content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def not_at_goal_set(trees):
"""convenience / readability function which returns the not terminated trees from a list
:param trees: list of input trees
:type trees: list
:return: trees from the input list which are not terminated
:rtype: list
"""
not_at_goal = []
for tree in trees:
if not tree.terminated:
not_at_goal.append(tree)
return not_at_goal
|
0f5e911573a86deb16f842c8a2d57da06dc7db3f
| 563,773 |
def permalink_to_full_link(link: str) -> str:
"""Turns permalinks returned by Praw 4.0+ into full links"""
return "https://www.reddit.com" + link
|
13a2eb003d4268eaffd4e1d0a51064a7e1b5e009
| 567,912 |
def extract_helm_from_json(input_json):
"""Extracts the HELM strings out of a JSON array.
:param input_json: JSON array of Peptide objects
:return: output_helm: string (extracted HELM strings separated by a newline)
"""
output_helm = ""
for peptide in input_json:
if len(output_helm) > 0:
output_helm += "\n"
output_helm += peptide["HELM"]
return output_helm
|
8bad6bbc46f0c535f76cfb144d0d929a4d4b37c5
| 561,806 |
def category_name(value):
"""Maps category value to names"""
return {
0: "idle",
1: "unassigned",
2: "work",
3: "private",
4: "break",
}.get(value, "?")
|
5db040c808182b71fb3328fffefd82df02c9da73
| 442,761 |
import inspect
def private_method(func):
"""Decorator for making an instance method private."""
def func_wrapper(*args, **kwargs):
"""Decorator wrapper function."""
outer_frame = inspect.stack()[1][0]
if 'self' not in outer_frame.f_locals or outer_frame.f_locals['self'] is not args[0]:
raise RuntimeError('%s.%s is a private method' % (args[0].__class__.__name__, func.__name__))
return func(*args, **kwargs)
return func_wrapper
|
7dcab3cc628d8fa8e9eca357f026c6a7c598ed20
| 147,019 |
def unify_pos(pos, size):
"""
Convert position into standard one.
Example: Given size = 5, Point(-2, -7) -> Point(3, 3)
"""
return pos % size
|
b7298aaa0c0055b038dead8e2a3a8424ca145b72
| 464,813 |
def exclude(func):
"""Return the opposite of ``func`` (i.e. ``False`` instead of ``True``)"""
return lambda x: not func(x)
|
8052e10311a5d0be206da9d3a82a36564e69b7f8
| 607,558 |
import random
def randInt32(rng=random.random):
"""returns a random integer in [-2147483648..2147483647].
rng must return float in [0..1]
"""
i = int(rng() * 0x7FFFFFFF)
if rng() < .5:
i *= -1
return i
|
fd51eeabf32ececcf19acaca425cbcf5844cf00f
| 514,585 |
import typing
def split_name(name: str) -> typing.Tuple[str, str]:
"""
Returns a likely `(first, last)` split given a full name. This uses
very simple heuristics, and assumes Western usage.
:param name: A full name (first and last name).
:return: A split pair with the first names, and the last name.
"""
words = name.split()
first_bits = words[:-1]
last_bits = words[-1:]
while len(first_bits) > 0 and first_bits[-1][0].islower():
last_bits = [first_bits[-1]] + last_bits
first_bits = first_bits[:-1]
first_joined = " ".join(first_bits)
last_joined = " ".join(last_bits)
return first_joined, last_joined
|
54fe7579d382674b35b6e177e2c6feb6beeef6f8
| 380,417 |
def create_grid_string(grid):
"""Return a crossword grid as a string."""
size = len(grid)
separator = ' +' + ('-----+')*size
column_number_line = ' '
column_number_line += ''.join(f' {j:2} ' for j in range(size))
result = f'{column_number_line}\n{separator}\n'
for (i, row) in enumerate(grid):
fill = ' |'
centre_line = f'{i:2}|'
for entry in row:
if entry == '#':
fill += '#####|'
centre_line += '#####|'
else:
fill += ' |'
centre_line += f' {entry} |'
result += f'{fill}\n{centre_line}\n{fill}\n{separator}\n'
return result
|
2a820971f941e30de4d47482b65bbe5c1ebd34cf
| 540,076 |
def superset_data_db_name() -> str:
"""The name (in Superset) of the database that Superset reads from"""
return 'MyCompany DWH'
|
e03a9e07268402badf35d649ef2bf3689e672dc1
| 466,996 |
def get_subsequences_matching_query(hit_obj):
"""Takes a SearchIO hit object, and returns a list with the first element
being a string representing the coordinates of the query to which the
subject sequence aligns, and the second being the corresponding subject
subsequence(s).
"""
# ***Eventually add more sophisticated approach similar to
# search_scaffolds.py, so that multiple HSPs can be represented.
return [str(list(hit_obj[0].query_range)).replace(' ', ''),\
str(hit_obj[0].hit.seq).replace('-', '')]
|
f2382cb92d7b95289b2f4fc35bb08f25a5b830e0
| 611,463 |
def buoy_distance(pixel_width, focal_length, ACTUAL_WIDTH=0.4):
""" Calculates the distance of the buoy from the boat.
The algorithm uses the similar triangles in the following equation:
(focal_len / pixel_width) = (actual_distance / actual_width)
Keyword arguments:
pixel_width -- The width of the buoy in pixels
focal_length -- The focal length of the camera in pixels
ACTUAL_WIDTH -- The actual width of the buoy in desired units (default 0.4m)
Returns:
distance -- The distance of the buoy in the units of the ACTUAL_WIDTH
"""
return focal_length * ACTUAL_WIDTH / pixel_width
|
492c4bb532cfed8aec0619b003711157051331ee
| 491,931 |
def init_jsobject(cls, bridge, name, value, description=None):
"""Initialize a JS object that is a subclassed base type.
Arguments:
cls -- Class the object has to be created from
bridge -- JSBridge instance to use
name -- Name of the JS object
value -- Value of the object wrapped as JS object
Keyword arguments:
description -- Additional information about the object
"""
obj = cls(value)
obj._bridge_ = bridge
obj._name_ = name
obj._description_ = description
return obj
|
18d5a49b23e996c84aee725e29ffed2bee183f96
| 249,401 |
def default_order(json_page_obj):
"""Return ordering based on metadata."""
return json_page_obj["meta_order"], json_page_obj["title"]
|
04afeeaa9fd24b25638dc64cd1d97c4b64e01096
| 155,314 |
def centered_average(nums):
"""
take out 1 value of the smallest and largst
compute and return the mean of the rest
int div --> truncate the floating part?
ASSUME:
+3 ints
pos/neg
unsorted
dupes possible
Intutition:
- computing an average (sum / # of points)
Approach:
1. Simple
- compute the min
- compute the max
- sum the whole list
- subtract (min), and subtract max
- return (remaining_sum) by (len = 2)
Edge Cases:
- all negatives --> normal
- if in prod and saw input that broke constraints --> Error
"""
# - compute the min
# - compute the max
min_val, max_val = min(nums), max(nums)
# - sum the whole list
total = sum(nums)
# - subtract (min), and subtract max
remaining_sum = total - (min_val + max_val)
# - return (remaining_sum) by (len = 2)
return int(remaining_sum / (len(nums) - 2))
|
f6a664dd501b5ac36709d1ea482a5b274174d381
| 562,574 |
def x12_271_member_not_found_message() -> str:
"""A X12 271 message where the member is not found in the payer system and does not have insurance coverage"""
return 'ISA*00* *00* *ZZ*890069730 *ZZ*154663145 *200929*1705*|*00501*000000001*0*T*:~GS*HS*890069730*154663145*20200929*1705*0001*X*005010X279A1~ST*271*4321*005010X279A1~BHT*0022*11*10001234*20060501*1319~HL*1**20*1~NM1*PR*2*ABC COMPANY*****PI*842610001~HL*2*1*21*1~NM1*1P*2*BONE AND JOINT CLINIC*****SV*2000035~HL*3*2*22*0~TRN*2*1453915417*9877281234~NM1*IL*1*DOE*JOHN****MI*11122333301~DMG*D8*19800519*M~AAA*Y**75*C~SE*12*4321~'
|
c98abb2ad2214c56c8a64d0f777f2a4354c7f885
| 550,105 |
def is_file_supported(suffix: str) -> bool:
"""
Check a path to be supported by safitty (only YAML or JSON)
Args:
suffix (str): path extension
Returns:
bool: File is YAML or JSON
"""
return suffix in [".json", ".yml", ".yaml"]
|
d89f10f563f1a415fd108b1a05b989ab20e0b191
| 448,641 |
def spacing(area, shape):
"""
Returns the spacing between grid nodes
Parameters:
* area
``(x1, x2, y1, y2)``: Borders of the grid
* shape
Shape of the regular grid, ie ``(nx, ny)``.
Returns:
* ``[dx, dy]``
Spacing the y and x directions
Examples:
>>> print(spacing((0, 10, 0, 20), (11, 11)))
[1.0, 2.0]
>>> print(spacing((0, 10, 0, 20), (11, 21)))
[1.0, 1.0]
>>> print(spacing((0, 10, 0, 20), (5, 21)))
[2.5, 1.0]
>>> print(spacing((0, 10, 0, 20), (21, 21)))
[0.5, 1.0]
"""
x1, x2, y1, y2 = area
nx, ny = shape
dx = (x2 - x1)/(nx - 1)
dy = (y2 - y1)/(ny - 1)
return [dx, dy]
|
456a895baf875fb32dc9319602620848176b3ba1
| 62,546 |
def look_through_rows(board, column, player):
""" Given a matrix, a column of the matrix, and a key,
This function will look through the column bottom to top,
and find the first empty slot indicated by a 0 and place
a piece there (1 or 2)
>>> look_through_rows(numpy.matrix('0,0,0,0,0; 0,0,0,0,0; 0,0,0,0,0; 0,0,0,0,0'), 2, 1)
matrix([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0]])
>>> look_through_rows(numpy.matrix('0,0,0; 0,0,0; 0,0,0; 0,0,0; 0,0,0; 0,0,0; 0,0,0'), 1, 2)
matrix([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 2, 0]])
"""
if board.shape[1] > column:
count = board.shape[0] - 1
count2 = 1
while count >= 0 and count2 == 1:
if board[count,column] == 0:
board[count,column] = player
count2 = count2 - 1
else:
count = count - 1
return board
else:
print('Improper Column Given')
|
9849a0543d7430ac215b1debb6af820b573bde50
| 342,234 |
def get_available_resources(threshold, usage, total):
"""Get a map of the available resource capacity.
:param threshold: A threshold on the maximum allowed resource usage.
:param usage: A map of hosts to the resource usage.
:param total: A map of hosts to the total resource capacity.
:return: A map of hosts to the available resource capacity.
"""
return dict((host, int(threshold * total[host] - resource))
for host, resource in usage.items())
|
e5eca0a5eb6977d580f74ae6592b13211ac04f37
| 75,792 |
from typing import List
from typing import Dict
def find_it(seq: List[int]) -> int:
"""
Given an array, find the int that
appears an odd number of times.
:param seq:
:return:
"""
pares: Dict[int, int] = dict()
result: int = 0
for n in seq:
if n not in pares:
pares[n] = 1
else:
pares[n] = pares[n] + 1
for key in pares.keys():
if pares[key] % 2 > 0:
result = key
break
return result
|
224b01d5c09c4c97927760624931549c94972b41
| 301,458 |
def AND(*args) -> str:
"""
Creates an AND Statement
>>> AND(1, 2, 3)
'AND(1, 2, 3)'
"""
return "AND({})".format(",".join(args))
|
c36b5fc6cfeeedfc0cc47c389a97aa1b63e77377
| 488,738 |
def scaled_grad(g, inv_d):
"""Computes the scaled gradient."""
return inv_d * g
|
c6b812a723d7c92dd66e63925368b7a542a2a50a
| 541,690 |
def invariants(tensor):
"""
Calculates the first, second, and dimensionless invariants of the gradient
tensor.
.. note:: The coordinate system used is x->North, y->East, z->Down
Parameters:
* tensor : list
A list of arrays with the 6 components of the gradient tensor measured
on a set of points. The order of the list should be:
[gxx, gxy, gxz, gyy, gyz, gzz]
Returns:
* invariants : list = [:math:`I_1`, :math:`I_2`, :math:`I`]
The invariants calculated for each point
"""
gxx, gxy, gxz, gyy, gyz, gzz = tensor
gyyzz = gyy * gzz
gyz_sqr = gyz ** 2
inv1 = gxx * gyy + gyyzz + gxx * gzz - gxy ** 2 - gyz_sqr - gxz ** 2
inv2 = (gxx * (gyyzz - gyz_sqr) + gxy * (gyz * gxz - gxy * gzz) +
gxz * (gxy * gyz - gxz * gyy))
inv = -((0.5 * inv2) ** 2) / ((inv1 / 3.) ** 3)
return [inv1, inv2, inv]
|
31a7bbe891be97b1e945fde85c956a36f1b28be3
| 262,322 |
def first_of(iterable, function):
"""
Return the first matching element of an iterable
This function is useful if you already know there is at most one matching
element.
"""
for item in iterable:
if function(item):
return item
return None
|
d7a083575859bcdf92df697d4cb8a0bb22dbb19f
| 107,868 |
def find_features(extent, df):
"""
given an extent and a dataframe, return a new dataframe
containing only features that fall within the extent
Parameters
----------
extent: list -- geographic extent in lon (deg E)/lat (deg N)
df: the geopandas dataframe to slice
"""
xleft, xright, ybot, ytop = extent
hit_rows = df.cx[xleft:xright, ybot:ytop]
return hit_rows
|
90d7e0811dbb6340d89387dc5331c4039cc9f6bf
| 617,010 |
def sum_even_integers(sequence):
"""
What comes in:
-- A sequence
What goes out:
Returns the sum of the items in the sequence that:
-- are integers AND
-- are even.
Side effects: None.
Examples:
sum_even_integers([3, 10, 6, 5, 5, 10])
returns 10 + 6 + 10, which is 26
sum_even_integers([3, 9, 10, 99, 101, 5, 6, 5, 5, 10])
still returns 10 + 6 + 10, which is 26
sum_even_integers(['hello', 3, 10, 6, 'bye', 5, 7.33, 5, 10])
still returns 10 + 6 + 10, which is 26
Type hints:
:type sequence: list or tuple
"""
# ------------------------------------------------------------------
# EXAMPLE 2. Iterates through a sequence,
# identifying and summing the items that are EVEN INTEGERS.
#
# Note how:
# -- The TYPE function returns the TYPE of its argument.
# -- An integer X is EVEN if the remainder is 0
# when you divide X by 2 and take the remainder.
# ------------------------------------------------------------------
total = 0
for k in range(len(sequence)):
item = sequence[k]
if type(item) is int:
if item % 2 == 0:
total = total + item
return total
# Here is an alternative (there are other alternatives as well):
total = 0
for k in range(len(sequence)):
if (type(sequence[k]) is int) and (sequence[k] % 2 == 0):
total = total + sequence[k]
return total
|
ef7b1b1785d4d5ec0948f1b29b6e06bcb2e1ebda
| 448,790 |
import random
def balance_dataset(data, ratio):
"""
Subsamples dataset according to ratio.
@param data: List of samples.
@param ratio: Ratio of samples to be returned.
@return: Subsampled dataset.
"""
sampled_data = random.sample(data, int(ratio * len(data)))
return sampled_data
|
a2471e909d0b8622bfb806912d54915254c4c198
| 222,533 |
def linear(y_0, y_1, x_0, x_1, k):
"""Returns the particular integral and its derivative for linear load.
y_0, y_1 the ordinates @ the extremes of the loading,
x_0, x_1 the abscissae @ the extremes of the loading,
k the stiffness of the oscillator.
The returned functions are defined in terms of a new variable,
csi=x-x_0,
in the interval 0 <= csi <= x_0.
"""
y_0, y_1 = y_0/k, y_1/k
return (lambda x: y_0 + (y_1-y_0)/(x_1-x_0)*x,
lambda x: (y_1-y_0)/(x_1-x_0))
|
9c1f9b1c0e5a7af70ca3dae48a6df103846534d2
| 277,449 |
from datetime import datetime
def _datetime_now() -> datetime:
"""Wrap ``datetime.now`` to easily mock it for testing.
Returns
-------
datetime
Current datetime.
"""
return datetime.now()
|
3373dbbcc6181c4a25e3b79f85f432876b56294a
| 438,057 |
def _get_available_memory(mem_feat, constraints=None):
"""Get available memory
If constraints are given, parse constraint string into array of
constraints and compare them to active features. Currently only
handles comma-separated strings and not the more advanced
constructs described in the slurm manual.
Else, the minimum memory for a given partition is returned.
"""
if constraints is None:
return min([int(x['mem']) for x in mem_feat])
try:
constraint_set = set(constraints.split(","))
for x in mem_feat:
if constraint_set.intersection(x["features"]) == constraint_set:
return int(x["mem"])
except Exception as e:
print(e)
raise
|
9783084657979b46bd5a2a1c81abed09f5969fcd
| 605,963 |
def split(attr):
""" Split <key>=<val> into tuple (<key>,<val>),
if only string is passed, return ('id', <val>)"""
if '=' in attr:
ret = attr.split('=')
return ret[0], ret[1]
else:
return 'id', attr
|
a975e8a0b44c73e52566144a80f886e88de61b04
| 377,303 |
def zero_diag(Q):
"""
Copy of Q altered such that diagonal entries are all 0.
"""
Q_nodiag = Q.copy()
for ii in range(Q.shape[0]):
Q_nodiag[ii, ii] = 0
return Q_nodiag
|
8c40fc58ee8e7af7a905de1d17b39c7d074cda17
| 73,034 |
def get_extremas_from_positions(positions):
"""
returns the minimum and maximum value for each dimension in the positions given
"""
return zip(*[(min(values), max(values)) for values in zip(*positions)])
|
9b30e2fde7f1ce5cf54b849793b67a5c02897c60
| 456,666 |
def degree(G,nbunch=None,weight=None):
"""Return degree of single node or of nbunch of nodes.
If nbunch is ommitted, then return degrees of *all* nodes.
"""
return G.degree(nbunch,weight)
|
9a1fcc95960d6f318054fbc0a5a69add8ed78a46
| 511,466 |
def calc_angle(per, line):
"""
Calculate angle between two vector.
Take into consideration a quarter circle
:param per: first vector
:type per: DB.XYZ
:param line: second vector
:type line: DB.XYZ
:return: Angle between [-pi, pi]
:rtype: float
"""
return (1 if per.Y >= 0 else -1) * per.AngleTo(line)
|
81290fd40dfd4d714f56478a2c41b33156ca8157
| 20,665 |
def generate_target_states_list(sweep, initial_state_labels):
"""Based on a bare state label (i1, i2, ...) with i1 being the excitation level of subsystem 1, i2 the
excitation level of subsystem 2 etc., generate a list of new bare state labels. These bare state labels
correspond to target states reached from the given initial one by single-photon qubit transitions. These
are transitions where one of the qubit excitation levels increases at a time. There are no changes in
oscillator photon numbers.
Parameters
----------
sweep: ParameterSweep
initial_state_labels: tuple(int1, int2, ...)
bare-state labels of the initial state whose energy is supposed to be subtracted from the spectral data
Returns
-------
list of tuple"""
target_states_list = []
for subsys_index, qbt_subsys in sweep.qbt_subsys_list: # iterate through qubit subsystems
initial_qbt_state = initial_state_labels[subsys_index]
for state_label in range(initial_qbt_state + 1, qbt_subsys.truncated_dim):
# for given qubit subsystem, generate target labels by increasing that qubit excitation level
target_labels = list(initial_state_labels)
target_labels[subsys_index] = state_label
target_states_list.append(tuple(target_labels))
return target_states_list
|
cbd7dc76790b48614fe81ec08c29453947c6984e
| 556,989 |
def linked_embeddings_name(channel_id):
"""Returns the name of the linked embedding matrix for some channel ID."""
return 'linked_embedding_matrix_%d' % channel_id
|
da3a095d86add49741fcb15f28059c124e6e7916
| 635,838 |
from typing import Callable
from typing import List
from typing import OrderedDict
def order_json(data, sort_fn: Callable[[List[str]], List[str]] = sorted):
"""Sort json to a consistent order.
When you hash json that has the some content but is different orders you get
different fingerprints.
.. code:: python
>>> hashlib.sha1(json.dumps({'a': 12, 'b':14}).encode('utf-8')).hexdigest()
... '647aa7508f72ece3f8b9df986a206d95fd9a2caf'
>>> hashlib.sha1(json.dumps({'b': 14, 'a':12}).encode('utf-8')).hexdigest()
... 'a22215982dc0e53617be08de7ba9f1a80d232b23'
Note:
According to json.org `An object is an unordered set of name/value pairs`. This
means that the maps (dicts in python) should not contain semantic meaning in the
order of the key value pairs. This means we are allowed to sort these maps without
breaking something a user is doing in their custom config
Similarly `An array is an ordered collection of values` this means that we should
not sort the lists because that might break the way that a user is using a custom
list in the json.
:param data: The json data.
:param sort_fn: A function that sorts the keys of the dictionary.
:returns:
collections.OrderedDict: The data in a consistent order (keys sorted alphabetically).
"""
new = OrderedDict()
for key in sort_fn(data.keys()):
value = data[key]
# If the value is another map recursively sort that
if isinstance(value, dict):
value = order_json(value)
# If the value is a list, recursively sort any maps that are in it.
elif isinstance(value, list):
value = [order_json(v) if isinstance(v, dict) else v for v in value]
new[key] = value
return new
|
657f932d54111405ee9ac606346d2b7cc02391eb
| 640,090 |
import torch
def compute_argmax(ten):
"""Compute argmax for 2D grid for tensors of shape (batch_size, size_y, size_x)
Args:
ten (torch.[cuda].FloatTensor): (batch_size, size_y, size_x)
Returns:
indices (torch.[cuda].LongTensor): (batch_size, 2) index order: (y, x)
"""
batch_size = ten.shape[0]
size_y = ten.shape[1]
size_x = ten.shape[2]
# shape: flattened_indices (batch_size)
flattened_indices = torch.argmax(ten.view(batch_size, -1), dim=1)
# shape: index_y (batch_size)
# shape: index_x (batch_size)
index_y = (flattened_indices // size_x)
index_x = (flattened_indices % size_x)
# shape: index_y (batch_size, 2)
indices = torch.cat([index_y.unsqueeze(1), index_x.unsqueeze(1)], dim=1)
return indices
|
d69c6ae13dfa2aef27a7e6ed621e928c146c0554
| 651,526 |
def get_util_shape(row):
"""Get utility term shape based on ROI.
Parameters
----------
row : pandas.core.series.Series
Row of func_df DataFrame.
Returns
-------
str
If 'chest' or 'rib in row['Roi'], then return 'linear'.
Otherwise, return 'linear_quadratic'.
"""
if any([roi in row['Roi'].lower() for roi in ['chest', 'rib']]):
return 'linear'
return 'linear_quadratic'
|
4ebb50dd0991f3edda7f33ad17fb3a3dfaf39de3
| 48,897 |
def isprefix(path1, path2):
"""Return true is path1 is a prefix of path2.
:param path1: An FS path
:param path2: An FS path
>>> isprefix("foo/bar", "foo/bar/spam.txt")
True
>>> isprefix("foo/bar/", "foo/bar")
True
>>> isprefix("foo/barry", "foo/baz/bar")
False
>>> isprefix("foo/bar/baz/", "foo/baz/bar")
False
"""
bits1 = path1.split("/")
bits2 = path2.split("/")
while bits1 and bits1[-1] == "":
bits1.pop()
if len(bits1) > len(bits2):
return False
for (bit1,bit2) in zip(bits1,bits2):
if bit1 != bit2:
return False
return True
|
fad5eed531ed7fb3ed4e982d3fd7649dbf08ecac
| 622,237 |
from typing import Tuple
def sat_idx_to_in_orbit_idx(sat_idx: int, num_sat_per_orbit: int) -> Tuple[int, int]:
"""
Compute the satellite index in orbit and orbit index.
Starting from the satellite index in the constellation.
Args:
sat_idx: Index of the satellite in the constellation.
num_sat_per_orbit: Total number of satellites in each orbit of the
constellation.
Returns:
(int, int): Index of the satellite inside its orbit, index of the
satellite's orbit.
"""
if num_sat_per_orbit < 1:
raise ValueError
sat_idx_in_orbit = sat_idx % num_sat_per_orbit
orbit_idx = sat_idx // num_sat_per_orbit
return sat_idx_in_orbit, orbit_idx
|
2985747f75887217bc4f1761d2407fce00db37d1
| 275,340 |
def non_gaussian(onset, frame):
"""
Calculate the Non-Gaussian parameter :
..math:
\alpha_2 (t) = \frac{3}{5}\frac{\langle r_i^4(t)\rangle}{\langle r_i^2(t)\rangle^2} - 1
"""
r_2 = ((frame - onset)**2).sum(axis=-1)
return 3 / 5 * (r_2**2).mean() / r_2.mean()**2 - 1
|
961388fa6d7d362683ee830d3834afcf2b5c0740
| 410,720 |
def get_rain_svg(risk_of_rain: float) -> str:
"""
Get SVG path to risk of rain icon
:param risk_of_rain: Risk of rain between 0 and 1
:return: path to SVG resource
"""
if risk_of_rain < 0.33:
return 'Icons/Shades.svg'
return 'Icons/Umbrella.svg'
|
fb5d28d9d0105d333366d8ced97cc04693cd9a37
| 278,973 |
import importlib
def get_extractor_implementation(cls, pkg=None):
"""
Get the implementation of an Extractor.
:param cls: class name (str)
:param pkg: package where implementation is found (str)
:return: class implementation
"""
# known extractors
# others must be fully specified through pkg.cls
if pkg:
try:
module = importlib.import_module(pkg)
impl = getattr(module, cls)
except:
raise ValueError('Could not load feature definitions from file %s', pkg)
else:
impl = eval(cls)
return impl
|
33bfa823e4b5dd44a0a02483f2a51965855c1bf2
| 592,210 |
import torch
def disagreement(logits_1, logits_2):
"""Disagreement between the predictions of two classifiers."""
preds_1 = torch.argmax(logits_1, dim=-1).type(torch.int32)
preds_2 = torch.argmax(logits_2, dim=-1).type(torch.int32)
return torch.mean((preds_1 != preds_2).type(torch.float32))
|
82d12bb657018c4b446fd05c94c8f5834ce4fd59
| 636,464 |
def getPropertyAsSingleValue( data, name, default ):
"""
Read a property from an LDAP data structure.
Multi-valued properties are read as single-valued,
with only the first value being used.
"""
try:
return data[name][0]
except (IndexError, KeyError):
return default
|
18d806b11d155a3c7dfbdf1d0aa2606a037e1bda
| 398,468 |
from typing import Tuple
from typing import List
from typing import Dict
def selection(triple: Tuple[str, str, str], variables: List[str]) -> Dict[str, str]:
"""Apply a selection on a RDF triple, producing a set of solution mappings.
Args:
* triple: RDF triple on which the selection is applied.
* variables: Input variables of the selection.
Returns:
A set of solution mappings built from the selection results.
Example:
>>> triple = (":Ann", "foaf:knows", ":Bob")
>>> variables = ["?s", None, "?knows"]
>>> selection(triple, variables)
{ "?s": ":Ann", "?knows": ":Bob" }
"""
bindings = dict()
if variables[0] is not None:
bindings[variables[0]] = triple[0]
if variables[1] is not None:
bindings[variables[1]] = triple[1]
if variables[2] is not None:
bindings[variables[2]] = triple[2]
return bindings
|
fee52583e62d589863214e74e99fc427a0b6577d
| 35,175 |
import json
def dump_json(file, array):
"""Dumps a dict to a JSON file"""
with open(file, 'w') as f:
return json.dump(array, f)
|
605a7bfcaeb7502749999b7a0b8353c724b66242
| 102,631 |
def models_of_same_type(*models):
"""
Checks whether all the provided `models` are of the same type.
"""
return len(set(m._meta.concrete_model for m in models)) == 1
|
c66abb7f115aee7f25fad474f560f1ea5d244d6b
| 316,064 |
def get_layout_locations(version, base_path, dsid):
"""Return dataset-related path in a RIA store
Parameters
----------
version : int
Layout version of the store.
base_path : Path
Base path of the store.
dsid : str
Dataset ID
Returns
-------
Path, Path, Path
The location of the bare dataset repository in the store,
the directory with archive files for the dataset, and the
annex object directory are return in that order.
"""
if version == 1:
dsgit_dir = base_path / dsid[:3] / dsid[3:]
archive_dir = dsgit_dir / 'archives'
dsobj_dir = dsgit_dir / 'annex' / 'objects'
return dsgit_dir, archive_dir, dsobj_dir
else:
raise ValueError("Unknown layout version: {}".format(version))
|
1e147b1b056a63747b9445468cb043358cb64b44
| 295,940 |
def calCentroid(xmn, ymn, xmx, ymx):
"""
Function to calculate the centroid of a given image
"""
xmid = (xmx + xmn) / 2
ymid = (ymx + ymn) / 2
return xmid, ymid
|
98212262d8eff2b55f14a1feabfa49b00c33912a
| 182,385 |
def eqrr(registers, opcodes):
"""eqrr (equal register/register) sets register C to 1 if register A is
equal to register B. Otherwise, register C is set to 0.
"""
return int(registers[opcodes[1]] == registers[opcodes[2]])
|
08b7e01e940fb6313fdcdc80df9fde604f951c5d
| 245,485 |
def get_normalisation_coefficient(sample_size):
"""
Returns a multiplicator for normalising entropy
estimated on the sample based on the size of the sample.
The coefficients were estimated empirically based
on bootstrap resampling.
"""
if sample_size < 55:
raise ValueError('No coefficients were estimated for sample sizes < 55')
elif sample_size >= 55 and sample_size < 60:
# 55-59 1.04 (2 langs)
return 1.04
elif sample_size >= 60 and sample_size < 70:
# 60-69 1.03 (1 lang)
return 1.03
elif sample_size >= 70 and sample_size < 79:
# 70-78 1.02 (0 langs)
return 1.02
elif sample_size >= 79 and sample_size < 93:
# 79-92 1.01 (5 langs)
return 1.01
elif sample_size >= 110:
# 110-130 0.99
return 0.99
else:
# 93-109 1.00
return 1
|
add5b906f1f0fe3ad65647ec448896634008e5a3
| 267,817 |
import torch
def focal_loss(bce_loss, targets, gamma, alpha):
"""Binary focal loss, mean.
Per https://discuss.pytorch.org/t/is-this-a-correct-implementation-for-focal-loss-in-pytorch/43327/5 with
improvements for alpha.
:param bce_loss: Binary Cross Entropy loss, a torch tensor.
:param targets: a torch tensor containing the ground truth, 0s and 1s.
:param gamma: focal loss power parameter, a float scalar.
:param alpha: weight of the class indicated by 1, a float scalar.
"""
p_t = torch.exp(-bce_loss)
alpha_tensor = (1 - alpha) + targets * (2 * alpha - 1) # alpha if target = 1 and 1 - alpha if target = 0
f_loss = alpha_tensor * (1 - p_t) ** gamma * bce_loss
return f_loss
|
b0f6cf127be66f178a2b509675bfab7007288e99
| 509,870 |
def response_id(req_data):
"""
Get the ID for the response from a JSON-RPC request
Return None if ID is missing or invalid
"""
_id = None
if isinstance(req_data, dict):
_id = req_data.get('id')
if type(_id) in (str, int):
return _id
else:
return None
|
7c34d733aff93e213754833a2aadb19e0edfc0b5
| 160,374 |
import requests
from bs4 import BeautifulSoup
def get_data(url):
"""
Return BeautifulSoup html object.
"""
r = requests.get(url)
data = BeautifulSoup(r.text, 'lxml')
return data
|
2f21b5e7be7e86f4d04c361369332109cd852632
| 493,177 |
from typing import List
import re
def _find_matching_tags(tag: 'str', lst: 'List[str]'):
"""
Extract the full list of matches to the regex stored in tag.
:param tag: A regex to search for
:type tag: str
:param lst: A set of tags to search
:type lst: List[str]
:return: The matching tags from lst
:rtype: list[str]
"""
return [match
for match in lst
if re.fullmatch(tag, match)]
|
0976aba29fcefffff57428714882e6421de83846
| 557,412 |
def serialize_tree(root):
""" Given a tree root node (some object with a 'data' attribute and a 'children'
attribute which is a list of child nodes), serialize it to a list, each element of
which is either a pair (data, has_children_flag), or None (which signals an end of a
sibling chain).
"""
lst = []
def serialize_aux(node):
# Recursive visitor function
if len(node.children) > 0:
# The node has children, so:
# 1. add it to the list & mark that it has children
# 2. recursively serialize its children
# 3. finally add a "null" entry to signal this node has no children
lst.append((node.data, True))
for child in node.children:
serialize_aux(child)
lst.append(None)
else:
# The node is child-less, so simply add it to
# the list & mark that it has no children:
lst.append((node.data, False))
serialize_aux(root)
return lst
|
830a0dcaad9921b7eae1714bd2c7758aa11c4ad0
| 679,991 |
from typing import List
from typing import Dict
def species_by_charge(state_ids: List[str], charges: List[int]) -> Dict[int, List[str]]:
"""Make a dict with charge as key, and lists of species as values.
Parameters
----------
state_ids - identifiers for states
charges - charges for states
Returns
-------
Dict with charge as keys, and lists that contain the names of microstates with that charge.
"""
charge_dict = dict(zip(state_ids, charges))
species_dict = dict()
# Duplicates don't matter
for value in charge_dict.values():
species_dict[value] = list()
for state_id, charge in charge_dict.items():
species_dict[charge].append(state_id)
return species_dict
|
2b6736b4773f5d11a949c422de760a989ea9f252
| 391,158 |
def admin_pc_client(admin_pc):
"""Returns the client from the default admin's ProjectContext """
return admin_pc.client
|
e870e216b7a21c9e879d1bd12a5255f224c62310
| 73,811 |
from pathlib import Path
def filesize(fname):
"""
Simply returns the size of the file fname in bytes
"""
return (Path(fname).stat().st_size)
|
1cf2cb0fbab2533e69c5200b25a134ee6dd61424
| 39,588 |
def _format_optname(value):
"""Format the name of an option in the configuration file to a more
readable option in the command-line."""
return value.replace('_', '-').replace(' ', '-')
|
e12d0d27ed744d45d789f3e9e0207f04be9f5024
| 638,190 |
import zlib
import pickle
def blobdumps(py_obj, cPickle_protocol=2, compression_level=7):
"""
Pickle any Python object, and compress the pickled object.
Returns a binary string.
`compression_level`: Between 1 and 9
The higher the level is, the more compressed the object will be.
"""
return zlib.compress(pickle.dumps(py_obj, cPickle_protocol),
compression_level).decode('latin1')
|
d84096ec369cff633f13f13754adf75565394d3e
| 462,649 |
def format_imports(import_statements):
"""
-----
examples:
@need
from fastest.constants import TestBodies
@end
@let
import_input = TestBodies.TEST_STACK_IMPORTS_INPUT
output = TestBodies.TEST_STACK_IMPORTS_OUTPUT
@end
1) format_imports(import_input) -> output
-----
:param import_statements: list
:return: list
"""
return [
'{}\n'.format(import_statement.strip())
for import_statement in import_statements
if len(import_statement) > 0
]
|
91514d19da4a4dab8c832e6fc2d3c6cbe7cca04a
| 705,430 |
def CleanStrForFilenames(filename):
"""Sanitize a string to be used as a filename"""
keepcharacters = (' ', '.', '_')
FILEOUT = "".join(c for c in filename if c.isalnum() or c in keepcharacters).rstrip()
return FILEOUT
|
f121fc167fcb80b00bf1f6aa5ecbff9b36acc54a
| 282,200 |
def lerp(a, b, x):
"""Linear interpolation between a and b using weight x."""
return a + x * (b - a)
|
b6790c221e797bfa0fe063a22ebced60eab877db
| 681,170 |
def make_key(x,y):
"""
function to combine two coordinates into a valid dict key
"""
return f'{x}, {y}'
|
14e414dd448eba8e3a7adfb5d5bbfc7f4fd22165
| 426,959 |
import re
def extract_swagger_path(path):
"""
Extracts a swagger type path from the given flask style path.
This /path/<parameter> turns into this /path/{parameter}
And this /<string(length=2):lang_code>/<string:id>/<float:probability>
to this: /{lang_code}/{id}/{probability}
"""
return re.sub('<(?:[^:]+:)?([^>]+)>', '{\\1}', path)
|
8563f028d4736d4032492a6d7a166aa5c3d97e36
| 607,791 |
def find_number_3_multiples(x):
"""Calculate the number of times that 3 goes into x."""
mult3=x//3
return mult3
|
64d429b520688afabad656b9d975daf8d9846ff1
| 122,881 |
def is_triangle_possible(triangle):
"""Check if triangle is possible."""
return sum(sorted(triangle)[:2]) > max(triangle)
|
6ce637fb523547b6aa11cd30e7497706ac97b88e
| 186,894 |
def create_content_item_id_set(id_set_list: list) -> dict:
""" Given an id_set.json content item list, creates a dictionary representation"""
res = dict()
for item in id_set_list:
for key, val in item.items():
res[key] = val
return res
|
455f131fcf781fabf2573a226023f2cd8d4be5ae
| 526,139 |
import ast
def parse_imports(filepath):
"""Formulate a dictionary of imports within a python file for usage by ``apipkg``.
Parameters
----------
filepath
The python file containing the imports to be parsed.
Returns
-------
imports_for_apipkg
A dictionary of imports in the format expected by ``apipkg``.
"""
with open(filepath) as f:
imports_string = f.read()
imports_for_apipkg = {}
for node in ast.parse(imports_string).body:
if not isinstance(node, ast.Import):
raise ValueError("Only direct import statements are supported")
aliases = list(node.names)
if len(aliases) != 1:
raise ValueError("Only one alias per import supported")
alias = aliases[0]
asname = alias.asname
if asname is None:
asname = alias.name
imports_for_apipkg[asname] = alias.name
return imports_for_apipkg
|
9229c83812038d6a4370857fb933e0de69d87fd7
| 217,835 |
def aic_hmm(log_likelihood, dof):
"""
Function to compute the Aikaike's information criterion for an HMM given
the log-likelihood of observations.
:param log_likelihood: logarithmised likelihood of the model
dof (int) - single numeric value representing the number of trainable
parameters of the model
:type log_likelihood: float
:param dof: single numeric value representing the number of trainable
parameters of the model
:type dof: int
:return: the Aikaike's information criterion
:rtype: float
"""
return -2 * log_likelihood + 2 * dof
|
86fdea3262697eb5dd168f4f0927befa285c0e1a
| 544,464 |
def searchList(listOfTerms, query: str, filter='in'):
"""Search within a list"""
matches = []
for item in listOfTerms:
if filter == 'in' and query in item:
matches.append(item)
elif filter == 'start' and item.startswith(query):
matches.append(item)
elif filter == 'end' and item.endswith(query):
matches.append(item)
elif filter == 'exact' and item == query:
matches.append(item)
return matches
|
1a8b0fa6e870b2b3f088b634e3be1cc94a44e95b
| 143,573 |
def get_extrap_col_and_ht(height, num, primary_height, sensor='Ane', var='WS'):
"""
Determine name of column and height to use for extrapolation purposes
:param height: comparison height
:param num: number/label of comparison height
:param primary_height: Primary comparison height
:param sensor: type of sensor (either "Ane" or "RSD")
:param var: variable to be extracted (can be 'WS', 'SD', or 'TI')
:return col_name: column name of data to be extracted from inputdata
:return ht: height to be extracted for extrapolation
"""
col_name = sensor + "_" + str(var) + "_Ht" + str(num)
if 'primary' in col_name:
if sensor == 'Ane':
col_name = "Ref_" + str(var)
elif sensor == 'RSD':
col_name = 'RSD_' + str(var)
height = float(primary_height)
else:
height = float(height)
return col_name, height
|
286fd76046ee1bb9a128d1334b3475b5f15bafa3
| 273,460 |
def add_plugin_to_endpoints(endpoints, plugin):
"""
Add the endpoint key to each endpoint dictionary in the list
:param endpoints: List of endpoint dictionaries
:param plugin: String of the plugin name
"""
for endpoint in endpoints:
endpoint.update({
'plugin': plugin,
})
return endpoints
|
2784278479c74a5b265dd8dedb0e7dd72ab3cd57
| 441,528 |
def compose(*functions):
"""
Compose functions
This is useful for combining decorators.
"""
def _composed(*args):
for fn in functions:
try:
args = fn(*args)
except TypeError:
# args must be scalar so we don't try to expand it
args = fn(args)
return args
return _composed
|
50089b9343e6c7a91e88f679d8d02d7533083596
| 139,650 |
def getArrayDimensions(shape):
"""
Get the dimensions of the grid where the cell will be zoomed.
The zoomed cell contains a `numpy` array and will be displayed
in a table with the same shape than it.
:Parameter shape: the cell shape
:Returns: a tuple (rows, columns)
"""
# Numpy scalars are special a case
if shape == ():
nrows = ncols = 1
# 1-D arrays are displayed as a 1-column vector with nrows
elif len(shape) == 1:
nrows = shape[0]
ncols = 1
# N-D arrays are displayed as a matrix (nrowsXncols) which
# elements are (N-2)-D arrays
else:
nrows = shape[0]
ncols = shape[1]
return (nrows, ncols)
|
b79ae249763328196a3ab48306738287c063f600
| 361,080 |
def get_item_properties(item, columns):
"""Get specified in columns properties, with preserved order.
Required for correct cli table generation
:param item: dict
:param columns: list with arbitrary keys
"""
properties = []
for key in columns:
properties.append(item.get(key, ''))
return properties
|
7e2a9bd3d337b2fc5fd83e10243ff7e96783f79a
| 553,576 |
def get_original_keys(keys, keymap, strict=False):
"""
Get original keys from normalized keys.
Args:
keys:
The collection of keys that identify a value in the dataset.
keymap:
The keymap returned from :meth:`load` or :meth:`loads`.
strict:
If true, a KeyError will be raised if the given keys are not found
in the keymap. Otherwise, the given key will be returned rather
than the original key. This is helpful when reporting errors on
required keys that do not exist in the data set. Since they are
not in the dataset, no original key is available.
Returns:
A tuple containing the original keys names.
"""
original_keys = []
for i in range(len(keys)):
try:
loc = keymap[tuple(keys[:i+1])]
line = loc.key_line
original_keys.append(line.key)
except AttributeError:
# this occurs normally for list indexes
original_keys.append(keys[i])
except (KeyError, IndexError):
if strict:
raise
original_keys.append(keys[i])
return tuple(original_keys)
|
876d2ba8a7be2b8652958c27b0841242c5ed279e
| 289,939 |
from pathlib import Path
def enterprise_1_12_artifact() -> Path:
"""
Return the path to a build artifact for DC/OS Enterprise 1.12.
"""
return Path('/tmp/dcos_generate_config_1_12.ee.sh')
|
33273d2a4e220c6b28b69310c69452172e4cad29
| 289,310 |
import json
def create_label(name, color, repos, session, origin):
"""
Creates label
:param name: name of the label
:param color: color of the label
:param repos: repository where label is created
:param session: session for communication
:param origin: repository where the label came from
:return: message code 200 (int)
"""
for repo in repos:
if(repo != origin):
data = {"name": name, "color": color}
json_data = json.dumps(data)
r = session.post("https://api.github.com/repos/"+repo+"/labels", json_data)
return "200"
|
c5f157673967c8f1b8928c3831abf4558ef5dc92
| 674,625 |
def indent(block):
"""Indent each row of the given string block with ``n*2`` spaces."""
indentation = " " * 2
return "\n".join([indentation + s for s in block.split('\n')])
|
c694c3eca23fbc5d2d8b4df2d321f55db559799e
| 342,904 |
def version_greater_or_equal_to(version, min_version):
"""Compares two version strings and returns True if version > min_version
>>> version_greater_or_equal_to('1.0', '0')
True
>>> version_greater_or_equal_to('1.0', '0.9.9.9')
True
>>> version_greater_or_equal_to('1.0', '2.0')
False
>>> version_greater_or_equal_to('0.9.9.9', '1.0')
False
>>> version_greater_or_equal_to('1.0', '1.0')
True
>>> version_greater_or_equal_to('9.8.7.6.5.4.32.1', '9.8.7.6.5.4.3.1')
True
"""
for i in range(0, min(len(min_version), len(version))):
if version[i] < min_version[i]:
return False
elif version[i] > min_version[i]:
return True
# if equal we need to check the next least-significant number
# All checked numbers were equal, but version could be smaller if it is
# shorter, e.g. 2.4 < 2.4.1
return len(version) <= len(min_version)
|
b3050bd321374abb0d2e82b3080a4174644d20e9
| 605,226 |
def to_red(string):
""" Converts a string to bright red color (16bit)
Returns:
str: the string in bright red color
"""
return f"\u001b[31;1m{string}\u001b[0m"
|
c4c7ee43c872b1ea9ad37c1d72540a1227b58926
| 98,298 |
import re
def get_function_name(line):
"""Get name of a function."""
func_name = re.split(r"\(", line)[0]
func_name = re.split(r" ", func_name)[-1]
func_name = re.sub(r"(\*|\+|\-)", r"", func_name)
return func_name
|
f5b7048755000929822a6d97577dc872a4d4e966
| 656,369 |
def linearize_dict(indict, sep='_', lower=False):
"""Linearize levels of an input dict, using separator
Args:
indict(`dict`): input dict with nested levels
sep(str): separator
lower(bool): lower all itens
Returns:
`dict`: output dict with just one level
"""
def linearize_level(level, sep, lower, suffix=''):
outdict = {}
for i in level.keys():
new_suffix = suffix + i.lower() if lower else suffix + i
if isinstance(level[i], dict):
part = linearize_level(level[i], sep, lower, new_suffix + sep)
outdict.update(part)
else:
outdict[new_suffix] = level[i]
return outdict
return linearize_level(indict, sep, lower)
|
7e236f607cb4c583c9818dd3c51b3184f9e26252
| 523,895 |
def check_resource_existence(client, resource_group):
"""Create if resource group exists in Azure or not
:param client: Azure object using ResourceManagementClient
:param resource_group: string, name of Azure resource group
:return: True if exists, otherwise False
:rtype: boolean
"""
response = client.resource_groups.check_existence(resource_group)
return response
|
b6f66d10593ce8208167bb965bbdc7c5252296ee
| 145,487 |
import re
def diff_replace_old_new(diff):
"""Return the (old, new) filenames from difference tuple `diff`."""
match = re.search(r"replaced '(.+)' with '(.+)'", diff[-1])
if match:
return match.group(1), match.group(2)
else:
return None, None
|
ef8365320bc9a01d5de9aec8265b7f572eb15011
| 142,693 |
import hashlib
def checksum_file(f, blocksize: int = 2 << 15) -> str:
"""
Checksum a file-like object.
"""
hasher = hashlib.sha256()
for block in iter(lambda: f.read(blocksize), b""):
hasher.update(block)
f.seek(0)
return hasher.hexdigest()
|
c40f53bf03612564f5817c1a732e246dce330ed3
| 605,351 |
def get_node_set_map(tuple_list):
"""
Function to get a mapping of random node names to values between 0
and number of nodes - 1, with a modified adjacency list.
Args:
tuple_list : adjacency list with weights and arbitrary node names
Returns:
tuples : canonicalized adjacency list
node_map : mapping from node name to index
"""
node_set = set()
for tpl in tuple_list:
node_set.update(tpl[:2])
node_map = {node_name: idx for idx, node_name in enumerate(node_set)}
tuples = [(node_map[src], node_map[dst], wgt) for src, dst, wgt in tuple_list]
return tuples, node_map
|
e30113775a4783d38da6b994fc49b83154db10ae
| 317,655 |
import json
def is_new_version_model_file(model_file_path: str) -> bool:
"""Check whether the model file belongs to the new version of HuggingFace Tokenizers,
i.e., >= 0.8
Parameters
----------
model_file_path
Path to the model file
Returns
-------
is_new_version
Whether the model file is generated by the new version of huggingface tokenizer.
"""
with open(model_file_path, 'r', encoding='utf-8') as f:
try:
_ = json.load(f)
return True
except Exception:
return False
|
5cea582ca6fd4a86bcb71832fe8866f86a319b0e
| 408,754 |
import json
def configure_connection (instance, name = 'database', credentials = None):
"""Configures IBM Streams for a certain connection.
Creates or updates an application configuration object containing the required properties with connection information.
Example for creating a configuration for a Streams instance with connection details::
from icpd_core import icpd_util
from streamsx.rest_primitives import Instance
import streamsx.database as db
cfg = icpd_util.get_service_instance_details (name='your-streams-instance')
cfg[context.ConfigParams.SSL_VERIFY] = False
instance = Instance.of_service (cfg)
app_cfg = db.configure_connection (instance, credentials = 'my_credentials_json')
In Cloud Pak for Data you can configure a connection to Db2 with `Connecting to data sources <https://www.ibm.com/support/producthub/icpdata/docs/content/SSQNUZ_current/cpd/access/connect-data-sources.html>`_
Example using this configured external connection with the name 'Db2-Cloud' to create an application configuration for IBM Streams::
db_external_connection = icpd_util.get_connection('Db2-Cloud',conn_class='external')
app_cfg = db.configure_connection (instance, credentials = db_external_connection)
Args:
instance(streamsx.rest_primitives.Instance): IBM Streams instance object.
name(str): Name of the application configuration, default name is 'database'.
credentials(str|dict): The service credentials, for example Db2 Warehouse service credentials.
Returns:
Name of the application configuration.
"""
description = 'Database credentials'
properties = {}
if credentials is None:
raise TypeError (credentials)
if isinstance (credentials, dict):
if 'class' in credentials:
if credentials.get('class') == 'external': # CP4D external connection
if 'url' in credentials:
db_json = {}
db_json['jdbcurl'] = credentials.get('url')
db_json['username'] = credentials.get('username')
db_json['password'] = credentials.get('password')
properties ['credentials'] = json.dumps (db_json)
else:
raise TypeError(credentials)
else:
properties ['credentials'] = json.dumps (credentials)
else:
properties ['credentials'] = credentials
# check if application configuration exists
app_config = instance.get_application_configurations (name = name)
if app_config:
print ('update application configuration: ' + name)
app_config[0].update (properties)
else:
print ('create application configuration: ' + name)
instance.create_application_configuration (name, properties, description)
return name
|
4d55b1ff45c59831b8d398a0420df9a7048bab6a
| 233,314 |
def has_tag(method, tag: str) -> bool:
"""
Checks if the given method has the given tag.
:param method: The method to check.
:param tag: The tag to check for.
:return: True if the tag exists on the method,
False if not.
"""
return hasattr(method, '__tags') and tag in method.__tags
|
efa797eee30cff4614db899a968b1122c5882de2
| 515,964 |
def make_plant_indices(plant_ids, storage_candidates=None):
"""Make the indices for existing and hypothetical generators for input to Switch.
:param iterable plant_ids: plant IDs.
:param set storage_candidates: buses at which to enable storage expansion.
:return: (*dict*) -- keys are {'existing', 'expansion', 'storage'}, values are
lists of indices (str) for each sub-type.
"""
indices = {"existing": [f"g{p}" for p in plant_ids]}
indices["expansion"] = [f"{e}i" for e in indices["existing"]]
if storage_candidates is None:
indices["storage"] = []
else:
indices["storage"] = [f"s{b}i" for b in sorted(storage_candidates)]
return indices
|
526ceb12896ddc9f4e7abae977b733896f277ebc
| 488,244 |
def get_blurb(in_file):
"""Get the first paragraph of a Markdown file"""
with open(in_file, "r") as f:
f.readline() # Title
f.readline() # Title underline
f.readline() # Blank
out = ""
line = f.readline()
while len(line) > 0 and line != "\n":
out += line.replace("\n", " ")
line = f.readline()
return out.strip()
|
8701ad31e5e99dd42b6cfab222b1c33aab255a5a
| 535,189 |
def pointInRect(p, rect):
"""Return True when point (x, y) is inside rect."""
(x, y) = p
xMin, yMin, xMax, yMax = rect
return (xMin <= x <= xMax) and (yMin <= y <= yMax)
|
1754deaf63b1b78f2ed5c67cc8a7824e4c8f1a35
| 152,278 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.