request.cookies.get(cookie_name)
if cookieval is not None:
try:
session_id = cookie_signer.loads(cookieval)
return session_id
except ValueError:
pass
return None
|
e88e186a7e0e38984706454b4cf9936ef1b639da
| 113,376 |
def mask_data(ds, mask_mapping):
"""
Mask data values according to the mask_mapping parameter
"""
for var, missing_value in mask_mapping.items():
ds[var] = ds[var].where(ds[var] != missing_value)
return ds
|
f1e745aa33ee58b16cdc27b0c7a0f74bf99dc941
| 520,397 |
def twos_complement(value: int) -> int:
"""
This method returns the 16-bit two's complement of a positive number
(used for sending negative values to the controller). It raises an error
if the argument is too large or is negative.
"""
assert value.bit_length() <= 16, "Value too large!"
assert value > 0, "Value is negative!"
return (2 ** 16) - value
|
58a48d6fa436c79158ba1e8de4a036acc712832e
| 218,066 |
def is_content_authored_by(content, user):
"""
Return True if the author is this content is the passed user, else False
"""
try:
return int(content.get('user_id')) == user.id
except (ValueError, TypeError):
return False
|
9a6846b04bce0066973aac3e3a5dfda2db2b1663
| 53,742 |
def _has_alternative_alignments(aligned_segment):
"""Return true if read has alternative alignments"""
tags = aligned_segment.get_tags()
return "XA" in [x[0] for x in tags]
|
74a383afa42988adeca15c63f78ed10eb2deb8ed
| 523,072 |
def single_pcrosstalk(total_pcrosstalk: float) -> float:
"""
Inverse formula to ``total_pcrosstalk''
Parameters
----------
total_pcrosstalk : float
The probability of total crosstalk events.
Returns
-------
p_crosstalk : float
The probability of a single crosstalk event.
"""
return 1 - (1 - total_pcrosstalk) ** 0.25
|
401934183dd50dfad5f15ca91a183054e756e4e7
| 570,721 |
def format_bird_bgp_community(target):
"""Convert from standard community format to BIRD format.
Args:
target {str} -- Query Target
Returns:
{str} -- Formatted target
"""
parts = target.split(":")
return f'({",".join(parts)})'
|
fc9339e3e0ffde33b6d7330d0f74c3cdee465aab
| 523,493 |
def format_coefficient(model):
"""
Formats the coefficient of a model for display.
:param model: A linear model
:type model: sklearn.linear_model.LinearRegression
:return: The formatted coefficient
:rtype: str
"""
return "{:,}".format(round(model.coef_.tolist()[0][0], 2))
|
e006ed5bde24f76fc2a980c679455f8fae65d83f
| 280,554 |
def get_chess_square_reverse(size, x, y):
"""
Returns the coordinates of the start of the square block on the board given the block's
coordinates
"""
return (x * size // 8, y * size // 8)
|
083b9bee26b70f4704ed0182fb1e4a2baeb01c4b
| 419,068 |
from typing import Tuple
def xgcd(a: int, b: int) -> Tuple[int, int, int]:
"""Extended Euclidean algorithm.
Finds :code:`gcd(a,b)` along with coefficients :code:`x`, :code:`y` such that
:code:`ax + by = gcd(a,b)`.
Args:
a: first number
b: second number
Returns:
gcd(a,b), x, y
"""
x, y, u, v = 0, 1, 1, 0
while a != 0:
q, r = b // a, b % a
m, n = x - u * q, y - v * q
b, a, x, y, u, v = a, r, u, v, m, n
return b, x, y
|
6d8764e21511b473b968b24d6783ac97ead0a180
| 669,732 |
def _isnumeric(var) :
"""
Test if var is numeric, only integers are allowed
"""
return type(var) is int
|
51c29247a5d4531f565534afe7750a13138c110e
| 692,960 |
def tlv_string_xml_mapped() -> str:
"""Return the mapped XML data for the test tree as string."""
return """<Tlv>
<ConstructedTagE1>
<PrimitiveTag9F1E>16021437</PrimitiveTag9F1E>
<ConstructedTagEF>
<PrimitiveTagDF0D>M000-MPI</PrimitiveTagDF0D>
<PrimitiveTagDF7F>1-22</PrimitiveTagDF7F>
</ConstructedTagEF>
<ConstructedTagEF>
<PrimitiveTagDF0D>M000-TESTOS</PrimitiveTagDF0D>
<PrimitiveTagDF7F>6-5</PrimitiveTagDF7F>
</ConstructedTagEF>
</ConstructedTagE1>
</Tlv>"""
|
d30e1af8adaea971fd64bc9152d72b8626d55927
| 471,332 |
def extract_machine_code(assembly_lines):
"""
Extract machine code from assembly line dictionaries.
Args:
assembly_lines (list(dict)): List of assembly line info
dictionaries to extract machine code from. See
:func:`~.get_assembly_line_template` for details on what
those dictionaries contain.
Returns:
list(str): List of bit strings for the machine code.
"""
machine_code = []
for assembly_line in assembly_lines:
if assembly_line["has_machine_code"]:
for mc_byte in assembly_line["mc_bytes"]:
machine_code.append(mc_byte["bitstring"])
return machine_code
|
757dd311e13a5c73fb3715b7195349555c02aab4
| 589,582 |
def send_request(client, post_data, **kwargs):
"""uses a dict to create a request on dataforSeo api
parameters:
client : Restclient object created with create_request
post_data: dict created with create_request
Optional parameters:
server: server to use for request
returns json style list"""
# set optional arguments
server = kwargs.get("server", "/v3/serp/google/organic/task_post")
response_ready = client.post(server, post_data)
return response_ready
|
973fef88a77a592c8129ad5e409430173da08d69
| 648,639 |
def get_keys(d, value):
"""Renvoie la liste des clés de d ayant la valeur value."""
t = []
for k in d:
if d[k] == value:
t.append(k)
return t
|
fe68795007e1fa749da4acbd2935cdaee162ff38
| 434,409 |
def move_axis(data, label, new_position):
"""Moves a named axis to a new position in an xarray DataArray object.
Args:
data (DataArray): Object with named axes
label (str): Name of the axis to move
new_position (int): Numerical new position of the axis.
Negative indices are accepted.
Returns:
data with axis in new position
"""
# find current position of axis
try:
pos = data.dims.index(label)
except ValueError as e:
raise ValueError(f"Axis name {label} does not exist in input data") from e
# create list of labels with new ordering
axis_labels = list(data.dims)
# the new position will be _before_ the given index, so will fail with a negative index
# convert to a positive index in that case
if new_position < 0:
new_position += len(axis_labels)
axis_labels.insert(new_position, axis_labels.pop(pos))
# do the move
return data.transpose(*axis_labels)
|
da58b00560032ded1847066222f50da50ff7c171
| 559,658 |
import torch
def subsequent_mask(seq_len):
"""
## Subsequent mask to mask out data from future (subsequent) time steps
"""
mask = torch.tril(torch.ones(seq_len, seq_len)).to(torch.bool).unsqueeze(-1)
return mask
|
43cace3a2d4cc32a43136cf36766f280707ee677
| 160,642 |
def time_until_next_event(prng, net_rate):
"""Compute the time at which the next event is due to occur.
All events are modeled as Poisson processes with exponentially
distributed waiting times. Units of time are chosen such that the
average time it takes for a given cell to divide is 1.
"""
return prng.standard_exponential() / net_rate
|
d429006563ab0ead27ec019f002665d77ec7dd9e
| 391,101 |
def _update_dtypes(candidate_model):
"""Update dtypes of specific columns from float to int.
Updates dtypes of *candidate_model* so that columns representing integer
are set to integers.
Args:
candidate_model (pd.DataFrame): Data frame representing a causal
forest model, which might have columns that represent integer dtypes
but are stored as floats.
Returns:
fitted_model (pd.DataFrame): Updated model.
"""
columns_to_int = [
"left_child",
"right_child",
"level",
"split_feat",
]
fitted_model = candidate_model.copy()
fitted_model[columns_to_int] = fitted_model[columns_to_int].astype("Int64")
return fitted_model
|
b0186ed415ad5dd7907ad10c1a000b2784d69285
| 157,258 |
import re
def filter_by_category(result, name_filter=None):
""" Filter by category name the result returned from ZIA.
:param result: Dict of categories from ZIA response.
:param name_filter: A regex string used to filter result.
:return: Filtered result.
"""
categories = result.get("categories", [])
regex = r'{}'.format(name_filter)
# Add category total and filtered counts to result.
result.update({
"category_counts": {
"total": len(categories),
"filtered": len(categories)
}
})
if name_filter:
filtered_categories = [c for c in categories if re.search(regex, c.get("configuredName", ''), re.I)]
result["categories"] = filtered_categories
result["category_counts"]["filtered"] = len(filtered_categories)
return result
|
da5e1c716a86907bb953abf8821962e76094de9d
| 77,509 |
def ipkg_meta_from_pkg(pkg):
"""Return meta dict for Installed pkg from a PackageDescription
instance."""
meta = {}
for m in ["name", "version", "summary", "url", "author",
"author_email", "license", "download_url", "description",
"platforms", "classifiers", "install_requires",
"top_levels"]:
meta[m] = getattr(pkg, m)
return meta
|
7c73546854fe022005bb7cd65711d850fc744645
| 692,799 |
import copy
import random
def pick_random_idx(idices, num, seed=0):
"""
Pop the "num" number of random samples from the sequence "indices"
Args:
idices (Sequence):
num (Int): The number to pop up the samples from the "idices"
seed(Int): Random seed
Returns:
remaining_sequences, pop-upped sequences
"""
shuffled_idx = copy.deepcopy(idices)
random.Random(seed).shuffle(shuffled_idx)
picked_idx = shuffled_idx[:num]
remain_idx = shuffled_idx[num:]
return remain_idx, picked_idx
|
45840fa4a2cb4991022caea67e3ba8a5ce713ce9
| 429,463 |
def _to_latex(string):
"""Latex-decorate a string."""
return ('$' + string + '$')
|
fc03b93086393c772aa932a37560f472d0624c6f
| 126,334 |
def itoa(num, base=10):
""" Convert a decimal number to its equivalent in another base.
This is essentially the inverse of int(num, base).
"""
negative = num < 0
if negative:
num = -num
digits = []
while num > 0:
num, last_digit = divmod(num, base)
digits.append('0123456789abcdefghijklmnopqrstuvwxyz'[last_digit])
if negative:
digits.append('-')
digits.reverse()
return ''.join(digits)
|
297bc917d689c7ca7065d9e53d62efeb84208cf8
| 568,533 |
def round(x: int, divisor: int) -> int:
"""Round x to the multiplicity of divisor not greater than x"""
return int(x / divisor) * divisor
|
e598827058d5c7c37e32f8d213690875403fbe8d
| 52,251 |
def unwrap_twist(twist):
"""
Unwraps geometry_msgs/Twist into two tuples of linear and angular velocities
"""
l_x = twist.linear.x
l_y = twist.linear.y
l_z = twist.linear.z
a_x = twist.angular.x
a_y = twist.angular.y
a_z = twist.angular.z
return (l_x, l_y, l_z), (a_x, a_y, a_z)
|
66c4eceeea7791790252ea01c7e8aabe28ea9be0
| 33,852 |
def antipode_v(ll):
"""Antipodes of points given by longitude and latitude."""
antipode = ll.copy()
antipode[0] -= 180
index = antipode[0] < -180
antipode[0, index] += 360
antipode[1] *= -1
return antipode
|
0775c1b5d9ec77a0866708a072a08081077669d9
| 220,384 |
def where_above(list, limit):
"""
where_above behaves like table.where(column, are.above(limit)).
The analogy is completed if you think of a column of a table as a list and return the filtered column instead of the entire table.
>>> where_above([1, 2, 3], 2)
[3]
>>> where_above(range(13), 10)
[11, 12]
>>> where_above(range(123), 120)
[121, 122]
"""
return [x for x in list if x > limit]
|
fe02f5d88aff90cac4041fdf71b7fbfc2ed4a978
| 403,761 |
def funding_rate(self, symbol: str, **kwargs):
"""funding Rate history
GET /fapi/v1/fundingRate
https://binance-docs.github.io/apidocs/futures/en/#get-funding-rate-history
Args:
symbol (str, optional): the trading symbol
Keyword Args:
limit (int, optional): limit the results. Default 100; max 1000.
startTime (int, optional): Start Time.
endTime (int, optional): End Time.
If startTime and endTime are not sent, the most recent limit datas are returned.
If the number of data between startTime and endTime is larger than limit, return as startTime + limit.
In ascending order.
"""
params = {"symbol": symbol, **kwargs}
return self.query("/fapi/v1/fundingRate", params)
|
f76b3d8d93d34164e0397c86bb18a1eb674612eb
| 103,195 |
def has_attribute(object, name):
"""Check if the given object has an attribute (variable or method) with the given name"""
return hasattr(object, name)
|
44f0cd1cc54fe61b755d94629e623afe234fe99d
| 682,145 |
import re
def format_gid(gid):
"""Internal function to strip transcript dot-notation from IDs."""
return re.sub(r"\.\d*", "", gid)
|
f994298f8f9ef659f459cea678787d0cd661b6da
| 529,380 |
def construct_dom_id_filter(dom_resource_subclass, dom_id_value):
"""
Returns a new dict w/ one entry: { <dom-id-key>: <dom-id-value>}
The dom-id-key is name of the ID field/attribute for the given type of
DOM resource (a subclass of pvc_nova.objects.dom.Resource). The
dom-id-key is obtained from a class-method 'get_id_attr_name()', which
should be defined on the given DOM Resource subclass.
"""
return {dom_resource_subclass.get_id_attr_name(): dom_id_value}
|
dfcb55672f301fbb19f082f89d590f7333be37b4
| 150,609 |
def _simple_string_value(tree, kind, name):
""" base function for extracting a simple parameter value.
:param tree: the parameters tree.
:param kind: the xml-tag name of the parameter.
:param name: the name of the parameter.
:returns value: the content of the parameter 'Value' as string."""
query = ".//{kind}[@Name='{name}']/Value".format(kind=kind, name=name)
return tree.find(query).text
|
473919cc08fb0b1fd0b73dcdcdc730affd29daff
| 103,987 |
def find_optional_start(line):
"""Find the starting position of the optional fields on the given line."""
pos = 0
for i in range(0, 11):
pos = line.find("\t", pos)
if -1 == pos:
return -1
pos += 1
return pos
|
c10886a1768566c5ed8011a48fc8783dff12de1a
| 297,776 |
def chirp_mass(mass1, mass2):
"""
Takes two masses and calculates the corresponding chirpmass.
Args:
mass1: Mass 1
mass2: Mass 2
Returns:
chirpmass: The chirpmass that corresponds to mass1, mass2
"""
return (mass1 * mass2) ** (3 / 5) / (mass1 + mass2) ** (1 / 5)
|
41ccb3e573f361538c7591942b445e629b4c6c84
| 184,679 |
def _find_line_containing(source, index):
"""Find (line number, line, offset) triple for an index into a string."""
lines = source.splitlines()
if not lines:
# Special case: empty program
return 1, '', 0
this_line_start = 0
for zero_index_line_number, line in enumerate(lines):
next_line_start = this_line_start + len(line) + 1
if next_line_start > index:
return zero_index_line_number + 1, line, index - this_line_start
this_line_start = next_line_start
# Must be at the end of file
raise AssertionError("index >> len(source)")
|
8c90e0989b1e073a7c0df65b32778040890b21bb
| 195,885 |
from pathlib import Path
def get_file_id(fname):
"""Returns the Gutenberg File ID"""
pth = Path(fname)
# as per file structure the filename has some variations but the parent folder is always the ID
return pth.parent.name
|
4cfa633937ea7baa0fe0f9390fdab59630437525
| 342,417 |
def length(seq):
""" Returns the length of the sequence `seq`. """
return len(seq)
|
20e9ed2148e14c90b47ba6559312250ba5e03a51
| 421,574 |
def override(left, right, key, default):
"""Returns right[key] if exists, else left[key]."""
return right.get(key, left.get(key, default))
|
f6f5da1840aa4fa70fe0db400be9bebd2f21e383
| 674,561 |
def get_syst ( syst , *index ) :
"""Helper function to decode the systematic uncertainties
Systematic could be
- just a string
- an object with index: obj [ibin]
- a kind of function: func (ibin)
"""
if isinstance ( syst , str ) : return syst
elif syst and hasattr ( syst , '__getitem__' ) : return str ( syst [ index ] )
elif syst and callable ( syst ) : return str ( syst ( *index ) )
elif syst : raise AttributeError("Invalid systematic %s/%s" % ( syst , type( syst ) ) )
return ''
|
37b2b39245587da16345752e02759d2c94c93415
| 702,800 |
def isSignatureValid(expected, received):
"""
Verifies that the received signature matches the expected value
"""
if expected:
if not received or expected != received:
return False
else:
if received:
return False
return True
|
f911521998e45dfc3804039e9105a921e33e9a67
| 204,446 |
def get_attributes(aspect, id):
"""Return the attributes pointing to a given ID in a given aspect."""
attributes = {}
for entry in aspect:
if entry['po'] == id:
attributes[entry['n']] = entry['v']
return attributes
|
2f1d1c006e7df700da9fff8e5238c93b20eed8c5
| 395,068 |
def diff_month(date1, date2):
"""Counts the number of months between two dates
Args:
d1 - date to
d2 - date from
Returns:
number of months between two dates
"""
return (date1.year - date2.year) * 12 + date1.month - date2.month
|
2e224f9432cb4a2da7ad0b492d8acb9b4948f1af
| 551,825 |
def boxBasics(box):
"""basic statistics of box. Returns (mean,var)"""
mean=box.box_data.mean()
var=box.box_data.var()
return (mean,var)
|
0e9493722637adef80e606225bd712546c998470
| 671,622 |
def _resort_categorical_level(col_mapping):
"""
Resort the levels in the categorical encoders if all levels can be converted
to numbers (integer or float).
Args:
col_mapping: the dictionary that maps level string to int
Returns:
New col_mapping if all levels can be converted to numbers, otherwise
the original col_mapping
"""
def is_number(string):
try:
float(string)
return True
except ValueError:
return False
if all(map(is_number, col_mapping.keys())):
key_tuples = [(k, float(k)) for k in col_mapping.keys()]
sorted_key_tuples = sorted(key_tuples, key=lambda x: x[1])
new_mapping = {}
value = 1
for t in sorted_key_tuples:
new_mapping[t[0]] = value
value += 1
return new_mapping
else:
return col_mapping
|
0740b4bb210637a144e00e29ff023af375801c56
| 285,832 |
def OR(bools):
"""Logical OR."""
if True in bools:
return True
return False
|
200e78e6ef1ce91ad36301cea0b8f56dc7301219
| 647,078 |
def ether2wei(ether: float):
"""Converts units of wei to Ether (1e18 * wei)."""
return ether * 1e18
|
b826daaa171d24b43b7f901b6498f24f5481ed1c
| 41,448 |
def GetDimensions(nc):
"""Returns a dictionary describing the dimensions in a netCDF file."""
return({name: {
"size": dim.size, "UNLIMITED": True} if dim.isunlimited() else {
"size": dim.size, "UNLIMITED": False}
for name, dim in nc.dimensions.items()})
|
a8da5e01745962949fc9b098c4949ae7d6f558dc
| 303,522 |
def _calculate_num_runs_failures(list_of_results):
"""Caculate number of runs and failures for a particular test.
Args:
list_of_results: (List) of JobResult object.
Returns:
A tuple of total number of runs and failures.
"""
num_runs = len(list_of_results) # By default, there is 1 run per JobResult.
num_failures = 0
for jobresult in list_of_results:
if jobresult.retries > 0:
num_runs += jobresult.retries
if jobresult.num_failures > 0:
num_failures += jobresult.num_failures
return num_runs, num_failures
|
f67a6b1fa6a5aefc19bfe7e99ed77473801e6b83
| 48,193 |
def check_padding(pads, dim, padval):
"""Check each padding start/end value
and set the sufficient pad value.
If we have asymmetry padding, we will return
True to indicate the need for a separate padding function"""
asymmetry = False
for i in range(dim):
s = pads[i]
e = pads[i+dim]
if s == e:
padval.append(s)
else:
asymmetry = True
# We must add a separate pad function for asymmetry padding.
# Since the pad function will do all the padding,
# we will remove all padding here.
del padval[:]
padval.extend([0]*dim)
break
return asymmetry
|
3841eda76f09910dbc4199123a723bcd017ee21e
| 198,046 |
def cap_feature_values(df, feature, cap_n=10):
"""Cap the values of a given feature, in order to reduce the
effect of outliers.
For example, set NUMBER_OF_HABITABLE_ROOMS values that are
greater/equal to 10 to "10+".
Paramters
----------
df : pandas.DataFrame
Given dataframe.
feature : str
Feature for which values are capped.
cap_n : int, default=10
At which value to cap.
Return
---------
df : pandas.DataFrame
Dataframe with capped values."""
# Cap at given limit (i.e. 10)
df.loc[(df[feature] >= cap_n), feature] = cap_n # str(cap_n) + "+"
return df
|
273e755ec1b677b662732c8ae598581c01a25a53
| 118,786 |
def parse_title(raw_title):
"""
Format the title associated with a link.
This format a title associated with a link. Some of them include some bad
html elements/characters.
:param raw_title: A raw title
:type raw_title: str
:return: A formated title
:rtype: str
"""
title = raw_title.replace('<strong>', '')
title = title.replace('</strong>', '')
title = title.replace(' ', ' ')
return title
|
5f459aa852861637997a03e4b9d5e6557d6d8d65
| 383,536 |
def flatten(in_list):
"""Flatten list.
>>> flatten([])
[]
>>> flatten([1, 2, 3])
[1, 2, 3]
>>> flatten(([[1], [2, 3]]))
[1, 2, 3]
>>> flatten([1, [[2], 3]])
[1, 2, 3]
"""
def flatten_generator(in_list_inner):
for item in in_list_inner:
try:
for inner_item in flatten_generator(item):
yield inner_item
except TypeError:
yield item
return list(flatten_generator(in_list_inner=in_list))
|
d862a2daa508ca56f210a41573fb5ba8ac3877b9
| 256,130 |
def sql_from_filename(filename):
"""
Given a filename return the SQL it contains.
This function exists to support unit testing.
:param filename: path to exiting file containing SQL
:return: str: sql commands to execute
"""
with open(filename, 'r') as infile:
return infile.read() + "\n"
|
da965543f6ed2fafdb3717237c80457bf690e3ff
| 99,138 |
def replace_null(x, replace = None):
"""
Replace null values
Parameters
----------
x : Expr, Series
Column to operate on
Examples
--------
>>> df = tp.Tibble(x = [0, None], y = [None, None])
>>> df.mutate(x = tp.replace_null(col('x'), 1))
"""
if replace == None: return x
return x.fill_null(replace)
|
6aa7906524b40633bf05ca0178891da249310fff
| 508,326 |
def compute_offsets(task, nc_per_task, is_cifar):
"""
Compute offsets for cifar to determine which
outputs to select for a given task.
"""
if is_cifar:
offset1 = task * nc_per_task
offset2 = (task + 1) * nc_per_task
else:
offset1 = 0
offset2 = nc_per_task
return offset1, offset2
|
300eab41a67f084b7c0ea172fc682e138192d87a
| 514,900 |
def is_prime(number):
"""checks if a given number is prime"""
prime = True
for n in range(2, number):
if prime and number % n == 0:
prime = False
print("The number is not prime")
if prime:
print("The number is prime")
return prime
|
a6119b54e3ff16d7e94ad4ac06e224c623ee5dd1
| 648,361 |
def _ReadFileAndPrependLines(file_path):
"""Reads the contents of a file and prepends the line number to every line."""
with open(file_path) as f:
return "".join("{}${}".format(line_number, line)
for line_number, line in enumerate(f, 1))
|
59c7d03710b7c06ad43fc989166d7a021ee45827
| 234,668 |
def recurse_combine(combo_items: list, idx: int = 0) -> list:
"""Recursively expands 'combo_items' into a list of permutations.
For example recurse_combine([[A, B, C], [D, E], [F]]) returns
[[A, D, F], [A, E, F], [B, D, F], [B, E, F], [C, D, F], [C, E, F]]
"""
result = []
if idx < len(combo_items):
recurse_result = recurse_combine(combo_items, idx + 1)
for item in combo_items[idx]:
for sub_item in recurse_result:
sub_result = [item]
sub_result.extend(sub_item)
result.append(sub_result)
if len(recurse_result) == 0:
result.append([item])
return result
|
effab4c6f29e353d19f88b23f7d2a3bfa854d431
| 674,653 |
import base64
def decode_to_bytes(data: str) -> bytes:
"""
Decodes a base64-encoded string and returns a sequence of bytes.
:param data: The base64-encoded string to decode
:return: decoded bytes
"""
data_bytes = bytes(data, "utf-8")
data_decoded_bytes = base64.b64decode(data_bytes)
return data_decoded_bytes
|
f2d4453c0129924b81d5ea2e5c1578bea72944ee
| 496,780 |
def rubygems_download_url(name, version, platform=None, repo='https://rubygems.org/downloads'):
"""
Return a .gem download URL given a name, version, and optional platform (e.g. java)
and a base repo URL.
For example: https://rubygems.org/downloads/mocha-1.7.0.gem
"""
if not name or not version:
return
repo = repo.rstrip('/')
name = name.strip().strip('/')
version = version.strip().strip('/')
version_plat = version
if platform and platform != 'ruby':
version_plat = '{version}-{platform}'.format(**locals())
return '{repo}/{name}-{version_plat}.gem'.format(**locals())
|
b6cfe7050bf30695bbeab621b2a3cc7f9c662817
| 422,110 |
def normalizeScifloArgs(args):
"""Normalize sciflo args to either a list or dict."""
if isinstance(args, dict) or \
(isinstance(args, (list, tuple)) and (len(args) != 1)):
return args
elif isinstance(args, (list, tuple)):
if isinstance(args[0], (list, tuple, dict)):
return args[0]
else:
return args
else:
raise RuntimeError(
"Unrecognized type for sciflo args: %s" % type(args))
|
49d4528b6ac05f7864f7b1c38f4cfe079b451870
| 227,872 |
def hexdecode(value):
"""
Decodes string value from hex to plain format
>>> hexdecode('666f6f626172')
'foobar'
"""
value = value.lower()
return (value[2:] if value.startswith("0x") else value).decode("hex")
|
b91af6ef77fa1bc8270b62dc72ed7c7a07d96aa9
| 609,319 |
def get_ami_info(ec2, ami_id):
"""
Returns information about the specified AMI.
Parameters
----------
ec2 : botocore.client.EC2
AWS EC2 client.
ami_id : str
AMI ID.
Returns
-------
dict
"""
resp = ec2.describe_images(ImageIds=[ami_id])
return resp['Images'][0]
|
cdb1d05afae5bf0c76df0aa7eca5208771fd2923
| 593,379 |
from typing import Dict
from typing import Optional
def weighted_average(
distribution: Dict[str, float],
weights: Dict[str, float],
rounding: Optional[int] = None,
) -> float:
"""
Calculate a weighted average from dictionaries with the same keys, representing the values and the weights.
Args:
distribution: The values
weights: The weights
rounding: Whether to round off the result
Returns:
The weighted average
"""
msg = "Attempting to calculate weighted average over two dictionaries that do not share keys"
assert distribution.keys() == weights.keys(), msg
numerator = sum([distribution[i] * weights[i] for i in distribution.keys()])
denominator = sum(weights.values())
fraction = numerator / denominator
result = round(fraction, rounding) if rounding else fraction
return result
|
b6c710fc8039b79637c8d45329eb90cc0d1bb264
| 678,674 |
import torch
def rel2abs_traj(rel_pose):
"""Convert a given relative pose sequences to absolute pose sequences.
Args:
rel_pose (torch.Tensor): Relative pose sequence in the form of homogenous transformation matrix. Shape: [N,4,4]
Returns:
torch.Tensor: Absolute pose sequence in the form of homogenous transformation matrix. Shape: [N,4,4]
"""
global_pose = torch.eye(4, dtype=rel_pose.dtype, device=rel_pose.device)
abs_pose = torch.zeros_like(rel_pose)
for i in range(rel_pose.shape[0]):
global_pose = global_pose @ rel_pose[i]
abs_pose[i] = global_pose
return abs_pose
|
b2533d65262da65d80eb4869afde7b1256a8ec52
| 128,893 |
def find_exec_in_executions(searched_exec, executions):
"""
Search if exec is contained in the executions.
:param searched_exec: Execution to search for.
:param executions: List of executions.
:return: Index of the execution, -1 if not found..
"""
for i, existing_exec in enumerate(executions, start=0):
if ("providerId" in existing_exec and "providerId" in searched_exec and
existing_exec["providerId"] == searched_exec["providerId"] or
"displayName" in existing_exec and "displayName" in searched_exec and
existing_exec["displayName"] == searched_exec["displayName"]):
return i
return -1
|
6d2dd2931742a1395a81462643afdbef2b49087e
| 601,069 |
def get_aso_idx_from_id(df, aso_id):
"""Converts an ASO UUID to the corresponding array index
in the orbital prediction numpy array
:param df: The orbital prediction DataFrame
:type df: pandas.DataFrame
:param aso_id: The UUID of the ASO found in the `aso_id`
column of the provided `df` DataFrame
:type aso_id: str
:return: The corresponding index in the orbital prediction
numpy array constructed by `get_orbit_preds`
:rtype: int
"""
return df.index[df.aso_id == aso_id][0]
|
0042c71eda7c98fd86894912606c6eb9cc2df383
| 334,426 |
def word_to_put_req(word_vectors_map, word):
"""
Translate a word to a PUT request to be sent to DynamoDB
"""
return {
'PutRequest': {
'Item': {
'word': {
'S': word
},
'vector': {
'L': [{'N': str(n)} for n in word_vectors_map[word]]
}
}
}
}
|
1734463d60869c4c51ba40f61ad19e16ead75345
| 38,422 |
import re
def apply_cigar(cigar, seq, qual, pos=0, clip_from=0, clip_to=None):
""" Applies a cigar string to recreate a read, then clips the read.
Use CIGAR string (Compact Idiosyncratic Gapped Alignment Report) in SAM data
to apply soft clips, insertions, and deletions to the read sequence.
Any insertions relative to the sample consensus sequence are removed to
enforce a strict pairwise alignment, and returned separately in a
dict object.
@param cigar: a string in the CIGAR format, describing the relationship
between the read sequence and the consensus sequence
@param seq: the sequence that was read
@param qual: quality codes for each base in the read
@param pos: first position of the read, given in zero-based consensus
coordinates
@param clip_from: first position to include after clipping, given in
zero-based consensus coordinates
@param clip_to: last position to include after clipping, given in
zero-based consensus coordinates, None means no clipping at the end
@return: (sequence, quality, {pos: (insert_seq, insert_qual)}) - the new
sequence, the new quality string, and a dictionary of insertions with
the zero-based coordinate in the new sequence that follows each
insertion as the key, and the insertion sequence and quality strings as
the value. If none of the read was within the clipped range, then both
strings will be blank and the dictionary will be empty.
"""
newseq = '-' * int(pos) # pad on left
newqual = '!' * int(pos)
insertions = {}
is_valid = re.match(r'^((\d+)([MIDNSHPX=]))*$', cigar)
tokens = re.findall(r' (\d+)([MIDNSHPX=])', cigar, re.VERBOSE)
if not is_valid:
raise RuntimeError('Invalid CIGAR string: {!r}.'.format(cigar))
end = None if clip_to is None else clip_to + 1
left = 0
for token in tokens:
length, operation = token
length = int(length)
# Matching sequence: carry it over
if operation == 'M':
newseq += seq[left:(left+length)]
newqual += qual[left:(left+length)]
left += length
# Deletion relative to reference: pad with gaps
elif operation == 'D':
newseq += '-'*length
newqual += ' '*length # Assign fake placeholder score (Q=-1)
# Insertion relative to reference
elif operation == 'I':
if end is None or left+pos < end:
insertions[left+pos-clip_from] = (seq[left:(left+length)],
qual[left:(left+length)])
left += length
# Soft clipping leaves the sequence in the SAM - so we should skip it
elif operation == 'S':
left += length
else:
raise RuntimeError('Unsupported CIGAR token: {!r}.'.format(
''.join(token)))
if left > len(seq):
raise RuntimeError(
'CIGAR string {!r} is too long for sequence {!r}.'.format(cigar,
seq))
if left < len(seq):
raise RuntimeError(
'CIGAR string {!r} is too short for sequence {!r}.'.format(cigar,
seq))
return newseq[clip_from:end], newqual[clip_from:end], insertions
|
4f69386c370bff76314d055da123c3185d2768de
| 360,094 |
import re
def make_xlat(*args, **kwds):
"""
Auxuliary function to define a translator that applies multiple character
substitutions at once.
Taken from "Python Cookbook, 2nd Edition by David Ascher, Anna Ravenscroft,
Alex Martelli", Section 1.18
:param args: Dictionary
:param kwds:
:return: A function that uses the given dictionary to apply multiple
changes to a string
"""
adict = dict(*args, **kwds)
rx = re.compile('|'.join(map(re.escape, adict)))
def one_xlat(match):
return adict[match.group(0)]
def xlat(text):
return rx.sub(one_xlat, text)
return xlat
|
a8c4f9a0a293479000d7947932c7fe9b9616e05e
| 502,154 |
def unique_elements_lists(list_in):
"""return the unique elements in a list"""
return list(dict.fromkeys(list_in))
|
dc893f678f079322b198894621d1c9b401b8878f
| 172,541 |
from pathlib import Path
def is_raster_format (image_path: str) -> bool:
"""
Is the file at the provided path a raster image?
Parameters:
image_path (str): Path to file.
Returns:
bool: Whether the file is a raster image.
"""
RASTER_FORMATS = [".jpg", ".jpeg", ".tif", ".tiff"]
format = Path(image_path).suffix.lower()
return format in RASTER_FORMATS
|
9817c1d08f0b8cd4a01073d03f753577106b1c54
| 91,151 |
import types
def is_function(tup):
""" Takes (name, object) tuple, returns True if it is a function.
"""
name, item = tup
return isinstance(item, types.FunctionType)
# def _start(self, spin):
# for args, kwargs in self.subscribers:
# self.subscribers_init.append(rospy.Subscriber(*args, **kwargs))
# is_func = isinstance(self.cl, types.FunctionType
|
e49e0973828d0eea848d29b8a1b954119f1fe490
| 592,682 |
def grids(dims, blocks):
"""
Determine the grid size, given space dimensions sizes and blocks
Parameters
----------
dims : tuple of ints
`(x, y, z)` tuple
Returns
-------
tuple
`(x, y, z)` grid size tuple
"""
if not len(dims) == 3:
raise ValueError("dims must be an (x, y, z) tuple. "
"CUDA dimension ordering is inverted compared "
"to NumPy")
if not len(blocks) == 3:
raise ValueError("blocks must be an (x, y, z) tuple. "
"CUDA dimension ordering is inverted compared "
"to NumPy")
return tuple((d + b - 1) // b for d, b in zip(dims, blocks))
|
c2bfb27c5df4849a267233ff18327e4cfe2a6e7e
| 214,367 |
from typing import Any
from typing import Union
from typing import List
def isType(val: Any, typeArr: Union[List[Any], Any]) -> bool:
"""Helper that checks if the supplied value `val` is of a specific type or of a type present in `typeArr`"""
if isinstance(typeArr, List):
anyMatched = False
for type in typeArr:
if isinstance(val, type):
anyMatched = True
return anyMatched
else:
if not isinstance(val, typeArr):
return False
return True
|
e4faecf10edffa81b6680d55fa91ea6714a8f1df
| 512,715 |
def get_vehicle_mass(vehicle_info):
"""
Get the mass of a carla vehicle (defaults to 1500kg)
:param vehicle_info: the vehicle info
:type vehicle_info: carla_ros_bridge.CarlaEgoVehicleInfo
:return: mass of a carla vehicle [kg]
:rtype: float64
"""
mass = 1500.0
if vehicle_info.mass:
mass = vehicle_info.mass
return mass
|
216f109e9f963ba6de92cf168055b1a7e516d777
| 13,555 |
def split_repo_name(repository):
"""Take a string of the form user/repo, and return the tuple
(user, repo). If the string does not contain the username, then just
return None for the user."""
nameparts = repository.split('/', 1)
if len(nameparts) == 1:
return (None, nameparts[0])
else:
return (nameparts[0], nameparts[1])
|
3740b80c2658315a27498b05832b120a937e053b
| 621,659 |
import re
from datetime import datetime
def matroska_date_to_datetime(date):
"""
Converts a date in Matroska's date format to a python datetime object.
Returns the given date string if it could not be converted.
"""
# From the specs:
# The fields with dates should have the following format: YYYY-MM-DD
# HH:MM:SS.MSS [...] To store less accuracy, you remove items starting
# from the right. To store only the year, you would use, "2004". To store
# a specific day such as May 1st, 2003, you would use "2003-05-01".
format = re.split(r'([-:. ])', '%Y-%m-%d %H:%M:%S.%f')
while format:
try:
return datetime.strptime(date, ''.join(format))
except ValueError:
format = format[:-2]
return date
|
8805d6c0015b518433302bd88ac7d17eb52fd687
| 445,790 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.