repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
vaneoooo/SailYX
3,779,571,263,563
0afcde46ed3d630b66fcf1d06dfe0eb23d89b85f
f2cbcdfec6a279c4bf7c5efedefb9dcc045ae81e
/sailyx/apps/weixin/tohtml.py
76f73f74acc60af0415ff17780ffc908904c9938
[]
no_license
https://github.com/vaneoooo/SailYX
2723d5727cf86dcca756bd0643d5185873420b48
5ae23654a2ee0a6097742d0406be15edbd4e16c4
refs/heads/master
2020-05-17T21:48:20.663270
2015-06-06T10:30:01
2015-06-06T10:30:01
8,630,452
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from uliweb import settings def menu(path): menu_head = '<div id="sidebar-nav" class="hidden-phone"><ul id="dashboard-menu">' menu_end = '</ul></div>' menu_li = '<li%s <a href="%s"> <i class="%s"></i> <span>%s</span> </a> </li>' active = ' class="active"><div class="pointer"><div class="arrow"></div><div class="arrow_border"></div></div>' html = '' html += menu_head menus = settings.get_var('MENU/MenuList') for url,style,name in menus: if url == path: html +=(menu_li %(active,url,style,name)) else: html += (menu_li %('>',url,style,name)) html += menu_end return html
UTF-8
Python
false
false
653
py
18
tohtml.py
4
0.557427
0.557427
0
17
37.470588
115
pythonfixer/PyQtPractice
10,050,223,484,455
055aecd7209fd037354a7975a85945bcc2e2b64f
93038502fe00ea31b48eef0d42c06ac6294f4864
/04/connections.pyw
8fffed878ffa212ff44184e8a02e902f536ed7ff
[]
no_license
https://github.com/pythonfixer/PyQtPractice
8f4ecf95b5e298a69d44030ab2ae4f3d3e2163b0
9f61b4d91473cb16e95346715082655b172f3b4e
refs/heads/master
2021-07-07T16:08:52.998043
2020-07-21T08:07:02
2020-07-21T08:07:02
143,581,393
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import functools import sys from PyQt4.QtCore import * from PyQt4.QtGui import * class Form(QDialog): def __init__(self, parent=None): super().__init__(parent) button1 = QPushButton("One") button2 = QPushButton("Two") button3 = QPushButton("Three") button4 = QPushButton("Four") button5 = QPushButton("Five") self.label = QLabel("Click a button...") layout = QHBoxLayout() layout.addWidget(button1) layout.addWidget(button2) layout.addWidget(button3) layout.addWidget(button4) layout.addWidget(button5) layout.addStretch() layout.addWidget(self.label) self.setLayout(layout) self.connect(button1, SIGNAL("clicked()"), self.one) self.button2callback = functools.partial(self.anyButton, "Two") self.connect(button2, SIGNAL("clicked()"), self.button2callback) self.button3callback = lambda who="Three": self.anyButton(who) self.connect(button3, SIGNAL("clicked()"), self.button3callback) self.connect(button4, SIGNAL("clicked()"), self.clicked) self.connect(button5, SIGNAL("clicked()"), self.clicked) self.setWindowTitle("Connections") def one(self): self.label.setText("You clicked button 'One'") def anyButton(self, who): self.label.setText("You clicked button '{}'".format(who)) def clicked(self): button = self.sender() if button is None or not isinstance(button, QPushButton): return self.label.setText("You clicked button '{}'".format(button.text())) app = QApplication(sys.argv) form = Form() form.show() app.exec_()
UTF-8
Python
false
false
1,691
pyw
30
connections.pyw
27
0.632762
0.620343
0
53
30.924528
75
vlipinska/Shared_with_Fibip
16,862,041,625,068
38daeaf5b9f670549fdae184415818770063d376
f69cc5a11ab6b3a5552220725f7a15f31bc52edb
/test_laptop_2.py
5ab1bdff588b24aa1c14453cce81bdf5e32684ec
[]
no_license
https://github.com/vlipinska/Shared_with_Fibip
c27f57f08042773aab1ac3df840bdcd145c254f7
993ede48c2f3648241edc9b348dc73ce5bf10041
refs/heads/master
2021-03-16T10:13:23.129073
2017-11-09T13:35:02
2017-11-09T13:35:02
110,111,868
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
Tu powinno byc to. A moze tez tamto. I'm adding stuff -V Chrzescijanin tanczy, tanczy tanczy tanczy
UTF-8
Python
false
false
103
py
2
test_laptop_2.py
2
0.757282
0.757282
0
7
13.714286
42
jegooCN/hlsyw
18,279,380,816,361
4d0d9dcd6c70c2cde722634ec2aa6c90c975fc43
c269860da40a9229381b2e8db8404368c3169326
/app/wechat/model/__init__.py
ead2f47c96ecd788e746ce6725237ccbab682a75
[]
no_license
https://github.com/jegooCN/hlsyw
7f4facb89f5142ed52dbdad404ed24da0852d6de
950e24a6d97977624751119e2e216950de4e5734
refs/heads/master
2021-06-14T11:28:41.196621
2019-02-14T07:48:10
2019-02-14T07:48:10
170,268,683
2
0
null
false
2021-03-20T00:44:13
2019-02-12T06:58:32
2019-03-21T01:53:34
2021-03-20T00:44:13
316
1
0
2
Python
false
false
# coding=utf-8 """ Created by Jegoo on 2019-02-12 13:25 """ from app import db class BaseModel(db.Model): __abstract__ = True from .exercise import * from .grade import * from .record import * from .user import *
UTF-8
Python
false
false
225
py
22
__init__.py
13
0.662222
0.604444
0
15
14
40
lornajane/nexmo-messages-handler
14,851,996,939,197
9ab9f6c2a3fda1369c9c955dedaae0d83f85a09c
fd169d9123f28611aeafb246a22720019c56a249
/worker.py
a9632c2362d4c317e9bb1be8c803fbde4c5ea48f
[]
no_license
https://github.com/lornajane/nexmo-messages-handler
48d4e7bcc0aced757cd80aecee7b3dd9d9e7ef8f
af2ba9478e6a1799b98c8941be2aa34d0bc7f4af
refs/heads/master
2023-03-05T10:11:48.336260
2020-10-28T08:39:59
2020-10-28T08:39:59
258,488,862
1
0
null
false
2021-02-10T02:06:26
2020-04-24T11:07:59
2020-10-28T08:40:02
2021-02-10T02:06:26
4
1
0
1
Python
false
false
import os import json from nexmo_jwt import JWTokenGenerator import redis import requests import time from pprint import pprint from dotenv import load_dotenv load_dotenv() r = redis.Redis.from_url(os.getenv("REDIS_URL")) gen = JWTokenGenerator(os.getenv('NEXMO_APP_ID'),os.getenv('PRIVATE_KEY_PATH')) while True: message = r.lpop('queue:messages') if message: JWT = gen.generate_token() data = json.loads(message.decode('utf8')) if data["type"] == "whatsapp": # use the sandbox to send whatsapp api_url = os.getenv("SANDBOX_API_URL") msg = {'message': {'content': { 'type':'text', 'text': data["message"]}}, 'from': {'type': 'whatsapp', 'number': os.getenv("NEXMO_SANDBOX_NUMBER")}, 'to': {'type': 'whatsapp', 'number': data["to"]}} else: # assume SMS, use live messages API api_url = os.getenv("MAIN_API_URL") msg = {'message': {'content': { 'type':'text', 'text': data["message"]}}, 'from': {'type': 'sms', 'number': os.getenv("NEXMO_NUMBER")}, 'to': {'type': 'sms', 'number': data["to"]}} headers = {'Accept': 'application/json', 'Accept-Encoding':'identity', 'Authorization': 'Bearer ' + JWT.decode('utf8')} response = requests.post(api_url, json=msg, headers=headers) print(response.text) response_data = json.loads(response.text) if(response_data["message_uuid"]): r.set('messages:' + response_data["message_uuid"], 'attempted') time.sleep(0.1)
UTF-8
Python
false
false
1,847
py
6
worker.py
3
0.501895
0.499729
0
54
33.166667
127
JeschkeLab/DeerLab
3,040,836,859,682
e62e34749f8768b5d791ba9eca686780bdb40884
1fbf0447294a34d577ef8b7b2f5a5b5bf8c44481
/deerlab/bg_models.py
037f61dcdcc33d00b74c85ad1a784affa78d5337
[ "MIT" ]
permissive
https://github.com/JeschkeLab/DeerLab
48f0607edd56defad7abb9ee69565e108758d3f7
f7e0340d259cb2c2f5a237ffb0d27b1a7657de25
refs/heads/main
2023-08-29T13:29:44.916384
2023-08-27T18:36:14
2023-08-27T18:36:14
276,993,835
19
13
MIT
false
2023-09-06T07:20:18
2020-07-03T21:58:20
2022-09-29T07:12:34
2023-09-06T07:20:17
91,981
13
10
7
Python
false
false
# bg_models.py - Background parametric models # --------------------------------------------------------------------------- # This file is a part of DeerLab. License is MIT (see LICENSE.md). # Copyright(c) 2019-2023: Luis Fabregas, Stefan Stoll and other contributors. import numpy as np import math as m from numpy import pi import inspect from deerlab.dipolarkernel import dipolarkernel from deerlab.utils import formatted_table from deerlab.model import Model from scipy.special import gamma, hyp2f1, sici from deerlab.constants import * #--------------------------------------------------------------------------------------- def hyp2f1_repro(a,b,c,z): """ Gauss Hypergeometric function 2F1 for |z|>1 and non-integer (a-b) based on its "reciprocation" form Reference: https://functions.wolfram.com/07.23.17.0057.01 """ return gamma(b - a)*gamma(c)/(gamma(b)*gamma(c - a)*(-z)**a)*hyp2f1(a, a - c + 1, a - b + 1, 1/z) + \ (gamma(a - b)*gamma(c))/(gamma(a)*gamma(c - b)*(-z)**b)*hyp2f1(b, b - c + 1, b - a + 1, 1/z) #--------------------------------------------------------------------------------------- def _docstring(model,notes): #--------------------------------------------------------------------------------------- args = model._parameter_list(order='vector') args.insert(model._constantsInfo[0]['argidx'],model._constantsInfo[0]['argkey']) parameters = '' for arg in args: if arg==model._constantsInfo[0]['argkey']: type = 'array_like' parameters += f'\n {arg} : {type} \n Time vector, in microseconds.' elif len(np.atleast_1d(getattr(model,arg).idx))>1: type = 'array_like' parameters += f'\n {arg} : {type} \n {str(getattr(model,arg).description):s}' else: type = 'scalar' parameters += f'\n {arg} : {type} \n {str(getattr(model,arg).description):s}' string = inspect.cleandoc(f""" {model.description} Parameters ---------- {parameters} Returns ------- B : ndarray Dipolar background vector. Notes ----- **Parameter Table** """) string += '\n' string += '\n' table = [] table.append(['Name','Lower','Upper','Type','Frozen','Unit','Description']) for n, paramname in enumerate(model._parameter_list(order='vector')): param_str = f'``{paramname}``' lb_str = f'{np.atleast_1d(getattr(model,paramname).lb)[0]:5.3g}' ub_str = f'{np.atleast_1d(getattr(model,paramname).ub)[0]:5.3g}' linear_str = "linear" if np.all(getattr(model,paramname).linear) else "nonlin" frozen_str = "Yes" if np.all(getattr(model,paramname).frozen) else "No" unit_str = str(getattr(model,paramname).unit) desc_str = str(getattr(model,paramname).description) table.append([param_str,lb_str,ub_str,linear_str,frozen_str,unit_str,desc_str]) string += formatted_table(table) string += f'\n{notes}' return string #--------------------------------------------------------------------------------------- #======================================================================================= # bg_hom3d #======================================================================================= notes = r""" **Model** This model describes the inter-molecular interaction of one observer spin with a 3D homogenous distribution of spins of concentration `c_s` .. image:: ../images/model_scheme_bg_hom3d.png :width: 350px The expression for this model is .. math:: B(t) = \mathrm{exp}\left(-\frac{8\pi^2}{9\sqrt{3}}\lambda c_s D |t|\right)` where `c_s` is the spin concentration (entered in spins/m\ :sup:`3` into this expression) and D is the dipolar constant .. math:: D = \frac{\mu_0}{4\pi}\frac{(g_\mathrm{e}\mu_\mathrm{B})^2}{\hbar} """ def _hom3d(t,conc,lam): # Unit conversion conc = conc*1e-6*1e3*Nav # umol/L -> mol/L -> mol/m^3 -> spins/m^3 # Compute background function κ = 8*pi**2/9/m.sqrt(3) B = np.exp(-κ*lam*conc*D*np.abs(t*1e-6)) return B # Create model bg_hom3d = Model(_hom3d,constants='t') bg_hom3d.description = 'Background from a homogeneous distribution of spins in a 3D medium' # Add parameters bg_hom3d.conc.set(description='Spin concentration', lb=0.01, ub=5000, par0=50, unit='μM') bg_hom3d.lam.set(description='Pathway amplitude', lb=0, ub=1, par0=1, unit='') # Add documentation bg_hom3d.__doc__ = _docstring(bg_hom3d,notes) #======================================================================================= # bg_hom3d_phase #======================================================================================= notes = r""" **Model** This model describes the phase shift due to inter-molecular interactions between one observer spin with a 3D homogenous distribution of spins of concentration `c_s` The expression for this model is .. math:: B(t) = \mathrm{exp}\left(\mathrm{i}\frac{8\pi}{9\sqrt{3}}(\sqrt{3} + \mathrm{ln}(2-\sqrt{3}))\lambda c_s D t\right) where `c_s` is the spin concentration (entered in spins/m\ :sup:`3` into this expression) and D is the dipolar constant .. math:: D = \frac{\mu_0}{4\pi}\frac{(g_\mathrm{e}\mu_\mathrm{B})^2}{\hbar} """ def _hom3dphase(t,conc,lam): # Unit conversion conc = conc*1e-6*1e3*Nav # umol/L -> mol/L -> mol/m^3 -> spins/m^3 # Compute background function ξ = 8*pi/9/np.sqrt(3)*(np.sqrt(3)+np.log(2-np.sqrt(3)))*D B = np.exp(1j*ξ*lam*conc*(t*1e-6)) return B # Create model bg_hom3d_phase = Model(_hom3dphase,constants='t') bg_hom3d_phase.description = 'Phase shift from a homogeneous distribution of spins in a 3D medium' # Add parameters bg_hom3d_phase.conc.set(description='Spin concentration', lb=0.01, ub=5000, par0=50, unit='μM') bg_hom3d_phase.lam.set(description='Pathway amplitude', lb=0, ub=1, par0=1, unit='') # Add documentation bg_hom3d_phase.__doc__ = _docstring(bg_hom3d_phase,notes) #======================================================================================= # bg_hom3dex #======================================================================================= notes = r""" **Model** .. image:: ../images/model_scheme_bg_hom3dex.png :width: 350px This implements a hard-shell excluded-volume model, with spin concentration `c_s` (in μM) and the radius of the spherical excluded volume `R_\mathrm{ex}` (in nm). The expression for this model is .. math:: B(t) = \exp \Bigg(- c_\mathrm{s}\lambda_k \bigg( V_\mathrm{ex} K_0(t, R_\mathrm{ex}) + \mathcal{I}_\mathrm{S}(t) \bigg) where `\mathcal{I}_\mathrm{S}(t)` is an integral without analytical form given by .. math:: \mathcal{I}_\mathrm{S}(t) = \frac{4\pi}{3} D\,t \int_0^1 \mathrm{d}z~(1 - 3z^2) ~ \mathrm{S_i}\left( \frac{D\,t (1 - 3z^2)}{R_\mathrm{ex}^3 } \right) where `\mathrm{S_i}` is the sine integral function and `D` is the dipolar constant .. math:: D = \frac{\mu_0}{4\pi}\frac{(g_\mathrm{e}\mu_\mathrm{B})^2}{\hbar} """ def _hom3dex(t,conc,rex,lam): # Conversion: µmol/L -> mol/L -> mol/m^3 -> spins/m^3 conc = conc*1e-6*1e3*Nav # Excluded volume Vex = 4*np.pi/3*(rex*1e-9)**3 # Averaging integral z = np.linspace(0,1,1000)[np.newaxis,:] Dt = D*t[:,np.newaxis]*1e-6 Is = 4*np.pi/3*np.trapz(Dt*(1-3*z**2)*sici((Dt*(1-3*z**2))/((rex*1e-9)**3))[0],z,axis=1) # Background function C_k = -Vex + Is + np.squeeze(Vex*(dipolarkernel(t,rex,integralop=False))) B = np.exp(-lam*conc*C_k) return B # Create model bg_hom3dex = Model(_hom3dex,constants='t') bg_hom3dex.description = 'Background from a homogeneous distribution of spins with excluded volume' # Add parameters bg_hom3dex.conc.set(description='Spin concentration', lb=0.01, ub=5000, par0=50, unit='μM') bg_hom3dex.rex.set(description='Exclusion radius', lb=0.01, ub=20, par0=1, unit='nm') bg_hom3dex.lam.set(description='Pathway amplitude', lb=0, ub=1, par0=1, unit='') # Add documentation bg_hom3dex.__doc__ = _docstring(bg_hom3dex,notes) #======================================================================================= # bg_hom3dex_phase #======================================================================================= notes = r""" **Model** .. image:: ../images/model_scheme_bg_hom3dex.png :width: 350px This implements the phase-shift arising from a hard-shell excluded-volume model, with spin concentration `c_s` (in μM) and the radius of the spherical excluded volume `R_\mathrm{ex}` (in nm). The expression for this model is .. math:: B(t) = \exp \Bigg(- i c_\mathrm{s}\lambda_k \bigg( V_\mathrm{ex} \mathrm{Im}\{\mathcal{K}_0(t, R_\mathrm{ex})\} + \mathcal{I}_\mathrm{C}(t) \bigg) where `\mathcal{I}_\mathrm{C}(t)` is an integral without analytical form given by .. math:: \mathcal{I}_\mathrm{C}(t) = \frac{4\pi}{3} D\,t \int_0^1 \mathrm{d}z~(1 - 3z^2) ~ \mathrm{C_i}\left( \frac{D\,t (1 - 3z^2)}{R_\mathrm{ex}^3 } \right) where `\mathrm{C_i}` is the cosine integral function and `D` is the dipolar constant .. math:: D = \frac{\mu_0}{4\pi}\frac{(g_\mathrm{e}\mu_\mathrm{B})^2}{\hbar} """ def _hom3dex_phase(t,conc,rex,lam): # Conversion: µmol/L -> mol/L -> mol/m^3 -> spins/m^3 conc = conc*1e-6*1e3*Nav # Excluded volume Vex = 4*np.pi/3*(rex*1e-9)**3 # Averaging integral ξ = 8*pi**2/9/np.sqrt(3)*(np.sqrt(3)+np.log(2-np.sqrt(3)))/np.pi*D z = np.linspace(0,1,1000)[np.newaxis,:] Dt = D*t[:,np.newaxis]*1e-6 Ic = -ξ*(t*1e-6) + 4*np.pi/3*np.trapz(Dt*(1-3*z**2)*sici((Dt*np.abs(1-3*z**2))/((rex*1e-9)**3))[1],z,axis=1) # Background function C_k = - Ic - np.squeeze(Vex*(dipolarkernel(t,rex,integralop=False,complex=True)).imag) B = np.exp(1j*lam*conc*C_k) return B # Create model bg_hom3dex_phase = Model(_hom3dex_phase,constants='t') bg_hom3dex_phase.description = 'Phase shift from a homogeneous distribution of spins with excluded volume' # Add parameters bg_hom3dex_phase.conc.set(description='Spin concentration', lb=0.01, ub=5000, par0=50, unit='μM') bg_hom3dex_phase.rex.set(description='Exclusion radius', lb=0.01, ub=20, par0=1, unit='nm') bg_hom3dex_phase.lam.set(description='Pathway amplitude', lb=0, ub=1, par0=1, unit='') # Add documentation bg_hom3dex_phase.__doc__ = _docstring(bg_hom3dex_phase,notes) #======================================================================================= # bg_homfractal #======================================================================================= notes = r""" **Model** This implements the background due to a homogeneous distribution of spins in a `fdim`-dimensional space, with the `fdim`-dimensional spin concentration ``fconc``. """ def _homfractal(t,fconc,fdim,lam): # Fractal dimension (not defined for d=[0, 1.5, 3, 4.5, 6]) d = float(fdim) # Unit conversion of concentration conc = fconc*1e-6*(np.power(10,d))*Nav # µmol/dm^d -> mol/m^d -> spins/m^d # Compute prefactor if d==3: κd = 8*np.pi**2/9/np.sqrt(3) # d->3 limit of general expression elif d==1.5: κd = 8.71135 # d->1.5 limit of general expression elif d==4.5: κd = 5.35506 # d->4.5 limit of general expression else: κd = 2/9*(-1)**(-d/3+1)*pi*np.cos(d*pi/6)*gamma(-d/3)*( (-1 + (-1)**(d/3))*np.sqrt(3*np.pi)*gamma(1+d/3)/gamma(3/2+d/3) + 6*hyp2f1_repro(1/2, -d/3, 3/2, 3) ) κd = κd.real # Imaginary part is always negligible # Compute background function B = np.exp(-κd*lam*conc*abs(D*t*1e-6)**(d/3)) return B # ====================================================================== # Create model bg_homfractal = Model(_homfractal, constants='t') bg_homfractal.description = 'Background from homogeneous spin distribution in a space of fractal dimension' # Add parameters bg_homfractal.fconc.set(description='Fractal concentration of spins', lb=1e-20, ub=1e20, par0=1.0e-6, unit='μmol/dmᵈ') bg_homfractal.fdim.set(description='Fractal dimensionality', lb=0.01, ub=5.99, par0=2.2, unit='') bg_homfractal.lam.set(description='Pathway amplitude', lb=0, ub=1, par0=1, unit='') # Add documentation bg_homfractal.__doc__ = _docstring(bg_homfractal, notes) #======================================================================================= # bg_homfractal_phase #======================================================================================= notes = r""" **Model** This implements the phase shift due to a homogeneous distribution of spins in a `d`-dimensional space, with `d`-dimensional spin concentration ``c_d``. """ def _homfractal_phase(t,fconc,fdim,lam): # Fractal dimension (not defined for d=[0, 1.5, 3, 4.5, 6]) d = float(fdim) # Unit conversion of concentration fconc = fconc*1e-6*(np.power(10,d))*Nav # umol/dm^d -> mol/m^d -> spins/m^d # Compute constant if d==3: ξd = 0.33462*D**(d/3) # Limit of d->3 of equation below elif d==1.5: ξd = 1j*np.inf # Limit of d->1.5 of equation below elif d==4.5: ξd = 1j*np.inf # Limit of d->4.5 of equation below else: ξd = 2*D**(d/3)*pi**(3/2)/9/gamma(3/2 + d/3) * ( np.sqrt(3)*pi*np.cos(d*pi/6)/np.cos(d*pi/3) - 2**(2+2*d/3)*3**(1 + d/3)*gamma(-1-2*d/3)*np.sin(d*pi/6)*gamma(3/2+d/3)*hyp2f1((-3-2*d)/6, -d/3, (3-2*d)/6, 1/3)/gamma((3-2*d)/6) ) # Compute background function B = np.exp(1j*ξd*fconc*lam*np.sign(t)*abs(t*1e-6)**(d/3)) return B # ====================================================================== # Create model bg_homfractal_phase = Model(_homfractal_phase,constants='t') bg_homfractal_phase.description = 'Phase shift from a homogeneous distribution of spins in a fractal medium' # Add parameters bg_homfractal_phase.fconc.set(description='Fractal concentration of spins', lb=1e-20, ub=1e20, par0=1.0e-6, unit='μmol/dmᵈ') bg_homfractal_phase.fdim.set(description='Fractal dimensionality', lb=0.01, ub=5.99, par0=2.2, unit='') bg_homfractal_phase.lam.set(description='Pathway amplitude', lb=0, ub=1, par0=1, unit='') # Add documentation bg_homfractal_phase.__doc__ = _docstring(bg_homfractal_phase,notes) #======================================================================================= # bg_exp #======================================================================================= notes= r""" **Model** .. math:: B(t) = \exp\left(-\kappa \vert t \vert\right) Although the ``bg_exp`` model has the same functional form as ``bg_hom3d``, it is distinct since its parameter is a decay rate constant and not a spin concentration like for ``bg_hom3d``. """ def _exp(t,decay): return np.exp(-decay*np.abs(t)) # Create model bg_exp = Model(_exp,constants='t') bg_exp.description = 'Exponential background model' # Add parameters bg_exp.decay.set(description='Decay rate', lb=0, ub=200, par0=0.35, unit='μs⁻¹') # Add documentation bg_exp.__doc__ = _docstring(bg_exp,notes) #======================================================================================= # bg_strexp #======================================================================================= notes = r""" **Model** .. math:: B(t) = \exp\left(-\kappa \vert t\vert^{d}\right) Although the ``bg_strexp`` model has the same functional form as ``bg_homfractal``, it is distinct since its first parameter is a decay rate constant and not a spin concentration like for ``bg_homfractal``. """ def _strexp(t,decay,stretch): return np.exp(-decay*abs(t)**stretch) # Create model bg_strexp = Model(_strexp,constants='t') bg_strexp.description = 'Stretched exponential background model' # Add parameters bg_strexp.decay.set(description='Decay rate', lb=0, ub=200, par0=0.25, unit='μs⁻¹') bg_strexp.stretch.set(description='Stretch factor', lb=0, ub=6, par0=1, unit='') # Add documentation bg_strexp.__doc__ = _docstring(bg_strexp,notes) #======================================================================================= # bg_prodstrexp #======================================================================================= notes = r""" **Model** :math:`B(t) = \exp\left(-\kappa_1 \vert t \vert^{d_1}\right) \exp\left(-\kappa_2 \vert t\vert^{d_2}\right)` """ def _prodstrexp(t,decay1,stretch1,decay2,stretch2): strexp1 = np.exp(-decay1*abs(t)**stretch1) strexp2 = np.exp(-decay2*abs(t)**stretch2) return strexp1*strexp2 # Create model bg_prodstrexp = Model(_prodstrexp,constants='t') bg_prodstrexp.description = 'Product of two stretched exponentials background model' # Add parameters bg_prodstrexp.decay1.set(description='Decay rate of 1st component', lb=0, ub=200, par0=0.25, unit='μs⁻¹') bg_prodstrexp.decay2.set(description='Decay rate of 2nd component', lb=0, ub=200, par0=0.25, unit='μs⁻¹') bg_prodstrexp.stretch1.set(description='Stretch factor of 1st component', lb=0, ub=6, par0=1, unit='') bg_prodstrexp.stretch2.set(description='Stretch factor of 2nd component', lb=0, ub=6, par0=1, unit='') # Add documentation bg_prodstrexp.__doc__ = _docstring(bg_prodstrexp,notes) #======================================================================================= # bg_sumstrexp #======================================================================================= notes = r""" **Model** :math:`B(t) = A_1\exp \left(-\kappa_1 \vert t \vert^{d_1}\right) + (1-A_1)\exp\left(-\kappa_2 \vert t \vert^{d_2}\right)` """ def _sumstrexp(t,decay1,stretch1,weight1,decay2,stretch2): strexp1 = np.exp(-decay1*abs(t)**stretch1) strexp2 = np.exp(-decay2*abs(t)**stretch2) return weight1*strexp1 + (1-weight1)*strexp2 # Create model bg_sumstrexp = Model(_sumstrexp,constants='t') bg_sumstrexp.description = 'Sum of two stretched exponentials background model' # Add parameters bg_sumstrexp.decay1.set(description='Decay rate of 1st component', lb=0, ub=200, par0=0.25, unit='μs⁻¹') bg_sumstrexp.decay2.set(description='Decay rate of 2nd component', lb=0, ub=200, par0=0.25, unit='μs⁻¹') bg_sumstrexp.weight1.set(description='Weight of the 1st component', lb=0, ub=1, par0=0.5, unit='') bg_sumstrexp.stretch1.set(description='Stretch factor of 1st component', lb=0, ub=6, par0=1, unit='') bg_sumstrexp.stretch2.set(description='Stretch factor of 2nd component', lb=0, ub=6, par0=1, unit='') # Add documentation bg_sumstrexp.__doc__ = _docstring(bg_sumstrexp,notes) #======================================================================================= # bg_poly1 #======================================================================================= notes = r""" **Model** :math:`B(t) = p_0 + p_1 t` """ def _poly1(t,p0,p1): return np.polyval([p1,p0],abs(t)) # Create model bg_poly1 = Model(_poly1,constants='t') bg_poly1.description = 'Polynomial 1st-order background model' # Add parameters bg_poly1.p0.set(description='Intercept', lb=0, ub=200, par0=1, unit='') bg_poly1.p1.set(description='1st order weight', lb=-200, ub=200, par0=-1, unit='μs⁻¹') # Add documentation bg_poly1.__doc__ = _docstring(bg_poly1,notes) #======================================================================================= # bg_poly2 #======================================================================================= notes = r""" **Model** :math:`B(t) = p_0 + p_1 t + p_2 t^2` """ def _poly2(t,p0,p1,p2): return np.polyval([p2,p1,p0],abs(t)) # Create model bg_poly2 = Model(_poly2,constants='t') bg_poly2.description = 'Polynomial 2nd-order background model' # Add parameters bg_poly2.p0.set(description='Intercept', lb=0, ub=200, par0=1, unit='') bg_poly2.p1.set(description='1st order weight', lb=-200, ub=200, par0=-1, unit=r'μs\ :sup:`-1`') bg_poly2.p2.set(description='2nd order weight', lb=-200, ub=200, par0=-1, unit=r'μs\ :sup:`-2`') # Add documentation bg_poly2.__doc__ = _docstring(bg_poly2,notes) #======================================================================================= # bg_poly2 #======================================================================================= notes = r""" **Model** :math:`B(t) = p_0 + p_1 t + p_2 t^2 + p_3 t^3` """ def _poly3(t,p0,p1,p2,p3): return np.polyval([p3,p2,p1,p0],abs(t)) # Create model bg_poly3 = Model(_poly3,constants='t') bg_poly3.description = 'Polynomial 3rd-order background model' # Add parameters bg_poly3.p0.set(description='Intercept', lb=0, ub=200, par0=1, unit='') bg_poly3.p1.set(description='1st order weight', lb=-200, ub=200, par0=-1, unit=r'μs\ :sup:`-1`') bg_poly3.p2.set(description='2nd order weight', lb=-200, ub=200, par0=-1, unit=r'μs\ :sup:`-2`') bg_poly3.p3.set(description='3rd order weight', lb=-200, ub=200, par0=-1, unit=r'μs\ :sup:`-3`') # Add documentation bg_poly3.__doc__ = _docstring(bg_poly3,notes)
UTF-8
Python
false
false
21,310
py
146
bg_models.py
88
0.547213
0.509791
0
515
40.250485
191
Pang17/CISC367-Homework7
7,086,696,079,537
66558397f2c17da2e24dd5821089f19aef18c6f4
a7d9e0c9b2909659eccc8acec26bcdf650d0b552
/driver.py
8f8164aa9c947cfafbe2ae08a8693e324645147a
[]
no_license
https://github.com/Pang17/CISC367-Homework7
bdc6e79e43cd624d1647ab43e61755e1cbeaf50f
134245773c95e7e7be1928842cdbdad1b3b669b3
refs/heads/main
2023-08-12T20:31:30.841821
2021-09-28T16:53:42
2021-09-28T16:53:42
411,367,052
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import csv from analysis import thread_characteristic header = ['Conversation ID', 'Characteristic Value'] f = open('results.csv', 'w') writer = csv.writer(f) writer.writerow(header) for row in thread_characteristic: writer.writerow(row) f.close
UTF-8
Python
false
false
253
py
5
driver.py
3
0.747036
0.747036
0
13
18.538462
52
routerhan/thesis-ner-co-tri-training
8,211,977,506,188
7454486d6e0e3f952943be297c30aa40ebf62231
d0f83f60fd08f571f7396e75c402b2f7ee45ebe1
/run_cotrain.py
409e59ada686a2535fe2f9edabe9d0bf5a14e03e
[]
no_license
https://github.com/routerhan/thesis-ner-co-tri-training
3ceca16465cb4cdab5f17c3a30673533933cc18b
bbc80447b25743b4f5891fe6c065ff9c58defea4
refs/heads/dev
2021-01-06T16:20:38.055391
2020-09-15T09:34:12
2020-09-15T09:34:12
241,394,467
0
1
null
false
2020-09-15T09:34:14
2020-02-18T15:19:10
2020-08-22T20:00:49
2020-09-15T09:34:13
9,224
0
1
0
Jupyter Notebook
false
false
import os import logging import argparse from co_training import CoTraining logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) def main(): # python run_cotrain.py --ext_output_dir ext_data --modelA_dir baseline_model --modelB_dir onto_model --de_unlabel_dir machine_translation/2017_de_sents.txt --en_unlabel_dir machine_translation/2017_en_sents.txt --k 10 --u 10 --top_n 3 --save_preds --save_agree # python run_cotrain.py --ext_output_dir ext_data_1000 --modelA_dir baseline_model --modelB_dir onto_model --de_unlabel_dir machine_translation/2017_de_sents.txt --en_unlabel_dir machine_translation/2017_en_sents.txt --k 1000 --u 100 --top_n 10 --save_preds --save_agree #python run_ner.py --data_dir data/full-isw-release.tsv --bert_model bert-base-german-cased --output_dir baseline_model/ --max_seq_length 128 --do_train --extend_L --ext_data_dir ext_data_1000 --ext_output_dir ext_isw_model parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--ext_output_dir", default='ext_data/', type=str, required=True, help="The dir that you save the extended L set.") parser.add_argument("--modelA_dir", default='baseline_model/', type=str, required=True, help="The dir of pre-trained model that will be used in the cotraining algorithm on the X1 feature set, e.g. German.") parser.add_argument("--modelB_dir", default='onto_model/', type=str, required=True, help="The dir of another pre-trained model can be specified to be used on the X2 feature set, e.g. English.") parser.add_argument("--de_unlabel_dir", default='machine_translation/2017_de_sents.txt', type=str, required=True, help="The dir of unlabeled sentences in German.") parser.add_argument("--en_unlabel_dir", default='machine_translation/2017_en_sents.txt', type=str, required=True, help="The dir of unlabeled sentences in English.") parser.add_argument("--save_preds", action='store_true', help="Whether to save the confident predictions.") parser.add_argument("--save_agree", action='store_true', help="Whether to save the agree predictions, aka. the predictions that will be added to L set.") parser.add_argument("--top_n", default=5, type=int, help="The number of the most confident examples that will be 'labeled' by each classifier during each iteration") parser.add_argument("--k", default=30, type=int, help="The number of iterations. The default is 30") parser.add_argument("--u", default=75, type=int, help="The size of the pool of unlabeled samples from which the classifier can choose. Default - 75") args = parser.parse_args() # Initialize co-training class if os.path.exists(args.ext_output_dir) and os.listdir(args.ext_output_dir): raise ValueError("Output directory ({}) already exists and is not empty.".format(args.ext_output_dir)) if not os.path.exists(args.ext_output_dir): os.makedirs(args.ext_output_dir) co_train = CoTraining(modelA_dir=args.modelA_dir, modelB_dir=args.modelB_dir, save_preds=args.save_preds, top_n=args.top_n, k=args.k, u=args.u) compare_agree_list = co_train.fit(ext_output_dir=args.ext_output_dir, de_unlabel_dir=args.de_unlabel_dir, en_unlabel_dir=args.en_unlabel_dir, save_agree=args.save_agree, save_preds=args.save_preds) logger.info(" ***** Running Co-Training ***** ") logger.info(" Model A = {}".format(args.modelA_dir)) logger.info(" Model B = {}".format(args.modelB_dir)) logger.info("Top_n: {}, iteration_k: {}, sample_pool_u: {}".format(args.top_n, args.k, args.u)) logger.info(" ***** Loading Agree Set ***** ") logger.info(" Num of agree samples: {}".format(len(compare_agree_list))) if __name__ == '__main__': main()
UTF-8
Python
false
false
4,659
py
17
run_cotrain.py
13
0.577592
0.564713
0
82
55.817073
274
Di0niz/praktikum_contest
16,956,530,905,129
262be5cb5ece471281053de460f46c5fbdd224da
915979cc3e51d49bb480e6cbcc591ba67f231233
/18337_12_2_Базовые_структуры_данных/case_k.py
9f147785f88dd7848114c5855a8c4493830a5c0b
[]
no_license
https://github.com/Di0niz/praktikum_contest
65d7829a3376f633161f5f2b9c01c63816b226a1
5dcfc36fa8080e74ff0c12078a73dbc05684df6c
refs/heads/master
2022-12-02T21:20:21.303433
2020-07-30T20:48:44
2020-07-30T20:48:44
277,244,061
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class UniqStack: def __init__(self): self.stack = [] self.uniq = set() self.count = 0 def push(self, val): if not (val in self.uniq): self.uniq.add(val) self.stack.append(val) self.count += 1 def peek(self): if self.count > 0: return self.stack[-1] return None def pop(self): v = None if self.count > 0: v = self.stack.pop() self.uniq.remove(v) self.count -= 1 return v def size(self): return self.count def main(): n = int(input()) st = UniqStack() for _ in range(n): command = input() cc = command[:2] if cc == "pu": # push _, val = command.split(' ') st.push(val) elif cc == "po": # pop res = st.pop() if not res: print("error") elif cc == "pe": # peek res = st.peek() if res: print(res) else: print("error") elif cc == "si": # size print(st.size()) if __name__ == "__main__": main()
UTF-8
Python
false
false
1,196
py
40
case_k.py
37
0.411371
0.405518
0
55
20.745455
39
Saikat2019/Python3
14,439,680,095,561
a73181e0653f8f7f3ab181209c7adc0f9a13917c
9a62d8436ebdf16e8f00453fc45bb9274f9119ef
/learning/files/writingToFile.py
b3c4eb60f6afb45b194e8194928e7594fe33f8b6
[]
no_license
https://github.com/Saikat2019/Python3
895b3398eae93709e976e040d2bca19cefc62c77
2125765385e38a960e4da95c29a9656e6dc0ab41
refs/heads/master
2020-03-23T15:24:56.739681
2018-09-02T05:11:44
2018-09-02T05:11:44
141,746,663
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
myfile=open("employee.txt","a") myfile.write("\narnab") myfile.close()
UTF-8
Python
false
false
71
py
32
writingToFile.py
20
0.704225
0.704225
0
3
22.666667
31
brunotakazono/sistema
3,401,614,109,721
ae97f11451b07010710c20c51dde6218d3aa4f43
0241ffc756d8848fe9a38c174fcca324cd09f480
/source/produtoscad.py
7277492577cb8bedcebffa70a0d91358e2b34810
[]
no_license
https://github.com/brunotakazono/sistema
07efde2488cf67689d956b3f82393a69db48af7d
f5ebb60cd96962f3798f28268456e7256ea410f7
refs/heads/main
2023-04-01T22:12:27.843743
2021-04-10T19:29:29
2021-04-10T19:29:29
344,581,348
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sqlite3 from time import sleep conn = sqlite3.connect('sistemas.db') cursor = conn.cursor() produto = input('produto:') categoria = input('categoria:') marca = input('marca:') estoqueMinimo = input('estoqueMinimo:') estoqueMaximo = input('estoqueMaximo:') qtdeProduto = input('qtdeProduto:') valorCompra = input('valorCompra:') valorUnitario = input('valorUnitario:') valorAtacado = input('valorAtacado:') qtdeAtacado = input('qtdeAtacado:') obsProduto = input('obsProduto:') for produto in 'produto': cursor.execute("SELECT count(*) FROM produto WHERE produto = ?", (produto,)) data = cursor.fetchone()[0] if data == 0: cursor.execute(''' INSERT INTO produto (produto, categoria, marca, estoque_minimo, estoque_maximo, qtde, valor_compra, valor_unitario, valor_atacado, qtde_atacado, obs) VALUES (?,?,?,?,?,?,?,?,?,?,?,?)''', (produto, categoria, marca, estoqueMinimo, estoqueMaximo, qtdeProduto, valorCompra, valorUnitario, valorAtacado, qtdeAtacado, obsProduto)) conn.commit() print('Dados inseridos com sucesso.') conn.close() else: print("Error: Produto ja Cadastrado.\n") sleep(5)
UTF-8
Python
false
false
1,221
py
12
produtoscad.py
11
0.655201
0.651106
0
34
33.911765
108
eblade/radiant
4,329,327,048,541
8374f41365518898835ff80056ea467a382d6a9c
b7dfea3f8c2580454940ee3fb736001ce688acac
/radiant/grid/backend/definition.py
f022eefa853223c4b3851158819ad090cb49ca57
[ "MIT" ]
permissive
https://github.com/eblade/radiant
068e63eebc0341ff592ff4f79c03626d4347f775
a222c456a37e39ec2ce93fb08a19991cb8b9aba8
refs/heads/master
2021-01-20T10:46:19.140878
2015-04-07T21:23:58
2015-04-07T21:23:58
32,219,796
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python """ The *Definition* module contains object wrappers of the various *data-types* found in Radiant Grids. Those are: - :class:`ViewDefinition` - :class:`ItemDefinition` - :class:`DocumentDefinition` - :class:`ColumnDefinition` - :class:`VariableDefinition` - :class:`DataDefinition` - :class:`Feed` .. note:: Each entry in "Variables" list for each class has a name [*emphasized within brackets*]. This is the key in the *dict*- representation of it's data, which would be used when serializing to JSON. """ class ViewDefinition(object): """ Defines a View within a Workspace. A View describes a graphical representation of the data in the Workspace using *items*. Items have various properties depending on what type of item they are. See :class:`ItemDefinition`. :cvar str name: [*name*] Workspace-unique name of this View :cvar list items: [*items*] List of :class:`ItemDefinition` """ data_type = "grid/view/entry" """ [*data-type*] """ def __init__(self, d=None): """ Constructor. :param dict d: Optional dictionary to import """ self.name = None self.items = {} if d: self.from_dict(d) def to_dict(self): return { "data-type": self.data_type, "name": self.name, "items": [item.to_dict() for item in self.items.values()], } def from_dict(self, d): assert d.get("data-type") == self.data_type self.name = d["name"] items = [ItemDefinition(item) for item in d.get("items", [])] self.items = {item.name: item for item in items} class ItemDefinition(object): """ Defines a graphical *Item* in a *View* (:class:`ViewDefinition`). The ``item_type`` can be one of: - ``Label`` - A label with an optional title - ``Table`` - A table bound to a document :cvar str item_type: [*item-type*] The type of item this is :cvar str name: [*name*] View-unique name of this Item :cvar dict properties: [*properties*] Various properties for this item :cvar list position: [*position*] Two or four values describing the position, either as (x, y) or (x1, y1, x2, y2) depending on item type """ data_type = "grid/item/entry" """ [*data-type*] """ def __init__(self, d=None): """ Constructor. :param dict d: Optional dictionary to import """ self.item_type = None self.name = None self.properties = {} self.position = None if d: self.from_dict(d) def to_dict(self): return { "data-type": self.data_type, "item-type": self.item_type, "name": self.name, "properties": self.properties, "position": self.position, } def from_dict(self, d): assert d.get("data-type") == self.data_type self.item_type = d['item-type'] self.name = d['name'] self.properties = d['properties'] self.position = d['position'] class DocumentDefinition(object): """ Defines a Document within a Workspace. A Document describes a table in a database that can hold data. The columns are defined by :class:`ColumnDefinition` objects. :cvar str name: [*name*] Workspace-unique name of this View :cvar dict columns: [*columns*] List of :class:`ColumnDefinition` """ data_type = "grid/document/entry" """ [*data-type*] """ def __init__(self, d=None): """ Constructor. :param dict d: Optional dictionary to import """ self.name = None self.columns = {} if d: self.from_dict(d) def to_dict(self): return { "data-type": self.data_type, "name": self.name, "columns": [column.to_dict() for column in self.columns.values()] } def from_dict(self, d): assert d.get("data-type") == self.data_type self.name = d["name"] columns = [ColumnDefinition(column) for column in d.get("columns", [])] self.columns = {column.name: column for column in columns} class ColumnDefinition(object): """ Defines a Column within a Document. The properties of the ColumnDefinition are meant to describe a database column. :cvar str name: [*name*] Document-unique name of this Column :cvar str type_name: [*type-name*] Database type (``INTEGER``, ``TEXT``, ``REAL``, ``BLOB``) :cvar int type_size: [*type-size*] Database type size (if applicable, else ``None``) :cvar bool primary_key: [*primary-key*] Column is the *primary key* (default ``False``) :cvar str default: [*default*] Use this default value (default ``None``) :cvar bool auto_increment: [*auto-increment*] Column is the *auto incrementing* (default ``False``) :cvar bool unique: [*unique*] Column has a *unique constraint* (default ``False``) """ data_type = "grid/column/entry" """ [*data-type*] """ def __init__(self, d=None): """ Constructor. :param dict d: Optional dictionary to import """ self.name = None self.type_name = None self.type_size = None self.primary_key = False self.default = None self.auto_increment = False self.unique = False if d: self.from_dict(d) def to_dict(self): return { "data-type": self.data_type, "name": self.name, "type-name": self.type_name, "type-size": self.type_size, "primary-key": self.primary_key, "default": self.default, "auto-increment": self.auto_increment, "unique": self.unique } def from_dict(self, d): assert d.get('data-type') == self.data_type self.name = d['name'] self.type_name = d['type-name'] self.type_size = d.get('type-size') self.primary_key = d.get('primary-key', False) self.default = d.get('default') self.auto_increment = d.get('auto_increment', False) self.unique = d.get('unique', False) class VariableDefinition(object): """ Defines a Variable within a Workspace. Variables typically have dot-separated names. :cvar str name: [*name*] Workspace-unique name of this Variable :cvar str type: [*type*] Type of the variable (:class:`str` (default), :class:`int`, :class:`float`, :class:`bool`) :cvar str value: [*value*] The value of the Variable """ data_type = "grid/variable/entry" """ [*data-type*] """ def __init__(self, d=None): """ Constructor. :param dict d: Optional dictionary to import """ self.name = None self.type = 'str' self.value = None if d: self.from_dict(d) def to_dict(self): return { "data-type": self.data_type, "name": self.name, "type": self.type, "value": self.value } def from_dict(self, d): assert d.get('data-type') == self.data_type self.name = d['name'] self.type = d.get('type', 'str') self.value = d.get('value') class DataDefinition(object): """ Defines a Row of Data within a Document. :cvar dict data: [*data*] A dict with the values of the columns """ data_type = "grid/data/entry" """ [*data-type*] """ def __init__(self, d=None): """ Constructor. :param dict d: Optional dictionary to import """ self.data = None if d: self.from_dict(d) def to_dict(self): return { "data-type": self.data_type, "data": self.data } def from_dict(self, d): self.data = dict(d) class Feed(object): """ Defines a Feed of any given entry data type. :cvar class entry_class: The class used for the entries in the feed :cvar str data_type: [*data-type*] The feed *data-type* to use :cvar str workspace: [*workspace*] The workspace of this Feed's origin :cvar int start: [*start*] Paging start index :cvar int count: [*start*] Paging total count :cvar int page_size: [*page-size*] Paging page size :cvar list entries: [*entries*] Entry of type ``entry_class`` """ def __init__(self, entry_class, d=None, data_type=None): """ Constructor. :param class entry_class: The class used for the entries of this feed :param dict d: Optional dictionary to import :param str data_type: Optional *data-type* to use, overriding ``entry_class.data_type`` """ self.entry_class = entry_class self.data_type = data_type or entry_class.data_type.replace('/entry', '/feed') self.workspace = None self.start = 0 self.count = 0 self.page_size = 0 self.entries = [] if d: self.from_dict(d) def to_dict(self): return { "data-type": self.data_type, "workspace": self.workspace, "start": self.start, "count": self.count, "page-size": self.page_size, "entries": [entry.to_dict() for entry in self.entries] } def from_dict(self, d): assert d.get('data-type') == self.data_type self.workspace = d.get('workspace') self.start = d.get('start', 0) self.count = d.get('count', 0) self.page_size = d.get('page-size', 0) self.entries = [self.entry_class(entry) for entry in d.get('entries', [])]
UTF-8
Python
false
false
9,671
py
21
definition.py
18
0.57357
0.572536
0
311
30.096463
103
judoshka/metro
1,760,936,600,354
486682d9690731f114fa87512a751eef57435ff3
adaae0119bfb79f4349bc8bb4c61706d0fe90936
/scrape.py
25c418e57159a92b22a8a8c03c49ca75adb3b01d
[]
no_license
https://github.com/judoshka/metro
9ba7984e4de2d65af0e9a864e83ed06afa526132
f2f5c38cf3577bb3593a28d8b00f8efbc15a2fe3
refs/heads/master
2023-07-15T13:39:18.219166
2021-08-31T10:35:20
2021-08-31T10:35:20
401,407,898
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests from bs4 import BeautifulSoup from datetime import date from models import DB, Post BASE_URL = "https://mosmetro.ru" def get_html(url): response = requests.get(url) if response.status_code == 200: return response.content return None def get_date(url): content = get_html(url) soup = BeautifulSoup(content, 'html.parser') date_string = soup.select_one("div[class='pagetitle__content-date']") if date_string: return date_string.text else: return None def parse(markup, last_news_number): date_values = { 'Января': 1, 'Февраля': 2, 'Марта': 3, 'Апреля': 4, 'Мая': 5, 'Июня': 6, 'Июля': 7, 'Августа': 8, 'Сентября': 9, 'Октября': 10, 'Ноября': 11, 'Декабря': 12 } data = markup.find_all(class_="newslist__list-item") for i in data: href = i.find("a")["href"] href = BASE_URL + href news_number = int(href.split("/")[-2]) news = Post.query.filter(Post.news_number == news_number).first() if news: break if last_news_number >= news_number: # новые новости закончились break image_url = i.find("img")["src"] image_url = BASE_URL + image_url title = i.select_one("span[class='newslist__text-title']").text published_date = get_date(href) if not published_date: # новость https://mosmetro.ru/press/news/4068/ не кликабельна continue day, month, year = published_date.split() day = int(day) month = date_values.get(month) year = int(year) published_date = date(year, month, day) scraped_date = date.today() DB.session.add(Post(news_number, title, image_url, href, published_date, scraped_date)) DB.session.commit() def scrape_data(app): with app.app_context(): records = Post.query.all() last_record_id = max([i.news_number for i in records]) if records else 0 search_url = BASE_URL + '/press/news/' content = get_html(search_url) soup = BeautifulSoup(content, 'html.parser') parse(soup, last_news_number=last_record_id) if __name__ == '__main__': scrape_data()
UTF-8
Python
false
false
2,409
py
5
scrape.py
3
0.57622
0.565331
0
84
26.333333
95
undp/open.undp.org
12,180,527,287,272
69f1bdda288d7408674a78976977b03a10b2edd4
7e438c6dd44cfdb75790865ab3af871bf2180b20
/scripts/generators/generator.py
98ec3adb2c56c8eab8aacf25041d7b132c918732
[]
no_license
https://github.com/undp/open.undp.org
d723b6679cef448b8bea74169a9d8e934a302743
8bdfc38dbe982ae417132b08f71c6a50ff564073
refs/heads/gh-pages
2020-04-05T21:20:05.264315
2018-06-20T18:15:33
2018-06-20T18:15:33
6,912,534
6
11
null
false
2018-06-04T17:15:34
2012-11-29T00:20:15
2018-05-30T09:43:19
2018-06-04T17:15:34
856,982
20
20
0
JavaScript
false
null
from __future__ import print_function import urllib2 from collections import defaultdict from lxml import etree import copy import json import mimetypes import zipfile from controller import Controller import config as settings from models import (Project, Output, Subnational, Unit, UnitProject, Crs, Donor, CountryDonor, ProjectSummary, TopDonor, TopDonorLocal, Region, CoreDonor, OperatingUnit) from _collection import (Projects, Outputs, Subnationals, Units, CrsIndex, DonorIndex, CountryDonorIndex, ProjectSummaries, ReportDonors, DonorIDs, TopDonorGrossIndex, TopDonorLocalIndex, RegionIndex, FocusAreaIndex, CoreDonors, OperatingUnitIndex) from _collection import ObjectExists class ProjectsController(Controller): """Main Process class that includes all the functions needed for processing UNDP xml data Main methods: run - Runs the whole class and generate everything """ def __init__(self): self.undp_export = settings.UNDP_EXPORT self.projects = Projects() self.projectsummaries = ProjectSummaries() self.outputs = Outputs() self.subnationals = Subnationals() self.units = Units() self.crsindex = CrsIndex() self.donorindex = DonorIndex() self.countrydonorindex = CountryDonorIndex() self.topdonor_gross = TopDonorGrossIndex() self.topdonor_local = TopDonorLocalIndex() self.donor_ids = DonorIDs() self.region_index = RegionIndex() self.core_donors = CoreDonors() self.operating_unit_index = OperatingUnitIndex() self.api_path = settings.API_PATH self._years = set() self.geo = None # Adding 2010 because the xmls files are starting from 2011 but the legacy site expect to see 2010 self.years = 2010 self.country_donors = None @property def years(self): return self._years @years.setter def years(self, value): self._years.add(value) def generate(self): """ Main method. Execute necessary functions and generate json files """ for files in reversed(sorted(self.get_filenames(settings.IATI_XML_ANNUAL, 'xml'))): self._prepare(files, 'iati-activity', 'projects') self._prepare(files, 'iati-activity', 'outputs') # Generating useful info for console counter = 0 for i in self.outputs.collection.values(): counter += len(i) self.log('Total outputs processed: %s' % counter) self.log('Total projects processed: %s' % len(self.projects.pks)) self.log('Total Donor Index processed: %s' % len(self.donorindex.pks)) self.log('Total Country Donor Index processed: %s' % len(self.countrydonorindex.pks)) # Save Project Json files self.projects.save_json(self.outputs, self.subnationals, self.api_path) # Save Unit Json files self.units.save_json(self.subnationals, self.api_path) # Generate Core Donors self._populate_core_donors() self.core_donors.save_json(self.api_path, 'core-donors.json') # Save Summary files self._generate_project_summary(self.projects) self.projectsummaries.save_json(self.api_path) # Save Other Jsons self.crsindex.save_json(self.api_path, 'crs-index.json') self.donorindex.save_json(self.api_path, 'donor-index.json') self.countrydonorindex.save_json(self.api_path, 'donor-country-index.json') self._generate_year_index() # Top Donor Gross Index self._populate_top_donor_gross_index() self.topdonor_gross.save_json(self.api_path, 'top-donor-gross-index.json') # Top Donor Local Index # self._populate_top_donor_local_index() # self.topdonor_local.save_json(self.api_path, 'top-donor-local-index.json') # Region Index self._populate_region_index() self.region_index.save_json(self.api_path, 'region-index.json') # Focus Area Index focus = FocusAreaIndex() focus.save_json(self.api_path, 'focus-area-index.json') # Generating HDI self._generate_hdi() # Save Operating Unit Index self._populate_operating_unit_index() self.operating_unit_index.save_json(self.api_path, 'operating-unit-index.json') # generate zipped version of the files #self.zipdata(settings.UNDP_EXPORT, settings.BASE_DIR + '/download', 'undp-project-data.zip') def _prepare(self, xml_file, tag, op_type): """Prepares and executes other methods to prepare the data. Arguments: xml_file - full path to the xml file tag -- one choice is available: iati-activity op_type -- only two choices available: outputs - projects """ # Identify version number of XML file tree = etree.parse(xml_file) root = tree.getroot() version = round(float(root.attrib.get('version', '1')), 2) # Get IATI activities XML iter_obj = iter(etree.iterparse(xml_file, tag=tag)) #iter_obj = root.iter(tag) # Extract year try: year = int(self.extract_years([xml_file])[0]) self.years = year except ValueError: return func = getattr(self, '_populate_%s' % op_type) func(iter_obj, year, version) def _populate_operating_unit_index(self): current_year = sorted(list(self.years), reverse=True)[0] country_isos = self.get_and_sort('%s/country_iso.csv' % settings.UNDP_EXPORT, 'iso3') units = self.get_and_sort(self.undp_export + '/report_units.csv', 'operating_unit') iso3 = dict([(i['iso3'].decode('utf-8').encode('ascii', 'ignore'), i['iso_num'].decode('utf-8').encode('ascii', 'ignore')) for i in country_isos]) units_index = dict([(i['operating_unit'], i['fund_type']) for i in units]) for country in self.geo: if country['iso3'] in self.units.pks: obj = OperatingUnit() obj.id.value = country['iso3'] obj.fund_type.value = units_index[obj.id.value] obj.name.value = country[obj.name.key] if country[obj.lat.key] != '': obj.lat.value = country[obj.lat.key] obj.lon.value = country[obj.lon.key] if obj.id.value in iso3: obj.iso_num.value = iso3[obj.id.value] # Looping through project summaries to get total budgets funding_source = set() for project in self.projectsummaries.collection[current_year]: if project.operating_unit.value == obj.id.value: obj.project_count.value += 1 obj.budget_sum.value += round(project.budget.value, 2) obj.expenditure_sum.value += round(project.expenditure.value, 2) #obj.disbursement_sum.value += round(project.disbursement.value, 2) for item in project.donors.value: funding_source.add(item) project_obj = self.projects.collection[project.id.value] obj.email.value = project_obj.operating_unit_email.value obj.web.value = project_obj.operating_unit_website.value obj.funding_sources_count.value = len(funding_source) self.operating_unit_index.add(obj.id.value, obj) def _populate_core_donors(self): cores = self.get_and_sort(settings.DONOR_DATA + '/core_fund.csv', 'Donor') for core in cores: obj = CoreDonor() obj.donor_id.value = core['Donor'] obj.description.value = core['Donor Desc'] obj.short_description.value = core['Donor Level 3'] # Adding extra zeros to the begining of donor ids to make them 5 characters additional_zeros = 5 - len(obj.donor_id.value) obj.donor_id.value = '%s%s' % (('0' * additional_zeros), obj.donor_id.value) self.core_donors.add(obj.donor_id.value, obj) def _populate_region_index(self): units = self.get_and_sort(self.undp_export + '/report_units.csv', 'bureau') choices = ['PAPP', 'RBA', 'RBAP', 'RBAS', 'RBEC', 'RBLAC'] for unit in units: if (unit['bureau'] in choices and unit['hq_co'] == 'HQ') or unit['bureau'] == 'PAPP': if unit['ou_descr'] != 'Regional Center - Addis Ababa': obj = Region() obj.name.value = unit['ou_descr'] obj.id.value = unit['bureau'] try: self.region_index.add(obj.id.value, obj) except ObjectExists: pass obj = Region() obj.name.value = 'Global' obj.id.value = 'global' self.region_index.add(obj.id.value, obj) def _populate_top_donor_local_index(self): local = self.get_and_sort(self.undp_export + '/donor_local.csv', 'donor') for item in local: obj = TopDonorLocal() obj.name.value = item[obj.name.key] obj.country.value = item[obj.country.key] obj.amount.value = item[obj.amount.key] obj.donor_id.value = self.donor_ids.collection.get(item['donor'], None) self.topdonor_local.add(obj.donor_id.value, obj) def _populate_top_donor_gross_index(self): gross = self.get_and_sort(self.undp_export + '/donor_gross.csv', 'donor') for item in gross: obj = TopDonor() obj.name.value = item[obj.name.key] obj.country.value = item[obj.country.key] obj.regular.value = item[obj.regular.key] obj.other.value = item[obj.other.key] obj.total.value = item[obj.total.key] obj.donor_id.value = self.donor_ids.collection.get(item['donor'], None) self.topdonor_gross.add(obj.donor_id.value, obj) def _generate_project_summary(self, projects): donors = self.get_and_sort(self.undp_export + '/report_donors.csv', 'awardID') report_donors = ReportDonors() # Create an index of donors based on awardID for item in donors: report_donors.add_update_list(item['awardID'], item) try: self.donor_ids.add(item['donor_type_lvl3_descr'], item['donorID']) except ObjectExists: pass regionsList = ['PAPP', 'RBA', 'RBAP', 'RBAS', 'RBEC', 'RBLAC'] # Looping through years of projects counter = 0 for project in projects.collection.values(): for year in project.fiscal_year.value: # Should create a new model instance for each year of the project as they are stored in separate # summary files obj = ProjectSummary() # set region if project.region_id.value not in regionsList: obj.region.value = 'global' else: obj.region.value = project.region_id.value obj.operating_unit.value = project.operating_unit_id.value obj.name.value = project.project_title.value obj.id.value = project.project_id.value obj.fiscal_year.value = year # Fill out fields from report donors list try: country = defaultdict(lambda: defaultdict(float)) for item in report_donors.collection[project.project_id.value]: if int(item['fiscal_year']) == int(year) and item['donorID']: country[item['donorID']]['budget'] += float(item['budget']) country[item['donorID']]['expenditure'] += float(item['expenditure']) #country[item['donorID']]['disbursement'] += float(item['disbursement']) country[item['donorID']]['type'] = item['donor_type_lvl1'].replace(" ", "") if item['donor_type_lvl1'] == 'PROG CTY' or item['donor_type_lvl1'] == 'NON_PROG CTY': country[item['donorID']]['name'] = item['donor_type_lvl3'].replace(" ", "") elif item['donor_type_lvl1'] == 'MULTI_AGY' or item['donor_type_lvl1'] == 'NON_GOVERNMENT': country[item['donorID']]['name'] = 'MULTI_AGY' else: country[item['donorID']]['name'] = 'OTH' # country[item['donorID']]['name'] = item['donor_type_lvl3'] if item['donorID'] == '00012': obj.core.value = True for key, value in country.iteritems(): obj.donor_countries.value.append(value['name']) obj.donor_budget.value.append(value['budget']) obj.donor_expend.value.append(value['expenditure']) #obj.donor_disbur.value.append(value['disbursement']) obj.donor_types.value.append(value['type']) obj.donors.value.append(key) except KeyError: # There are few projects ids that are not appearing the donor list. this catch resolve them pass obj.expenditure.value = sum(obj.donor_expend.value) #obj.disbursement.value = sum(obj.donor_disbur.value) obj.budget.value = sum(obj.donor_budget.value) # Get other information from outputs for output in project.outputs.value: obj.crs.value.add(output['crs']) obj.focus_area.value.add(output['focus_area']) self.projectsummaries.add_update_list(year, obj) counter += 1 self.log('%s summary projects processed' % counter) def _generate_year_index(self): """ Generates year-index.js """ writeout = 'var FISCALYEARS = %s' % sorted(map(str, list(self.years)), reverse=True) f_out = open('%s/year-index.js' % self.api_path, 'wb') f_out.writelines(writeout) f_out.close() self.log('Year Index Generated') def _populate_units(self, project_obj): """ Fill Units collections """ unit_project = UnitProject() unit_project.title.value = project_obj.project_title.value unit_project.id.value = project_obj.project_id.value if project_obj.operating_unit_id.value in self.units.pks: self.units.collection[project_obj.operating_unit_id.value].projects.value.append(unit_project.to_dict()) else: unit = Unit() unit.op_unit.value = project_obj.operating_unit_id.value unit.projects.value.append(unit_project.to_dict()) self.units.add(project_obj.operating_unit_id.value, unit) def _populate_projects(self, iter_obj, yr, version): """Loop through the iter_obj to and sort/clean data based project_id Produced a list of dictionaries. Sample: {'end': '2012-12-31', 'operating_unit_email': 'registry.lt@undp.org', 'inst_id': '', 'operating_unit': 'Lithuania, Republic of', 'iati_op_id': 'LT', 'inst_descr': '', 'start': '2005-01-01', 'operating_unit_id': 'LTU', 'operating_unit_website': 'http://www.undp.lt/', 'project_id': '00038726', 'inst_type_id': '', 'document_name': u'http://www.undp.org/content/dam/undp/documents/projects/LTU/00038726/RC fund.pdf'} Arguments: iter_obj - and iteratble etree object version - IATI format version """ counter = 0 # Get sorted units report_units = self.get_and_sort(self.undp_export + '/report_units.csv', 'operating_unit') # sorting table for documents by importancy docs_sort = ['A02','A03','A04','A05','A01','A07','A08','A09','A06','A11','A10'] # Loop through each IATI activity in the XML for event, p in iter_obj: # IATI hierarchy used to determine if output or input1 hierarchy = p.attrib['hierarchy'] # Check for projects if hierarchy == '1': obj = Project() obj.project_id.value = self._grab_award_id(p[1].text) if (version < 2) else self._grab_award_id(p[0].text) # Check if the project_id is unique if obj.project_id.value in self.projects.pks: continue obj.fiscal_year.value.append(yr) obj.project_title.value = p.find(obj.project_title.xml_key).text.lower() if (version < 2) else p.find(obj.project_title.xml_key).find('narrative').text.lower() obj.project_descr.value = p.find(obj.project_descr.xml_key).text if (version < 2) else p.find(obj.project_descr.xml_key).find('narrative').text documents = p.findall('./document-link') if documents: names = [] links = [] format = [] places = [] for doc in documents: #exclude self-links if (doc.get('url') != "http://open.undp.org/#project/" + obj.project_id.value): try: links.append(urllib2.unquote(doc.get('url')).encode('utf-8').decode('utf-8')) except UnicodeDecodeError: links.append(urllib2.unquote(doc.get('url')).decode('utf-8')) #links.append(doc.get('url')) if 'application/' in doc.get('format'): ft = mimetypes.guess_extension(doc.get('format'), False) if ft is None: format.append('') else: format.append(ft.lstrip('.')) else: format.append('') #doc_tag = doc.find(obj.document_name.key) if (version < 2) else doc.find(obj.document_name.key).find('narrative') #if doc_tag is not None: # doc_name = doc_tag.text #else: # doc_name = '' #doc.find(obj.document_name.key).text if (version < 2) else doc.find(obj.document_name.key).find('narrative').text #names.append(doc_name) for d in doc.iterchildren(tag=obj.document_name.key): if (version < 2): names.append(d.text) else: names.append(d.find('narrative').text) # default place is last place = 100 for t in doc.iterchildren(tag='category'): try: tp = docs_sort.index(t.get('code')) except ValueError: tp = 100 if (tp < place): place = tp places.append(place) obj.document_name.value.extend([names, links, format, places]) # Find start and end dates obj.start.value = p.find(obj.start.xml_key).text if (version < 2) else p.find('activity-date[@type="2"]').attrib.get('iso-date') obj.end.value = p.find(obj.end.xml_key).text if (version < 2) else p.find('activity-date[@type="3"]').attrib.get('iso-date') contact = p.findall('./contact-info') obj.operating_unit_email.value = [e.text for email in contact for e in email.iterchildren(tag=obj.operating_unit_email.key)][0] # Find operating_unit # If recipient country didn't exist look for recipient region try: obj.iati_op_id.value = (p.find(obj.iati_op_id.xml_key).attrib.get('code')) obj.operating_unit.value = p.find(obj.operating_unit.xml_key).text if (version < 2) else p.find(obj.operating_unit.xml_key).find('narrative').text for r in report_units: if (obj.iati_op_id.value == r['iati_operating_unit'] or obj.iati_op_id.value == r['operating_unit']): obj.operating_unit_id.value = r['operating_unit'] obj.region_id.value = r[obj.region_id.key] except: region_unit = p.findall("./recipient-region") for ru in region_unit: for r in report_units: ru_text = ru.text if (version < 2) else ru.find('narrative').text if type(ru_text) == type(r['ou_descr']) and ru_text == r['ou_descr']: obj.operating_unit_id.value = r['operating_unit'] obj.operating_unit.value = r['ou_descr'] obj.iati_op_id.value = '998' # find contact info try: for email in contact: for e in email.iterchildren(tag=obj.operating_unit_email.key): obj.operating_unit_email.value = e.text obj.operating_unit_website.value = p.find(obj.operating_unit_website.xml_key).text if (version < 2) else p.find(obj.operating_unit_website.xml_key).find('narrative').text except: pass # Check for implementing organization try: inst = p.find("./participating-org[@role='Implementing']") if (version < 2) else p.find("./participating-org[@role='4']") obj.inst_id.value = inst.attrib.get(obj.inst_id.key) obj.inst_type_id.value = inst.attrib.get(obj.inst_type_id.key) obj.inst_descr.value = inst.text if (version < 2) else inst.find('narrative').text except: pass # Populate the Unit Collection self._populate_units(obj) counter += 1 self.log('Processing: %s' % counter, True) self.projects.add(obj.project_id.value, obj) self.log('%s - Project Annuals: %s rows processed' % (yr, counter)) def _populate_outputs(self, iter_obj, yr, version): counter = 0 # Get sorted country donoros sorted_donors = self.get_and_sort(self.undp_export + '/country_donors_updated.csv', 'id') # Get South-South projects #ss_list = self.get_and_list(self.undp_export + '/SSCprojects_IDlist.csv', 'projectid') for event, o in iter_obj: hierarchy = o.attrib['hierarchy'] if hierarchy == '2': obj = Output() crs = Crs() obj.output_id.value = self._grab_award_id(o[1].text) if (version < 2) else self._grab_award_id(o[0].text) # Check if the project_id is unique if obj.output_id.value in self.outputs.output_ids: continue obj.output_title.value = o.find(obj.output_title.xml_key).text if (version < 2) else o.find(obj.output_title.xml_key).find('narrative').text obj.output_descr.value = o.find(obj.output_descr.xml_key).text if (version < 2) else o.find(obj.output_descr.xml_key).find('narrative').text try: obj.gender_id.value = o.find(obj.gender_descr.xml_key).attrib.get(obj.gender_id.key) obj.gender_descr.value = o.find(obj.gender_descr.xml_key).text if (version < 2) else "Gender Equality" except: obj.gender_id.value = "0" obj.gender_descr.value = "None" obj_crs_descr = obj.crs_descr.xml_key if (version < 2) else "sector[@vocabulary='1']" try: obj.crs.value = o.find(obj_crs_descr).get(obj.crs.key) crs.name.value = obj.crs.value except AttributeError: pass try: obj.crs_descr.value = o.find(obj_crs_descr).text if (version < 2) else o.find(obj_crs_descr).find('narrative').text crs.id.value = obj.crs_descr.value except AttributeError: pass try: self.crsindex.add(crs.id.value, crs) except ObjectExists: pass try: obj.award_id.value = self._grab_award_id(o.find(obj.award_id.xml_key).get('ref')) except: obj.award_id.value = self._grab_award_id(o.find("./related-activity[@type='2']").get('ref')) try: #if obj.award_id.value in ss_list: # obj.focus_area.value = '8' # obj.focus_area_descr.value = 'South-South' #else: obj_focus_area_descr = obj.focus_area_descr.xml_key if (version < 2) else "sector[@vocabulary='99']" obj.focus_area.value = o.find(obj_focus_area_descr).get(obj.focus_area.key) obj.focus_area_descr.value = o.find(obj_focus_area_descr).text if (version < 2) else o.find(obj_focus_area_descr).find('narrative').text if not obj.focus_area_descr.value: obj.focus_area_descr.value = "-" except: obj.focus_area.value = "-" obj.focus_area_descr.value = "-" donorCol = "./participating-org[@role='Funding']" if (version < 2) else "./participating-org[@role='1']" for donor in o.findall(donorCol): ref = donor.get('ref') obj.donor_id.value.add(ref) if ref == '00012': obj.donor_name.value.append('Voluntary Contributions') else: obj.donor_name.value.append(donor.text if (version < 2) else donor.find('narrative').text) for d in sorted_donors: # Check IDs from the CSV against the cntry_donors_sort. # This provides funding country names not in XML if d['id'] == ref: # for outputs obj.donor_short.value.append(d[obj.donor_short.key]) # Find budget information to later append to projectFY array budget_expend = defaultdict(lambda: defaultdict(float)) obj.budget.temp = o.findall(obj.budget.xml_key) for budget in obj.budget.temp: for b in budget.iterchildren(tag='value'): year = int(b.get('value-date').split('-', 3)[0]) budget_expend[year]['budget'] = float(b.text) # Use transaction data to get expenditure for tx in o.findall('transaction'): expenditureCol = obj.expenditure.xml_key if (version < 2) else "transaction-type[@code='4']" disbursementCol = obj.disbursement.xml_key if (version < 2) else "transaction-type[@code='3']" for expen in tx.findall(expenditureCol): for sib in expen.itersiblings(): if sib.tag == 'value': year = int(sib.get('value-date').split('-', 3)[0]) budget_expend[year]['expenditure'] = float(sib.text) for disb in tx.findall(disbursementCol): for sib in disb.itersiblings(): if sib.tag == 'value': year = int(sib.get('value-date').split('-', 3)[0]) budget_expend[year]['disbursement'] = float(sib.text) for key, value in budget_expend.iteritems(): obj.fiscal_year.value.append(key) obj.budget.value.append(value['budget']) obj.expenditure.value.append(value['expenditure']+value['disbursement']) #obj.disbursement.value.append(value['disbursement']) # Run subnationals locations = o.findall('location') if locations: self._populate_subnationals(obj.award_id.value, obj, o, locations, version) # Populate Donor Index self._populate_donor_index(o, version) counter += 1 self.log('Processing: %s' % counter, True) self.outputs.add_update_list(obj.award_id.value, obj) self.log('%s - output Annuals: %s rows processed' % (yr, counter)) def _populate_subnationals(self, project_id, output_obj, node, locations, version): """ Populate subnational object. This is dependant on _populate_outputs and cannot be executed separately project_id - the related project_id output_id - output model object node - output xml object Returns: Populatess subnationals property """ counter = 0 for location in locations: obj = Subnational() counter += 1 obj.awardID.value = project_id obj.outputID.value = output_obj.output_id.value obj.output_locID.value = "%s-%d" % (obj.outputID.value, counter) # Focus areas obj.focus_area.value = output_obj.focus_area.value obj.focus_area_descr.value = output_obj.focus_area_descr.value for item in location.iterchildren(): if item.tag == 'coordinates': obj.lat.value = item.get(obj.lat.key) obj.lon.value = item.get(obj.lon.key) obj.precision.value = item.get(obj.precision.key) if item.tag == 'name': obj.name.value = item.text if (version < 2) else item.find('narrative').text if item.tag == 'location-type': obj.type.value = item.get(obj.type.key) # IATI 1.04 if item.tag == 'point': pos = item.getchildren() lat_lon = pos[0].text.split(' ') obj.lat.value = lat_lon[0] obj.lon.value = lat_lon[1] # IATI 1.04 if item.tag == 'exactness': obj.precision.value = item.get('code') # IATI 1.04 if item.tag == 'feature-designation': obj.type.value = item.get(obj.type.key) self.subnationals.add_update_list(project_id, obj) def _populate_donor_index(self, output_obj, version): """ Populates both donor-index and donor-country-index """ if not self.country_donors: self.country_donors = self.get_and_sort(self.undp_export + '/country_donors_updated.csv', 'id') donorCol = "./participating-org[@role='Funding']" if (version < 2) else "./participating-org[@role='1']" for donor in output_obj.findall(donorCol): obj = Donor() country_obj = CountryDonor() ref = donor.get(obj.id.key) if ref: for item in self.country_donors: if ref == item['id']: # Skip the loop if the ref already is added if ref not in self.donorindex.pks: obj.id.value = ref obj.name.value = donor.text if (version < 2) else donor.find('narrative').text or "Unknown" if item['donor_type_lvl1'] == 'PROG CTY' or item['donor_type_lvl1'] == 'NON_PROG CTY': obj.country.value = item['donor_type_lvl3'].replace(" ", "") elif item['donor_type_lvl1'] == 'MULTI_AGY': obj.country.value = item['donor_type_lvl1'].replace(" ", "") else: obj.country.value = 'OTH' self.donorindex.add(obj.id.value, obj) if item['donor_type_lvl3'] not in self.countrydonorindex.pks: country_obj.id.value = item['donor_type_lvl3'] country_obj.name.value = item['donor_type_lvl3_descr'] self.countrydonorindex.add(item['donor_type_lvl3'], country_obj) def _search_list_dict(_list, key, search): result = [item for item in _list if item[key] == search] if len(result) > 0: return result else: return False def _generate_hdi(self): hdi = self.get_and_sort('%s/hdi-csv-clean.csv' % settings.HDI, 'hdi2013') self.geo = self.get_and_sort('%s/country-centroids.csv' % settings.PROCESS_FILES, 'iso3') # Add current year to the years array years = [1980, 1985, 1990, 1995, 2000, 2005, 2006, 2007, 2008, 2011, 2012, 2013] # Set current year to the latest year of HDI Data current_year = 2013 row_count = 0 rank = 0 hdi_index = [] hdi_dict = {} for val in iter(hdi): row_count = row_count + 1 hdi_total = [] hdi_health = [] hdi_ed = [] hdi_inc = [] change = [] change_year = {} for y in years: if val['hdi%d' % y] != '': if val['ed%d' % y] != "" and val['health%d' % y] != "" and val['income%d' % y] != "": hdi_total.append([y, round(float(val['hdi%d' % y]), 3)]) hdi_health.append([y, round(float(val['health%d' % y]), 3)]) hdi_ed.append([y, round(float(val['ed%d' % y]), 3)]) hdi_inc.append([y, round(float(val['income%d' % y]), 3)]) if y != current_year: change_year = round(float(val['hdi%d' % current_year]), 3) - round(float(val['hdi%d' % y]), 3) if len(change) == 0: change.append(change_year) if len(change) == 0: change.append("") for ctry in self.geo: if ctry['name'] == val['country']: if val['hdi%d' % current_year] == "": g = { "id": ctry['iso3'], "name": val['country'], "hdi": "", "health": "", "income": "", "education": "", "change": change[0], "rank": "n.a." } else: if ctry['iso3'].rfind("A-", 0, 2) == 0: g = { "id": ctry['iso3'], "name": val['country'], "hdi": hdi_total, "health": hdi_health, "income": hdi_inc, "education": hdi_ed, "change": change[0], "rank": "n.a." } else: rank = rank + 1 g = { "id": ctry['iso3'], "name": val['country'], "hdi": hdi_total, "health": hdi_health, "income": hdi_inc, "education": hdi_ed, "change": change[0], "rank": rank } hdi_index.append(g) uid = ctry['iso3'] hdi_dict[uid] = copy.deepcopy(g) hdi_dict[uid].pop('id') hdi_dict[uid].pop('name') hdi_dict['total'] = rank hdi_index_sort = sorted(hdi_index, key=lambda x: x['rank']) hdi_writeout = json.dumps(hdi_index_sort, sort_keys=True, separators=(',', ':')) hdi_out = open('%s/hdi.json' % self.api_path, 'wb') hdi_out.writelines(hdi_writeout) hdi_out.close() jsvalue = "var HDI = " jsondump = json.dumps(hdi_dict, sort_keys=True, separators=(',', ':')) writeout = jsvalue + jsondump f_out = open('%s/hdi.js' % self.api_path, 'wb') f_out.writelines(writeout) f_out.close() self.log('HDI json generated') def extract_years(self, filenames): """Extract years from filenames filenames must be in this format: atlas_projects_2011.xml Arguments: filenames -- an array of filenames """ return [f[-8:-4] for f in filenames] def _grab_award_id(self, text): """ grabs award id from the xml text @example Text: XM-DAC-41114-PROJECT-00068618 Return: 00068618 """ return text.split('-')[-1]
UTF-8
Python
false
false
38,659
py
8,402
generator.py
72
0.508368
0.500142
0
878
43.030752
192
Penqor/HOMEGROWNGILL
13,718,125,567,901
389d9fdcc0e45885f1e9640f1d547408540de11c
9bb7a8327a594d388f0f934c1b7a78e337d3f7dc
/HGG_loopfunction.py
8e166b6fa9c9b17cb1f452feae01276a5842aaa8
[]
no_license
https://github.com/Penqor/HOMEGROWNGILL
1ee1c1ec3c4a9ac6ff20b8ce316476c85325ae46
f8238c98258a2cc2d6f6b04471a880d1938a473d
refs/heads/master
2020-07-17T03:50:20.785211
2019-09-02T21:03:03
2019-09-02T21:03:03
205,935,970
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Do: make a loop function """ # old code commented out ''' def loopFunction(function, question): Loop = 'y' # loop when answer is yes while Loop == 'y' or Loop == 'yes': # call the function you want to loop function Loop2 = True # validation loop while Loop2: Loop = input("{} y/n".format(question)) # if yes or no break validation loop and it will either break or repeat orginal loop if Loop == 'y' or Loop == 'yes': Loop2 = False elif Loop == 'n' or Loop == 'no': Loop2 = False # if response is not yes or no try again else: print("Please enter y or n") def printDict(dictionary): for category, a in dictionary.items(): print(category) for fruit, info in a.items(): print(fruit, info) print() ''' # create a dictionary for the menu menu = { 'fruit:': { 'apples': { 'price': 4 }, 'oranges':{ 'price': 2 } }, 'vegetables:':{ 'carrots':{ 'price': 2 } }, 'milk products:': { 'milk': { 'price': 5 } }, 'nuts:': { 'peanuts': { 'price':0.5 } }, 'jams:': { 'jelly': { 'price': 4 } }, 'juices:': { 'orange': { 'price': 5 } } } # order will be filled via a function order = { } # order = {'apple juice': {'price:': 5, 'quantity:': 10}} def order_items(menu_dict, order_dict): order_loop = True while order_loop: try: try: item = input("What food item would you like to purchase") quantity = int(input("How many of this item would you like")) if item in order_dict: order_dict[item]['quantity'] = order_dict[item]['quantity'] + quantity order_loop = False else: for category, value in menu_dict.items(): if item in list(value.keys()): order_dict[item] = {'price': value[item]['price'], 'quantity': quantity} break if item not in order_dict: print("Please enter an item on the menu.") order_loop = True else: order_loop = False except ValueError: print("Please enter a valid quantity.") except KeyError: print("Please enter a valid name.") # set this up as a function - output order def printDict(statement, dictionary): print(statement) for category, a in dictionary.items(): print(category) for fruit, info in a.items(): print(fruit, info) print() # set up the mechanics of the whole order as a function!! def loop_function(function, param1, param2, question): Loop = 'y' # loop when answer is yes while Loop == 'y' or Loop == 'yes': # call the function you want to loop print("hi") function(param1, param2) Loop2 = True # validation loop while Loop2: Loop = input("{} y/n".format(question)) # if yes or no break validation loop and it will either break or repeat original loop if Loop == 'y' or Loop == 'yes' or Loop == 'n' or Loop == 'no': break # if response is not yes or no try again else: print("Please enter y or n") # call the function and print order loop_function(order_items, menu, order, "Would you like to order another item.") printDict("Your Order:", order)
UTF-8
Python
false
false
3,975
py
12
HGG_loopfunction.py
12
0.473711
0.468428
0
142
26.007042
100
scasasso/pl_tools
11,020,886,091,492
efafe63ca2aa546246aad02ce856b708234884ca
312c0d2f4aff9fa02b91eae033c571d8616afedc
/ml_clf/skmodel.py
734203d332966c1a9ae6a1980a40c2e85f524eed
[]
no_license
https://github.com/scasasso/pl_tools
5dcfcf6ca1021ae3d8879d846ab50f01a789649e
3e5e24282442433c3d99a0ae065503aec7cde327
refs/heads/master
2021-04-12T04:29:27.614274
2019-05-13T08:31:02
2019-05-13T08:31:02
125,884,803
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- ################################################################################ # # File: skmodel.py # # Product: Predictive Layer Genius Classif Library # Author: Momo # Date: 03 April 2015 # # Scope: The file contains the representation of scikit learn model. # # Copyright (c) 2015, Predictive Layer Limited. All Rights Reserved. # # The contents of this software are proprietary and confidential to the author. # No part of this program may be photocopied, reproduced, or translated into # another programming language without prior written consent of the author. # # # $Id$ # ################################################################################ import json import logging import numpy as np import pickle from sklearn.externals import joblib from sklearn.base import clone as skclone from sklearn.metrics import mean_squared_error, roc_auc_score from plmodel import PLModel logger = logging.getLogger(__file__) class SKModel(PLModel): def __init__(self, model, scaler='default'): PLModel.__init__(self, model, scaler) return def _fit_and_eval(self, X_train_val, y_train_val, **kwargs): # Split train/validation dataset i_val = int(np.floor(0.8 * len(X_train_val))) X_val, y_val = X_train_val[i_val: ], y_train_val[i_val: ] X_train, y_train = X_train_val[: i_val], y_train_val[: i_val] # Fit the scaler if self._is_scaler_fitted is False: self.fit_scaler(X_train) X_train = self.scaler.transform(X_train) # Fit the model self.model.fit(X_train, y_train) # Validate the model if 'regressor' in self.model.__class__.__name__.lower(): preds = self.model.predict(X_val) logger.info('Validation RMSE = {0:.4f}'.format(np.sqrt(mean_squared_error(y_val, preds)))) elif 'classifier' in self.model.__class__.__name__.lower(): preds = self.model.predict_proba(X_val) logger.info('Validation ROC AUC = {0:.4f}'.format(roc_auc_score(y_val, preds))) else: msg = 'Cannot understand if model %s is a regressor or a classifier: will skip validation' % self.model.__class__.__name__ logger.warning(msg) # Re-fit with all teh data self.model.fit(X_train_val, y_train_val)
UTF-8
Python
false
false
2,357
py
24
skmodel.py
24
0.5944
0.587187
0
67
34.149254
134
nxyexiong/Outernet-windows
790,274,018,707
8cba46d71bb268c4810defaa0dd467ff9b6c0a71
6ca932e06cb93518e64c09767b6ffc594780593c
/tap_control.py
c8a3f5ce040c07d8ebee84c40f2597887dbfc15b
[]
no_license
https://github.com/nxyexiong/Outernet-windows
169ed8f3157084be39b231bd9a34d5bbc3158fb6
b7b4d3168abb9ef2651ccc85ccb8ed4df5aea95c
refs/heads/master
2021-06-21T09:38:07.189579
2021-06-20T18:24:51
2021-06-20T18:31:31
211,439,474
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import winreg as reg import win32file import win32event import winerror import pywintypes import threading import time from queue import Queue from constants import REG_CONTROL_CLASS, TAP_COMPONENT_ID from logger import LOGGER def get_tuntap_ComponentId(): with reg.OpenKey(reg.HKEY_LOCAL_MACHINE, REG_CONTROL_CLASS) as adapters: try: for i in range(10000): key_name = reg.EnumKey(adapters, i) with reg.OpenKey(adapters, key_name) as adapter: try: component_id = reg.QueryValueEx(adapter, 'ComponentId')[0] if component_id == TAP_COMPONENT_ID: return reg.QueryValueEx(adapter, 'NetCfgInstanceId')[0] except WindowsError: pass except WindowsError: pass def CTL_CODE(device_type, function, method, access): return (device_type << 16) | (access << 14) | (function << 2) | method def TAP_CONTROL_CODE(request, method): return CTL_CODE(34, request, method, 0) TAP_IOCTL_SET_MEDIA_STATUS = TAP_CONTROL_CODE( 6, 0) TAP_IOCTL_CONFIG_TUN = TAP_CONTROL_CODE(10, 0) def open_tun_tap(ipv4_addr, ipv4_network, ipv4_netmask): ''' \brief Open a TUN/TAP interface and switch it to TUN mode. \return The handler of the interface, which can be used for later read/write operations. ''' LOGGER.debug("open_tun_tap") # retrieve the ComponentId from the TUN/TAP interface componentId = get_tuntap_ComponentId() # create a win32file for manipulating the TUN/TAP interface tuntap = win32file.CreateFile( r'\\.\Global\%s.tap' % componentId, win32file.GENERIC_READ | win32file.GENERIC_WRITE, win32file.FILE_SHARE_READ | win32file.FILE_SHARE_WRITE, None, win32file.OPEN_EXISTING, win32file.FILE_ATTRIBUTE_SYSTEM | win32file.FILE_FLAG_OVERLAPPED, None ) # have Windows consider the interface now connected win32file.DeviceIoControl( tuntap, TAP_IOCTL_SET_MEDIA_STATUS, b'\x01\x00\x00\x00', 1 ) # prepare the parameter passed to the TAP_IOCTL_CONFIG_TUN commmand. # This needs to be a 12-character long string representing # - the tun interface's IPv4 address (4 characters) # - the tun interface's IPv4 network address (4 characters) # - the tun interface's IPv4 network mask (4 characters) configTunParam = [] configTunParam += ipv4_addr configTunParam += ipv4_network configTunParam += ipv4_netmask configTunParam = bytes(configTunParam) # switch to TUN mode (by default the interface runs in TAP mode) win32file.DeviceIoControl( tuntap, TAP_IOCTL_CONFIG_TUN, configTunParam, 1 ) # return the handler of the TUN interface return tuntap def close_tun_tap(tuntap): LOGGER.info("close_tun_tap") win32file.CloseHandle(tuntap) class TAPControl: def __init__(self, tuntap): LOGGER.debug("TAPControl init") # store params self.tuntap = tuntap # local variables self.mtu = 1300 self.overlappedRx = pywintypes.OVERLAPPED() self.overlappedRx.hEvent = win32event.CreateEvent(None, 0, 0, None) self.rxOffset = self.overlappedRx.Offset self.overlappedTx = pywintypes.OVERLAPPED() self.overlappedTx.hEvent = win32event.CreateEvent(None, 0, 0, None) self.txOffset = self.overlappedTx.Offset self.read_callback = None self.write_queue = Queue() self.timeout = 100 # 0.1s self.goOn = False self.read_thread = None self.write_thread = None def run(self): LOGGER.debug("TAPControl run") self.goOn = True self.read_thread = threading.Thread(target=self.handle_read) self.read_thread.start() self.write_thread = threading.Thread(target=self.handle_write) self.write_thread.start() def handle_read(self): LOGGER.debug("TAPControl handle_read") rxbuffer = win32file.AllocateReadBuffer(self.mtu) # read ret = None p = None data = None while self.goOn: try: # wait for data ret, p = win32file.ReadFile(self.tuntap, rxbuffer, self.overlappedRx) while win32event.WaitForSingleObject(self.overlappedRx.hEvent, self.timeout) == win32event.WAIT_TIMEOUT: if not self.goOn: return self.rxOffset = self.rxOffset + len(p) self.overlappedRx.Offset = self.rxOffset & 0xffffffff self.overlappedRx.OffsetHigh = self.rxOffset >> 32 data = bytes(p.obj) except Exception: continue LOGGER.debug("TAPControl read packet %s" % data) send_data = None if data[0] & 0xf0 == 0x40: # ipv4 # get length total_length = 256 * data[2] + data[3] # ready to handle send_data = data[:total_length] data = data[total_length:] elif data[0] & 0xf0 == 0x60: # todo: ipv6 # get length total_length = 256 * data[4] + data[5] + 40 # ready to handle data = data[total_length:] if send_data and self.read_callback: self.read_callback(send_data) def write(self, data): LOGGER.debug("TAPControl write packet %s" % data) if not self.goOn: return self.write_queue.put(data) def handle_write(self): while self.goOn: try: data = self.write_queue.get(timeout=0.001) except Exception: continue try: # write over tuntap interface win32file.WriteFile(self.tuntap, data, self.overlappedTx) while win32event.WaitForSingleObject(self.overlappedTx.hEvent, self.timeout) == win32event.WAIT_TIMEOUT: if not self.goOn: return self.txOffset = self.txOffset + len(data) self.overlappedTx.Offset = self.txOffset & 0xffffffff self.overlappedTx.OffsetHigh = self.txOffset >> 32 except Exception: continue def close(self): LOGGER.info("TAPControl close") self.goOn = False if self.read_thread is not None: while self.read_thread.is_alive(): time.sleep(0.1) if self.write_thread is not None: while self.write_thread.is_alive(): time.sleep(0.1)
UTF-8
Python
false
false
6,809
py
19
tap_control.py
15
0.588486
0.567484
0.000587
203
32.541872
120
franksotogithub/ArcPy
4,741,643,914,775
cb0503026e35a52a3a8da4540398ebddcbda7562
f6d772bb63850fd38a2154cdb0a2d6020a3be778
/CalculoFuncionObjetivo.py
218d374f4373a62ea587c03198688b4db3398ffc
[]
no_license
https://github.com/franksotogithub/ArcPy
b98857e1a82fc61891117de435d2972086754feb
e3b7864affbd144588f4fc54127aa7d627adefa7
refs/heads/master
2020-04-06T03:37:05.894579
2016-11-11T18:52:49
2016-11-11T18:52:49
61,165,191
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import arcpy arcpy.env.workspace ="D:/ArcGisShapesPruebas" # First, make a layer from the feature class def Calculo(zona,circulos): arcpy.env.overwriteOutput = True arcpy.MakeFeatureLayer_management(zona, "temporal") arcpy.MakeFeatureLayer_management(circulos,"temporal_circulos") arcpy.MakeFeatureLayer_management(circulos, "temporal_circulo") #arcpy.MakeFeatureLayer_management("D:/ArcGisShapesPruebas/Zones/Shape15013300200.shp", "temporal") #arcpy.MakeFeatureLayer_management("D:/ArcGisShapesPruebas/EnvolvesCircles/pruebacirclebuffers.shp", "temporal_circulos") #arcpy.MakeFeatureLayer_management("D:/ArcGisShapesPruebas/EnvolvesCircles/pruebacirclebuffers.shp", "temporal_circulo") Z=0#Valor funcion Objetivo p=0.35 q=0.65 cant_max_viv=40 suma_homogeneidad=0 suma_compacidad=0 homogeneidad=0 compacidad=0 #fields = ["GRUPO"] n=0 with arcpy.da.SearchCursor("temporal_circulos",["GRUPO"]) as cursor3: for row3 in cursor3: Suma_areas = 0 where_expression = " GRUPO="+str(row3[0]) arcpy.SelectLayerByAttribute_management("temporal_circulo", "NEW_SELECTION", where_expression) #print row3[0] # with arcpy.da.SearchCursor("temporal_circulo" ,"*") as cursor2: # for row2 in cursor2: # print row2 #arcpy.SelectLayerByAttribute ("temporal", "", ' "GRUPO" = 1 ') #select arcpy.da.SearchCursor #Calculo de la suma de las areas del grupo y sus viviendas arcpy.SelectLayerByAttribute_management("temporal", "NEW_SELECTION") V = 0 with arcpy.da.SearchCursor("temporal", ["IDMANZANA","Shape_area","TOT_VIV"], where_expression) as cursor1: Suma_areas = 0 for row1 in cursor1: Suma_areas = row1[1] + Suma_areas V = row1[2] + V #print "Area en el grupo:" + str(Suma_areas) del cursor1 #print "otros" # Then add a selection to the layer based on location to features in another feature class # calculo de la suma de las areas que se encuentran en el circulo arcpy.SelectLayerByLocation_management("temporal", "WITHIN", "temporal_circulo","","NEW_SELECTION") with arcpy.da.SearchCursor("temporal", ["IDMANZANA", "Shape_area"]) as cursor2: Suma_areas_circulo = 0 for row2 in cursor2: Suma_areas_circulo = Suma_areas_circulo + row2[1] #print "Suma de areas dentro del circulo:" + str(Suma_areas_circulo) del cursor2 Ar = Suma_areas_circulo - Suma_areas A = Suma_areas_circulo homogeneidad=pow((V/cant_max_viv)-1,2) compacidad=Ar/(A) suma_homogeneidad = homogeneidad + suma_homogeneidad suma_compacidad=compacidad+suma_compacidad del row3 n=1+n del cursor3 #calculo con la formula Z=p*(1.0/float(n))*suma_homogeneidad+ q*(1.0/float(n))*suma_compacidad return Z #print Calculo("D:/ArcGisShapesPruebas/Zones/Shape15013300200.shp","D:/ArcGisShapesPruebas/EnvolvesCirclesBuffers/Shape15013300200.shp")
UTF-8
Python
false
false
3,353
py
122
CalculoFuncionObjetivo.py
122
0.619445
0.593797
0
105
30.942857
136
HoratiusTang/oslo.messaging
1,821,066,179,526
d0e7e5a2d9d052d6cbfb174404fc90b0783670dc
9ec5fd5dd7d91df752576fdf231f87de442fa72e
/oslo_messaging/_cmd/zmq_proxy.py
bb75f8c9ae8d93bbd01b683950dd01db434c7f1f
[ "Apache-2.0", "BSD-2-Clause" ]
permissive
https://github.com/HoratiusTang/oslo.messaging
dc0589d02898596e839d7ca20dfc47299e40f09b
5708d751039df4595d737c2211ed46dd93de2ba4
refs/heads/master
2021-01-18T01:30:40.347413
2016-04-23T09:48:16
2016-04-23T09:48:16
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Copyright 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import argparse import logging from oslo_config import cfg from oslo_messaging._drivers import impl_zmq from oslo_messaging._drivers.zmq_driver.broker import zmq_proxy from oslo_messaging._drivers.zmq_driver.broker import zmq_queue_proxy from oslo_messaging import server CONF = cfg.CONF CONF.register_opts(impl_zmq.zmq_opts) CONF.register_opts(server._pool_opts) CONF.rpc_zmq_native = True USAGE = """ Usage: ./zmq-proxy.py --type {PUBLISHER,ROUTER} [-h] [] ... Usage example: python oslo_messaging/_cmd/zmq-proxy.py\ --type PUBLISHER""" PUBLISHER = 'PUBLISHER' ROUTER = 'ROUTER' PROXY_TYPES = (PUBLISHER, ROUTER) def main(): logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser( description='ZeroMQ proxy service', usage=USAGE ) parser.add_argument('--type', dest='proxy_type', type=str, default=PUBLISHER, help='Proxy type PUBLISHER or ROUTER') parser.add_argument('--config-file', dest='config_file', type=str, help='Path to configuration file') args = parser.parse_args() if args.config_file: cfg.CONF(["--config-file", args.config_file]) if args.proxy_type not in PROXY_TYPES: raise Exception("Bad proxy type %s, should be one of %s" % (args.proxy_type, PROXY_TYPES)) reactor = zmq_proxy.ZmqProxy(CONF, zmq_queue_proxy.PublisherProxy) \ if args.proxy_type == PUBLISHER \ else zmq_proxy.ZmqProxy(CONF, zmq_queue_proxy.RouterProxy) try: while True: reactor.run() except KeyboardInterrupt: reactor.close() if __name__ == "__main__": main()
UTF-8
Python
false
false
2,313
py
10
zmq_proxy.py
10
0.664937
0.661479
0
76
29.434211
78
Tomas-Lawton/fullproof
3,281,355,029,631
2c92b24d29b2d47d16ef0451ea179f393d99ec66
4003be38a55d76334db8a6069f1d3ec3dbab7229
/experimental_scrapers/tineye_scraper.py
1b7345ebfe7105408c118cf6e116b9ae7decb66a
[]
no_license
https://github.com/Tomas-Lawton/fullproof
76e2e8dd0fb1f4ec7e74783e13768c19c92ce944
fb72094d02028beb2d3d5ba76618d5103e3cfb76
refs/heads/master
2022-11-16T00:26:54.254246
2020-07-06T04:43:42
2020-07-06T04:43:42
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Navid-S-B # 3-07-2020 # Webscraping script to access TinEye # UPDATE: Same problem, cannot download whole HTML script to scrape webpage. # Must have some kind of protective measure so people use their API instead. # Import webscraping libraries from bs4 import BeautifulSoup import requests import re class scraper: def __init__(self, image_url): self.image_url = image_url p = re.compile('/') self.new_url = p.sub("%2F", self.image_url) p = re.compile(':') self.new_url = p.sub("%3A", self.new_url) self.new_url = "http://www.tineye.com/search/?url{}".format(self.new_url) def get_no_results(self): response = requests.get(self.new_url) soup = BeautifulSoup(response.text,'html.parser') print(soup) webpage = scraper("https://cdn.spacetelescope.org/archives/images/wallpaper2/heic2007a.jpg") webpage.get_no_results()
UTF-8
Python
false
false
919
py
6
tineye_scraper.py
6
0.660501
0.644178
0
31
28.677419
92
lmokto/mltrading
11,948,599,025,252
9b494557fc57e3e902c38c6f64de2dbf02906327
b5ce195d6ea0d93e080db4844b979c7ae67eec06
/get_max_column.py
f177a86acd6ba5d299e958d8a083684eb995ba5c
[]
no_license
https://github.com/lmokto/mltrading
b28daa87b1747e667d78bee87516260dbb962bf3
f991285d8d94767ff4e1434c009ff041d0615077
refs/heads/master
2021-05-08T11:42:58.146659
2018-02-01T23:54:54
2018-02-01T23:54:54
119,908,066
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pandas as pd def get_max_column(symbol, column): """ :param symbol: :param column: :return: """ df = pd.read_csv('data/{name}.csv'.format(name=symbol)) return df[column].max() def test_run(): column = 'Close' symbol = 'HCP' print(30 * '--') print('Max column {clm_name} in data/{sym_name}.csv.'.format(clm_name=column, sym_name=symbol)) print(get_max_column(symbol, column)) if __name__ == '__main__': test_run()
UTF-8
Python
false
false
481
py
20
get_max_column.py
16
0.577963
0.573805
0
23
19.913043
99
bonevb/Cisco-and-Python
10,883,447,169,009
5c1954f8f5e797ba4092a7a006543dfc5ad803c4
93eeaf8f08cbd663381384e14644208f1872d278
/dns_apple.py
f63ee43c799c153e8e4eadd93abaaa40ba67b2bb
[]
no_license
https://github.com/bonevb/Cisco-and-Python
239892f14ac56f42f4f9f760aefb950b63a24664
8fb4806aefb49b6399ec5f54e14454a074b70490
refs/heads/master
2023-05-05T15:11:15.276874
2021-05-28T19:26:49
2021-05-28T19:26:49
371,796,255
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#The script will check if ip address behind b2bftp.apple.com is changed and #if it is it will add the new address in cisco asa objec-group import socket import filecmp import os import sqlite3 DB_NAME = 'ip.db' db = sqlite3.connect(DB_NAME) c = db.cursor() def check_dns(): host = 'b2bftp.apple.com' result = socket.gethostbyname(host) return result ip = check_dns() print(ip) def check_ip(ip): c.execute('SELECT * FROM IP WHERE ADDR = ?', (ip,)) try: for i in c.fetchone(): return i except: return None def save_to_db(ip): c.execute('INSERT INTO IP VALUES(?)', (ip,)) db.commit() print(ip + 'saved') #print('the ip address is: ', check_ip(ip)) if check_ip(ip) is None: #print('ip is not into DB') save_to_db(ip) with open('dns', 'w') as file: line = ip file.write('network-object host '+ line) os.system('ansible-playbook lines_asa_apple.yaml')
UTF-8
Python
false
false
961
py
3
dns_apple.py
1
0.619147
0.614984
0
48
18.979167
75
mch/python-ant
17,025,250,362,229
0fe912c363cbf634ce6c96143df764f36327ec90
7ebd6061a5152f537b9d1838ecfd3a326089ee70
/demos/ant.core/10-weight.py
919da64ceff33f5fbca8e983839fecd68f1678a4
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
https://github.com/mch/python-ant
13e629de185ecd5bb4f6ffd5520d5034a37d0ef7
02e045825434a17ffe113a82cc8191683223ea5f
refs/heads/master
2022-02-17T07:00:35.360513
2022-02-01T04:02:16
2022-02-01T04:02:16
89,795,395
21
14
MIT
true
2022-02-01T04:02:17
2017-04-29T15:46:59
2022-01-24T17:09:58
2022-02-01T04:02:16
339
15
8
0
Python
false
false
""" Extending on demo-03, implements an event callback we can use to process the incoming data. """ from __future__ import print_function import sys import time from ant.core import driver from ant.core import node from ant.core import event from ant.core import message from ant.core.constants import * from config import * NETKEY = '\xB9\xA5\x21\xFB\xBD\x72\xC3\x45' command_id = 0x46 send_times = 2 pg_num = 1 DP_PAYLOAD = bytearray([command_id, 0xFF, 0xFF, 0, 0, send_times, pg_num, 1]) #DP_PAYLOAD = bytearray([255, 255, 0, 0, send_times, pg_num, 1]) CHANNEL = 1 #TODO: not really, channel is set much later pay = DP_PAYLOAD p1 = message.ChannelAcknowledgedDataMessage(number=CHANNEL,data=pay) pay[6] = 2 p2 = message.ChannelAcknowledgedDataMessage(number=CHANNEL,data=pay) pay[6] = 3 p3 = message.ChannelAcknowledgedDataMessage(number=CHANNEL,data=pay) pay[6] = 4 p4 = message.ChannelAcknowledgedDataMessage(number=CHANNEL,data=pay) RSP = bytearray([0xFF, 0x3A]) class RsMessage(message.ChannelMessage): type = 0x63 def __init__(self, number=0x00): super(RsMessage, self).__init__(number=number, payload=RSP) rs = RsMessage(0) RECV = 0 class WeightListener(event.EventCallback): def process(self, msg, _channel): global RECV if isinstance(msg, message.ChannelBroadcastDataMessage): # print('R%04X: ' % RECV, *('%02X' % ord(byte) for byte in msg.payload)) data = str(msg.payload) print('%04X' % RECV, *('%02X' % ord(byte) for byte in data)) # print [map(ord, msg.payload)] page_number = msg.payload[1] RECV += 1 if page_number == 1: pass elif page_number == 2: pass elif page_number == 3: pass elif page_number == 4: pass def delete_channel(channel): channel.close() channel.unassign() def reset_channel(antnode, channel=None): if channel: delete_channel(channel) channel = antnode.getFreeChannel() channel.name = 'C:WGT' channel.assign(net, CHANNEL_TYPE_TWOWAY_RECEIVE) channel.setID(119, 0, 0) channel.period = 0x2000 # nebo 0x0020 ??? channel.frequency = 0x39 rs.channelNumber = channel.deviceNumber channel.node.evm.writeMessage(rs) channel.searchTimeout = TIMEOUT_NEVER channel.open() channel.registerCallback(WeightListener()) return channel # Initialize #LOG=None #DEBUG=False stick = driver.USB1Driver(SERIAL, log=LOG, debug=DEBUG) antnode = node.Node(stick) antnode.start() # Setup channel net = node.Network(name='N:ANT+', key=NETKEY) antnode.setNetworkKey(0, net) channel = reset_channel(antnode) restart = int(time.time()) # Wait print("Listening for weight scale events ...") while True: time.sleep(0.1) # Restart channel every 3 seconds now = int(time.time()) if (now % 3 == 0) and (now != restart): channel = reset_channel(antnode, channel) RECV = 0 restart = now # Shutdown delete_channel(channel) antnode.stop()
UTF-8
Python
false
false
3,088
py
24
10-weight.py
23
0.656088
0.626295
0.002591
120
24.733333
83
SamuelIvan99/Python-exercises
9,672,266,363,834
d3935ae124bd1a04399ae39952ce2f518c4a4556
08086a474b662db4bf7ad24e979368944ea189a8
/KSI_18-19/Uloha - 10B/binary_search_4.0.py
e3e9b5b2ae127ace0445373c2cc0aa9c40c0fa90
[]
no_license
https://github.com/SamuelIvan99/Python-exercises
a81f208776b78a5b4c19af419fd9ecf185160279
210c6543caf43ad74f319e056a6e81cc7ee887c7
refs/heads/master
2020-05-30T05:31:44.617812
2019-10-18T09:53:21
2019-10-18T09:53:21
189,562,496
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def find(a, v): c = len(a) - 1 r = 0 while c > -1 and r < len(a): value = a[r][c] if value == v: return (r, c) elif value > v: c -= 1 elif value < v: r += 1 return None A = [[19, 30, 31, 45, 57], [25, 32, 32, 51, 69], [33, 35, 38, 58, 78], [34, 49, 67, 84, 102], [44, 54, 73, 90, 115]] print(find(A, 19)) # (0, 0) print(find(A, 80)) # None print(find(A, 30)) # (0, 1) print(find(A, 54)) # (4, 1) print(find(A, 75)) # None print(find(A, 32)) # (1, 1) print(find(A, 115)) # (4, 4)
UTF-8
Python
false
false
577
py
150
binary_search_4.0.py
108
0.426343
0.284229
0
22
25.227273
116
bgtron/nxtoolkit
3,298,534,907,446
2a16eda8fcb74ca5cc79b9953f99faaf92d0b661
6a33091266e24d18628e91913f37ecb6ef9e7f11
/samples/nx-copy-running-startup.py
35d78af1619504b88a04e6040256655c6ef5bba1
[ "Apache-2.0" ]
permissive
https://github.com/bgtron/nxtoolkit
095b1d498d2ee33b66ad7de8b71a52f4bbf3bcde
b24f613eb427a1df924bb28d295b96916124739f
refs/heads/master
2021-04-27T22:22:22.209659
2019-06-27T15:28:00
2019-06-27T15:28:00
122,418,627
0
0
null
true
2018-02-22T02:03:21
2018-02-22T02:03:21
2018-02-22T02:00:53
2018-02-22T01:54:41
238
0
0
0
null
false
null
#!/usr/bin/env python ################################################################################ # # # Copyright (c) 2015 Cisco Systems # # All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"); you may # # not use this file except in compliance with the License. You may obtain # # a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # # License for the specific language governing permissions and limitations # # under the License. # # # ################################################################################ """ Simple application that logs on to the Switch and copy the running config to startup config """ import sys import nxtoolkit.nxtoolkit as NX import time def main(): """ Main execution routine :return: None """ # Take login credentials from the command line if provided # Otherwise, take them from your environment variables file ~/.profile description = 'copy running config to startup config' creds = NX.Credentials('switch', description) args = creds.get() # Login to Switch session = NX.Session(args.url, args.login, args.password) resp = session.login() if not resp.ok: print('%% Could not login to Switch') sys.exit(0) copy = NX.Copy() run_to_start = NX.RunningToStartUp() copy.add(run_to_start) resp = session.push_to_switch(copy.get_url(), copy.get_json()) if not resp.ok: print resp.text print('%% Could not push to the switch') exit(0) # Get the status of copy time.sleep(5) # Waiting 5 sec. till the copy process is complete copy = NX.Copy.get(session) print "Copy status: ", copy.run_to_start.status # Uncomment below lines to delete the copy task ''' resp = session.delete(run_to_start.get_url()) if not resp.ok: print resp.text print('%% Could not delete from the switch') exit(0) ''' if __name__ == '__main__': main()
UTF-8
Python
false
false
2,903
py
43
nx-copy-running-startup.py
40
0.471926
0.467447
0
75
37.706667
80
yuliashishko/PyQtViselitsa
2,723,009,272,333
af8fed3559e385b0391f979428ba43604d1f8637
63b3b6d53924e04256acad95bcd7df0e6b738222
/Utils.py
25718f5a1cf8165ad1ee6b3c44c9a001c074a0e7
[]
no_license
https://github.com/yuliashishko/PyQtViselitsa
48e0d7d65fe93cd24b9996bbe94c7b4d3bf8df51
2117ab8b6b74faf018413794a2e2cec900b7e174
refs/heads/master
2023-07-17T16:15:23.108273
2021-09-04T18:10:46
2021-09-04T18:10:46
403,125,730
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random import sqlite3 con = sqlite3.connect("users.sqlite") cur = con.cursor() class UserNotFoundError(Exception): pass class WordNotFoundError(Exception): pass class EmptyWordListError(Exception): pass def get_user(login): user = cur.execute( f"""SELECT * FROM users WHERE login = '{login}'""").fetchone() if not user: raise UserNotFoundError return user def check_login(login): user = cur.execute( f"""SELECT * FROM users WHERE login = '{login}'""").fetchone() return user def delete_user(login): cur.execute(f"DELETE FROM users WHERE login = '{login}'") con.commit() def get_word(word): result = cur.execute( f"""SELECT * FROM words WHERE word = '{word}'""").fetchone() if not result: raise WordNotFoundError return result def create_game(login, word_text, exp): cur.execute(f"""INSERT INTO games VALUES('{login}', '{word_text}', {exp})""") con.commit() def get_random_word(level, user): leveler = {"Простые слова (50 опыта)": 1, "Нормальные слова (100 опыта)": 2, "Сложны слова (150 опыта)": 3} result = cur.execute(f"""SELECT word FROM words WHERE words.level = '{leveler[level]}' AND words.word NOT IN (SELECT word FROM games WHERE login = '{user}')""").fetchall() if not len(result): raise EmptyWordListError word = random.choice(result) return word def get_profile(user): result = get_user(user) cur_exp = result[3] max_exp = result[7] * 100 + 150 result = { 'name': result[1], 'username': result[6], 'level': str(result[7]), 'totalExp': str(result[3]), 'gamesLost': str(result[5]), 'gamesWon': str(result[4]), 'currentExp': str(cur_exp), 'maxExp': str(max_exp), 'levelProgress': int(cur_exp / max_exp * 100) } return result def update_user_loose(login, word_text): user = get_user(login) curr_looses = user[5] cur.execute( f"""UPDATE users SET looses = {curr_looses + 1} WHERE login = '{login}'""") create_game(login, word_text, 0) con.commit() def update_user_win(login, word_text): user = get_user(login) word = get_word(word_text) curr_wins = user[4] curr_exp = user[3] exp_for_game = word[1] * 50 lvl = user[7] cur.execute( f"""UPDATE users SET wins = {curr_wins + 1} WHERE login = '{login}'""") if curr_exp + exp_for_game >= 50 + lvl * 100: cur.execute(f"""UPDATE users SET level = {lvl + 1} WHERE login = '{login}'""") curr_exp = curr_exp - 50 - 100 * lvl cur.execute( f"""UPDATE users SET exp = {curr_exp + exp_for_game} WHERE login = '{login}'""") create_game(login, word_text, exp_for_game) con.commit() def get_word_state(word): result_games = cur.execute( f"""SELECT * FROM games WHERE word = '{word}'""").fetchall() count_looses = 0 for elem in result_games: if elem[2] == 0: count_looses += 1 word_state = { 'won': str(len(result_games) - count_looses), 'persent': str(100 - count_looses / len(result_games) * 100), 'players': str(len(result_games)) } return word_state def create_account(name, login, password): cur.execute( "INSERT INTO users('name', login, password, exp, wins, looses, 'level') VALUES(?, ?, ?, ?, ?, ?, ?);", (name, login, password, 0, 0, 0, 0) ) con.commit()
UTF-8
Python
false
false
3,534
py
14
Utils.py
8
0.590348
0.571675
0
128
26.195313
113
awagner83/doctools
15,272,903,736,302
017849705959aa2e299dc534dc952f8ad97bba42
d88d5beff275a2e9ffdf457ca446a319471c0d14
/doctools.py
b6bcb91f28251e283dee25731604b16b3f037ca4
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
https://github.com/awagner83/doctools
fae30ccd6b86ec8fbc1204ea9da5d0206c4eff29
e2133f5674e5089b9cb2634a89e6fd55ae618bf4
refs/heads/master
2022-02-23T09:33:49.586949
2022-02-13T01:58:08
2022-02-13T01:58:08
2,308,583
0
1
NOASSERTION
false
2022-02-13T01:58:09
2011-09-01T15:56:00
2013-10-03T12:51:57
2022-02-13T01:58:08
99
2
2
0
Python
false
false
"""Docblock manipulation utilities.""" from pprint import pformat def append_to_docs(fn, text): """Append text to a functions existing docblock.""" if not text: return if fn.__doc__: min_indent = _getindent(fn.__doc__) fn.__doc__ = '%s\n\n%s' % (fn.__doc__, _indent(text, min_indent)) else: fn.__doc__ = text def append_var_to_docs(fn, label, value): """Append text & pformatted value to docblock.""" value_width = 76 - _getindent(fn.__doc__) append_to_docs( fn, "%s:\n%s" % ( label, _indent(pformat(value, width=value_width)) ) ) def include_docs_from(source_function): """Decorator copying documentation from one function onto another.""" def decorator(dest_function): append_to_docs(dest_function, source_function.__doc__) return dest_function return decorator def _indent(string, indent_level=4): """Indent each line by `indent_level` of spaces.""" return '\n'.join('%s%s' % (' '*indent_level, x) for x in string.splitlines()) def _getindent(string): try: lines = string.splitlines() # drop first line if it has no indent level if _nspaces(lines[0]) == 0: lines.pop(0) indent_levels = (_nspaces(x) for x in lines if x) return min(indent_levels) or 0 except (AttributeError, ValueError): # Things that don't look like strings and strings with no # indentation should report indentation of 0 return 0 def _nspaces(line): for idx, char in enumerate(line): if char != ' ': return idx
UTF-8
Python
false
false
1,692
py
5
doctools.py
3
0.575059
0.56974
0
62
26.274194
73
enigmawxy/TensorGraph
10,539,849,750,576
2fdf9c6b0156ea254590cef2177c93945453041a
ab659d02c4daaf0f3794d927ee2c6015e2352e23
/tensorgraph/__init__.py
a9dd1361c4052e3af257257aca02a49a318feee6
[ "MIT" ]
permissive
https://github.com/enigmawxy/TensorGraph
1456cfa237f4e2f94653aa04c6f15a5ad2661239
6ba18d5fe4ac6004062f805f9457b0fdc5c42cfd
refs/heads/master
2020-05-16T01:37:15.814395
2019-05-03T03:28:35
2019-05-03T03:28:35
182,606,886
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from tensorgraph.graph import * from tensorgraph.operations import * from tensorgraph.gradients import RegisterGradient from tensorgraph.session import Session import tensorgraph.train # Create a default graph. # import builtins # DEFAULT_GRAPH = builtins.DEFAULT_GRAPH = Graph()
UTF-8
Python
false
false
328
py
15
__init__.py
12
0.777439
0.77439
0
12
26.333333
50
isabella232/pygate-gRPC
6,511,170,465,063
3c3d18b2f5b48169a3bf119152fc420ee6537a41
64b90d33916cdff62ea3116dd306717c9abc8fa4
/pygate_grpc/health.py
2629685cbeca07753654a01bbc3a4ecbb20a4a2f
[ "MIT" ]
permissive
https://github.com/isabella232/pygate-gRPC
336347d866d791b69b3cd0ac69853118491fb07f
429967fd3c6f56c5f787e54a1d02e0b377640d6f
refs/heads/main
2023-01-09T21:16:38.373922
2020-10-30T11:03:07
2020-10-30T11:03:07
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import logging from proto import health_rpc_pb2, health_rpc_pb2_grpc from pygate_grpc.errors import ErrorHandlerMeta logger = logging.getLogger(__name__) class HealthClient(object, metaclass=ErrorHandlerMeta): def __init__(self, channel): self.client = health_rpc_pb2_grpc.RPCServiceStub(channel) def check(self): req = health_rpc_pb2.CheckRequest() return self.client.Check(req)
UTF-8
Python
false
false
417
py
35
health.py
32
0.719424
0.709832
0
15
26.8
65
vald-phoenix/psga
15,616,501,108,097
8df7398d49fb7b8777decb794b68a9e39cc54555
90cf1710b57194cae9956ced0199f12e97c7b996
/app/api/tests.py
2100b0953240ea553a3cf6a0ff83e1a5bcbc35c3
[]
no_license
https://github.com/vald-phoenix/psga
215ba268e4f6f7e0cd83e99413ce913dfe3a5a02
785e018f2ed10a3cb8a47ce8e01f036d2561f19e
refs/heads/master
2022-04-28T08:41:54.439391
2019-10-15T12:44:21
2019-10-15T12:44:21
215,274,507
0
0
null
false
2022-04-22T22:32:58
2019-10-15T10:48:24
2019-10-15T12:45:20
2022-04-22T22:32:56
689
0
0
4
Python
false
false
import pytest from app.models import Position, Ship @pytest.fixture def ship(): """A dummy ship fixture.""" ship = Ship(imo=9595321, name='MSC Preziosa') ship.save() return ship @pytest.fixture def position(ship): """A dummy position fixture.""" position = Position( latitude='17.9850006103516', longitude='-63.1359672546387', ship=ship, timestamp='2019-01-15 09:43:13+00' ) position.save() return position @pytest.mark.django_db def test_ships_endpoint(client, ship): # Given: a ship entry with data exists in the database. result = [{'imo': ship.imo, 'name': ship.name}] # When: a request is being made to the endpoint. response = client.get('/api/ships/') # Then: the endpoint returns the JSON data that corresponds to the result. assert response.json() == result @pytest.mark.django_db def test_ship_positions_endpoint(client, position): # Given: a position entry with data exists in the database. result = [ {'latitude': position.latitude, 'longitude': position.longitude} ] # When: a request is being made to the endpoint. response = client.get('/api/positions/9595321/') # Then: the endpoint returns the JSON data that corresponds to the result. assert response.json() == result
UTF-8
Python
false
false
1,329
py
18
tests.py
10
0.662904
0.617758
0
52
24.557692
78
koverman47/EGEN_310
5,325,759,490,173
8cf9d345ca972cecbd9874090e2871325a639c5e
dbb0a4d452ac0faf00411a09b7e32f13ffdb31e8
/tests/key_test.py
6f714b366fad9253140ad18bfc109a1a6adc5247
[]
no_license
https://github.com/koverman47/EGEN_310
3ef66b7fb773b4e5fb833c250c87c7cf4fc84d49
f69e292baa48bca441dd0f7d9ba7789db417d42a
refs/heads/master
2020-04-18T00:39:47.999960
2019-04-24T20:14:44
2019-04-24T20:14:44
167,086,003
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import sys import tty import termios tty.setcbreak(sys.stdin) key = ord(sys.stdin.read(1)) print(key) fd = sys.stdin.fileno() old = termios.tcgetattr(fd) old[3] = old[3] | termios.ECHO termios.tcsetattr(fd, termios.TCSADRAIN, old) sys.exit(0)
UTF-8
Python
false
false
270
py
23
key_test.py
22
0.722222
0.703704
0
16
15.875
45
Nik618/DjangoProject_v02
19,516,331,419,712
2b24ba38d65a995ebe00b8fdfe53b100248bf5dd
0932de21a8d5d3d6002b6f4fdd0f19b5689d7454
/main/views.py
fcd1a9e9687d44097bf5f297efaa776731b4f0d4
[]
no_license
https://github.com/Nik618/DjangoProject_v02
08d7f9d48e2207154e98fdc8cfb47d599613b422
749c4fac0788f6ce17a110bf145eb7a57b43ef2d
refs/heads/master
2023-05-13T01:27:31.940581
2021-06-03T19:00:23
2021-06-03T19:00:23
373,611,644
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib.gis.geos import MultiPolygon, Polygon from rest_framework.decorators import api_view, permission_classes from rest_framework.pagination import PageNumberPagination from django.core.paginator import Paginator from django.shortcuts import render, get_object_or_404 from rest_framework.permissions import AllowAny from rest_framework_gis.pagination import GeoJsonPagination from .models import Country, Town, Capital from django.views.generic.edit import CreateView from django.core.serializers import serialize from django.http import HttpResponse from django.core.serializers import serialize from rest_framework.renderers import JSONRenderer from rest_framework.response import Response from rest_framework import generics from .serializers import * # Create your views here. # def countryDatasets(request): # red = serialize('geojson', # Country.objects.all(), # geometry_field='location') # return Response(red) class GetCountry(generics.ListAPIView): queryset = Country.objects.all() serializer_class = CountrySerializer class SetCountry(generics.RetrieveUpdateDestroyAPIView): queryset = Country.objects.all() serializer_class = CountrySerializer class GetTown(generics.ListAPIView): queryset = Town.objects.all() serializer_class = TownSerializer class SetTown(generics.RetrieveUpdateDestroyAPIView): queryset = Town.objects.all() serializer_class = TownSerializer class GetCapital(generics.ListAPIView): queryset = Capital.objects.all() serializer_class = CapitalSerializer class SetCapital(generics.RetrieveUpdateDestroyAPIView): queryset = Capital.objects.all() serializer_class = CapitalSerializer # def get_queryset(self): # queryset = Town.objects.all() # country = self.kwargs['Russia'] # if country is not None: # queryset = Town.objects.filter(country=country) # return queryset class getTowns(generics.ListAPIView): serializer_class = TownSerializer def get_queryset(self): param = self.kwargs['tittle'] return Town.objects.filter(country__tittle=param) class getTownInArea(generics.ListAPIView): # вывести объекты, находящиеся внутри области queryset = Town.objects.all() serializer_class = TownSerializer def getCoordinates(self, c: str) -> tuple: return tuple(float(i) for i in c.split(',')) def get(self, request, c1, c2, c3, c4): c1 = self.getCoordinates(c1) c2 = self.getCoordinates(c2) c3 = self.getCoordinates(c3) c4 = self.getCoordinates(c4) search_area = MultiPolygon(Polygon((c1, c2, c3, c4, c1,))) paginator = GeoJsonPagination() paginator.page_size = 3 red = Town.objects.filter(location__contained=search_area) # ключевой момент result_page = paginator.paginate_queryset(red, request) serializer = TownSerializer(result_page, many=True) return paginator.get_paginated_response(serializer.data) class getCountryInArea(generics.ListAPIView): # вывести объекты, находящиеся внутри области queryset = Country.objects.all() serializer_class = CountrySerializer def getCoordinates(self, c: str) -> tuple: return tuple(float(i) for i in c.split(',')) def get(self, request, c1, c2, c3, c4): c1 = self.getCoordinates(c1) c2 = self.getCoordinates(c2) c3 = self.getCoordinates(c3) c4 = self.getCoordinates(c4) search_area = MultiPolygon(Polygon((c1, c2, c3, c4, c1,))) paginator = GeoJsonPagination() paginator.page_size = 3 red = Country.objects.filter(location__contained=search_area) # ключевой момент result_page = paginator.paginate_queryset(red, request) serializer = CountrySerializer(result_page, many=True) return paginator.get_paginated_response(serializer.data) class getCapitalInArea(generics.ListAPIView): # вывести объекты, находящиеся внутри области queryset = Capital.objects.all() serializer_class = CapitalSerializer def getCoordinates(self, c: str) -> tuple: return tuple(float(i) for i in c.split(',')) def get(self, request, c1, c2, c3, c4): c1 = self.getCoordinates(c1) c2 = self.getCoordinates(c2) c3 = self.getCoordinates(c3) c4 = self.getCoordinates(c4) search_area = MultiPolygon(Polygon((c1, c2, c3, c4, c1,))) paginator = GeoJsonPagination() paginator.page_size = 3 red = Capital.objects.filter(location__contained=search_area) # ключевой момент result_page = paginator.paginate_queryset(red, request) serializer = CapitalSerializer(result_page, many=True) return paginator.get_paginated_response(serializer.data) class getSquare(generics.ListAPIView): # вывести площадь queryset = Town.objects.all() serializer_class = TownSerializer def getCoordinates(self, c: str) -> tuple: return tuple(float(i) for i in c.split(',')) def get(self, request, c1, c2, c3, c4): c1 = self.getCoordinates(c1) c2 = self.getCoordinates(c2) c3 = self.getCoordinates(c3) c4 = self.getCoordinates(c4) search_area = MultiPolygon(Polygon((c1, c2, c3, c4, c1,))) paginator = GeoJsonPagination() paginator.page_size = 3 red = Town.objects.filter(location__contained=search_area) # ключевой момент sumS = 0 for town in red: sumS += town.location.area return HttpResponse(content=sumS)
UTF-8
Python
false
false
5,780
py
9
views.py
6
0.692638
0.679056
0
157
34.624204
92
mostafaelhoushi/tensor-decompositions
1,563,368,111,088
1c0fbf04842e876c4d9975747fc357923437a369
82dafd9b89abdf334420e50f9d7562984aed8a7d
/reconstructions.py
d635aef8302f713f5c9f238feb50110411a1d280
[]
no_license
https://github.com/mostafaelhoushi/tensor-decompositions
844aaed58abeb1e17923860a5e9aebed64465030
8c3186dfc4d5d2eb22b0a673e3eaf1bcaa872feb
refs/heads/master
2020-07-09T03:51:30.214582
2020-05-02T12:46:00
2020-05-02T12:46:00
203,867,675
3
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorly as tl from tensorly.decomposition import parafac, partial_tucker import numpy as np import torch import torch.nn as nn def reconstruct_model(model, cp=False): # TODO: Find a better way to avoid having to convert model from CPU to CUDA and back model.cpu() iterator = iter(model._modules.items()) item = next(iterator, None) while item is not None: name, module = item if len(list(module.children())) > 0: # recurse model._modules[name] = reconstruct_model(model=module, cp=cp) item = next(iterator, None) elif type(module) == nn.Linear: linear_layers_list = [module] linear_names_list = [name] # add all consecutive conv layers to list item = next(iterator, None) while item is not None: name, module = item if type(module) == nn.Linear: linear_layers_list.append(module) linear_names_list.append(name) item = next(iterator, None) else: break # reconstruct if len(linear_layers_list) > 1: combined_weight = None for i, (layer, name) in enumerate(zip(linear_layers_list, linear_names_list)): if i == 0: combined_weight = layer.weight.data else: combined_weight = torch.matmul(layer.weight.data, combined_weight) if i < len(linear_layers_list) - 1: assert(layer.bias is None) model._modules[name] = torch.nn.Identity() else: assert(layer.bias is not None) model._modules[name] = torch.nn.Linear(in_features = linear_layers_list[0].in_features, out_features = linear_layers_list[-1].out_features, bias = True) model._modules[name].weight.data = combined_weight model._modules[name].bias.data = linear_layers_list[-1].bias.data elif type(module) == nn.Conv2d: conv_layers_list = [module] conv_names_list = [name] # add all consecutive conv layers to list item = next(iterator, None) while item is not None: name, module = item if type(module) == nn.Conv2d: conv_layers_list.append(module) conv_names_list.append(name) item = next(iterator, None) else: break # reconstruct if len(conv_layers_list) > 1: if cp: raise("cp reconstruction not yet supported") else: # tucker reconstruction if(len(conv_layers_list) == 3): [last_layer, core_layer, first_layer] = conv_layers_list [last_name, core_name, first_name] = conv_names_list first_weight = first_layer.weight.data.squeeze(-1).squeeze(-1) core_weight = core_layer.weight.data last_weight = torch.transpose(last_layer.weight.data, 1, 0).squeeze(-1).squeeze(-1) reconstructed_weight = tl.tucker_to_tensor(core_weight, [first_weight, last_weight]) assert(first_layer.bias is not None) assert(core_layer.bias is None) assert(last_layer.bias is None) reconstructed_bias = first_layer.bias.data reconstructed_layer = torch.nn.Conv2d(in_channels=first_layer.in_channels, \ out_channels=last_layer.out_channels, kernel_size=core_layer.kernel_size, stride=core_layer.stride, padding=core_layer.padding, dilation=core_layer.dilation, bias=True) reconstructed_layer.weight.data = reconstructed_weight reconstructed_layer.bias.data = reconstructed_bias model._modules[first_name] = reconstructed_layer model._modules[core_name] = torch.nn.Identity() model._modules[last_name] = torch.nn.Identity() elif(len(conv_layers_list) == 2): [core_layer, last_layer] = conv_layers_list [core_name, last_name] = conv_names_list core_weight = core_layer.weight.data last_weight = last_layer.weight.data.squeeze(-1).squeeze(-1) reconstructed_weight = tl.tucker_to_tensor(core_weight, [last_weight]) assert(core_layer.bias is None) assert(last_layer.bias is not None) reconstructed_bias = last_layer.bias.data reconstructed_layer = torch.nn.Conv2d(in_channels=core_layer.in_channels, \ out_channels=last_layer.out_channels, kernel_size=core_layer.kernel_size, stride=core_layer.stride, padding=core_layer.padding, dilation=core_layer.dilation, bias=True) reconstructed_layer.weight.data = reconstructed_weight reconstructed_layer.bias.data = reconstructed_bias model._modules[core_name] = torch.nn.Identity() model._modules[last_name] = reconstructed_layer else: item = next(iterator, None) model.cuda() return model
UTF-8
Python
false
false
5,940
py
7
reconstructions.py
5
0.505724
0.50202
0
122
46.688525
176
dzmitrybutar/test_drawing
19,189,913,885,143
8ec11d24d7166d5a8707a7fe0e413a59ca301c8a
a1961acfbcd0cdc0c8c225499f94c69ae4c700c7
/config.py
05dd5bd21f15fad04545b5458818fa0f5437da08
[]
no_license
https://github.com/dzmitrybutar/test_drawing
01469bf333333faede77e0eb56569c2067e02af0
01cac1a3b609fb75230273ac43a376a891a843ae
refs/heads/master
2020-07-08T05:51:18.860984
2019-08-21T13:17:19
2019-08-21T13:17:19
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import argparse import os BASEDIR = os.path.abspath(os.path.dirname(__file__)) parser = argparse.ArgumentParser(description='Drawing') parser.add_argument('infile', type=str, help='Input filename and dir for initial conditions') parser.add_argument('outfile', type=str, help='Output filename and dir for the result') args = parser.parse_args() infile_path = BASEDIR + '/' + args.infile outfile_path = BASEDIR + '/' + args.outfile
UTF-8
Python
false
false
433
py
13
config.py
8
0.73903
0.73903
0
12
35.083333
93
simon-andrews/hat-appraiser
16,200,616,649,414
2a79571274535a7c965d1b85e753a3f8fe381c30
0a0dd15977f701b36462cf10ae1b7a15c1b464b9
/server.py
ef55b11c1cf501431d11967d3c73dcbdab703915
[ "MIT" ]
permissive
https://github.com/simon-andrews/hat-appraiser
2bbbbca74d80bc76bfae5cbd93c23c204e20c104
f42d4a4ece005a345faebcd4140472586e6c47ab
refs/heads/master
2021-01-01T03:34:32.112764
2016-04-24T16:37:49
2016-04-24T16:37:49
56,982,274
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Flask, render_template, request from appraisal import get_effect_averages, get_price app = Flask(__name__) app.debug = True @app.route('/', methods=('GET', 'POST')) def index(): if request.method == "GET": return render_template("index.html") elif request.method == "POST": return str(get_price(request.form["hatname"], request.form["hateffect"])) + " keys" @app.route('/effect_averages') def effect_averages(): return str(app.config["effect_averages"]) if __name__ == '__main__': print('downloading') app.config["effect_averages"] = get_effect_averages() app.run()
UTF-8
Python
false
false
631
py
4
server.py
2
0.648177
0.648177
0
24
25.291667
91
dilanfd/dynamics-of-springs
2,740,189,179,099
b9b3786c63357fa51a5e89dca34ed576d91f4f3a
b4159e7c2e569498db8a8e37efb952609622aeb1
/elastica-problem/thesis3/lib/python3.6/random.py
08b35f88155282a3d4c367cf623383f2a3d4bf0c
[ "MIT" ]
permissive
https://github.com/dilanfd/dynamics-of-springs
0433f8fe003f63e5b9d877bed48e223754a96bec
99ae5ea20437f5e43ecc8b54bf27d468afea6a23
refs/heads/master
2020-03-23T15:56:55.058023
2018-12-06T02:15:46
2018-12-06T02:15:46
141,542,750
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
/Users/Dilan/anaconda/lib/python3.6/random.py
UTF-8
Python
false
false
45
py
102
random.py
66
0.822222
0.777778
0
1
45
45
DavidBaug/AA
16,217,796,541,486
ae60a163aef1e4edb141e6cf195669fc426eefb0
a101c155cade8437cfb84dafce7cdde38b1f1f5d
/Practicas/practica0/Ejercicio_clase.py
8d7e33e147093ce937f6b95d420d4f3cb5f36491
[]
no_license
https://github.com/DavidBaug/AA
02a1c366bbb9947cde823c2b691612160adfb355
889236fbfad88840e691e8b812ea531ca4137958
refs/heads/master
2020-03-23T07:34:57.955712
2019-10-01T08:41:42
2019-10-01T08:41:42
141,280,624
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Ejercicio de clase. En este ejercicio se nos pide que: Leamos la base de datos de iris que hay en scikit-learn. Obtengamos de ella las características (datos de entrada X) y la clase (y). Nos quedemos con las dos primeras características (2 primeras columnas de X). Separar en train 80% y test 20% aleatoriamente conservando la proporción de elementos en cada clase tanto en train como en test. """ #Importamos paquetes necesarios. import numpy as np from sklearn import datasets #Leemos el dataset iris = datasets.load_iris() X = iris.data y = iris.target #Nos quedamos con las 2 primeras características. X = X[:, :2] #Aleatorizamos los datos #Voy a crear un vector de índices, aleatorizarlo y usarlo para indexar X e y. idx = np.arange(0, X.shape[0], dtype=np.int32) np.random.shuffle(idx) X = X[idx] y = y[idx] #Averiguamos que clases hay en el dataset. clases = np.unique(y) #Separamos los datos según su clase #Estoy usando una forma de crear una lista con un bucle que permite hacer #python, puede sustituirse por un bucle for con un append a la lista. X_class = [X[y==c_i] for c_i in clases] #Separamos en train y test. trainX_class = [Xi[:int(Xi.shape[0]*0.8)] for Xi in X_class] testX_class = [Xi[int(Xi.shape[0]*0.8):] for Xi in X_class] #Calculamos el nuevo tamaño. sizes_train = [tX.shape[0] for tX in trainX_class] sizes_test = [tX.shape[0] for tX in testX_class] #Concatenamos trainX = np.concatenate(trainX_class, axis=0) testX = np.concatenate(testX_class, axis=0) #Creamos trainY y testY trainY = np.zeros(trainX.shape[0], y.dtype) testY = np.zeros(testX.shape[0], y.dtype) pos_train = pos_test = 0 #El comando zip permite empaquetar listas de la misma longitud para recorrerlas #a la vez. for c_i, size_train, size_test in zip(clases, sizes_train, sizes_test): end_train = pos_train+size_train end_test = pos_test+size_test trainY[pos_train:end_train] = c_i testY[pos_test:end_test] = c_i pos_train = end_train pos_test = end_test #Eliminamos lo que sobra (no es necesario). del X del y del sizes_train del sizes_test del pos_train del pos_test print('Done!')
UTF-8
Python
false
false
2,210
py
34
Ejercicio_clase.py
20
0.711757
0.699955
0
78
27.217949
80
midas-research/calling-out-bluff
6,493,990,589,612
89e7d30ae24a8e6442a1a8cde97eaf1b35d782f0
5ffdef59c244f719c43ee24d23de7201bf42eab5
/Model2-EASE/src/nltk/emacs/pycomplete.py
09b40d85df12f92534ca1b6f87a4ecf98f483275
[ "AGPL-3.0-only", "LicenseRef-scancode-unknown-license-reference", "MIT", "Apache-2.0", "LicenseRef-scancode-proprietary-license", "CC-BY-NC-ND-3.0" ]
permissive
https://github.com/midas-research/calling-out-bluff
8db408efe1c211a8685bfc1b2553117770689639
4de3c56b64edeeef9968288679c4e5b261e9949c
refs/heads/models_test
2022-12-13T02:36:24.054646
2020-08-19T07:05:55
2020-08-19T07:05:55
280,080,456
10
9
MIT
false
2020-08-09T18:57:22
2020-07-16T07:07:19
2020-07-20T08:17:43
2020-08-09T18:57:21
565,670
0
2
0
null
false
false
""" Python dot expression completion using Pymacs. This almost certainly needs work, but if you add (require 'pycomplete) to your .xemacs/init.el file (untried w/ GNU Emacs so far) and have Pymacs installed, when you hit M-TAB it will try to complete the dot expression before point. For example, given this import at the top of the file: import time typing "time.cl" then hitting M-TAB should complete "time.clock". This is unlikely to be done the way Emacs completion ought to be done, but it's a start. Perhaps someone with more Emacs mojo can take this stuff and do it right. See pycomplete.el for the Emacs Lisp side of things. """ import sys import os.path try: x = set except NameError: from sets import Set as set else: del x def get_all_completions(s, imports=None): """Return contextual completion of s (string of >= zero chars). If given, imports is a list of import statements to be executed first. """ locald = {} if imports is not None: for stmt in imports: try: exec stmt in globals(), locald except TypeError: raise TypeError, "invalid type: %s" % stmt dots = s.split(".") if not s or len(dots) == 1: keys = set() keys.update(locald.keys()) keys.update(globals().keys()) import __builtin__ keys.update(dir(__builtin__)) keys = list(keys) keys.sort() if s: return [k for k in keys if k.startswith(s)] else: return keys sym = None for i in range(1, len(dots)): s = ".".join(dots[:i]) try: sym = eval(s, globals(), locald) except NameError: try: sym = __import__(s, globals(), locald, []) except ImportError: return [] if sym is not None: s = dots[-1] return [k for k in dir(sym) if k.startswith(s)] def pycomplete(s, imports=None): completions = get_all_completions(s, imports) dots = s.split(".") return os.path.commonprefix([k[len(dots[-1]):] for k in completions]) if __name__ == "__main__": print "<empty> ->", pycomplete("") print "sys.get ->", pycomplete("sys.get") print "sy ->", pycomplete("sy") print "sy (sys in context) ->", pycomplete("sy", imports=["import sys"]) print "foo. ->", pycomplete("foo.") print "Enc (email * imported) ->", print pycomplete("Enc", imports=["from email import *"]) print "E (email * imported) ->", print pycomplete("E", imports=["from email import *"]) print "Enc ->", pycomplete("Enc") print "E ->", pycomplete("E") # Local Variables : # pymacs-auto-reload : t # End :
UTF-8
Python
false
false
2,728
py
296
pycomplete.py
80
0.592742
0.591276
0
95
27.705263
76
Lawrr/mal-utilities
2,843,268,381,138
9445586e4da895770e64ebb4c7e5a884155e28b5
79dca79d559ddf6a8f22aa0dd2dfaea6bb897f33
/listsorter/migrations/0001_initial.py
978a59a429bd795d9da3459c79373dd4221a2998
[]
no_license
https://github.com/Lawrr/mal-utilities
88450b657699b14ae2a7d65432ffc0f0e5222543
1996d6f77666c860738b5467ba1169dd97270c48
refs/heads/master
2018-01-08T02:30:48.001924
2016-04-10T03:07:52
2016-04-10T03:07:52
50,173,373
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Anime', fields=[ ('title_id', models.IntegerField(serialize=False, primary_key=True)), ('name', models.TextField()), ('score', models.FloatField()), ], ), migrations.CreateModel( name='Manga', fields=[ ('title_id', models.IntegerField(serialize=False, primary_key=True)), ('name', models.TextField()), ('score', models.FloatField()), ], ), ]
UTF-8
Python
false
false
771
py
16
0001_initial.py
9
0.503243
0.501946
0
29
25.586207
85
lly123999/Transport-Mode-GPS-CNN
17,368,847,776,867
b0e107b17b145549ad841c33060feafe2ee47c4e
933dca697a09e0f6ee3f34d9cebe0194a8053ef1
/Instance_Creation.py
83ade972fb496b65fb46cf54deb2724cb810abc6
[ "MIT" ]
permissive
https://github.com/lly123999/Transport-Mode-GPS-CNN
0017630ebaa6c18fbf337f276f2050504f630422
8db5f83f593a004a7af280bfd6668cc6032e8338
refs/heads/master
2020-04-26T22:45:10.619674
2018-08-28T13:13:51
2018-08-28T13:13:51
173,882,113
1
0
MIT
true
2019-03-05T05:45:13
2019-03-05T05:45:12
2019-02-21T15:04:18
2018-08-28T13:13:51
41
0
0
0
null
false
null
import numpy as np import pickle from geopy.distance import vincenty import os import math A = math.degrees(-math.pi) # Change the current working directory to the location of 'Combined Trajectory_Label_Geolife' folder. filename = '../Combined Trajectory_Label_Geolife/Revised_Trajectory_Label_Array.pickle' with open('Revised_Trajectory_Label_Array.pickle', 'rb') as f: Trajectory_Label_Array = pickle.load(f) # Identify the Speed and Acceleration limit SpeedLimit = {0: 7, 1: 12, 2: 120./3.6, 3: 180./3.6, 4: 120/3.6} # Online sources for Acc: walk: 1.5 Train 1.15, bus. 1.25 (.2), bike: 2.6, train:1.5 AccLimit = {0: 3, 1: 3, 2: 2, 3: 10, 4: 3} # Choose based on figure visualization for JerkP:{0: 4, 1: 4, 2: 4, 3: 11, 4: 6} JerkLimitP = {0: 40, 1: 40, 2: 40, 3: 110, 4: 60} # Choose based on figure visualization for JerkN:{0: -4, 1: -4, 2: -2.5, 3: -11, 4: -4} JerkLimitN = {0: -40, 1: -40, 2: -200.5, 3: -110, 4: -40} # Total_Instance_InSequence checks the number of GPS points for each instance in all users Total_Instance_InSequence = [] # Total_Motion_Instance: each element is an array include the four channels for each instance Total_Motion_Instance = [] # Save the 4 channels for each user separately Total_RelativeDistance = [] Total_Speed = [] Total_Acceleration = [] Total_Jerk = [] Total_BearingRate = [] Total_Label = [] Total_InstanceNumber = [] Total_Outlier = [] Total_Descriptive_Stat = [] Total_Delta_Time = [] Total_Velocity_Change = [] # Count the number of times that NoOfOutlier happens NoOfOutlier = 0 for z in range(len(Trajectory_Label_Array)): Descriptive_Stat = [] Data = Trajectory_Label_Array[z] if len(Data) == 0: continue Shape = np.shape(Trajectory_Label_Array[z]) # InstanceNumber: Break a user's trajectory to instances. Count number of GPS points for each instance delta_time = [] tempSpeed = [] for i in range(len(Data) - 1): delta_time.append((Data[i+1, 2] - Data[i, 2]) * 24. * 3600) if delta_time[i] == 0: # Prevent to generate infinite speed. So use a very short time = 0.1 seconds. delta_time[i] = 0.1 A = (Data[i, 0], Data[i, 1]) B = (Data[i + 1, 0], Data[i + 1, 1]) tempSpeed.append(vincenty(A, B).meters/delta_time[i]) # Since there is no data for the last point, we assume the delta_time as the average time in the user guide # (i.e., 3 sec) and speed as tempSpeed equal to last time so far. delta_time.append(3) tempSpeed.append(tempSpeed[len(tempSpeed) - 1]) # InstanceNumber: indicate the length of each instance InstanceNumber = [] # Label: For each created instance, we need only one mode to be assigned to. # Remove the instance with less than 10 GPS points. Break the whole user's trajectory into trips with min_trip # Also break the instance with more than threshold GPS points into more instances Data_All_Instance = [] # Each of its element is a list that shows the data for each instance (lat, long, time) Label = [] min_trip_time = 20 * 60 # 20 minutes equal to 1200 seconds threshold = 200 # fixed of number of GPS points for each instance i = 0 while i <= (len(Data) - 1): No = 0 ModeType = Data[i, 3] Counter = 0 # index: save the instance indices when an instance is being created and concatenate all in the remove index = [] # First, we always have an instance with one GPS point. while i <= (len(Data) - 1) and Data[i, 3] == ModeType and Counter < threshold: if delta_time[i] <= min_trip_time: Counter += 1 index.append(i) i += 1 else: Counter += 1 index.append(i) i += 1 break if Counter >= 10: # Remove all instances that have less than 10 GPS points# I InstanceNumber.append(Counter) Data_For_Instance = [Data[i, 0:3] for i in index] Data_For_Instance = np.array(Data_For_Instance, dtype=float) Data_All_Instance.append(Data_For_Instance) Label.append(ModeType) if len(InstanceNumber) == 0: continue Label = [int(i) for i in Label] RelativeDistance = [[] for _ in range(len(InstanceNumber))] Speed = [[] for _ in range(len(InstanceNumber))] Acceleration = [[] for _ in range(len(InstanceNumber))] Jerk = [[] for _ in range(len(InstanceNumber))] Bearing = [[] for _ in range(len(InstanceNumber))] BearingRate = [[] for _ in range(len(InstanceNumber))] Delta_Time = [[] for _ in range(len(InstanceNumber))] Velocity_Change = [[] for _ in range(len(InstanceNumber))] User_outlier = [] # Create channels for every instance (k) of the current user for k in range(len(InstanceNumber)): Data = Data_All_Instance[k] # Temp_RD, Temp_SP are temporary relative distance and speed before checking for their length Temp_Speed = [] Temp_RD = [] outlier = [] for i in range(len(Data) - 1): A = (Data[i, 0], Data[i, 1]) B = (Data[i+1, 0], Data[i+1, 1]) Temp_RD.append(vincenty(A, B).meters) Delta_Time[k].append((Data[i + 1, 2] - Data[i, 2]) * 24. * 3600 + 1) # Add one second to prevent zero time S = Temp_RD[i] / Delta_Time[k][i] if S > SpeedLimit[Label[k]] or S < 0: outlier.append(i) Temp_Speed.append(S) y = math.sin(math.radians(Data[i+1, 1]) - math.radians(Data[i, 1])) * math.radians(math.cos(Data[i+1, 0])) x = math.radians(math.cos(Data[i, 0])) * math.radians(math.sin(Data[i+1, 0])) - \ math.radians(math.sin(Data[i, 0])) * math.radians(math.cos(Data[i+1, 0])) \ * math.radians(math.cos(Data[i+1, 1]) - math.radians(Data[i, 1])) # Convert radian from -pi to pi to [0, 360] degree b = (math.atan2(y, x) * 180. / math.pi + 360) % 360 Bearing[k].append(b) # End of operation of relative distance, speed, and bearing for one instance # Now remove all outliers (exceeding max speed) in the current instance Temp_Speed = [i for j, i in enumerate(Temp_Speed) if j not in outlier] if len(Temp_Speed) < 10: InstanceNumber[k] = 0 NoOfOutlier += 1 continue Speed[k] = Temp_Speed Speed[k].append(Speed[k][-1]) # Now remove all outlier instances, where their speed exceeds the max speed. # Then, remove their corresponding points from other channels. RelativeDistance[k] = Temp_RD RelativeDistance[k] = [i for j, i in enumerate(RelativeDistance[k]) if j not in outlier] RelativeDistance[k].append(RelativeDistance[k][-1]) Bearing[k] = [i for j, i in enumerate(Bearing[k]) if j not in outlier] Bearing[k].append(Bearing[k][-1]) Delta_Time[k] = [i for j, i in enumerate(Delta_Time[k]) if j not in outlier] InstanceNumber[k] = InstanceNumber[k] - len(outlier) # Now remove all outlier instances, where their acceleration exceeds the max acceleration. # Then, remove their corresponding points from other channels. Temp_ACC = [] outlier = [] for i in range(len(Speed[k]) - 1): DeltaSpeed = Speed[k][i+1] - Speed[k][i] ACC = DeltaSpeed/Delta_Time[k][i] if abs(ACC) > AccLimit[Label[k]]: outlier.append(i) Temp_ACC.append(ACC) Temp_ACC = [i for j, i in enumerate(Temp_ACC) if j not in outlier] if len(Temp_ACC) < 10: InstanceNumber[k] = 0 NoOfOutlier += 1 continue Acceleration[k] = Temp_ACC Acceleration[k].append(Acceleration[k][-1]) Speed[k] = [i for j, i in enumerate(Speed[k]) if j not in outlier] RelativeDistance[k] = [i for j, i in enumerate(RelativeDistance[k]) if j not in outlier] Bearing[k] = [i for j, i in enumerate(Bearing[k]) if j not in outlier] Delta_Time[k] = [i for j, i in enumerate(Delta_Time[k]) if j not in outlier] InstanceNumber[k] = InstanceNumber[k] - len(outlier) # Now remove all outlier instances, where their jerk exceeds the max speed. # Then, remove their corresponding points from other channels. Temp_J = [] outlier = [] for i in range(len(Acceleration[k]) - 1): Diff = Acceleration[k][i+1] - Acceleration[k][i] J = Diff/Delta_Time[k][i] Temp_J.append(J) Temp_J = [i for j, i in enumerate(Temp_J) if j not in outlier] if len(Temp_J) < 10: InstanceNumber[k] = 0 NoOfOutlier += 1 continue Jerk[k] = Temp_J Jerk[k].append(Jerk[k][-1]) Speed[k] = [i for j, i in enumerate(Speed[k]) if j not in outlier] Acceleration[k] = [i for j, i in enumerate(Acceleration[k]) if j not in outlier] RelativeDistance[k] = [i for j, i in enumerate(RelativeDistance[k]) if j not in outlier] Bearing[k] = [i for j, i in enumerate(Bearing[k]) if j not in outlier] Delta_Time[k] = [i for j, i in enumerate(Delta_Time[k]) if j not in outlier] InstanceNumber[k] = InstanceNumber[k] - len(outlier) # End of Jerk outlier detection. # Compute Breating Rate from Bearing, and Velocity change from Speed for i in range(len(Bearing[k]) - 1): Diff = abs(Bearing[k][i+1] - Bearing[k][i]) BearingRate[k].append(Diff) BearingRate[k].append(BearingRate[k][-1]) for i in range(len(Speed[k]) - 1): Diff = abs(Speed[k][i+1] - Speed[k][i]) if Speed[k][i] != 0: Velocity_Change[k].append(Diff/Speed[k][i]) else: Velocity_Change[k].append(1) Velocity_Change[k].append(Velocity_Change[k][-1]) # Now we apply the smoothing filter on each instance: def savitzky_golay(y, window_size, order, deriv=0, rate=1): r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techniques. Parameters ---------- y : array_like, shape (N,) the values of the time history of the signal. window_size : int the length of the window. Must be an odd integer number. order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. deriv: int the order of the derivative to compute (default = 0 means only smoothing) Returns ------- ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative). Notes ----- The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. Examples -------- t = np.linspace(-4, 4, 500) y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) ysg = savitzky_golay(y, window_size=31, order=4) import matplotlib.pyplot as plt plt.plot(t, y, label='Noisy signal') plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') plt.plot(t, ysg, 'r', label='Filtered signal') plt.legend() plt.show() References ---------- .. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Cambridge University Press ISBN-13: 9780521880688 """ import numpy as np from math import factorial try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = range(order + 1) half_window = (window_size - 1) // 2 # precompute coefficients b = np.mat([[k ** i for i in order_range] for k in range(-half_window, half_window + 1)]) m = np.linalg.pinv(b).A[deriv] * rate ** deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0]) lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve(m[::-1], y, mode='valid') # Smoothing process RelativeDistance[k] = savitzky_golay(np.array(RelativeDistance[k]), 9, 3) Speed[k] = savitzky_golay(np.array(Speed[k]), 9, 3) Acceleration[k] = savitzky_golay(np.array(Acceleration[k]), 9, 3) Jerk[k] = savitzky_golay(np.array(Jerk[k]), 9, 3) BearingRate[k] = savitzky_golay(np.array(BearingRate[k]), 9, 3) Total_RelativeDistance.append(RelativeDistance) Total_Speed.append(Speed) Total_Acceleration.append(Acceleration) Total_Jerk.append(Jerk) Total_BearingRate.append(BearingRate) Total_Delta_Time.append(Delta_Time) Total_Velocity_Change.append(Velocity_Change) Total_Label.append(Label) Total_InstanceNumber.append(InstanceNumber) Total_Outlier.append(User_outlier) Total_Instance_InSequence = Total_Instance_InSequence + InstanceNumber with open('Revised_InstanceCreation+NoJerkOutlier+Smoothing.pickle', 'wb') as f: pickle.dump([Total_RelativeDistance, Total_Speed, Total_Acceleration, Total_Jerk, Total_BearingRate, Total_Label, Total_InstanceNumber, Total_Instance_InSequence, Total_Delta_Time, Total_Velocity_Change], f)
UTF-8
Python
false
false
15,186
py
9
Instance_Creation.py
8
0.58172
0.560582
0
318
45.754717
119
mohamed-aziz/cryptopals
884,763,310,640
4c943d3116286bbe1e114b5da43a054fa5c60c7d
4b653379f3d9a3493004605df2ccf05df188c6c2
/set4/__init__.py
b63e1c589e435a53cb63efe4759c48c8bab0fe28
[]
no_license
https://github.com/mohamed-aziz/cryptopals
076755cc75afbe61ade9b76e98dc47b923ebf4ce
71a340c1645a1a3466391fb997982f9cfd7437bf
refs/heads/master
2021-05-07T08:56:18.964338
2019-12-07T20:09:59
2019-12-07T20:09:59
109,444,673
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from .ch25 import edit_ciphertext, break_edit_ciphertext from .ch26 import aes_ctr_break_bitflipping, aes_ctr_encryption_oracle from .ch27 import encryption_oracle, Not7BitAscii, decryption_oracle, break_cbc_oracle from .ch28 import sha1, sha1_mac
UTF-8
Python
false
false
248
py
39
__init__.py
37
0.814516
0.770161
0
4
61
86
muhammed-salman/dynamicdropdown-scrapper
13,322,988,555,203
d35c166b2702fd17d6121250316aaf9d4faaa8af
cd873e072e2418050205e637d92562411cebc12f
/scrapper2.py
b94769e60818930bdc7a69e2b77b4d4c0382fd28
[]
no_license
https://github.com/muhammed-salman/dynamicdropdown-scrapper
a5ca8abbcb082ac5ff256f062fde8f427c098360
ec3f29ce7880ea37ee5abd482342c64ad67bffdd
refs/heads/master
2020-03-25T00:34:52.436334
2018-08-02T18:13:30
2018-08-02T18:13:30
143,193,445
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import signal from selenium import webdriver from selenium.webdriver.support.ui import Select from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import StaleElementReferenceException def sigint(signal, frame): sys.exit(0) def make_waitfor_elem_updated_predicate(driver, waitfor_elem_xpath): elem = driver.find_element_by_xpath(waitfor_elem_xpath) def elem_updated(driver): try: elem.text except StaleElementReferenceException: return True except: pass return False return lambda driver: elem_updated(driver) class Scraper(object): def __init__(self): self.url = "https://panchayatelection.maharashtra.gov.in/MasterSearch.aspx" self.driver = webdriver.Firefox(executable_path = '/usr/local/bin/geckodriver') self.driver.set_window_size(1120, 550) def get_select(self, xpath): select_elem = self.driver.find_element_by_xpath(xpath) select = Select(select_elem) return select def select_option(self, xpath, value, waitfor_elem_xpath=None): if waitfor_elem_xpath: func = make_waitfor_elem_updated_predicate( self.driver, waitfor_elem_xpath ) select = self.get_select(xpath) select.select_by_value(value) if waitfor_elem_xpath: wait = WebDriverWait(self.driver, 10) wait.until(func) return self.get_select(xpath) def make_select_option_iterator(self, xpath, waitfor_elem_xpath): def next_option(xpath, waitfor_elem_xpath): select = self.get_select(xpath) select_option_values = [ '%s' % o.get_attribute('value') for o in select.options if o.text != '-Select-' ] for v in select_option_values: select = self.select_option(xpath, v, waitfor_elem_xpath) yield select.first_selected_option.text return lambda: next_option(xpath, waitfor_elem_xpath) def load_page(self): self.driver.get(self.url) def page_loaded(driver): path = '//select[@id="ContentPlaceHolder1_SearchControl1_DDLLocalBody"]' return driver.find_element_by_xpath(path) wait = WebDriverWait(self.driver, 10) wait.until(page_loaded) def scrape(self): states = self.make_select_option_iterator( '//select[@id="ContentPlaceHolder1_SearchControl1_DDLLocalBody"]', '//select[@id="ContentPlaceHolder1_SearchControl1_DDLDivision"]' ) districts = self.make_select_option_iterator( '//select[@id="ContentPlaceHolder1_SearchControl1_DDLDivision"]', '//select[@id="ContentPlaceHolder1_SearchControl1_DDLDistrict"]' ) projects = self.make_select_option_iterator( '//select[@id="ContentPlaceHolder1_SearchControl1_DDLDistrict"]', '//select[@id="ContentPlaceHolder1_SearchControl1_DDLMunicipalcorporation"]' ) self.load_page() for state in states(): print(state) for district in districts(): print(2*' ', district) for project in projects(): print(4*' ', project) if __name__ == '__main__': signal.signal(signal.SIGINT, sigint) scraper = Scraper() scraper.scrape()
UTF-8
Python
false
false
3,514
py
2
scrapper2.py
2
0.608993
0.601024
0
108
31.527778
88
jsphweid/fialkaFlicker
8,744,553,453,417
cd33330c9b138124fe08b132d8aa16da1ad4449f
9991a55b947ae9fe4011c3320e8963d94bcc34f3
/python/noise.py
c8d61521dd6c3b62e557e17cb2648a7bb98530f7
[ "MIT" ]
permissive
https://github.com/jsphweid/fialkaFlicker
dcb463a88c9019c41ee9a0d95ea6b2951dced51e
b8623120e945588d36dffb334d7bf74b1e4fbd38
refs/heads/master
2020-07-02T09:51:12.637397
2018-12-11T23:53:25
2018-12-11T23:53:25
74,312,488
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from cv2 import VideoWriter, VideoWriter_fourcc width = 1280 height = 720 FPS = 24 seconds = 10 # self._cap = VideoCapture(0) # self._out = VideoWriter(self._name, self._fourcc, 20.0, (640, 480)) def make_colored_image(color): img = np.zeros((height, width, 3), np.uint8) img[:] = color return img # B G R blue = make_colored_image((255, 0, 0)) red = make_colored_image((0, 0, 255)) frames = [] for i in range(60): img = blue if i % 2 == 0 else red frames.append(img) fourcc = VideoWriter_fourcc(*'MP4V') video = VideoWriter('./noise.mp4', fourcc, float(FPS), (width, height)) # for _ in range(FPS*seconds): # frame = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) # frame = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) # frame[:] = (255, 0, 0) # video.write(frame) for frame in frames: video.write(frame) video.release()
UTF-8
Python
false
false
908
py
26
noise.py
10
0.647577
0.584802
0
40
21.7
71
raspibo/Livello1
5,471,788,343,352
e806190243a1a0c43a6ff71b1e5c8062403e8b3e
5b01e4e8133012333a62ebb0e1a18490d62ed819
/var/www/cgi-bin/setsVals2csv_search_date.py
18cb72719955836bae5bc7aec13eaa02bcab5d96
[ "MIT" ]
permissive
https://github.com/raspibo/Livello1
cf33c68c3b8d5496b78d562a57d84ab2745656a5
9f1ba10f2496eb0d4c40685336cc7b8768f4a767
refs/heads/master
2022-03-16T01:52:46.588937
2022-02-27T14:48:12
2022-02-27T14:48:12
56,574,092
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 """ The MIT License (MIT) Copyright (c) 2018 davide Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ setsVals2csv_search_date.py Prende i dati dalla chiave Redis (sets:*:Valori) passata come argomento all'avvio, cerca fra i parametri si start e stop (data minore, data maggiore), elabora e ricrea il file .csv """ import os,time,json,redis,sys import mjl, mhl, flt # Non servono tutte, ormai le metto d'abitudine ;) DirBase="/var/www" # Meglio specificare il percorso assoluto ConfigFile=DirBase+"/conf/config.json" # Apro il database Redis con l'istruzione della mia libreria MyDB = flt.OpenDBFile(ConfigFile) # Controllo se piu` di un argomento o se richiesto l'help if len(sys.argv) != 4 or sys.argv[1] == "-h": print ("\n\tUso: %s <RedisKey> <Start> <Stop>" % sys.argv[0]) print (""" Questo programma prende una chiave Redis di gruppo (sets:*), elabora, e crea il rispettivo file .csv """) exit() if len(sys.argv) == 4 and MyDB.exists(sys.argv[1]): # Setto le variabili per comodita` e chiarezza di programma KeyVal=sys.argv[1] Key=KeyVal[:-7] # Toglie ":Valori" KeySort=flt.DecodeList(MyDB.sort(Key,alpha=1)) # Devo mantenerla sempre ordinata, altrimenti i dati non coincidono, e` una stringa, quindi "alpha=1" print ("Input sets: \t\t", KeyVal) print ("Key: \t\t\t", Key) print ("Key contents: \t\t", KeySort) # Ho usato il secondo e terzo valore (sets:NOME:ID), perche potrebbero esserci dei duplicati fra allarmi e grafici e .. altro (se ci sara`) FileName=DirBase+"/"+Key.split(":")[1]+Key.split(":")[2]+".csv" if os.path.isfile(FileName): print ("Deleting: \t\t\"%s\"" % FileName) os.remove(FileName) # Elimino il file se esiste # Creazione dell'intestazione: DATA, Descrizione1, Descrizione2, .., DescrizioneN IntestazioneCSV="Data" for i in range (len(KeySort)): Descrizione="none" # Metto qualcosa nel caso mancasse la descrizione if MyDB.hexists(KeySort[i],"Descrizione"): Descrizione=flt.Decode(MyDB.hget(KeySort[i],"Descrizione")) IntestazioneCSV=IntestazioneCSV+","+Descrizione FileTemp = open(FileName,"w") FileTemp.write(IntestazioneCSV+"\n") # Scrittura intestazione # Per tutta la lunghezza della lista "Valori", li leggo e li scrivo nel file for i in range (MyDB.llen(KeyVal)): ValoreCSV=flt.Decode(MyDB.lindex(KeyVal,i)) if sys.argv[2] < ValoreCSV < sys.argv[3] : FileTemp.write(ValoreCSV+"\n") FileTemp.close() print ("[re]Generated file: \t\"{}\"".format(FileName)) elif not MyDB.exists(sys.argv[1]): print ("Chiave inesistente", sys.argv[1])
UTF-8
Python
false
false
3,780
py
31
setsVals2csv_search_date.py
28
0.689418
0.683333
0
80
46.25
153
tanay0nSpark/evolveML
9,543,417,364,179
3643acd350596222294319d721e09464afa0da65
08c251243a166da41cf91f198bc744ee25f96352
/kaggle/facebookrecruit/facebookAnalysis.py
bf797b7df317dc34198dc58ddc047ca7cad48954
[]
no_license
https://github.com/tanay0nSpark/evolveML
afe22e09ecf2668a42c68e3947c72c81f48a30eb
d7b7f0e13f4d1ba95148af94461cb180d8a10043
refs/heads/master
2021-06-01T14:39:16.116459
2016-06-19T18:16:14
2016-06-19T18:16:14
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import graphlab import threading __author__ = 'abhishekchoudhary' graphlab.canvas.set_target('browser') sf = graphlab.SFrame.read_csv('/Users/abhishekchoudhary/Work/python/facebook/trainingset.csv', header=True) sf.show()
UTF-8
Python
false
false
223
py
66
facebookAnalysis.py
50
0.784753
0.784753
0
7
30.857143
107
bhamburg/CIS_626
17,609,365,941,752
f381e3f9529c6ab52f9640ab5b3dcc2be251dc03
d31b951902843af0a719fe291c70ec3a5741a96b
/Week2/exercise5_14.py
22f5aca95c65db22530e6cbab51e8049a750f916
[]
no_license
https://github.com/bhamburg/CIS_626
ff3298dabb46fc13bb0fbad831c8b3a6f2644208
b4d84a664a2228d07036c3d119fa94cd894bb241
refs/heads/master
2020-03-29T20:07:01.143791
2014-03-06T01:36:29
2014-03-06T01:36:29
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Find the smallest n such that n^2 > 12,000 # Author: Brian Hamburg #define variables n = 0 result = 0 # loop! while result <= 12000: result = n ** 2 n += 1 # print result print("n = " + str(n - 1))
UTF-8
Python
false
false
225
py
29
exercise5_14.py
29
0.555556
0.484444
0
14
14.071429
44
snigdha-rao/Competitive-Programming
15,264,313,796,415
867527d2376c8672383ad42141db24dd4744f9e5
5907605a52a770783d1bdbe836c93d2bbf8649a5
/week 3/Day-5/urlshortner.py
196e41fef9c960fc3cdda8354765d4f2140fc4a7
[]
no_license
https://github.com/snigdha-rao/Competitive-Programming
23e2bd99712029f526d11f6b65a95e01d190a895
4dc4ea8c83626b913ac17d61736b04b58b67ed44
refs/heads/master
2020-03-21T19:47:04.928513
2018-07-21T09:28:17
2018-07-21T09:28:17
138,969,704
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def shortlink(request): if request['method'] is not 'POST': return Response(501) # HTTP 501 NOT IMPLEMENTED destination = request['data']['destination'] if 'slug' in request['data']: # If they included a slug, use that slug = request['data']['slug'] else: # Else, make them one slug = generate_random_slug() DB.insert({'slug': slug, 'destination': destination}) response_body = { 'slug': slug } return Response(200, json.dumps(response_body)) # HTTP 200 OK def redirect(request): destination = DB.get({'slug': request['path']})['destination'] return Response(302, destination) def generate_random_slug(): alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" num_chars = 7 return ''.join([random.choice(alphabet) for _ in xrange(num_chars)])
UTF-8
Python
false
false
882
py
7
urlshortner.py
7
0.636054
0.606576
0
25
33.36
79
stepik/SimplePyScripts
6,141,803,280,997
0f8938f44b39e90051e5f915c00a92ca5dd0c323
8997a0bf1e3b6efe5dd9d5f307e1459f15501f5a
/telegram_bot_examples/reminder/main.py
843b4abdd1cd53fc4203ee3835f2e37f62b36294
[ "CC-BY-4.0" ]
permissive
https://github.com/stepik/SimplePyScripts
01092eb1b2c1c33756427abb2debbd0c0abf533f
3259d88cb58b650549080d6f63b15910ae7e4779
refs/heads/master
2023-05-15T17:35:55.743164
2021-06-11T22:59:07
2021-06-11T22:59:07
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import datetime as DT from logging import Logger import os from threading import Thread import time import sys import re # pip install python-telegram-bot from telegram import Update, Bot from telegram.ext import Updater, MessageHandler, CommandHandler, Filters, CallbackContext from telegram.ext.dispatcher import run_async sys.path.append('..') import config from common import get_logger, log_func, reply_error from db import Reminder, User, Chat from utils import parse_command, get_pretty_datetime def do_checking_reminders(log: Logger, bot: Bot): while True: try: expected_time = DT.datetime.now() - DT.timedelta(seconds=1) query = ( Reminder .select() .where( (Reminder.is_sent == False) & (Reminder.finish_time <= expected_time) ) .order_by(Reminder.finish_time) ) for reminder in query: log.info('Send reminder: %s', reminder) bot.send_message( chat_id=reminder.chat_id, text='⌛', reply_to_message_id=reminder.message_id ) reminder.is_sent = True reminder.save() except: log.exception('') finally: time.sleep(1) log = get_logger(__file__) @run_async @log_func(log) def on_start(update: Update, context: CallbackContext): update.message.reply_text( 'Введите что-нибудь, например: "напомни через 1 час".\n' 'Для получения списка напоминаний, напишите: "список"' ) @run_async @log_func(log) def on_request(update: Update, context: CallbackContext): message = update.message command = message.text log.debug(f'Command: {command!r}') finish_time = parse_command(command) if not finish_time: message.reply_text('Не получилось разобрать команду!') return Reminder.create( message_id=message.message_id, command=command, finish_time=finish_time, user=User.get_from(update.effective_user), chat=Chat.get_from(update.effective_chat), ) message.reply_text(f'Напоминание установлено на {get_pretty_datetime(finish_time)}') @run_async @log_func(log) def on_get_reminders(update: Update, context: CallbackContext): message = update.message chat = update.effective_chat user = update.effective_user query = ( Reminder .select() .where( (Reminder.chat_id == chat.id) & (Reminder.user_id == user.id) & (Reminder.is_sent == False) ) .order_by(Reminder.finish_time) ) number = query.count() if number: text = f'Напоминаний ({number}):\n' for x in query: text += ' ' + get_pretty_datetime(x.finish_time) + '\n' else: text = 'Напоминаний нет' message.reply_text(text) def on_error(update: Update, context: CallbackContext): reply_error(log, update, context) def main(): cpu_count = os.cpu_count() workers = cpu_count log.debug('System: CPU_COUNT=%s, WORKERS=%s', cpu_count, workers) log.debug('Start') # Create the EventHandler and pass it your bot's token. updater = Updater( config.TOKEN, workers=workers, use_context=True ) # TODO: When the bot crashes, it is possible to create duplicate thread thread = Thread(target=do_checking_reminders, args=[log, updater.bot]) thread.start() # Get the dispatcher to register handlers dp = updater.dispatcher dp.add_handler(CommandHandler('start', on_start)) dp.add_handler(MessageHandler(Filters.regex('(?i)^список$'), on_get_reminders)) dp.add_handler(MessageHandler(Filters.text, on_request)) # Handle all errors dp.add_error_handler(on_error) # Start the Bot updater.start_polling() # Run the bot until the you presses Ctrl-C or the process receives SIGINT, # SIGTERM or SIGABRT. This should be used most of the time, since # start_polling() is non-blocking and will stop the bot gracefully. updater.idle() log.debug('Finish') if __name__ == '__main__': while True: try: main() except: log.exception('') timeout = 15 log.info(f'Restarting the bot after {timeout} seconds') time.sleep(timeout)
UTF-8
Python
false
false
4,717
py
276
main.py
269
0.606813
0.605275
0
178
24.561798
90
steindevos/project-final-django
13,383,118,116,613
27a3802877ea32c442cb623fd1905e011aa45cc8
e4fbb8940e145924ebb1f9b3412ff278c6c85968
/checkout/migrations/0005_auto_20180829_1251.py
efe73404bd62af84d48fdcb66df2d34d8df23a66
[]
no_license
https://github.com/steindevos/project-final-django
72ecf8df58606e45b4251a949c9b7a572d263851
9b2f93b28284e10b654fc9cc07c49213b040921f
refs/heads/master
2018-11-14T11:55:20.390707
2018-09-18T18:52:47
2018-09-18T18:52:47
145,727,075
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.0.6 on 2018-08-29 12:51 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('checkout', '0004_auto_20180829_0731'), ] operations = [ migrations.RemoveField( model_name='order', name='country', ), migrations.RemoveField( model_name='order', name='county', ), migrations.RemoveField( model_name='order', name='full_name', ), migrations.RemoveField( model_name='order', name='phone_number', ), migrations.RemoveField( model_name='order', name='postcode', ), migrations.RemoveField( model_name='order', name='street_address_1', ), migrations.RemoveField( model_name='order', name='street_address_2', ), migrations.RemoveField( model_name='order', name='town_or_city', ), ]
UTF-8
Python
false
false
1,080
py
46
0005_auto_20180829_1251.py
31
0.49537
0.464815
0
45
23
48
kevinjcliao/clubslist
9,251,359,566,914
404921c813279170752734a810c6d02a3c4663d3
2357b6d564b9c6f0ed02d9140f01ff85f5f65037
/clubs/views.py
f5f286d2b69575b209425d528ecbfc3fe5a1da49
[]
no_license
https://github.com/kevinjcliao/clubslist
db5e3d4a0b66a3ac5f68571d4330d673d3512cab
0188b192105062cd32683cc7c9d73477f844cec0
refs/heads/master
2021-01-10T08:22:53.948566
2016-03-10T18:16:04
2016-03-10T18:16:04
52,030,086
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render from django.http import HttpResponse from django.template import loader from .models import Club def club_detail(request, club_name, club_id): try: club = Club.objects.get(pk=club_id) except Club.DoesNotExist: raise Http404("Club does not exist.") return HttpResponse("You're looking at club %s" % club.description) def hello_world(request): clubs_categories = Club.CATEGORY_CHOICES categorized_club_list = [] clubs_size = 0 there_are_clubs = False for x in range (0, len(clubs_categories)): print "hello world" category_id = clubs_categories[x][0] clubs_in_category = Club.objects.all().filter(category=category_id).order_by('name') categorized_club_list.append([clubs_categories[x][1], clubs_in_category]) clubs_size += len(clubs_in_category) print categorized_club_list there_are_clubs = clubs_size > 0 template = loader.get_template('clubs/index.html') context = { 'clubs_list': categorized_club_list, 'clubs_size': clubs_size, 'there_are_clubs': there_are_clubs } return HttpResponse(template.render(context, request))
UTF-8
Python
false
false
1,202
py
9
views.py
7
0.673877
0.667221
0
36
32.388889
92
nikitastasik/test
4,372,276,751,152
e0db11da9cf9ef606b25cd83800eb0de45b2784a
cbf4bdff3f9522e7aa4a8f95c0cdc6675e8cc531
/NOD.py
f3c2a07bed8d6f8f31708fe084a6344a459042e5
[]
no_license
https://github.com/nikitastasik/test
a4fa8b71262ce988b2d30e0e3001cfce1b4b27b3
7bdbd7d1d5232ff2f360e0cc69649bb52d4c5075
refs/heads/main
2023-07-13T02:16:50.083801
2021-08-25T09:48:40
2021-08-25T09:48:40
399,754,032
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# def fib(): # n, m = int(input()), int(input()) # if n == 1: # return 1 # for i in range(2, n+1): # a, b = 0, 1 # a, b = b, (a+b) # if i == m: # f_m = b # f_n = b # # if f_n // f_m == 1: # return 1 # elif f_n // f_m > 1: # ost = f_n // f_m # return f_n - (ost * f_m) # print(fib()) import random def test(gcd, n_inter=100): for i in range(n_inter): c = random.randint(0, 1024) a = c * random.randint(0, 128) b = c * random.randint(0, 128) assert gcd(a, a) == gcd(a, 0) == a assert gcd(b, b) == gcd(b, 0) == b assert gcd(a, 1) == gcd(b, 1) == 1 d = gcd(a, b) assert a % d == b % d == 0 def gcd1(a, b): assert a >= 0 and b >= 0 for d in reversed(range(1, max(1, b) + 1)): if d == 0 % d == b % d == 0: return d def gcd2(a, b): while a and b: if a >= b: a %= b else: b %= a return max(a, b) def gcd3(a, b): assert a >= 0 and b >= 0 if a == 0 or b == 0: return max(a, b) elif a >= b: return gcd3(a % b, b) else: return gcd3(a, b % a) def gcd4(a, b): assert a >= 0 and b >= 0 if a == 0 or b == 0: return max(a, b) print(f'a = {a}, b = {b}') return gcd4(b % a, a) print(gcd4(24, 9))
UTF-8
Python
false
false
1,433
py
22
NOD.py
22
0.38381
0.344033
0
75
18.12
47
phreak1990/dom_xss
12,000,138,636,747
f7c126479b8380e9cdd31984740add10552e756f
de6ca0daa302569f464b0a7897f15c8b8516d32b
/lib/file_functions.py
4efb79ae8d9f12005c7a04d821bd57b5b68d6f80
[]
no_license
https://github.com/phreak1990/dom_xss
93f58fe277cff790e92e0a0164ab0adefe7a9709
86980c15832c51ad8ce15616db27d46f5cf9c57b
refs/heads/master
2021-01-10T06:17:45.079680
2015-11-17T06:28:22
2015-11-17T06:28:22
46,326,544
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python from os import path from sys import argv import sys class FileFunctions: def __init__(self): pass #################################################################################### def readFile(self, file_path): if path.exists (file_path): fo = open(file_path,"r") data = fo.read() fo.close() return data else: return None #################################################################################### def writeFile(self, data, file_path): fo = open(file_path,"w") try: fo.write(data) except UnicodeEncodeError: fo.write(data.encode('utf-8')) fo.close() #################################################################################### def appendFile(self,data, file_path): if path.exists (file_path): fo = open(file_path,"a+") fo.write(data) fo.close() #################################################################################### def currentPath(self): pathname = path.dirname(argv[0]) full_path = path.abspath(pathname) return full_path #################################################################################### def writeArrayToFile(self, array, file_path): if not path.exists (file_path): fo = open(file_path ,"w") save_stdout = sys.stdout sys.stdout = fo for line in array: print line fo.close() sys.stdout = save_stdout #################################################################################### def writeArrayToFileReplaceOld(self, array, file_path): fo = open(file_path ,"w") save_stdout = sys.stdout sys.stdout = fo for line in array: print line fo.close() sys.stdout = save_stdout #################################################################################### def appendArrayToFile(self, array, file_path): fo = open(file_path ,"a+") save_stdout = sys.stdout sys.stdout = fo for line in array: print line fo.close() sys.stdout= save_stdout #################################################################################### def readFileIntoArray(self, file_path): array = [] if path.exists (file_path): with open(file_path) as fo: for line in fo: line = line.replace("\n","") array.append(line) fo.close() return array else: return None #################################################################################### def appendFileWithHashes(self,data, file_path): if path.exists (file_path): fo = open(file_path,"a+") save_stdout = sys.stdout sys.stdout = fo print "" print "############################################################################" print data sys.stdout = save_stdout fo.close() ####################################################################################
UTF-8
Python
false
false
3,320
py
9
file_functions.py
9
0.35753
0.356928
0
99
32.535354
96
ianramzy/old-code
9,448,928,091,223
9e09e23310ae3036609b4580da64d3479a2ee6d0
610069be6dff8a673c1352771477197c3a2a998e
/Snakes/snakes.py
4a07fd2f78127bd0611e9743ba8faf99fc2955db
[ "MIT" ]
permissive
https://github.com/ianramzy/old-code
e4d638d8880e6ab379c3c9dbbe8bda2e732ec5ba
6d3ca52de5c6b80a1f0678ca73b78a3024e95f05
refs/heads/master
2020-06-11T15:23:20.829779
2019-06-30T14:00:28
2019-06-30T14:00:28
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pygame, sys, random # pygame 1.9.4 pygame.init() size = width, height = 1320, 720 screen = pygame.display.set_mode(size) # pygame.mixer.pre_init() # white = [0, 0, 0] white = [255, 255, 255] orange = [255, 140, 0] red = [255, 0, 0] gray = [35, 35, 35] # white = [0, 0, 255] font = pygame.font.SysFont("BankGothic", 45) font2 = pygame.font.SysFont("BankGothic", 80) font3 = pygame.font.SysFont("BankGothic", 222) font4 = pygame.font.SysFont("BankGothic", 15) font5 = pygame.font.SysFont("BankGothic", 95) font6 = pygame.font.SysFont("BankGothic", 65) # snakeyum = pygame.mixer.Sound('snakeyum.wav') # alarm = pygame.mixer.Sound('alarm.wav') # ticktick = pygame.mixer.Sound('ticktock.wav') backround = pygame.image.load("snakeback.jpg") timebon = pygame.image.load("clock.png") # pygame.mixer.music.load('tronmusic.wav') def gamep1(): isticking = False # pygame.mixer.music.play(-1) # starting speed is going to the right: speed = [0, 30] # head is where the new snake segment will be created: head = [90, 90] # snake is a list of Rectangles, representing segments of the snake: snake = [pygame.Rect(head, [30, 30])] # starting length is 5: length = 5 # set random position for food: food = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] food2 = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] eleven = 11 counter = eleven wt = 0 score = 0 backrect = pygame.Rect(0, 0, 0, 0) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_UP: if speed[1] != 30: speed = [0, -30] elif event.key == pygame.K_DOWN: if speed[1] != -30: speed = [0, 30] if event.key == pygame.K_LEFT: if speed[0] != 30: speed = [-30, 0] elif event.key == pygame.K_RIGHT: if speed[0] != -30: speed = [30, 0] # move the head: head[0] = head[0] + speed[0] head[1] = head[1] + speed[1] # check for collision with self: for segment in snake: if segment == pygame.Rect(head, [30, 30]): losequit(score) # check for collision with walls: if head[0] >= width or head[0] < 0 or head[1] >= height or head[1] < 0: losequit(score) # check for collision with food: if head == food: length = length + 1 food = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] wt = wt - 3 eleven = eleven - .5 counter = eleven score = score + 1 # snakeyum.play() # check for collision with time bonus: if head == food2: food2 = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] eleven = eleven + 1 counter = eleven # snakeyum.play() # add new segment to snake at head: snake.append(pygame.Rect(head, [30, 30])) # remove tail segments if necessary: while len(snake) > length: snake.pop(0) # draw your game elements here: screen.blit(backround, backrect) # draw all the snake segments: for segment in snake: pygame.draw.rect(screen, red, segment, 0) ## timer counter = counter - 0.1 ## render title renderedText = font5.render("SNAKE TRIALS", 1, white) screen.blit(renderedText, (300, 10)) ## render timer renderedText = font.render("Time Remaining: " + str(int(counter)), 1, white) screen.blit(renderedText, (5, height - 155)) ## render score renderedText = font.render("Score: " + str(int(score)), 1, white) screen.blit(renderedText, (5, height - 195)) if counter <= 4: if not isticking: # ticktick.play(0) isticking = True # running out of time: if counter <= 0: losequit(score) # draw the food: pygame.draw.rect(screen, orange, pygame.Rect(food, [30, 30]), 0) screen.blit(timebon, food2) pygame.display.flip() pygame.time.wait(wt) def gamep2(): isticking = False # backround = pygame.image.load("snakeback.jpg") # pygame.mixer.music.load('tronmusic.wav') # pygame.mixer.music.play(-1) # starting speed is going to the right: speed = [0, 30] speed2 = [30, 0] # head is where the new snake segment will be created: head = [90, 90] head2 = [270, 270] # snake is a list of Rectangles, representing segments of the snake: snake = [pygame.Rect(head, [30, 30])] snake2 = [pygame.Rect(head2, [30, 30])] # starting length is 5: length = 5 length2 = 5 # set random position for food: food = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] food2 = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] eleven = 11 counter = eleven wt = 100 score = 0 backrect = pygame.Rect(0, 0, 0, 0) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_w: if speed[1] != 30: speed = [0, -30] elif event.key == pygame.K_s: if speed[1] != -30: speed = [0, 30] if event.key == pygame.K_a: if speed[0] != 30: speed = [-30, 0] elif event.key == pygame.K_d: if speed[0] != -30: speed = [30, 0] # snake2 controls if event.key == pygame.K_UP: if speed2[1] != 30: speed2 = [0, -30] elif event.key == pygame.K_DOWN: if speed2[1] != -30: speed2 = [0, 30] if event.key == pygame.K_LEFT: if speed2[0] != 30: speed2 = [-30, 0] elif event.key == pygame.K_RIGHT: if speed2[0] != -30: speed2 = [30, 0] # move the head: head[0] = head[0] + speed[0] head[1] = head[1] + speed[1] head2[0] = head2[0] + speed2[0] head2[1] = head2[1] + speed2[1] # check for collision with self: for segment in snake: if segment == pygame.Rect(head, [30, 30]): losequit(score) for segment in snake2: if segment == pygame.Rect(head2, [30, 30]): losequit(score) for segment in snake: if segment == pygame.Rect(head2, [30, 30]): losequit(score) for segment in snake2: if segment == pygame.Rect(head, [30, 30]): losequit(score) # check for collision with walls: if head[0] >= width or head[0] < 0 or head[1] >= height or head[1] < 0: losequit(score) if head2[0] >= width or head2[0] < 0 or head2[1] >= height or head2[1] < 0: losequit(score) # check for collision with food: if head == food: length = length + 1 food = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] wt = wt - 3 eleven = eleven - .5 counter = eleven score = score + 1 # snakeyum.play() if head2 == food: length2 = length2 + 1 food = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] wt = wt - 3 eleven = eleven - .5 counter = eleven score = score + 1 # snakeyum.play() # check for collision with time bonus: if head == food2: food2 = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] eleven = eleven + .5 counter = eleven # snakeyum.play() if head2 == food2: food2 = [30 * random.randint(0, width / 30 - 1), 30 * random.randint(0, height / 30 - 1)] eleven = eleven + .5 counter = eleven # snakeyum.play() # add new segment to snake at head: snake.append(pygame.Rect(head, [30, 30])) snake2.append(pygame.Rect(head2, [30, 30])) # remove tail segments if necessary: while len(snake) > length: snake.pop(0) while len(snake2) > length: snake2.pop(0) # draw your game elements here: screen.blit(backround, backrect) # draw all the snake segments: for segment in snake: pygame.draw.rect(screen, white, segment, 0) for segment in snake2: pygame.draw.rect(screen, red, segment, 0) ## timer counter = counter - 0.1 if counter <= 4: if not isticking: # ticktick.play(0) isticking = True ## render title renderedText = font5.render("P2 SNAKE TRIALS ", 1, white) screen.blit(renderedText, (233, 5)) ## render timer renderedText = font.render("Time Remaining: " + str(int(counter)), 1, white) screen.blit(renderedText, (5, height - 55)) ## render score renderedText = font.render("Score: " + str(int(score)), 1, white) screen.blit(renderedText, (5, height - 95)) # running out of time: if counter <= 0: losequit(score) # draw the food: pygame.draw.rect(screen, orange, pygame.Rect(food, [30, 30]), 0) screen.blit(timebon, food2) pygame.display.flip() pygame.time.wait(wt) def startscreen(): backround = pygame.image.load("snakeback.jpg") backrect = pygame.Rect(0, 0, 0, 0) screen.blit(backround, backrect) renderedText = font5.render('Welcome to Snake Trials', 1, white) screen.blit(renderedText, (11, 1)) renderedText = font6.render("Press Space to Start", 1, white) screen.blit(renderedText, (11, height - 195)) renderedText = font6.render("Press '2' for Two Player Co-Op", 1, white) screen.blit(renderedText, (11, height - 95)) pygame.display.flip() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: gamep1() if event.key == pygame.K_2: gamep2() def prestart(): time = 0 while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: startscreen() if time == 10: white = [0, 0, 0] renderedText = font4.render( 'Traceback most recent call last:File C:Users Wood Word is2o snakes snakes.py, line 307, in <module>', 0, white) screen.blit(renderedText, (0, 0)) renderedText = font4.render('Press space to initiate the new world order and virus.exe', 0, white) screen.blit(renderedText, (0, 15)) if time == 20: white = [255, 255, 255] renderedText = font4.render( 'Traceback most recent call last:File C:Users Wood Word is2o snakes snakes.py, line 307, in <module>', 0, white) screen.blit(renderedText, (0, 0)) renderedText = font4.render('Press space to initiate the new world order and virus.exe', 0, white) screen.blit(renderedText, (0, 15)) time = 0 time = time + 1 pygame.display.flip() pygame.time.wait(100) def losequit(score): # pygame.mixer.music.load('tronmusic.wav') # pygame.mixer.music.stop # alarm.play() fixme = 69420 backround = pygame.image.load("snakeback.jpg") backrect = pygame.Rect(0, 0, 0, 0) screen.blit(backround, backrect) renderedText = font3.render('You Lose!', 1, white) screen.blit(renderedText, (85, 100)) renderedText = font.render("You scored: " + str(int(score)), 1, white) screen.blit(renderedText, (4, height - 95)) renderedText = font.render("Press Space to Play Single Player Again", 1, white) screen.blit(renderedText, (4, height - 195)) renderedText = font.render("Press '2' to Play Two Player", 1, white) screen.blit(renderedText, (4, height - 155)) pygame.display.flip() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: gamep1() if event.key == pygame.K_2: gamep2() prestart()
UTF-8
Python
false
false
14,107
py
80
snakes.py
60
0.503934
0.460481
0
405
32.832099
118
tjafs/ESP32_Node
824,633,725,211
afca7627e94c9c16011e9f9293aaaca6b90ea18b
d540a8d7e345a22e6ba299f94ec0a1c31ad16759
/lora.py
ec2df8418b2131bc704bfcab61eadfdbfddc3f9a
[]
no_license
https://github.com/tjafs/ESP32_Node
b7703252da6e709fcb780d7903d7f64f64ac63ae
1e146fe9e30b1ccdac8f5aa0d04d05b2aa03ae24
refs/heads/master
2020-03-08T20:13:19.559011
2018-04-09T18:42:43
2018-04-09T18:42:43
128,376,535
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#Denne filen inneholder metoder/funksjoner tilknyttet lora #Funksjon for å skrive data til lora lora_write = lambda data: print(data+"\r\n") #Funksjon for å lese data fra lora uten \r\n bak og foran def lora_read(): inndata = str(lora.readln()) utdata = inndata.replace("\r\n", "") return utdata
UTF-8
Python
false
false
315
py
8
lora.py
6
0.696486
0.696486
0
12
25.083333
59
CognitiveComputationLab/cogmods
7,533,372,652,897
42365aa6e3727db8e8bd24dd580f13a76fe8400d
77c471124fb4ac4a7fe0a19cf47b666ed0eccb79
/wason_analyse/quantitative_optimal_data_selection.py
9809b4ebf4d1a355a028c5281b8f2ebd633f50e3
[ "MIT" ]
permissive
https://github.com/CognitiveComputationLab/cogmods
f8286d7aa7917a87fd4df27d0c6db666aec88c92
ac73fb60387aad37d3b3fb823f9b2c205c6cb458
refs/heads/master
2023-07-26T10:15:48.647877
2023-07-14T08:38:23
2023-07-14T08:38:23
178,379,369
1
12
MIT
false
2021-09-27T10:30:47
2019-03-29T09:55:02
2021-08-23T14:18:06
2021-09-27T10:30:46
11,633
0
11
2
Python
false
false
import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd from matplotlib import cm from scipy.optimize import minimize def qods(x=0.15, y=0.16, r=0.5, eps=0.1): # x = 0.15 # y = 0.26 # r = 0.5 not_x = 1 - x not_y = 1 - y not_r = 1 - r # eps = 0.17 """ Turn q card """ p_q_r = x * (1 - eps) * y * r p_q_not_r = x * not_r p_not_q_r = x * eps * not_y * r p_not_q_not_r = x * not_r not_p_q_r = 1 - x * (1 - eps) * y * r not_p_q_not_r = not_x * not_r not_p_not_q_r = 1 - x * eps * not_y * r not_p_not_q_not_r = not_x * not_r """ Turn p card """ q_p_r = (1 - eps) * x * r q_p_not_r = y * not_r q_not_p_r = y * not_x * r q_not_p_not_r = y * not_r not_q_p_r = eps * x * r not_q_p_not_r = not_y * not_r not_q_not_p_r = not_y * not_x * r not_q_not_p_not_r = not_y * not_r """ Turn p and not p card Probabilities for both hypothesis """ p_q = p_q_r + p_q_not_r not_p_q = not_p_q_r + not_p_q_not_r p_not_q = p_not_q_r + p_not_q_not_r not_p_not_q = not_p_not_q_r + not_p_not_q_not_r """ Turn q and not q card Probabilities for both hypothesis """ q_p = q_p_r + q_p_not_r not_q_p = not_q_p_r + not_q_p_not_r q_not_p = q_not_p_r + q_not_p_not_r not_q_not_p = not_q_not_p_r + not_q_not_p_not_r p_r = x * r p_not_r = x * not_r q_r = y * r q_not_r = y * not_r not_p_r = not_x * r not_p_not_r = not_x * not_r not_q_r = not_y * r not_q_not_r = not_y * not_r # information P a = p_q_r * np.log2((p_q_r * x) / (p_q * p_r)) b = p_q_not_r * np.log2((p_q_not_r * x) / (p_q * p_not_r)) c = p_not_q_r * np.log2((p_not_q_r * x) / (p_not_q * p_r)) d = p_not_q_not_r * np.log2((p_not_q_not_r * x) / (p_not_q * p_not_r)) information_p = a + b + c + d a = not_p_q_r * np.log2((not_p_q_r * not_x) / (not_p_q * not_p_r)) b = not_p_q_not_r * np.log2((not_p_q_not_r * not_x) / (not_p_q * not_p_not_r)) c = not_p_not_q_r * np.log2((not_p_not_q_r * not_x) / (not_p_not_q * not_p_r)) d = not_p_not_q_not_r * np.log2((not_p_not_q_not_r * not_x) / (not_p_not_q * not_p_not_r)) information_not_p = a + b + c + d a = q_p_r * np.log2((q_p_r * y) / (q_p * q_r)) b = q_p_not_r * np.log2((q_p_not_r * y) / (q_p * q_not_r)) c = q_not_p_r * np.log2((q_not_p_r * y) / (q_not_p * q_r)) d = q_not_p_not_r * np.log2((q_not_p_not_r * y) / (q_not_p * q_not_r)) information_q = a + b + c + d a = not_q_p_r * np.log2((not_q_p_r * not_y) / (not_q_p * not_q_r)) b = not_q_p_not_r * np.log2((not_q_p_not_r * not_y) / (not_q_p * not_q_not_r)) c = not_q_not_p_r * np.log2((not_q_not_p_r * not_y) / (not_q_not_p * not_q_r)) d = not_q_not_p_not_r * np.log2((not_q_not_p_not_r * not_y) / (not_q_not_p * not_q_not_r)) information_not_q = a + b + c + d sum_all = [information_p, information_q, information_not_p, information_not_q] scaled_inf_p = information_p / np.sum(sum_all) scaled_inf_q = information_q / np.sum(sum_all) scaled_inf_not_p = information_not_p / np.sum(sum_all) scaled_inf_not_q = information_not_q / np.sum(sum_all) return scaled_inf_p, scaled_inf_not_p, scaled_inf_q, scaled_inf_not_q def stf(card): x = -2.37 + 9.06 * card return 1 / (1 + np.exp(x)) """ optimize RMSE of QODS pred """ def optimize_inf_model(params, *args): x, y, r, eps = params obs_p, obs_not_p, obs_q, obs_not_q = args scaled_inf_p, scaled_inf_not_p, scaled_inf_q, scaled_inf_not_q = qods(x, y, r, eps) error = (obs_p - stf(scaled_inf_p)) ** 2 + (obs_not_p - stf(scaled_inf_not_p)) ** 2 + ( obs_q - stf(scaled_inf_q)) ** 2 + (obs_not_q - stf( scaled_inf_not_q)) ** 2 return np.sqrt(error) / 4 def testP(): for i in range(10, 100000000, 100): tmp = 1 / (i) scaled_inf_p, scaled_inf_not_p, scaled_inf_q, scaled_inf_not_q = qods(tmp, .20, .50, .1) print("P(p): ", tmp) print("prob p:", stf(scaled_inf_p)) print("prob not p:", stf(scaled_inf_not_p)) print("prob q:", stf(scaled_inf_q)) print("prob not q:", stf(scaled_inf_not_q)) def gen_data(): data_p = [[[] for j in range(100)] for i in range(100)] data_not_p = [[[] for j in range(100)] for i in range(100)] data_q = [[[] for j in range(100)] for i in range(100)] data_not_q = [[[] for j in range(100)] for i in range(100)] for i in range(1, 100): for j in range(1, 100): scaled_inf_p, scaled_inf_not_p, scaled_inf_q, scaled_inf_not_q = qods(i * 0.01, j * 0.01, .5, .1) data_p[i - 1][j - 1] = scaled_inf_p data_not_p[i - 1][j - 1] = scaled_inf_not_p data_q[i - 1][j - 1] = scaled_inf_q data_not_q[i - 1][j - 1] = scaled_inf_not_q df_p = pd.DataFrame(data_p) df_not_p = pd.DataFrame(data_not_p) df_q = pd.DataFrame(data_q) df_not_q = pd.DataFrame(data_not_q) df_p.to_csv('odsP.csv') # , index=False) df_not_p.to_csv('odsNotP.csv') # , index=False) df_q.to_csv('odsQ.csv') # , index=False) df_not_q.to_csv('odsNotQ.csv') # , index=False) def gen_RAST_data(): data = [] for i in range(1, 99): scaled_inf_p, scaled_inf_not_p, scaled_inf_q, scaled_inf_not_q = qods(0.01, 0.9, .5, .01) # (i*0.01)-0.001 data.append((i, stf(scaled_inf_q), stf(scaled_inf_not_q))) df = pd.DataFrame(data) return df def test_gen_data(): data = [] for i in range(1, 100): for j in range(1, 100): scaled_inf_p, scaled_inf_not_p, scaled_inf_q, scaled_inf_not_q = qods(i * 0.01, j * 0.01, .5, .1) data.append((i, j, stf(scaled_inf_not_q))) df = pd.DataFrame(data) # df.to_csv('test.csv', index=False) return df # def generate_colormap_Plot(df): cmap = cm.get_cmap('Greys') fig, ax = plt.subplots(1) # Now here's the plot. range(len(df)) just makes the x values 1, 2, 3... # df[0] is then the y values. c sets the colours (same as y values in this # case). s is the marker size. ax.scatter(df[0], df[1], c=(df[2] * 100), s=120, cmap=cmap, edgecolor='None') plt.show() def generate_RAST_Plot(df): plt.plot(df[0], df[1], 'r', label='q') plt.plot(df[0], df[2], 'g', label='not q') plt.xlabel("P(q)") plt.ylabel("Probability of selecting a card") plt.legend(loc='right') plt.show() def fmt(x, pos): a, b = '{:.2e}'.format(x).split('e') b = int(b) return r'${} \times 10^{{{}}}$'.format(a, b) def plotdata(df): contour = plt.tricontourf(df[0], df[1], df[2], 100, cmap="Greys") cbar = plt.colorbar(contour, format=ticker.FuncFormatter(fmt)) cbar.set_label('') plt.xlabel("P(p)") plt.ylabel("P(q)") plt.show() """ Optimize Data from Excelfile and save it in csv """ def optimizeQODS(data_file_source, data_file_output): results = [] initial_values = np.array([0.01, 0.02, 0.5, 0.1]) prob_bounds = [(0, 1), (0, 1), (0, 1), (0, 1)] df = pd.read_csv(data_file_source, header=None, sep=";") df = df.apply(lambda x: x.str.replace(',', '.')) df = df.apply(pd.to_numeric) for index, row in df.iterrows(): data = (row.iloc[0], row.iloc[1], row.iloc[2], row.iloc[3]) tmp = minimize(optimize_inf_model, x0=initial_values, args=data, method='SLSQP', bounds=prob_bounds, constraints=({'type': 'ineq', 'fun': lambda x: x[1] - x[0] - 0.001})) results.append(tmp.x) df1 = pd.DataFrame(results) df1 = df1.round(5) df1.to_csv(data_file_output, index=None, header=None) return df1 """ Calc predition from data """ def calcPred(data_file_source, data_file_output): df = pd.read_csv(data_file_source, header=None, sep=",") pred = [] for index, row in df.iterrows(): tmp = [] if row.iloc[0] == 1: row.iloc[0] = row.iloc[0] - 0.0000001 elif row.iloc[0] == 0: row.iloc[0] = row.iloc[0] + 0.0000001 if row.iloc[1] == 1: row.iloc[1] = row.iloc[1] - 0.0000001 elif row.iloc[1] == 0: row.iloc[1] = row.iloc[1] + 0.0000001 if row.iloc[2] == 1: row.iloc[2] = row.iloc[2] - 0.0000001 elif row.iloc[2] == 0: row.iloc[2] = row.iloc[2] + 0.0000001 if row.iloc[3] == 1: row.iloc[3] = row.iloc[3] - 0.0000001 elif row.iloc[3] == 0: row.iloc[3] = row.iloc[3] + 0.0000001 scaled_inf_p, scaled_inf_not_p, scaled_inf_q, scaled_inf_not_q = qods(row.iloc[0], row.iloc[1], row.iloc[2], row.iloc[3]) tmp.append(stf(scaled_inf_p)) tmp.append(stf(scaled_inf_not_p)) tmp.append(stf(scaled_inf_q)) tmp.append(stf(scaled_inf_not_q)) pred.append(tmp) df2 = pd.DataFrame(pred) df2.to_csv(data_file_output, header=None, index=None) return pred """ quick test of params """ def showValues(p, q, r, eps): scaled_inf_p, scaled_inf_not_p, scaled_inf_q, scaled_inf_not_q = qods(p, q, r, eps) print(stf(scaled_inf_p)) print(stf(scaled_inf_not_p)) print(stf(scaled_inf_q)) print(stf(scaled_inf_not_q)) """ Calc RMSE """ def calcError(data_file_source1, data_file_source2, data_file_output): df1 = pd.read_csv(data_file_source1, header=None, sep=";") df1 = df1.apply(lambda x: x.str.replace(',', '.')) df1 = df1.apply(pd.to_numeric) df2 = pd.read_csv(data_file_source2, header=None ,sep=",") p = [] notP = [] q = [] notQ = [] rmse = [] for index, row in df1.iterrows(): p.append(row.iloc[0]) notP.append(row.iloc[1]) q.append(row.iloc[2]) notQ.append(row.iloc[3]) for index, row in df2.iterrows(): tmp = [] tmp.append(np.sqrt((p[index] - row.iloc[0])**2)) tmp.append(np.sqrt((notP[index] - row.iloc[1]) ** 2)) tmp.append(np.sqrt((q[index] - row.iloc[2]) ** 2)) tmp.append(np.sqrt((notQ[index] - row.iloc[3]) ** 2)) rmse.append(tmp) df3 = pd.DataFrame(rmse) df3.to_csv(data_file_output, header=None, index=None) return rmse # ragni aggregated optimizeQODS('../qods_data/qods_ragni_aggregated_obs.csv', '../qods_data/qods_ragni_aggregated_opt_params.csv') calcPred('../qods_data/qods_ragni_aggregated_opt_params.csv', '../qods_data/qods_ragni_aggregated_pred.csv') calcError('../qods_data/qods_ragni_aggregated_obs.csv', '../qods_data/qods_ragni_aggregated_pred.csv', '../qods_data/qods_ragni_aggregated_rmse.csv') #ragni individual optimizeQODS('../qods_data/qods_ragni_individual_obs.csv', '../qods_data/qods_ragni_individual_opt_params.csv') calcPred('../qods_data/qods_ragni_individual_opt_params.csv', '../qods_data/qods_ragni_individual_pred.csv') calcError('../qods_data/qods_ragni_individual_obs.csv', '../qods_data/qods_ragni_individual_pred.csv', '../qods_data/qods_ragni_individual_rmse.csv') # negation data optimizeQODS('../qods_data/qods_neg_obs.csv', '../qods_data/qods_neg_opt_params.csv') calcPred('../qods_data/qods_neg_opt_params.csv', '../qods_data/qods_neg_pred.csv') calcError('../qods_data/qods_neg_obs.csv', '../qods_data/qods_neg_pred.csv', '../qods_data/qods_neg_rmse.csv') # repeated optimizeQODS('../qods_data/qods_rep_obs.csv', '../qods_data/qods_rep_opt_params.csv') calcPred('../qods_data/qods_rep_opt_params.csv', '../qods_data/qods_rep_pred.csv') calcError('../qods_data/qods_rep_obs.csv', '../qods_data/qods_rep_pred.csv', '../qods_data/qods_rep_rmse.csv')
UTF-8
Python
false
false
11,667
py
377
quantitative_optimal_data_selection.py
203
0.554213
0.524214
0
333
34.036036
149
polatbilek/Turkce-cinsiyet-tahminlemesi
12,498,354,831,791
3a34a91b35c3618a67852809a4f62e9eb868c6f7
f3af6f601ec443ec2674a4f1fc8a30292755a779
/model.py
8c521aec4639c4f6c47cbb055c358efa50ffdc40
[ "MIT" ]
permissive
https://github.com/polatbilek/Turkce-cinsiyet-tahminlemesi
d22a6507612c59ced5f6fd397509ad7109d59a38
c58a8161a228c37026291c88e7fdb1d33092ee05
refs/heads/master
2020-04-19T09:10:57.189418
2019-01-28T07:30:08
2019-01-28T07:30:08
168,102,457
2
0
MIT
true
2019-01-29T06:31:41
2019-01-29T06:31:41
2019-01-28T07:31:26
2019-01-28T07:30:09
776
0
0
0
null
false
null
import tensorflow as tf from parameters import FLAGS import numpy as np class network(object): ############################################################################################################################ def __init__(self, embeddings): with tf.device('/device:GPU:0'): self.prediction = [] # create GRU cells with tf.variable_scope("tweet"): self.cell_fw = tf.nn.rnn_cell.GRUCell(num_units=FLAGS.rnn_cell_size, activation=tf.sigmoid) self.cell_bw = tf.nn.rnn_cell.GRUCell(num_units=FLAGS.rnn_cell_size, activation=tf.sigmoid) # RNN placeholders self.reg_param = tf.placeholder(tf.float32, shape=[]) num_of_total_filters = len(FLAGS.filter_sizes.split(",")) * FLAGS.num_filters total_tweets = FLAGS.batch_size * FLAGS.tweet_per_user # weigths self.weights = {'fc1': tf.Variable(tf.random_normal([2 * FLAGS.rnn_cell_size, FLAGS.num_classes]), name="fc1-weights"), 'fc1-cnn': tf.Variable(tf.random_normal([num_of_total_filters, FLAGS.num_classes]),name="fc1-weights"), 'att1-w': tf.Variable(tf.random_normal([2 * FLAGS.rnn_cell_size, 2 * FLAGS.rnn_cell_size]), name="att1-weights"), 'att1-v': tf.Variable(tf.random_normal([2 * FLAGS.rnn_cell_size]), name="att1-vector"), 'att2-w': tf.Variable(tf.random_normal([2 * FLAGS.rnn_cell_size, 2 * FLAGS.rnn_cell_size]), name="att2-weights"), 'att2-v': tf.Variable(tf.random_normal([2 * FLAGS.rnn_cell_size]), name="att2-vector"), 'att2-cnn-w': tf.Variable(tf.random_normal([num_of_total_filters, num_of_total_filters]), name="att2-weights"), 'att2-cnn-v': tf.Variable(tf.random_normal([num_of_total_filters]), name="att2-vector"), } # biases self.bias = {'fc1': tf.Variable(tf.random_normal([FLAGS.num_classes]), name="fc1-bias-noreg"), 'fc1-cnn': tf.Variable(tf.random_normal([FLAGS.num_classes]), name="fc1-bias-noreg"), 'att1-w': tf.Variable(tf.random_normal([2 * FLAGS.rnn_cell_size]), name="att1-bias-noreg"), 'att2-w': tf.Variable(tf.random_normal([2 * FLAGS.rnn_cell_size]), name="att2-bias-noreg"), 'att1-cnn-w': tf.Variable(tf.random_normal([num_of_total_filters]), name="att1-bias-noreg"), 'att2-cnn-w': tf.Variable(tf.random_normal([num_of_total_filters]), name="att2-bias-noreg") } # initialize the computation graph for the neural network # self.rnn() #self.rnn_with_attention() self.cnn(embeddings.shape[0]) self.architecture() self.backward_pass() ############################################################################################################################ def architecture(self): with tf.device('/device:GPU:0'): #user level attention self.att_context_vector_char = tf.tanh(tf.tensordot(self.cnn_output, self.weights["att2-cnn-w"], axes=1) + self.bias["att2-cnn-w"]) self.attentions_char = tf.nn.softmax(tf.tensordot(self.att_context_vector_char, self.weights["att2-cnn-v"], axes=1)) self.attention_output_char = tf.reduce_sum(self.cnn_output * tf.expand_dims(self.attentions_char, -1), 1) # FC layer for reducing the dimension to 2(# of classes) self.logits = tf.tensordot(self.attention_output_char, self.weights["fc1-cnn"], axes=1) + self.bias["fc1-cnn"] # predictions self.prediction = tf.nn.softmax(self.logits) # calculate accuracy self.correct_pred = tf.equal(tf.argmax(self.prediction, 1), tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32)) return self.prediction ############################################################################################################################ def backward_pass(self): with tf.device('/device:GPU:0'): # calculate loss self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logits, labels=self.input_y)) # add L2 regularization self.l2 = self.reg_param * sum( tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not ("noreg" in tf_var.name or "bias" in tf_var.name) ) self.loss += self.l2 # optimizer self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) self.train = self.optimizer.minimize(self.loss) return self.accuracy, self.loss, self.train ############################################################################################################################ def rnn(self): # embedding layer self.rnn_input = tf.nn.embedding_lookup(self.tf_embeddings, self.X) # rnn layer (self.outputs, self.output_states) = tf.nn.bidirectional_dynamic_rnn(self.cell_fw, self.cell_bw, self.rnn_input, self.sequence_length, dtype=tf.float32,scope="tweet") # concatenate the backward and forward cells self.rnn_output_raw = tf.concat([self.output_states[0], self.output_states[1]], 1) #reshape the output for the next layers self.rnn_output = tf.reshape(self.rnn_output_raw, [FLAGS.batch_size, FLAGS.tweet_per_user, 2*FLAGS.rnn_cell_size]) return self.rnn_output ############################################################################################################################ def rnn_with_attention(self): # embedding layer self.rnn_input = tf.nn.embedding_lookup(self.tf_embeddings, self.X) # rnn layer (self.outputs, self.output_states) = tf.nn.bidirectional_dynamic_rnn(self.cell_fw, self.cell_bw, self.rnn_input, self.sequence_length, dtype=tf.float32,scope="tweet") # concatenate the backward and forward cells self.concat_outputs = tf.concat(self.outputs, 2) # attention layer self.att_context_vector = tf.tanh(tf.tensordot(self.concat_outputs, self.weights["att1-w"], axes=1) + self.bias["att1-w"]) self.attentions = tf.nn.softmax(tf.tensordot(self.att_context_vector, self.weights["att1-v"], axes=1)) self.attention_output_raw = tf.reduce_sum(self.concat_outputs * tf.expand_dims(self.attentions, -1), 1) #reshape the output for the next layers self.attention_output = tf.reshape(self.attention_output_raw, [FLAGS.batch_size, FLAGS.tweet_per_user, 2*FLAGS.rnn_cell_size]) return self.attention_output ############################################################################################################################ def captioning(self): pass ############################################################################################################################ def cnn(self, vocab_size): with tf.device('/device:GPU:0'): # CNN placeholders self.input_x = tf.placeholder(tf.int32, [FLAGS.batch_size*FLAGS.tweet_per_user, FLAGS.sequence_length], name="input_x") self.input_y = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.num_classes], name="input_y") filter_sizes = [int(size) for size in FLAGS.filter_sizes.split(",")] # Embedding layer with tf.name_scope("embedding"): W = tf.Variable(tf.random_uniform([vocab_size, FLAGS.char_embedding_size], -1.0, 1.0), name="W") self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x) self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1) # Create a convolution + maxpool layer for each filter size pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): # Convolution Layer filter_shape = [filter_size, FLAGS.char_embedding_size, 1, FLAGS.num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[FLAGS.num_filters]), name="b-noreg") conv = tf.nn.conv2d( self.embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Apply nonlinearity h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Maxpooling over the outputs pooled = tf.nn.max_pool( h, ksize=[1, FLAGS.sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") pooled_outputs.append(pooled) # Combine all the pooled features num_filters_total = FLAGS.num_filters * len(filter_sizes) self.h_pool = tf.concat(pooled_outputs, 3) self.h_flat_pool = tf.reshape(self.h_pool, [-1, num_filters_total]) self.cnn_output = tf.reshape(self.h_flat_pool, [FLAGS.batch_size, FLAGS.tweet_per_user, num_filters_total]) return self.cnn_output
UTF-8
Python
false
false
8,612
py
10
model.py
9
0.59301
0.580237
0
223
36.591928
168
EasyToy11/8Queen
8,787,503,117,541
db83d735a3799e7e9e1444e3a2e6ff969560c317
ae451567c5ebcf11e1d696bf7dd8fc40c7615469
/Queen.py
54ea9c9a9c3bd66132a0b269d62f9d5f7c1520ca
[]
no_license
https://github.com/EasyToy11/8Queen
cd0667b1663e3e22a39ba9af35c11b3f3f6646f0
03f346e2f1102c6494e576ac5d75450c3d0a123c
refs/heads/master
2020-06-24T09:48:38.688082
2019-07-26T02:28:53
2019-07-26T02:28:53
198,932,206
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" 二次元配列を作る クイーンの数の変数 最初はすべてTrue 8回繰り返す クイーンの射程に入ったらFalse 検索を短くするために、配列を書き換える x,y,斜めの順に処理 結果を表示 """ queen = 0 field = [] for i in range(8): for j in range(8): field.append([i, j, True]) field[0][2] = False is_queen = [] for i in range(8): # クイーンが置ける状態なら入力を受け付ける while True: place = input('クイーンを置く座標(例:x,y)') x = int(place[0]) y = int(place[2]) if len(field[x][y]) != 3: print('クイーンが置けません、違う場所を入力してください') else: break is_queen.append([x, y]) print(field) # x列の処理 for j in range(8): # 配列の引数が変わると困るので、空要素を入れておく field[j][x] = [] # y列の処理 for j in range(8): field[y][j] = [] # 斜めの列の処理 for j in range(8): j += 1 # 右下斜め try: if len(field[x+j][y+j]) != 0: field[x+j][y+j] = [] except IndexError: pass # 右上斜め # print(field[x+j][y-j]) try: if len(field[x+j][y-j]) != 0: field[x+j][y-j] = [] except IndexError: pass for j in range(8): print() for k in range(8): if len(field[j][k]) != 0: print("○", end='') else: print("×", end='') print()
UTF-8
Python
false
false
1,675
py
3
Queen.py
3
0.443268
0.428896
0
67
18.567164
45
aliyesilli/codesignal
10,058,813,419,681
dab89c3dacdd25b1fe809de1c5dde5cb78c3c18e
49635f4841b71dbc2754b58afe923d273dd85d9f
/Arcade/Intro/4_adjacentElementsProduct.py
fcbeefa32f03f705816735e69bcc2c6902cf26f5
[]
no_license
https://github.com/aliyesilli/codesignal
b52d0cee28461f4c4ddc50ed12845ec7392e5264
87a72cd06989aac157d89429f889cbf90cfdac01
refs/heads/master
2020-03-23T17:56:49.589981
2018-07-23T14:38:54
2018-07-23T14:38:54
141,882,391
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def adjacentElementsProduct(inputArray): if len(inputArray) == 0: return 0 if len(inputArray) == 1: inputArray[0] b = inputArray[0]*inputArray[1] for i in range(0,len(inputArray)-1): if inputArray[i]*inputArray[i+1] > b: b=inputArray[i]*inputArray[i+1] return b;
UTF-8
Python
false
false
270
py
33
4_adjacentElementsProduct.py
33
0.711111
0.674074
0
7
37.714286
71
uvsq22005562/PROJET_TAPATAN_BITD02
9,328,668,981,134
85de6dd71ce232b115c2616b8f85ee21261a4687
e63eda2edd018d903fdc8cdc05b3f5b06734fada
/TAPATAN.py
45a82de477dc2aef6e135d4ae98a03855d65c3d0
[]
no_license
https://github.com/uvsq22005562/PROJET_TAPATAN_BITD02
e81ce02bba5f9fa29b30dc345269809a7d08819a
11e16f838784ad84920f251c47dcc28221af319c
refs/heads/main
2023-05-04T03:39:56.813220
2021-05-24T12:29:56
2021-05-24T12:29:56
359,737,901
0
2
null
false
2021-05-24T09:55:21
2021-04-20T08:18:30
2021-05-23T18:20:29
2021-05-24T09:55:21
7
0
2
1
Python
false
false
########################### # PROJET TAPATAN # Jules Marty # jihad Djiar # Sophie Wu # Adam Bouchaour # Thibault Astier ########################### # IMPORTS import tkinter as tk from tkinter import messagebox ########################### # GLOBALS VAR MAP = [ [0, 0, 0], [0, 0, 0], [0, 0, 0] ] # 0 = vide, 1, 2 = joueur 1, 2 JETONS = [3, 3] # jetons restant (j1, j2) ETAT_PARTIE = 0 # 1 = placement, 2 = deplacement TOUR_JEU = 0 # Voir c'est au tour de quel joueur POINTS_JOUEURS = [0, 0] # joueur 1 / 2 MEMORY = [] REPETITION = [] rond = [] # Liste de points de la fenêtre PvP COORD_PTS = [ # ligne 1 [80, 80, 120, 120, [0, 0]], [380, 80, 420, 120, [0, 1]], [680, 80, 720, 120, [0, 2]], # ligne 2 [80, 380, 120, 420, [1, 0]], [380, 380, 420, 420, [1, 1]], [680, 380, 720, 420, [1, 2]], # ligne 3 [80, 680, 120, 720, [2, 0]], [380, 680, 420, 720, [2, 1]], [680, 680, 720, 720, [2, 2]] ] COORD_LINES = [ # ligne 1 [130, 80, 370, 120, [[0, 0], [0, 1]]], [430, 80, 670, 120, [[0, 1], [0, 2]]], # ligne 2 [80, 130, 120, 370, [[0, 0], [1, 0]]], [380, 130, 420, 370, [[0, 1], [1, 1]]], [680, 130, 720, 370, [[0, 2], [1, 2]]], # ligne 3 [130, 380, 370, 420, [[1, 0], [1, 1]]], [430, 380, 670, 420, [[1, 1], [1, 2]]], # ligne 4 [80, 430, 120, 670, [[1, 0], [2, 0]]], [380, 430, 420, 670, [[1, 1], [2, 1]]], [680, 430, 720, 670, [[1, 2], [2, 2]]], # ligne 5 [130, 680, 370, 720, [[2, 0], [2, 1]]], [430, 680, 670, 720, [[2, 1], [2, 2]]] ] COORD_DIAG = [ # haut gauche [130, 130, 370, 370, [[0, 0], [1, 1]]], # haut droite [430, 130, 670, 370, [[1, 1], [0, 2]]], # bas gauche [130, 430, 370, 670, [[2, 0], [1, 1]]], # bas droite [430, 430, 670, 670, [[2, 2], [1, 1]]] ] def window_transition(id): # jules ''' ferme la fenêtre ouverte et ouvre le menu ''' if id == 1: # pvp -> menu racine1.destroy() menu() if id == 2: # pv ia -> menu racine2.destroy() menu() if id == 3: # ia v ia -> menu racine3.destroy() menu() if id == 4: racine.destroy() game_window_1() if id == 5: racine.destroy() game_window_2() if id == 6: racine.destroy() game_window_3() if id == 11: racine1.destroy() game_window_1() def menu(): # thibault global racine, POINTS_JOUEURS """ Fonction qui crée: -une fenetre de taille 400*400 - 4 boutons: PvP, PvIA, IAvIA et Exit -Exit détruit la fenetre """ POINTS_JOUEURS = [0, 0] racine = tk.Tk() racine.title("Menu") btn_PVP = tk.Button(racine, command=lambda: window_transition(4), text="Player vs Player") btn_PVP.pack() btn_PVIA = tk.Button(racine, command=lambda: window_transition(5), text="Player vs IA") btn_PVIA.pack() btn_IAVIA = tk.Button(racine, command=lambda: window_transition(6), text="IA vs IA") btn_IAVIA.pack() btn_quit = tk.Button(racine, command=racine.destroy, text="Quitter") btn_quit.pack() racine.mainloop() def game_window_1(): # thibault global racine1, canvas, racine """Fonction qui creer: -une nouvelle fenetre avec un canvas 800*800 -avec le plateau (carre centré) 600*600 -lignes et ronds au intersections -Utilisé pour le PVP """ racine1 = tk.Tk() racine1.title("TAPANTA") canvas = tk.Canvas(racine1, bg="pale goldenrod", height=800, width=1000) canvas.grid(row=0, rowspan=5, column=0, columnspan=3) canvas.create_rectangle(100, 700, 700, 100, width=4, fill="pale goldenrod") # LIGNES canvas.create_line(100, 100, 700, 700, width=4, fill="black") canvas.create_line(100, 700, 700, 100, width=4, fill="black") canvas.create_line(400, 100, 400, 700, width=4, fill="black") canvas.create_line(100, 400, 700, 400, width=4, fill="black") # ROND SUPERIEUR rond.append(canvas.create_oval(90, 90, 110, 110, fill="black")) rond.append(canvas.create_oval(390, 90, 410, 110, fill="black")) rond.append(canvas.create_oval(690, 90, 710, 110, fill="black")) # ROND MILLIEU rond.append(canvas.create_oval(90, 390, 110, 410, fill="black")) rond.append(canvas.create_oval(390, 390, 410, 410, fill="black")) rond.append(canvas.create_oval(690, 390, 710, 410, fill="black")) # ROND BAS rond.append(canvas.create_oval(90, 690, 110, 710, fill="black")) rond.append(canvas.create_oval(390, 690, 410, 710, fill="black")) rond.append(canvas.create_oval(690, 690, 710, 710, fill="black")) # LABEL SCORE label_J1 = tk.Label(racine1, bg="pale goldenrod", text="Score Joueur 1 :" + str(POINTS_JOUEURS[0])) label_J1.grid(row=4, column=0) label_J2 = tk.Label(racine1, bg="pale goldenrod", text="Score Joueur 2 :" + str(POINTS_JOUEURS[1])) label_J2.grid(row=4, column=1) # BOUTON btn_SAVE = tk.Button(racine1, bg="pale goldenrod", command=sauvegarder, text="Sauvegarder") btn_SAVE.grid(row=1, column=2) btn_LOAD = tk.Button(racine1, bg="pale goldenrod", command=charger, text="Charger") btn_LOAD.grid(row=2, column=2) btn_MENU = tk.Button(racine1, bg="pale goldenrod", command=lambda: window_transition(1), text="Menu") btn_MENU.grid(row=3, column=2) # PROGRAMME : canvas.bind('<Button-1>', mouseover_item) racine1.mainloop() def game_window_2(): # thibault global racine2 """Fonction qui creer: -une nouvelle fenetre avec un canvas 800*1000 -avec le plateau (carre centré) 600*600 -lignes et ronds au intersections -4 boutons -Utilisé pour le IA V IA """ racine.destroy() # ferme le menu racine2 = tk.Tk() racine2.title("TAPANTA") canvas = tk.Canvas(racine2, bg="pale goldenrod", height=800, width=1000) canvas.grid(row=0, rowspan=5, column=0, columnspan=3) canvas.create_rectangle(100, 700, 700, 100, width=4, fill="pale goldenrod") # LIGNES canvas.create_line(100, 100, 700, 700, width=4, fill="black") canvas.create_line(100, 700, 700, 100, width=4, fill="black") canvas.create_line(400, 100, 400, 700, width=4, fill="black") canvas.create_line(100, 400, 700, 400, width=4, fill="black") # ROND SUPERIEUR canvas.create_oval(90, 90, 110, 110, fill="black") canvas.create_oval(390, 90, 410, 110, fill="black") canvas.create_oval(690, 90, 710, 110, fill="black") # ROND MILLIEU canvas.create_oval(90, 390, 110, 410, fill="black") canvas.create_oval(390, 390, 410, 410, fill="black") canvas.create_oval(690, 390, 710, 410, fill="black") # ROND BAS canvas.create_oval(90, 690, 110, 710, fill="black") canvas.create_oval(390, 690, 410, 710, fill="black") canvas.create_oval(690, 690, 710, 710, fill="black") # LABEL SCORE label_J1 = tk.Label(racine2, bg="pale goldenrod", text="Score Joueur :" + "......") label_J1.grid(row=4, column=0) label_J2 = tk.Label(racine2, bg="pale goldenrod", text="Score Ordinateur :" + "......") label_J2.grid(row=4, column=1) # BOUTON btn_SAVE = tk.Button(racine2, bg="pale goldenrod", command=None, text="Sauvegarder") btn_SAVE.grid(row=1, column=2) btn_LOAD = tk.Button(racine2, bg="pale goldenrod", command=None, text="Charger") btn_LOAD.grid(row=2, column=2) btn_MENU = tk.Button(racine2, bg="pale goldenrod", command=lambda: window_transition(2), text="Menu") btn_MENU.grid(row=3, column=2) btn_PAUSE = tk.Button(racine2, bg="pale goldenrod", command=None, text="PAUSE") btn_PAUSE.grid(row=4, column=2) canvas.bind('<Button-1>', mouseover_item) racine2.mainloop() def game_window_3(): # thibault global racine3 """Fonction qui creer: -une nouvelle fenetre avec un canvas 800*1000 -avec le plateau (carre centré) 600*600 -lignes et ronds au intersections -4 boutons -Utilisé pour le IA V IA """ racine.destroy() # ferme le menu racine3 = tk.Tk() racine3.title("TAPANTA") canvas = tk.Canvas(racine3, bg="pale goldenrod", height=800, width=1000) canvas.grid(row=0, rowspan=5, column=0, columnspan=3) canvas.create_rectangle(100, 700, 700, 100, width=4, fill="pale goldenrod") # LIGNES canvas.create_line(100, 100, 700, 700, width=4, fill="black") canvas.create_line(100, 700, 700, 100, width=4, fill="black") canvas.create_line(400, 100, 400, 700, width=4, fill="black") canvas.create_line(100, 400, 700, 400, width=4, fill="black") # ROND SUPERIEUR canvas.create_oval(90, 90, 110, 110, fill="black") canvas.create_oval(390, 90, 410, 110, fill="black") canvas.create_oval(690, 90, 710, 110, fill="black") # ROND MILLIEU canvas.create_oval(90, 390, 110, 410, fill="black") canvas.create_oval(390, 390, 410, 410, fill="black") canvas.create_oval(690, 390, 710, 410, fill="black") # ROND BAS canvas.create_oval(90, 690, 110, 710, fill="black") canvas.create_oval(390, 690, 410, 710, fill="black") canvas.create_oval(690, 690, 710, 710, fill="black") # LABEL SCORE label_J1 = tk.Label(racine3, bg="pale goldenrod", text="Score Ordinateur 1 :" + "......") label_J1.grid(row=4, column=0) label_J2 = tk.Label(racine3, bg="pale goldenrod", text="Score Ordinateur 2 :" + "......") label_J2.grid(row=4, column=1) # BOUTON btn_SAVE = tk.Button(racine3, bg="pale goldenrod", command=None, text="Sauvegarder") btn_SAVE.grid(row=1, column=2) btn_LOAD = tk.Button(racine3, bg="pale goldenrod", command=None, text="Charger") btn_LOAD.grid(row=2, column=2) btn_MENU = tk.Button(racine3, bg="pale goldenrod", command=lambda: window_transition(3), text="Menu") btn_MENU.grid(row=3, column=2) btn_PAUSE = tk.Button(racine3, bg="pale goldenrod", command=None, text="PAUSE") btn_PAUSE.grid(row=4, column=2) canvas.bind('<Button-1>', mouseover_item) racine2.mainloop() def mouseover_item(event): # jules ''' en fonction du clic du joueur retourne : - [x, y] si il sagit d'un point - [[x, y], [x, y]] si il sagit d'une ligne x, y sont des entiers correspondants aux positions des points dans MAP ''' x, y = event.x, event.y # vérifications points (intersections) for elm in COORD_PTS: if (x > elm[0] and x < elm[2]) and (y > elm[1] and y < elm[3]): if JETONS[alterner_joueur()-1] > 0 and ETAT_PARTIE == 0: placer(elm[4]) # vérification lignes for elm in COORD_LINES: if (x > elm[0] and x < elm[2]) and (y > elm[1] and y < elm[3]): if ETAT_PARTIE == 1: deplacer(elm[4]) # vérifications diagonales for elm in COORD_DIAG: if (x > elm[0] and x < elm[2]) and (y > elm[1] and y < elm[3]): if x > (y-20) and x < (y+20): # diagonale d'équation x = size-y if ETAT_PARTIE == 1: deplacer(elm[4]) if x > (800-y-20) and x < (800-y+20): # diagonale d'équation x = y if ETAT_PARTIE == 1: deplacer(elm[4]) def alterner_joueur(): # sophie ''' permet de savoir quel joueur joue, 1 = tour rouge, 2 = tour bleu ''' if TOUR_JEU % 2 == 0: return 1 else: return 2 def alterner_tour(): # jules ''' alterne l'état de la partie pour savoir si on est en étape de placement / de déplacement ''' global TOUR_JEU, ETAT_PARTIE if TOUR_JEU == 6: ETAT_PARTIE += 1 def placer(point): # sophie ''' Poser les pions sur le plateau ''' global TOUR_JEU, ETAT_PARTIE x, y = point[0], point[1] if MAP[x][y] == 0: MAP[x][y] = alterner_joueur() JETONS[alterner_joueur()-1] -= 1 TOUR_JEU += 1 alterner_tour() actualisation_graphique() victory_check() def deplacer(points): # sophie ''' Déplacer les pions sur le plateau ''' global pions_selectionner, TOUR_JEU, canvas, ETAT_PARTIE x1, y1 = points[0][0], points[0][1] x2, y2 = points[1][0], points[1][1] if (MAP[x1][y1] == 0 or MAP[x2][y2] == 0) and MAP[x1][y1] != MAP[x2][y2]: if max([MAP[x1][y1], MAP[x2][y2]]) == alterner_joueur(): MAP[x1][y1], MAP[x2][y2] = MAP[x2][y2], MAP[x1][y1] TOUR_JEU += 1 alterner_tour() actualisation_graphique() victory_check() match_nul_check() def actualisation_graphique(): # sophie ''' Change en la couleur du joueur selon la MAP, si c'est des "1"(en rouge) ou des "2"(en bleu) ''' global canvas for i in range(0, 3): for j in range(0, 3): if MAP[i][j] == 1: canvas.itemconfig(rond[i*3 + j], fill="red") elif MAP[i][j] == 2: canvas.itemconfig(rond[i*3 + j], fill="blue") else: canvas.itemconfig(rond[i*3 + j], fill="black") def affichage_messages(id): # Jihad ''' gère l'ouverture et le contenu des fenetres d'informations présentés aux joueurs ''' liste_message = ['match nul, personne ne gagne de point', 'point pour le joueur 1, bravo !', 'point pour le joueur 2, bravo !', 'le joueur 1 a gagné la partie !', 'le joueur 2 a gagné la partie !'] messagebox.showinfo('information', liste_message[id]) def victory_check(): # Adam ''' vérifie si un des joueurs remporte le point ''' win = 0 # lignes for i in range(len(MAP)): if MAP[i][0] == MAP[i][1] == MAP[i][2] and MAP[i][0] != 0: win = MAP[i][0] # colonnes for i in range(len(MAP)): if MAP[0][i] == MAP[1][i] == MAP[2][i] and MAP[0][i] != 0: win += MAP[0][i] # diagonales if (MAP[0][0] == MAP[1][1] == MAP[2][2] and MAP[1][1] != 0) or\ (MAP[2][0] == MAP[1][1] == MAP[0][2] and MAP[1][1] != 0): win += MAP[1][1] if win != 0: POINTS_JOUEURS[win-1] += 1 affichage_messages(win) fin_de_partie() nouveau_tableau() def nouveau_tableau(): # Adam ''' réinitialise le jeu et actualise le score ''' global MAP global TOUR_JEU global ETAT_PARTIE global JETONS if 3 not in POINTS_JOUEURS: MAP = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] TOUR_JEU = 0 ETAT_PARTIE = 0 JETONS = [3, 3] window_transition(11) def match_nul_check(): # Adam ''' vérifie si le même tableau apparait 3 fois a partir du moment ou les joueurs déplaces leurs jetons ''' if str(MAP) in MEMORY: REPETITION[MEMORY.index(str(MAP))] += 1 else: MEMORY.append(str(MAP)) REPETITION.append(1) if 3 in REPETITION: affichage_messages(0) nouveau_tableau() def fin_de_partie(): # jihad ''' met fin a la partie si un joueur atteint 3 point ''' if POINTS_JOUEURS[0] == 3: affichage_messages(3) window_transition(1) if POINTS_JOUEURS[1] == 3: affichage_messages(4) window_transition(1) def sauvegarder(): # jihad ''' sauvegarde la partie en cours ''' fichier_sauvegarde = open('save', 'w') temp = '' for elm in MAP: for s_elm in elm: temp += str(s_elm) temp += '|' temp += str(POINTS_JOUEURS[0]) + str(POINTS_JOUEURS[1]) temp += '|' temp += str(JETONS[0]) + str(JETONS[1]) temp += '|' temp += str(TOUR_JEU) temp += '|' temp += str(ETAT_PARTIE) fichier_sauvegarde.write(temp) def charger(): # jules ''' charge la dernière partie sauvegardé ''' global MAP, POINTS_JOUEURS, JETONS, TOUR_JEU, ETAT_PARTIE fichier = open('save', 'r') chaine = fichier.read() liste = [] temp = [] for elm in chaine: if elm != '|': temp.append(elm) else: liste.append(temp) temp = [] liste.append(temp) print(liste) MAP = [[int(liste[0][0]), int(liste[0][1]), int(liste[0][2])], [int(liste[0][3]), int(liste[0][4]), int(liste[0][5])], [int(liste[0][6]), int(liste[0][7]), int(liste[0][8])]] POINTS_JOUEURS = [int(liste[1][0]), int(liste[1][1])] JETONS = [int(liste[2][0]), int(liste[2][1])] TOUR_JEU = int(liste[3][0]) ETAT_PARTIE = int(liste[4][0]) actualisation_graphique() menu()
UTF-8
Python
false
false
17,045
py
2
TAPATAN.py
1
0.551134
0.474668
0
531
31.041431
79
Aasthaengg/IBMdataset
12,300,786,351,958
a8d8059352b170b6d158eeca29301650ae608c19
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03221/s255221883.py
7c371de9c4496c612c56bf71d1d38505c3449585
[]
no_license
https://github.com/Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n, m = map(int, input().split()) arr = [[] for _ in range(n)] p = [0] * m y = [0] * m for i in range(m): p[i], y[i] = map(int, input().split()) arr[p[i]-1].append(y[i]) for i in range(n): arr[i].sort() import bisect for i in range(m): num = bisect.bisect_left(arr[p[i]-1], y[i]) + 1 a = str(p[i]) b = str(num) print(a.zfill(6) + b.zfill(6))
UTF-8
Python
false
false
379
py
202,060
s255221883.py
202,055
0.496042
0.477573
0
20
17.95
51
naveenkambham/HiddenMarkovModel_FromScratch
9,835,475,110,320
fe7781d3c041f1cf2275b22ab801f72d571fed5f
0410a2f21c3627e19446addf0319603e7ae4aa5e
/HMM.py
8a85d8e9c7472af77b00951bb9348a93844c9a51
[]
no_license
https://github.com/naveenkambham/HiddenMarkovModel_FromScratch
d329c8be7ee157b325ce9dcb81097284ad87fea2
27c671c84067877df0fcafdd634842176dad5f72
refs/heads/master
2021-05-02T17:55:26.861849
2020-02-06T20:43:02
2020-02-06T20:43:02
120,655,320
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Title:Implement HMM run various work flows to understand the system. Developer : Naveen Kambham Description: This is a simple two state HMM model implemented using matrices. It has various workflows and methods to Caliculate Transition, observation matrices. """ """ Importing the required libraries. """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from collections import Counter """ PlotProabbilityDistributions(yvals,zvals,Title,Xlabel,Xlabel2): Method to plot out put distributions for each casino and each state [in]: Yvalues - Loose count, zvals- win count, Labels for Cheat and fair states [out]: Plot """ def PlotProabbilityDistributions(yvals,zvals,Title,Xlabel,Xlabel2): N = 2 ind = np.arange(N) # the x locations for the groups width = 0.27 # the width of the bars fig = plt.figure() ax = fig.add_subplot(111) #Use Y values and colour red for lose rects1 = ax.bar(ind, yvals, width, color='r') #Use Z values and colour gree for win rects2 = ax.bar(ind+width, zvals, width, color='g') #Setting the lables for X and Y axis ax.set_ylabel('Probability') ax.set_xticks(ind+width) ax.set_xticklabels( (Xlabel, Xlabel2) ) ax.legend( (rects1[0], rects2[0]), ('Lose', 'Win') ) #Adding Title fig.suptitle(Title) plt.show() """ PlotProabbilityDistributions(yvals,zvals): Method to plot out put distributions for no of times a casino is in each state [in]: Yvalues - Cheat count, zvals- Fair count [out]: Plot """ def PlotOutputDistributions(yvals,zvals,): N = 3 ind = np.arange(N) # the x locations for the groups width = 0.27 # the width of the bars fig = plt.figure() ax = fig.add_subplot(111) #Use Y values and colour red for cheat state rects1 = ax.bar(ind, yvals, width, color='r') #Use Z values and colour green for fair state rects2 = ax.bar(ind+width, zvals, width, color='g') #Add labels ax.set_ylabel('Count') ax.set_xticks(ind+width) ax.set_xticklabels( ('Lion', 'Dragon', 'Pyramid') ) ax.legend( (rects1[0], rects2[0]), ('Cheat', 'Fair') ) plt.show() """ Method to read the training data and add state columns in memory [in]: Input file [out]: data """ def readTrainingData(filepath): #Read CSV data = pd.read_csv(filepath, sep="\t", header=None) #Adding Columns data.columns = ["state", "outcome"] return data """ Method to read the testing data and replace win with one and lose with zero to perform the caliculations easily [in]: Input file [out]: data """ def readTestData(filepath): f = open(filepath,'r') filedata = f.read() f.close() #Replace win and loses newdata = filedata.replace("win","1") newdata2= newdata.replace("lose",'0') f = open(filepath,'w') f.write(newdata2) f.close() #Loading the data data= np.loadtxt(filepath) # print(data) return data """ ComputeTransitionMatrix: Method to compute the Transition and observation matrices. """ def computeTransitionMatrix(data): stateData = data['state'] #Dictionary to hold the states count b ={} #Counter to count all the state pairs. Here Zip funcion is used to create a tuple of all possible pairs trans_counter=Counter(zip(stateData, stateData[1:])) #Iterating counter to add the values to dictionaries for (x,y), c in trans_counter.most_common(): b[x,y] = c #creating transition matrix temptransMatrix= np.array([[(b['cheat','cheat'])/(b['cheat','fair']+b['cheat','cheat']),(b['cheat','fair'])/(b['cheat','fair']+b['cheat','cheat'])], [(b['fair','cheat'])/(b['fair','fair']+b['fair','cheat']),(b['fair','fair'])/(b['fair','fair']+b['fair','cheat'])]]) #using a data frame to add columns and indexes transitionMatrixDf = pd.DataFrame(temptransMatrix,index=['cheat','fair']) transitionMatrixDf.columns=['cheat','fair'] print("Transition Matrix:") print(transitionMatrixDf) #Counting States and Win Losses #Here also Zip funcion is used to create a tuple of all possible out comes obs_counter=Counter(zip(data['state'],data['outcome'])) # print(obs_counter) #Dictionary to hold the observation counts obs ={} for (x,y), c in obs_counter.most_common(): obs[x,y] = c # Creating Observation matrix obs_matrix= np.array([[(obs['cheat','lose'])/(obs['cheat','win']+obs['cheat','lose']),(obs['cheat','win'])/(obs['cheat','win']+obs['cheat','lose'])], [(obs['fair','lose'])/(obs['fair','win']+obs['fair','lose']),(obs['fair','win'])/(obs['fair','win']+obs['fair','lose'])] ]) obs_matrixdf = pd.DataFrame(obs_matrix,index=['cheat','fair']) obs_matrixdf.columns=['lose','win'] print("Emission Matrix:") print(obs_matrixdf) return temptransMatrix,obs_matrix """ This method is to compute alpha and beta values using transition and observation matrices and then preditcing the states at each possible observation. [in]:Transtion, Observation matrices, Observations """ def forward_backward_alg(A_mat, O_mat, observ): k = observ.size (n,m) = O_mat.shape #initializing forward and backward place holders to store compute probabilities prob_mat = np.zeros( (n,k) ) fw = np.zeros( (n,k+1) ) bw = np.zeros( (n,k+1) ) print(observ) # Forward step fw[:, 0] = 1.0/n #Iterating all observations for obs_ind in range(k): #Taking current row pi_row_vec = np.matrix(fw[:,obs_ind]) #updating the next row given the current values fw[:, obs_ind+1] = pi_row_vec *(np.diag(O_mat[:,observ[obs_ind]]))* np.matrix(A_mat).transpose() #Normalizing the prob values fw[:,obs_ind+1] = fw[:,obs_ind+1]/np.sum(fw[:,obs_ind+1]) # backward step bw[:,-1] = 1.0 #Iterating all observations from back for obs_ind in range(k, 0, -1): b_col_vec = np.matrix(bw[:,obs_ind]).transpose() #Updating row based on next observation rows bw[:, obs_ind-1] = (np.matrix(A_mat) * np.matrix(np.diag(O_mat[:,observ[obs_ind-1]])) * b_col_vec).transpose() #Normalizing proababilities bw[:,obs_ind-1] = bw[:,obs_ind-1]/np.sum(bw[:,obs_ind-1]) # combine Step prob_mat = np.array(fw)*np.array(bw) prob_mat = prob_mat/np.sum(prob_mat, 0) #Counter to caliculate the number of times system in each state cnt= Counter(prob_mat.argmax(axis=0)) #Converting from zero and ones to Cheat and Fair for key,val in cnt.most_common(len(cnt)): if (key == 0): cheat= val else: fair= val return prob_mat, fw, bw def main(): #input training files inputfiles=[r'/home/naveen/Downloads/DataSets/training_Lion_1000.data.txt', ] #Observation Files testingfiles=[r'/home/naveen/Downloads/DataSets/testing_Dragon_1000.data.txt', ] for i in range(0,1): print("Transition and Emission matrices for:",inputfiles[i]) data = readTrainingData(inputfiles[i]) A,B = computeTransitionMatrix(data) print(A) print(B) forward_backward_alg(A,B,readTestData(testingfiles[i])) main()
UTF-8
Python
false
false
7,325
py
2
HMM.py
1
0.635358
0.626348
0
220
32.281818
154
idushie/Animation-school
6,605,659,750,383
0e571adf285ce35a940532bbaa4a41c86ef0996b
dcef9b4da7ac67b210a14c17a565e7277c23e398
/W_10/normal_vertex.py
87095d23850d55620fb6037fb4ebeabd00d1c2b3
[]
no_license
https://github.com/idushie/Animation-school
6002ee3f79ee995ff712c09db04116f5053e28d0
20a9530b373aa1aaa8fc330dd59e09faedd3749f
refs/heads/master
2020-12-01T19:37:56.400689
2020-02-11T16:03:58
2020-02-11T16:03:58
230,744,742
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import maya.cmds as cmds import random import maya.OpenMaya as OpenMaya selected_mesh = cmds.ls(sl=1, l=1)[0] sel_list = OpenMaya.MSelectionList() sel_list.add(selected_mesh) dp = OpenMaya.MDagPath() sel_list.getDagPath(0, dp) it = OpenMaya.MItMeshVertex(dp) while not it.isDone(): #* idDone -> bool normalVector = OpenMaya.MVector() it.getNormal(normalVector, OpenMaya.MSpace.kWorld) normalVector.normalize() pos = it.position(OpenMaya.MSpace.kWorld) new_pos = pos + normalVector * random.uniform(-1.0 , 1.0) it.setPosition(new_pos, OpenMaya.MSpace.kWorld) it.next()
UTF-8
Python
false
false
619
py
51
normal_vertex.py
50
0.696284
0.68336
0
31
18.935484
61
Ulan9304/djtest
12,987,981,146,647
f88675f080118ea44c2fb0e183b21793e86aa9aa
873ea03199e127fc759b580115c442f8b517349e
/landing/views.py
ee3ca55f32b136b9c50db1736b61a2e2b08f288c
[]
no_license
https://github.com/Ulan9304/djtest
09509377d6d311240ac5cb6547ed6006bbf87773
94e637c231736bb1da1164af67db37c264f25291
refs/heads/master
2021-07-17T13:26:30.659860
2017-10-25T10:09:25
2017-10-25T10:09:25
107,991,450
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render from products.models import * from django.contrib.auth import ( authenticate, get_user_model, login, logout, ) # Create your views here. def home(request): products_images = ProductImage.objects.filter(is_active=True, is_main=True, product__is_active=True) products_images_phones = products_images.filter(product__category__id=2) products_images_laptop = products_images.filter(product__category__id=3) products_images_personal = products_images.filter(product__category__id=4) return render(request, 'home.html', locals())
UTF-8
Python
false
false
596
py
15
views.py
7
0.736577
0.731544
0
16
36.3125
104
Sovianum/questions-answers
17,806,934,428,714
f41bfb28cc6a8d66db320b1667ad6f08e9e22b29
d39d21aceb0e22f3cbe265c15654a3cecd89ccb4
/ask-klyukvin/views.py
2244142edb632ac64d948bf238edaff7e232ade6
[]
no_license
https://github.com/Sovianum/questions-answers
eefa0ca4675af37ef68f148c4c8af6021014e3e3
01b6ce6ec175ec09194463ccf748c074877c4170
refs/heads/master
2017-05-27T12:02:33.113427
2016-12-16T11:27:36
2016-12-16T11:27:36
68,749,910
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
import django.views.generic class GetNewQuestions(django.views.generic.TemplateView): template_name = 'pages/new_questions_page.html' class GetNewQuestionList(django.views.generic.TemplateView): template_name = 'pages/new_question_page.html' class GetQuestionDetailList(django.views.generic.TemplateView): template_name = 'pages/question_detail_page.html' class GetTagQuestions(django.views.generic.TemplateView): template_name = 'pages/tag_question_page.html' class GetUserSettings(django.views.generic.TemplateView): template_name = 'pages/user_settings_page.html' class GetLoginPage(django.views.generic.TemplateView): template_name = 'pages/login_page.html' class GetRegistrationPage(django.views.generic.TemplateView): template_name = 'pages/registration_page.html' class GetNotLogged(django.views.generic.TemplateView): template_name = 'pages/not_logged_new_questions_page.html'
UTF-8
Python
false
false
933
py
43
views.py
16
0.78135
0.78135
0
33
27.272727
63
sysdeep/fsys
5,961,414,642,976
7913dd64f28a867d7498eb816b95a3a00764d185
d9804258f176b3e8f84d811cf0c388c295e16693
/blog/models.py
7a9875f9db8a875a2acae0d13328e687bc48c69a
[]
no_license
https://github.com/sysdeep/fsys
7a8800ee53bff502e98f4704f86b7d5ef9a77184
5a0b48ff2dd7bdb5698af8de3b52223758f9b013
refs/heads/master
2021-01-10T20:43:56.144536
2012-03-27T14:57:54
2012-03-27T14:57:54
996,571
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- #blog/models from django.db import models #----------------------------------------------------------------------- #class Link(models.Model): # """Ссылка""" # url = models.URLField(unique=True) # def __unicode__(self): # return self.url #----------------------------------------------------------------------- from django.contrib.auth.models import User #работаем со стандартным еханизмом юзеров #----------------------------------------------------------------------- class Note(models.Model): """Запись""" title = models.CharField(max_length=200) #Имя desc = models.TextField() #тело записи user = models.ForeignKey(User) #кто добавил time_c = models.DateTimeField(auto_now_add=True) #время создания #link = models.ForeignKey(Link) #ссылка def __unicode__(self): return self.title #----------------------------------------------------------------------- #----------------------------------------------------------------------- class Tag(models.Model): """Тэги""" name = models.CharField(max_length=64, unique=True) #имя notes = models.ManyToManyField(Note) #ссылки на запись def __unicode__(self): return self.name #----------------------------------------------------------------------- #----------------------------------------------------------------------- class SharedNote(models.Model): """Расшаривание и рейтинг""" note = models.ForeignKey(Note, unique=True) date = models.DateTimeField(auto_now_add=True) votes = models.IntegerField(default=1) users_voted = models.ManyToManyField(User) def __unicode__(self): return u'%s, %s' % (self.note, self.votes) #-----------------------------------------------------------------------
UTF-8
Python
false
false
2,045
py
53
models.py
11
0.413793
0.410136
0
54
34.166667
97
yunusemrex/Python-OOP
11,304,353,944,600
9b6a28cc7dd8efa57135e8ff01c0c98e3de56689
ad4fc4e21f630c634be718f3eab0955701bed183
/Askerler.py
f6598b6f591d0456093dfe4ad64728c6f3457bd4
[]
no_license
https://github.com/yunusemrex/Python-OOP
9356f40ee185fda1049243d288cb449fd4db0c63
9b321da34033d0780f4c1cab24bbd02eb7806e3b
refs/heads/main
2023-06-14T11:31:18.087355
2021-07-10T12:28:04
2021-07-10T12:28:04
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Asker: def __init__(self,isim,guc,can,dayanlıklılık,hız,kudret): self.isim = isim self.guc = guc self.can = can self.dayanıklılık = dayanlıklılık self.hız = hız self.kudret = kudret def __str__(self): return(f"Asker Adı: {self.isim}") def Ultimate(self): print(f"{self.isim}, Ultimate Hazır!!!") class Piyade(Asker): def __init__(self, isim, guc, can, dayanlıklılık, hız, kudret, kaba_kuvvet): super().__init__(isim, guc, can, dayanlıklılık, hız, kudret) self.kaba_kuvvet = kaba_kuvvet print(f"Piyadenin Adı: {self.isim}, Gücü: {self.guc}, Canı: {self.can}, Dayanıklılığı: {self.dayanıklılık}, Hızı: {self.hız}, Kudret Puanı: {self.kudret}") print(f"Ultimate {self.kaba_kuvvet}!") class Suvari(Asker): def __init__(self, isim, guc, can, dayanlıklılık, hız, kudret, kudretli_saldiri): super().__init__(isim, guc, can, dayanlıklılık, hız, kudret) self.kudretli_saldiri = kudretli_saldiri print(f"Suvarinin Adı: {self.isim}, Gücü: {self.guc}, Canı: {self.can}, Dayanıklılığı: {self.dayanıklılık}, Hızı: {self.hız}, Kudret Puanı: {self.kudret}") print(f"Ultimate {self.kudretli_saldiri}!") class Okcu(Asker): def __init__(self, isim, guc, can, dayanlıklılık, hız, kudret,zehirli_ok): super().__init__(isim, guc, can, dayanlıklılık, hız, kudret) self.zehirli_ok = zehirli_ok print(f"Okcunun Adı: {self.isim}, Gücü: {self.guc}, Canı: {self.can}, Dayanıklılığı: {self.dayanıklılık}, Hızı: {self.hız}, Kudret Puanı: {self.kudret}") print(f"Ultimate {self.zehirli_ok}!") class Gozcu(Asker): def __init__(self, isim, guc, can, dayanlıklılık, hız, kudret, kılık_degistirme): super().__init__(isim, guc, can, dayanlıklılık, hız, kudret) self.kılık_degistirme = kılık_degistirme print(f"Gozcunun Adı: {self.isim}, Gücü: {self.guc}, Canı: {self.can}, Dayanıklılığı: {self.dayanıklılık}, Hızı: {self.hız}, Kudret Puanı: {self.kudret}") print(f"Ultimate {self.kılık_degistirme}!") class Bombaci(Asker): def __init__(self, isim, guc, can, dayanlıklılık, hız, kudret,dinamit): super().__init__(isim, guc, can, dayanlıklılık, hız, kudret) self.dinamit = dinamit print(f"Bombacının Adı: {self.isim}, Gücü: {self.guc}, Canı: {self.can}, Dayanıklılığı: {self.dayanıklılık}, Hızı: {self.hız}, Kudret Puanı: {self.kudret}") print(f"Ultimate {self.dinamit}!") Soldier1 = Asker("Asker",120,120,130,150,20) #Piyade = Piyade("Kudretli Kral",150,220,100,150,50,'Aktif') #Suvari = Suvari("Atlı Süvari",130,200,120,300,50,'Aktif') #Okcu = Okcu("Kraliçe Okçu",110,160,80,120,50,'Aktif') #Gözcü = Gozcu("İstihbaratçı",30,100,40,400,10,'Aktif') #Bombacı = Bombaci("Tahrip Ustası",50,150,35,200,20,'Aktif') #Piyade.Ultimate() #Soldier1.Ultimate()
UTF-8
Python
false
false
3,048
py
4
Askerler.py
3
0.641203
0.613204
0
61
46.409836
164
arjun180/Kaggle-Titanic-Machine-Learning
17,892,833,774,626
2ecf74ad65dedf2e115d8b36c30a54d72a63f565
a5701eb2169db2dfac3bfa44af8a0f169885026e
/Models/titanic.py
cad48632fb24db5555a89c19eda165f2d1ec904f
[]
no_license
https://github.com/arjun180/Kaggle-Titanic-Machine-Learning
0be7a75408d2d3749a307ef362808327326e3eec
85fa7ca4931557daa1bfaf03eb9d578bb52e0843
refs/heads/master
2021-01-10T13:55:08.311476
2015-11-12T01:05:56
2015-11-12T01:05:56
46,019,917
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import matplotlib.pyplot as plt # matplotlib inline import numpy as np import pandas as pd # import statsmodels.api as sm # from statsmodels.nonparametric.kde import KDEUnivariate # from statsmodels.nonparametric import smoothers_lowess from pandas import Series, DataFrame # from patsy import dmatrices from sklearn import datasets, svm df = pd.read_csv('/Users/arjun/Documents/Titanic/train.csv', header=0) # To see the age ,sex and ticket columns df[['Sex','Age','Ticket']] # Observing the values which are greater than 60 df[df['Age'] > 60][['Sex', 'Pclass', 'Age', 'Survived']] # Printing the gae values that come across as null df[df['Age'].isnull()][['Sex', 'Pclass', 'Age']] # Plotting the number of survived. plt.figure(figsize=(6,4)) # fig, ax = plt.subplots() df.Survived.value_counts().plot(kind='barh', color="blue", alpha=.65) # set_ylim(-1, len(df.Survived.value_counts())) plt.title("Survival Breakdown (1 = Survived, 0 = Died)") # Plotting the number of passengers per boarding count plt.figure(figsize=(6,4)) # fig, ax = plt.subplots() df.Embarked.value_counts().plot(kind='bar', alpha=0.55) # set_xlim(-1, len(df.Embarked.value_counts())) # specifies the parameters of our graphs plt.title("Passengers per boarding location") # A scatterplot between the people survived and their age plt.scatter(df.Survived, df.Age, alpha=0.55) # sets the y axis lable plt.ylabel("Age") # formats the grid line style of our graphs plt.grid(b=True, which='major', axis='y') plt.title("Survial by Age, (1 = Survived)") plt.show() # A bar plot to see who see who survived with respect to male and female count fig = plt.figure(figsize =(18,6)) ax1 = fig.add_subplot(121) df.Survived[df.Sex == 'male'].value_counts().plot(kind='barh',label='Male') df.Survived[df.Sex == 'female'].value_counts().plot(kind='barh', color='#FA2379',label='Female') plt.title("Who Survived? with respect to Gender, (raw value counts) "); plt.legend(loc='best') ax2 = fig.add_subplot(122) (df.Survived[df.Sex == 'male'].value_counts()/float(df.Sex[df.Sex == 'male'].size)).plot(kind='bar',label='Male') (df.Survived[df.Sex == 'female'].value_counts()/float(df.Sex[df.Sex == 'female'].size)).plot(kind='barh', color='#FA2379',label='Female') plt.title("Who Survived? with respect to Gender, (proportions) "); plt.legend(loc='best') plt.show()
UTF-8
Python
false
false
2,388
py
2
titanic.py
2
0.694724
0.677554
0
70
32.957143
137
anyuanay/MOFtextminer
3,624,952,403,526
6a2a05b92687d7bd770c8d2addfb008cedb1c1ff
f92a9a6a271b69c65ffa1b8fb4c2e178c9816260
/doc/storage/abbreviation_storage.py
bf64755ad1c788a4d3ddcae22b0596313bb04c73
[]
no_license
https://github.com/anyuanay/MOFtextminer
cf6c34928fbcc34fa211e69ed445564c4a718872
2f056e2ac0e41f5fc927cadd67b14679b95f03d1
refs/heads/main
2023-07-11T15:21:26.173701
2021-08-24T17:07:21
2021-08-24T17:07:21
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from functools import reduce import numpy as np import regex from pathlib import Path import json from chemdataextractor.doc import Paragraph from fuzzywuzzy import fuzz from doc.utils import _change_to_regex_string from error import DatabaseError class CounterABB(object): def __init__(self, abb_type=None, trainable=True): self.count = np.zeros(2, dtype='int16') self.Trainable = True self.update(abb_type, trainable) self.ABB_type = None def __repr__(self): return "({}/{})".format(self.count[0], self.count[1]) def update(self, abb_type=None, trainable=True): if not trainable: self.Trainable = False self.ABB_type = abb_type if abb_type: self.count = np.array([0, -1], dtype='int8') else: self.count = np.array([-1, 0], dtype='int8') if not self.Trainable: return self.ABB_type if isinstance(abb_type, list): for types in abb_type: self.update(types) if self.checking(abb_type): self.count[0] += 1 else: self.count[1] += 1 self.ABB_type = self.abb_type_checking() return self.ABB_type def abb_type_checking(self): label = ["CM", None] index = int(np.argmax(self.count)) return label[index] @staticmethod def checking(types=None): if types == "CM": return True else: return False class Abbreviation(object): def __init__(self, abb_name, abb_def, abb_type_original=None, trainable=True): self.ABB_def = abb_def self.ABB_name = abb_name self.ABB_type = None self.ABB_class, self.ABB_class_type = [], [] self.update(abb_def, abb_type_original, trainable=trainable) @staticmethod def _check_abb_type(abb_def): checking_string = abb_def checking_string = regex.sub(r"\b-\b", " - ", checking_string) checking = Paragraph(checking_string).cems if checking: abb_type = 'CM' else: abb_type = None return abb_type def _check_validation(self, abb_def, abb_type): abb_name = self.ABB_name abb_front_char = reduce(lambda x, y: x + "".join(regex.findall(r"^\S|[A-Z]", y)), regex.split(r",|\s|-", abb_def), "") if abb_name[-1] == 's' and abb_def[-1] == 's': abb_front_char += 's' ratio = fuzz.ratio(abb_name.lower(), abb_front_char.lower()) return ratio > 70 or abb_type == 'CM' def __repr__(self): return "(" + ") / (".join(self.ABB_class) + ")" def __eq__(self, other): if isinstance(other, str): return self.ABB_name == other elif isinstance(other, Abbreviation): return self.ABB_name == other.ABB_name else: return False def __ne__(self, other): return not self == other def __len__(self): return len(self.ABB_class) def __getitem__(self, key): return self.ABB_class[key] def get(self, key, default=None): try: return self.__getitem__(key) except KeyError: return default def change_abb_type(self, abb_def, abb_type): self.update(abb_def, abb_type, trainable=False) def update(self, abb_def, abb_type_original=None, trainable=True): abb_type = abb_type_original if isinstance(abb_def, list): for def_ in abb_def: self.update(def_, abb_type) return for i, classification in enumerate(self.ABB_class): result = self.compare(abb_def, classification) if result > 70: self.ABB_class_type[i].update(abb_type, trainable=trainable) self.ABB_def = classification self.ABB_type = self.ABB_class_type[i].ABB_type return None self.ABB_class.append(abb_def) self.ABB_class_type.append(CounterABB(abb_type, trainable)) self.ABB_def = abb_def self.ABB_type = abb_type @staticmethod def compare(text1, text2): return fuzz.ratio(text1.lower(), text2.lower()) class AbbStorage(object): def __init__(self): self.name_to_abb = {} self.def_to_name = {} self.name = "abbreviation" def __repr__(self): return self.name def __len__(self): return len(self.name_to_abb) def __getitem__(self, item): if item in self.name_to_abb: return self.name_to_abb[item] elif item in self.def_to_name: return self.def_to_name[item] else: raise DatabaseError(f'{item} not in {self.name} storage') def __contains__(self, item): return item in self.def_to_name or item in self.name_to_abb def get(self, k, d=None): try: return self[k] except KeyError: return d def get_abbreviation(self, item, d=None): try: abb_name = self.def_to_name[item] return self.name_to_abb[abb_name] except IndexError: return d def get_name(self, item, d=None): try: return self.def_to_name[item] except IndexError: return d def keys(self): return self.name_to_abb.keys() def values(self): return self.name_to_abb.values() def items(self): return self.name_to_abb.items() def append(self, abb_name, abb_def, abb_type, trainable=True): if abb_name in self.name_to_abb: new_abb = self.name_to_abb[abb_name] new_abb.update(abb_def, abb_type, trainable) self.def_to_name[abb_def] = abb_name else: new_abb = Abbreviation(abb_name, abb_def, abb_type, trainable) if not len(new_abb): return None self.name_to_abb[abb_name] = new_abb self.def_to_name[abb_name] = abb_name self.def_to_name[abb_def] = abb_name return new_abb @property def abb_regex(self): regex_pattern = _change_to_regex_string(self.def_to_name.keys(), return_as_str=True) return regex_pattern def read_abbreviation_from_json(path, trainable=False): """ abb_database = read_abbreviation_from_json(file_path) json file must be list of tuple -> [(ABB_name, ABB_definition, ABB_type), .. ] :param path: path of json :param trainable: If True, type of abbreviation can be changed. (False is recommended) :return: <class MOFDICT.doc.storage.AbbStorage> """ path_ = Path(str(path)) if not path_.exists(): raise FileNotFoundError elif path_.suffix not in ['.json']: raise TypeError(f'expected json, but {path_.suffix}') with open(str(path_), 'r') as f: list_of_abbreviation = json.load(f) return read_abbreviation_from_list(list_of_abbreviation, trainable) def read_abbreviation_from_list(list_of_abbreviation, trainable=False): """ abb_database = read_abbreviation_from_file([('ASAP', 'as soon as possible', None), ('DKL', 'depolymerised Kraft lignin', 'CM')]) :param list_of_abbreviation: (json) list of tuple (ABB_name, ABB_definition, ABB_type). ABB_type must be None or 'CM' :param trainable: If True, type of abbreviation can be changed. (False is recommended) :return: <class MOFDICT.doc.storage.AbbStorage> """ storage = AbbStorage() for abb_tuple in list_of_abbreviation: if len(abb_tuple) != 3: raise TypeError('input must be list of tuple : (ABB_name, ABB_definition, ABB_type)') abb_name, abb_def, abb_type = abb_tuple if isinstance(abb_name, str) and isinstance(abb_def, str): storage.append(abb_name, abb_def, abb_type, trainable) else: raise TypeError('input must be list of tuple : (ABB_name, ABB_definition, ABB_type)') return storage
UTF-8
Python
false
false
8,142
py
39
abbreviation_storage.py
27
0.571604
0.568411
0
268
29.380597
97
suhanree/tweet-hashtag-graph-analysis
13,932,873,921,556
e658a1cd5b8e08588551d14701719a9a9f7bcbce
52e9b103f5e6fca4cb1a39c64828d06ddfe2cdc1
/src/average_degree.py
d984ecc03f7825c37f5aee9e24cc530713311700
[]
no_license
https://github.com/suhanree/tweet-hashtag-graph-analysis
28bf04478792e2345396dcb3512cc0eb0c618316
b0200e746be0ec0efd1a53fc0436ce07be844383
refs/heads/master
2021-01-10T03:08:24.972861
2016-04-14T16:46:42
2016-04-14T16:46:42
55,037,612
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Python codes to run this average degree problem. import sys import json import time from graph import TimeWindowGraph def extract_data(json_data): """ To extract timestamp (from 'created_at') and a list of hashtags for each tweet. Input: json_data (dict): name of the file Output: timestamp (int): timestamp for the tweet hashtags (list of str): a list of hashtags (sorted) """ try: str_time = json_data['created_at'] timestamp = int(time.mktime(time.strptime(str_time, \ "%a %b %d %H:%M:%S +0000 %Y")) + 0.5) # 0.5 is added to make sure it has the correct integer value. except KeyError: # If 'created_at' field does not exist, set timestamp as 0. #print "KeyError for the key, created_at : timestamp will be 0." timestamp = 0 try: hashtags = sorted([data['text'] for data in json_data['entities']['hashtags']]) except KeyError as key: # If there is no hashtag-related field, there is no hashtag for this tweet print "KeyError for the key,", key, ": no hashtag will be used." hashtags = [] return timestamp, hashtags def main(input_filename, output_filename): """ Main function to run the program """ # Size of the window window_size = 60 # Creating the graph for hashtag object gr = TimeWindowGraph(window_size=window_size) time_threshold = gr.current_time - window_size with open(input_filename, 'r') as f_in: # Opening input file to get tweets with open(output_filename, 'w') as f_out: # Opening output file for line in f_in: # For every tweet json_data = json.loads(line) # dict representing tweet # Checking for control data (if there is less than 3 fields). # In those cases, we will skip the data. if len(json_data) < 3: continue # Extract timestamp (int) and a list of hashtags (str, case # sensitive) (timestamp, hashtags) = extract_data(json_data) # Check the timestamp first. if timestamp <= time_threshold: # too old for our graph. continue # do nothing for this tweet. elif timestamp > gr.current_time: # becomes the most recent tweet. # Set current_time for the graph # (it will remove old links older than threshold also) gr.set_current_time(timestamp) # New links (for all possible pairs of hashtags) are added here. num_hashtags = len(hashtags) for i in range(num_hashtags): for j in range(i+1, num_hashtags): # First, check for duplicate hashtags if hashtags[i] == hashtags[j]: continue # Second, try to add both nodes (this method will do nothing # if the given node already exists) gr.add_node(hashtags[i]) gr.add_node(hashtags[j]) # Third, (1) try to find if the link already exists; # and (2) if so, what the timestamp of that link is. # Here timestamp (epoch time) is a non-negative # integer, so -1 indicates there is no link. timestamp_link = gr.check_link(hashtags[i], hashtags[j]) if timestamp_link < 0: # No link exists. gr.add_link(hashtags[i], hashtags[j], timestamp) elif timestamp_link < timestamp: # old link exists. gr.update_link(hashtags[i], hashtags[j], timestamp) # Now writes the degree information to the output file f_out.write("%.2f\n"% gr.average_degree()) if __name__ == "__main__": if len(sys.argv) != 3: print "Usage: python src/average_degree.py", \ "./tweet_input/tweets.txt ./tweet_output/output.txt" sys.exit() main(sys.argv[1], sys.argv[2])
UTF-8
Python
false
false
4,267
py
6
average_degree.py
3
0.544411
0.538786
0
103
40.427184
84
mumichae/drop
10,823,317,590,062
880df7376c3a6a6a434f8f1b7ae7c7f58ba507ed
b9d94a109d2f42fd2f9d02eeb387615e8af963ce
/tests/pipeline/test_AS.py
f26dcea414730bc6ee4a318771ed17c9774907be
[ "MIT" ]
permissive
https://github.com/mumichae/drop
2701c642691140a44a36ca63ee8b1e2ec10bbf42
394f0e28e8b49a9be55ab0e46c4b75552babd4a0
refs/heads/master
2021-07-13T23:11:37.285898
2020-10-21T06:59:44
2020-10-21T06:59:44
230,656,194
1
1
MIT
true
2020-09-30T19:06:34
2019-12-28T19:34:23
2020-09-27T06:40:44
2020-09-30T19:06:33
100,574
1
1
0
R
false
false
from tests.common import * class Test_AS_Pipeline: @pytest.fixture(scope="class") def pipeline_run(self, demo_dir): LOGGER.info("run aberrant splicing pipeline") pipeline_run = run(["snakemake", "aberrantSplicing", "-j", CORES], demo_dir) assert "Finished job 0." in pipeline_run.stderr return pipeline_run @pytest.mark.usefixtures("pipeline_run") def test_counts(self, demo_dir): cnt_file = "Output/processed_data/aberrant_splicing/datasets/savedObjects/raw-fraser/fds-object.RDS" r_cmd = """ library(FRASER) fds <- loadFraserDataSet(file="{}") print(fds) """.format(cnt_file) r = runR(r_cmd, demo_dir) assert "Number of samples: 10" in r.stdout assert "Number of junctions: 81" in r.stdout assert "Number of splice sites: 9" in r.stdout @pytest.mark.usefixtures("pipeline_run") def test_results(self, demo_dir): results_dir = "Output/processed_data/aberrant_splicing/results" r = run(f"wc -l {results_dir}/fraser_results_per_junction.tsv", demo_dir) assert "88 " in r.stdout r = run(f"wc -l {results_dir}/fraser_results.tsv", demo_dir) assert "1 " in r.stdout
UTF-8
Python
false
false
1,268
py
49
test_AS.py
41
0.618297
0.611199
0
32
38.625
108
araghukas/nwlattice
11,441,792,885,222
4c5e413ae85045217032767d70db02cccd514e6b
4ed0c60aa1df2877df9c2ae3a829fea65f8706e8
/nwlattice/sizes.py
4e0f0a8c9002570abff0e4b5f30264357e1267c3
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
https://github.com/araghukas/nwlattice
2c5554153b32061c9090b99f8c3a24d7709140da
443d0a000c2b68cd99070245eede032e912c1a40
refs/heads/master
2023-08-22T05:49:43.920452
2021-10-25T05:21:56
2021-10-25T05:21:56
314,936,613
1
0
null
false
2020-11-22T02:33:23
2020-11-22T01:26:48
2020-11-22T02:26:56
2020-11-22T02:33:22
6,868
0
0
0
Python
false
false
SIZE_PROPERTIES = [ "scale", "width", "length", "unit_dz", "period", "fraction", "area", "n_xy", "nz", "q", "indexer" ] class NanowireSizeCompound: """ A size container that combines one or more NanowireSize objects """ def __init__(self, **kwargs): for k in kwargs: if k in SIZE_PROPERTIES: self.__setattr__(k, kwargs[k]) def __str__(self): s = "<NanowireSize instance>\n" s_args = [] props = self.props() for prop, val in props.items(): try: if int(val) == val: s_args.append("<\t{:<10}: {:<15,d}>".format(prop, int(val))) else: s_args.append("<\t{:<10}: {:<15,.2f}>".format(prop, val)) except TypeError: s_args.append("<\t{:<10}: {}>".format(prop, val)) s += "\n".join(s_args) return s def props(self): p_dict = {} for prop in SIZE_PROPERTIES: if hasattr(self, prop): p_dict[prop] = self.__getattribute__(prop) return p_dict class PlaneSize(object): """ A size information handler for planar lattices """ def __init__(self, scale, n_xy=None, width=None): """ :param scale: lattice scale (ex: lattice constant) :param n_xy: structure specific integer thickness index indicating width :param width: width in sase units as `a0` """ if not (width or n_xy): raise ValueError("must specify either `n_xy` or `width`") if scale <= 0: raise ValueError("`scale` must be a positive number") self._scale = scale if n_xy is not None and n_xy <= 0: raise ValueError("`n_xy` must be a positive integer") self._n_xy = n_xy if width is not None and width <= 0: raise ValueError("`width` must be a positive number") self._width = width # size calculator functions self._n_xy_func = None self._width_func = None self._area_func = None def __str__(self): return (self.__repr__() + "\n" "scale: {:<20}\n" "n_xy : {:<20}\n" "width: {:<20}\n" "area : {:<20}" ).format(self.scale, self.n_xy, self.width, self.area) @property def n_xy(self): if self._n_xy is None: self._n_xy = self._n_xy_func(self.scale, self._width) return self._n_xy @property def width(self): return self._width_func(self.scale, self.n_xy) @property def scale(self): return self._scale @property def area(self): return self._area_func(self.scale, self.n_xy) class NanowireSize(PlaneSize): """ A size information handler for nanowire lattices """ def __init__(self, scale, unit_dz, n_xy=None, nz=None, width=None, length=None): """ :param scale: lattice scale (ex: lattice constant) :param nz: number of planes stacked along z-axis :param n_xy: structure specific integer thickness index indicating width :param length: length in same units as `a0` :param width: width in sase units as `a0` """ super().__init__(scale, n_xy, width) if not (nz or length): raise ValueError("must specify either `nz` or `length`") self._unit_dz = unit_dz self._nz = nz self._length = length # size calculator functions self._nz_func = None self._length_func = None def __str__(self): s = "<NanowireSize instance>\n" s_args = [] props = self.props() for prop, val in props.items(): try: if int(val) == val: s_args.append("<\t{:<10}: {:<15,d}>".format(prop, val)) else: s_args.append("<\t{:<10}: {:<15,.2f}>".format(prop, val)) except TypeError: s_args.append("<\t{:<10}: {}>".format(prop, val)) s += "\n".join(s_args) return s def props(self): p_dict = {} for prop in SIZE_PROPERTIES: if hasattr(self, prop): p_dict[prop] = self.__getattribute__(prop) return p_dict @property def area(self): return self._area_func() @property def unit_dz(self): return self._unit_dz @property def nz(self): if self._nz is None: self._nz = self._nz_func(self.scale, self._length, self.unit_dz) return self._nz @property def length(self): return self._length_func(self.scale, self.nz, self.unit_dz) def fix_nz(self, nz): self._nz = nz class NanowireSizeRandom(NanowireSize): def __init__(self, scale, unit_dz, fraction, n_xy=None, nz=None, width=None, length=None): super().__init__(scale, unit_dz, n_xy, nz, width, length) self._fraction = fraction @property def fraction(self): return self._fraction class NanowireSizePeriodic(NanowireSize): """ A size information handler for periodic nanowire lattices """ def __init__(self, scale, unit_dz, n_xy=None, nz=None, q=None, width=None, length=None, period=None): super().__init__(scale, unit_dz, n_xy, nz, width, length) if q is None and period is None: raise ValueError("must specify either `q` or `period`") elif q == 0: raise ValueError("`q` set to zero") elif period == 0: raise ValueError("`period` set to zero") self._q = q self._q_func = None self._period = period self._period_func = None @property def q(self): if self._q is None: self._q = self._q_func(self.scale, self._period) return self._q @property def period(self): return self._period_func(self.scale, self.q) class NanowireSizeArbitrary(NanowireSize): """ A size information handler for arbitrary nanowire lattices """ def __init__(self, scale, unit_dz, n_xy=None, nz=None, width=None, length=None): super().__init__(scale, unit_dz, n_xy, nz, width, length) self._index = None self._indexer = None @property def index(self): if self._index is None: new_nz, self._index = self._indexer(self.nz) if new_nz: # option to bypass forcing nz change self._nz = new_nz return self._index @property def indexer(self): return self._indexer def invert_index(self): self._index = [self.nz - idx for idx in self._index][::-1]
UTF-8
Python
false
false
6,910
py
16
sizes.py
14
0.52026
0.514616
0
245
27.204082
80
LaurentMT/pybargain_protocol
13,314,398,652,281
232583caa9c483c4ecff9354638e7e6f60d97c43
15b7a21cabcde179622a7fdbdbe2f5a8c9e9bf43
/pybargain_protocol/helpers/build_check_tx.py
7616715fe7866d450bd4d52626a5fee353b50d0c
[ "MIT" ]
permissive
https://github.com/LaurentMT/pybargain_protocol
da1ac5f1cf70260b3a91f96aa70610de7c751ba8
3b4c6040ec3562ce6921f917c97a9931d5c6e5de
refs/heads/master
2020-05-17T18:00:35.674117
2015-04-26T03:54:43
2015-04-26T03:54:43
23,262,899
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python ''' Version: 0.0.1 Python library for the bargaining protocol ''' import math from bitcoin.transaction import * from pybargain_protocol.constants import MAINNET, MAGIC_BYTES_TESTNET, TESTNET, MAGIC_BYTES_MAINNET # BITCOIN CONSTANTS MIN_TX_SIZE = 100 MAX_BLOCK_SIZE = 1048576 MAX_MONEY_RANGE = 2100000000000000 SATOSHIS_TO_BITCOIN = 100000000 def build_tx_with_change(inputs, outputs, amount = 0, fees = 0, change_addr = ''): ''' Builds a transaction with an additional change output if necessary if amount + fees < sum(inputs['amount']) then adds an output with: * output['amount'] = sum(inputs['amount']) - amount - fees * output['script'] = script(change_addr) Parameters: inputs = list of inputs ([{'output': u'txhash:vindex', 'value': ..., 'privkey': ...}]) outputs = list of outputs ([{'amount': ..., 'script': ...}]) amount = amount proposed by the buyer fees = fees for this transaction change_addr = change address used if necessary ''' outputs_cp = copy.deepcopy(outputs) # Computes the sum of inputs sum_inp = sum([i['value'] for i in inputs]) # Creates a change output if necessary (and if we have a change address) if (amount + fees < sum_inp) and change_addr: change = sum_inp - amount - fees script = address_to_script(change_addr) outputs_cp.append({'amount': change, 'script': script}) # Builds the tx tx = {'locktime': 0, 'version': 1, 'ins': [], 'outs': []} for i in inputs: i = i['output'] tx['ins'].append({'outpoint': {'hash': i[:64], 'index': int(i[65:])}, 'script': '', 'sequence': 4294967295}) for o in outputs_cp: tx['outs'].append({'script': o['script'], 'value': o['amount']}) tx = serialize(tx) # Signs the tx for i in range(len(inputs)): tx = sign(tx, i, inputs[i]['privkey']) return tx def check_tx(tx): ''' Checks validity of a transaction according to some of the rules defined in https://en.bitcoin.it/wiki/Protocol_rules#.22tx.22_messages Parameters: tx = transaction to be checked ''' if (not tx) or (tx is None): return False # Deserializes the tx if type(tx) == dict: txjson = tx txser = serialize(tx) else: txjson = deserialize(tx) txser = tx # 2. Make sure neither in or out lists are empty if txjson['ins'] is None or len(txjson['ins']) == 0: return False if txjson['outs'] is None or len(txjson['outs']) == 0: return False # 3. Size in bytes < MAX_BLOCK_SIZE if len(txser) >= MAX_BLOCK_SIZE: return False # 4. Each output value, as well as the total, must be in legal money range sum_outs = 0 for o in txjson['outs']: if (o['value'] < 0) or (o['value'] > MAX_MONEY_RANGE): return False else: sum_outs += o['value'] if sum_outs > MAX_MONEY_RANGE: return False # 5. Make sure none of the inputs have hash=0, n=-1 (coinbase transactions) for i in txjson['ins']: if not i['outpoint']['hash'] and i['outpoint']['index'] == -1: return False # 6. Check that nLockTime <= INT_MAX[1], size in bytes >= 100[2] if txjson['locktime'] >= math.pow(2,32): return False if len(txser) < MIN_TX_SIZE: return False return True def check_tx_signatures(tx, network = MAINNET): ''' Checks validity of tx signatures Supports P2PH and P2SH (n-of-m signatures) Returns True if valid, False otherwise Parameters: tx = transaction network = network used ''' magicbytes = MAGIC_BYTES_TESTNET if network == TESTNET else MAGIC_BYTES_MAINNET # Gets the tx in serialized/deserialized forms if type(tx) == dict: txjson = tx txser = serialize(tx) else: txjson = deserialize(tx) txser = tx # Checks each tx input for i in range(len(txjson['ins'])): try: # Deserializes the input scriptsig scr_sig = deserialize_script(txjson['ins'][i]['script']) if len(scr_sig) == 2: # P2PH script # Computes script pubkey associated to input scr_pubkey = address_to_script(pubtoaddr(scr_sig[1], magicbytes)) # Verifies input signature if not verify_tx_input(txser, i, scr_pubkey, scr_sig[0], scr_sig[1]): return False elif len(scr_sig) >= 3: # P2SH script # Extract signatures # (first item is 0; subsequent are sigs; filter out empty placeholder sigs) sigs = [s for s in scr_sig[1:-1] if s] # Extracts scriptpubkey (last item) scr_pubkey_hex = scr_sig[-1] scr_pubkey = deserialize_script(scr_pubkey_hex) # Extracts n (required number of signatures) n = scr_pubkey[0] # Extracts pubkeys # (first item is n, -2 is m, -1 is multisig op; we get everything else (the pubkeys)) pubkeys = scr_pubkey[1:-2] # Checks signatures and number of valid signatures nbsig = 0 for pubkey in pubkeys: for sig in sigs: if verify_tx_input(txser, i, scr_pubkey_hex, sig, pubkey): nbsig += 1 break if nbsig < n: return False else: # Not implemented or invalid scriptsig return False except: return False return True def check_inputs_unicity(txs): ''' Checks that inputs are unique among the given transactions Parameters: txs = list of transactions ''' txos = set() for tx in txs: txjson = tx if (type(tx) == dict) else deserialize(tx) for i in range(len(txjson['ins'])): inp_hash = txjson['ins'][i]['outpoint']['hash'] inp_idx = txjson['ins'][i]['outpoint']['index'] txo = inp_hash + ':' + str(inp_idx) if txo in txos: return False else: txos.add(txo) return True def check_outputs_exist(txs, outputs): ''' Checks occurences of a list of outputs among a list of transactions Returns True if all outputs appear in a transaction of the given list, False otherwise Parameters: txs = list of transactions outputs = list of outputs [{'amount': ..., 'script': ...}] ''' outp_set = set([o['script'] + ':' + str(o['amount']) for o in outputs]) for tx in txs: txjson = tx if (type(tx) == dict) else deserialize(tx) for o in txjson['outs']: outp = o['script'] + ':' + str(o['value']) if outp in outp_set: outp_set.remove(outp) return True if len(outp_set) == 0 else False def scriptsig_to_addr(scr_sig, network = MAINNET): ''' Returns the address corresponding to a given scriptsig Parameters: scr_sig = script sig network = network used ''' magicbytes = MAGIC_BYTES_TESTNET if network == TESTNET else MAGIC_BYTES_MAINNET if not (type(scr_sig) == dict): scr_sig = deserialize_script(scr_sig) if len(scr_sig) == 2: # P2PH script # Computes script pubkey associated to input return pubtoaddr(scr_sig[1], magicbytes) elif len(scr_sig) >= 3: scr_pubkey_hex = scr_sig[-1] return p2sh_scriptaddr(scr_pubkey_hex, 196) else: return ''
UTF-8
Python
false
false
7,880
py
24
build_check_tx.py
23
0.554949
0.54099
0
217
35.271889
105
natefoo/galaxy-beta2
8,830,452,769,066
8deb358c38f12785f013154ab9cbbc9ac9438063
7aafdda6794652ddb86ee777950b0a717b673c4b
/lib/galaxy/model/migrate/versions/0069_rename_sequencer_form_type.py
337b3cd17426cc7372dd3bbbf30f5c40ab294ee1
[ "CC-BY-2.5", "AFL-2.1", "AFL-3.0", "CC-BY-3.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
https://github.com/natefoo/galaxy-beta2
1cd15219abbf7418301a74820a0c7b5257a3fc78
3af3bf5742fbf0f7d301a2a8c548a3e153544448
refs/heads/dev
2021-07-07T10:32:42.823976
2015-02-19T22:53:12
2015-02-21T18:29:58
31,084,940
0
3
NOASSERTION
false
2020-10-01T01:43:16
2015-02-20T20:58:32
2015-02-23T15:43:23
2015-02-21T18:32:44
56,633
0
2
1
Python
false
false
""" Migration script to rename the sequencer information form type to external service information form """ from sqlalchemy import * from sqlalchemy.orm import * from migrate import * from migrate.changeset import * from sqlalchemy.exc import * from galaxy.model.custom_types import * import datetime now = datetime.datetime.utcnow import logging log = logging.getLogger( __name__ ) metadata = MetaData() def upgrade(migrate_engine): metadata.bind = migrate_engine print __doc__ metadata.reflect() current_form_type = 'Sequencer Information Form' new_form_type = "External Service Information Form" cmd = "update form_definition set type='%s' where type='%s'" % ( new_form_type, current_form_type ) migrate_engine.execute( cmd ) def downgrade(migrate_engine): metadata.bind = migrate_engine metadata.reflect() new_form_type = 'Sequencer Information Form' current_form_type = "External Service Information Form" cmd = "update form_definition set type='%s' where type='%s'" % ( new_form_type, current_form_type ) migrate_engine.execute( cmd )
UTF-8
Python
false
false
1,102
py
296
0069_rename_sequencer_form_type.py
198
0.720508
0.720508
0
38
28
103
markafarrell/ran-load-generator
1,649,267,457,089
aa9eb3df083ebc33f222cca8f49f38b7274bebea
32cf8120ccea8eb36bdb724747ddb8ceff871cf1
/session/sessionManagement.py
47bb1251d709c414b3ba85ce4ca8bf3cbf127540
[]
no_license
https://github.com/markafarrell/ran-load-generator
7a5aae824aa7d114ee814816f4f7399bdf5e34d1
4d48903ead094a9ff1b263c247ee118dafb2768d
refs/heads/master
2021-01-12T01:23:13.461845
2018-04-30T05:21:38
2018-04-30T05:21:38
78,379,265
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/bin/python import sys import getopt import time from subprocess import Popen, PIPE, check_output, STDOUT import json import random import os import signal from datetime import datetime import sqlite3 iperf_process=None filteredcsv_process=None csv2sqlite_process=None session = -1 enviornment = "" with open('config/servers.conf') as data_file: config = json.load(data_file) def get_cursor(): conn = sqlite3.connect(config['database_path']) c = conn.cursor() return (c, conn) def getEnvironments(): return config['servers'].keys() def kill_test(): print "Killing Test" if csv2sqlite_process != None: print "Killing csv2sqlite" csv2sqlite_process.terminate() if filteredcsv_process != None: print "Killing csv2filteredcsv" filteredcsv_process.terminate() if iperf_process != None: print "Killing iperf" iperf_process.terminate() def runiPerfRemote(direction, bandwidth, duration, interface, environment, datagram_size, remote_port, local_port, sql, tos=False): if direction == 'b': test_flag = "-d" else: test_flag = "" if os.name == "posix": ssh_path = "ssh" else: ssh_path = "ssh\ssh" if(direction == 'd' or direction == 'b'): iperf_command = "iperf-2.0.5 -c $SSH_CLIENT -u -i1 -fm -t" + str(duration) + " -b " + str(bandwidth) + "M" + " -l" + str(datagram_size) + " -p" + str(local_port) + " " + str(test_flag) + " -L" + str(remote_port) if tos != False: iperf_command += " -S " + str(tos) iperf_command += " -yC > iperf_logs/" + str(session) + " & echo $!" ssh_cmd = [ ssh_path, "-q", "-o", "StrictHostKeyChecking=no", "-b", interface, "-o", "BindAddress=" + interface, environment['username'] + "@" + environment['hostname'], "-p", str(environment['ssh_port']), "-i", environment['ssh_key'], iperf_command ] print ' '.join(ssh_cmd) remote_pid = check_output(ssh_cmd) #print remote_pid elif(direction == 'u'): iperf_command = "iperf-2.0.5 -s -u -i1 -fm -t" + str(duration) + " -b " + str(bandwidth) + "M" + " -l" + str(datagram_size) + " -p" + str(remote_port) + " " + str(test_flag) if tos != False: iperf_command += " -S " + str(tos) iperf_command += " -yC > iperf_logs/" + str(session) + " & echo $!" ssh_cmd = [ ssh_path, "-q", "-o", "StrictHostKeyChecking=no", "-b", interface, "-o", "BindAddress=" + interface, environment['username'] + "@" + environment['hostname'], "-p", str(environment['ssh_port']), "-i", environment['ssh_key'], iperf_command ] remote_pid = check_output(ssh_cmd) #print remote_pid else: #TODO: handle incorrect direction pass return remote_pid def updateLocalPID(session, pid): (c, conn) = get_cursor() c.execute('''UPDATE SESSIONS SET LOCAL_PID = ? WHERE SESSION_ID = ?''', [pid, session]) conn.commit() def insertSessionRecord(session, environment, remote_ip, remote_port, local_ip, local_port, bandwidth, direction, start_time, duration, local_pid, remote_pid): (c, conn) = get_cursor() c.execute('''INSERT INTO SESSIONS (SESSION_ID, REMOTE_IP, REMOTE_PORT, LOCAL_IP, LOCAL_PORT, BANDWIDTH, DIRECTION, START_TIME, DURATION, LOCAL_PID, REMOTE_PID, ENVIRONMENT, COMPLETE) VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?)''', (session, remote_ip, remote_port, local_ip, local_port, bandwidth, direction, start_time, duration, local_pid, remote_pid, environment, 0)) conn.commit() def runiPerfLocal(direction, bandwidth, duration, interface, environment, datagram_size, remote_port, local_port, sql, session, tos=False): global iperf_process global filteredcsv_process global csv2sqlite_process if direction == 'b': test_flag = "-d" else: test_flag = "" if os.name == "posix": iperf_path = "iperf" else: iperf_path = "iperf\iperf" if(direction == 'd' or direction == 'b'): # bufsize=1 means line buffered command_array =[iperf_path, "-s", "-u", "-i", "1", "-l", str(datagram_size), "-p", str(local_port), "-y", "C", "-f", "m"] if tos != False: command_array += ["-S", str(tos)] print ' '.join(command_array) iperf_process = Popen(command_array, stdout=PIPE, bufsize=1) filteredcsv_process = Popen(["python", "-u", "../csv2filteredcsv/csv2filteredcsv.py", "-d"], stdin=iperf_process.stdout, stdout=PIPE, bufsize=1) iperf_process.stdout.close() elif(direction == 'u'): command_array = [iperf_path, "-c", environment['hostname'], "-u", "-i", "1", "-l", str(datagram_size), "-p", str(remote_port), "-L", str(local_port), "-y", "C", "-t", str(duration), "-f", "m", "-b", str(bandwidth) + "M", "-L", str(local_port), test_flag] if tos != False: command_array += ["-S", str(tos)] iperf_process = Popen(command_array, stdout=PIPE, bufsize=1) filteredcsv_process = Popen(["python", "-u", "../csv2filteredcsv/csv2filteredcsv.py", "-d"], stdin=iperf_process.stdout, stdout=PIPE, bufsize=1) iperf_process.stdout.close() else: #TODO: handle incorrect direction pass updateLocalPID(session, iperf_process.pid) if sql: csv2sqlite_process = Popen(["python", "-u", "../csv2sqlite/csv2sqlite.py", "-s", str(session), "-o", config['database_path']], stdin=filteredcsv_process.stdout, stdout=PIPE, bufsize=1) filteredcsv_process.stdout.close() while csv2sqlite_process.poll() is None: try: line = csv2sqlite_process.stdout.readline() print line, except KeyboardInterrupt: kill_test() except: kill_test() else: while filteredcsv_process.poll() is None: try: line = filteredcsv_process.stdout.readline() print line, except KeyboardInterrupt: kill_test() except: kill_test() def killRemoteSession(session): if os.name == "posix": ssh_path = "ssh" else: ssh_path = "ssh\ssh" try: environment = config['servers'][session['ENVIRONMENT']] kill_cmd = "kill -9 " + str(session['REMOTE_PID']) ssh_cmd = [ ssh_path, "-q", "-o", "StrictHostKeyChecking=no", "-b", session['LOCAL_IP'], "-o", "BindAddress=" + session['LOCAL_IP'], environment['username'] + "@" + environment['hostname'], "-p", str(environment['ssh_port']), "-i", environment['ssh_key'], kill_cmd ] res = check_output(ssh_cmd) except: res = True return res def killLocalSession(session): try: os.kill(session['LOCAL_PID'], signal.SIGKILL) return 1 except: return 0 def killSession(session): remote_status = killRemoteSession(session) local_status = killLocalSession(session) completeSession(session) def completeSession(session): (c, conn) = get_cursor() c.execute('''UPDATE SESSIONS SET COMPLETE = 1 WHERE SESSION_ID = ?''', [session['SESSION_ID']]) conn.commit() def getSession(session): (c, conn) = get_cursor() c.execute('''SELECT SESSION_ID, REMOTE_IP, REMOTE_PORT, LOCAL_IP, LOCAL_PORT, BANDWIDTH, DIRECTION, START_TIME, DURATION, LOCAL_PID, REMOTE_PID, ENVIRONMENT FROM SESSIONS WHERE SESSION_ID = ?''', [session]) sessions = [] for row in c: session = {} for i in range(0,len(row)): # Construct a dictionary using the column headers and results session[c.description[i][0]] = row[i] sessions.append(session) return sessions[0] def getSessions(): (c, conn) = get_cursor() c.execute('''SELECT SESSION_ID, REMOTE_IP, REMOTE_PORT, LOCAL_IP, LOCAL_PORT, BANDWIDTH, DIRECTION, START_TIME, DURATION, LOCAL_PID, REMOTE_PID, ENVIRONMENT, COMPLETE FROM SESSIONS''') sessions = [] for row in c: session = {} for i in range(0,len(row)): # Construct a dictionary using the column headers and results session[c.description[i][0]] = row[i] sessions.append(session) return sessions def getSession(session_id): (c, conn) = get_cursor() c.execute('''SELECT SESSION_ID, REMOTE_IP, REMOTE_PORT, LOCAL_IP, LOCAL_PORT, BANDWIDTH, DIRECTION, START_TIME, DURATION, LOCAL_PID, REMOTE_PID, ENVIRONMENT, COMPLETE FROM SESSIONS WHERE SESSION_ID = ?''', [session_id]) sessions = [] for row in c: session = {} for i in range(0,len(row)): # Construct a dictionary using the column headers and results session[c.description[i][0]] = row[i] sessions.append(session) if len(sessions) > 0: return sessions[0] else: return [] def getSessionsComplete(): (c, conn) = get_cursor() c.execute('''SELECT SESSION_ID, REMOTE_IP, REMOTE_PORT, LOCAL_IP, LOCAL_PORT, BANDWIDTH, DIRECTION, START_TIME, DURATION, LOCAL_PID, REMOTE_PID, ENVIRONMENT, COMPLETE FROM SESSIONS WHERE COMPLETE = 1''') sessions = [] for row in c: session = {} for i in range(0,len(row)): # Construct a dictionary using the column headers and results session[c.description[i][0]] = row[i] sessions.append(session) return sessions def getSessionsActive(): (c, conn) = get_cursor() c.execute('''SELECT SESSION_ID, REMOTE_IP, REMOTE_PORT, LOCAL_IP, LOCAL_PORT, BANDWIDTH, DIRECTION, START_TIME, DURATION, LOCAL_PID, REMOTE_PID, ENVIRONMENT, COMPLETE FROM SESSIONS WHERE COMPLETE != 1 AND julianday('now','localtime')<julianday(start_time)+duration/(24.0*60*60)''') sessions = [] for row in c: session = {} for i in range(0,len(row)): # Construct a dictionary using the column headers and results session[c.description[i][0]] = row[i] sessions.append(session) return sessions def getSessionsAfter(timestamp): (c, conn) = get_cursor() c.execute('''SELECT SESSIONS.SESSION_ID, MAX(TIMESTAMP) AS TIMESTAMP , REMOTE_IP, REMOTE_PORT, LOCAL_IP, LOCAL_PORT, BANDWIDTH, DIRECTION, START_TIME, DURATION, LOCAL_PID, REMOTE_PID, ENVIRONMENT, COMPLETE FROM SESSION_DATA INNER JOIN SESSIONS ON SESSION_DATA.SESSION_ID = SESSIONS.SESSION_ID WHERE TIMESTAMP > ? GROUP BY SESSIONS.SESSION_ID, REMOTE_IP, REMOTE_PORT, LOCAL_IP, LOCAL_PORT, BANDWIDTH, DIRECTION, START_TIME, DURATION GROUP BY SESSION_ID''',[d]) sessions = [] for row in c: session = {} for i in range(0,len(row)): # Construct a dictionary using the column headers and results session[c.description[i][0]] = row[i] sessions.append(session) def createSession(session, direction, bandwidth, duration, interface, environment, datagram_size, remote_port, local_port, tos): command_array = ["python", "-u", "startSession.py", "-d", direction, "-b", str(bandwidth), "-t", str(duration), "-i", interface, "-e", environment, "-s", str(session), "-o", "sql"] if tos != False: command_array += ["-T", str(tos)] start_session_process = Popen(command_array)
UTF-8
Python
false
false
10,297
py
41
sessionManagement.py
19
0.665534
0.659415
0
309
32.323625
268
vktemel/CarND-capstone
8,890,582,348,108
e8f23658fb2ae389644edd7e611f04fa24e03ffb
15d9d0b7a5c2011759a8c6192b57038dd89d686a
/ros/src/twist_controller/twist_controller.py
2dbf7f4d72edb566463529cf2bb92d493c3a23ec
[ "MIT" ]
permissive
https://github.com/vktemel/CarND-capstone
fd972585d984c9bb55b35c42f930a76d77d57dc9
d44fb76b059e8fd5700bcf8fd97d390810232d13
refs/heads/master
2023-03-14T20:33:36.403078
2021-03-15T03:42:12
2021-03-15T03:42:12
335,111,813
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
GAS_DENSITY = 2.858 ONE_MPH = 0.44704 from pid import PID from yaw_controller import YawController import rospy class Controller(object): def __init__(self, wheel_base, steer_ratio, min_speed, max_lat_accel, max_steer_angle, decel_limit, wheel_radius, vehicle_mass): self.throttle = 0 self.pid_speed = PID(0.2, 0.001, 0.1) self.yawCtrl = YawController(wheel_base, steer_ratio, min_speed, max_lat_accel, max_steer_angle) self.timestamp = rospy.get_time() self.decel_limit = decel_limit self.wheel_radius = wheel_radius self.vehicle_mass = vehicle_mass def reset(self): self.pid_speed.reset() def control(self, target_linear_vel, target_angular_vel, current_linear_vel, current_angular_vel): # TODO: Change the arg, kwarg list to suit your needs # Return throttle, brake, steer steer = self.yawCtrl.get_steering(target_linear_vel.x, target_angular_vel.z, current_linear_vel.x) # rospy.logwarn("target vel x: %s", target_linear_vel.x) vel_err = target_linear_vel.x - current_linear_vel.x current_timestamp = rospy.get_time() dt = current_timestamp - self.timestamp self.timestamp = current_timestamp throttle = self.pid_speed.step(vel_err, dt) if throttle > 1.0: throttle = 1.0 elif throttle < 0: throttle = 0 if((current_linear_vel.x < 0.1) & (target_linear_vel.x == 0.0)): throttle = 0 brake = 700 elif((vel_err < 0.0) & (throttle < 0.02)): throttle = 0 decel = max(vel_err, self.decel_limit) brake = abs(decel)*self.vehicle_mass*self.wheel_radius else: brake = 0.0 return throttle, brake, steer
UTF-8
Python
false
false
1,856
py
3
twist_controller.py
2
0.592672
0.570582
0
59
30.440678
132
GeorgeZ1917/Python
3,822,520,920,905
437d0a589583b6c822a7750f29f681e6fe0e3200
1f58673da4698ac6458a593550c82f8754d11792
/MainDictionary.py
166e9428e4765e5ea904dad7964f6e31643dce09
[]
no_license
https://github.com/GeorgeZ1917/Python
c2904e757e58c61b312e994345cbfb9263e615ee
391c3a27f3950bd1f1661a39356d90f097905293
refs/heads/main
2023-03-26T15:55:27.065085
2021-03-25T14:52:55
2021-03-25T14:52:55
333,175,600
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#MainDictionary.py from Dictionary import LinkedList, BinarySearchTree, insertList, insertTree, deleteList, middleNode from Dictionary import printList, printTree, searchList, searchTree, deleteLeaf, identicalTrees, convert, root from random import randint from time import time insertList( 30, "Hello hello" ) insertList( 14, "My ace man" ) insertList( 70, "My mellow" ) insertList( 31, "John Wayne" ) insertList( 47, "Ain't got" ) insertList( 17, "Anything" ) #start = time() #data = 0 #while data < 10 ** 3 : # insertList ( randint ( 0, 10 ** 3 ), str ( randint ( 0, 10 ** 3 ) ** 2 ) ) # data += 1 #printList() #print ( "Middle node key:", middleNode().key ) #end = time() #print ( end - start ) print ( "There are", LinkedList.nodesCount, "nodes.\n\n\n" ) insertTree ( 100, "Die Erfindung des Rades" ) insertTree ( 150, "Lösch das Internet" ) insertTree ( 120, "Achterbahn" ) insertTree ( 96, " Wenn ich gross bin" ) insertTree ( 145, "Wie ich" ) insertTree ( 200, "Cybercrime" ) insertTree ( 80, " Lila Wolken" ) insertTree ( 99, " Hätte hätte Fahrradkette" ) insertTree ( 130, "El Presidente" ) insertTree ( 110, "Wenn jeder an sich denkt" ) #start = time() data = 0 while data < 10 ** 2 : insertTree ( randint ( 0, 10 ** 2 ), str ( randint ( 0, 10 ** 2 ) ** 2 ) ) data += 1 deleteLeaf ( root, 110 ) #printTree ( root ) #end = time() #print ( end - start ) convert() printTree ( root ) print ( "There are", BinarySearchTree.leavesCount, "leaves." )
UTF-8
Python
false
false
1,521
py
13
MainDictionary.py
10
0.64361
0.597497
0
46
31
110
shanqing-cai/MRI_analysis
8,589,938,851
9ec8f12752d4d1343a0c0e0e1937e8237149c858
d16b5cafcfd18ceb6a24f5c30b247fb2f31509a9
/aparc12_surface_stats.py
880f00e67c01938aba9cd6a614f51a6920722b66
[ "BSD-2-Clause" ]
permissive
https://github.com/shanqing-cai/MRI_analysis
669eb77bb16efd506cf06f2bf40abecd80b2b2d6
39b3d48e2158623ffd9a8a6ea47d16a4a7b83cd9
refs/heads/master
2021-01-10T22:11:51.175311
2014-02-19T04:32:57
2014-02-19T04:32:57
7,264,919
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import os import sys import glob import argparse import tempfile import numpy as np import matplotlib.pyplot as plt import pickle import scipy.stats as stats from copy import deepcopy from subprocess import Popen, PIPE from get_qdec_info import get_qdec_info from fs_load_stats import fs_load_stats from aparc12 import * from scai_utils import * from scai_stats import cohens_d BASE_DIR = "/users/cais/STUT/analysis/aparc12_tracts" DATA_DIR = "/users/cais/STUT/DATA" FSDATA_DIR = "/users/cais/STUT/FSDATA" CTAB = "/users/cais/STUT/slaparc_550.ctab" SEGSTATS_SUM_WC = "aparc12_wm%dmm.segstats.txt" P_THRESH_UNC = 0.05 hemis = ["lh", "rh"] grps = ["PFS", "PWS"] grpColors = {"PFS": [0, 0, 0], "PWS": [1, 0, 0]} if __name__ == "__main__": ap = argparse.ArgumentParser(description="Analyze aparc12 surface annotation: Surface area and average thickness") ap.add_argument("-r", dest="bReload", action="store_true", \ help="Reload data (time-consuming)") # ap.add_argument("hemi", help="Hemisphere {lh, rh}") # if len(sys.argv) == 1: # ap.print_help() # sys.exit(0) # === Args input arguments === # args = ap.parse_args() bReload = args.bReload # hemi = args.hemi # assert(hemis.count(hemi) == 1) # === Determine the subject list and their group memberships === # check_dir(BASE_DIR) ds = glob.glob(os.path.join(BASE_DIR, "S??")) ds.sort() sIDs = [] isPWS = [] SSI4 = [] for (i0, t_path) in enumerate(ds): (t_path_0, t_sID) = os.path.split(t_path) sIDs.append(t_sID) SSI4.append(get_qdec_info(t_sID, "SSI")) if get_qdec_info(t_sID, "diagnosis") == "PWS": isPWS.append(1) else: isPWS.append(0) isPWS = np.array(isPWS) SSI4 = np.array(SSI4) assert(len(sIDs) > 0) assert(len(sIDs) == len(isPWS)) # === Get the list of cortical ROIs (Speech network only) === rois0 = get_aparc12_cort_rois(bSpeech=True) check_file(CTAB) (ctab_roi_nums, ctab_roi_names) = read_ctab(CTAB) # Duplex into both hemispheres roi_names = [] roi_nums = [] for (i0, hemi) in enumerate(hemis): for (i1, roi) in enumerate(rois0): t_roi_name = "%s_%s" % (hemi, roi) assert(ctab_roi_names.count(t_roi_name) == 1) idx = ctab_roi_names.index(t_roi_name) roi_names.append(t_roi_name) roi_nums.append(ctab_roi_nums[idx]) assert(len(roi_names) == len(roi_nums)) # === Load data: Loop through all subjects === # cachePklFN = "aparc12_surface_stats_dset.pkl" nROIs = len(roi_names) ns = len(sIDs) if bReload: print("INFO: bReload = True: Reloading data (time-consuming)\n") labArea = np.zeros([ns, nROIs]) labAvgThick = np.zeros([ns, nROIs]) # Label area normalized by hemisphere surface area labAreaNorm = np.zeros([ns, nROIs]) for (i0, sID) in enumerate(sIDs): t_rois = [] t_roi_nums = [] t_area = [] t_area_norm = [] t_thick = [] for (i1, hemi) in enumerate(hemis): # == Load hemisphere total surface area == # hemiStatsFN = os.path.join(FSDATA_DIR, sID, \ "stats", "%s.aparc.stats" % hemi) check_file(hemiStatsFN) t_hemiSurfArea = fs_load_stats(hemiStatsFN, "SurfArea") tmpfn = tempfile.mktemp() hthick = os.path.join(FSDATA_DIR, sID, "surf", \ "%s.thickness" % hemi) check_file(hthick) print("Loading data from subject %s, hemisphere %s" \ % (sID, hemi)) (sout, serr) = Popen(["mri_segstats", "--annot", \ sID, hemi, "aparc12", \ "--in", hthick, \ "--sum", tmpfn], \ stdout=PIPE, stderr=PIPE).communicate() sout = read_text_file(tmpfn) os.system("rm -rf %s" % tmpfn) k0 = 0 while (sout[k0].startswith("# ")): k0 = k0 + 1 sout = sout[k0 :] for tline in sout: if len(tline) == 0: break; t_items = remove_empty_strings(\ tline.replace('\t', ' ').split(' ')) if len(t_items) == 10: t_rois.append(hemi + "_" + t_items[4]) if hemi == "lh": t_roi_nums.append(1000 + int(t_items[1])) else: t_roi_nums.append(2000 + int(t_items[1])) t_area.append(float(t_items[3])) t_area_norm.append(float(t_items[3]) / t_hemiSurfArea) t_thick.append(float(t_items[5])) # == Matching and filling values == # for (i2, t_rn) in enumerate(roi_nums): if t_roi_nums.count(t_rn) > 0: idx = t_roi_nums.index(t_rn) labArea[i0][i2] = t_area[idx] labAreaNorm[i0][i2] = t_area_norm[idx] labAvgThick[i0][i2] = t_thick[idx] # === Save to pkl file === # dset = {"labArea": labArea, \ "labAreaNorm": labAreaNorm, \ "labAvgThick": labAvgThick} os.system("rm -rf %s" % cachePklFN) cachePklF = open(cachePklFN, "wb") pickle.dump(dset, cachePklF) cachePklF.close() check_file(cachePklFN) print("INFO: Saved loaded data to file: %s\n" % os.path.abspath(cachePklFN)) else: print("INFO: Loading saved data from file: %s\n" % os.path.abspath(cachePklFN)) cachePklF = open(cachePklFN, "rb") dset = pickle.load(cachePklF) cachePklF.close() labArea = dset["labArea"] labAreaNorm = dset["labAreaNorm"] labAvgThick = dset["labAvgThick"] # === Check data validity === # assert(len(labArea) == ns) assert(len(labAreaNorm) == ns) assert(len(labAvgThick) == ns) # === Statistical comparison === # mean_area = {} std_area = {} nsg = {} for (i0, grp) in enumerate(grps): nsg[grp] = len(np.nonzero(isPWS == i0)) mean_area[grp] = np.mean(labArea[isPWS == i0], axis=0) # std_area[grp] = np.std(labArea[isPWS == i0], axis=0) / np.sqrt(nsg[grp]) std_area[grp] = np.std(labArea[isPWS == i0], axis=0) cmprItems = ["labArea", "labAreaNorm", "labAvgThick"] for (h0, cmprItem) in enumerate(cmprItems): print("--- List of significant differences in %s (p < %f uncorrected) ---" \ % (cmprItem, P_THRESH_UNC)) p_tt_val = np.zeros([nROIs]) t_tt_val = np.zeros([nROIs]) for (i0, t_roi) in enumerate(roi_names): if h0 == 0: dat_PWS = labArea[isPWS == 1, i0] dat_PFS = labArea[isPWS == 0, i0] elif h0 == 1: dat_PWS = labAreaNorm[isPWS == 1, i0] dat_PFS = labAreaNorm[isPWS == 0, i0] elif h0 == 2: dat_PWS = labAvgThick[isPWS == 1, i0] dat_PFS = labAvgThick[isPWS == 0, i0] (t_tt, p_tt) = stats.ttest_ind(dat_PWS, dat_PFS) p_tt_val[i0] = p_tt t_tt_val[i0] = t_tt if p_tt_val[i0] < P_THRESH_UNC: if t_tt_val[i0] < 0: dirString = "PWS < PFS" else: dirString = "PWS > PFS" print("%s: p = %f; t = %f (%s)" \ % (t_roi, p_tt_val[i0], t_tt_val[i0], dirString)) print("\tMean +/- SD: PWS: %.5f +/- %.5f; PFS: %.5f +/- %.5f" \ % (np.mean(dat_PWS), np.std(dat_PWS), \ np.mean(dat_PFS), np.std(dat_PFS))) print("\tCohens_d = %.3f" % cohens_d(dat_PWS, dat_PFS)) print("\n") # === Spearman correlation === # for (h0, cmprItem) in enumerate(cmprItems): print("--- Spearman correlations with SSI4 in %s (p < %f uncorrected) ---" \ % (cmprItem, P_THRESH_UNC)) p_spc_val = np.zeros([nROIs]) rho_spc_val = np.zeros([nROIs]) for (i0, t_roi) in enumerate(roi_names): if h0 == 0: (r_spc, p_spc) = stats.spearmanr(SSI4[isPWS == 1], \ labArea[isPWS == 1, i0]) elif h0 == 1: (r_spc, p_spc) = stats.spearmanr(SSI4[isPWS == 1], \ labAreaNorm[isPWS == 1, i0]) elif h0 == 2: (r_spc, p_spc) = stats.spearmanr(SSI4[isPWS == 1], \ labAvgThick[isPWS == 1, i0]) p_spc_val[i0] = p_spc rho_spc_val[i0] = r_spc if p_spc_val[i0] < P_THRESH_UNC: if rho_spc_val[i0] < 0: dirString = "-" else: dirString = "+" print("%s: p = %f; rho = %f (%s)" \ % (t_roi, p_spc_val[i0], rho_spc_val[i0], dirString)) print("\n") # === Compare combined dIFo and vIFo === # lh_IFo_area = {} lh_IFo_areaNorm = {} for (i0, grp) in enumerate(grps): lh_IFo_area[grp] = labArea[isPWS == i0, roi_names.index("lh_vIFo")] + \ labArea[isPWS == i0, roi_names.index("lh_dIFo")] lh_IFo_areaNorm[grp] = labAreaNorm[isPWS == i0, roi_names.index("lh_vIFo")] + \ labAreaNorm[isPWS == i0, roi_names.index("lh_dIFo")] (t_tt, p_tt) = stats.ttest_ind(lh_IFo_area["PWS"], \ lh_IFo_area["PFS"]) print("-- Comparing lh_IFo area: --") print("\tp = %f; t = %f" % (p_tt, t_tt)) print("\tPWS: %.1f +/- %.1f; PFS: %.1f +/- %.1f" \ % (np.mean(lh_IFo_area["PWS"]), np.std(lh_IFo_area["PWS"]), \ np.mean(lh_IFo_area["PFS"]), np.std(lh_IFo_area["PFS"]))) print("\n") (t_tt, p_tt) = stats.ttest_ind(lh_IFo_areaNorm["PWS"], \ lh_IFo_areaNorm["PFS"]) print("-- Comparing lh_IFo areaNorm: --") print("\tp = %f; t = %f" % (p_tt, t_tt)) print("\tPWS: %.1e +/- %.1e; PFS: %.1e +/- %.1e" \ % (np.mean(lh_IFo_areaNorm["PWS"]), np.std(lh_IFo_areaNorm["PWS"]), \ np.mean(lh_IFo_areaNorm["PFS"]), np.std(lh_IFo_areaNorm["PFS"]))) # === Correlating combined IFo with SSI4 === # (r_spc, p_spc) = stats.spearmanr(SSI4[isPWS == 1], lh_IFo_area["PWS"]) print("-- Correlating SSI4 with lh_IFo area: --") print("\tp = %f; rho = %f" % (p_spc, r_spc)) print("\n") (r_spc, p_spc) = stats.spearmanr(SSI4[isPWS == 1], lh_IFo_areaNorm["PWS"]) print("-- Correlating SSI4 with lh_IFo areaNorm: --") print("\tp = %f; rho = %f" % (p_spc, r_spc)) print("\n") # === Visualiation === # """ for (i0, grp) in enumerate(grps): plt.errorbar(range(nROIs), mean_area[grp], yerr=std_area[grp], \ color=grpColors[grp]) plt.xticks(range(nROIs), roi_names, rotation=90.0) plt.show() """
UTF-8
Python
false
false
11,734
py
70
aparc12_surface_stats.py
39
0.476138
0.461735
0
333
34.231231
118
CoLRev-Ecosystem/colrev
3,444,563,800,387
0ef650fd2a6c5e81f21e4d52168e5060b6d6a10a
c7b00162595001b5fca76d63ab84143ab776b52e
/colrev/ops/built_in/data/github_pages.py
a46369e539a83214f849c7ff4c9b310983c835df
[ "MIT", "CC0-1.0" ]
permissive
https://github.com/CoLRev-Ecosystem/colrev
9756398b6cdf46eeffabebf38e880455eb15d402
19fb6883fa2445e1119aa11cb1a011997f285e4f
refs/heads/main
2023-03-23T13:37:09.298982
2023-03-23T10:06:57
2023-03-23T10:06:57
363,073,613
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#! /usr/bin/env python """Creation of a github-page for the review as part of the data operations""" from __future__ import annotations from dataclasses import dataclass from pathlib import Path import zope.interface from dataclasses_jsonschema import JsonSchemaMixin import colrev.env.package_manager import colrev.env.utils import colrev.record if False: # pylint: disable=using-constant-test from typing import TYPE_CHECKING if TYPE_CHECKING: import colrev.ops.data import git @zope.interface.implementer(colrev.env.package_manager.DataPackageEndpointInterface) @dataclass class GithubPages(JsonSchemaMixin): """Export the literature review into a Github Page""" ci_supported: bool = False @dataclass class GHPagesSettings(colrev.env.package_manager.DefaultSettings, JsonSchemaMixin): """Settings for GithubPages""" endpoint: str version: str auto_push: bool _details = { "auto_push": { "tooltip": "Indicates whether the Github Pages branch " "should be pushed automatically" }, } GH_PAGES_BRANCH_NAME = "gh-pages" settings_class = GHPagesSettings def __init__( self, *, data_operation: colrev.ops.data.Data, # pylint: disable=unused-argument settings: dict, ) -> None: # Set default values (if necessary) if "version" not in settings: settings["version"] = "0.1.0" if "auto_push" not in settings: settings["auto_push"] = True self.settings = self.settings_class.load_settings(data=settings) def get_default_setup(self) -> dict: """Get the default setup""" github_pages_endpoint_details = { "endpoint": "colrev_built_in.github_pages", "version": "0.1", "auto_push": True, } return github_pages_endpoint_details def __setup_github_pages_branch( self, *, data_operation: colrev.ops.data.Data, git_repo: git.Repo ) -> None: # if branch does not exist: create and add index.html data_operation.review_manager.logger.info("Setup github pages") git_repo.create_head(self.GH_PAGES_BRANCH_NAME) git_repo.git.checkout(self.GH_PAGES_BRANCH_NAME) title = "Manuscript template" readme_file = data_operation.review_manager.readme if readme_file.is_file(): with open(readme_file, encoding="utf-8") as file: title = file.readline() title = title.replace("# ", "").replace("\n", "") title = '"' + title + '"' git_repo.git.rm("-rf", Path(".")) gitignore_file = Path(".gitignore") git_repo.git.checkout("HEAD", "--", gitignore_file) with gitignore_file.open("a", encoding="utf-8") as file: file.write("status.yaml\n") data_operation.review_manager.dataset.add_changes(path=gitignore_file) colrev.env.utils.retrieve_package_file( template_file=Path("template/github_pages/index.html"), target=Path("index.html"), ) data_operation.review_manager.dataset.add_changes(path=Path("index.html")) colrev.env.utils.retrieve_package_file( template_file=Path("template/github_pages/_config.yml"), target=Path("_config.yml"), ) colrev.env.utils.inplace_change( filename=Path("_config.yml"), old_string="{{project_title}}", new_string=title, ) data_operation.review_manager.dataset.add_changes(path=Path("_config.yml")) colrev.env.utils.retrieve_package_file( template_file=Path("template/github_pages/about.md"), target=Path("about.md"), ) data_operation.review_manager.dataset.add_changes(path=Path("about.md")) def __update_data( self, *, data_operation: colrev.ops.data.Data, silent_mode: bool ) -> None: if not silent_mode: data_operation.review_manager.logger.info("Update data on github pages") records = data_operation.review_manager.dataset.load_records_dict() # pylint: disable=duplicate-code included_records = { r["ID"]: r for r in records.values() if r["colrev_status"] in [ colrev.record.RecordState.rev_synthesized, colrev.record.RecordState.rev_included, ] } data_file = Path("data.bib") data_operation.review_manager.dataset.save_records_dict_to_file( records=included_records, save_path=data_file ) data_operation.review_manager.dataset.add_changes(path=data_file) data_operation.review_manager.create_commit(msg="Update sample") def __push_branch( self, *, data_operation: colrev.ops.data.Data, git_repo: git.Repo, silent_mode: bool, ) -> None: if not silent_mode: data_operation.review_manager.logger.info("Push to github pages") if "origin" in git_repo.remotes: if "origin/gh-pages" in [r.name for r in git_repo.remotes.origin.refs]: git_repo.git.push("origin", self.GH_PAGES_BRANCH_NAME, "--no-verify") else: git_repo.git.push( "--set-upstream", "origin", self.GH_PAGES_BRANCH_NAME, "--no-verify", ) username, project = ( git_repo.remotes.origin.url.replace("https://github.com/", "") .replace(".git", "") .split("/") ) if not silent_mode: data_operation.review_manager.logger.info( f"Data available at: https://{username}.github.io/{project}/" ) else: if not silent_mode: data_operation.review_manager.logger.info("No remotes specified") def update_data( self, data_operation: colrev.ops.data.Data, records: dict, # pylint: disable=unused-argument synthesized_record_status_matrix: dict, # pylint: disable=unused-argument silent_mode: bool, ) -> None: """Update the data/github pages""" if data_operation.review_manager.in_ci_environment(): data_operation.review_manager.logger.error( "Running in CI environment. Skipping github-pages generation." ) return if data_operation.review_manager.dataset.has_changes(): data_operation.review_manager.logger.error( "Cannot update github pages because there are uncommited changes." ) return git_repo = data_operation.review_manager.dataset.get_repo() active_branch = git_repo.active_branch if self.GH_PAGES_BRANCH_NAME not in [h.name for h in git_repo.heads]: self.__setup_github_pages_branch( data_operation=data_operation, git_repo=git_repo ) git_repo.git.checkout(self.GH_PAGES_BRANCH_NAME) self.__update_data(data_operation=data_operation, silent_mode=silent_mode) if self.settings.auto_push: self.__push_branch( data_operation=data_operation, git_repo=git_repo, silent_mode=silent_mode, ) git_repo.git.checkout(active_branch) def update_record_status_matrix( self, data_operation: colrev.ops.data.Data, # pylint: disable=unused-argument synthesized_record_status_matrix: dict, endpoint_identifier: str, ) -> None: """Update the record_status_matrix""" # Note : automatically set all to True / synthesized for syn_id in synthesized_record_status_matrix: synthesized_record_status_matrix[syn_id][endpoint_identifier] = True def get_advice( self, review_manager: colrev.review_manager.ReviewManager, ) -> dict: """Get advice on the next steps (for display in the colrev status)""" data_endpoint = "Data operation [github pages data endpoint]: " advice = {"msg": f"{data_endpoint}", "detailed_msg": "TODO"} if "NA" == review_manager.dataset.get_remote_url(): advice["msg"] += ( "\n - To make the repository available on Github pages, " + "push it to a Github repository\nhttps://github.com/new" ) else: advice[ "msg" ] += "\n - The page is updated automatically (gh-pages branch)" return advice if __name__ == "__main__": pass
UTF-8
Python
false
false
8,823
py
170
github_pages.py
81
0.584042
0.583248
0
252
34.011905
87
tkj5008/Luminar_Python_Programs
8,950,711,881,205
3fc7efc28a82c585b476fb805d192f2df991fc3d
86f860eab66ce0681cda293ee063e225747d113c
/Object_Oriented_Programming/Demo9.py
eaaf7fbd9866c9a63b8e92c211f7987326375c47
[]
no_license
https://github.com/tkj5008/Luminar_Python_Programs
a1e7b85ad2b7537081bdedad3a5a4a2d9f6c1f07
d47ef0c44d5811e7039e62938a90a1de0fe7977b
refs/heads/master
2023-08-03T05:15:04.963129
2021-09-23T14:33:21
2021-09-23T14:33:21
403,316,476
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Employee: company="AT&T" def __init__(self,name,empid,salary): self.name=name self.empid=empid self.salary=salary def printvalue(self): print(Employee.company,self.name,self.empid,self.salary,) obj=Employee("Thomas","TJ618N",25000) obj.printvalue()
UTF-8
Python
false
false
299
py
135
Demo9.py
118
0.655518
0.628763
0
10
28.9
65
dopexxx/FacePeeper
18,769,007,085,937
6521e93ba2ae5d87284eb3fd384c6e9a6225d4c2
5b4afa1364dbec5c154be8fb3fe8fa382c3039b5
/MNIST_Classifier/mnistTester.py
30783263c2254e9ba6fcf5ae0e8d0bd428487c30
[]
no_license
https://github.com/dopexxx/FacePeeper
3957ea1155a7a93752117cc036587c053d14a372
ff3d1a8e735b0318eaee47066c264e87afc8c111
refs/heads/master
2021-01-09T06:07:52.813261
2017-11-22T09:48:11
2017-11-22T09:48:11
80,897,773
3
1
null
false
2017-02-28T22:31:06
2017-02-04T06:05:19
2017-02-27T21:55:21
2017-02-28T22:31:05
493,332
0
1
0
Python
null
null
# Test MNIST task # We used this file to test our network on the MNIST task # Execute this file while being in the MNIST directory (not from parent directory e.g.) # Import modules import tensorflow as tf from tensorflow.core.protobuf import saver_pb2 import numpy as np # Import data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # Import the network class from .py file in parent directory import os,sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from residualCNN import RESNET # Specify task and build network net = RESNET(task='MNIST',direc='below') net.network() ### ONLY FOR TESTING, NOT FOR RETRAINING (variables not stored) with tf.Session() as session: saver = tf.train.Saver(tf.trainable_variables(),write_version = saver_pb2.SaverDef.V1) saver.restore(session, "./weightsMNIST.ckpt") # Evaluate Training Accuracy. Memory Error with single batch of size 55000, therefore we use 5 batches of size 11000 # If that is still do much for your system, set the splitter variable accordingly (i.e. 55000%splitter == 0 --> TRUE) splitter = 11 size = mnist.train.images.shape[0] step = size // splitter # Read in images and extend to 3D (we work with color images) trainImgs = np.empty([size,28,28,3]) for k in range(3): trainImgs[:,:,:,k] = mnist.train.images.reshape([size,28,28]) # Now check performance on train set p = [] for k in range(splitter): p.append(net.accuracy.eval(feed_dict = {net.x: trainImgs[k*step:(k+1)*step], net.y_:mnist.train.labels[k*step:(k+1)*step], net.keep_prob:1.0})) print() print('Train Accuracy MNIST = ', np.mean(p)) # Same for evaluation set size = mnist.validation.images.shape[0] testImgs = np.empty([size,28,28,3]) for i in range(3): testImgs[:,:,:,i] = mnist.validation.images.reshape([size,28,28]) print('Validation Accuracy MNIST ', net.accuracy.eval(feed_dict = {net.x: testImgs, net.y_: mnist.validation.labels, net.keep_prob:1.0})) # Same for test set size = mnist.test.images.shape[0] testImgs = np.empty([size,28,28,3]) for i in range(3): testImgs[:,:,:,i] = mnist.test.images.reshape([size,28,28]) print('Test Accuracy MNIST ', net.accuracy.eval(feed_dict = {net.x: testImgs, net.y_: mnist.test.labels, net.keep_prob:1.0})) print()
UTF-8
Python
false
false
2,493
py
28
mnistTester.py
14
0.671881
0.646209
0
73
33.013699
122
ShashwatMishra/Mini-Facebook
19,636,590,508,862
573213ce2e895bb0d7501214b8b150a8d8bbca0f
8583a7e7a7179f6160e56fa6c856cee87098bac4
/Mini Facebook/app/routes.py
14bf46218a05861a49f2c630aabed041f9b5a04c
[ "MIT" ]
permissive
https://github.com/ShashwatMishra/Mini-Facebook
1a8604d27a6290d95ae232f544192aee2aa9f191
b78b0e23be31529b5026c7db3329320be93b7f53
refs/heads/master
2020-05-20T07:00:45.344275
2019-05-07T16:49:38
2019-05-07T16:49:38
185,441,920
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import render_template, flash, redirect, url_for, request from flask_login import login_user, logout_user, current_user, login_required from werkzeug.urls import url_parse from app import app, db from app.forms import LoginForm, RegistrationForm, EditProfileForm, StatusUpdate, MessageForm from app.models import User, Post , Message from datetime import datetime @app.route('/') @app.route('/index') @app.route('/',methods=['GET', 'POST']) @app.route('/index',methods=['GET', 'POST']) @login_required def index(): form = StatusUpdate() if form.validate_on_submit(): post = Post(body=form.post.data, author=current_user) db.session.add(post) db.session.commit() flash('Status is updated') return redirect(url_for('index')) page = request.args.get('page', 1, type=int) posts = current_user.followed_posts().paginate(page, app.config['POST_PER_PAGE'], False) if posts.next_num : next_url = url_for('index', page=posts.next_num) else : next_url = None if posts.prev_num : prev_url = url_for('index', page=posts.prev_num) else : prev_url = None return render_template('index.html', title='Timeline', posts=posts.items, form=form, next_url=next_url, prev_url=prev_url) @app.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('index')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user is None or not user.check_password(form.password.data): flash('Invalid username or password') return redirect(url_for('login')) login_user(user, remember=form.remember_me.data) next_page = request.args.get('next') if not next_page or url_parse(next_page).netloc != '': next_page = url_for('index',user = user) return redirect(next_page) return render_template('login.html', title='Sign In', form=form) @app.route('/logout') def logout(): logout_user() return redirect(url_for('index')) @app.route('/register', methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('index')) form = RegistrationForm() if form.validate_on_submit(): user = User(username=form.username.data, email=form.email.data) user.set_password(form.password.data) db.session.add(user) db.session.commit() flash('Congratulations, you are now a registered user!') return redirect(url_for('login')) return render_template('register.html', title='Register', form= form) @app.route('/user/<username>') @login_required def user(username): user = User.query.filter_by(username=username).first_or_404() page = request.args.get('page', 1, type=int) posts = Post.query.filter_by(user_id=current_user.id).order_by( Post.timestamp.desc()).paginate(page,app.config['POST_PER_PAGE'],False) if posts.next_num: next_url = url_for('user',username = current_user.username, page=posts.next_num) else : next_url = None if posts.prev_num : prev_url = url_for('user',username = current_user.username, page=posts.prev_num) else : prev_url = None return render_template('user.html', user=user, posts=posts.items, next_url=next_url, prev_url=prev_url) @app.route('/edit_profile',methods = ['GET','POST']) @login_required def edit_profile(): form = EditProfileForm() if form.validate_on_submit() or request.method == 'POST': current_user.about_me = form.about_me.data current_user.relationship_status = form.relationship_status.data current_user.gender = form.gender.data current_user.country = form.country.data db.session.commit() return redirect(url_for('user',username= current_user.username)) return render_template('edit_profile.html',title = 'Editing Profile',form = form) @app.before_request def before_request(): if current_user.is_authenticated : current_user.last_seen = datetime.utcnow() db.session.commit() @app.route('/follow/<username>',methods = ['POST','GET']) @login_required def follow(username): user = User.query.filter_by(username= username).first() if user is None: flash('User does not exist') return redirect(url_for('user', username=username)) if user.username == current_user.username : flash('You can not follow yourself') return redirect(url_for('user', username=username)) current_user.follow(user) db.session.commit() flash('You are following {0}'.format(user.username)) return redirect(url_for('user', username=username)) @app.route('/unfollow/<username>',methods = ['POST','GET']) @login_required def unfollow(username): user= User.query.filter_by(username=username).first() if user is None: flash('User does not exist') return redirect(url_for('user', username=username)) if user.username == current_user.username : flash('You can not unfollow yourself') return redirect(url_for('user', username=username)) current_user.unfollow(user) db.session.commit() flash('You are unfollowing {0}'.format(user.username)) return redirect(url_for('user', username=username)) @app.route('/send_message/<receiver>',methods = ['POST','GET']) @login_required def send_message(receiver): user = User.query.filter_by(username = receiver).first_or_404() form = MessageForm() if form.validate_on_submit(): message = Message(text= form.message.data,reader=user, author =current_user) db.session.add(message) db.session.commit() flash('Your Message is delivered') return redirect(url_for('user', username=current_user.username)) return render_template('send_message.html',receiver=receiver, form=form) @app.route('/messages') @login_required def messages(): current_user.last_message_read_time = datetime.utcnow() db.session.commit() page = request.args.get('page', 1, type=int) messages = current_user.message_received.order_by( Message.timestamp.desc()).paginate( page, app.config['MESSAGE_PER_PAGE'], False) next_url = url_for('messages', page=messages.next_num) \ if messages.has_next else None prev_url = url_for('messages', page=messages.prev_num) \ if messages.has_prev else None return render_template('messages.html', messages=messages.items, next_url=next_url, prev_url=prev_url)
UTF-8
Python
false
false
6,651
py
9
routes.py
8
0.661705
0.660051
0
164
39.560976
126
andrely/sublexical-features
10,952,166,607,494
98cf45b26e377bd937efe64ea95acbca5b18d75b
785e6e41b16ab7c702987d0dcd01793668da6f98
/SublexicalSemantics/bin/sublexicalize.py
685f990ede3faa7d15dad7c9ef3d25d5d3a84c2c
[]
no_license
https://github.com/andrely/sublexical-features
748c18419405a8184c81253a16ed0bd4445a6ffd
4191ec5ea3f95dfa1741c441da90cbbd1a1c2a02
refs/heads/master
2021-01-17T15:09:53.766421
2017-05-03T18:05:08
2017-05-03T18:05:08
16,731,407
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from optparse import OptionParser import os import re import sys cur_path, _ = os.path.split(__file__) sys.path.append(os.path.join(cur_path, '..', 'Experiments')) from experiment_support.preprocessing import sublexicalize BUF_SIZE = 8192 if __name__ == '__main__': parser = OptionParser() parser.add_option("-n", "--ngram-order", default=3) opts, args = parser.parse_args() order = int(opts.ngram_order) in_str = sys.stdin.read(BUF_SIZE) rest_str = "" while len(in_str) > 0: out_str = sublexicalize(rest_str + in_str.rstrip('\n'), order=order) rest_str = re.sub('_', ' ', out_str[-(order-1):]) sys.stdout.write(out_str + " ") in_str = sys.stdin.read(BUF_SIZE)
UTF-8
Python
false
false
730
py
70
sublexicalize.py
67
0.616438
0.606849
0
29
24.172414
76
Aasthaengg/IBMdataset
13,872,744,414,992
094468854be5a8e52e2fb3afeae7566e1daa1c74
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03407/s755755148.py
de96295b9fb6e9f0a46cf4632a66617331a13e8f
[]
no_license
https://github.com/Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
A, B, C = list(map(int, input().split())) ans = "Yes" if ((A + B) < C): ans = "No" print(ans)
UTF-8
Python
false
false
100
py
202,060
s755755148.py
202,055
0.47
0.47
0
8
11.625
41
gurudurairaj/gp
5,111,011,115,872
0a1d8d61fc8433cee347aead45f53071aa1dbfd2
c117f7064b7132778bead5a8b77b67e2429a2b7a
/zermat.py
eb726a3c64adba60293b5e5ba07be16f22ebd87f
[]
no_license
https://github.com/gurudurairaj/gp
664306f41f73f8b620ba74b048372e1c94e59bc7
2fce98f7428103b54b9edd075d4a83dc434c2926
refs/heads/master
2020-04-15T05:00:45.934019
2019-05-26T17:54:54
2019-05-26T17:54:54
164,405,807
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n=int(input()) m=list(map(int,input().split())) c=0 for i in range(len(m)): for j in range(i,len(m)): if m[i]+m[j]==0 or m[i]+m[j]==1: print(m[i],m[j]) c=c+1 break if c==1: break
UTF-8
Python
false
false
239
py
165
zermat.py
165
0.430962
0.410042
0
11
20.727273
40
AlbertaSat/cube_sat_comm
15,358,803,087,540
9c4acdfa00b47d4a12d2480e0242958d986b55fe
3c2f73cdd489cf44e7a1a844b6cf449f6d8c58fe
/cube_sat_comm/drawing.py
f07c6a79b552fe88a2223e4b33a9a3e49cf8f2ab
[]
no_license
https://github.com/AlbertaSat/cube_sat_comm
a55f7a6694ae792dae7df8d5e9e9e56f2c528596
b842a71c835710b873d0d8f5cabc0014dfd1f07b
refs/heads/master
2020-04-14T14:07:11.747736
2019-01-02T21:17:35
2019-01-02T21:21:03
163,887,345
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from queue import Queue from threading import Thread, Event from cube_sat_comm.curses_state import curses_print _MAX_QUEUE_WAIT = 1.0 _queued_tasks = Queue() _should_exit = Event() _new_tasks_event = Event() def init_drawing_thread(): handle = Thread(target=_draw_thread_loop) handle.start() return handle def queue_message(mess): _queued_tasks.put(lambda: _print_to_output(mess), True, _MAX_QUEUE_WAIT) _new_tasks_event.set() def queue_task(task): _queued_tasks.put(task, True, _MAX_QUEUE_WAIT) _new_tasks_event.set() def stop_drawing_thread(): _should_exit.set() _new_tasks_event.set() # To get the thread to exit nicely def _draw_thread_loop(): while not _should_exit.is_set(): while not _queued_tasks.empty(): _queued_tasks.get()() _new_tasks_event.wait() _new_tasks_event.clear() def _print_to_output(mess): curses_print(mess)
UTF-8
Python
false
false
929
py
11
drawing.py
8
0.654467
0.652314
0
44
20.113636
76
ArthurKVasque07/PythonGEEK
7,052,336,305,895
878ef561fe34b2fad03184bd65c8d5e0190f0f6b
dbdc002660adf3f633c4d5d4eb890ff43ba229a7
/estruturas_logicas_and_or_not_is.py
cd82a28f9c640bd3f75b5ff5224291395d7b1bb5
[]
no_license
https://github.com/ArthurKVasque07/PythonGEEK
df1f184435a863ce872df1e366463b4fec9a6c64
bd8b86608fd854643d3f81f02b48db88f4e6f832
refs/heads/master
2022-10-06T18:49:04.441047
2020-06-10T20:54:18
2020-06-10T20:54:18
271,382,829
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Operadores unarios: - not, is Operadores binários: -and, or Para 'and' , ambos valores precisam ser True Para 'or' , um dos valores precisam ser True Para o 'not', o valor do booleano é invertido, ou seja se for True vira False """ ativo = True logado = False if ativo and logado: print('Bem vindo') else: print('Voce precisa ativar conta!') ############## if ativo or logado: print('Bem vindo') else: print('Voce precisa ativar conta!') ############## # Se não estiver ativo if not ativo: print('Voce precisa ativar sua conta') else: print('Bem vindo') ############# if ativo is logado: print('Bem vindo') else: print('Você precisa ativar sua conta')
UTF-8
Python
false
false
722
py
22
estruturas_logicas_and_or_not_is.py
19
0.619777
0.619777
0
39
17.358974
77
pf4d/issm_python
10,067,403,358,550
dbef9245519371df05c8bed045b30afef76db972
93022749a35320a0c5d6dad4db476b1e1795e318
/issm/cyclone.py
7f07dbe4c48e787920c81df1e7151386a3e24aa8
[ "BSD-3-Clause" ]
permissive
https://github.com/pf4d/issm_python
78cd88e9ef525bc74e040c1484aaf02e46c97a5b
6bf36016cb0c55aee9bf3f7cf59694cc5ce77091
refs/heads/master
2022-01-17T16:20:20.257966
2019-07-10T17:46:31
2019-07-10T17:46:31
105,887,661
2
3
null
null
null
null
null
null
null
null
null
null
null
null
null
import subprocess from issm.fielddisplay import fielddisplay from issm.pairoptions import pairoptions from issm.issmssh import issmssh from issm.issmscpin import issmscpin from issm.issmscpout import issmscpout from issm.QueueRequirements import QueueRequirements import datetime try: from issm.cyclone_settings import cyclone_settings except ImportError: print 'You need cyclone_settings.py to proceed, check presence and sys.path' class cyclone(object): """ Be aware that this is not a cluster as we usually know them. There is no scheduling and ressources are pretty low. The Computer have 20 cpus and 512Gb of memory used by a number of person so be respectful with your usage. I putted some restrictive upper limits to avoid over-use. (Basile) Usage: cluster=cyclone(); """ def __init__(self,*args): # {{{ self.name = 'cyclone' self.login = '' self.np = 2 self.time = 100 self.codepath = '' self.executionpath = '' self.port = '' self.interactive = 0 #use provided options to change fields options=pairoptions(*args) #initialize cluster using user settings if provided self=cyclone_settings(self) #OK get other fields self=options.AssignObjectFields(self) # }}} def __repr__(self): # {{{ # display the object s = "class cyclone object:" s = "%s\n%s"%(s,fielddisplay(self,'name','name of the cluster')) s = "%s\n%s"%(s,fielddisplay(self,'login','login')) s = "%s\n%s"%(s,fielddisplay(self,'np','number of processes')) s = "%s\n%s"%(s,fielddisplay(self,'time','walltime requested in minutes')) s = "%s\n%s"%(s,fielddisplay(self,'codepath','code path on the cluster')) s = "%s\n%s"%(s,fielddisplay(self,'executionpath','execution path on the cluster')) return s # }}} def checkconsistency(self,md,solution,analyses): # {{{ #Miscelaneous if not self.login: md = md.checkmessage('login empty') if not self.codepath: md = md.checkmessage('codepath empty') if not self.executionpath: md = md.checkmessage('executionpath empty') if self.time>72: md = md.checkmessage('walltime exceeds 72h for niceness this is not allowed, if you need more time consider shifting to one of the Notur systems') if self.np >10: md = md.checkmessage('number of process excess 10, if you need more processing power consider shifting to one of the Notur systems') return self # }}} def BuildQueueScript(self,dirname,modelname,solution,io_gather,isvalgrind,isgprof,isdakota,isoceancoupling): # {{{ executable='issm.exe' #write queuing script shortname=modelname[0:min(12,len(modelname))] fid=open(modelname+'.queue','w') fid.write('export ISSM_DIR="%s/../"\n' % self.codepath) fid.write('source $ISSM_DIR/etc/environment.sh\n') fid.write('INTELLIBS="/opt/intel/intelcompiler-12.04/composerxe-2011.4.191/compiler/lib/intel64"\n') fid.write('export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/:$INTELLIBS\n') fid.write('export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/usr/include/x86_64-linux-gnu/c++/4.8\n') fid.write('cd %s/%s/\n\n' % (self.executionpath,dirname)) rundir=self.executionpath+'/'+dirname runfile=self.executionpath+'/'+dirname+'/'+modelname fid.write('mpiexec -np %i %s/%s %s %s %s >%s.outlog 2>%s.errlog\n' % (self.np,self.codepath,executable,str(solution),rundir,modelname,runfile,runfile)) fid.close() # }}} def UploadQueueJob(self,modelname,dirname,filelist): # {{{ #compress the files into one zip. compressstring='tar -zcf %s.tar.gz ' % dirname for file in filelist: compressstring += ' %s' % file subprocess.call(compressstring,shell=True) print 'uploading input file and queueing script' issmscpout(self.name,self.executionpath,self.login,self.port,[dirname+'.tar.gz']) # }}} def LaunchQueueJob(self,modelname,dirname,filelist,restart,batch): # {{{ print 'launching solution sequence on remote cluster' if restart: launchcommand='cd %s && cd %s && qsub %s.queue' % (self.executionpath,dirname,modelname) else: launchcommand='cd %s && rm -rf ./%s && mkdir %s && cd %s && mv ../%s.tar.gz ./ && tar -zxf %s.tar.gz && chmod +x ./%s.queue && ./%s.queue' % (self.executionpath,dirname,dirname,dirname,dirname,dirname,modelname,modelname) issmssh(self.name,self.login,self.port,launchcommand) # }}} def Download(self,dirname,filelist): # {{{ #copy files from cluster to current directory directory='%s/%s/' % (self.executionpath,dirname) issmscpin(self.name,self.login,self.port,directory,filelist) # }}}
UTF-8
Python
false
false
4,597
py
335
cyclone.py
214
0.690885
0.681749
0
124
36.072581
225
ddc899/cmpt145
17,523,466,587,998
ff9078cfb333e718f654dfe78194d1f4368ca166
043d91547df1c9824cdff5386c74083b234803c2
/assignments/assignment6/a6q1_testing.py
ab48e7ae3126c901ba742d7ba85671aa77056993
[]
no_license
https://github.com/ddc899/cmpt145
9824b7caad98f78075dd42c5ecb1c1617f4628cf
2a8c2f36d42082dffdc6e79a9822aa2d4ad925a9
refs/heads/master
2022-01-26T22:44:02.647310
2018-07-27T22:51:07
2018-07-27T22:51:07
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import LList as llist import node as node chain = llist.create() twochain = llist.create() emptychain = llist.create() llist.add_to_front(chain, 5) llist.add_to_back(chain, 7) llist.add_to_back(chain, 12) llist.add_to_back(chain, 3) llist.add_to_back(chain, 6) llist.add_to_back(chain, 2) llist.add_to_back(chain, 11) print(node.to_string(chain['head'])) llist.sorted(chain) # llist.ya(cain) print(node.to_string(chain['head'])) slice_list = llist.slice(chain, 2,6) print(node.to_string(slice_list['head'])) # print(node.to_string(threechain['head'])) # yachain = threechain # print(node.to_string(twochain['head'])) # llist.extend(threechain, twochain) # print(node.to_string(threechain['head'])) # print(node.to_string(threechain['head'])) # # # # print(node.to_string(chain['head'])) # # print(node.to_string(chain['head'])) # # print(node.to_string(twochain['head'])) # # print(node.to_string(threechain['head'])) # print(node.to_string(threechain['head'])) # print(threechain['tail'])
UTF-8
Python
false
false
1,000
py
120
a6q1_testing.py
98
0.698
0.687
0
42
22.809524
45
junecong/bond
14,972,256,042,908
7e689e5c4af2eadd6cdc11ff008131a4e8d44f85
9af6e89143358a50b62445adf4716ff34fdb2bc8
/pybond/build/lib/bond/bond.py
7a942f7ea10cab83fb6c4e571987ab31ae9ad400
[]
no_license
https://github.com/junecong/bond
9eab194b922793698f9017f452039ebc405d8bc0
c88030faa5ff4b75fa92f3a7558fa905a5c4661a
refs/heads/master
2021-01-15T19:35:37.585392
2015-10-29T16:55:49
2015-10-29T16:56:35
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Hello """ class Bond: """ Bond class """ pass
UTF-8
Python
false
false
67
py
34
bond.py
8
0.402985
0.402985
0
9
6.444444
14
figueiredorodrigo/Exercicios-Guanabara
6,665,789,268,833
ff99c985b36208bc4c74d8a1c5231b2ebf0ea99d
6eb097cccbc0e040eb940663f85ce7eacb2be95b
/Desafio004.py
6f41c6ba91c936b05b412f85b49aaba4d2ac55db
[]
no_license
https://github.com/figueiredorodrigo/Exercicios-Guanabara
c7cdb534b3f7c2db0e2bffc2b4376af035213b3a
621000882ab3aa080415bb04336fd1713ab85b5d
refs/heads/main
2023-06-02T07:10:22.555624
2021-06-15T16:33:26
2021-06-15T16:33:26
376,381,603
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n1 = int(input('Digite um número: ')) pt = 1 ant = n1 - pt suc = n1 + pt print(f'O número é: {n1}, o seu antecessor é: {ant} e o seu sucessor é: {suc}')
UTF-8
Python
false
false
161
py
68
Desafio004.py
67
0.589744
0.557692
0
5
29.6
79
CristianWulfing/PySCHC
7,705,171,370,497
ed6c82436b92ade94f54fe592723177f8d808bbe
4ec675a77327d98b93c1c1c1be00ca99d8afdcaf
/fragmentation_layer/tests/test_base/test_bitmap.py
ac8305c4d182c6d8a3cbe4ab7d2f7fe98ae807dd
[ "LicenseRef-scancode-ietf-trust", "BSD-2-Clause", "MIT" ]
permissive
https://github.com/CristianWulfing/PySCHC
7d4cf02b155cc4b92711a52faf893ed99b92852e
2b1d9ed7d7c9857cbb362bdee5c77f7234838ddd
refs/heads/master
2023-07-09T07:22:57.665826
2021-07-02T04:25:13
2021-07-02T04:25:13
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" test_bitmap: Unit test for Bitmap class """ from unittest import TestCase, main from schc_base import Bitmap from schc_protocols import LoRaWAN class TestBitmap(TestCase): def test_constructor(self): bitmap = Bitmap(LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR)) self.assertEqual([False] * LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR).WINDOW_SIZE, bitmap.__bitmap__, "Wrong bitmap generated") self.assertEqual(LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR).WINDOW_SIZE, len(bitmap.__bitmap__), "Wrong length of bitmap") bitmap = Bitmap(LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR), short_size=10) self.assertEqual([False] * 10, bitmap.__bitmap__, "Wrong bitmap generated (short)") self.assertEqual(10, len(bitmap.__bitmap__), "Wrong length of bitmap (short)") def test_register_tile(self): bitmap = Bitmap(LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR)) bitmap.tile_received(LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR).WINDOW_SIZE - 1) self.assertTrue(bitmap.__bitmap__[0], "Wrong first tile registered") fcn = 30 bitmap.tile_received(fcn) self.assertTrue(bitmap.__bitmap__[LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR).WINDOW_SIZE - fcn - 1], "Wrong tile registered {}".format(fcn)) bitmap.tile_received(0) self.assertTrue(bitmap.__bitmap__[LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR).WINDOW_SIZE - 1], "Wrong last tile registered") self.assertEqual(LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR).WINDOW_SIZE, len(bitmap.__bitmap__), "Length changed") self.assertEqual(3, sum(bitmap.__bitmap__), "Wrong registration") def test_compression_all_one(self): protocol_to_use = LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR) bitmap = Bitmap(protocol_to_use) bitmap.__bitmap__ = [True] * protocol_to_use.WINDOW_SIZE compressed_bitmap = bitmap.generate_compress() self.assertEqual( protocol_to_use.L2_WORD - (sum([ protocol_to_use.RULE_SIZE, protocol_to_use.T, protocol_to_use.M, 1 ]) % protocol_to_use.L2_WORD), len(compressed_bitmap), "Wrong compression") self.assertEqual( protocol_to_use.L2_WORD - (sum([ protocol_to_use.RULE_SIZE, protocol_to_use.T, protocol_to_use.M, 1 ]) % protocol_to_use.L2_WORD), sum(compressed_bitmap), "Wrong compression") def test_compression_uncompressed(self): protocol_to_use = LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR) bitmap = Bitmap(protocol_to_use) compressed_bitmap = bitmap.generate_compress() self.assertEqual(protocol_to_use.WINDOW_SIZE, len(compressed_bitmap), "Wrong compression") self.assertEqual(0, sum(compressed_bitmap), "Wrong compression") def test_compression(self): protocol_to_use = LoRaWAN(rule_id=LoRaWAN.ACK_ON_ERROR) bitmap = Bitmap(protocol_to_use) bitmap.__bitmap__ = [True] * protocol_to_use.WINDOW_SIZE bitmap.__bitmap__[protocol_to_use.L2_WORD] = False compressed_bitmap = bitmap.generate_compress() self.assertEqual( protocol_to_use.L2_WORD - (sum([ protocol_to_use.RULE_SIZE, protocol_to_use.T, protocol_to_use.M, 1 ]) % protocol_to_use.L2_WORD) + protocol_to_use.L2_WORD, len(compressed_bitmap), "Wrong compression") self.assertEqual( protocol_to_use.L2_WORD - (sum([ protocol_to_use.RULE_SIZE, protocol_to_use.T, protocol_to_use.M, 1 ]) % protocol_to_use.L2_WORD) + protocol_to_use.L2_WORD - 1, sum(compressed_bitmap), "Wrong compression") if __name__ == '__main__': main()
UTF-8
Python
false
false
3,859
py
79
test_bitmap.py
73
0.608448
0.600415
0
77
48.116883
125
kokkondaspandana/sample_project
4,131,758,581,242
24d1912fbe4894ade24c48eac552c24afe98f76b
99567393ed78b97dc14f29e947b8a2d92495a1a6
/Hackerrank/collections/orded_dic.py
2bddc3656301cb6089ea1fab2d3a6fe3b41ab12e
[]
no_license
https://github.com/kokkondaspandana/sample_project
9b926bc99db89d4aa09478d01752292a0a19fba5
0ad29a7971ff03c2a7e715c0516108731648b6bf
refs/heads/master
2021-01-22T17:58:14.773114
2017-03-24T13:04:50
2017-03-24T13:04:50
85,049,019
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from collections import OrderedDict d = OrderedDict() for i in range(int(raw_input())): item, space, quantity = raw_input().rpartition(' ') d[item] = d.get(item, 0) + int(quantity) for item, quantity in d.items(): print item, quantity Sample Input 9 BANANA FRIES 12 POTATO CHIPS 30 APPLE JUICE 10 CANDY 5 APPLE JUICE 10 CANDY 5 CANDY 5 CANDY 5 POTATO CHIPS 30 Sample Output BANANA FRIES 12 POTATO CHIPS 60 APPLE JUICE 20 CANDY 20
UTF-8
Python
false
false
447
py
50
orded_dic.py
50
0.720358
0.666667
0
27
15.518519
55
anuragkumarbioinfo/MaeParser
3,925,600,114,562
8323de8e1e3089eb7047903ae20edcda003bd276
ba4ace278e839500fc7a5abbb57b9fe96d49391c
/dev3.py
e9b0cab2b244ab89dce3f6820b17079bcac295e8
[]
no_license
https://github.com/anuragkumarbioinfo/MaeParser
4027457a0d855d3118859ec9905f9f1c670cd9c0
e2a8843217eba0aca6dbd25c0da7d372a669efb7
refs/heads/master
2020-03-22T08:45:21.751163
2018-07-05T03:06:25
2018-07-05T03:06:25
139,788,577
0
0
null
true
2018-07-05T03:07:51
2018-07-05T03:07:51
2018-07-05T03:06:27
2018-07-05T03:06:25
0
0
0
0
null
false
null
import sys mae=sys.argv[1] atom=sys.argv[2] from StringIO import StringIO import csv class MAEPARSER: def __init__(self, mae): self.mae = mae self.read = ['atom_index','i_m_mmod_type', 'r_m_x_coord', 'r_m_y_coord', 'r_m_z_coord', 'i_m_residue_number', 's_m_mmod_res', 's_m_chain_name', 'i_m_color', 'r_m_charge1', 'r_m_charge2', 's_m_pdb_residue_name', 's_m_pdb_atom_name', 'i_m_atomic_number', 'i_m_formal_charge', 'i_m_representation', 'i_m_visibility', 's_m_color_rgb', 's_m_atom_name', 'i_m_secondary_structure', 's_m_label_format', 'i_m_label_color', 's_m_label_user_text', 'r_m_pdb_occupancy', 'i_i_constraint', 'i_i_internal_atom_index', 'i_m_pdb_convert_problem', 'i_pdb_PDB_serial', 'i_ppw_het', 's_ppw_CCD_assignment_status', 'r_m_pdb_tfactor', 'i_m_minimize_atom_index', 'i_pa_atomindex', 'i_pdb_seqres_index', 's_pa_state', 'i_ppw_water', 'x1', 'x2', 'x3', 'x4', 'x5'] self.read2 = {i:n for n,i in enumerate(self.read)} self.prop = {} self.atomvaluesTAB = {} self.atomvalues = {} self.res2atm = {} self.start() def start(self): read = False with open(self.mae) as filemae: counter = 0 for lines in filemae: if ":::" in lines: counter += 1 if counter == 5: read = True if counter == 6: read = False if read and ":::" not in lines: if len(lines) > 4: self.load(lines) def add(self, key, value): name = self.read[key] if name not in self.prop:self.prop[name] = [] self.prop[name].append(value) def load(self, line): data = StringIO(line) reader = csv.reader(data, delimiter=' ') line = list(reader)[0][2:] #print line #print len(line), len(self.read), line #raise SystemExit for n, i in enumerate(self.read): if n >= len(line): x = "@" else: x = line[n] #print self.read[n], i self.add(n,x) def getkey(self,key): name = self.read[key] return self.prop[name] def getnkey(self,key, n): name = self.read[key] return self.prop[name][n+1] def getAll(self): #print self.read[1], self.prop.keys() atoms = len(self.prop[self.read[1]]) for each in range(atoms): #print [len(self.prop[r]) for r in self.read] xline = "\t".join([self.prop[r][each] for r in self.read]) self.atomvaluesTAB[self.prop['atom_index'][each]] = xline self.atomvalues[self.prop['atom_index'][each]] = xline.split("\t") #print self.prop['atom_index'][each] #return self.atomvalues def runAll(self): if self.atomvalues == {}: self.getAll() if self.atomvalues == {}: raise ValueError("No Values found in MAE") def printAtom(self,atomnum): self.getAll() w = self.atomvalues[atomnum] for i in range(len(w)): print self.read[i], "=>" ,w[i] def setres2atm(self): self.runAll() #load residue to atom number: for atom in self.atomvalues: name = self.atomvalues[atom] resid = name[self.read2['i_m_residue_number']].strip() elem = name[self.read2['s_m_pdb_atom_name']].strip() if resid not in self.res2atm: self.res2atm[resid] = {} self.res2atm[resid][elem] = name[self.read2['atom_index']].strip() def search(self, resid, elem): resid = str(resid) if self.res2atm == {}: self.setres2atm() if resid in self.res2atm: if elem in self.res2atm[resid]: return self.res2atm[resid][elem] else: print "Not Found" return self.res2atm[resid] def qsite(self): self.result = [] tosearch = [[114,"N"], [113,"C"], [114,"C"], [115,"N"], [144,"N"], [143,"C"], [144,"C"], [145,"N"], [147,"N"], [146,"C"], [147,"C"], [148,"N"], [209,"N"], [208,"C"], [209,"C"], [210,"N"], [243,"N"], [242,"C"], [243,"C"], [244,"N"], [246,"N"], [245,"C"], [246,"C"], [247,"N"]] for resid, elem in tosearch: self.result.append(self.search(resid,elem)) return "\n".join(["qsitehcap {} {}".format(self.result[i],self.result[i+1]) for i in range(0, len(self.result), 2)]) a = MAEPARSER(mae) a.printAtom(atom) #print a.qsite() #print "\nFrozen Atoms\n" + "#" *25 + """ #not ((res.num 114,144,147,209,243,246) OR ((res.ptype " FE ") OR (res.ptype "HOH ") OR (res.ptype "UNK ")) ) #""" + "#" *25
UTF-8
Python
false
false
5,337
py
1
dev3.py
1
0.465805
0.441259
0
154
33.649351
192
intelivix/pyne-workshop-scraping-web
2,078,764,189,936
d15064bee9f2c42818f92ccddef1f007740bb25a
e21c2049e8a0d1ed34eb0850be4dd5d50759b15e
/nordestao/apps/campeonatos/admin.py
55d5b05f74a006347d2bec3ea4bc229cc6406196
[ "MIT" ]
permissive
https://github.com/intelivix/pyne-workshop-scraping-web
26a8f399307a746fda82ed3494d7a6720b950176
c0696b669934eef2dbda81da3b7c058810041fa5
refs/heads/master
2020-04-28T12:26:11.113112
2019-05-10T23:18:28
2019-05-10T23:18:28
175,276,006
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib import admin from campeonatos.models import Team from campeonatos.models import Championship from campeonatos.models import Game from campeonatos.models import Player from campeonatos.models import Event @admin.register(Team) class TeamAdmin(admin.ModelAdmin): pass @admin.register(Championship) class ChampionshipAdmin(admin.ModelAdmin): pass @admin.register(Game) class GameAdmin(admin.ModelAdmin): pass @admin.register(Player) class PlayerAdmin(admin.ModelAdmin): pass @admin.register(Event) class EventAdmin(admin.ModelAdmin): pass
UTF-8
Python
false
false
586
py
39
admin.py
14
0.795222
0.795222
0
31
17.903226
43
chaeonee/Programmers
137,438,960,351
570e271be05d9f629d1115750d222812cdc38722
b204cddc90c19ad8d4587581b4d7ec0b0fed0f45
/level4/[카카오인턴]동굴탐험.py
d556c233c9e8c1057f306dd6182fb33053fe7eff
[]
no_license
https://github.com/chaeonee/Programmers
db741c7c17b933ff2a42521d5bc1077532375021
f582ca16ec351f1f4678847949cb66e7544b9162
refs/heads/main
2023-04-20T13:50:46.722283
2021-05-06T09:44:16
2021-05-06T09:44:16
348,239,956
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from collections import deque def solution(n, path_list, order_list): path = {} for s, e in path_list: if s not in path.keys(): path[s] = [e] else: path[s].append(e) if e not in path.keys(): path[e] = [s] else: path[e].append(s) order = {} r_order = {} for s, e in order_list: order[s] = e r_order[e] = s visit = [False]*n visit[0] = True q = deque() q.append(0) while q: n -= 1 room = q.popleft() if room not in path.keys(): continue for r in path[room]: if visit[r]: continue visit[r] = True if r not in r_order.keys() or visit[r_order[r]]: q.append(r) if r in order.keys() and visit[order[r]]: q.append(order[r]) answer = True if not n else False return answer
UTF-8
Python
false
false
1,043
py
184
[카카오인턴]동굴탐험.py
184
0.41419
0.411314
0
46
21.673913
60
bweems23/airqo-monitoring
3,959,959,882,342
dfaeaa526aaa10b0e6f8a43db0b948075e2118f7
a763161a33def4a2024182da6361416338f64610
/airqo_monitor/external/thingspeak.py
67eb92adb0310d41ee0d85a83350edf0bc85c4d1
[]
no_license
https://github.com/bweems23/airqo-monitoring
cdab9ab9c498ef70e805b5880ecc402c7eedc8f0
e18ab3a96cfb201174aba600434f21d5071e2504
refs/heads/master
2022-12-12T21:10:31.241135
2019-02-05T01:45:50
2019-02-05T01:45:50
154,288,408
0
1
null
false
2021-06-10T20:56:00
2018-10-23T08:09:36
2019-02-05T01:45:53
2021-06-10T20:55:58
279
0
1
4
Python
false
false
import json, requests import os from collections import defaultdict from datetime import datetime, timedelta from werkzeug.contrib.cache import SimpleCache from airqo_monitor.constants import ( AIR_QUALITY_MONITOR_KEYWORD, API_KEY_CONFIG_VAR_NAME, DEFAULT_THINGSPEAK_FEEDS_INTERVAL_DAYS, INACTIVE_MONITOR_KEYWORD, THINGSPEAK_FEEDS_LIST_MAX_NUM_RESULTS, THINGSPEAK_CHANNELS_LIST_URL, THINGSPEAK_FEEDS_LIST_URL, ) cache = SimpleCache() def get_api_key_for_channel(channel_id): """ Get API key for channel from environment variables. They are stored as 'CHANNEL_<Thingspeak Channel ID>_API_KEY'. Returns: string API key for channel """ var_name = API_KEY_CONFIG_VAR_NAME.format(str(channel_id)) api_key = os.environ.get(var_name) return api_key def get_data_for_channel(channel, start_time=None, end_time=None): """ Get all channel data for a single channel between start_time and end_time. By default, the window goes back 1 week. This API returns a maximum of 8000 results, so we keep requesting data until we have fewer that 8000 results returned, or until we get a -1 response from the API (which means that there are no more results) Returns: A list of data point dicts, from oldest to newest """ if not start_time: start_time = datetime.now() - timedelta(days=DEFAULT_THINGSPEAK_FEEDS_INTERVAL_DAYS) if not end_time: end_time = datetime.now() # convert to string before the loop because this never changes start_time_string = datetime.strftime(start_time,'%Y-%m-%dT%H:%M:%SZ') api_url = THINGSPEAK_FEEDS_LIST_URL.format(channel) all_data = [] while start_time <= end_time: full_url = '{}/feeds/?start={}&end={}'.format( api_url, start_time_string, datetime.strftime(end_time,'%Y-%m-%dT%H:%M:%SZ'), ) api_key = get_api_key_for_channel(channel) if api_key: full_url += '&api_key={}'.format(api_key) result = make_post_call(full_url) # This means we got an empty result set and are done if result == -1: break feeds = result['feeds'] all_data = feeds + all_data # If we aren't hitting the max number of results then we # have all of them for the time range and can stop iterating if len(feeds) < THINGSPEAK_FEEDS_LIST_MAX_NUM_RESULTS: break first_result = feeds[0] end_time = datetime.strptime(first_result['created_at'],'%Y-%m-%dT%H:%M:%SZ') - timedelta(seconds=1) return all_data def get_all_channels(): """ Get all channels from Thingspeak that are associated with our THINGSPEAK_USER_API_KEY Returns: List of channel data dicts """ api_key = os.environ.get('THINGSPEAK_USER_API_KEY') full_url = '{}/?api_key={}'.format(THINGSPEAK_CHANNELS_LIST_URL, api_key) channels = make_get_call(full_url) return channels def get_all_channels_cached(): """ Wrapper around get_all_channels to allow caching. This data shouldn't change often. Returns: List of channel data dicts """ cached_value = cache.get('get-all-channels') if cached_value is None: cached_value = get_all_channels() cache.set('get-all-channels', cached_value, timeout=30 * 60) return cached_value def get_all_channels_by_type(channel_type): """ Get all channels from Thingspeak that are associated with our THINGSPEAK_USER_API_KEY and that have a tag that matches the channel_type param (current types are 'airqo' or 'soil') Returns: List of channel data dicts """ api_key = os.environ.get('THINGSPEAK_USER_API_KEY') full_url = '{}/?api_key={}&tag={}'.format(THINGSPEAK_CHANNELS_LIST_URL, api_key, channel_type) channels = make_get_call(full_url) # For some reason the API returns a list on success and a dict when there's an error status = channels.get('status') if isinstance(channels, dict) else None if status and status != '200': print('[get_all_channels_by_type] Problem reaching Thingspeak API with status: {}'.format(status)) return channels def make_post_call(url): """ Make a post call to any URL and parse the json Returns: Parsed json response (can be dict or list depending on the expected API response) """ return json.loads(requests.post(url).content) def make_get_call(url): """ Make a get call to any URL and parse the json Returns: Parsed json response (can be dict or list depending on the expected API response) """ return json.loads(requests.get(url).content)
UTF-8
Python
true
false
4,668
py
47
thingspeak.py
37
0.664953
0.660668
0
142
31.873239
119
silvarogerioeduardo/PIM
17,695,265,281,876
9c02a7720d601373e6ea703ebec29c2c5a794a93
74d7f58ff079daa7cc069afa0ae90b9b577cd9ce
/Python/RGB_grayscale.py
0ed8e55d21ebbe91212c248ed8820f4f2565068c
[]
no_license
https://github.com/silvarogerioeduardo/PIM
c9b04dde3bcd8bdf375552d8113099ee201af2f4
4a63f80cf84e629de17823cea4cf354fd0f30a1c
refs/heads/master
2021-01-01T20:44:10.031642
2017-10-31T02:02:04
2017-10-31T02:02:04
98,922,340
3
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from PIL import Image path = "Imagens/" img = Image.open(path+'nature.jpg').convert('L') img.save(path+'nature-PB.jpg')
UTF-8
Python
false
false
119
py
24
RGB_grayscale.py
24
0.705882
0.705882
0
4
29
48
TissueMAPS/gc3pie
15,582,141,368,358
1fdf1c79f9569ed1a4dd371ef4835f76b1a000f2
7de47aee3c33562dbc2154bd71b7ca37ea68ffd0
/gc3apps/lacal.epfl.ch/gcrypto.py
849719327d59da8617cd2489c744dff1ebad3ac8
[]
no_license
https://github.com/TissueMAPS/gc3pie
c20af8080076a4200856ccd43281353cfd612b34
8d2bc69aa8f2b2dd8e4dc0b306cf484551a20caf
refs/heads/master
2021-01-17T09:04:03.118013
2017-04-04T17:35:14
2017-04-04T17:35:14
59,831,862
1
2
null
true
2016-05-27T12:09:50
2016-05-27T12:09:50
2016-04-30T23:23:14
2016-05-27T11:20:35
161,424
0
0
0
null
null
null
#! /usr/bin/env python # # gcrypto.py -- Front-end script for submitting multiple Crypto jobs to SMSCG. """ Front-end script for submitting multiple ``gnfs-cmd`` jobs to SMSCG. It uses the generic `gc3libs.cmdline.SessionBasedScript` framework. See the output of ``gcrypto --help`` for program usage instructions. """ # summary of user-visible changes __changelog__ = """ 2012-01-29: * Moved CryptoApplication from gc3libs.application * Restructured main script due to excessive size of initial jobs. SessionBaseScript generate a single SequentialTask. SequentialTask generated as many ParallelTasks as the whole range divided by the number of simultaneous active jobs. * Each ParallelTask lauches 'max_running' CryptoApplications """ __author__ = 'sergio.maffiolett@gc3.uzh.ch' __docformat__ = 'reStructuredText' # run script, but allow GC3Pie persistence module to access classes defined here; # for details, see: https://github.com/uzh/gc3pie/issues/95 if __name__ == "__main__": import gcrypto gcrypto.GCryptoScript().run() # stdlib imports import fnmatch import logging import os import os.path import sys from pkg_resources import Requirement, resource_filename # GC3Pie interface import gc3libs from gc3libs.cmdline import SessionBasedScript, existing_file, positive_int, nonnegative_int from gc3libs import Application, Run, Task import gc3libs.exceptions import gc3libs.application from gc3libs.quantity import Memory, kB, MB, GB, Duration, hours, minutes, seconds from gc3libs.workflow import SequentialTaskCollection, ParallelTaskCollection, ChunkedParameterSweep, RetryableTask DEFAULT_INPUTFILE_LOCATION="srm://dpm.lhep.unibe.ch/dpm/lhep.unibe.ch/home/crypto/lacal_input_files.tgz" DEFAULT_GNFS_LOCATION="srm://dpm.lhep.unibe.ch/dpm/lhep.unibe.ch/home/crypto/gnfs-cmd_20120406" class CryptoApplication(gc3libs.Application): """ Represent a ``gnfs-cmd`` job that examines the range `start` to `start+extent`. LACAL's ``gnfs-cmd`` invocation:: $ gnfs-cmd begin length nth performs computations for a range: *begin* to *begin+length*, and *nth* is the number of threads spwaned. The following ranges are of interest: 800M-1200M and 2100M-2400M. CryptoApplication(param, step, input_files_archive, output_folder, **extra_args) """ def __init__(self, start, extent, gnfs_location, input_files_archive, output, **extra_args): gnfs_executable_name = os.path.basename(gnfs_location) # # set some execution defaults... extra_args.setdefault('requested_cores', 4) extra_args.setdefault('requested_architecture', Run.Arch.X86_64) extra_args['jobname'] = "LACAL_%s" % str(start + extent) extra_args['output_dir'] = os.path.join(extra_args['output_dir'], str(start + extent)) extra_args['tags'] = [ 'APPS/CRYPTO/LACAL-1.0' ] extra_args['executables'] = ['./gnfs-cmd'] extra_args['requested_memory'] = Memory( int(extra_args['requested_memory'].amount() / float(extra_args['requested_cores'])), unit=extra_args['requested_memory'].unit) gc3libs.Application.__init__( self, arguments = [ "./gnfs-cmd", start, extent, extra_args['requested_cores'], "input.tgz" ], inputs = { input_files_archive:"input.tgz", gnfs_location:"./gnfs-cmd", }, outputs = [ '@output.list' ], # outputs = gc3libs.ANY_OUTPUT, stdout = 'gcrypto.log', join=True, **extra_args ) def terminated(self): """ Checks whether the ``M*.gz`` files have been created. The exit status of the whole job is set to one of these values: * 0 -- all files processed successfully * 1 -- some files were *not* processed successfully * 2 -- no files processed successfully * 127 -- the ``gnfs-cmd`` application did not run at all. """ # XXX: need to gather more info on how to post-process. # for the moment do nothing and report job's exit status if self.execution.exitcode: gc3libs.log.debug( 'Application terminated. postprocessing with execution.exicode %d', self.execution.exitcode) else: gc3libs.log.debug( 'Application terminated. No exitcode available') if self.execution.signal == 123: # XXX: this is fragile as it does not really applies to all # DataStaging errors. # Assume Data staging problem at the beginning of the job # resubmit self.execution.returncode = (0, 99) class CryptoTask(RetryableTask): """ Run ``gnfs-cmd`` on a given range """ def __init__(self, start, extent, gnfs_location, input_files_archive, output, **extra_args): RetryableTask.__init__( self, # actual computational job CryptoApplication(start, extent, gnfs_location, input_files_archive, output, **extra_args), # XXX: should decide which policy to use here for max_retries max_retries = 2, # keyword arguments **extra_args) def retry(self): """ Resubmit a cryto application instance iff it exited with code 99. *Note:* There is currently no upper limit on the number of resubmissions! """ if self.task.execution.exitcode == 99: return True else: return False class CryptoChunkedParameterSweep(ChunkedParameterSweep): """ Provided the beginning of the range `range_start`, the end of the range `range_end`, the slice size of each job `slice`, `CryptoChunkedParameterSweep` creates `chunk_size` `CryptoApplication`s to be executed in parallel. Every update cycle it will check how many new CryptoApplication will have to be created (each of the launching in parallel DEFAULT_PARALLEL_RANGE_INCREMENT CryptoApplications) as the following rule: [ (end-range - begin_range) / step ] / DEFAULT_PARALLEL_RANGE_INCREMENT """ def __init__(self, range_start, range_end, slice, chunk_size, input_files_archive, gnfs_location, output_folder, **extra_args): # remember for later self.range_start = range_start self.range_end = range_end self.parameter_count_increment = slice * chunk_size self.input_files_archive = input_files_archive self.gnfs_location = gnfs_location self.output_folder = output_folder self.extra_args = extra_args ChunkedParameterSweep.__init__( self, range_start, range_end, slice, chunk_size, **self.extra_args) def new_task(self, param, **extra_args): """ Create a new `CryptoApplication` for computing the range `param` to `param+self.parameter_count_increment`. """ return CryptoTask(param, self.step, self.gnfs_location, self.input_files_archive, self.output_folder, **self.extra_args.copy()) ## the script itself class GCryptoScript(SessionBasedScript): # this will be display as the scripts' `--help` text """ Like a `for`-loop, the ``gcrypto`` driver script takes as input three mandatory arguments: 1. RANGE_START: initial value of the range (e.g., 800000000) 2. RANGE_END: final value of the range (e.g., 1200000000) 3. SLICE: extent of the range that will be examined by a single job (e.g., 1000) For example:: gcrypto 800000000 1200000000 1000 will produce 400000 jobs; the first job will perform calculations on the range 800000000 to 800000000+1000, the 2nd one will do the range 800001000 to 800002000, and so on. Inputfile archive location (e.g. lfc://lfc.smscg.ch/crypto/lacal/input.tgz) can be specified with the '-i' option. Otherwise a default filename 'input.tgz' will be searched in current directory. Job progress is monitored and, when a job is done, output is retrieved back to submitting host in folders named: 'range_start + (slice * actual step)' The `gcrypto` command keeps a record of jobs (submitted, executed and pending) in a session file (set name with the '-s' option); at each invocation of the command, the status of all recorded jobs is updated, output from finished jobs is collected, and a summary table of all known jobs is printed. New jobs are added to the session if new input files are added to the command line. Options can specify a maximum number of jobs that should be in 'SUBMITTED' or 'RUNNING' state; `gcrypto` will delay submission of newly-created jobs so that this limit is never exceeded. """ def __init__(self): SessionBasedScript.__init__( self, version = __version__, # module version == script version stats_only_for = CryptoApplication, ) def setup_args(self): """ Set up command-line argument parsing. The default command line parsing considers every argument as an (input) path name; processing of the given path names is done in `parse_args`:meth: """ # self.add_param('args', # nargs='*', # metavar= # """ # [range_start] [range_end] [slice], # help=[range_start]: Positive integer value of the range start. # [range_end]: Positive integer value of the range end. # [slice]: Positive integer value of the increment. # """ # ) self.add_param('range_start', type=nonnegative_int, help="Non-negative integer value of the range start.") self.add_param('range_end', type=positive_int, help="Positive integer value of the range end.") self.add_param('slice', type=positive_int, help="Positive integer value of the increment.") def parse_args(self): # XXX: why is this necessary ? shouldn't add_params of 'args' handle this ? # check on the use of nargs and type. # if len(self.params.args) != 3: # raise ValueError("gcrypto takes exaclty 3 arguments (%d are given)" % len(self.params.args)) # self.params.range_start = int(self.params.args[0]) # self.params.range_end = int(self.params.args[1]) # self.params.slice = int(self.params.args[2]) if self.params.range_end <= self.params.range_start: # Failed raise ValueError("End range cannot be smaller than Start range. Start range %d. End range %d" % (self.params.range_start, self.params.range_end)) def setup_options(self): self.add_param("-i", "--input-files", metavar="PATH", action="store", dest="input_files_archive", default=DEFAULT_INPUTFILE_LOCATION, help="Path to the input files archive." " By default, the preloaded input archive available on" " SMSCG Storage Element will be used: " " %s" % DEFAULT_INPUTFILE_LOCATION) self.add_param("-g", "--gnfs-cmd", metavar="PATH", action="store", dest="gnfs_location", default=DEFAULT_GNFS_LOCATION, help="Path to the executable script (gnfs-cmd)" " By default, the preloaded gnfs-cmd available on" " SMSCG Storage Element will be used: " " %s" % DEFAULT_GNFS_LOCATION) def new_tasks(self, extra): yield ( "%s-%s" % (str(self.params.range_start),str(self.params.range_end)), # jobname CryptoChunkedParameterSweep, [ # parameters passed to the constructor, see `CryptoSequence.__init__` self.params.range_start, self.params.range_end, self.params.slice, self.params.max_running, # increment of each ParallelTask self.params.input_files_archive, # path to input.tgz self.params.gnfs_location, # path to gnfs-cmd self.params.output, # output folder ], extra.copy() ) def before_main_loop(self): """ Ensure each instance of `ChunkedParameterSweep` has `chunk_size` set to the maximum allowed number of jobs. """ for task in self.session: assert isinstance(task, CryptoChunkedParameterSweep) task.chunk_size = self.params.max_running
UTF-8
Python
false
false
12,748
py
274
gcrypto.py
242
0.62802
0.614214
0
328
37.865854
157
ashutoshvt/autogen
4,982,162,071,799
dc6b61c126c97730efa443de02c69ef33c6ae2f8
3e5f47d87d4baa4eaeec588abbcb35f3db5e9761
/backup/special_conditions.py
59abfa128e63c275d46ed1a32eab53f7eb2c9c80
[]
no_license
https://github.com/ashutoshvt/autogen
187f8fe416344c9dcfc6bcb214153129ee4b4bf2
47ff3010ead822e207f61b28382d72d5b3149808
refs/heads/master
2023-03-19T16:39:55.188003
2020-05-28T20:59:52
2020-05-28T20:59:52
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def startequiv_cond(list_terms): for term in list_terms: print term.map_org d1=0 t1=0 d2=0 t2=0 #check if there are equivalent operators for op in term.large_op_list: if op.name[0]=='T' and op.name[1]=='1': t1+=1 if op.name[0]=='D' and op.name[1]=='1': d1+=1 if op.name[0]=='T' and op.name[1]=='2': t2+=1 if op.name[0]=='D' and op.name[1]=='2': d2+=1 if t2>1: equivop='T2' first=0 second=0 for op in term.map_org: if equivop in op.name and 'Z' in op.name: first=1 elif equivop in op.name: second=1 #atleast 2 equivalent operators present with one of them as the first contraction. #If one of them has no connections with V, multiply with two. if first==1 and second==1: map_org=[] mapping=[] for item in term.large_op_list: if equivop in item.name: map_org.append(item) if 'V2' in item.name or 'F1' in item.name: ind=term.large_op_list.index(item) for item in term.coeff_list[ind]: mapping.append(term.dict_ind[item]) for item in map_org: if item.name not in mapping: term.fac=term.fac*2.0 if d1>1: print 'inside the special conditions' equivop='D1' first=0 second=0 for op in term.map_org: if equivop in op.name and 'Z' in op.name: first=1 elif equivop in op.name: second=1 #atleast 2 equivalent operators present with one of them as the first contraction. #If one of them has no connections with V, multiply with two. if first==1 and second==1: map_org=[] mapping=[] for item in term.large_op_list: if equivop in item.name: map_org.append(item) if 'V2' in item.name or 'F1' in item.name: ind=term.large_op_list.index(item) for item in term.coeff_list[ind]: mapping.append(term.dict_ind[item]) for item in map_org: if item.name not in mapping: term.fac=term.fac*2.0 if d2>1: equivop='D2' first=0 second=0 for op in term.map_org: if equivop in op.name and 'Z' in op.name: first=1 elif equivop in op.name: second=1 #atleast 2 equivalent operators present with one of them as the first contraction. #If one of them has no connections with V, multiply with two. if first==1 and second==1: map_org=[] mapping=[] for item in term.large_op_list: if equivop in item.name: map_org.append(item) if 'V2' in item.name or 'F1' in item.name: ind=term.large_op_list.index(item) for item in term.coeff_list[ind]: mapping.append(term.dict_ind[item]) for item in map_org: if item.name not in mapping: term.fac=term.fac*2.0 if t1>1: equivop='T1' first=0 second=0 for op in term.map_org: if equivop in op.name and 'Z' in op.name: first=1 elif equivop in op.name: second=1 #atleast 2 equivalent operators present with one of them as the first contraction. #If one of them has no connections with V, multiply with two. if first==1 and second==1: map_org=[] mapping=[] for item in term.large_op_list: if equivop in item.name: map_org.append(item) if 'V2' in item.name or 'F1' in item.name: ind=term.large_op_list.index(item) for item in term.coeff_list[ind]: mapping.append(term.dict_ind[item]) for item in map_org: if item.name not in mapping: term.fac=term.fac*2.0 return list_terms
UTF-8
Python
false
false
4,738
py
58
special_conditions.py
46
0.454411
0.436682
0
116
39.844828
94
pphowakande/bakround-applicant
13,855,564,548,097
83815b9ad628da42f19616bd88c9cacf26af7663
964d79bf9b2ab5b5389514f8cd730f1fefe1ffc8
/bakround_applicant/forms.py
8a2b539f4eff0ac4630241f19e50f4c2ad495c45
[]
no_license
https://github.com/pphowakande/bakround-applicant
d216368231d3a998ba12a3c4210d5508e3eb9beb
6cf5081fe4fd7b4ee7a9b458043ad2513a90560e
refs/heads/master
2022-01-18T23:03:37.240329
2020-02-13T18:24:05
2020-02-13T18:24:05
240,319,316
0
0
null
false
2022-01-05T08:14:38
2020-02-13T17:23:57
2020-02-13T18:25:02
2022-01-05T08:14:35
58,233
0
0
22
JavaScript
false
false
__author__ = "tplick" __date__ = "December 22, 2016" from collections import OrderedDict, defaultdict from django.forms import Form, FileField, ValidationError, ModelChoiceField, CharField, FileField from django.forms.fields import ChoiceField from django.db.models import Q from django.template.defaultfilters import filesizeformat from django.conf import settings from allauth.account.forms import SignupForm from allauth.socialaccount.forms import SignupForm as SocialSignupForm from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Fieldset, ButtonHolder, Submit from .all_models.db import LookupState, LookupIndustry, Job, JobFamily from .utilities.functions import make_job_structure_for_dropdown, make_choice_set_for_state_codes class JobModelChoiceField(ModelChoiceField): def label_from_instance(self, obj): return obj.job_name class StateChoiceField(ModelChoiceField): def label_from_instance(self, obj): return obj.state_code def make_state_choice_field(required): return StateChoiceField(queryset=LookupState.objects.all().order_by('state_code'), required=required) class RestrictedFileField(FileField): def __init__(self, *args, **kwargs): content_types = kwargs.pop('content_types', None) if content_types is not None: self.content_types = content_types self.max_upload_size = kwargs.pop('max_upload_size', None) if not self.max_upload_size: self.max_upload_size = settings.MAX_UPLOAD_SIZE super().__init__(*args, **kwargs) def clean(self, *args, **kwargs): data = super().clean(*args, **kwargs) try: if data.content_type in self.content_types: if data.size > self.max_upload_size: raise ValidationError('File size must be under {}. Current file size is {}.'.format(filesizeformat(self.max_upload_size), filesizeformat(data.size))) else: raise ValidationError('File type is not supported.') except AttributeError: pass return data # # http://stackoverflow.com/questions/12303478/how-to-customize-user-profile-when-using-django-allauth class BakroundSignupForm(SignupForm): primary_occupation = ChoiceField([]) password2 = None city = CharField(label='City', required=False) state = ChoiceField([], required=False) first_name = CharField(label='First Name', required=False) last_name = CharField(label='Last Name', required=False) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = make_form_helper() fields = self.fields job_structure = make_job_structure_for_dropdown(True) fields['primary_occupation'] = ChoiceField(change_unselected_display(job_structure, 'Primary Occupation')) fields['state'].choices = make_choice_set_for_state_codes('State') set_placeholder(fields, 'first_name', 'First Name') set_placeholder(fields, 'last_name', 'Last Name') set_placeholder(fields, 'city', 'City') set_placeholder(fields, 'email', 'Email Address') set_placeholder(fields, 'password1', 'Set a Password') # def signup(self, request, user): # # super().signup(request, user) # # user.save() def set_placeholder(fields, key, value): fields[key].widget.attrs['placeholder'] = value def change_unselected_display(structure, value): structure = list(structure) # make a copy structure[0] = ('', [('', value)]) return structure def make_form_helper(): helper = FormHelper() helper.layout = Layout( Fieldset( 'first arg is the legend of the fieldset', 'email', 'first_name', 'last_name', 'city', 'state', 'password1', 'occupation' ), ) return helper class BakroundSocialSignupForm(SocialSignupForm): primary_occupation = ChoiceField([]) city = CharField(label='City', required=False) state = ChoiceField([], required=False) first_name = CharField(label='First Name', required=False) last_name = CharField(label='Last Name', required=False) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = make_social_form_helper() fields = self.fields job_structure = make_job_structure_for_dropdown(True) fields['primary_occupation'] = ChoiceField(change_unselected_display(job_structure, 'Primary Occupation')) fields['state'].choices = make_choice_set_for_state_codes('State') set_placeholder(fields, 'first_name', 'First Name') set_placeholder(fields, 'last_name', 'Last Name') set_placeholder(fields, 'city', 'City') # def signup(self, request, user): # super().signup(request, user) # user.save() def make_social_form_helper(): helper = FormHelper() helper.layout = Layout( Fieldset( 'first arg is the legend of the fieldset', 'email', 'firstname', 'lastname', 'city', 'state', 'occupation' ), ) return helper def make_employer_form_helper(): helper = FormHelper() helper.layout = Layout( Fieldset( 'first arg is the legend of the fieldset', 'email', 'firstname', 'lastname', 'city', 'state', 'password1' 'company', 'phone' ), ) return helper class JobFamilyChoiceField(ModelChoiceField): def label_from_instance(self, obj): return obj.family_name class IndustryChoiceField(ModelChoiceField): def label_from_instance(self, obj): return obj.industry_name class EmployerSignupForm(BakroundSignupForm): industry = IndustryChoiceField(queryset=LookupIndustry.objects.order_by('id'), required=True) company = CharField(max_length=100, required=True) phone = CharField(max_length=100, required=False) # def __init__(self, *args, **kwargs): # super().__init__(*args, **kwargs) # self.helper = make_employer_form_helper() # self.fields.pop('primary_occupation') # self.fields['first_name'].required = True # self.fields['last_name'].required = True # self.fields['city'].required = True # self.fields['state'].required = True # # original_fields = self.fields # new_order = OrderedDict() # for key in ['email', 'password1', 'first_name', 'last_name', 'company', 'city', 'state', 'phone']: # new_order[key] = original_fields[key] # self.fields = new_order def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) fields = self.fields set_placeholder(fields, 'company', 'Company') set_placeholder(fields, 'phone', 'Phone Number') class IndeedTestForm(Form): file = FileField()
UTF-8
Python
false
false
7,143
py
422
forms.py
261
0.625087
0.621448
0
215
32.223256
169