content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
import json def save_json(input_dict, output_file): """save dictionary to file as json. Returns the output file written. Parameters ========== content: the dictionary to save output_file: the output_file to save to """ with open(output_file, "w") as filey: filey.writelines(json.dumps(input_dict, indent=4)) return output_file
05d5c8440f5d7e7a021d91136e2277031de53f18
644,636
def _is_clustal_seq_line(line): """Returns True if line starts with a non-blank character but not 'CLUSTAL' Useful for filtering other lines out of the file. """ return line and (not line[0].isspace()) and\ (not line.startswith('CLUSTAL')) and (not line.startswith('MUSCLE'))
78c9067fa02254409d33fdb9f243c74d549138ce
696,588
def italic(string): """ Surrounds the string with underscores (_) so it will be parsed italic when using markdown """ if not isinstance(string, str): raise TypeError("Must be given a string") return "_" + string + " _"
db93a3e2c529486228b029747eedb770faf1fc3b
540,701
import json import hashlib def hash_dict(nested_dict): """ Returns hash of nested dict, given that all keys are strings """ dict_string = json.dumps(nested_dict, sort_keys=True) md5_hash = hashlib.md5(dict_string.encode()).hexdigest() return md5_hash
5f518698154b351ca38b8027f047b4a1153f2c83
655,496
from math import sin, cos, sqrt, atan2, radians def lat_lon_2_distance(lat1, lon1, lat2, lon2): """ return distance (in km) between two locations (lat1, lon1) and (lat2, lon2) parameter --------- lat1, lat2: latitude in degrees lon1, lon2: longitude in degrees return ------ distance in km """ # approximate radius of earth in km R = 6373.0 lat1 = radians(lat1) lon1 = radians(lon1) lat2 = radians(lat2) lon2 = radians(lon2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance = R * c return distance
d0a03ca3c8f2e0574b1677fe271e2bbbef8f7e6c
394,438
import torch def convert_half_precision(model): """ Converts a torch model to half precision. Keeps the batch normalization layers at single precision source: https://github.com/onnx/onnx-tensorrt/issues/235#issuecomment-523948414 """ def bn_to_float(module): """ BatchNorm layers need parameters in single precision. Find all layers and convert them back to float. """ if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): module.float() for child in module.children(): bn_to_float(child) return module return bn_to_float(model.half())
c899bc0e7f97deb8983794e4ea81ceac2551ec22
81,814
def decode(value, encoding='utf-8'): """Decode given bytes value to unicode with given encoding :param bytes value: the value to decode :param str encoding: selected encoding :return: str; value decoded to unicode string if input is a bytes, original value otherwise >>> from pyams_utils.unicode import decode >>> decode(b'Cha\\xc3\\xaene accentu\\xc3\\xa9e') 'Chaîne accentuée' >>> decode(b'Cha\\xeene accentu\\xe9e', 'latin1') 'Chaîne accentuée' """ return value.decode(encoding) if isinstance(value, bytes) else value
8cef7b6d0367d5bff48f5c9b9cb2b5d7c4a883d9
15,309
def normalize(array): """Normalize the array. Set all the values betwwen 0 and 1. 0 corresponds to the min value and 1 the max. If the normalization cannot occur, will return the array. """ min_ = min(array) max_ = max(array) return ( (array - min_) / (max_ - min_) # Normalize if min_ != max_ else array / (max_ if max_ > 0 else 1) # Avoid divide by 0 )
71efcc238a3c2810db9d57e3f32ddad3ef077e56
423,759
def _adaptive_order_1(q, i, j, recons): """ First-order reconstruction. First-order reconstruction is given by .. math:: \hat{q}_{i + 1/2} = q_i """ recons[2 * i + 1] = q[j] recons[2 * i + 2] = q[j] return True
1a49bed58094988b6e884427c63d3baf5daf1ae8
691,891
from typing import Iterable from typing import Any from typing import Optional def get(iterable: Iterable[Any], **kwargs) -> Optional[Any]: """ Returns the first object that matches the kwargs arguments. Used in caching. :param Iterable iterable: The iterable. :param kwargs: The key arguments. :return: The first object that matches the kwargs arguments. :rtype: Optional[Any] """ for elem in iterable: for key, value in kwargs.items(): if getattr(elem, key) == value: return elem
998cb924b51d10eab86247db7b068c5b50f076ec
134,954
import re def replace_chrom_name_in_header(line, name_map): """ Replaces the Chrom name from header. Returns new header. :param line: line from VCF :param name_map: name-mapping dict :return: new header line """ old_name = re.split('=|,', line)[2] return line.replace(old_name, name_map[old_name])
3b1b20d09d4ee0ef77a74d902927c715a05415bc
181,593
def get_job_name(job): """Returns job name. :param Job job: An apscheduler.job.Job instance. :return: task name :rtype: str """ return job.args[0]
50c77c537566c533016075fde113f439ed3999f4
491,525
def sum(gdf, array: list): """Return a sum expression.""" expression = " + ".join(map(str, array)) return gdf.eval(expression)
e9a5f3738b8e4925892c424b3505f687f3a8e017
132,684
def merge(L1: list, L2: list) -> list: """Merge sorted lists L1 and L2 into a new list and return that new list. >>> >>> merge([1, 3, 4, 6], [1, 2, 5, 7]) 1, 1, 2, 3, 4, 5, 6, 7] """ newL = [] i1 = 0 i2 = 0 # For each pair of items L1[i1] and L2[i2], copy the smaller into newL. while i1 != len(L1) and i2 != len(L2): if L1[i1] <= L2[i2]: newL.append(L1[i1]) i1 += 1 else: newL.append(L2[i2]) i2 += 1 # Gather any leftover items from the two sections. # Note that one of them will be empty because of the loop condition. newL.extend(L1[i1:]) newL.extend(L2[i2:]) return newL
9b6423a2ed8ac900668cef3221ca3db7e581500f
664,145
def get_mapping_pfts(mapping): """Get all PFT names from the mapping.""" pft_names = set() for value in mapping.values(): pft_names.update(value["pfts"]) return sorted(pft_names)
40fc5d5cbd537db203a240e44a0ef6c0358a7019
688,923
def t02_calc_population(base_population) -> int: """ Gets a starting population of fish as input and determines their number after an 256 days period. Each element in the starting population represents a fish and each element's value represents the reproduction timer. Also uses a better storage management to overcome O(log(n)) as runtime. :param base_population: Array with information about the starting population. :return: The number of fish in the population """ arr = [0 for i in range(9)] for i in base_population: arr[i] += 1 for i in range(256): births = arr.pop(0) arr.append(births) arr[6] += births return sum(arr)
c9ef1b5d606d30655a8d367237e56668fd159ef3
408,130
import re def remove_special_characters(value: str) -> str: """Replaces special characters with '_' while keeping instances of '__'.""" normalized_parts = [] for part in value.split("__"): part = re.sub(r"[^a-zA-Z0-9_]", "_", part) # Remove special characters. part = re.sub(r"_+", "_", part) # Remove duplicate "_". part = part.strip("_") # Don't end or start in "_". normalized_parts.append(part) return "__".join(normalized_parts)
a2896cf92299c3403fea6455bd8257c4bd15a734
257,159
import time def strLocalTime(str_format): """ .. _strLocalTime : Return the system local date and time as a string according to the given format. Parameters ---------- str_format : str Date/Time code format. Example: '%Y-%m-%d, %H:%M:%S' Returns ------- str_date_time : str Formatted system local date time string. """ str_date_time = time.strftime(str_format, time.localtime()) return str_date_time
e9dd98f0b0ac2f03f36f91b432c65dbab6b41533
372,419
def str2bool(v): """ Convert string to a boolean value. References ---------- https://stackoverflow.com/questions/715417/converting-from-a-string-to-boolean-in-python/715468#715468 """ return str(v).lower() in ("yes", "true", "t", "1")
4e65003e8565536b24c7a47c7983ce1235c8f6c5
221,862
def downsample_naive(img, downsample_factor): """ Naively downsamples image without LPF. """ new_img = img.copy() new_img = new_img[::downsample_factor] new_img = new_img[:, ::downsample_factor] return new_img
9ccda4d23dfd7816a547d8a968136e0595ba6591
480,332
def url_replace(request, field, value): """URL Replace. Allows us to quickly and easily swap parameters in the request object in the case of doing complex queries like filtering a certain search results, feed, or metadata. Pour exemple: <a href="?{% url_replace request 'viewing' 'unanswered' %}" class="feedNav-link">Unanswered</a> # noqa And let's pretend the url currently looks like this: http://app.dev/feed/?viewing=all&topic=Chronic%20Pain Clicking on that link would generate a URL like this: http://app.dev/feed/?viewing=unaswered&topic=Chronic%20Pain """ dict_ = request.GET.copy() dict_[field] = value return dict_.urlencode()
5828680cd207689b31175ab952f34350ac62de82
62,659
def get_admin_extension_href(href): """Returns sys admin version of a given vCD url. This function is idempotent, which also means that if input href is already an admin extension href no further action would be taken. :param str href: the href whose sys admin version we need. :return: sys admin version of the href. :rtype: str """ if '/api/admin/extension/' in href: return href elif '/api/admin/' in href: return href.replace('/api/admin/', '/api/admin/extension/') else: return href.replace('/api/', '/api/admin/extension/')
d60d127e3a094e8b5f7ef64da02ab2da6fe45dbc
278,099
def hash_int_pair(ind1, ind2): """Hash an int pair. Args: ind1: int1. ind2: int2. Returns: hash_index: the hash index. """ assert ind1 <= ind2 return ind1 * 2147483647 + ind2
131ccb2b35156716eb7e7ef89f3a5ce6e0e1dfdd
498,025
def split(text): """ Convenience function to parse a string into a list using two or more spaces as the delimiter. Parameters ---------- text : string Contains text to be parsed Returns ------- textout : list list of strings containing the parsed input text """ textout = [s.strip() for s in text.split(' ') if s.strip()] return textout
abc45882e8b333a608e65d8e171fc155b9b3e749
633,800
import itertools def group_and_create_lookup(things, key_func): """ Takes list of things then sorts, groups, and returns a lookup with result of `key_func` as the key and list of things grouped on key as the value """ things = things or [] things = sorted(things, key=key_func) return {k: list(g) for k, g in itertools.groupby(things, key_func)}
e85d832dfd908b5055f3165f5271e72a575fd637
176,556
def _get_coordinate_keys(df): """Keys associated to atom coordinate in system's dataframe. """ if 'x_coord' in df: return ['x_coord', 'y_coord', 'z_coord'] else: return ['r_0', 'r_1', 'r_2']
9f8100eb259f207ad83104d65b59f3fd084eb0af
301,849
def corr_well(text): """ >>> corr_well('Я колодец') # I am well 'Я в порядке' >>> corr_well('Я чувствую колодец') # I am feeling well 'Я чувствую себя хорошо' """ text = text.replace('колодец', 'хорошо') if 'чувствую' in text and 'себя' not in text: text = text.replace('чувствую', 'чувствую себя') elif 'делаю хорошо' in text: text = text.replace('делаю хорошо', 'в порядке') elif 'был хорошо' in text: text = text.replace('был хорошо', 'в порядке') elif 'хорошо' in text: text = text.replace('хорошо', 'в порядке') return text
f44bc752c6ec0a8d7cf4962d34251669a19a812e
464,280
def parse_integer_line(line): """ Parse a string of integers (with or without a trailing newline). Returns an iterator object of integers. This function allows leading and trailing spaces. ValueError is raised if one of the values does not parse to an integer. """ return (int(s) for s in line.split())
b1be853e0f1329dfb978c4c0d18c33e2226dcd29
174,616
def note_onsets(a_list, b_list): """ Takes two lists of NoteNode objects. These may be NoteList objects. Returns a list of tuples, each of the form: (int: bar #, float: beat #) Each of these tuples represents a time where a note starts in either a_list, b_list, or both. """ changes = [] for l in [a_list, b_list]: for note in l: if note.start not in changes: changes.append(note.start) return changes
2166c6450916891de1d17071a98ed77893fe6616
560,195
def get_scale(f_min, f_max, q_min, q_max): """Get quantize scaling factor. """ return (q_max - q_min) / (f_max - f_min)
0f48cc32c21b2efe9355124e162f2dd2abfa3d58
96,312
def seq_format_from_suffix(suffix): """ Guesses input format from suffix >>> print(seq_format_from_suffix('gb')) genbank """ suffixes = {'fasta': ['fas','fasta','fa','fna'], 'genbank': ['gb','genbank'], 'embl': ['embl']} found = False for key in suffixes.keys(): if suffix in suffixes[key]: found = True return key if not found: raise RuntimeError(suffix+' is not a recognised suffix of an unaligned sequence file')
d7103d3d4bd803d9f55623155c703db3a55683bf
513,033
def query_int(pregunta, opciones): """ Query the user for a number in predefined interval :param pregunta: Question that will be shown to the user :param opciones: Available choices """ opcion = None while opcion not in opciones: opcion = input(pregunta + ' [' + str(opciones[0]) + '-' + str(opciones[-1]) + ']: ') try: opcion = int(opcion) except: print('Introduzca un número') opcion = None return opcion
15f3ddafc47107538d8bbfa46792ee0472e87231
83,500
def clean_data(df): """ Clean the dataset Args: df: (pandas.DatFrame) containing data to be cleaned Returns: df: (pandas.DataFrame) containing the cleaned dataset """ try: # clean target labels categories = df.categories.str.split(";", expand=True) cat_names = categories.applymap(lambda x: x[:-2]).values categories = categories.applymap(lambda x: x[-1]) categories.columns = cat_names.tolist()[0] single_cardinality_classes = categories.columns[categories.nunique() == 1] categories.drop(single_cardinality_classes, axis=1, inplace=True) # drop original categories column df.drop(['categories'], axis=1, inplace=True) # convert categories columns to int for col in categories.columns: categories[col] = categories[col].astype(int) # convert categories.related values (2) to (1) categories.related = categories.related.replace(2, 1) # merge categories with df df = df.merge(categories, left_index=True, right_index=True) # drop duplicates df = df.drop_duplicates().reset_index(drop=True) # remove original columns as it is not needed for modelling df.drop(['original'], axis=1, inplace=True) except: raise Exception("Could not clean dataset.") finally: return df
676f43ebdb426155ce53d3632626aefca09b3b00
670,652
def add_to_hof(hof, population): """ Iterates over the current population and updates the hall of fame. The hall of fame is a dictionary that tracks the fitness of every run of every strategy ever. Args: hof (dict): Current hall of fame population (list): Population list Returns: dict: Updated hall of fame """ for ind in population: if str(ind) not in hof: hof[str(ind)] = [] hof[str(ind)].append(ind.fitness) return hof
5ec67dfd878bc1fcc7abca11cea8f22337935c3f
450,271
def _spark_calc_values_chunk(points): """ Compute some basic information about the chunk points values The returned information are : * count : the number of points in chunk * max : the maximum value in chunk * min : the minimum value in chunk * sum : the sum of the values in chunk * sqr_sum : the sum of the square values in chunk (used for variance calculation) :param points: list of data values for each point in the chunk :type points: numpy.array :return: a dict composed of the basic information computed :rtype: dict """ try: nb_points = len(points) except TypeError: return None if nb_points > 0: sum_chunk_value = sum(points) square_sum_chunk_value = sum([x * x for x in points]) max_chunk_value = max(points) min_chunk_value = min(points) else: # Empty chunk, skip it return None return { "count": nb_points, "max": max_chunk_value, "min": min_chunk_value, "sum": sum_chunk_value, "sqr_sum": square_sum_chunk_value, }
04dd208038bf1df0172b821943337533f9759291
75,114
def get_current_temp(soup): """Return the current temperature""" current__temp_find = soup.find_all("span", class_="wxo-metric-hide")[0] return current__temp_find.get_text()
f35d955288d9390ab7f26e51b240a31ae05afe74
444,255
def calculate_difference(dsm_array, dtm): """Calculate the difference between the dsm and dtm""" dtm_array = dtm.read(1, masked = True) difference = dsm_array - dtm_array difference.data[difference < 0] = 0 # We set to 0 anything that might have been negative return difference
962078fe055b27189472fceb4008665aa946b038
646,606
def homogeneous_to_cartesian(homogeneous_point): """ Convert Homogeneous coordinates to Cartesian coordinates :param homogeneous_point: Homogeneous coordinates :return: Cartesian coordinates """ return homogeneous_point[:, :-1]
7a2e3571023d28024d8caf1f3626abb051193a32
89,384
def limit_es(expected_mb): """Protection against creating too small or too large chunks.""" if expected_mb < 1: # < 1 MB expected_mb = 1 elif expected_mb > 10**7: # > 10 TB expected_mb = 10**7 return expected_mb
9838c10b4af502811a161e0541bf787daeb2680a
413,680
def traverse(the_module, do_action, traverse_submodules_flag=True): """ Traverses ``the_module`` and performs action :func:`do_action` on each of the objects of the structure. :param the_module: Dictionary ``{'module_obj': module_obj, 'submodules': submodules, 'classes': classes, 'functions': functions}``. The ``submodules`` is the list of submodules that belong to ``module_obj``. Each submodule has the same structure as ``the_module``. The ``classes`` is the list of classes that belong to ``module_obj``. The functions is the list of functions that belong to ``module_obj``. :param do_action: Function that takes one parameter ``module_obj`` as input. It returns ``True`` if traversal needs to be stopped. :param traverse_submodules_flag: True if function must recursively traverse submodules too :return: Returns tuple ``(the_module, obj)`` where ``obj`` is the object identified by :func:`do_action` and ``the_module`` is the corresponding dictionary structure to which the object belongs. It returns ``None`` if no object has been identified by the :func:`do_action` """ if do_action(the_module['module_obj']): return the_module, the_module['module_obj'] # Traverse classes of the_module for the_class in the_module['classes']: if do_action(the_class): return the_module, the_class # Traverse functions of the_module for the_func in the_module['functions']: if do_action(the_func): return the_module, the_func # Recursively traverse submodules of the_module if traverse_submodules_flag: for submodule in the_module['submodules']: the_tuple = traverse(submodule, do_action, traverse_submodules_flag) if the_tuple is not None: return the_tuple return None
7eab757b8223d5305db59f3b8e1c4403ccca458e
288,579
import json def filter_coverage_file(covfile_handle, cov_functions): """Given an input coverage json file and a set of functions that the test is targeting, filter the coverage file to only include data generated by running the given functions.""" covdata_out = dict() covdata = json.load(covfile_handle) # copy basic info assert covdata["format_version"] == "1" covdata_out["format_version"] = covdata["format_version"] covdata_out["current_working_directory"] = covdata["current_working_directory"] covdata_out["data_file"] = covdata["data_file"] covdata_out["gcc_version"] = covdata["gcc_version"] # handle per proj file data covdata_out["files"] = list() for targetfile in covdata["files"]: cur_file = dict() cur_file["file"] = targetfile["file"] cur_functions = list() for function in targetfile["functions"]: if function["name"] in cov_functions: cur_functions.append(function) cur_file["functions"] = cur_functions cur_lines = list() for line in targetfile["lines"]: if line["function_name"] in cov_functions: cur_lines.append(line) cur_file["lines"] = cur_lines covdata_out["files"].append(cur_file) return covdata_out
12562e355feaeea18fa4d8386c1f77cf44c167b5
451,049
from typing import Dict from typing import Optional def get_collection_for_id( id_: str, id_map: Dict, replace_underscore: bool = False ) -> Optional[str]: """ Returns the name of the collect that contains the document idenfied by the id. Parameters ---------- id_ : str The identifier of the document. id_map : Dict A dict mapping collection names to document ids. key: collection name value: set of document ids replace_underscore : bool If true, underscores in the collection name are replaced with spaces. Returns ------- Optional[str] Collection name containing the document. None if the id was not found. """ for collection_name in id_map: if id_ in id_map[collection_name]: if replace_underscore is True: return collection_name.replace("_", " ") else: return collection_name return None
0473b4cc14e25bca7d2f4cbf8f77a8bdb60359d8
370,033
from typing import Dict from typing import List from typing import Tuple from bs4 import BeautifulSoup from typing import OrderedDict def load_docs_from_sgml( file_path: str, encoding='utf-8' ) -> Dict[str, List[Tuple[str, str]]]: """ Loads documents from given SGML file. Returns dict mapping document ids to list of segments [segments]. Each segment is a tuple (segment id, segment text). """ soup = None with open(file_path, encoding=encoding) as _file: soup = BeautifulSoup(_file, features='lxml') all_docs: Dict[str, List[Tuple[str, str]]] = OrderedDict() for curr_doc in soup.find_all('doc'): curr_doc_id = curr_doc.attrs['docid'] if not curr_doc_id in all_docs: all_docs[curr_doc_id] = [] for curr_seg in curr_doc.find_all('seg'): curr_seg_id = curr_seg.attrs['id'] curr_seg_text = curr_seg.get_text() all_docs[curr_doc_id].append((curr_seg_id, curr_seg_text)) return all_docs
99074d183c2f66839db50394528453f4517685c9
42,236
from typing import List import logging import re def python_result_extractor(raw_test_output: str) -> List[bool]: """ Function which extracts the test resutls for an execution @param raw_test_output: output provided by the submission @return list of bools, where each element on position i means, that the i-th test passed or not """ logging.info("Start extracting result from raw_output") try: test_results = raw_test_output.strip().split('\n')[0] if not re.match("^[\\.F]*$", test_results): raise ValueError("Submission result is not properly formatted") return [True if test_res == "." else False for test_res in test_results] except (ValueError, IndexError) as err: logging.error(f"Error while extracting results from following raw output: {raw_test_output}") raise ValueError(f"Invalid raw output format for python err: {str(err)}")
c7b487c79db03c7a048301c8f97e89b4692b3b2a
408,585
def load_file(filename: str) -> list: """Read file containing survey responses :param filename: Location of survey response file :return: List of survey responses by group """ groups = [] gp = [] with open(filename, 'r') as f: for line in f: if line == '\n': groups.append(gp) gp = [] else: gp.append(frozenset(line[:-1])) groups.append(gp) return groups
940f836377e12774fd1e1ec8fba89d4aea496d8e
381,851
from bs4 import BeautifulSoup import requests def get_content(url:str) -> BeautifulSoup: """Attempts to make get request to url, raises HTTPError if it fails. Returns the contents of the page. Args: url (str): Valid url example: https://www.rescale.com. Returns: BeautifulSoup: The contents of the html page to parse. """ resp = requests.get(url) resp.raise_for_status return BeautifulSoup(resp.content, "html.parser")
dd7ff1a50964ac6a4c51ec0511ba18a3f9035306
64,624
def get_requirements(rfile): """Get list of required Python packages.""" requires = list() with open(rfile, "r") as reqfile: for line in reqfile.readlines(): requires.append(line.strip()) return requires
ef707cdf35500cb05f86e5c986e9b9c58968d111
484,059
import itertools def flatten(l): """ Flatten a 2-dimensional list. """ return list(itertools.chain.from_iterable(l))
bcfe036e44068da0bad1e4024cc767da471d3d4f
383,321
def take_bet(player: dict) -> float: """Prompt the player for how much money to bet.""" while True: print(f"\nYou currently have ${player['money']:.2f}") bet = input('How much money would you like to bet on this hand? (min: $20)\n> $') if not bet.isdigit() or float(bet) < 20: print('You must bet at least $20\n') continue if float(bet) > player['money']: print(f"You only have {player['money']}. You can't bet more than you've got\n") continue rounded_bet = round(float(bet), 2) player['money'] -= rounded_bet return rounded_bet
b28d48bdd690cd7ec317fbe00da039de86a2423a
624,285
def make_query_result(query_type): """Return a function that creates the result of a query.""" def _result(tokens): return (query_type, tokens) return _result
14e6f05b8d5197dda48c11ce8f509fb82c4b24ce
375,102
def get_sig(value): """ Extract the signature of a docstring. """ return value.__doc__.strip().splitlines()[0]
229479bfffd5c97cec76d27e31fbfbc6c5f560aa
152,016
def split_name_pos(no_chrom_list): """ Splits the name and position in no_chrom_list. Args: no_chrom_list (list): list with header info not containing chromosome Returns: name_pos_split_list: split name and position list """ name_pos_split_list = [] for item in no_chrom_list: new_split = item[0].replace("_", "").split(":") name_pos_split_list.append([new_split[1]]) return name_pos_split_list
6a063908c38bb22e4611ccd17e672e146230a009
527,158
from typing import List import re def split(sentence: str) -> List[str]: """ Split a string by groups of letters, groups of digits, and groups of punctuation. Spaces are not returned. """ return re.findall(r"[\d]+|[^\W\d_]+|[^\w\s]+", sentence)
d8e8e3ac0a0b00c4346eedef29693a5d66a7f3a4
655,252
def edge(node1, node2): """Create an edge connecting the two nodes, which may be the same.""" return frozenset({node1, node2})
160b1d8c5c9d945d25598b585901d1a7f076d2de
243,100
def getstate(cells, pos, inc): """ A helper function to call within a cellular automata's rule function to access the value of neighbor cells at position pos + inc. See: `states()`. The new position pos+inc will automatically wrap mod the size of the cells array so will never go out of bounds. Parameters ---------- cells : list An array of cells holding the cellular automata's current states. pos : tuple The (*row*, *col*) index of the current cell in the cells array. Your rule function will receive this position in its pos argument. To access a neighbor cell, pass the pos value to getstate() along with a positional increment *inc*. inc : int | tuple A positive or negative offset to add to pos to calculate the position of the neighbor cell. This must be a tuple (*row*, *col*) for 2D automata. For 1D cases you can specify a positive or negative integer, or a tuple (0, *col*). Returns ------- The value of the neighbor cell at pos+inc. """ if not isinstance(inc, tuple): inc = (0, inc) row = (pos[0] + inc[0]) % len(cells) col = (pos[1] + inc[1]) % len(cells[0]) return cells[row][col]
2328869f9d7e8d1310a9abe6f609ac7f0fa4ba6e
371,929
import torch def abs_img_point_to_rel_img_point(abs_img_points, img_shape, spatial_scale=1.): """Convert image based absolute point coordinates to image based relative coordinates for sampling. Args: abs_img_points (Tensor): Image based absolute point coordinates, shape (N, P, 2) img_shape (tuple): (height, width) of image or feature map. spatial_scale (float): Scale points by this factor. Default: 1. Returns: Tensor: Image based relative point coordinates for sampling, shape (N, P, 2) """ assert isinstance(img_shape, tuple) and len(img_shape) == 2 h, w = img_shape scale = torch.tensor([w, h], dtype=torch.float, device=abs_img_points.device) scale = scale.view(1, 1, 2) rel_img_points = abs_img_points / scale * spatial_scale return rel_img_points
528ea12f13d6e74ce7433824270702760cba2bf8
271,070
def _CalcThroughput(samples): """Calculates the throughput in MiB/second. @type samples: sequence @param samples: List of samples, each consisting of a (timestamp, mbytes) tuple @rtype: float or None @return: Throughput in MiB/second """ if len(samples) < 2: # Can't calculate throughput return None (start_time, start_mbytes) = samples[0] (end_time, end_mbytes) = samples[-1] return (float(end_mbytes) - start_mbytes) / (float(end_time) - start_time)
0f7c973532833ab75ac41fec85c1f7f80983447b
589,160
from typing import Any import textwrap def clean_text(text: Any) -> str: """Convert an object to text, dedent it, and strip whitespace.""" return textwrap.dedent(str(text)).strip()
85427e3c8ef77d334a92490616c4db2ca8de75bc
276,966
def strip_ses_recipient_label(address): """ Ensure `address` does not contain any +label. Address is a simple recipient address given by SES, it does not contain a display name. For example, 'coder+label@vanity.dev' -> 'coder@vanity.dev'. """ name, domain = address.split("@") if '+' in name: name = name.split("+")[0] return name + "@" + domain
4d6b5503b303b9ea5abf44f3189e04b424abc66f
122,287
import struct def little_endian_uint32(i): """Return the 32 bit unsigned integer little-endian representation of i""" s = struct.pack('<I', i) return struct.unpack('=I', s)[0]
07f72baaf8f7143c732fd5b9e56b0b7d02d531bd
706,808
def adjust_displacement(n_trials, n_accept, max_displacement): """Adjusts the maximum value allowed for a displacement move. This function adjusts the maximum displacement to obtain a suitable acceptance \ of trial moves. That is, when the acceptance is too high, the maximum \ displacement is increased and when the acceptance is too low, the \ maximum displacement is decreased. Parameters ---------- n_trials : integer Number of trials that have been performed when the funtction is called. n_accept: integer Number of current accepted trials when the function is called. max_displacement: float Maximum displacement allowed for any step in the simulation. Returns ------- n_trials: int Number of trials. Updated to zero if maximum displacement is updated. n_accept: int Number of trials. Updated to zero if maximum displacement is updated. max_displacemnt: float Maximum displacement allowed for any step in the simulation. """ acc_rate = float(n_accept)/float(n_trials) if (acc_rate < 0.38): max_displacement *= 0.8 elif (acc_rate > 0.42): max_displacement *= 1.2 n_trials = 0 n_accept = 0 return max_displacement, n_trials, n_accept
cc513be27481d239cf8c937bd260e1db8f182775
650,283
def sanitize(s, strict=True): """ Sanitize a string. Spaces are converted to underscore; if strict=True they are then removed. Parameters ---------- s : str String to sanitize strict : bool If True, only alphanumeric characters are allowed. If False, a limited set of additional characters (-._) will be allowed. """ allowed = ''.join( [ 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz', '0123456789', ] ) if not strict: allowed += '-_.' s = str(s).replace(' ', '_') return ''.join([i for i in s if i in allowed])
3150b7d118443224630dcfd2925799bf8daea602
87,606
from pathlib import Path def get_directory(base_path, vin): """Generate directory where data files go.""" path = Path(base_path) / Path(str(vin)) path.mkdir(parents=True, exist_ok=True) return path
ef3fbda689b7feba527bb014896a170b873f5665
578,537
def _hbc_P(P): """Define the boundary between Region 2b and 2c, h=f(P) Parameters ---------- P : float Pressure [MPa] Returns ------- h : float Specific enthalpy [kJ/kg] References ---------- IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam August 2007, http://www.iapws.org/relguide/IF97-Rev.html, Eq 21 Examples -------- >>> _hbc_P(100) 3516.004323 """ return 0.26526571908428e4+((P-0.45257578905948e1)/1.2809002730136e-4)**0.5
86757a8285960c1805babe61574e160bccdfb891
403,732
def get_neighbors(x, y): """Returns the eight neighbors of a point upon a grid.""" return [ [x - 1, y - 1], [x, y - 1], [x + 1, y - 1], [x - 1, y ], [x + 1, y ], [x - 1, y + 1], [x, y + 1], [x + 1, y + 1], ]
21ec6d4f4143f717388ff20def80fd53127bc1ed
682,159
import struct import re import io def get_size(data: bytes): """ Returns size of given image fragment, if possible. Based on image_size script by Paulo Scardine: https://github.com/scardine/image_size """ size = len(data) if size >= 10 and data[:6] in (b'GIF87a', b'GIF89a'): # GIFs w, h = struct.unpack("<HH", data[6:10]) return int(w), int(h) if size >= 24 and data.startswith(b'\211PNG\r\n\032\n') and data[12:16] == b'IHDR': # PNGs w, h = struct.unpack(">LL", data[16:24]) return int(w), int(h) if size >= 16 and data.startswith(b'\211PNG\r\n\032\n'): # older PNGs w, h = struct.unpack(">LL", data[8:16]) return int(w), int(h) if size >= 30 and data[:4] == b'RIFF' and data[8:12] == b'WEBP': # WebP webp_type = data[12:16] if webp_type == b'VP8 ': # Lossy WebP (old) w, h = struct.unpack("<HH", data[26:30]) elif webp_type == b'VP8L': # Lossless WebP bits = struct.unpack("<I", data[21:25])[0] w = int(bits & 0x3FFF) + 1 h = int((bits >> 14) & 0x3FFF) + 1 elif webp_type == b'VP8X': # Extended WebP w = int((data[26] << 16) | (data[25] << 8) | data[24]) + 1 h = int((data[29] << 16) | (data[28] << 8) | data[27]) + 1 else: w = 0 h = 0 return w, h if b'<svg' in data: # SVG start = data.index(b'<svg') end = data.index(b'>', start) svg = str(data[start:end + 1], 'utf8') w = re.search(r'width=["\'](\d+)', svg) h = re.search(r'height=["\'](\d+)', svg) return int(w.group(1) if w else 0), int(h.group(1) if h else 0) if size >= 2 and data.startswith(b'\377\330'): # JPEG with io.BytesIO(data) as inp: inp.seek(0) inp.read(2) b = inp.read(1) while (b and ord(b) != 0xDA): while ord(b) != 0xFF: b = inp.read(1) while ord(b) == 0xFF: b = inp.read(1) if 0xC0 <= ord(b) <= 0xC3: inp.read(3) h, w = struct.unpack(">HH", inp.read(4)) return int(w), int(h) inp.read(int(struct.unpack(">H", inp.read(2))[0]) - 2) b = inp.read(1) return 0, 0
1b45563b0f59f5670638d554821406389b5333a6
15,612
def QuadraticLimbDarkening(Impact, limb1, limb2): """Quadratic limb darkening. Kopal 1950, Harvard Col. Obs. Circ., 454, 1""" return 1 - limb1 * (1 - Impact) - limb2 * (1 - Impact) ** 2
1b271c7afec301331b978e015c085ffaaa335240
677,194
def trusted_division(a, b): """ Returns the quotient of a and b Used for testing as 'trusted' implemntation of division. """ return a * 1.0 / b
e544c5b617cd559e207aa1d8c2440b4f88dc056a
102,167
def substitute(message, substitutions=[[], {}], depth=1): """ Substitute `{%x%}` items values provided by substitutions :param message: message to be substituted :param substitutions: list of list and dictionary. List is used for {%number%} substitutions and dictionary for {%name%} substitutions :param depth: defines number of pass :return: substituted message """ if not isinstance(message, str): raise Exception('StringExpected!') if depth <1 : return message new_message = message # substitute numbered substitutions i = 0 for value in substitutions[0]: new_message = new_message.replace("{%%%d%%}" % i, value) i += 1 # processing named substitutions for (k, value) in substitutions[1].items(): new_message = new_message.replace("{%%%s%%}" % k, value) return substitute(new_message, substitutions, depth-1)
4a46c46faf1848f1c7e437fed956e21cfdd3a813
652,579
from typing import List def split_key(parent_key: List[str]) -> List[List[str]]: """Split group key into parts.""" key_parts = [] while parent_key: key_parts.append(parent_key) parent_key = parent_key[:-1] return key_parts[::-1]
157c02092452c4757e03f963cce9b2cccd456c4b
590,268
def bit_len(i): """ Calculate the bit length of an int :param int i: Int :return: Length of *i* :rtype: int """ length = 0 while i: i >>= 1 length += 1 return length
f0e35e6d89870cc05c9ae0a6fe22a6cba896b6ad
474,861
from pathlib import Path def parse_taxid_names(file_path): """ Parse the names.dmp file and output a dictionary mapping names to taxids (multiple different keys) and taxids to scientific names. Parameters ---------- file_path : str The path to the names.dmp file. Returns ------- name2taxid : dict Keys are all possible names and values are taxids. taxid2name : dict Keys are taxids and values are scientific names. """ names = Path(file_path) with names.open() as f: lines_processed = 0 name2taxid = {} taxid2name = {} for line in f: lines_processed += 1 if lines_processed % 1000000 == 0: print('processing line', str(lines_processed)) entries = [entry.strip() for entry in line.split('|')] name2taxid[entries[1]] = entries[0] if 'scientific name' in line: taxid2name[entries[0]] = entries[1] return name2taxid, taxid2name
1d136f73a56ac8d3c02fd53c6e7928a39440e27a
5,451
def num_vertices(G): """Counts the number of vertices in the graph.""" return max(v for e in G for v in e)
ef9b396159681d4a379c2c3c727043f8384db8f6
365,238
def camel_case_split(str): """Split up camel case string.""" words = [[str[0]]] for c in str[1:]: if words[-1][-1].islower() and c.isupper(): words.append(list(c)) else: words[-1].append(c) return [''.join(word) for word in words]
64e075978aedacdae83845fa26bcf80ab75ef230
223,251
def clean_col_names(df): """ cleans up the column names in the mta dataframe :param df: mta dataframe :return: mta dataframe with cleaned columns """ df = df.copy() before = 'EXITS ' df.rename(columns={before: 'EXITS', "C/A": "CA"}, inplace=True) return df
62ee58e79095823c69d18a81bb7845bb6224d1ae
58,113
def minidom_get_text(nodelist): """ gets the text in a minidom nodelist for something like <tag>this text</tag> nodelist: the childNodes field of the minidom node """ rc = [] for node in nodelist: if node.nodeType == node.TEXT_NODE: rc.append(node.data) return "".join(rc)
2f9a781cdd6c675fb0ec0ef5268a824144e8838d
67,478
import re def extract_top_level_domain_from_uri(uri): """ Extract host's top level domain from URIs like 'https://amy.carpentries.org/api/v1/organizations/earlham.ac.uk/' to 'earlham.ac.uk'. When subdomains are used, as in 'https://amy.carpentries.org/api/v1/organizations/cmist.manchester.ac.uk/' we are only interested in top level domain 'manchester.ac.uk'. :param uri: URI like 'https://amy.carpentries.org/api/v1/organizations/earlham.ac.uk/' :return: top level domain like 'earlham.ac.uk' """ host = list(filter(None, re.split("(.+?)/", uri)))[-1] # Get the host from the URI first # Now just get the top level domain of the host domain_parts = list(filter(None, re.split("(.+?)\.", host))) if len(domain_parts) >= 3: domain_parts = domain_parts[-3:] # Get the past 3 elements of the list only top_level_domain = ''.join((x + '.') for x in domain_parts) # join parts with '.' in between top_level_domain = top_level_domain[:-1] # remove the extra '.' at the end after joining return top_level_domain
22d965028116d1faaae6de6bc7d7dd877c50b9a2
587,600
def tokens(_s, _separator=' '): """Returns all the tokens from a string, separated by a given separator, default ' '""" return _s.strip().split(_separator)
cb07414580b7d7a1bfe0917cc220b3951741bc7e
191,444
def get_restaurants(restaurants, category=None): """ This function takes a list of dictionaries as an argument and returns a list of strings that includes restaurants' names Parameters: restaurants (list): A list of dictionaries, each representing a restaurant category (list): A list of strings containing different categories of restaurants Returns: restaurants_names (list): A list containing the restaurants' names """ restaurants_names = [] for restaurant in restaurants: if category: if restaurant['Category'] in category: restaurants_names.append(restaurant['Name']) else: restaurants_names.append(restaurant['Name']) return restaurants_names
af61eaec4a0bc632921f030eb6779e5b8f4caac1
92,538
def email_context(request, application, message=None): """ Return a dictionary with the context to be used when constructing email messages about this application from a template. """ fa_app_url = request.build_absolute_uri(application.fa_app_url()) context = { 'user': request.user, 'message': message, 'application': application, 'applicant': application.user, 'fa_app_url': fa_app_url, } return context
554d32861217b4c3c90c23d410bdbe94b1fb034c
403,043
from typing import List from typing import Any def _flatten_non_tensor_optim_state( state_name: str, non_tensors: List[Any], unflat_param_names: List[str], ) -> Any: """ Flattens the non-tensor optimizer state given by the values ``non_tensors`` for the state ``state_name`` for a single flattened parameter corresponding to the unflattened parameter names ``unflat_param_names`` by enforcing that all values are the same and using that common value. See the note in :func:`_flatten_zero_dim_tensor_optim_state`. Args: state_name (str): Optimizer state name. non_tensors (List[Any]): Non-tensor optimizer state for the unflattened parameters corresponding to the single flattened parameter. unflat_param_names (List[str]): A :class:`list` of unflattened parameter names corresponding to the single flattened parameter. Returns: Any: A non-tensor giving the value of the state ``state_name`` for all unflattened parameters corresponding to the names ``unflat_param_names``. """ non_none_non_tensors = [nt for nt in non_tensors if nt is not None] # Enforce that all have the same value (same type already checked) non_tensor_set = set(non_tensors) if len(non_none_non_tensors) != len(non_tensors) or \ len(non_tensor_set) != 1: raise ValueError( "All unflattened parameters comprising a single flattened " "parameter must have scalar state with the same value and dtype " f"but got values {non_tensor_set} for state {state_name} and " f"unflattened parameter names {unflat_param_names}" ) non_tensor = next(iter(non_tensor_set)) return non_tensor
68199447dc6d3443a0df05f3660893fa0f000697
167,123
def render_tile(tile): """ For a given tile, render its character :param tile: :returns str value of tile """ # each tile list has the meaning: [Visible (bool), Mine (bool), Adjacent Mines (int)] # visible, mine, adjacent_mines = tile if tile[0]: # if the tile is visible if tile[1]: # if the tile is a mine return "X" elif tile[2]: # if the tile has neighboring mines return str(tile[2]) else: return " " else: return "+"
95e28284d7a8d38b3a850dd81449c405a6528f93
302,979
def vals_to_array(offset, *content): """ Slice all the values at an offset from the content arrays into an array. :param offset: The offset into the content arrays to slice. :param content: The content arrays. :return: An array of all the values of content[*][offset]. """ slice = [] for arr in content: slice.append(arr[offset]) return slice
3a6dcb84f6ee8ecebc57ffc8e42ca18f6d56e9c7
120,594
from typing import Dict def get_short_namespace(full_ns: str, xml_namespaces: Dict[str, str]) -> str: """ Inverse search of a short namespace by its full namespace value. :param full_ns: The full namespace of which the abbreviated namespace is to be found. :param xml_namespaces: A dictionary containing the mapping between short namespace (keys) and long namespace (values). :return: If the full namespace is found in the dictionary, returns the short namespace. :raise KeyError: If the full namespace is not found in the dictionary. """ for key, value in xml_namespaces.items(): if full_ns == value: return key raise KeyError('The namespace is not found in "xml_namespaces".', full_ns)
5a431defce47dc2e3594c3a1da8c44d2f00c9c38
389,773
def get_accumulated_value(n: int, P: float, i: float) -> float: """ " Повертає нарощену суму на певну кількість років Parameters ---------- P : float Початкова величина боргу(позики, кредиту) i : float Річна ставка складних відсотків n : int Кількість років нарощення Returns ------- S : float Нарощена сума """ return P * (1 + i) ** n
0b38575447f3fb97d03f23607e675c2f92aa7ad3
548,089
def bool_to_string(boolean: bool) -> str: """ boolを小文字にして文字列として返します Parameters ---------- boolean : bool 変更したいbool値 Returns ------- true or false: str 小文字になったbool文字列 """ return "true" if boolean else "false"
74c1c9a8c4b92ae9b41e73c50331c14ed6d9c259
152,272
import hashlib def _convert_to_id(name): """Convert a string to a suitable form for html attributes and ids.""" hasher = hashlib.md5() hasher.update(name.encode('utf-8')) return hasher.hexdigest()
85ee402cdec9793ef00406f4d06eb6fdd41b5e06
561,486
def save(sizes: list, hd: int) -> int: """ Your task is to determine how many files of the copy queue you will be able to save into your Hard Disk Drive. Input: Array of file sizes (0 <= s <= 100) Capacity of the HD (0 <= c <= 500) Output: Number of files that can be fully saved in the HD :param sizes: :param hd: :return: """ counter = 0 total = 0 for size in sizes: total += size counter += 1 if total > hd: counter -= 1 break return counter
361d05b6145c9eee837bd98bae0c232329cb60d9
133,827
import functools import time def time_method(function_name=None): """Times the execution of a function as a decorator. Parameters __________ function_name : str The name of the function to time. (default is None) Returns ------- A decorator function. """ def real_decorator(func): @functools.wraps(func) def wrapper_time_method(*args, **kwargs): t_start = time.time() result = func(*args, **kwargs) t_end = time.time() if function_name is None: name = func.__name__.upper() else: name = function_name elapsed_t = (t_end - t_start) print(f'TIMING: {name}'.ljust(40) + f'{elapsed_t:>39.4f}s') return result return wrapper_time_method return real_decorator
56d4f75c6ef9ff9e14e79edad1629f3e515884a8
536,351
import re def is_base64(text: str) -> bool: """Guess whether text is base64-encoded.""" return bool( re.match( r"^([A-Za-z0-9+/]{4})*([A-Za-z0-9+/]{3}=|[A-Za-z0-9+/]{2}==)?$", text.replace("\n", ""), ) )
f3be6a0e77e84715317d7233523b01ff5de92ce5
634,407
from bs4 import BeautifulSoup import re def get_text(connection_or_html) -> str: """ Uses BeautifulSoup to get text from HTML """ # https://stackoverflow.com/questions/1936466/beautifulsoup-grab-visible-webpage-text/1983219#1983219 if isinstance(connection_or_html, BeautifulSoup): soup = connection_or_html else: soup = BeautifulSoup(connection_or_html, "html5lib") [s.extract() for s in soup(['style', 'script', '[document]', 'head', 'title'])] [s.extract() for s in soup.find_all(attrs={"style": re.compile("display: ?none|visibility: ?hidden")})] split = [re.sub(r"\s+", " ", s) for s in soup.stripped_strings] split = [s for s in split if s] return "\t".join(split)
3a87fa000732f04cf64d46431e753abc57262ddb
231,902
def count_matches(list, item): """ Return the number of occurrences of the given item in the given list. """ if list == (): return 0 else: head, tail = list if head == item: return 1 + count_matches(tail, item) else: return count_matches(tail, item)
beaf23ee6d915a32fcb18326ac23fd705e10f94d
582,181
def all_jobs_completed(jobs): """Returns jobs if they are all completed, otherwise False.""" if all(j.get('status') == 'completed' for j in jobs): return jobs else: return False
b3e7f4dbfbb89080f34eb98673c8d5c469a9e35b
563,799
import shutil def disk_usage(pathname): """Return disk usage statistics for the given path""" ### Return tuple with the attributes total,used,free in bytes. ### usage(total=118013599744, used=63686647808, free=48352747520) return shutil.disk_usage(pathname)
c7a36e2f3200e26a67c38d50f0a97dd015f7ccfa
625
def pretty_print(params, offset=0, printer=repr): """Pretty print the dictionary 'params' Parameters ---------- params : dict The dictionary to pretty print offset : int The offset in characters to add at the begin of each line. printer : callable The function to convert entries to strings, typically the builtin str or repr Notes ----- Implementation is taken from ``sklearn.base._pprint`` with minor modifications to avoid additional dependencies. """ # Do a multi-line justified repr: param_names = [p for p in params.keys() if p is not "cost"] param_names.sort() params_list = list() this_line_length = offset line_offset = " " * offset for i, name in enumerate(param_names): value = params[name] if isinstance(value, float): this_repr = '%s=%s' % (name, str(value)) else: this_repr = '%s=%s' % (name, printer(value)) if len(this_repr) > 500: this_repr = this_repr[:300] + '...' + this_repr[-100:] this_repr = f"\n{line_offset}{this_repr}," params_list.append(this_repr) this_line_length += len(this_repr) lines = ''.join(params_list) # Strip trailing space to avoid nightmare in doctests lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n')) return lines
8386626542752a67faf089d71a5ffa1f4b4a20e8
238,136
def pretty_timer(seconds: float) -> str: """Formats an elapsed time in a human friendly way. Args: seconds (float): a duration of time in seconds Returns: str: human friendly string representing the duration """ if seconds < 1: return f'{round(seconds * 1.0e3, 0)} milliseconds' elif seconds < 60: return f'{round(seconds, 3)} seconds' elif seconds < 3600: return f'{int(round(seconds) // 60)} minutes and {int(round(seconds) % 60)} seconds' elif seconds < 86400: return f'{int(round(seconds) // 3600)} hours, {int((round(seconds) % 3600) // 60)} minutes, and {int(round(seconds) % 60)} seconds' else: return f'{int(round(seconds) // 86400)} days, {int((round(seconds) % 86400) // 3600)} hours, and {int((round(seconds) % 3600) // 60)} minutes'
de49d27f57ce45d3ad967f58377b361b9eda63ef
315,962
import re def _is_dns_label(name): """ Check that name is DNS label: An alphanumeric (a-z, and 0-9) string, with a maximum length of 63 characters, with the '-' character allowed anywhere except the first or last character, suitable for use as a hostname or segment in a domain name """ dns_label = re.compile(r"""^[a-z0-9][a-z0-9\.-]{1,62}$""") if dns_label.match(name): return True else: return False
513e1eb08c87891e99398509d6fc9d04f8141f47
529,973
def tocreset(I, Ipickup, TD, curve="U1", CTR=1): """ Time OverCurrent Reset Time Function. Function to calculate the time to reset for a TOC (Time-OverCurrent, 51) element. Parameters ---------- I: float Measured Current in Amps Ipickup: float Fault Current Pickup Setting (in Amps) TD: float Time Dial Setting curve: string, optional Name of specified TOC curve, may be entry from set: {U1,U2,U3,U4,U5,C1,C2,C3,C4,C5}, default=U1 CTR: float, optional Current Transformer Ratio, default=1 Returns ------- tr: float Time-to-Reset for characterized element. """ # Condition Inputs curve = curve.upper() # Define Dictionary of Constants C = {"U1": 1.08, "U2": 5.95, "U3": 3.88, "U4": 5.67, "U5": 0.323, "C1": 13.5, "C2": 47.3, "C3": 80.0, "C4": 120.0, "C5": 4.85} # Evaluate M M = I / (CTR * Ipickup) # Evaluate Reset Time tr = TD * (C[curve] / (1 - M ** 2)) return tr
8c26a3aebcb5f51fe884724e4d9460f44454b3d1
657,381
from typing import Dict from typing import Any from typing import List def process_properties(schema: Dict[str, Any]) -> Dict[str, Any]: """Processes a Pydantic generated schema to a confluent compliant schema :param schema: a valid pydantic schema :type schema: Dict[str, Any] :return: schema with `fields` and `names` keys :rtype: Dict[str, Any] """ fields: List[Dict[str, Any]] = [] json2avro_types = { 'number': 'double', 'integer': 'int' } python2avro_defaults = { False: 'false', True: 'true' } for name, value in schema['properties'].items(): try: value.pop('title') value['name'] = name json_type = value['type'] value['type'] = json2avro_types.get(json_type, json_type) if value.get('default') is not None: default = value['default'] value['default'] = python2avro_defaults.get(default, default) finally: fields.append(value) schema['fields'] = fields return schema
e647ba12f25d2440b6c987f2098995ef6e6280cb
203,810
def construct_api_params( business_unit=None, event_type=None, limit=None, page_token=None ): """ Constructs the parameters object for the API call. Note that startDateUtc and endDateUtc are not listed here (although they are parameters); this is because they are included already in the URL Args: business_unit (str): Comma separated list of business unit IDs event_type (str): Comma separated list of event types. Allowed event types are: ON_PREM_EXPOSURE_APPEARANCE,ON_PREM_EXPOSURE_DISAPPEARANCE, ON_PREM_EXPOSURE_REAPPEARANCE. Beta event types are: CLOUD_EXPOSURE_APPEARANCE, CLOUD_EXPOSURE_DISAPPEARANCE,CLOUD_EXPOSURE_REAPPEARANCE limit (int): Number of events to be fetched per page of results. Max and default value is 10,000 page_token (str): Page token of page Returns: dict: the params object to be sent to the API """ tokens = { 'businessUnit': business_unit, 'eventType': event_type, 'limit': limit, 'pageToken': page_token } params = {} for token_key, token_value in tokens.items(): if token_value is not None: params.update({token_key: token_value}) return params
36f4de8a30d6cbf6aff72b08130553843b7eec7d
623,096