repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
Kangaru94/search_for_element_in_list_test
1,340,029,818,582
25d2ddde54c14ca85fccc6ea222f16b6a194ae38
bbb28047042fd415361e2202495d2bd85b6fdb36
/search_for_element_in_list.py
da65bd45b2757d311f1626bcd7d7e56fb46a7e0c
[]
no_license
https://github.com/Kangaru94/search_for_element_in_list_test
f296911daab5ad95dbb091ce3496031ff7f12441
1c333ad2acb39739820e4b0e4e0935aec1e51df0
refs/heads/master
2020-06-19T14:32:24.619860
2019-07-13T16:45:11
2019-07-13T16:45:11
196,744,580
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#testing "in" START def returns_True_or_False(list): if 1 in list: print("True") else: print("False") list1 = [1, "a", "b"] list2 = ["a", "b", "c"] list3 = list1 + list2 returns_True_or_False(list1) returns_True_or_False(list2) returns_True_or_False(list3) #teting "in" END
UTF-8
Python
false
false
282
py
1
search_for_element_in_list.py
1
0.64539
0.609929
0
16
16.6875
32
ArchyCillp/VinceJudgeChatRoom
4,621,384,812,484
2cd7841717b26b3d2323953b8f4f96a88eb0d32f
be5cd9756a6426a4ca7e240d9c4b2a16b7c0ff28
/src/client.py
27ca2a5a6da880fe1cde03e400fa8fc53aa27e3a
[ "MIT" ]
permissive
https://github.com/ArchyCillp/VinceJudgeChatRoom
718d2753cd722777f8b7ca26f2960706de3a0447
1b4ad1e3ca8ffe97faf5e15cf7e2e1c59e827a99
refs/heads/master
2021-06-23T13:46:45.725408
2019-08-08T03:36:30
2019-08-08T03:36:30
148,513,659
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import socket import threading import select def connect_to_server(addr): server_socket = socket.socket() server_socket.connect(addr) return server_socket def listen_to_server(server_socket): listening = [server_socket] while True: active_socket_list, w, e = select.select(listening, [], []) if server_socket in active_socket_list: try: print(server_socket.recv(1024).decode('utf-8')) except socket.error as e: print(e, ' Failed to receive message from server.') def send_to_server(server_socket): while True: try: print('>>>', end='') msg = input() if msg == '$exit': server_socket.sendall(msg.encode()) server_socket.close() exit() except Exception as e: print(e) try: server_socket.sendall(msg.encode()) except Exception as e: print(e) if __name__ == '__main__': server_ip = input('Server IP:') server_port = int(input('Server Port:')) print('\n') server_socket = connect_to_server((server_ip, server_port)) listen_thr = threading.Thread(target=listen_to_server, args=(server_socket,)) send_thr = threading.Thread(target=send_to_server, args=(server_socket,)) listen_thr.start() send_thr.start()
UTF-8
Python
false
false
1,387
py
4
client.py
2
0.573901
0.570296
0
48
27.895833
81
brython-dev/brython
7,885,559,956,763
c63ccc364e5cef5f26cc35ea205b2dd6dc79566d
8d402df39c18eba7e1c86c762f205c944357c5df
/www/speed/benchmarks/set_dict_item.py
39b19d57ebf5a4fac2a97c7077b4d2574d355555
[ "BSD-3-Clause" ]
permissive
https://github.com/brython-dev/brython
87cc023e25550dec9ce459ba68774189f33712b6
b33958bff0e8c7a280babc30232dc389a2500a7a
refs/heads/master
2023-09-04T04:49:29.156209
2023-09-01T06:36:08
2023-09-01T06:36:08
24,046,239
6,569
625
BSD-3-Clause
false
2023-07-05T06:13:32
2014-09-15T06:58:21
2023-07-05T01:48:46
2023-07-05T06:13:31
247,074
6,052
499
35
Python
false
false
a = {0: 0} for i in range(1000000): a[0] = i JS_CODE = ''' var a = {0: 0} for (var i = 0; i < 1000000; i++) { a[0] = i } '''
UTF-8
Python
false
false
135
py
772
set_dict_item.py
454
0.414815
0.259259
0
11
11.272727
35
dtbhatt/Python
16,810,502,021,873
4e3a42f578744f5b1deb02f7f7c95cc41a575f03
7d6406b6ba112b69fd1d0b5387793703e4220137
/animals.py
9fad44fdf391c24720e87f11f6158f412613ee93
[]
no_license
https://github.com/dtbhatt/Python
6113fd007d02bb03d10fe996d570d12e28063ea3
c7cee8a5dd8bda9987e8918f2e4581c8585e2b50
refs/heads/master
2021-01-25T07:55:22.909000
2017-06-08T19:54:05
2017-06-08T19:54:05
93,695,407
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Animal(object): def __init__(self, name, health): self.name = name self.health = health def walk(self): self.health -= 1 return self def run(self): self.health -= 5 return self def display(self): print self.health return self dog1 = Animal("Dog", 150) dog1.walk().walk().walk().run().run().display() class Dog(Animal): def __init__(self, name): super(Dog, self).__init__(name, 150) def pet(self): self.health += 10 return self class Dragon(Animal): def __init__(self,name): super(Dragon, self).__init__(name, 170) def fly(self): self.health -= 10 return self dragon = Dragon("Cali") dragon.fly().display() # dog = Dog("Cali") # dog.pet().display()
UTF-8
Python
false
false
824
py
15
animals.py
15
0.536408
0.515777
0
42
18.642857
47
Quik-e/PSK-Simulation
12,000,138,655,385
c73531a230f051d665e3de34bd057a5c36d100cc
6ed345123cc8dd4766b2386e7ceef99feef70cd6
/8PSK_ModDemod_FC/8PSK_ModDemod_FC/E8PSK_ModDemod_FC.py
c24f460c55c87172ae2e7a28827600232eb35d5f
[ "MIT" ]
permissive
https://github.com/Quik-e/PSK-Simulation
23052921811d194d6cbe6adde7e9885a52225833
4dd96e9aba41d7ace96b2b2f5a828741600eb27e
refs/heads/master
2023-03-02T22:03:01.178738
2022-03-12T01:54:41
2022-03-12T01:54:41
259,562,893
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- ################################################## # GNU Radio Python Flow Graph # Title: 8PSK Modulation and Demodulation with Frequency Correction Simulation # Author: Enrique Quik-e Cametti # Generated: Fri Mar 13 15:27:15 2020 ################################################## from distutils.version import StrictVersion if __name__ == '__main__': import ctypes import sys if sys.platform.startswith('linux'): try: x11 = ctypes.cdll.LoadLibrary('libX11.so') x11.XInitThreads() except: print "Warning: failed to XInitThreads()" from PyQt5 import Qt from PyQt5 import Qt, QtCore from gnuradio import analog from gnuradio import blocks from gnuradio import channels from gnuradio import digital from gnuradio import eng_notation from gnuradio import filter from gnuradio import gr from gnuradio import qtgui from gnuradio.eng_option import eng_option from gnuradio.filter import firdes from gnuradio.qtgui import Range, RangeWidget from optparse import OptionParser import get_first_byte import numpy as np import repeat_first_byte import sip import sync_decoder import sync_encoder import sys from gnuradio import qtgui class E8PSK_ModDemod_FC(gr.top_block, Qt.QWidget): def __init__(self): gr.top_block.__init__(self, "8PSK Modulation and Demodulation with Frequency Correction Simulation") Qt.QWidget.__init__(self) self.setWindowTitle("8PSK Modulation and Demodulation with Frequency Correction Simulation") qtgui.util.check_set_qss() try: self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc')) except: pass self.top_scroll_layout = Qt.QVBoxLayout() self.setLayout(self.top_scroll_layout) self.top_scroll = Qt.QScrollArea() self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame) self.top_scroll_layout.addWidget(self.top_scroll) self.top_scroll.setWidgetResizable(True) self.top_widget = Qt.QWidget() self.top_scroll.setWidget(self.top_widget) self.top_layout = Qt.QVBoxLayout(self.top_widget) self.top_grid_layout = Qt.QGridLayout() self.top_layout.addLayout(self.top_grid_layout) self.settings = Qt.QSettings("GNU Radio", "E8PSK_ModDemod_FC") if StrictVersion(Qt.qVersion()) < StrictVersion("5.0.0"): self.restoreGeometry(self.settings.value("geometry").toByteArray()) else: self.restoreGeometry(self.settings.value("geometry", type=QtCore.QByteArray)) ################################################## # Variables ################################################## self.RangeRow = RangeRow = 0 self.ConsRow = ConsRow = RangeRow+1 self.nfilts = nfilts = 100 self.SampSymb = SampSymb = 8 self.FreqRow = FreqRow = ConsRow+1 self.samp_rate = samp_rate = 1e6 self.rrc_taps_0 = rrc_taps_0 = firdes.root_raised_cosine(nfilts, nfilts, 1.0/float(SampSymb), 0.35, 45*nfilts) self.Values = Values = 2 self.TimeRow = TimeRow = FreqRow+1 self.SPS = SPS = 2 self.QPSK_CO = QPSK_CO = digital.constellation_qpsk().base() self.Noise = Noise = 0 self.FreqOff = FreqOff = 0.005 self.FDP = FDP = 0.005 ################################################## # Blocks ################################################## self._Noise_range = Range(0, 1, 0.01, 0, 200) self._Noise_win = RangeWidget(self._Noise_range, self.set_Noise, 'Channel Noise', "counter_slider", float) self.top_grid_layout.addWidget(self._Noise_win, 0, 1, 1, 2) [self.top_grid_layout.setRowStretch(r,1) for r in range(0,1)] [self.top_grid_layout.setColumnStretch(c,1) for c in range(1,3)] self._FreqOff_range = Range(-1, 1, 0.001, 0.005, 200) self._FreqOff_win = RangeWidget(self._FreqOff_range, self.set_FreqOff, 'Frequency Offset', "counter_slider", float) self.top_grid_layout.addWidget(self._FreqOff_win, 0, 3, 1, 1) [self.top_grid_layout.setRowStretch(r,1) for r in range(0,1)] [self.top_grid_layout.setColumnStretch(c,1) for c in range(3,4)] self.sync_encoder = sync_encoder.blk() self.sync_decoder = sync_decoder.blk() self.repeat_first_byte = repeat_first_byte.blk(repeat=2) self.qtgui_time_sink_x_0_0 = qtgui.time_sink_f( 512, #size samp_rate, #samp_rate "Original vs Received Data", #name 2 #number of inputs ) self.qtgui_time_sink_x_0_0.set_update_time(0.064) self.qtgui_time_sink_x_0_0.set_y_axis(-1, 1) self.qtgui_time_sink_x_0_0.set_y_label('Amplitude', "") self.qtgui_time_sink_x_0_0.enable_tags(-1, True) self.qtgui_time_sink_x_0_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "") self.qtgui_time_sink_x_0_0.enable_autoscale(True) self.qtgui_time_sink_x_0_0.enable_grid(False) self.qtgui_time_sink_x_0_0.enable_axis_labels(True) self.qtgui_time_sink_x_0_0.enable_control_panel(False) self.qtgui_time_sink_x_0_0.enable_stem_plot(False) if not True: self.qtgui_time_sink_x_0_0.disable_legend() labels = ['Original', 'Received', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "blue"] styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(2): if len(labels[i]) == 0: self.qtgui_time_sink_x_0_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_time_sink_x_0_0.set_line_label(i, labels[i]) self.qtgui_time_sink_x_0_0.set_line_width(i, widths[i]) self.qtgui_time_sink_x_0_0.set_line_color(i, colors[i]) self.qtgui_time_sink_x_0_0.set_line_style(i, styles[i]) self.qtgui_time_sink_x_0_0.set_line_marker(i, markers[i]) self.qtgui_time_sink_x_0_0.set_line_alpha(i, alphas[i]) self._qtgui_time_sink_x_0_0_win = sip.wrapinstance(self.qtgui_time_sink_x_0_0.pyqwidget(), Qt.QWidget) self.top_layout.addWidget(self._qtgui_time_sink_x_0_0_win) self.qtgui_number_sink_0 = qtgui.number_sink( gr.sizeof_float, 0, qtgui.NUM_GRAPH_NONE, 1 ) self.qtgui_number_sink_0.set_update_time(0.10) self.qtgui_number_sink_0.set_title("") labels = ['First Byte', '', '', '', '', '', '', '', '', ''] units = ['', '', '', '', '', '', '', '', '', ''] colors = [("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black")] factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for i in xrange(1): self.qtgui_number_sink_0.set_min(i, 0) self.qtgui_number_sink_0.set_max(i, 255) self.qtgui_number_sink_0.set_color(i, colors[i][0], colors[i][1]) if len(labels[i]) == 0: self.qtgui_number_sink_0.set_label(i, "Data {0}".format(i)) else: self.qtgui_number_sink_0.set_label(i, labels[i]) self.qtgui_number_sink_0.set_unit(i, units[i]) self.qtgui_number_sink_0.set_factor(i, factor[i]) self.qtgui_number_sink_0.enable_autoscale(False) self._qtgui_number_sink_0_win = sip.wrapinstance(self.qtgui_number_sink_0.pyqwidget(), Qt.QWidget) self.top_layout.addWidget(self._qtgui_number_sink_0_win) self.qtgui_freq_sink_x_2 = qtgui.freq_sink_c( 1024, #size firdes.WIN_BLACKMAN_hARRIS, #wintype 0, #fc samp_rate, #bw "", #name 1 #number of inputs ) self.qtgui_freq_sink_x_2.set_update_time(0.064) self.qtgui_freq_sink_x_2.set_y_axis(-140, 10) self.qtgui_freq_sink_x_2.set_y_label('Relative Gain', 'dB') self.qtgui_freq_sink_x_2.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "") self.qtgui_freq_sink_x_2.enable_autoscale(False) self.qtgui_freq_sink_x_2.enable_grid(False) self.qtgui_freq_sink_x_2.set_fft_average(1.0) self.qtgui_freq_sink_x_2.enable_axis_labels(True) self.qtgui_freq_sink_x_2.enable_control_panel(False) if not True: self.qtgui_freq_sink_x_2.disable_legend() if "complex" == "float" or "complex" == "msg_float": self.qtgui_freq_sink_x_2.set_plot_pos_half(not True) labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "dark blue"] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_freq_sink_x_2.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_freq_sink_x_2.set_line_label(i, labels[i]) self.qtgui_freq_sink_x_2.set_line_width(i, widths[i]) self.qtgui_freq_sink_x_2.set_line_color(i, colors[i]) self.qtgui_freq_sink_x_2.set_line_alpha(i, alphas[i]) self._qtgui_freq_sink_x_2_win = sip.wrapinstance(self.qtgui_freq_sink_x_2.pyqwidget(), Qt.QWidget) self.top_layout.addWidget(self._qtgui_freq_sink_x_2_win) self.get_first_byte = get_first_byte.blk() self.digital_psk_mod_0 = digital.psk.psk_mod( constellation_points=8, mod_code="gray", differential=True, samples_per_symbol=SampSymb, excess_bw=0.35, verbose=False, log=False, ) self.digital_psk_demod_0 = digital.psk.psk_demod( constellation_points=8, differential=True, samples_per_symbol=SampSymb, excess_bw=0.35, phase_bw=6.28/100.0, timing_bw=6.28/100.0, mod_code="gray", verbose=False, log=False, ) self.channels_channel_model_0 = channels.channel_model( noise_voltage=Noise, frequency_offset=FreqOff, epsilon=1.0, taps=(1.0 + 1.0j, ), noise_seed=0, block_tags=False ) self.blocks_uchar_to_float_0_0 = blocks.uchar_to_float() self.blocks_uchar_to_float_0 = blocks.uchar_to_float() self.blocks_throttle_0 = blocks.throttle(gr.sizeof_char*1, samp_rate,True) self.blocks_skiphead_0 = blocks.skiphead(gr.sizeof_char*1, 30) self.blocks_repack_bits_bb_0 = blocks.repack_bits_bb(1, 8, "", False, gr.GR_MSB_FIRST) self.blocks_multiply_xx_1 = blocks.multiply_vcc(1) self.blocks_multiply_xx_0_0 = blocks.multiply_vcc(1) self.blocks_multiply_xx_0 = blocks.multiply_vcc(1) self.blocks_multiply_conjugate_cc_0 = blocks.multiply_conjugate_cc(1) self.blocks_file_sink_1 = blocks.file_sink(gr.sizeof_char*1, '/home/teddy/Documents/DVB_last_stand/Received_Files/Test_Text_8PSK_FC_received.txt', False) self.blocks_file_sink_1.set_unbuffered(False) self.blocks_delay_0 = blocks.delay(gr.sizeof_char*1, 5) self.blocks_add_xx_0 = blocks.add_vcc(1) self.band_pass_filter_0_0 = filter.interp_fir_filter_ccf(1, firdes.band_pass( 1, samp_rate, (2*samp_rate/float(SampSymb)-100e3), (2*samp_rate/float(SampSymb)+100e3), 10e3, firdes.WIN_HAMMING, 6.76)) self.band_pass_filter_0 = filter.interp_fir_filter_ccf(1, firdes.band_pass( 1, samp_rate, (samp_rate/float(SampSymb)-samp_rate/float(SampSymb)*FDP*2), (samp_rate/float(SampSymb)+samp_rate/float(SampSymb)*FDP*2), 10e3, firdes.WIN_HAMMING, 6.76)) self.analog_sig_source_x_0_0_0 = analog.sig_source_c(samp_rate, analog.GR_SIN_WAVE, samp_rate/SampSymb, 1, 0) self.analog_sig_source_x_0_0 = analog.sig_source_c(samp_rate, analog.GR_SIN_WAVE, samp_rate/SampSymb, 1, 0) self.analog_pll_refout_cc_0 = analog.pll_refout_cc(0.2, 2*np.pi*(1/float(SampSymb)-1/float(SampSymb)*FDP), 2*np.pi*(1/float(SampSymb)+1/float(SampSymb)*FDP)) self._Values_range = Range(0, 255, 1, 2, 200) self._Values_win = RangeWidget(self._Values_range, self.set_Values, 'Vector Values', "counter_slider", int) self.top_grid_layout.addWidget(self._Values_win, 0, 0, 1, 1) [self.top_grid_layout.setRowStretch(r,1) for r in range(0,1)] [self.top_grid_layout.setColumnStretch(c,1) for c in range(0,1)] self.Text_Source = blocks.file_source(gr.sizeof_char*1, '/home/teddy/Documents/DVB_last_stand/Source_Files/Test_text.txt', True) ################################################## # Connections ################################################## self.connect((self.Text_Source, 0), (self.blocks_throttle_0, 0)) self.connect((self.analog_pll_refout_cc_0, 0), (self.blocks_multiply_xx_1, 0)) self.connect((self.analog_sig_source_x_0_0, 0), (self.blocks_add_xx_0, 1)) self.connect((self.analog_sig_source_x_0_0, 0), (self.blocks_multiply_xx_0_0, 0)) self.connect((self.analog_sig_source_x_0_0, 0), (self.blocks_multiply_xx_0_0, 1)) self.connect((self.analog_sig_source_x_0_0_0, 0), (self.blocks_multiply_xx_1, 1)) self.connect((self.band_pass_filter_0, 0), (self.analog_pll_refout_cc_0, 0)) self.connect((self.band_pass_filter_0_0, 0), (self.blocks_multiply_conjugate_cc_0, 0)) self.connect((self.blocks_add_xx_0, 0), (self.channels_channel_model_0, 0)) self.connect((self.blocks_delay_0, 0), (self.blocks_repack_bits_bb_0, 0)) self.connect((self.blocks_multiply_conjugate_cc_0, 0), (self.digital_psk_demod_0, 0)) self.connect((self.blocks_multiply_conjugate_cc_0, 0), (self.qtgui_freq_sink_x_2, 0)) self.connect((self.blocks_multiply_xx_0, 0), (self.blocks_add_xx_0, 0)) self.connect((self.blocks_multiply_xx_0_0, 0), (self.blocks_multiply_xx_0, 1)) self.connect((self.blocks_multiply_xx_1, 0), (self.blocks_multiply_conjugate_cc_0, 1)) self.connect((self.blocks_repack_bits_bb_0, 0), (self.blocks_skiphead_0, 0)) self.connect((self.blocks_skiphead_0, 0), (self.sync_decoder, 0)) self.connect((self.blocks_throttle_0, 0), (self.blocks_uchar_to_float_0_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.repeat_first_byte, 0)) self.connect((self.blocks_uchar_to_float_0, 0), (self.qtgui_time_sink_x_0_0, 1)) self.connect((self.blocks_uchar_to_float_0_0, 0), (self.qtgui_time_sink_x_0_0, 0)) self.connect((self.channels_channel_model_0, 0), (self.band_pass_filter_0, 0)) self.connect((self.channels_channel_model_0, 0), (self.band_pass_filter_0_0, 0)) self.connect((self.digital_psk_demod_0, 0), (self.blocks_delay_0, 0)) self.connect((self.digital_psk_mod_0, 0), (self.blocks_multiply_xx_0, 0)) self.connect((self.get_first_byte, 0), (self.qtgui_number_sink_0, 0)) self.connect((self.repeat_first_byte, 0), (self.sync_encoder, 0)) self.connect((self.sync_decoder, 0), (self.blocks_file_sink_1, 0)) self.connect((self.sync_decoder, 0), (self.blocks_uchar_to_float_0, 0)) self.connect((self.sync_decoder, 0), (self.get_first_byte, 0)) self.connect((self.sync_encoder, 0), (self.digital_psk_mod_0, 0)) def closeEvent(self, event): self.settings = Qt.QSettings("GNU Radio", "E8PSK_ModDemod_FC") self.settings.setValue("geometry", self.saveGeometry()) event.accept() def get_RangeRow(self): return self.RangeRow def set_RangeRow(self, RangeRow): self.RangeRow = RangeRow self.set_ConsRow(self.RangeRow+1) def get_ConsRow(self): return self.ConsRow def set_ConsRow(self, ConsRow): self.ConsRow = ConsRow self.set_FreqRow(self.ConsRow+1) def get_nfilts(self): return self.nfilts def set_nfilts(self, nfilts): self.nfilts = nfilts self.set_rrc_taps_0(firdes.root_raised_cosine(self.nfilts, self.nfilts, 1.0/float(self.SampSymb), 0.35, 45*self.nfilts)) def get_SampSymb(self): return self.SampSymb def set_SampSymb(self, SampSymb): self.SampSymb = SampSymb self.set_rrc_taps_0(firdes.root_raised_cosine(self.nfilts, self.nfilts, 1.0/float(self.SampSymb), 0.35, 45*self.nfilts)) self.band_pass_filter_0_0.set_taps(firdes.band_pass(1, self.samp_rate, (2*self.samp_rate/float(self.SampSymb)-100e3), (2*self.samp_rate/float(self.SampSymb)+100e3), 10e3, firdes.WIN_HAMMING, 6.76)) self.band_pass_filter_0.set_taps(firdes.band_pass(1, self.samp_rate, (self.samp_rate/float(self.SampSymb)-self.samp_rate/float(self.SampSymb)*self.FDP*2), (self.samp_rate/float(self.SampSymb)+self.samp_rate/float(self.SampSymb)*self.FDP*2), 10e3, firdes.WIN_HAMMING, 6.76)) self.analog_sig_source_x_0_0_0.set_frequency(self.samp_rate/self.SampSymb) self.analog_sig_source_x_0_0.set_frequency(self.samp_rate/self.SampSymb) self.analog_pll_refout_cc_0.set_max_freq(2*np.pi*(1/float(self.SampSymb)-1/float(self.SampSymb)*self.FDP)) self.analog_pll_refout_cc_0.set_min_freq(2*np.pi*(1/float(self.SampSymb)+1/float(self.SampSymb)*self.FDP)) def get_FreqRow(self): return self.FreqRow def set_FreqRow(self, FreqRow): self.FreqRow = FreqRow self.set_TimeRow(self.FreqRow+1) def get_samp_rate(self): return self.samp_rate def set_samp_rate(self, samp_rate): self.samp_rate = samp_rate self.qtgui_time_sink_x_0_0.set_samp_rate(self.samp_rate) self.qtgui_freq_sink_x_2.set_frequency_range(0, self.samp_rate) self.blocks_throttle_0.set_sample_rate(self.samp_rate) self.band_pass_filter_0_0.set_taps(firdes.band_pass(1, self.samp_rate, (2*self.samp_rate/float(self.SampSymb)-100e3), (2*self.samp_rate/float(self.SampSymb)+100e3), 10e3, firdes.WIN_HAMMING, 6.76)) self.band_pass_filter_0.set_taps(firdes.band_pass(1, self.samp_rate, (self.samp_rate/float(self.SampSymb)-self.samp_rate/float(self.SampSymb)*self.FDP*2), (self.samp_rate/float(self.SampSymb)+self.samp_rate/float(self.SampSymb)*self.FDP*2), 10e3, firdes.WIN_HAMMING, 6.76)) self.analog_sig_source_x_0_0_0.set_sampling_freq(self.samp_rate) self.analog_sig_source_x_0_0_0.set_frequency(self.samp_rate/self.SampSymb) self.analog_sig_source_x_0_0.set_sampling_freq(self.samp_rate) self.analog_sig_source_x_0_0.set_frequency(self.samp_rate/self.SampSymb) def get_rrc_taps_0(self): return self.rrc_taps_0 def set_rrc_taps_0(self, rrc_taps_0): self.rrc_taps_0 = rrc_taps_0 def get_Values(self): return self.Values def set_Values(self, Values): self.Values = Values def get_TimeRow(self): return self.TimeRow def set_TimeRow(self, TimeRow): self.TimeRow = TimeRow def get_SPS(self): return self.SPS def set_SPS(self, SPS): self.SPS = SPS def get_QPSK_CO(self): return self.QPSK_CO def set_QPSK_CO(self, QPSK_CO): self.QPSK_CO = QPSK_CO def get_Noise(self): return self.Noise def set_Noise(self, Noise): self.Noise = Noise self.channels_channel_model_0.set_noise_voltage(self.Noise) def get_FreqOff(self): return self.FreqOff def set_FreqOff(self, FreqOff): self.FreqOff = FreqOff self.channels_channel_model_0.set_frequency_offset(self.FreqOff) def get_FDP(self): return self.FDP def set_FDP(self, FDP): self.FDP = FDP self.band_pass_filter_0.set_taps(firdes.band_pass(1, self.samp_rate, (self.samp_rate/float(self.SampSymb)-self.samp_rate/float(self.SampSymb)*self.FDP*2), (self.samp_rate/float(self.SampSymb)+self.samp_rate/float(self.SampSymb)*self.FDP*2), 10e3, firdes.WIN_HAMMING, 6.76)) self.analog_pll_refout_cc_0.set_max_freq(2*np.pi*(1/float(self.SampSymb)-1/float(self.SampSymb)*self.FDP)) self.analog_pll_refout_cc_0.set_min_freq(2*np.pi*(1/float(self.SampSymb)+1/float(self.SampSymb)*self.FDP)) def main(top_block_cls=E8PSK_ModDemod_FC, options=None): if StrictVersion("4.5.0") <= StrictVersion(Qt.qVersion()) < StrictVersion("5.0.0"): style = gr.prefs().get_string('qtgui', 'style', 'raster') Qt.QApplication.setGraphicsSystem(style) qapp = Qt.QApplication(sys.argv) tb = top_block_cls() tb.start() tb.show() def quitting(): tb.stop() tb.wait() qapp.aboutToQuit.connect(quitting) qapp.exec_() if __name__ == '__main__': main()
UTF-8
Python
false
false
21,338
py
12
E8PSK_ModDemod_FC.py
3
0.601743
0.56786
0
459
45.488017
281
cgrobbin/Recipe-Master
8,839,042,728,624
b936f2b38c7e06d6319ce57f4639785b8c8dc066
181159d7534f23db7fd3478c1346a8d5b76ad5e8
/main_app/migrations/0003_auto_20210405_1922.py
deb66b72978e9dec587d1f264e35243567b7602d
[]
no_license
https://github.com/cgrobbin/Recipe-Master
87523a860b790da9e6cfe4e7843d421e57c421cb
619e9d5dc8f0cb0afca8163f79cbf9cb7d1b52db
refs/heads/main
2023-03-29T16:53:34.152054
2021-04-12T16:03:32
2021-04-12T16:03:32
354,648,846
0
0
null
false
2021-04-11T16:09:34
2021-04-04T21:19:05
2021-04-11T15:59:17
2021-04-11T16:09:33
791
0
0
0
HTML
false
false
# Generated by Django 3.1.7 on 2021-04-05 19:22 import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main_app', '0002_auto_20210405_1855'), ] operations = [ migrations.AlterField( model_name='recipe', name='ingredients', field=django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=50), size=None), ), ]
UTF-8
Python
false
false
495
py
24
0003_auto_20210405_1922.py
6
0.642424
0.575758
0
19
25.052632
115
kimballa/stitch
17,136,919,533,600
41a8de27d9b163b2a397d336f5a361e422b5e921
fb68aae4c91fb889fe0e6654289a0e0ff3ded258
/src/stitch/util/output.py
befa6acb6b62595374993d2ccbd22f6487ce4dd4
[ "Apache-2.0" ]
permissive
https://github.com/kimballa/stitch
e5b8028e2f48bb9ad906c665d491dd4b142abc97
5b7fec4c08514ed6ec1bd06920d29d9eeb33c98e
refs/heads/master
2021-01-18T04:06:09.448877
2009-07-17T23:30:13
2009-07-17T23:30:13
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# (c) Copyright 2009 Cloudera, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Manages Cloudera-specific usage of the python 'logging' module # Rather than use 'logging' directly, import this module instead. # This module includes and reexports all elements of the logging module # # This module defines the common command-line arguments used to # control output verbosity for stdout/stderr. Applications are encouraged # to use these same argument names for consistency # # These are: # (VERBOSE_FLAG) --verbose, -v Print CRITICAL through VERBOSE # (DEBUG_FLAG) --debug Print CRITICAL through DEBUG # (QUIET_FLAG) --quiet, -q Only emit CRITICAL output. # (Overrides --verbose and --debug) # # Default action is to print CRITICAL through INFO # # Properties: # # The actual governing of what data is printed to the screen is handled # by the properties object passed to the stream's constructor. # # The properties in question are: # output.quiet Sets quiet mode # output.verbose Enables verbose outputs # output.debug Enables debug outputs # # # The attachOutputArgParser() method will instantiate an ArgParser for # these flags and bind it to a Properties object # # Your program should call initLogging() before doing virtually anything # else. (see its comments for why). When you know what log level you want, # you should then call setupConsole(). (In practice, these will be called # by the ensureConsole() method if you use any of the println*() methods # of this module.) # # "VERBOSE" is not defined by their logging system; in addition to # the levels CRITICAL, ERROR, WARNING, INFO, and DEBUG (defined in # the logging module, and re-exported here), we add a new level # VERBOSE between INFO and DEBUG. # # A standard log file argument is now available. This flag (LOG_FILENAME_FLAG) # takes as an argument the name of a log file. If present, this implies that # the root logger should also send a copy of its output to the indicated log # file. This log will be installed during the call to setupConsole(). # The getAutoFileHandler() method will return the Handler object installed by # this process. The getAutoLogName() method will return the filename used. # # The flag itself is "--log-filename" and sets the property output.auto.logfile. # The verbosity level of this automatic log is handled by "--log-level" which # sets the property output.auto.level. These flags are handled by # attachOutputArgParser(). import atexit from logging import * import sys from stitch.util.argparser import ArgParser QUIET_PROP = "output.quiet" VERBOSE_PROP = "output.verbose" DEBUG_PROP = "output.debug" QUIET_FLAG = "--quiet" VERBOSE_FLAG = "--verbose" DEBUG_FLAG = "--debug" # applications that use this output framework can have their log file usage # automatically handled by this flag. LOG_FILENAME_FLAG = "--log-filename" LOG_FILENAME_PROP = "output.auto.logfile" # The verbosity level string to apply to this log file. # Default (if unset) is whatever the screen's level is. LOG_VERBOSITY_FLAG = "--log-level" LOG_VERBOSITY_PROP = "output.auto.level" # register the verbose level VERBOSE = 15 addLevelName(VERBOSE, "VERBOSE") # when the program terminates, clean up logs as best as possible atexit.register(shutdown) def attachOutputArgParser(properties): """ Given a Properties object, attach an arg parser that will use standard command-line flags to modify the above properties. These standard properties govern our use of the stdout stream which is set up by the setupConsole() method """ argMap = {} # Screen verbosity level arguments argMap["-q"] = QUIET_PROP argMap["-v"] = VERBOSE_PROP argMap[DEBUG_FLAG] = DEBUG_PROP argMap[QUIET_FLAG] = QUIET_PROP argMap[VERBOSE_FLAG] = VERBOSE_PROP booleans = [ DEBUG_FLAG, QUIET_FLAG, VERBOSE_FLAG, "-q", "-v" ] argMap[LOG_FILENAME_FLAG] = LOG_FILENAME_PROP argMap[LOG_VERBOSITY_FLAG] = LOG_VERBOSITY_PROP argParser = ArgParser(argMap, booleans) properties.addArgParser(argParser) initCalled = False def initLogging(): """ This should be called absolutely first in the program. This sets the logging system to be silent; you then call setupConsole() after you've determined what log level you want. The reason for this is because basicConfig() will be called automatically if you call any other logging methods; then you do not have access to the default handle to reconfigure it later. """ global initCalled # set up the basic configuration to /dev/null basicConfig(level=CRITICAL, format="%(message)s", \ filename="/dev/null", filemode="w") initCalled = True def getDefaultLogLevel(properties): """ Returns the log level specified by the properties given """ if properties.getBoolean(QUIET_PROP): return CRITICAL elif properties.getBoolean(DEBUG_PROP): return DEBUG elif properties.getBoolean(VERBOSE_PROP): return VERBOSE else: return INFO # private internal persistent state for setupConsole # (and how it interacts with ensureConsole) consoleHandler = None curConsoleLevel = None def setupConsole(properties): """ Given a properties file, set up the logging module to take over stdout, use a reasonable format, and pick a default log level. This must be called every time we change the values of the properties which govern logging, for those properties to take effect. (An equally valid method is to just call getLogger().setLevel(newlevel). If properties is not modified, calling this method with the same properties object multiple times is idempotent. This will also look for the presence of auto log file properties. If these are set (and no auto log file was yet installed), this will install the auto logfile. If an auto logger is already installed, changing the properties here will have no effect. You should use getAutoFileHandler() to manipulate the handler it installs directly. """ global consoleHandler global curConsoleLevel global initCalled if not initCalled: initLogging() if properties == None: defaultLvl = curConsoleLevel else: defaultLvl = getDefaultLogLevel(properties) # Set the logger to pass everything through it; we do the filtering # at the handlers. getLogger().setLevel(DEBUG) if defaultLvl != curConsoleLevel: if consoleHandler != None: consoleHandler.setLevel(defaultLvl) curConsoleLevel = defaultLvl if consoleHandler == None: formatter = Formatter("%(message)s") # Create a console logger consoleHandler = StreamHandler(sys.stdout) consoleHandler.setLevel(defaultLvl) consoleHandler.setFormatter(formatter) # and attach it to the root logger getLogger().addHandler(consoleHandler) if properties != None: setupAutoFileLogging(properties) def ensureConsole(): """ called by the println*() methods below to ensure that we have a console ready and waiting for us """ if consoleHandler == None: setupConsole(None) def installFileLogger(filename, level=None): """ install a handler on the root logger to output to a particular file. Uses the provided level. If this is None, then use the curConsoleLevel """ # TODO(aaron): Consider using TimedRotatingFileHandler instead global curConsoleLevel if level == None: ensureConsole() level = curConsoleLevel handler = FileHandler(filename) handler.setFormatter(Formatter( "[%(asctime)s] %(levelname)s %(name)s : %(message)s")) handler.setLevel(level) getLogger().addHandler(handler) return handler # if we automatically install a Handler to log to a file, stash it here. autoFileHandler = None def getAutoFileHandler(): """ Return the automatically-installed root file log handler, if any """ global autoFileHandler return autoFileHandler def setupAutoFileLogging(properties): """ Called by setupConsole() to automatically set up a FileHandler for the root level logger, if the user provided us with the appropriate command line flags / properties. If the automatic file handler is already in place, repeated calls to this method do nothing. (You should use getAutoFileHandler() to get the handler and change its settings yourself. """ if getAutoFileHandler() != None: # one's already installed. Do nothing more. return autoFilename = properties.getProperty(LOG_FILENAME_PROP) if autoFilename == None: # no auto logfile requested. return logLevelName = properties.getProperty(LOG_VERBOSITY_PROP) if logLevelName == None: # this wasn't set. Grab the default. logLevelName = getDefaultLogLevel(properties) # if logLevelName was set programmatically, it might be an actual # integer log level rather than a string. If so, just use that. logLevel = None try: if logLevelName == int(logLevelName): logLevel = logLevelName # yup except ValueError: pass # no, it was a string. if logLevel == None: logLevel = getLevelName(logLevelName) # getLevelName() will return a string "Level foo" if this is not a # registered level. Test this by making sure we got a real integer back. try: logLevelInt = int(logLevel) logLevelErr = False except ValueError: # The provided level string is invalid. Flag the error here (log it to the # file itself, later), and use the user's screen logging level. logLevelInt = getDefaultLogLevel(properties) logLevelErr = True # actually install the log global autoFileHandler autoFileHandler = installFileLogger(autoFilename, logLevelInt) printlnDebug("Opened log file " + autoFilename \ + " for logging at level " + str(logLevelName)) if logLevelErr: printlnError("No such log level " + str(logLevelName) \ + " for --log-level; using default level of: " \ + str(getLevelName(logLevelInt))) # The following methods should be used instead of the 'print' statement # throughout our code base, if you want something to go to the output # stream as well as any underlying logs. def printlnError(thing): ensureConsole() error(str(thing)) def printlnInfo(thing): ensureConsole() info(str(thing)) def printlnVerbose(thing): ensureConsole() log(VERBOSE, str(thing)) def printlnDebug(thing): ensureConsole() debug(str(thing)) def printlnLevel(level, thing): ensureConsole() log(level, str(thing))
UTF-8
Python
false
false
11,063
py
66
output.py
60
0.725662
0.724758
0
331
32.416918
80
dougheea/ECE434
10,806,137,741,486
4a828325ba7c16ae6394da5785159dc67ed6af26
609e140a7b7ea757ce573e945a9eb5d109d77936
/hw07/etch_a_sketch_blynk.py
66900fb886b1df3837bda68393997e63c766dec9
[]
no_license
https://github.com/dougheea/ECE434
a09cba79ece7c17010e3467d7eb4f8e3cec31b9f
05e98fefd90c3d8117b38ddb7a0b909c5d0a9e60
refs/heads/master
2023-01-20T11:46:08.328136
2020-11-16T18:25:19
2020-11-16T18:25:19
292,934,476
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # From: https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-398423cc6f5d ''' Raspberry Pi GPIO Status and Control ''' import sys import numpy as np import Adafruit_BBIO.GPIO as GPIO import time import smbus import os import blynklib import blynktimer global newcur_x global newcur_y global cur_x global cur_y global lightboard bus = smbus.SMBus(2) # Use i2c bus 1 matrix = 0x70 # Use address 0x70 # Get the autherization code (See setup.sh) BLYNK_AUTH = os.getenv('BLYNK_AUTH') # Initialize Blynk blynk = blynklib.Blynk(BLYNK_AUTH) # create timers dispatcher instance timer = blynktimer.Timer() print("Welcome to Etch-A-Sketch! To start playing simply enter the dimensions ", "of the board you wish to play on. Then you will be prompted which direction ", "you would like to move in by using the buttons. The | shows where you currently", "are. You can clear the board by pressing the clear button. Enjoy! \n") x =8 y =9 #an empty board is generated lightboard = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] print("you can move left, right, up, down, or shake to clear") newcur_y =1 newcur_x = 0 cur_x = 0 cur_y =1 lightboard[cur_x*2] = 0x80 #initalize starting position of cursor bus.write_i2c_block_data(matrix, 0, lightboard) #sets the lights on the matrix print(cur_x) @blynk.handle_event('write V0') def move_left(pin, value): global newcur_x global newcur_y global cur_x global cur_y global lightboard if cur_x == 0: #edge detection & correction newcur_x = x-1 else: newcur_x = cur_x - 1 #adjusting the coordinates of the cursor cur_x=newcur_x #updating the cursor position cur_y=newcur_y lightboard[2*cur_x]=lightboard[2*cur_x] | (1<<(8-cur_y)) #uses bit shiftingto find the right row to light up bus.write_i2c_block_data(matrix, 0, lightboard) #lights up the designat0000000ed LED green print("moving left!") @blynk.handle_event('write V1') def move_right(pin, value): global newcur_x global newcur_y global cur_x global cur_y global lightboard if cur_x == x-1: newcur_x = 0 else: newcur_x = cur_x + 1 cur_x=newcur_x cur_y=newcur_y lightboard[2*cur_x]=lightboard[2*cur_x] | (1<<(8-cur_y)) bus.write_i2c_block_data(matrix, 0, lightboard) print("moving right!") @blynk.handle_event('write V2') def move_up(pin, value): global newcur_x global newcur_y global cur_x global cur_y global lightboard if cur_y == 1: newcur_y = y-1 else: newcur_y = cur_y - 1 cur_x=newcur_x cur_y=newcur_y lightboard[2*cur_x]=lightboard[2*cur_x] | (1<<(8-cur_y)) bus.write_i2c_block_data(matrix, 0, lightboard) print("moving up!") @blynk.handle_event('write V3') def move_down(pin, value): global newcur_x global newcur_y global cur_x global cur_y global lightboard if cur_y == y-1: newcur_y = 1 else: newcur_y = cur_y + 1 cur_x=newcur_x cur_y=newcur_y lightboard[2*newcur_x]=lightboard[2*newcur_x] | (1<<(8-newcur_y)) bus.write_i2c_block_data(matrix, 0, lightboard) print("moving down!") @blynk.handle_event('write V4') def clear(pin, value): global newcur_x global newcur_y global cur_x global cur_y global lightboard lightboard= [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] lightboard[2*cur_x]=lightboard[2*cur_x] | (1<<(8-cur_y)) #keeps cursor where it was bus.write_i2c_block_data(matrix, 0, lightboard) print("clearing the board!") #return render_template('index3.html') #write the info to the page while True: blynk.run() time.sleep(0.2)
UTF-8
Python
false
false
4,011
py
36
etch_a_sketch_blynk.py
19
0.635253
0.589629
0
152
25.394737
112
huzuohuyou/AutoArticle
8,263,517,091,827
70e139a652c0ce7fedd6ad72ae15df811c94d01f
b084ef3bc3c63a11699d7c3bac3481bc1e16ceaa
/washManuscript.py
2f496c7282c08d925fda6f8215df4f7b17fb7931
[]
no_license
https://github.com/huzuohuyou/AutoArticle
f1cdb8b8a67117dafaafa9fd1857255d9a00321c
459b27af19a5e6226597d83be7ab268a4acbfe25
refs/heads/master
2022-12-15T05:47:10.326543
2020-09-18T09:01:48
2020-09-18T09:01:48
296,262,116
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import urllib import http.cookiejar import ssl import requests import json def washAiticle(article): headers = { 'POST http':'http://18.217.155.9/api/open/xi HTTP/1.1', 'Host':'18.217.155.9', 'Connection':'keep-alive', 'Content-Length':'733', 'Originv':'http://mutou888.com', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.75 Safari/537.36', 'Content-Type':'application/x-www-form-urlencoded; charset=UTF-8', 'Accept':'application/json, text/javascript, */*; q=0.01', 'Referer':'http://mutou888.com/projects/guling/index.html', 'Accept-Encoding':'gzip, deflate', 'Accept-Language':'zh-CN,zh;q=0.9,en;q=0.8'}#\ #'pgc_id=6873288350631985667&source=0&content=%3Cp%3E2e%3C%2Fp%3E&title=11111&search_creation_info=%7B%22abstract%22%3A%22%22%7D&title_id=1600311678909_1678044895007756&extra=%7B%22content_word_cnt%22%3A2%2C%22gd_ext%22%3A%7B%22entrance%22%3A%22hotspots%22%2C%22from_page%22%3A%22publisher_mp%22%2C%22enter_from%22%3A%22PC%22%2C%22device_platform%22%3A%22mp%22%2C%22is_message%22%3A0%7D%7D&mp_editor_stat=%7B%7D&educluecard=&draft_form_data=%7B%22coverType%22%3A2%7D&pgc_feed_covers=%5B%5D&claim_origin=0&origin_debut_check_pgc_normal=0&is_fans_article=0&govern_forward=0&praise=0&disable_praise=0&extern_link=&article_ad_type=2&tree_plan_article=0&activity_tag=0&trends_writing_tag=0&community_sync=0&save=0&timer_status=0&timer_time='} data = {'content': article,} r = requests.post('http://18.217.155.9/api/open/xi', data=data, headers=headers) return r.text json_str = washAiticle('6873288350631985630') data = json.loads(json_str) print(data['msg'])
UTF-8
Python
false
false
1,732
py
4
washManuscript.py
4
0.702079
0.558314
0
29
58.758621
737
lindo-zy/leetcode
7,885,559,959,398
5335188e74c75407977102aec6bb4d706ba4c10a
a606893da1e354c7c617d0c9247b23118be2813a
/easy/e15.py
222bdef06016c055b462096a9410bc86373da2ed
[]
no_license
https://github.com/lindo-zy/leetcode
4ce6cb9ded7eeea0a6953b6d8152b5a9657965da
f4277c11e620ddd748c2a2f3d9f5f05ee58e5716
refs/heads/master
2023-07-22T06:19:00.589026
2023-07-16T12:35:14
2023-07-16T12:35:14
229,958,065
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 # -*- coding:utf-8 -*- class Solution: def plusOne(self, digits): return list(map(int, str(int(''.join([str(i) for i in digits])) + 1))) if __name__ == '__main__': s = Solution() digits = [1, 2, 3] # [1,2,4] digits = [4, 3, 2, 1] # [4,3,2,2] # digits = [0] # [1] # digits = [9, 9, 9] # [1,0,0,0] result = s.plusOne(digits) print(result)
UTF-8
Python
false
false
402
py
324
e15.py
321
0.487562
0.422886
0
15
25.8
78
CamiPon/MemPy
4,947,802,343,278
811bc927e880900aeec4ae73dc2d212e92e0073d
028bf06db19b584bc6322d8427bb27bf77f54469
/ActividadGrupal1/src/windows/v_configuraciones.py
9136cb6b5d36a901ea3282b587d250f0fa2f7623
[]
no_license
https://github.com/CamiPon/MemPy
241189c0a16cdd27b6f7296d4bd295003438d17e
46eaa106709e8fdd46d7f1c4b82a1fddaaa9d0dc
refs/heads/master
2023-06-05T23:32:23.270248
2021-06-22T02:45:48
2021-06-22T02:45:48
361,834,846
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import PySimpleGUI as sg from ..windows import Utilidades as u def build(configuracion): pad_t = ((0,0),(0,15)) pad_i = ((10,0),(0,15)) l_cont_form = [ u.texts("Textos",17, pad = pad_t), u.texts("Tiempo maximo",17, pad = pad_t) + [sg.Spin([i for i in range(120,300)], initial_value= configuracion.tiempo, font = ("Verdana"), size = (3,1), key = "-TIEMPO-",pad = pad_i )], u.texts("Cantidad de casillas",17, pad = pad_t) + [sg.Combo(["8x8", "10x10", "12x12"],default_value = configuracion.cant_casillas,font = ("Verdana"),key = "-CASILLAS-", pad = pad_i )], u.texts("Cantidad de coincidencias",17, pad = pad_t) + [sg.Spin([i for i in range(1,4)], initial_value= configuracion.coicidencias, font = ("Verdana"), size = (3,1),key = "-COINCIDENCIAS-", pad = pad_i )], u.texts("Tipo de casillas",17, pad = pad_t) + [sg.Combo(["Palabras", "Imagenes", "Ambas"],default_value = configuracion.tipo_elementos,font = ("Verdana"),key = "-ELEMENTOS-", pad = pad_i )], u.texts("Estilos",17, pad = pad_t) + [sg.Combo(["t1", "t2", "t3", "t4", "t5"],default_value = configuracion.estilo,font = ("Verdana"), size = (15,1),key = "-ESTILO-", pad = pad_i )], u.texts("Ayudas",17, pad = pad_t) + [sg.Combo(["Si", "No"] , default_value= configuracion.ayudas, font = ("Verdana"), size = (3,1),key = "-AYUDAS-", pad = pad_i )], ] l_cont = [ u.texts("Configuraciones",25,pad = ((0,0),(20,16))), [sg.Column(l_cont_form, background_color="#536162", element_justification="l",pad = pad_t)], u.buttons("GUARDAR",14,"-GUARDAR-", pad =((10,10),(0,10)), size = (30,1)), u.buttons("VOLVER",13,"-VOLVER-",pad =((10,20),(0,10)),size = (15,1)) + u.buttons("RESTABLECER",13,"-RESTABLECER-",pad =((0,10),(0,10)),size = (15,1)), ] layout = [ [sg.Text("MemPy", font=("Helvetica", 45), text_color="#f3f4ed",background_color="#424642",pad = ((0,0),(0,20)) )], [sg.Column(l_cont, background_color="#536162", element_justification="c", pad=(0,0))] ] return sg.Window("MemPy", layout,background_color="#424642", element_justification="c", margins = (20,20)) """window = build() while True: event, values = window.read() if event == "OK" or event == sg.WIN_CLOSED: break window.close()"""
UTF-8
Python
false
false
2,256
py
17
v_configuraciones.py
11
0.595745
0.534131
0
39
56.871795
209
caotianwei/learning-ML-DL
12,799,002,577,755
5f57d76817cb7f0784637daec92ac9336c643241
c8d29ad4dc1835ce4d4af1d76262cd01aa89178e
/mnist_softmax.py
a1f6b9d18adc98830e7d434cf83333b98dd08ae0
[]
no_license
https://github.com/caotianwei/learning-ML-DL
e60b86474d82574e5f6796638463fb5e3426409d
f62b43a92bdbfead5127278a026f8f90998e7c0e
refs/heads/master
2021-01-22T21:38:24.120814
2017-03-19T12:44:43
2017-03-19T12:44:43
85,457,493
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data/', one_hot=True) X = tf.placeholder(tf.float32, [None, 28 * 28]) W = tf.Variable(tf.zeros([28 * 28, 10])) b = tf.Variable(tf.zeros([10])) Y = tf.nn.softmax(tf.matmul(X, W) + b) Y_ = tf.placeholder("float", [None, 10]) cross_entropy = - tf.reduce_sum(Y_ * tf.log(Y)) learning_rate = 0.01 epoches = 2000 batch_size = 100 train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for epoch in range(epoches): xs, ys = mnist.train.next_batch(batch_size) _, c = sess.run([train_step, cross_entropy], feed_dict={X : xs, Y_: ys}) total_batch = int(mnist.train.num_examples / batch_size) if epoch % 10 == 0: print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c/total_batch)) correct_predict = tf.equal(tf.argmax(Y,1), tf.argmax(Y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_predict, "float")) result = sess.run(accuracy, feed_dict={X : mnist.test.images, Y_ : mnist.test.labels}) print("result=",result)#about 0.91
UTF-8
Python
false
false
1,183
py
3
mnist_softmax.py
2
0.67202
0.639899
0
34
33.823529
86
marceljungle/label-releases-explorer
18,554,258,753,805
6ef552ee959e0a91f1d662bcdcf6829c3497d80d
a7df89aaf01a0e449aff006b073c502ed95cb1ce
/principal/models.py
caa71ef755de94123fea689a5509e77c78462cc6
[]
no_license
https://github.com/marceljungle/label-releases-explorer
3aa26f88be89790f91889f2cd43b3ca1f8bdce4e
c70b68e83d0150b2fec9e2061bafde8f4395f893
refs/heads/master
2023-06-03T23:38:30.106815
2021-06-21T09:37:02
2021-06-21T09:37:02
376,323,685
0
0
null
false
2021-06-21T09:37:03
2021-06-12T15:27:27
2021-06-19T15:22:09
2021-06-21T09:37:02
12,691
0
0
0
JavaScript
false
false
# encoding:utf-8 from django.db import models class ReleasesBeatport(models.Model): artist = models.TextField(verbose_name='Artist') catalog_number = models.TextField(verbose_name='Catalog Number') title = models.TextField(verbose_name='Title') year = models.TextField(verbose_name='Year') image = models.TextField(verbose_name='Image') def __str__(self): return self.catalog_number class Meta: ordering = ('-year', ) class ReleasesDiscogs(models.Model): artist = models.TextField(verbose_name='Artist') catalog_number = models.TextField(verbose_name='Catalog Number') title = models.TextField(verbose_name='Title') year = models.TextField(verbose_name='Year') image = models.TextField(verbose_name='Image') def __str__(self): return self.catalog_number class Meta: ordering = ('-year', ) class ReleasesJuno(models.Model): artist = models.TextField(verbose_name='Artist') catalog_number = models.TextField(verbose_name='Catalog Number') title = models.TextField(verbose_name='Title') year = models.TextField(verbose_name='Year') image = models.TextField(verbose_name='Image') def __str__(self): return self.catalog_number class Meta: ordering = ('-year', ) class AllReleases(models.Model): artist = models.TextField(verbose_name='Artist') catalog_number = models.TextField(verbose_name='Catalog Number') title = models.TextField(verbose_name='Title') year = models.TextField(verbose_name='Year') image = models.TextField(verbose_name='Image') def __str__(self): return self.catalog_number class Meta: ordering = ('-year', )
UTF-8
Python
false
false
1,716
py
17
models.py
14
0.672494
0.671911
0
58
28.586207
68
260980/260980_Daily_Commits
17,592,186,083,943
e2dd7f855d9e0c1f46bf03a81319d2fe8ea9aa43
d1a7531c04b08e133d39b8cad3e2b561236b85d3
/Assignment/If-elif-else/If-elif-else_2.py
722635cbe9dbb9d0e52531a78acf7f8da9f45917
[]
no_license
https://github.com/260980/260980_Daily_Commits
8759d81e703b56a96677f9697851cb68088e8f7e
20e38e5a20cf51e6c941bf95696c5aa84f1a7849
refs/heads/master
2023-04-03T13:48:07.010808
2021-04-25T15:00:08
2021-04-25T15:00:08
359,049,154
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Write a python program to check the user input abbreviation. str1 = input('Enter the abbreviation') if str1 == 'lol': print("laughing out loud") elif str1 == 'rofl': print("rolling on the floor laughing") elif str1 == 'lmk': print("let me know") elif str1 == 'smh': print("shaking my head") else: print("Enter the correct input")
UTF-8
Python
false
false
352
py
17
If-elif-else_2.py
16
0.661932
0.647727
0
12
28.333333
62
Dodzik/Language_Python
19,585,050,900,473
2d044c7eb7c16c307f7efcebec7d6f40a59a6b6d
8d6b9b914f91ed4dfe7000cdca764a35f0ff7daf
/lab09/mojmodul.py
a7985ccde7a06acd9eb70d26eb41d56e8ea3a6b7
[]
no_license
https://github.com/Dodzik/Language_Python
7c991226284d4085fd9d22b8a8cbd5411053ca8a
bf869322e739e6b5ef4c96b61e702168c4aaf629
refs/heads/main
2023-05-08T00:05:59.909117
2021-05-19T17:23:05
2021-05-19T17:23:05
368,875,667
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random import matplotlib.pyplot as plt def fun1 (n,los): x = random.random() y = random.random() argumenty=[] wartosci=[] with open('wyniki1.txt','w') as f: f.write(str(x) + " "+ str(y)+'\n') argumenty.append(x) wartosci.append(y) for i in range(n): chos = random.choices(los,[1,7,7,85]) chos = chos[0] x,y = chos[0]*x+chos[1]*y+chos[2],chos[3]*x+chos[4]*y+chos[5] argumenty.append(x) wartosci.append(y) f.write(str(x) + " "+ str(y)+'\n') plt.plot(argumenty,wartosci,'bo', markersize='0.1' ) plt.savefig("zad1.png") import scipy.integrate def fun2(funkcja,q,p): wynik_squad = scipy.integrate.quad(funkcja,q,p) with open('wyniki2.txt','w' )as f: f.write("właściwy wynik: \n"+str(wynik_squad)+'\n') t=0 step=0.0001 min= 0 max= 0 lso = q #szukanie najwiekszej wartości i najmniejszej while lso <p: if funkcja(lso)>max: max = funkcja(lso) if funkcja(lso)<min: min = funkcja(lso) lso = lso + step num_iteration =0 while True: x = random.uniform(q,p) y = random.uniform(min, max) if 0 < y and y <= funkcja(x): t = t+1 if y >= funkcja(x) and y < 0: t = t-1 num_iteration = num_iteration + 1 if wynik_squad[0] - step < abs(max - min)*abs(max - min)*t/num_iteration and abs(max - min)*abs(max - min)*t/num_iteration < wynik_squad[0] + step: f.write("wynik z funkcji:\n" + str(abs(max - min)*abs(max - min)*t/num_iteration) +"\nilosc iteracji "+str(num_iteration)) break def fun3(funkcja,q,p): wynik_squad = scipy.integrate.quad(funkcja,q,p) with open('wyniki3.txt','w' )as f: f.write("właściwy wynik: \n"+str(wynik_squad)+'\n') step=0.0001 suma=0 num_iteration =0 while True: x = random.uniform(q,p) suma = suma + funkcja(x) num_iteration = num_iteration + 1 #nieskonczonba petla break if wynik_squad[0] - step < abs(q,p)*suma/num_iteration and abs(q,p)*suma/num_iteration < wynik_squad[0] + step: f.write("Wynik z funkcji" + str(abs(q,p)*suma/num_iteration) + "ilosc iteracji"+str(num_iteration)) break
UTF-8
Python
false
false
2,069
py
13
mojmodul.py
11
0.627422
0.604651
0
76
26.171053
150
mtlynch/GreenPiThumb
11,278,584,156,256
9e974ec7b6f6ae61837e14508ab2870c19b4065a
48290742dd0bb2cf6186bdd891bf0728dcf53dd1
/greenpithumb/clock.py
f8bd42e91c1991e457d9ca29bbae34b57850323e
[ "Apache-2.0" ]
permissive
https://github.com/mtlynch/GreenPiThumb
08363f660513ccdc8e7956936da0471da8fa328c
e824f3d3b5298b6fbbff97e1a709929d27d294e7
refs/heads/master
2021-01-17T23:46:32.632630
2017-01-10T17:27:20
2017-01-10T17:27:20
56,197,493
3
0
null
true
2016-05-14T17:47:38
2016-04-14T01:21:54
2016-04-17T19:11:02
2016-05-14T17:46:12
34
0
0
0
Python
null
null
import datetime import time import pytz import tzlocal class Clock(object): """A wrapper for managing clock time functions.""" def wait(self, wait_time_seconds): """Wait for the specified number of seconds. Args: wait_time_seconds: Number of seconds to wait. """ if wait_time_seconds < 0.0: raise ValueError('Wait time cannot be negative: %f' % wait_time_seconds) time.sleep(wait_time_seconds) def now(self): return datetime.datetime.now(tz=pytz.utc) class LocalClock(Clock): """An implementation of Clock that operates in the local time zone.""" def now(self): time_utc = super(LocalClock, self).now() return time_utc.astimezone(tzlocal.get_localzone())
UTF-8
Python
false
false
801
py
40
clock.py
36
0.619226
0.616729
0
31
24.83871
74
rileyjohngibbs/ICS-PA-2018-2019
1,125,281,437,174
59dae669b495b663de1010f0bae396c4efd4443c
01b402a1637918b27ac5343c757d551c49b1acc4
/inclass_scratchwork/2018-11-30_pokemon.py
37faaeaf0b10feb6978fc3ce03842427818b6abe
[]
no_license
https://github.com/rileyjohngibbs/ICS-PA-2018-2019
7670d7f1eeb87d62af108a08326c953625071a1f
b53def4fd655a2defb09006ad8951d78a7fc3402
refs/heads/master
2020-03-28T11:56:05.779537
2019-06-13T16:45:52
2019-06-13T16:45:52
148,257,287
0
3
null
null
null
null
null
null
null
null
null
null
null
null
null
from random import randint STRENGTHS = { "grass": "water", "water": "fire", "fire": "grass" } class Pokemon(object): def __init__(self, name, type_): self.name = name self.type_ = type_ self.hp = 50 def attack(self, target): base_damage = self.roll_damage() damage = self.modify_damage(base_damage, target) print(f"{self.name} attacks {target.name} for {damage} damage!") target.take_damage(damage) def roll_damage(self): return randint(1, 10) + randint(1, 10) def modify_damage(self, base_damage, target): strength = STRENGTHS[self.type_] target_strength = STRENGTHS[target.type_] if strength == target.type_: damage = base_damage * 2 if target_strength == self.type_: damage = int(base_damage / 2) return damage def take_damage(self, damage): self.hp = max(self.hp - damage, 0) if self.hp == 0: print(f"{self.name} has fainted!") bulbasaur = Pokemon("Bulbasaur", "grass") charmander = Pokemon("Charmander", "fire") squirtle = Pokemon("Squirtle", "water")
UTF-8
Python
false
false
1,155
py
59
2018-11-30_pokemon.py
36
0.58355
0.57316
0
44
25.272727
72
lianruiying/TranscriptProcessing
8,315,056,730,040
bc1a934da688c74061ad69e8445583dbc6767211
d5e18d55b40964b5bf08e5097db127b5c6fbefee
/__init__.py
5dcb0bb560873d297e4a1583fb074f975970cd29
[]
no_license
https://github.com/lianruiying/TranscriptProcessing
de8c4ae7a0fd5caf5812d9e7ee4657cfaaebfd8a
94a1c32f4cc7ab373936529df9baeee3fca63a39
refs/heads/master
2020-03-23T14:12:45.600063
2018-07-20T01:04:46
2018-07-20T01:04:46
141,663,213
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import Get_Trans import raw_url import urlhub file = open("scripts.txt",'a') index = 0 url = "http://www.ted.com/" raw_urlhub =raw_url.raw_url(url) urlhub = urlhub.refine(raw_urlhub) #print(urlhub) for url in urlhub: try: script = Get_Trans.transcript(url) index += 1 file.write(format(index)) file.write(script) except: print("Some Kind of Error Occored.") file.close()
UTF-8
Python
false
false
429
py
5
__init__.py
4
0.624709
0.620047
0
24
16.875
44
Feteya/AaronTools.py
9,560,597,204,710
9a2e20c4ae8440bd3873e54986420aa84985dc35
fc1ce41908b2734d30f0bf8cf9e1f9906e5bbd88
/test/test_trajectory.py
cf82c85daa488164326792fcda32f29d5b593cf1
[]
no_license
https://github.com/Feteya/AaronTools.py
0acbe94e323aed4a222c920a20c4cc776d90a586
1e104e1ceec46486120c85e8bb0d590575ebf097
refs/heads/master
2020-09-06T07:35:01.477275
2019-11-07T21:53:56
2019-11-07T21:53:56
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import unittest from AaronTools.trajectory import Pathway from AaronTools.geometry import Geometry from AaronTools.test import TestWithTimer, prefix, rmsd_tol from numpy.linalg import inv from numpy import dot, finfo class TestPathway(TestWithTimer): t60 = Geometry(prefix + "test_files/torsion-60.xyz") t90 = Geometry(prefix + "test_files/torsion-90.xyz") def test_interpolating_structure(self): #test to see if interpolated geometry is correct ref = Geometry(prefix + "ref_files/torsion_interpolation.xyz") S = Pathway([self.t60, self.t90]) geom = S.Geom_func(0.4) rmsd = geom.RMSD(ref, align=True) self.assertTrue(rmsd < rmsd_tol(ref, superLoose=True)) def test_splines_values(self): # test cubic splines function values # ought to have two splines: # g(x) = -10x^3 + 15x^2 # h(x) = 10x^3 + -15x^2 + 5 ref = [0, 0.78125, 2.5, 5, 4.21875, 2.5, 0] ref_d = [0, 5.625, 7.5, 0, -5.625, -7.5, 0] test_t = [0, 0.125, 0.25, 0.5, 0.625, 0.75, 1] tolerance = 50*finfo(float).eps ev = [0, 5, 0] m = Pathway.get_splines_mat(3) mi = inv(m) b = Pathway.get_splines_vector(ev) c = dot(mi, b) f, df = Pathway.get_E_func(c, [1, 1]) for i in range(0, len(test_t)): v = f(test_t[i]) dv = df(test_t[i]) self.assertTrue(abs(v-ref[i]) <= tolerance) self.assertTrue(abs(dv-ref_d[i]) <= tolerance) def suite(): suite = unittest.TestSuite() suite.addTest(TestPathway("test_interpolating_structure")) suite.addTest(TestPathway("test_splines_values")) return suite if __name__ == "__main__": runner = unittest.TextTestRunner() runner.run(suite())
UTF-8
Python
false
false
1,819
py
42
test_trajectory.py
39
0.595932
0.547004
0
54
32.685185
70
RideGreg/LeetCode
584,115,554,105
0b796a4a65b149c8a22776bea9db3b9b64256277
fc75506dc1f278585630a9d7d3b70cbb92d3d9f5
/Python/perfect-squares.py
fc656373544214677ddf010f0f8cb1984659f7f8
[ "MIT" ]
permissive
https://github.com/RideGreg/LeetCode
a533b5193b2680f23c08572391eecaa3866c3cef
e1d19b5e18ece5190277317595b554ab50efb900
refs/heads/master
2022-08-24T16:16:03.392756
2022-08-12T23:17:53
2022-08-12T23:17:53
115,889,638
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# Time: O(n * sqrt(n)) # Space: O(n) # 279 # Given a positive integer n, find the least number of perfect # square numbers (for example, 1, 4, 9, 16, ...) which sum to n. # # For example, given n = 12, return 3 because 12 = 4 + 4 + 4; # given n = 13, return 2 because 13 = 4 + 9. # class Solution(object): def numSquares(self, n): """ :type n: int :rtype: int """ dp = [0] for i in range(1, n+1): dp.append(1 + min(dp[-k*k] for k in range(1, int(i**0.5)+1))) return dp[n] print(Solution().numSquares(12)) # 3, 12 = 4+4+4 print(Solution().numSquares(13)) # 2, 13 = 4 + 9
UTF-8
Python
false
false
645
py
822
perfect-squares.py
821
0.537984
0.466667
0
24
25.916667
73
fmirandaTN/Api_TN
3,539,053,090,500
e114359e194368860cba66a044467a71c448971a
0d3698d107efe9b1e17311ba5f44bbcd6ebe4b27
/api/models/user_token.py
7cdc67a7aed0ba99de6c45a23acbd7aaa649f2ff
[]
no_license
https://github.com/fmirandaTN/Api_TN
5406921977011a6693d560c47ab5958544a509e4
5665d90d6f2bf09969bd833d64ab8a9e24957641
refs/heads/master
2022-12-08T23:07:01.617341
2020-09-17T14:07:57
2020-09-17T14:07:57
293,366,842
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from datetime import datetime, date, timedelta from django.db import models class UserToken (models.Model): token = models.CharField(max_length=500) owner = models.ForeignKey( 'api.User', related_name="token_register", on_delete=models.CASCADE, null=True) validation = models.BooleanField(default=False) recovery = models.BooleanField(default=False)
UTF-8
Python
false
false
374
py
161
user_token.py
149
0.745989
0.737968
0
9
40.666667
87
btg1998/Information-Systems
13,056,700,616,473
c271b29cfe659728e3d8cfc9c39218c2b7861209
7634b9e9b1b78dd08ef7a629ea7bb6b07713b9bb
/Eigen Values and Eigen Vectors.py
8ec690593a863e148b0f78e909bcfc263df9105a
[]
no_license
https://github.com/btg1998/Information-Systems
74e7f3a09d0f25a14d30890944ff853b9386bdc2
481cec62fc9510082bd5b3d24febc3f3283f1a39
refs/heads/master
2020-03-26T05:56:52.599814
2018-08-13T13:31:53
2018-08-13T13:31:53
144,582,191
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Aug 23 19:22:15 2017 @author: bharg """ import scipy from scipy import linalg import numpy as np a=np.array([[1,8,-9,7,5], [0,1,0,4,4], [0,0,1,2,5], [0,0,0,1,-5], [0,0,0,0,1]]) print("Determinant: ") print(scipy.linalg.det(a)) print("Inverse: ") print(linalg.inv(a)) lam,evec=linalg.eig(a) print("Eigen Pairs: ") print("Eigen Values: ") print(lam.real) print("Corresponding Eigen Vectors: ") print(np.around(evec,decimals=2)) print("Transpose: ") print(a.transpose())
UTF-8
Python
false
false
587
py
48
Eigen Values and Eigen Vectors.py
41
0.572402
0.505963
0
27
19.666667
38
walberjose/COOL
17,300,128,299,071
9559bb1bb49f1fb55e2c84d9576cd26fb65baa9d
ee340a4025f1b041410a06e1794632e1108257ad
/mininet_topo/simple_linear_2links.py
a0265690b6afebcdef452387aed2ccd138424a03
[]
no_license
https://github.com/walberjose/COOL
37264431b5bb07a55d194276988c3fa7967952e8
0e878f4a868095140a4c7757766e460abb45e81a
refs/heads/master
2020-03-29T04:09:24.448947
2018-09-19T22:11:14
2018-09-19T22:11:14
149,518,099
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python """ This example shows how to add an interface (for example a real hardware interface) to a network after the network is created. """ import re import sys from mininet.topo import Topo from mininet.cli import CLI from mininet.log import setLogLevel, info, error from mininet.net import Mininet from mininet.link import Intf from mininet.node import RemoteController from mininet.link import TCLink #from mininet.topolib import TreeTopo from mininet.util import quietRun from mininet.nodelib import NAT ''' IT DOES NOT WORK APPROPRIATE BECAUSE NX DOES NOT RECOGNIZE TWO LINKS BETWEEN A PAIR OF NODES. It treats as the same. sudo python ryu/app/COOL/mininet_topo/simple_linear_2links.py ''' class GeneratedTopo( Topo ): "Internet Topology Zoo Specimen." def __init__( self, **opts ): "Create a topology." # Initialize Topology Topo.__init__( self, **opts ) # add nodes, switches first... s1 = self.addSwitch( 's1' , protocols=["OpenFlow13"]) s2 = self.addSwitch( 's2' , protocols=["OpenFlow13"]) # s3 = self.addSwitch( 's3' , protocols=["OpenFlow13"]) # s4 = self.addSwitch( 's4' , protocols=["OpenFlow13"]) # ... and now hosts h1_host = self.addHost('h1', ip='10.0.0.01/24', mac='00:00:00:00:00:01') h2_host = self.addHost('h2', ip='10.0.0.02/24', mac='00:00:00:00:00:02') h3_host = self.addHost('h3', ip='10.0.0.03/24', mac='00:00:00:00:00:03') # add edges between switch and corresponding host self.addLink( s1 , h1_host, bw=10, delay='0.0ms') self.addLink( s2 , h2_host, bw=10, delay='0.0ms') self.addLink( s2 , h3_host, bw=10, delay='0.0ms') self.addLink( s1 , s2, bw=10, delay='0.0ms') self.addLink( s1 , s2, bw=10, delay='0.0ms') #you can call addHost(cls=NAT...) directly if you don't like addNAT() - addNAT() is just a convenience method #self.natIP = '10.0.0.1/24'#kwargs.pop('natIP', '10.0.0.254') #self.connect = kwargs.pop('connect', 's1') #self.hopts.update(defaultRoute='via ' + self.natIP) #nat0 = self.addNode('nat0', cls=NAT, ip='10.0.0.1/24', inNamespace=False) #self.addLink(s1, nat0) # add edges between switches # self.addLink( s1 , s2 , bw=10, delay='0.0ms') # self.addLink( s2 , s3 , bw=10, delay='0.0ms') # self.addLink( s3 , s4 , bw=10, delay='0.0ms') # self.addLink( s4 , s1 , bw=10, delay='0.0ms') #intfName = sys.argv[1] if len(sys.argv) > 1 else 'server1' topos = { 'generated': ( lambda: GeneratedTopo() ) } # def checkIntf( intf ): # "Make sure intf exists and is not configured." # config = quietRun( 'ifconfig %s 2>/dev/null' % intf, shell=True ) # if not config: # error( 'Error:', intf, 'does not exist!\n' ) # exit( 1 ) # ips = re.findall( r'\d+\.\d+\.\d+\.\d+', config ) # if ips: # error( 'Error:', intf, 'has an IP address,' # 'and is probably in use!\n' ) # exit( 1 ) if __name__ == '__main__': simple_linear_2links = GeneratedTopo() setLogLevel( 'info' ) # try to get hw intf from the command line; by default, use server1 #intfName = sys.argv[ 1 ] if len( sys.argv ) > 1 else 'server1' #info( '*** Connecting to hw intf: %s' % intfName ) #info( '*** Checking', intfName, '\n' ) #checkIntf( intfName ) info( '*** Creating network\n' ) controller = RemoteController('c0',ip='127.0.0.1', port=6633) net = Mininet(simple_linear_2links, controller=controller, link=TCLink)#topo=TreeTopo( depth=1, fanout=2 ) ) # s1 = net.switches[0] # _intf_linkC = Intf('linkC', node=s1) # _intf_linkB = Intf('linkB', node=s1) # _intf_linkA = Intf('linkA', node=s1) #_intf_link8 = Intf('link8', node=s1) #net.addNAT().configDefault() #_intf_link8 = Intf('wlan0', node=s1) # switch = net.switches[ 0 ] # info( '*** Adding hardware interface', intfName, 'to switch', # switch.name, '\n' ) # _intf = Intf( intfName, node=switch ) info( '*** Note: you may need to reconfigure the interfaces for ' 'the Mininet hosts:\n', net.hosts, '\n' ) #net.addNAT().configDefault() net.start() # cmd = 'route add default gw 10.0.0.1' # for host in net.hosts: # host.cmd( cmd )#+ ' ' + opts + '&' ) # if host.name == "nat1": # host.cmd('nat1 route add -net 10.0.1.0 netmask 255.255.255.0 gw 10.0.1.2') CLI( net ) net.stop()
UTF-8
Python
false
false
4,545
py
46
simple_linear_2links.py
38
0.5967
0.546755
0
130
33.969231
117
2019-jbedu-g2/Test_Server
11,115,375,376,139
5e85b06aee595018f44b5c64f413ed3e1877dd72
e26463722143c2fd18f4e78b47e1d42aa53c6c7c
/store/store/models.py
a1de7c4e2226d0698a401e0395e7684334f483e6
[]
no_license
https://github.com/2019-jbedu-g2/Test_Server
5b1aeaabfc732bd8bfc61fa05c0d596447f1abc7
a85d9f65355380f51554adf7e3ecf29d752e51aa
refs/heads/master
2020-06-18T13:34:12.050325
2019-08-15T05:48:26
2019-08-15T05:48:26
196,300,820
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# This is an auto-generated Django model module. # You'll have to do the following manually to clean this up: # * Rearrange models' order # * Make sure each model has one field with primary_key=True # * Make sure each ForeignKey has `on_delete` set to the desired behavior. # * Remove `managed = False` lines if you wish to allow Django to create, modify, and delete the table # Feel free to rename the models, but don't rename db_table values or field names. from django.db import models class Accountdb(models.Model): storenum = models.ForeignKey('Storedb', models.DO_NOTHING, db_column='storenum') storeid = models.CharField(primary_key=True, max_length=20) storepwd = models.CharField(max_length=20) class Meta: managed = False db_table = 'accountdb' class Queuedb(models.Model): barcode = models.CharField(primary_key=True, max_length=20) onoffline = models.BooleanField() storenum = models.ForeignKey('Storedb', models.DO_NOTHING, db_column='storenum') createtime = models.DateTimeField() updatetime = models.DateTimeField(blank=True, null=True) status = models.CharField(max_length=10) class Meta: managed = False db_table = 'queuedb' class Storedb(models.Model): storenum = models.CharField(primary_key=True, max_length=10) storename = models.CharField(max_length=50) category = models.CharField(max_length=20) latitude = models.CharField(max_length=40) longitude = models.CharField(max_length=40) intro = models.CharField(max_length=200, blank=True, null=True) menu = models.CharField(max_length=300, blank=True, null=True) inform = models.CharField(max_length=500, blank=True, null=True) latencytime = models.CharField(max_length=10) class Meta: managed = False db_table = 'storedb' class Storeview(models.Model): storenum = models.CharField(primary_key=True, max_length=10) storename = models.CharField(max_length=50) category = models.CharField(max_length=20) latitude = models.CharField(max_length=40) longitude = models.CharField(max_length=40) intro = models.CharField(max_length=200, blank=True, null=True) menu = models.CharField(max_length=300, blank=True, null=True) inform = models.CharField(max_length=500, blank=True, null=True) latencytime = models.CharField(max_length=10) waitingcount = models.IntegerField(default=0) class Meta: managed = False db_table = 'storeview'
UTF-8
Python
false
false
2,505
py
20
models.py
17
0.707784
0.687425
0
64
38.15625
104
akeilox/FYP-Face_Recognition_Based_Attendance_System
18,897,856,111,838
50bf08058fa02f37f5a51dcd8ef0ce7638739140
8dbea32bdfd830782cab1ff42320d4d9fcdf70e3
/Final Year Project - 022319/bin/Debug/benchmarker_DS6.py
ca900ff4f8f51cbecb9450ab459355d4b9cca07f
[]
no_license
https://github.com/akeilox/FYP-Face_Recognition_Based_Attendance_System
0702c9bd17ea847eca4f3f40177b4c311141a038
d502c82353de5f1712ba3028fd3654829b584d60
refs/heads/master
2020-06-06T08:04:30.479065
2019-02-25T13:17:03
2019-02-25T13:17:03
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import random import cv2 from PIL import Image import numpy as np import shutil import importlib import imp testset_amount = 5 selected_Dataset = None trainingSeq = 0 testSeq = 0 test_Question = [] test_Dir = [] bm = None MajorDataset = "Dataset 5" def fetchTrainingData(DS_DIR, TRAIN_DIR = "Training Image"): if DS_DIR == MajorDataset and TRAIN_DIR == "Training Image": global trainingSeq if trainingSeq == 0: trainingSeq = 1 return fetchTrain(DS_DIR, "Training-Pure") elif trainingSeq == 1: trainingSeq = 2 return fetchTrain(DS_DIR, "Training-Mix") else: return fetchTrain(DS_DIR, TRAIN_DIR) def fetchTestQuestion(test_Name = "Test Image"): if selected_Dataset == MajorDataset and test_Name == "Test Image": global testSeq if testSeq == 0: testArr = fetchTest("Test 1") testSeq = 1 return testArr elif testSeq == 1: testSeq = 2 return fetchTest("Test 2 - Angle") elif testSeq == 2: testSeq = 3 return fetchTest("Test 3 - Lighting") else: return fetchTest(test_Name) def fetchTest(test_Name = "Test Image"): global test_Question global test_Dir if selected_Dataset is not None: DS_DIR = selected_Dataset test_Dir.clear() test_Question.clear() test_set = [] print("** Fetching Test Images... **") BASE_DIR = os.path.dirname(os.path.abspath(__file__)) img_dir = os.path.join(BASE_DIR, DS_DIR) testset_data = os.path.join(img_dir, test_Name) total_files = len(os.listdir(testset_data)) * testset_amount rand = random.sample(range(0, total_files), total_files) for ran in rand: iden_id = int(ran / testset_amount) img_no = ran % testset_amount iden_dir = os.path.join(testset_data, os.listdir(testset_data)[iden_id]) img = os.listdir(iden_dir)[img_no] testimg_dir = os.path.join(iden_dir, img) image = cv2.imread(testimg_dir) test_Dir.append(testimg_dir) test_set.append(image) test_Question.append(os.listdir(testset_data)[iden_id].replace(" ", "-").lower()) #name = bm.testAlgo(image, DS_DIR) print("** Fetch Completed **") return test_set def submitAnswer(ansArr): global test_Question global test_Dir correctAns = 0 wrongAns = 0 if not test_Question: print("Please fetch the test questions before submitting") else: BASE_DIR = os.path.dirname(os.path.abspath(__file__)) wrong_dir = os.path.join(BASE_DIR, "Incorrect Answer") if not os.path.exists(wrong_dir): os.makedirs(wrong_dir) else: shutil.rmtree(wrong_dir) os.makedirs(wrong_dir) print("** Checking your answer **") for x in range(len(test_Question)): print("Question: " + test_Question[x].replace(" ", "-").lower()) if ansArr[x] is not None: print("Answer: " + ansArr[x].replace(" ", "-").lower()) else: print("Answer: ") print("") if ansArr[x] is not None and ansArr[x].replace(" ", "-").lower() == test_Question[x]: correctAns += 1 else: wrongAns += 1 copyDir = str(x) + " Qn-" + test_Question[x] + " Ans-" + ansArr[x].replace(" ", "-").lower() shutil.copyfile(test_Dir[x], (wrong_dir + "\\" + str(copyDir))) print("No of correct: " + str(correctAns)) print("No of wrong: " + str(wrongAns)) acc = (correctAns / (correctAns + wrongAns)) * 100 print("Accuracy is " + "{0:.1f}".format(acc) + "%\n") print("Press (Function + Alt + F4) to Exit!" + "\n") return correctAns, wrongAns, acc def feedTestData(DS_DIR, TEST_DIR="Test Image"): print("**Initiating Test, calling testAlgo() method **") try: correctAns = 0 wrongAns = 0 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) img_dir = os.path.join(BASE_DIR, DS_DIR) testset_data = os.path.join(img_dir, TEST_DIR) wrong_dir = os.path.join(BASE_DIR,"Incorrect Answer") if not os.path.exists(wrong_dir): os.makedirs(wrong_dir) else: shutil.rmtree(wrong_dir) os.makedirs(wrong_dir) print("Total Number of test = " +str(len(os.listdir(testset_data)))) total_files = len(os.listdir(testset_data)) * testset_amount rand = random.sample(range(0, total_files), total_files) for ran in rand: iden_id = int(ran / testset_amount) img_no = ran % testset_amount iden_dir = os.path.join(testset_data, os.listdir(testset_data)[iden_id]) img = os.listdir(iden_dir)[img_no] testimg_dir = os.path.join(iden_dir, img) image = cv2.imread(testimg_dir) name = bm.testAlgo(image, DS_DIR) print("Question: " + os.listdir(testset_data)[iden_id].replace(" ", "-").lower()) if name is not None: print("Answer: " + name.replace(" ", "-").lower()) else: print("Answer: ") print("") if name is not None and name.replace(" ", "-").lower() == os.listdir(testset_data)[iden_id].replace(" ", "-").lower(): correctAns += 1 else: wrongAns += 1 shutil.copyfile(testimg_dir, (wrong_dir + "\\" + img)) print("No of correct: " + str(correctAns)) print("No of wrong: " + str(wrongAns)) acc = (correctAns / (correctAns+wrongAns))*100 print("Accuracy is " + "{0:.1f}".format(acc) + "%\n") print("Press (Function + Alt + F4) to Exit!" + "\n") return correctAns, wrongAns, acc except Exception as e: print("Please ensure you code have a method name testAlgo(image)") print (e) def fetchTrain(DS_DIR, TRAIN_DIR = "Training Image"): try: imageArr = [] labelArr = [] global selected_Dataset selected_Dataset = DS_DIR BASE_DIR = os.path.dirname(os.path.abspath(__file__)) img_dir = os.path.join(BASE_DIR, DS_DIR) training_data = os.path.join(img_dir, TRAIN_DIR) print("Preparing images for training...") for root, dirs, files in os.walk(training_data): for file in files: if file.lower().endswith("png") or file.lower().endswith("jpg") or file.lower().endswith("jpeg"): path = os.path.join(root, file) label = os.path.basename(os.path.dirname(path)).replace(" ", "-").lower() image = cv2.imread(path) imageArr.append(image) labelArr.append(label) #bm.testAlgo(imageArr) return imageArr, labelArr, DS_DIR #bm.trainAlgo(imageArr,labelArr ,DS_DIR) except Exception as e: print(e) #print("Please ensure you code have a method name trainAlgo(imageArray[], label[], DS_NAME)") return None def main(): pythonFile = input("Key in your ALGORITHM file name (without .py): ") try: global bm bm = importlib.import_module(pythonFile, ".") menu = True spam_info = imp.find_module(pythonFile) #print(spam_info) print("Import ALGORITHM FILE successful") print("**Initiating training, calling trainAlgo() method.**") print("") imageArr, labelArr, DS_DIR = fetchTrainingData("Dataset 6") bm.trainAlgo(imageArr, labelArr, DS_DIR) feedTestData("Dataset 6") except Exception as e: print(e) print("Fail to import ALGORITHM file. Please check that ") if __name__ == "__main__": main()
UTF-8
Python
false
false
7,969
py
35
benchmarker_DS6.py
1
0.559041
0.553394
0
232
33.293103
130
rehadhawan/WWR-Data-Vis
19,112,604,506,577
43848c309bf933d2bd0d1f23b06fcf296ec55f61
ade61fdefb397ea0944914b0250bf9314de180ca
/WWR Assignment 2 Yearly rainfall and temp (1).py
9e16e40add0023b0a3ab2672647c9c7a73d5bf76
[]
no_license
https://github.com/rehadhawan/WWR-Data-Vis
ba34b2a388476afbd8c13aeff48f7db377bb0312
cf7917d2e778c4c69a591e6349df9bb43f52c353
refs/heads/main
2023-05-25T16:44:13.796976
2023-05-16T13:08:22
2023-05-16T13:08:22
305,786,538
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[14]: import pandas as pd import csv path = r"C:\Users\reha_\Downloads\rainYearly.csv" file = open(path) df = pd.read_csv(file) print (df) result = df.dtypes print(result) df["Year"] = df[ 'Year'].astype(float) df.dtypes # In[15]: path2 = r"C:\Users\reha_\Downloads\tempYearly.csv" file1 = open(path2) df1 = pd.read_csv(file1) print (df1) df1.dtypes # In[16]: left = pd.DataFrame(df) right = pd.DataFrame(df1) res = pd.merge(left, right, how = 'inner', on = 'Year') print (res) # In[19]: import matplotlib.pyplot as plt res.plot(x="Year", y=["Rainfall", "Temperature"], kind='line') plt.show() # In[ ]:
UTF-8
Python
false
false
690
py
2
WWR Assignment 2 Yearly rainfall and temp (1).py
1
0.643068
0.617994
0
46
13.652174
65
WebDevBren/SimpaticoTAEServer
6,760,278,546,655
ff9f77ddb68546caaea7450c8cdd64e72aa63a0d
1bcd70ca4fa48004a363061d4f312c950b56a8bd
/main_TAE_server/tests/Syntactic_Spanish_Test.py
b9630a89e6b05261b53ee1a3db38dcee45e859e1
[]
no_license
https://github.com/WebDevBren/SimpaticoTAEServer
5c0a4d09159100b99fb3d5f5d9d81ce54b31bb41
152efe99c6df8de9c538f303d734b61552bbdddb
refs/heads/master
2021-04-12T10:51:53.942628
2017-08-10T13:19:34
2017-08-10T13:19:34
94,534,959
0
0
null
true
2017-06-16T10:47:38
2017-06-16T10:47:38
2017-01-11T13:11:56
2017-05-14T12:33:34
33,355
0
0
0
null
null
null
# -*- coding: utf-8 -*- import urllib2 url = 'http://localhost:8080/?type=syntactic&sentence=Si%20la%20persona%20beneficiaria%20abandonase%20la%20estancia%20una%20vez%20iniciada%20,%20no%20tendrá%20derecho%20a%20ningún%20tipo%20de%20devolución%20.' content = urllib2.urlopen(url).read() print content
UTF-8
Python
false
false
308
py
18
Syntactic_Spanish_Test.py
14
0.777049
0.629508
0
9
32.888889
209
Swanson-Hysell/EPS88_Jupyter_Book
12,498,354,872,039
276d85df77487bb64c6cededdc965a2a235db1c9
08c93f0d50621bb3b85bbbae753cc3b3e92de93e
/_build/jupyter_execute/folder_01/W1_tabular_data.py
086ffcd35a5d5d5c08d64c0f983220697874ccfd
[]
no_license
https://github.com/Swanson-Hysell/EPS88_Jupyter_Book
b9244c403127fe441f0ba85c2728d7a406acac69
4b32ab147e1b512425663d28187f94baf32806e9
refs/heads/master
2023-03-15T22:33:39.505706
2020-11-29T17:59:29
2020-11-29T17:59:29
586,075,599
2
0
null
true
2023-01-06T21:54:26
2023-01-06T21:54:25
2020-11-29T17:59:42
2020-11-29T17:59:39
146,016
0
0
0
null
false
false
# 1.2 What is Data Science? **Goals:** Introduce the broad concepts of data science and data structures. Prepare to look at tabular data. **Outline:** * Tables * Indexing ## Additional Assigned Reading (or Review) Data 8 textbook "Computational and Inferential Thinking: The Foundations of Data Science" By Ani Adhikari and John DeNero [Chapter 1 Data Science](https://www.inferentialthinking.com/chapters/01/what-is-data-science.html) & [Chapter 2 Causality and Experiments](https://www.inferentialthinking.com/chapters/02/causality-and-experiments.html). This should overlap with your assigned reading for Data 8. An excerpt: ## What is Data Science? > Data Science is about drawing useful conclusions from large and diverse data sets through exploration, prediction, and inference. Exploration involves identifying patterns in information. Prediction involves using information we know to make informed guesses about values we wish we knew. Inference involves quantifying our degree of certainty: will the patterns that we found in our data also appear in new observations? How accurate are our predictions? Our primary tools for exploration are visualizations and descriptive statistics, for prediction are machine learning and optimization, and for inference are statistical tests and models. >Statistics is a central component of data science because statistics studies how to make robust conclusions based on incomplete information. Computing is a central component because programming allows us to apply analysis techniques to the large and diverse data sets that arise in real-world applications: not just numbers, but text, images, videos, and sensor readings. Data science is all of these things, but it is more than the sum of its parts because of the applications. Through understanding a particular domain, data scientists learn to ask appropriate questions about their data and correctly interpret the answers provided by our inferential and computational tools. ## Tables Imagine you're preparing to collect some data. Say you play Yahtzee with your Grandma once a week and want to track your scores. What's the first thing you would do? Make a table! | Date | My Score | G-Ma Score | |-------|----------|------------| | 06/06 | 150 | 230 | | 06/13 | 165 | 166 | | 06/20 | 136 | 198 | | 06/27 | 195 | 260 | | 07/04 | 168 | 154 | | 07/11 | 138 | 520 | | 07/18 | 220 | 320 | | 07/25 | 196 | 175 | | 08/01 | 127 | 188 | A table is just a way of organizing data using columns and rows. While intuitive for a basic dataset they are also very powerful. Just by transfering the scores from scattered score cards to this table a pattern begins to emerge: your grandma is way better at Yahtzee than you! This table has three columns, we will consider each column a "variable". The first column "Date" is the independent variable, it is just when we made our observations. The second and third columns are the observations of our experiment. This counting of columns lead right to our next topic: indexing. ## Indexing Indexing is the method for navigating around through a dataset. We use numbers to reference each row and column of a table. The python language indexes starting at 0. So in the previous section I should have written: "The zeroth column 'Date' is the independent variable, it is just when we made our observations. The first and second columns are the observations of our experiment." |Row Index| Date | My Score | G-Ma Score | |-----|-------|----------|------------| | 0 | 06/06 | 150 | 230 | | 1 | 06/13 | 165 | 166 | | 2 | 06/20 | 136 | 198 | | 3 | 06/27 | 195 | 260 | | 4 | 07/04 | 168 | 154 | | 5 | 07/11 | 138 | 520 | | 6 | 07/18 | 220 | 320 | | 7 | 07/25 | 196 | 175 | | 8 | 08/01 | 127 | 188 | Both rows and columns are indexed, starting at zero. | 0 | 1 | 2 | |-------|----------|------------| | 06/06 | 150 | 230 | | 06/13 | 165 | 166 | | 06/20 | 136 | 198 | | 06/27 | 195 | 260 | | 07/04 | 168 | 154 | | 07/11 | 138 | 520 | | 07/18 | 220 | 320 | | 07/25 | 196 | 175 | | 08/01 | 127 | 188 | The convention is to put the row index first. So the `[4,1]` element of our table is `168` which is from row `07/04` and column `My Score`.
UTF-8
Python
false
false
4,551
py
87
W1_tabular_data.py
25
0.662272
0.595913
0
65
69
679
tmichalak/actions
7,138,235,651,553
3f55c2de1bd8cbb6d96d0cde1c3bf00cdfc209f2
681116601c01d08fbbe190f4d5974ff0bc085d4a
/includes/actions/python/run-installed-tests/get-pytest-ini-and-run-tests.py
a7895abada5532e882cd5e8d1cdfe8c708092294
[ "ISC" ]
permissive
https://github.com/tmichalak/actions
923c99956c5372b80fee91d8a3fa46ee2a35d50f
fab6b84075e4aab10b505e257cc1237b5343247d
refs/heads/main
2023-05-26T19:32:19.261524
2021-04-27T16:57:42
2021-04-27T16:57:42
375,796,008
0
0
ISC
true
2021-06-10T18:39:38
2021-06-10T18:39:38
2021-04-29T15:26:16
2021-06-09T15:55:45
91
0
0
0
null
false
false
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2021 The SymbiFlow Authors. # # Use of this source code is governed by a ISC-style # license that can be found in the LICENSE file or at # https://opensource.org/licenses/ISC # # SPDX-License-Identifier: ISC from __future__ import print_function import pprint import urllib import urllib.request import os import os.path import sys from pkg_resources import get_distribution module_name = os.environ['PYTHON_MODULE'] # Download pytest.ini if not os.path.exists('pytest.ini'): dry_run = os.environ.get('CI') != 'true' repo = os.environ['GITHUB_REPOSITORY'] sha = os.environ['GITHUB_SHA'] url = 'https://raw.githubusercontent.com/{repo}/{sha}/pytest.ini'.format(**locals()) print('Downloading', url) data = urllib.request.urlopen(url).read().decode('utf-8') print('Got following data') print('-'*75) pprint.pprint(data.splitlines()) print('-'*75) with open('pytest.ini', 'w') as f: f.write(data) # Print info about installed module module = get_distribution(module_name) version = '.'.join(module.version.split('.')) print() print(module_name, 'version:', version) print(module_name, 'location:', module.location) print() sys.stdout.flush() sys.stderr.flush() # Run pytest against the library import pytest sys.exit(pytest.main())
UTF-8
Python
false
false
1,356
py
22
get-pytest-ini-and-run-tests.py
5
0.69174
0.683628
0
54
24.111111
88
niazzaki/ce888labs
6,674,379,225,111
d6c4fcdd76b17f56ed3a2c4bb33751ef82927566
4bc99a2dc0db339f3e1e3eeacb01fa48b78fb165
/lab8/mycode.py
2bfb8e4f73cc3d9d7c0ebe809d974a2cf5e5c096
[]
no_license
https://github.com/niazzaki/ce888labs
a7c4d451fd79a75c0275d432a4793ec2d74ed3bb
d2cc126ba81325227c70947ce53afb1af8db5c98
refs/heads/master
2021-05-05T18:50:41.411265
2018-04-26T00:20:35
2018-04-26T00:20:35
117,615,116
0
0
null
false
2018-01-16T02:15:28
2018-01-16T01:32:43
2018-01-16T01:32:43
2018-01-16T02:15:27
0
0
0
0
null
false
null
from keras.layers import Dense, Activation, Embedding, Flatten, Input, Dropout, Conv1D, GlobalMaxPooling1D, LSTM from keras.datasets import imdb from __future__ import print_function import numpy as np np.random.seed(1337) from keras.preprocessing import sequence from keras.models import Model, Sequential max_features = 20000 maxlen = 80 # cut texts after this number of words batch_size = 32 (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print (X_train[0]) print('Pad sequences (samples x time)') X_train = sequence.pad_sequences(X_train, maxlen=maxlen) X_test = sequence.pad_sequences(X_test, maxlen=maxlen) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) inputs = Input(shape=(maxlen,)) x = inputs y = Embedding(max_features, 128, dropout=0.2)(x) z = LSTM(32)(y) h = Dense(1)(z) predictions = Activation("sigmoid")(h) model = Model(input=inputs, output=predictions) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=15, validation_data=(X_test, y_test)) score, acc = model.evaluate(X_test, y_test, batch_size=batch_size) print('score:', score) print('accuracy:', acc)
UTF-8
Python
false
false
1,379
py
28
mycode.py
11
0.696157
0.677302
0
46
29
112
hn4002/streamer
2,508,260,935,155
17358e6198741cb77da8ab483fd34181ab962ace
02fc3d0fe20bb3d30b39fc92d4e595f234550b06
/mysite/common/stockcheckup.py
17c71b1f7a08a2b0670ab8578c3cbabf7224cf7b
[]
no_license
https://github.com/hn4002/streamer
e4e0acb292a1f35eb36c57ee2d74c30e50b40244
140035ebfd53a559ecd7d89fb47896d37efabd43
refs/heads/master
2017-12-18T15:48:19.687825
2017-11-13T06:34:41
2017-11-13T06:34:41
77,081,814
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json import os import mysite.settings as settings stockcheckupJsonFile = "stocks.json" stockcheckupJsonFilePath = os.path.join(settings.WORKING_DIR, stockcheckupJsonFile) data = None def getStockDetail(symbol): loadData() stocks = data["stocks"] if symbol in stocks: stock = stocks[symbol] # Common stuffs common = {} stock["common"] = common common["laStockCheckupScoreMax"] = data["laStockCheckupScoreMax"] common["membersScoreMax"] = data["membersScoreMax"] common["petalumaStockCheckupScoreMax"] = data["petalumaStockCheckupScoreMax"] # Fundamentals fundamentals = {} stock["fundamentals"] = fundamentals A = {} fundamentals["A"] = A roePlusPtm = stock["petalumaStockCheckup"]["annualROE"]["value"] + stock["petalumaStockCheckup"]["annualPreTaxMargin"]["value"] scg = stock["petalumaStockCheckup"]["laStockCheckupGrade"]["value"] A["key"] = "95-95-30-AB" A["value"] = str(stock["petalumaStockCheckup"]["compRating"]["value"]) + " . " + \ str(stock["petalumaStockCheckup"]["epsRating"]["value"]) + " . " + \ str(roePlusPtm) + " . " + \ str(stock["petalumaStockCheckup"]["laStockCheckupGrade"]["value"]) if stock["petalumaStockCheckup"]["compRating"]["value"] >= 95 and \ stock["petalumaStockCheckup"]["epsRating"]["value"] >= 95 and \ roePlusPtm >= 30 and \ (scg.startswith("A") or scg.startswith("B") ): A["passFailRating"] = "PASSED" else: A["passFailRating"] = "FAILED" B = {} fundamentals["B"] = B B["key"] = "25-25-25-25" B["value"] = str(stock["laStockCheckup"]["epsPctChgLastQtr"]["value"]) + " . " + \ str(stock["laStockCheckup"]["salesPctChgLastQtr"]["value"]) + " . " + \ str(stock["laStockCheckup"]["epsEstPctChgForCurrentYear"]["value"]) + " . " + \ str(stock["laStockCheckup"]["epsEstPctChgCurrentQtr"]["value"]) if stock["laStockCheckup"]["epsPctChgLastQtr"]["value"] >= 25 and \ stock["laStockCheckup"]["salesPctChgLastQtr"]["value"] >= 25 and \ stock["laStockCheckup"]["epsEstPctChgForCurrentYear"]["value"] >= 25 and \ stock["laStockCheckup"]["epsEstPctChgCurrentQtr"]["value"] >= 25: B["passFailRating"] = "PASSED" else: B["passFailRating"] = "FAILED" """ {{stockDetails.laStockCheckup.epsEstPctChgCurrentQtr.passFailRating}} PASSED.gif" width="11" height="12"> {% else %} <img src="{{ STATIC_URL }}images/FAILED.gif" width="11" height="12"> {% endif %} </td> <tr> <td class="criteria-description" colspan="2" > &rarr; {{stockDetails.petalumaStockCheckup.compRating.value}} / {{stockDetails.petalumaStockCheckup.epsRating.value}} / {{stockDetails.petalumaStockCheckup.annualROE.value|add:stockDetails.petalumaStockCheckup.annualPreTaxMargin.value}} / {{stockDetails.laStockCheckupGrade}} </td> <td class="criteria-paasfail"> {% if stockDetails.petalumaStockCheckup.compRating.value > 95 and stockDetails.petalumaStockCheckup.epsRating.value > 95 %} <img src="{{ STATIC_URL }}images/PASSED.gif" width="11" height="12"> {% else %} <img src="{{ STATIC_URL }}images/FAILED.gif" width="11" height="12"> {% endif %} </td> </tr> <tr> <td class="criteria-description" colspan="2" > &rarr; {{stockDetails.laStockCheckup.epsPctChgLastQtr.value}} / {{stockDetails.petalumaStockCheckup.salesPctChgLastQtr.value}} / {{stockDetails.laStockCheckup.epsEstPctChgForCurrentYear.value}} / {{stockDetails.laStockCheckup.epsEstPctChgCurrentQtr.value}} </td> <td class="criteria-paasfail"> {% if stockDetails.laStockCheckup.epsPctChgLastQtr.value > 25 and stockDetails.petalumaStockCheckup.salesPctChgLastQtr.value > 25 and stockDetails.laStockCheckup.epsEstPctChgForCurrentYear.value > 25 and stockDetails.laStockCheckup.epsEstPctChgCurrentQtr.value > 25 %} <img src="{{ STATIC_URL }}images/PASSED.gif" width="11" height="12"> {% else %} <img src="{{ STATIC_URL }}images/FAILED.gif" width="11" height="12"> {% endif %} </td> """ return stock else: return None def getSymbols(): loadData() stocks = data["stocks"] symbols = [] for symbol in stocks: symbols.append(symbol) symbols.sort() return symbols def loadData(): global data if data is None: #print("Not using cache. Reloading data.") with open(stockcheckupJsonFilePath) as data_file: data = json.load(data_file) else: #print("Using cache") pass def invalidateCache(): global data print("Invalidating cache") data = None
UTF-8
Python
false
false
5,580
py
110
stockcheckup.py
61
0.546774
0.534946
0
128
42.601563
288
gautamdayal/USACO
5,669,356,832,348
acd7b3440e7be156bd162057718fd6fcae658687
62cd41a215c50f62c5ae43abc91367a7df6198ef
/notlast.py
6db2c03fdc503eca78d4b9f628e2c57d33855263
[]
no_license
https://github.com/gautamdayal/USACO
7f66d4cbfe43011defe4ae07a5c3b725c5207a8c
3aacb083cb47c7d44dff79a16ceb724aaff44ecc
refs/heads/master
2020-04-11T15:47:24.211061
2019-02-23T16:27:35
2019-02-23T16:27:35
161,903,050
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# All test cases correct. inFile = open('notlast.in', 'r') outFile = open('notlast.out', 'w') cows = [s.split() for s in inFile.readlines()[1::]] for l in cows: l[1] = int(l[1]) totalmilk = {} for cow in cows: name = cow[0] amount = cow[1] if name not in totalmilk: totalmilk[name] = 0 totalmilk[name] += amount amounts = list(totalmilk.values()) sortedamounts = [] while len(amounts) > 0: sortedamounts.append(min(amounts)) amounts.remove(min(amounts)) second = 0 secondname = '' minimum = sortedamounts[0] for n in sortedamounts[1::]: if n > minimum: second = n break count = 0 for n in sortedamounts[1::]: if n == second: count += 1 for cow in totalmilk: if totalmilk[cow] == second: secondname = cow if len(cows) == 1: outFile.write(cows[0][0]) else: if count == 1: outFile.write(secondname) else: outFile.write('Tie') outFile.write('\n') outFile.close()
UTF-8
Python
false
false
994
py
10
notlast.py
9
0.589537
0.572435
0
52
18.115385
51
nagar-omer/Dafna_ex4_vecation
15,573,551,417,412
d582c7168c496ef12c9c028f5d2421f8f5d24f68
6c2674ca51055d931f9a22590137eb81c85f9081
/activator/activator_params.py
85aaf74db93095f8906a913467655a7541eb5782
[]
no_license
https://github.com/nagar-omer/Dafna_ex4_vecation
5c677ed584505dcd7cfcbf93433802ef51196657
ba094a7b146baa547e581403165a3ce81203bb58
refs/heads/master
2023-06-09T18:52:39.725509
2019-06-24T16:36:46
2019-06-24T16:36:46
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os from torch.nn.functional import cross_entropy class VoiceActivatorParams: def __init__(self): self.LOSS = cross_entropy # relu self.BATCH_SIZE = 64 self.GPU = False self.EPOCHS = 30 self.VALIDATION_RATE = 200 self.PIN_MEMORY = True self.NUM_WORKERS = 4
UTF-8
Python
false
false
327
py
7
activator_params.py
6
0.608563
0.584098
0
13
24.153846
45
dhruvshrivastava/Flask-segmentation-application
14,156,212,220,783
d8593e1e7f17062367a054802812cc184e1b12ce
2b402523c32b8a9fa4c8a94dedc06bee51e83977
/routes/segmentation.py
9f974d53e82e3ba9a59c514cc350dbbe9e3ca182
[ "MIT" ]
permissive
https://github.com/dhruvshrivastava/Flask-segmentation-application
3204af566dd2e457cf405acb08e579549d24816c
305baa1c9b407516f826f5ef59b37288e16e6779
refs/heads/main
2023-05-09T19:08:05.047832
2021-04-27T11:51:53
2021-04-27T11:51:53
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from python.config import app import simplejson as json from flask import render_template, request, session import pandas as pd from io import StringIO from controllers.segmentation import segmentation @app.route('/segmentation', methods=["POST", "GET"]) def dashboard(): if request.method == 'POST': indexCol = request.form.get('index_col') mainCol = request.form.get('main_col') jsonDf = request.form.get('jsonDf') df = pd.read_json(jsonDf) results = segmentation(df, mainCol, indexCol) session['results'] = results else: results = session['results'] df = results['df'] histogramCols = results['features'] plots = results['plots'] results = results['results'] return render_template('dashboard.html', results=results, df=df, plots=plots, histogramCols=histogramCols)
UTF-8
Python
false
false
855
py
11
segmentation.py
6
0.683041
0.683041
0
23
36.173913
110
suningwz/odoo-bebepolis
18,485,539,250,947
b1bc913747a2541568bcdd54669dfe7a10c8075f
4d01b758fb3e491d1fba9ead224742189818fb82
/prestashop_connector_gt/models/sale_shop.py
cf18bf203c69d12b55143a027fa43f20e94204d7
[]
no_license
https://github.com/suningwz/odoo-bebepolis
3945e5835203c1503db71a8859ba8a8bb5835943
18b5812360f5ceb42d9d85eae4a5aa2912ace724
refs/heads/main
2023-04-27T17:50:39.936503
2021-05-04T18:42:26
2021-05-04T18:42:26
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- ############################################################################# # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from odoo import api, fields, models, _ from datetime import timedelta, datetime, date, time from odoo.exceptions import UserError, ValidationError import logging logger = logging.getLogger('__name__') from odoo.addons.prestashop_connector_gt.prestapyt.prestapyt import PrestaShopWebService as PrestaShopWebService from odoo.addons.prestashop_connector_gt.prestapyt.prestapyt import PrestaShopWebServiceDict as PrestaShopWebServiceDict from odoo.addons.prestashop_connector_gt.prestapyt.prestapyt import PrestaShopWebServiceImage as PrestaShopWebServiceImage logger = logging.getLogger('stock') class SaleShop(models.Model): _inherit = "sale.shop" code = fields.Char(string='Code') name = fields.Char('Name') prestashop_shop = fields.Boolean(string='Prestashop Shop') prestashop_instance_id = fields.Many2one('prestashop.instance',string='Prestashop Instance',readonly=True) presta_id = fields.Char(string='shop Id') ### Product Configuration product_import_condition = fields.Boolean(string="Create New Product if Product not in System while import order",default=True) route_ids = fields.Many2many('stock.location.route', 'shop_route_rel', 'shop_id', 'route_id', string='Routes') # Order Information company_id = fields.Many2one('res.company', string='Company', required=False, default=lambda s: s.env['res.company']._company_default_get('stock.warehouse')) prefix = fields.Char(string='Prefix') suffix = fields.Char(string='Suffix') shipment_fee_product_id = fields.Many2one('product.product', string="Shipment Fee",domain="[('type', '=', 'service')]") discount_product_id = fields.Many2one('product.product', string="Discount Fee",domain="[('type', '=', 'service')]") gift_wrapper_fee_product_id = fields.Many2one('product.product', string="Gift Wrapper Fee",domain="[('type', '=', 'service')]") sale_journal = fields.Many2one('account.journal') pricelist_id = fields.Many2one('product.pricelist', 'Pricelist') partner_id = fields.Many2one('res.partner', string='Customer') workflow_id = fields.Many2one('import.order.workflow', string="Order Workflow") # stock Configuration on_fly_update_stock = fields.Boolean(string="Update on Shop at time of Odoo Inventory Change",default=True) warehouse_id = fields.Many2one('stock.warehouse', string='Warehouse') # Schedular Configuration auto_import_order = fields.Boolean(string="Auto Import Order", default=True) auto_import_products = fields.Boolean(string="Auto Import Products", default=True) auto_update_inventory = fields.Boolean(string="Auto Update Inventory", default=True) auto_update_order_status = fields.Boolean(string="Auto Update Order Status", default=True) auto_update_product_data = fields.Boolean(string="Auto Update Product data", default=True) auto_update_price = fields.Boolean(string="Auto Update Price", default=True) # Import last date last_prestashop_inventory_import_date = fields.Datetime(string='Last Inventory Import Time') last_prestashop_product_import_date = fields.Datetime(string='Last Product Import Time') last_presta_product_attrs_import_date = fields.Datetime(string='Last Product Attributes Import Time') last_presta_cart_rule_import_date = fields.Datetime(string='Last Cart Rule Import Time') last_presta_catalog_rule_import_date = fields.Datetime(string='Last Catalog Rule Import Time') last_prestashop_order_import_date = fields.Datetime(string='Last Order Import Time') last_prestashop_carrier_import_date = fields.Datetime(string='Last Carrier Import Time') last_prestashop_msg_import_date = fields.Datetime(string='Last Message Import Time') last_prestashop_customer_import_date = fields.Datetime(string='Last Customer Import Time') last_prestashop_category_import_date = fields.Datetime(string='Last Category Import Time') last_prestashop_customer_address_import_date = fields.Datetime(string='Last Customer Address Import Time') last_attr_id = fields.Char("Attribute Id") #Update last date prestashop_last_update_category_date = fields.Datetime(string='Presta last update category date') prestashop_last_update_cart_rule_date = fields.Datetime(string='Presta last update cart rule date') prestashop_last_update_catalog_rule_date = fields.Datetime(string='Presta last update catalog rule date') prestashop_last_update_product_data_date = fields.Datetime(string='Presta last update product data rule date') prestashop_last_update_order_status_date = fields.Datetime(string='Presta last update order status date') #Export last date prestashop_last_export_product_data_date = fields.Datetime(string= 'Last Product Export Time') shop_physical_url = fields.Char(string="Physical URL", required=False, ) last_product_attrs_id_import=fields.Integer('Last Product Attributes ID Import',default=0) last_product_attrs_values_id_import=fields.Integer('Last Product Attributes Values ID Import',default=0) last_product_category_id_import=fields.Integer('Last Product Category ID Import',default=0) last_product_id_import=fields.Integer('Last Product ID Import',default=0) last_order_id_id_import=fields.Integer('Last Order ID Import',default=0) last_message_id_import=fields.Integer('Last Message ID Import',default=0) last_catalog_rule_id_import=fields.Integer('Last Catalog Rule ID Import',default=0) last_cart_rule_id_import=fields.Integer('Last Cart Rule ID Import',default=0) last_product_inventory_import=fields.Integer('Last Product Inventory ID Import',default=0) last_delivery_carrier_import=fields.Integer('Last Product Inventory Import',default=0) last_customer_id_import=fields.Integer('Last Customer ID Import',default=0) last_supplier_id_import=fields.Integer('Last Supplier ID Import',default=0) last_manufacturers_id_import=fields.Integer('Last Manufacturers ID Import',default=0) last_address_id_import=fields.Integer('Last Address ID Import',default=0) last_country_id_import=fields.Integer('Last Country ID Import',default=0) last_state_id_import=fields.Integer('Last State ID Import',default=0) # import_prestashop_products_scheduler # @api.model def import_prestashop_products_scheduler(self, cron_mode=True): search_ids = self.search([('prestashop_shop', '=', True), ('auto_import_products', '=', True)]) if search_ids: search_ids.sorted(reverse=True) search_ids.import_products() return True # update_prestashop_product_data_scheduler # @api.model def update_prestashop_product_data_scheduler(self, cron_mode=True): search_ids = self.search([('prestashop_shop', '=', True), ('auto_update_product_data', '=', True)]) if search_ids: search_ids.sorted(reverse=True) search_ids.update_products() return True # update_prestashop_inventory_scheduler # @api.model def update_prestashop_inventory_scheduler(self, cron_mode=True): search_ids = self.search([('prestashop_shop', '=', True), ('auto_update_inventory', '=', True)]) if search_ids: search_ids.sorted(reverse=True) search_ids.update_presta_product_inventory() return True # update_prestashop_order_status_scheduler # @api.model def update_prestashop_order_status_scheduler(self, cron_mode=True): search_ids = self.search([('prestashop_shop', '=', True), ('auto_update_order_status', '=', True)]) if search_ids: search_ids.sorted(reverse=True) search_ids.update_order_status() return True def presta_connect(self): if self.prestashop_instance_id: presta_instance=self.prestashop_instance_id else: context = dict(self._context or {}) active_id = context.get('active_ids') presta_instance=self.env['prestashop.instance'].browse(active_id) location=presta_instance.location webservicekey=presta_instance.webservice_key # try: prestashop = PrestaShopWebService(location,webservicekey) # except e: #PrestaShopWebServiceError # print(str(e)) return prestashop # @api.one def get_value_data(self, value): if isinstance(value, dict): return value.get('value') else: return value # @api.one def create_attribute(self, attribute, prestashop): attrs_id=False try: prod_att_obj = self.env['product.attribute'] prod_attr_vals_obj = self.env['product.attribute.value'] attribute_value = { # 'name':attribute.get('name').get('language')[0].get('value'), 'name':attribute.get('name').get('language').get('value'), # 'public_name':attribute.get('public_name').get('language')[0].get('value'), 'public_name':attribute.get('public_name').get('language').get('value'), 'presta_id': attribute.get('id'), 'display_type': attribute.get('group_type'), 'is_presta': True } attrs_id = prod_att_obj.search([('presta_id','=', attribute.get('id')),('is_presta','=',True)],limit=1) if not attrs_id: attrs_id = prod_att_obj.create(attribute_value) else: attrs_id.write(attribute_value) self.env.cr.execute("select attr_id from attr_shop_rel where attr_id = %s and shop_id = %s" % (attrs_id.id, self.id)) attr_data = self.env.cr.fetchone() if attr_data == None: self.env.cr.execute("insert into attr_shop_rel values(%s,%s)" % (attrs_id.id, self.id)) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': "New error",'log_id':log_id}) else: log_id_obj = self.env['prestashop.log'].create({'all_operations':'import_attributes','error_lines': [(0,0, {'log_description': 'atrs error'})]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return attrs_id def _create_attribute_values(self, attributes_vlaue, prestashop): attrs_value_id=False try: prod_att_obj = self.env['product.attribute'] prod_attr_vals_obj = self.env['product.attribute.value'] attribute_id=False if attributes_vlaue.get('id_attribute_group'): attribute_id = prod_att_obj.search([('presta_id','=',attributes_vlaue.get('id_attribute_group')),('is_presta','=',True)],limit=1) if not attribute_id: attribute_dict = prestashop.get('product_options', attributes_vlaue.get('id_attribute_group')) attribute_id = self.create_attribute(attribute_dict.get('product_option'),prestashop) attribute_value = { # 'name':attributes_vlaue.get('name').get('language')[0].get('value'), 'name':attributes_vlaue.get('name').get('language').get('value'), 'presta_id': attributes_vlaue.get('id'), 'attribute_id': attribute_id.id, 'html_color': attributes_vlaue.get('color'), 'is_presta': True } attrs_value_id = prod_attr_vals_obj.search([('presta_id','=', attributes_vlaue.get('id')),('is_presta','=',True)],limit=1) if not attrs_value_id: attrs_value_id = prod_attr_vals_obj.create(attribute_value) else: attrs_value_id.write(attribute_value) self.env.cr.execute("select attr_val_id from attr_val_shop_rel where attr_val_id = %s and shop_id = %s" % (attrs_value_id.id, self.id)) attr_vals_data = self.env.cr.fetchone() if attr_vals_data == None: self.env.cr.execute("insert into attr_val_shop_rel values(%s,%s)" % (attrs_value_id.id, self.id)) logger.info("Attribute value created ==> %s ==> att_id ==> %d" % (attribute_value['name'], attribute_value['attribute_id'])) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': "New error",'log_id':log_id}) else: log_id_obj = self.env['prestashop.log'].create({'all_operations':'import_attributes','error_lines': [(0,0, {'log_description': 'atrs error'})]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return attrs_value_id # @api.multi def import_product_attributes(self): for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location, shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_product_attrs_id_import, 'limit': 1000} product_options = prestashop.get('product_options', options=filters) if product_options.get('product_options') and product_options.get('product_options').get('product_option'): attributes = product_options.get('product_options').get('product_option') if isinstance(attributes, list): attributes = attributes else: attributes = [attributes] for attribute in attributes: shop.create_attribute(attribute, prestashop) shop.write({'last_product_attrs_id_import': int(attribute.get('id'))}) logger.info('Product Attribute created ===> %s' % attribute.get('id')) self.env.cr.commit() value_filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_product_attrs_values_id_import, 'limit': 2000} product_options_vals = prestashop.get('product_option_values', options=value_filters) if 'product_option_values' in product_options_vals and 'product_option_value' in product_options_vals.get('product_option_values'): attributes_vlaues = product_options_vals.get('product_option_values').get('product_option_value') if isinstance(attributes_vlaues, list): attributes_vlaues = attributes_vlaues else: attributes_vlaues = [attributes_vlaues] for attributes_vlaue in attributes_vlaues: shop._create_attribute_values(attributes_vlaue, prestashop) shop.write({'last_product_attrs_values_id_import': int(attributes_vlaue.get('id'))}) self.env.cr.commit() except Exception as e: raise ValidationError(_(str(e))) return True # @api.one def action_check_isinstance(self, data): if isinstance(data, list): data = data else: data = [data] return data def create_presta_category(self, category, prestashop): prod_category_obj = self.env['product.category'] parent_id = categ_id = active = False try: if 'id_parent' in category and category.get('id_parent') != '0': parent_ids = prod_category_obj.search([('presta_id', '=', category.get('id_parent')), ('is_presta', '=', True)], limit=1) if parent_ids: parent_id = parent_ids.id else: parent_ids = prod_category_obj.search([('presta_id', '=', category.get('id_parent')), ('is_presta', '=', True),('active', '=', False)], limit=1) if not parent_ids: parent_id = parent_ids.id if category.get('active') == '1': active = True vals = {'presta_id': category.get('id'), 'parent_id': parent_id, 'is_presta': True, 'active': active, 'shop_ids': [(6,0,[self.id])], 'meta_title': self.action_check_isinstance(category.get('meta_title').get('language'))[0].get('value'), 'meta_description': self.action_check_isinstance(category.get('meta_description').get('language'))[0].get('value'), 'name': self.action_check_isinstance(category.get('name').get('language'))[0].get('value'), } categ_id = prod_category_obj.create(vals) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create({'all_operations':'import_categories','error_lines': [(0,0, {'log_description': str(e),})]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return categ_id # @api.multi def import_categories(self): try: for shop in self: prod_category_obj = self.env['product.category'] prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_product_category_id_import, 'limit': 500} presta_categ_data = prestashop.get('categories', options=filters) if presta_categ_data.get('categories') and presta_categ_data.get('categories').get('category'): presta_categ = presta_categ_data.get('categories').get('category') if isinstance(presta_categ, list): presta_categ = presta_categ else: presta_categ = [presta_categ] for category in presta_categ: category_id = prod_category_obj.search([('presta_id', '=', category.get('id')), ('is_presta', '=', True)], limit=1) if not category_id: if category.get('id_parent') != '0': parent_id = prod_category_obj.search([('presta_id', '=', category.get('id_parent')), ('is_presta', '=', True)],limit=1) if not parent_id: parent_id = prod_category_obj.search([('presta_id', '=', category.get('id_parent')), ('is_presta', '=', True),('active','=', False)], limit=1) if not parent_id: try: parent_presta_categ_data = prestashop.get('categories', category.get('id_parent')) shop.create_presta_category(parent_presta_categ_data.get('category'), prestashop) self.env.cr.commit() except Exception as e: logger.info('Parent category no found in prestashop ===> %s' % (e)) shop.create_presta_category(category, prestashop) shop.write({'last_product_category_id_import':int(category.get('id'))}) except Exception as e: raise ValidationError(_(str(e))) return True def update_lang_presta_load_lang(self, id_lang,prestashop): lang_obj = self.env['res.lang'] lang_id=False try: lang_data = prestashop.get('languages',id_lang) if lang_data and lang_data.get('language').get('iso_code'): lang_code = self.get_value_data(lang_data.get('language').get('iso_code')) if lang_code: lang_id = lang_obj.search([('iso_code','=',lang_code)]) if not lang_id: lang_id = lang_obj.search([('iso_code', '=', lang_code),('active','=',False)]) if lang_id: lang_id.write({'presta_id': id_lang,'active':True}) self.env.cr.commit() except Exception as e: logger.info('Res Lang ===> %s' % (e)) return lang_id # @api.one def create_customer(self, customer_detail, prestashop): res_partner_obj = self.env['res.partner'] lang_obj= self.env['res.lang'] cust_id=False dob = self.get_value_data(customer_detail.get('birthday')) date_obj = False try: if dob and dob != '0000-00-00': date_obj = datetime.strptime(dob, '%Y-%m-%d') lang_id = lang_obj.search([('presta_id', '=', customer_detail.get('id_lang'))]) if not lang_id: lang_id= self.update_lang_presta_load_lang(customer_detail.get('id_lang'),prestashop) vals = { 'presta_id': customer_detail.get('id'), 'name': customer_detail.get('firstname') + ' ' + customer_detail.get('lastname') or ' ', 'comment':customer_detail.get('note'), 'lang':customer_detail.get('id_lang'), 'customer_rank': 1, 'supplier_rank': 0, 'email': customer_detail.get('email'), 'lang': lang_id.code, 'website': customer_detail.get('website'), 'prestashop_customer': True, 'date_of_birth': date_obj and date_obj.date() or False, } if self.get_value_data(customer_detail.get('passwd')): customer_ids = res_partner_obj.search([('presta_id', '=',customer_detail.get('id')),('prestashop_customer', '=', True)],limit=1) if not customer_ids: cust_id = res_partner_obj.create(vals) logger.info('Created Customer ===> %s'%(cust_id.id)) else: cust_id = customer_ids customer_ids.write(vals) if cust_id: self.env.cr.execute("select cust_id from customer_shop_rel where cust_id = %s and shop_id = %s" % (cust_id.id, self.id)) cust_data = self.env.cr.fetchone() if cust_data== None: self.env.cr.execute("insert into customer_shop_rel values(%s,%s)" % (cust_id.id, self.id)) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_customers', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return cust_id # @api.multi def import_customers(self): for shop in self: res_partner_obj=self.env['res.partner'] try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_customer_id_import, 'limit': 2000} customers_data = prestashop.get('customers',options=filters) if 'customers' in customers_data and 'customer' in customers_data.get('customers'): customers = customers_data.get('customers').get('customer') if isinstance(customers, list): customers = customers else: customers = [customers] for customer in customers: customer_id = res_partner_obj.search([('presta_id', '=', customer.get('id')),('prestashop_customer', '=', True)],limit=1) if not customer_id: self.create_customer(customer, prestashop) self.write({'last_customer_id_import': int(customer.get('id'))}) self.env.cr.commit() self.env.cr.commit() except Exception as e: raise ValidationError(_(str(e))) return True # @api.one def create_presta_supplier(self, supplier): res_partner_obj = self.env['res.partner'] try: vals = { 'presta_id': supplier.get('id'), 'name': supplier.get('name'), 'supplier_rank': 0, 'customer_rank': 0, 'manufacturer': False, 'prestashop_supplier': True, } logger.info('===vals======> %s',vals) supplier_id = res_partner_obj.search([('presta_id', '=', supplier.get('id')),('prestashop_supplier','=',True)],limit=1) if not supplier_id: supplier_id = res_partner_obj.create(vals) logger.info('Created Supplier ===> %s' % (supplier_id.id)) if supplier_id: self.env.cr.execute( "select cust_id from customer_shop_rel where cust_id = %s and shop_id = %s" % (supplier_id.id, self.id)) supplier_data = self.env.cr.fetchone() if supplier_data == None: self.env.cr.execute("insert into customer_shop_rel values(%s,%s)" % (supplier_id.id, self.id)) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_suppliers', 'error_lines': [(0, 0, {'log_description': str(e)})]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return supplier_id # @api.multi def import_suppliers(self): for shop in self: try: res_partner_obj = self.env['res.partner'] prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_supplier_id_import, 'limit': 2000} supplier_data = prestashop.get('suppliers', options=filters) if supplier_data.get('suppliers') and supplier_data.get('suppliers').get('supplier'): suppliers = supplier_data.get('suppliers').get('supplier') if isinstance(suppliers, list): suppliers = suppliers else: suppliers = [suppliers] for supplier in suppliers: supplier_id = res_partner_obj.search([('presta_id', '=', supplier.get('id')), ('prestashop_supplier', '=', True)], limit=1) if not supplier_id: shop.create_presta_supplier(supplier) except Exception as e: raise ValidationError(_(str(e))) return True # @api.one def create_presta_manufacturers(self, manufacturer): res_partner_obj = self.env['res.partner'] try: vals = { 'presta_id': manufacturer.get('id'), 'name': manufacturer.get('name'), 'manufacturer': True, 'customer_rank': 0, 'supplier_rank': 0, } manufact_id = res_partner_obj.search([('presta_id', '=', manufacturer.get('id')),('manufacturer', '=', True)],limit=1) if not manufact_id: manufact_id = res_partner_obj.create(vals) self.env.cr.commit() logger.info('Created manufacturer successfully ===> %s' % (manufact_id.id)) if manufact_id: self.env.cr.execute("select cust_id from customer_shop_rel where cust_id = %s and shop_id = %s" % (manufact_id.id, self.id)) manufacturer_data = self.env.cr.fetchone() if manufacturer_data == None: self.env.cr.execute("insert into customer_shop_rel values(%s,%s)" % (manufact_id.id, self.id)) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_manufacturers', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return manufact_id # get manufacturers data from prestashop and create in odoo def import_manufacturers(self): for shop in self: try: res_partner_obj = self.env['res.partner'] prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_manufacturers_id_import, 'limit': 2000} manufacturer_data=prestashop.get('manufacturers', options=filters) if manufacturer_data.get('manufacturers') and manufacturer_data.get('manufacturers').get('manufacturer'): manufacturers = manufacturer_data.get('manufacturers').get('manufacturer') if isinstance(manufacturers, list): manufacturers = manufacturers else: manufacturers = [manufacturers] for manufacturer in manufacturers: manufacturer_id = res_partner_obj.search([('presta_id', '=', manufacturer.get('id')), ('manufacturer', '=', True)], limit=1) if not manufacturer_id: shop.create_presta_manufacturers(manufacturer) self.write({'last_manufacturers_id_import': int(manufacturer.get('id'))}) self.env.cr.commit() except Exception as e: raise ValidationError(_(str(e))) return True def get_value(self, data): lang = self.env['prestashop.language'].search([]) if isinstance(data, list): data = data lang_id = self.env['prestashop.language'].search([('code','=','it'), ('presta_instance_id','=', self.prestashop_instance_id.id)]) if not lang_id: lang = self.env['prestashop.language'].search([]) lang_id = self.env['prestashop.language'].search([('code', '=', lang[0].code), ('presta_instance_id', '=', self.prestashop_instance_id.id)])[0] else: data = [data] lang_id = self.env['prestashop.language'].search([('presta_id','=',data[0].get('attrs').get('id')), ('presta_instance_id','=', self.prestashop_instance_id.id)])[0] val = [i for i in data if int(i.get('attrs').get('id')) == int(lang_id.presta_id)] return val[0] def import_country_state(self): browse_country_obj = self.env['res.country'] browse_state_obj = self.env['res.country.state'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_country_id_import, 'limit': 1000} state_filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_state_id_import, 'limit': 1000} prestashop_country_data = prestashop.get('countries', options=filters) # import country if 'country' in prestashop_country_data.get('countries'): country_list = prestashop_country_data.get('countries').get('country') if isinstance(country_list, list): country_list = country_list else: country_list = [country_list] for country in country_list: country_vals={'presta_id': country.get('id'),'is_prestashop': True} country_id=browse_country_obj.search([('code','=',country.get('iso_code'))],limit=1) if not country_id: # Asi estaba # country_vals.update({'name': country.get('name').get('language')[0].get('value'), 'code': country.get('iso_code')}) # Elimino [0] para tomar el valor según como viene de prestashop country_vals.update({'name': country.get('name').get('language').get('value'), 'code': country.get('iso_code')}) browse_country_obj.create(country_vals) else: country_id.write(country_vals) shop.write({'last_country_id_import':int(country.get('id'))}) self.env.cr.commit() prestashop_state_data = prestashop.get('states', options=state_filters) if 'state' in prestashop_state_data.get('states'): state_list = prestashop_state_data.get('states').get('state') if isinstance(state_list, list): state_list = state_list else: state_list = [state_list] for state in state_list: state_vals={'presta_id': state.get('id'),'is_prestashop': True} country_id = browse_country_obj.search([('presta_id', '=', state.get('id_country')),('is_prestashop','=',True)], limit=1) state_id=browse_state_obj.search([('name','=',state.get('name'))],limit=1) if state_id: state_id.write(state_vals) # if not state_id: # state_vals.update({'name': state.get('name'), 'country_id': country_id.id,'code':state.get('iso_code')}) # browse_state_obj.create(state_vals) # else: # state_id.write(state_vals) shop.write({'last_state_id_import':int(state.get('id'))}) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_country_state', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': False}) self.env.context = new_context def update_country_state_prestashop_id(self, id_country,id_state, prestashop): browse_country_obj = self.env['res.country'] browse_state_obj = self.env['res.country.state'] try: if isinstance(id_country, str): country_id = browse_country_obj.search([('presta_id', '=', id_country)], limit=1) if not country_id and id_state == False: country_data = prestashop.get('countries', id_country) country_name = self.get_value_data(self.get_value(country_data.get('country').get('name').get('language'))) country_code = self.get_value_data(country_data.get('country').get('iso_code')) country_id = browse_country_obj.create({'name': country_name, 'code': country_code,'presta_id': id_country,'is_prestashop': True}) self.env.cr.commit() return country_id if id_state: prestashop_state_data = prestashop.get('states', id_state) state_dict = prestashop_state_data.get('state') state_vals = {'presta_id': state_dict.get('id'), 'is_prestashop': True} state_id = browse_state_obj.search([('name', '=', state_dict.get('name'))], limit=1) if not state_id: state_vals.update({'name': state_dict.get('name'), 'country_id': id_country.id, 'code': state_dict.get('iso_code')}) browse_state_obj.create(state_vals) else: state_id.write(state_vals) return state_id except Exception as e: print('eee',str(e)) def create_address(self,address_dict,prestashop): try: address_id = False res_partner_obj = self.env['res.partner'] id_state = state_id = False country_id = self.update_country_state_prestashop_id(address_dict.get('id_country'), id_state, prestashop) if address_dict.get('id_state') != '0': state_id = self.update_country_state_prestashop_id(country_id, address_dict.get('id_state'), prestashop) if state_id: state_id = state_id.id addr_vals = { 'name': address_dict.get('firstname') + ' ' + address_dict.get('lastname'), 'street': address_dict.get('address1'), 'street2': address_dict.get('address2'), 'city': address_dict.get('city'), 'zip': address_dict.get('postcode'), 'phone': address_dict.get('phone'), 'mobile': address_dict.get('phone_mobile'), 'address_id': address_dict.get('id'), 'prestashop_address': True, 'country_id': country_id.id, 'state_id': state_id, } parent_id = False if address_dict.get('id_customer') != '0': parent_id = res_partner_obj.search([('presta_id', '=', address_dict.get('id_customer')), ('prestashop_customer', '=', True)], limit=1) if not parent_id: try: cust_data = prestashop.get('customers', address_dict.get('id_customer')) parent_id = self.create_customer(cust_data.get('customer'), prestashop) except Exception as e: logger.info('Error/Warning '+ str(e)) elif address_dict.get('id_supplier') != '0': parent_id = res_partner_obj.search([('presta_id', '=', address_dict.get('id_supplier')), ('prestashop_supplier', '=', True)], limit=1) if not parent_id: try: supplier_detail = prestashop.get('suppliers', address_dict.get('id_supplier')) parent_id = self.create_presta_supplier(supplier_detail.get('supplier')) except Exception as e: logger.info('Error/Warning '+ str(e)) elif address_dict.get('id_manufacturer') != '0': parent_id = res_partner_obj.search([('presta_id', '=', address_dict.get('id_manufacturer')), ('manufacturer', '=', True)], limit=1) if not parent_id: try: manufacturer_detail = prestashop.get('manufacturers', address_dict.get('id_manufacturer')) parent_id = self.create_presta_manufacturers(manufacturer_detail.get('manufacturer')) except Exception as e: logger.info('Error/Warning '+ str(e)) if parent_id: parent_id = parent_id.id addr_vals.update({'parent_id': parent_id}) address_id = res_partner_obj.search([('address_id', '=', address_dict.get('id')), ('prestashop_address', '=', True)]) if address_id: address_id.write(addr_vals) else: address_id = res_partner_obj.create(addr_vals) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_addresses', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return address_id def import_addresses(self): res_partner_obj = self.env['res.partner'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_address_id_import, 'limit': 500} prestashop_address_data = prestashop.get('addresses',options=filters) if 'address' in prestashop_address_data.get('addresses'): address_list = prestashop_address_data.get('addresses').get('address') if isinstance(address_list, list): address_list = address_list else: address_list = [address_list] for address_dict in address_list: address_id = res_partner_obj.search([('address_id','=',address_dict.get('id')) , ('prestashop_address', '=', True )]) if not address_id: shop.create_address(address_dict, prestashop) shop.write({'last_address_id_import': int(address_dict.get('id'))}) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_addresses', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return True # @api.one def create_presta_product(self, product_dict, prestashop): prod_temp_obj = self.env['product.template'] prod_prod_obj = self.env['product.product'] att_val_obj = self.env['product.attribute.value'] product_image_obj = self.env['product.images'] res_partner_obj = self.env['res.partner'] product_categ_obj = self.env['product.category'] try: manufacturers_id = supplier_id = False prd_tmp_vals = { # 'name': product_dict.get('name').get('language')[0].get('value'), 'name': product_dict.get('name').get('language').get('value'), 'type': 'product', 'list_price': product_dict.get('price'), 'default_code': product_dict.get('reference'), 'prestashop_product': True, 'wholesale_price': product_dict.get('wholesale_price'), 'product_onsale': product_dict.get('on_sale'), # 'product_instock': self.get_value(product_dict.get('available_now').get('language')), 'product_lngth': product_dict.get('depth'), 'product_width': product_dict.get('width'), 'product_wght': product_dict.get('weight'), 'product_hght': product_dict.get('height'), 'presta_id': product_dict.get('id'), } if product_dict.get('id_category_default'): domain_categ = [('presta_id', '=', product_dict.get('id_category_default')), ('is_presta', '=', True),('active', '=', True)] cate_id = self.search_record_in_odoo(product_categ_obj, domain_categ) if cate_id: prd_tmp_vals.update({'categ_id': cate_id.id}) if product_dict.get('ean13') not in ['0','']: # Aqui barcode prd_tmp_vals.update({'barcode': product_dict.get('ean13')}) # get manufacturer id if not in odoo create if product_dict.get('id_manufacturer') != '0': manufacturers_id = res_partner_obj.search([('presta_id', '=', product_dict.get('id_manufacturer')), ('manufacturer', '=', True)],limit=1) if not manufacturers_id: try: manufacturer_detail = prestashop.get('manufacturers',product_dict.get('id_manufacturer')) manufact_id = self.create_presta_manufacturers(manufacturer_detail.get('manufacturer')) if manufact_id: manufacturers_id = manufact_id.id except Exception as e: manufacturers_id = False else: manufacturers_id=manufacturers_id.id prd_tmp_vals.update({'manufacturer_id':manufacturers_id}) # get supplier id if not in odoo create if product_dict.get('id_supplier') != '0': supplier_id = res_partner_obj.search([('presta_id', '=', product_dict.get('id_supplier')), ('prestashop_supplier', '=', True)],limit=1) if supplier_id: supplier_id = supplier_id.id else: try: supplier_detail = prestashop.get('suppliers', product_dict.get('id_supplier')) supply_id = self.create_presta_supplier(supplier_detail.get('supplier')) if supply_id: supplier_id = supply_id.id except Exception as e: supplier_id = False if supplier_id: prd_tmp_vals.update({'supplier_id': supplier_id}) prd_tmp_vals.update({'seller_ids': [(0, 0, {'name': supplier_id})]}) if product_dict.get('associations'): attribute_line_ids, atttibute_lines_dict = [], {} if product_dict.get('associations').get('product_option_values'): if product_dict.get('associations').get('product_option_values').get('product_option_value'): data = product_dict.get('associations').get('product_option_values').get('product_option_value') else: data = product_dict.get('associations').get('product_option_values') if data: if isinstance(data, dict): data = [data] for att_val in data: if att_val.get('value') in ('', '0'): continue value_id = att_val_obj.search([('presta_id', '=', self.get_value_data(att_val.get('id')))],limit=1) if not value_id: try: values_data = prestashop.get('product_option_values', self.get_value_data(att_val.get('id'))) self._create_attribute_values(values_data.get('product_option_value'), prestashop) self.env.cr.commit() except Exception as e: value_id = False value_id = att_val_obj.search([('presta_id', '=', self.get_value_data(att_val.get('id')))], limit=1) if value_id: if value_id.attribute_id.id in atttibute_lines_dict: if value_id.id not in atttibute_lines_dict.get(value_id.attribute_id.id): atttibute_lines_dict.get(value_id.attribute_id.id).append(value_id.id) else: atttibute_lines_dict.update({value_id.attribute_id.id: [value_id.id]}) for i in atttibute_lines_dict.keys(): attribute_line_ids.append((0, 0, {'attribute_id': i, 'value_ids': [(6, 0, atttibute_lines_dict.get(i))]})) prd_tmp_vals.update({'attribute_line_ids': attribute_line_ids}) prod_id = prod_temp_obj.search([('presta_id', '=', self.get_value_data(product_dict.get('id'))),('prestashop_product','=',True)],limit=1) if 'barcode' in prd_tmp_vals and prd_tmp_vals['barcode']: if not prod_id: check_barcode = prod_temp_obj.search([('barcode', '=', prd_tmp_vals['barcode'])], limit=1) else: check_barcode = prod_temp_obj.search( [('barcode', '=', prd_tmp_vals['barcode']), ('id', '!=', prod_id.id)], limit=1) if check_barcode and check_barcode.id != prod_id.id: while check_barcode: prd_tmp_vals.update( {'barcode': prd_tmp_vals['barcode'] + prd_tmp_vals['presta_id']}) check_barcode = prod_temp_obj.search( [('barcode', '=', prd_tmp_vals['barcode'] + prd_tmp_vals['presta_id'])], limit=1) if not prod_id: prod_id = prod_temp_obj.create(prd_tmp_vals) logger.info('Product created %s' % prod_id.name) else: prod_id.write(prd_tmp_vals) logger.info('Product updated %s' % prod_id.name) self.env.cr.commit() if prod_id: # Image create/write img_ids = product_dict.get('associations').get('images').get('image', False) if img_ids: if isinstance(img_ids, list): img_ids = img_ids else: img_ids = [img_ids] for image in img_ids: loc = (self.prestashop_instance_id.location).split('//') url = "http://" + self.prestashop_instance_id.webservice_key + "@" + loc[1] + '/api/images/products/' + product_dict.get('id') + '/' + image.get('id') client = PrestaShopWebServiceImage(self.prestashop_instance_id.location, self.prestashop_instance_id.webservice_key) res = client.get_image(url) if res.get('image_content'): img_test = res.get('image_content').decode('utf-8') extention = res.get('type') if img_test: product_img_id=product_image_obj.search([('prest_img_id','=',int(image.get('id'))),('product_t_id','=',prod_id.id)]) if not product_img_id: is_default_img = False if product_dict.get('id_default_image').get('value') is not None: is_default_img=True prod_id.write({'image_1920':img_test}) img_vals = ({'is_default_img':is_default_img,'extention':extention,'image_url': url, 'image': img_test, 'prest_img_id': int(image.get('id')),'name':' ','product_t_id': prod_id.id}) _img_created = product_image_obj.create(img_vals) logger.info('Product Image created %s' % _img_created.id) # # write attributes if prd_tmp_vals.get('attribute_line_ids'): for each in prd_tmp_vals.get('attribute_line_ids'): attribute_ids = self.env['product.template.attribute.line'].search( [('product_tmpl_id', '=', prod_id.id), ('attribute_id', '=', each[2].get('attribute_id'))]) if attribute_ids: for val_at in each[2].get('value_ids')[0][2]: if val_at not in attribute_ids[0].value_ids.ids: attribute_ids[0].write({'value_ids': [(6, 0, [val_at])]}) else: self.env['product.template.attribute.line'].create({'attribute_id': each[2].get('attribute_id'), 'product_tmpl_id': prod_id.id, 'value_ids': each[2].get('value_ids')}) if prd_tmp_vals.get('attribute_line_ids'): prd_tmp_vals.pop('attribute_line_ids') if 'message_follower_ids' in prd_tmp_vals: prd_tmp_vals.pop('message_follower_ids') prod_id.write(prd_tmp_vals) logger.info('Product comb updated %s' % prod_id.name) self.env.cr.execute("select product_id from product_templ_shop_rel where product_id = %s and shop_id = %s" % (prod_id.id, self.id)) prod_data = self.env.cr.fetchone() if prod_data == None: self.env.cr.execute("insert into product_templ_shop_rel values(%s,%s)" % (prod_id.id, self.id)) logger.info('Producrt Created ===> %s', prod_id.id) self.env.cr.execute("select product_id from product_templ_shop_rel where product_id = %s and shop_id = %s" % (prod_id.id, self.id)) prod_data = self.env.cr.fetchone() if prod_data == None: q1 = "insert into product_templ_shop_rel values(%s,%s)" % (prod_id.id, self.id) self.env.cr.execute(q1) if product_dict.get('associations').get('combinations').get('combination', False): comb_l = product_dict.get('associations').get('combinations').get('combination', False) c_val = {} if comb_l: if isinstance(comb_l, list): comb_l = comb_l else: comb_l = [comb_l] for comb in comb_l: try: combination_dict = prestashop.get('combinations', self.get_value_data(comb.get('id'))) value_list = [] value_comb_ids = combination_dict.get('combination').get('associations').get('product_option_values').get('product_option_value') if value_comb_ids: if isinstance(value_comb_ids, list): value_comb_ids = value_comb_ids else: value_comb_ids = [value_comb_ids] # print "value_comb_ids",value_comb_ids for each in value_comb_ids: val_id = self.get_value_data(each.get('id')) value_list.append(val_id) prest_product_id = self.get_value_data(combination_dict.get('combination').get('id_product')) product_ids = prod_prod_obj.search([('product_tmpl_id.presta_id', '=',prest_product_id)]) prod_id_var = False if product_ids: for product_data in product_ids: prod_val_ids = product_data.product_template_attribute_value_ids.product_attribute_value_id k = [] for red in prod_val_ids: k.append(red.presta_id) res = k rles = sorted(res, key=int) t = self.get_value_data(value_list) imag_odoo_data = False if rles == t: img_ids = combination_dict.get('combination').get('associations').get('images').get('image', False) if img_ids: if isinstance(img_ids, list): img_ids = img_ids else: img_ids = [img_ids] for image in img_ids: imag_odoo_data=self.return_image_data(prestashop,product_data.product_tmpl_id.id, prest_product_id, image.get('id')) product_barcode=False if self.get_value_data(combination_dict.get('combination').get('ean13')) not in ['','0']: # Aqui Barcode product_barcode = self.get_value_data(combination_dict.get('combination').get('ean13')) # Add estas lineas para asegurarnos que el barcode sea único del lado de Odoo if product_barcode: check_barcode = prod_prod_obj.search( [('barcode', '=', product_barcode)], limit=1) if check_barcode: while check_barcode: product_barcode += combination_dict.get('combination').get('id') check_barcode = prod_prod_obj.search( [('barcode', '=', product_barcode)], limit=1) c_val.update({ 'default_code':self.get_value_data(combination_dict.get('combination').get('reference')), 'barcode': product_barcode, 'combination_id':self.get_value_data(combination_dict.get('combination').get('id')), }) if imag_odoo_data: c_val.update({ 'image_1920':imag_odoo_data.image }) product_data.product_template_attribute_value_ids.write({'price_extra':self.get_value_data(combination_dict.get('combination').get('price'))}) product_data.write(c_val) logger.info('Product comb updated %s' % product_data.name) except Exception as e: continue self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_products', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return True def return_image_data(self,prestashop,product_id,product_presta_id,img_id): product_image_obj = self.env['product.images'] product_img_id = product_image_obj.search([('prest_img_id', '=', int(img_id)), ('product_t_id', '=', product_id)]) if not product_img_id: try: loc = (self.prestashop_instance_id.location).split('//') url = "http://" + self.prestashop_instance_id.webservice_key + "@" + loc[1] + '/api/images/products/' + product_presta_id + '/' + img_id client = PrestaShopWebServiceImage(self.prestashop_instance_id.location,self.prestashop_instance_id.webservice_key) res = client.get_image(url) if res.get('image_content'): img_test = res.get('image_content').decode('utf-8') extention = res.get('type') if img_test: product_img_id = product_image_obj.search([('prest_img_id', '=', int(img_id)), ('product_t_id', '=', product_id)]) if not product_img_id: img_vals = ({'is_default_img': False, 'extention': extention, 'image_url': url, 'image': img_test, 'prest_img_id': int(img_id), 'name': 'test', 'product_t_id': product_id}) product_image_obj.create(img_vals) except Exception as e: product_img_id =False return product_img_id def search_record_in_odoo(self,brows_obj, domain): record_id = brows_obj.search(domain) if not record_id: domain.append(('active','=',False)) record_id = brows_obj.search(domain) return record_id # @api.multi def import_products(self): product_brows = self.env['product.template'] for shop in self: try: product_categ_obj = self.env['product.category'] prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_product_id_import, 'limit': 1000} prestashop_product_data = prestashop.get('products', options=filters) if prestashop_product_data.get('products') and prestashop_product_data.get('products').get('product'): prestashop_product_list = prestashop_product_data.get('products').get('product') prestashop_product_list = self.action_check_isinstance(prestashop_product_list) for product_dict in prestashop_product_list: if product_dict.get('id_category_default'): domain_categ = [('presta_id', '=', product_dict.get('id_category_default')),('is_presta', '=', True)] cate_id = self.search_record_in_odoo(product_categ_obj, domain_categ) if not cate_id: try: parent_presta_categ_data = prestashop.get('categories', product_dict.get('id_category_default')) shop.create_presta_category(parent_presta_categ_data.get('category'), prestashop) self.env.cr.commit() except Exception as e: logger.info('Parent category ===> %s' % (e)) shop.create_presta_product(product_dict, prestashop) shop.write({'last_product_id_import': product_dict.get('id')}) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_products', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return True def createInventory(self, stock, lot_stock_id, prestashop): product_obj = self.env['product.product'] product_temp_obj = self.env['product.template'] quantity = int(stock.get('quantity')) product_id = False try: if stock.get('id_product_attribute') != '0': product_id = product_obj.search([('combination_id', '=', stock.get('id_product_attribute'))],limit=1) if not product_id: product_id = product_obj.search([('product_tmpl_id.presta_id', '=', stock.get('id_product'))], limit=1) if product_id: self.env.cr.execute("select product_prod_id from product_prod_shop_rel where product_prod_id = %s and shop_id = %s" % (product_id.id, self.id)) prod_data = self.env.cr.fetchone() if prod_data is None: self.env.cr.execute("insert into product_prod_shop_rel values(%s,%s)" % (product_id.id, self.id)) id=self.env['stock.quant'].with_context(inventory_mode=True).create({ 'product_id': product_id.id, 'location_id': lot_stock_id, 'lot_id': False, 'package_id': False, 'owner_id': False, 'presta_id': stock.get('id'), 'is_presta': True, 'inventory_quantity': quantity, }) if id: logger.info("Inventario importado") return True except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_inventory', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context # @api.multi def import_product_inventory(self): for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_product_inventory_import, 'limit': 100} prestashop_stock_data = prestashop.get('stock_availables', options=filters) if prestashop_stock_data.get('stock_availables') and 'stock_available' in prestashop_stock_data.get('stock_availables'): stocks = prestashop_stock_data.get('stock_availables').get('stock_available') if isinstance(stocks, list): stocks = stocks else: stocks = [stocks] for stock in stocks: stock_id = self.env['stock.quant'].search([('presta_id','=',stock.get('id')),('is_presta','=',True)]) if not stock_id: shop.createInventory(stock,shop.warehouse_id.lot_stock_id.id, prestashop) shop.write({'last_product_inventory_import': stock.get('id')}) self.env.cr.commit() except Exception as e: raise ValidationError(_(str(e))) return True # @api.one def create_carrier(self, carrier_dict): carrier_obj = self.env['delivery.carrier'] product_obj = self.env['product.product'] car_id= False try: product_id = product_obj.search([('name', '=',carrier_dict.get('name'))],limit=1) if not product_id: product_id = product_obj.create({'name': carrier_dict.get('name')}) carr_vals = { 'name': carrier_dict.get('name'), 'fixed_price': int(carrier_dict.get('shipping_external')), 'product_id': product_id.id, 'is_presta': True, 'delay_comment': True, 'presta_id': carrier_dict.get('id'), 'delay_comment': self.get_value_data(self.get_value(carrier_dict.get('delay').get('language'))) } car_id = carrier_obj.search([('presta_id', '=', carrier_dict.get('id')),('is_presta','=',True)],limit=1) if not car_id: car_id = carrier_obj.create(carr_vals) logger.info('created carrier ===> %s', car_id.id) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_carriers', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return car_id # @api.multi def import_carriers(self): for shop in self: try: carrier_obj = self.env['delivery.carrier'] prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '>[%s]' % self.last_delivery_carrier_import, 'limit': 100} prestashop_carriers_data = prestashop.get('carriers', options=filters) if prestashop_carriers_data.get('carriers') and prestashop_carriers_data.get('carriers').get('carrier'): carriers = prestashop_carriers_data.get('carriers').get('carrier') if isinstance(carriers, list): carriers = carriers else: carriers = [carriers] for carrier in carriers: carrier_id = carrier_obj.search([('presta_id', '=',carrier.get('id')),('is_presta','=', True)],limit=1) if not carrier_id: shop.create_carrier(carrier) shop.write({'last_delivery_carrier_import': carrier.get('id')}) self.env.cr.commit() return True except Exception as e: raise ValidationError(_(str(e))) #workflow of order def manageOrderWorkflow(self, saleorderid, order_detail, status): invoice_obj = self.env['account.move'] return_obj = self.env['stock.return.picking'] return_line_obj = self.env['stock.return.picking.line'] if status.name == 'Canceled': if saleorderid.state in ['draft']: saleorderid.action_cancel() if saleorderid.state in ['progress', 'done', 'manual']: invoice_ids = saleorderid.invoice_ids for invoice in invoice_ids: refund_ids = invoice_obj.search([('invoice_origin', '=', invoice.number)]) if not refund_ids: if invoice.state == 'paid': refund_invoice_id = invoice_obj.create(dict( description='Refund To %s' % (invoice.partner_id.name), date=datetime.date.today(), filter_refund='refund' )) refund_invoice_id.invoice_refund() saleorderid.write({'is_refund': True}) else: invoice.action_cancel() for picking in saleorderid.picking_ids: if picking.state not in ('done'): picking.action_cancel() else: ctx = self._context.copy() ctx.update({'active_id': picking.id}) res = return_obj.with_context(ctx).default_get(['product_return_moves', 'move_dest_exists']) res.update({'invoice_state': '2binvoiced'}) return_id = return_obj.with_context(ctx).create({'invoice_state': 'none'}) for record in res['product_return_moves']: record.update({'wizard_id': return_id.id}) return_line_obj.with_context(ctx).create(record) pick_id_return, type = return_id.with_context(ctx)._create_returns() # pick_id_return.force_assign() pick_id_return._action_done() saleorderid.action_cancel() return True # Make Order Confirm #if validate order is activated in workflow if self.workflow_id.validate_order: if saleorderid.state in ['draft']: saleorderid.action_confirm() # if complete shipment is activated in workflow if self.workflow_id.complete_shipment: if saleorderid.state in ['draft','confirmed']: saleorderid.action_confirm() for picking_id in saleorderid.picking_ids: # If still in draft => confirm and assign if picking_id.state == 'draft': picking_id.action_confirm() # picking_id._action_assign() # if picking_id.state == 'confirmed': # picking_id._action_assign() move_ids = picking_id.move_ids_without_package._action_confirm() move_ids._action_assign() # if create_invoice is activated in workflow if self.workflow_id.create_invoice: if not saleorderid.invoice_ids: invoice_ids = saleorderid._create_invoices() invoice_ids.write({'is_prestashop': True}) # if validate_invoice is activated in workflow if self.workflow_id.validate_invoice: if saleorderid.state3 == 'draft': saleorderid.action_confirm() if not saleorderid.invoice_ids: invoice_ids = saleorderid._create_invoices() # invoice_ids = invoice_obj.browse(invoice_ids) invoice_ids.write({'is_prestashop': True}) for invoice_id in saleorderid.invoice_ids: invoice_id.write({ 'total_discount_tax_excl': self.get_value_data(order_detail.get('total_discounts_tax_excl')), 'total_discount_tax_incl': self.get_value_data(order_detail.get('total_discounts_tax_incl')), 'total_paid_tax_excl': self.get_value_data(order_detail.get('total_paid_tax_excl')), 'total_paid_tax_incl': self.get_value_data(order_detail.get('total_paid_tax_incl')), 'total_products_wt': self.get_value_data(order_detail.get('total_products_wt')), 'total_shipping_tax_excl': self.get_value_data(order_detail.get('total_shipping_tax_excl')), 'total_shipping_tax_incl': self.get_value_data(order_detail.get('total_shipping_tax_incl')), 'total_wrapping_tax_excl': self.get_value_data(order_detail.get('total_wrapping_tax_excl')), 'total_wrapping_tax_incl': self.get_value_data(order_detail.get('total_wrapping_tax_incl')), 'is_prestashop': True, }) if invoice_id.state == 'draft': invoice_id.action_post() # if register_payment is activated in workflow if self.workflow_id.register_payment: if saleorderid.state == 'draft': saleorderid.action_confirm() if not saleorderid.invoice_ids: if sum(line.qty_to_invoice for line in saleorderid.order_line) > 0: invoice_ids = saleorderid._create_invoices() invoice_ids.write({'is_prestashop': True}) for invoice_id in saleorderid.invoice_ids: invoice_id.write({ 'total_discount_tax_excl': self.get_value_data(order_detail.get('total_discounts_tax_excl')), 'total_discount_tax_incl': self.get_value_data(order_detail.get('total_discounts_tax_incl')), 'total_paid_tax_excl': self.get_value_data(order_detail.get('total_paid_tax_excl')), 'total_paid_tax_incl': self.get_value_data(order_detail.get('total_paid_tax_incl')), 'total_products_wt': self.get_value_data(order_detail.get('total_products_wt')), 'total_shipping_tax_excl': self.get_value_data(order_detail.get('total_shipping_tax_excl')), 'total_shipping_tax_incl': self.get_value_data(order_detail.get('total_shipping_tax_incl')), 'total_wrapping_tax_excl': self.get_value_data(order_detail.get('total_wrapping_tax_excl')), 'total_wrapping_tax_incl': self.get_value_data(order_detail.get('total_wrapping_tax_incl')), 'is_prestashop': True, }) if invoice_id.state == 'draft': invoice_id.action_post() # if invoice_id.state not in ['paid'] and invoice_id.invoice_line_ids: # payment_register_id = self.env['account.payment.register'].with_context(active_model= 'account.move',active_ids=invoice_id.ids).create({}) # print('order_detail---------',order_detail) # print('payment_register_id---------',payment_register_id) # payments = payment_register_id._create_payments() # print('payments---------',payments) # invoice_id.pay_and_reconcile( # self.workflow_id and self.sale_journal or self.env['account.journal'].search( # [('type', '=', 'bank')], limit=1), invoice_id.amount_total) return True # @api.one def manageOrderLines(self, orderid, order_detail, prestashop): sale_order_line_obj = self.env['sale.order.line'] prod_attr_val_obj = self.env['product.attribute.value'] prod_templ_obj = self.env['product.template'] product_obj = self.env['product.product'] lines = [] order_rows = order_detail.get('associations').get('order_rows').get('order_row') if isinstance(order_rows, list): order_rows = order_rows else: order_rows = [order_rows] for child in order_rows: line = { 'price_unit': float(self.get_value_data(child.get('unit_price_tax_incl'))), 'name': self.get_value_data(child.get('product_name')), 'product_uom_qty': float(self.get_value_data(child.get('product_quantity'))), 'order_id': orderid.id, 'tax_id': False, 'presta_id': self.get_value_data(child.get('id')), 'presta_line': True, } if self.get_value_data(child.get('product_attribute_id')) != '0': value_list = [] temp_id = False try: combination = prestashop.get('combinations', self.get_value_data(child.get('product_attribute_id'))) value_ids = combination.get('combination').get('associations').get('product_option_values').get( 'product_option_value') if isinstance(value_ids, list): value_ids = value_ids else: value_ids = [value_ids] for value_id in value_ids: values = self.get_value_data(value_id.get('id')) value_ids = prod_attr_val_obj.search([('presta_id', '=', values)]) value_list.append(value_ids.id) temp_id = prod_templ_obj.search( [('presta_id', '=', self.get_value_data(combination.get('combination').get('id_product'))), ('prestashop_product', '=', True)], limit=1) except Exception as e: logger.info('Error/Warning product combination 000000000000000000000000000===> %s', e) if not temp_id: try: prod_data_tmpl = prestashop.get('products', self.get_value_data(child.get('product_id'))) self.create_presta_product(prod_data_tmpl.get('product'), prestashop) temp_id = prod_templ_obj.search( [('presta_id', '=', self.get_value_data(child.get('product_id'))), ('prestashop_product', '=', True)], limit=1) except Exception as e: logger.info('Error/Warning product combination 11111111111111111111111111111111111===> %s', e) if temp_id: product_ids = product_obj.search( [('presta_id', '=', self.get_value_data(child.get('product_id')))]) for product_id in product_ids: if product_id.product_template_attribute_value_ids == prod_attr_val_obj.browse( value_list) and product_id.product_tmpl_id == temp_id: product_ids = product_id if product_ids: line.update({'product_id': product_ids[0].id, 'product_uom': product_ids[0].uom_id.id}) else: prod_data = prestashop.get('products', self.get_value_data( combination.get('combination').get('id_product'))) self.create_presta_product(prod_data.get('product'), prestashop) product_ids = product_obj.search([('product_tmpl_id.presta_id', '=', self.get_value_data( combination.get('combination').get('id_product')))]) line.update({'product_id': product_ids[0].id, 'product_uom': product_ids[0].uom_id.id}) else: product_id = product_obj.search( [('product_tmpl_id.presta_id', '=', self.get_value_data(child.get('product_id'))), ('prestashop_product', '=', True)], limit=1) if product_id: line.update({'product_id': product_id.id, 'product_uom': product_id.uom_id.id}) else: try: new_product_data = prestashop.get('products', self.get_value_data(child.get('product_id'))) self.create_presta_product(new_product_data.get('product'), prestashop) self.env.cr.commit() new_product_ids = product_obj.search( [('product_tmpl_id.presta_id', '=', self.get_value_data(child.get('product_id')))]) line.update({'product_id': new_product_ids[0].id, 'product_uom': new_product_ids[0].uom_id.id}) except: # product_id = self.remove_record_prestashop_checked(prod_templ_obj, 'Removed Product', {'name': 'Removed Product'}) product_id = self.remove_record_prestashop_checked(product_obj, 'Removed Product', {'name': 'Removed Product'}) line.update({'product_id': product_id.id, 'product_uom': product_id.uom_id.id}) if 'product_id' not in line: # product_id = self.remove_record_prestashop_checked(prod_templ_obj, 'Removed Product', {'name': 'Removed Product'}) product_id = self.remove_record_prestashop_checked(product_obj, 'Removed Product', {'name': 'Removed Product'}) line.update({'product_id': product_id.id, 'product_uom': product_id.uom_id.id}) if child.get('id'): line_ids = sale_order_line_obj.search( [('presta_id', '=', self.get_value_data(line.get('id'))), ('order_id', '=', orderid.id)]) if not line_ids: sale_order_line_obj.create(line) if order_detail.get('total_discounts'): discoun = order_detail.get('total_discounts_tax_incl') discount_line = { 'product_id': self.discount_product_id.id, 'product_uom': self.discount_product_id.uom_id.id, 'price_unit': - (float(discoun)), 'product_uom_qty': 1, 'tax_id': False, 'order_id': orderid.id } dline_ids = sale_order_line_obj.search( [('product_id', '=', self.get_value_data(discount_line.get('product_id'))), ('order_id', '=', orderid.id)]) if not dline_ids: sale_order_line_obj.create(dline_ids) else: dline_ids[0].write({'price_unit': - (float(discoun))}) # Shipment fees and fields ship = float(self.get_value_data(order_detail.get('total_shipping_tax_excl'))) if ship and ship > 0: sline = { 'product_id': self.shipment_fee_product_id.id, 'product_uom': self.shipment_fee_product_id.uom_id.id, 'price_unit': ship, 'product_uom_qty': 1, 'order_id': orderid.id, 'tax_id': False, } sline_ids = sale_order_line_obj.search( [('product_id', '=', self.get_value_data(sline.get('product_id'))), ('order_id', '=', orderid.id)]) if not sline_ids: sale_order_line_obj.create(sline) else: sline_ids[0].write(sline) # wrapping fees and fields wrapping = float(self.get_value_data(order_detail.get('total_wrapping', 0))) if wrapping and wrapping > 0: wline = { 'product_id': self.gift_wrapper_fee_product_id.id, 'product_uom': self.gift_wrapper_fee_product_id.uom_id.id, 'price_unit': wrapping, 'product_uom_qty': 1, 'name': self.get_value_data(order_detail.get('gift_message')), 'order_id': orderid.id, 'tax_id': False, } wline_ids = sale_order_line_obj.search( [('product_id', '=', self.get_value_data(wline.get('product_id'))), ('order_id', '=', orderid.id)]) if not wline_ids: sale_order_line_obj.create(wline) else: wline_ids[0].write(wline) # @api.one def remove_record_prestashop_checked(self,brows_object,name,vals): record_id = brows_object.search([('name', '=', name)], limit=1) if not record_id: record_id = brows_object.create(vals) return record_id def create_presta_order(self, order_detail, prestashop): sale_order_obj = self.env['sale.order'] res_partner_obj = self.env['res.partner'] carrier_obj = self.env['delivery.carrier'] product_obj = self.env['product.product'] status_obj = self.env['presta.order.status'] order_vals = {} try: id_customer = res_partner_obj.search([('presta_id', '=', order_detail.get('id_customer')),('prestashop_customer','=',True)],limit=1) if not id_customer: try: cust_data = prestashop.get('customers', order_detail.get('id_customer')) id_customer = self.create_customer(cust_data.get('customer'),prestashop) except Exception as e: id_customer = self.remove_record_prestashop_checked(res_partner_obj,'Removed Customer',{'name':'Removed Customer'}) id_address_delivery = res_partner_obj.search([('presta_id', '=', order_detail.get('id_address_delivery')), ('prestashop_address', '=', True)], limit=1) if not id_address_delivery: try: address_data = prestashop.get('addresses', order_detail.get('id_address_delivery')) id_address_delivery = self.create_address(address_data.get('address'), prestashop) except Exception as e: id_address_delivery = self.remove_record_prestashop_checked(res_partner_obj, 'Removed Addresss',{'name': 'Removed Addresss'}) id_address_invoice = res_partner_obj.search([('presta_id', '=', order_detail.get('id_address_invoice')), ('prestashop_address', '=', True)],limit=1) if not id_address_invoice: try: address_inv_data = prestashop.get('addresses', order_detail.get('id_address_invoice')) id_address_invoice = self.create_address(address_inv_data.get('address'), prestashop) except Exception as e: id_address_invoice = self.remove_record_prestashop_checked(res_partner_obj, 'Removed Addresss',{'name': 'Removed Addresss'}) order_vals.update({'partner_id': id_customer.id,'partner_shipping_id':id_address_delivery.id,'partner_invoice_id': id_address_invoice.id}) state_id = status_obj.search([('presta_id', '=', self.get_value_data(order_detail.get('current_state')))],limit=1) if not state_id: try: orders_status_lst = prestashop.get('order_states', self.get_value_data(order_detail.get('current_state'))) state_id = status_obj.create({'name': self.get_value_data(self.get_value(orders_status_lst.get('order_state').get('name').get('language'))),'presta_id': self.get_value_data(order_detail.get('current_state')),}) except Exception as e: state_id = self.remove_record_prestashop_checked(status_obj, 'Removed Status',{'name': 'Removed Status'}) a = self.get_value_data(order_detail.get('payment')) p_mode = False if a[0] == 'Cash on delivery COD': p_mode = 'cod' elif a[0] == 'Bank wire': p_mode = 'bankwire' elif a[0] == 'Payments by check': p_mode = 'cheque' elif a[0] == 'Bank transfer': p_mode = 'banktran' order_vals.update({ 'reference': self.get_value_data(order_detail.get('reference')), 'presta_id': order_detail.get('id'), 'warehouse_id': self.warehouse_id.id, 'presta_order_ref': self.get_value_data(order_detail.get('reference')), 'pretsa_payment_mode': p_mode, 'pricelist_id': self.pricelist_id.id, 'workflow_order_id': self.workflow_id.id, # 'name': self.get_value_data(order_detail.get('id')), 'order_status' : state_id.id, 'shop_id': self.id, 'prestashop_order': True, 'date_order': self.get_value_data(order_detail.get('date_add')), # 'presta_order_date': self.get_value_data(order_detail.get('date_add')), }) if self.workflow_id.picking_policy: order_vals.update({'picking_policy' : self.workflow_id.picking_policy}) carr_id=False if int(self.get_value_data(order_detail.get('id_carrier'))) > 0: carr_obj_id = carrier_obj.search([('presta_id', '=', order_detail.get('id_carrier')), ('is_presta', '=', True)], limit=1) if carr_obj_id: carr_id = carr_obj_id.id if not carr_obj_id: try: carrier_data = prestashop.get('carriers', self.get_value_data(order_detail.get('id_carrier'))) carr_id = self.create_carrier(self.get_value_data(carrier_data.get('carrier'))) except Exception as e: product_id = self.remove_record_prestashop_checked(product_obj, 'Removed Carrier',{'name': 'Removed Carrier'}) carr_id = self.remove_record_prestashop_checked(carrier_obj, 'Removed Carrier',{'name': 'Removed Carrier','product_id': product_id.id,'is_presta': True}).id order_vals.update({'carrier_prestashop': carr_id}) sale_order_id = sale_order_obj.search([('presta_id','=', order_detail.get('id')),('prestashop_order','=',True)],limit=1) if not sale_order_id: sale_order_id = sale_order_obj.create(order_vals) logger.info('created orders ===> %s', sale_order_id.id) if sale_order_id: self.env.cr.execute("select saleorder_id from saleorder_shop_rel where saleorder_id = %s and shop_id = %s" % (sale_order_id.id, self.id)) so_data = self.env.cr.fetchone() if so_data == None: self.env.cr.execute("insert into saleorder_shop_rel values(%s,%s)" % (sale_order_id.id, self.id)) self.manageOrderLines(sale_order_id, order_detail, prestashop) self.manageOrderWorkflow(sale_order_id, order_detail, state_id) self.env.cr.commit() return sale_order_id except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create({'all_operations':'import_orders','error_lines': [(0,0, {'log_description': str(e)})]}) log_id = log_id_obj.id # self = self.with_context(log_id = log_id.id) new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return True # @api.multi def import_orders(self): try: for shop in self: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) if 'last_order_import_date' in self._context: prestashop_order_data = prestashop.get('orders', options={ 'display': 'full', 'filter[date_upd]': "[{},{}]".format(self.env.context.get('last_order_import_date'), str(datetime.now())), 'date': '1', 'sort': '[id_DESC]', 'limit': 100, }) else: filters = {'display': 'full', 'filter[id]': '=[%s]' % shop.last_order_id_id_import, 'limit': 100} prestashop_order_data = prestashop.get('orders', options=filters) if prestashop_order_data.get('orders') and prestashop_order_data.get('orders').get('order'): orders = prestashop_order_data.get('orders').get('order') if isinstance(orders, list): orders = orders else: orders = [orders] for order in orders: shop.create_presta_order(order, prestashop) shop.write({'last_order_id_id_import': order.get('id')}) self.env.cr.commit() except Exception as e: raise ValidationError(_(str(e))) return True def create_presta_message_threads(self,thread,prestashop): res_obj = self.env['res.partner'] sale_obj = self.env['sale.order'] customer_threads_obj = self.env['customer.threads'] thread_id = customer_threads_obj.search([('presta_id','=',thread)],limit=1) if not thread_id: try: customer_threads = prestashop.get('customer_threads',thread) if customer_threads.get('customer_thread'): customer_thread_dict = customer_threads.get('customer_thread') threads_vals = { 'presta_id':customer_thread_dict.get('id'), 'id_shop': self.get_value_data(customer_thread_dict.get('id_shop')), 'token': self.get_value_data(customer_thread_dict.get('token')), 'email': self.get_value_data(customer_thread_dict.get('email')), 'status': self.get_value_data(customer_thread_dict.get('status')), } if self.get_value_data(customer_thread_dict.get('id_customer')): customer_id = res_obj.search([('presta_id', '=', self.get_value_data(customer_thread_dict.get('id_customer'))), ('prestashop_customer', '=', True)], limit=1) if not customer_id: try: cust_data = prestashop.get('customers', self.get_value_data(customer_thread_dict.get('id_customer'))) customer_id = self.create_customer(cust_data.get('customer'), prestashop) except Exception as e: customer_id = self.remove_record_prestashop_checked(res_obj, 'Removed Customer', {'name': 'Removed Customer'}) threads_vals.update({'customer_id': customer_id.id, }) order_presta_id = self.get_value_data(customer_thread_dict.get('id_order')) if order_presta_id: check_order = True order = sale_obj.search([('presta_id', '=', order_presta_id), ('prestashop_order', '=', True)],limit=1) if not order: try: order_detail = prestashop.get('orders', self.get_value_data(customer_thread_dict.get('id_order'))) order_data_ids = order_detail.get('order') order = self.create_presta_order(order_data_ids, prestashop) except Exception as e: check_order = False if check_order: threads_vals.update({'order_id': order.id}) thread_id = customer_threads_obj.create(threads_vals) except Exception as e: thread_id = False return thread_id def create_presta_message(self,message_dict,prestashop): order_msg = self.env['order.message'] order_msg_vals = { 'msg_prest_id': self.get_value_data(message_dict.get('id')), 'message': self.get_value_data(message_dict.get('message')), } thread_id = self.create_presta_message_threads(message_dict.get('id_customer_thread'), prestashop) if thread_id != False: order_msg_vals.update({'thread_id': thread_id.id,'new_id': thread_id.order_id.id}) order_msg_id = order_msg.search([('thread_id', '=', thread_id.id),('msg_prest_id', '=', order_msg_vals.get('msg_prest_id'))]) if not order_msg_id: msg_id = order_msg.create(order_msg_vals) logger.info('created messages ===> %s', msg_id.id) self.env.cr.commit() else: order_msg_id.write(order_msg_vals) def import_messages(self): try: for shop in self: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '=[%s]' % shop.last_message_id_import, 'limit': 20} message = prestashop.get('customer_messages', options=filters) if message.get('customer_messages') and message.get('customer_messages').get('customer_message'): messages = message.get('customer_messages').get('customer_message') if isinstance(messages, list): messages = messages else: messages = [messages] for message_dict in messages: shop.create_presta_message(message_dict, prestashop) shop.write({'last_message_id_import': message_dict.get('id')}) except Exception as e: raise ValidationError(_(str(e))) return True # @api.multi def import_cart_rules(self): try: cart_obj = self.env['cart.rules'] res_partner_obj = self.env['res.partner'] for shop in self: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '=[%s]' % shop.last_cart_rule_id_import, 'limit': 500} cart = prestashop.get('cart_rules', options=filters) if cart.get('cart_rules') and cart.get('cart_rules').get('cart_rule'): carts = cart.get('cart_rules').get('cart_rule') if isinstance(carts, list): carts = carts else: carts = [carts] for cart_dict in carts: id_customer = self.env['res.partner'].search([('presta_id', '=', cart_dict.get('id_customer'))]) if not id_customer: try: cust_data = prestashop.get('customers', cart_dict.get('id_customer')) id_customer = shop.create_customer(cust_data.get('customer'), prestashop) except Exception as e: id_customer = self.remove_record_prestashop_checked(res_partner_obj, 'Removed Customer',{'name': 'Removed Customer'}) cart_vals = { 'id_customer':id_customer.id or False, 'date_from': self.get_value_data(cart_dict.get('date_from')), 'date_to': self.get_value_data(cart_dict.get('date_to')), 'description': self.get_value_data(cart_dict.get('description')), 'quantity': self.get_value_data(cart_dict.get('quantity')), 'code': self.get_value_data(cart_dict.get('code')), 'partial_use':bool(int( self.get_value_data(cart_dict.get('partial_use')))), 'minimum_amount': self.get_value_data(cart_dict.get('minimum_amount')), 'free_shipping':bool(int( self.get_value_data(cart_dict.get('free_shipping')))), # 'name' : cart_data.get('cart_rule').get('name').get('language').get('value'), 'name': self.get_value_data(self.get_value( cart_dict.get('name').get('language'))), 'presta_id' : cart_dict.get('id'), } carts_id = cart_obj.search([('presta_id', '=', self.get_value_data(cart_dict.get('id')))],limit=1) if not carts_id: carts_id = cart_obj.create(cart_vals) else: carts_id.write(cart_vals) self.env.cr.execute("select cart_id from cart_shop_rel where cart_id = %s and shop_id = %s" % (carts_id.id, shop.id)) data = self.env.cr.fetchone() if not data: self.env.cr.execute("insert into cart_shop_rel values(%s,%s)" % (carts_id.id, shop.id)) self.env.cr.commit() shop.write({'last_catalog_rule_id_import': last_cart_rule_id_import.get('id')}) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_cart_rules', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return True def import_catalog_price_rules(self): try: catalog_price_obj = self.env['catalog.price.rules'] for shop in self: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) filters = {'display': 'full', 'filter[id]': '=[%s]' % shop.last_catalog_rule_id_import, 'limit': 500} catalog_rule = prestashop.get('specific_price_rules',options=filters) if catalog_rule.get('specific_price_rules') and catalog_rule.get('specific_price_rules').get('specific_price_rule'): catalog_rules = catalog_rule.get('specific_price_rules').get('specific_price_rule') if isinstance(catalog_rules, list): catalog_rules = catalog_rules else: catalog_rules = [catalog_rules] for catlog_dict in catalog_rules: from_date = False if not self.get_value_data(catlog_dict.get('from')) == '0000-00-00 00:00:00': from_date = self.get_value_data(catlog_dict.get('from')) to_date = False if not self.get_value_data(catlog_dict.get('to')) == '0000-00-00 00:00:00': to_date = self.get_value_data(catlog_dict.get('to')) rule_vals = { 'name': self.get_value_data(catlog_dict.get('name')), 'from_quantity': self.get_value_data(catlog_dict.get('from_quantity')), 'price': self.get_value_data(catlog_dict.get('price')), 'reduction': self.get_value_data(catlog_dict.get('reduction')), 'reduction_type': self.get_value_data(catlog_dict.get('reduction_type')), 'from_date': from_date, 'to_date': to_date, 'presta_id':catlog_dict.get('id'), } rule_id = catalog_price_obj.search([('presta_id','=', self.get_value_data(catlog_dict.get('id')))],limit=1) if not rule_id: rule_id = catalog_price_obj.create(rule_vals) logger.info('created catalog RULE ===> %s', rule_id.id) else: rule_id.write(rule_vals) self.env.cr.execute("select catalog_id from catalog_shop_rel where catalog_id = %s and shop_id = %s" % (rule_id.id, shop.id)) data = self.env.cr.fetchone() if not data: self.env.cr.execute("insert into catalog_shop_rel values(%s,%s)" % (rule_id.id, shop.id)) shop.write({'last_catalog_rule_id_import': catlog_dict.get('id')}) self.env.cr.commit() except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'import_catalog_rules', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return True # @api.multi def update_prestashop_category(self): categ_obj = self.env['prestashop.category'] for shop in self: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) try: query = "select categ_id from presta_categ_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_categ = self.env.cr.fetchall() if shop.prestashop_last_update_category_date: categ_ids = categ_obj.search([('write_date','>=', shop.prestashop_last_update_category_date),('id','in',fetch_categ)]) else: categ_ids = categ_obj.search([('id','in',fetch_categ)]) for each in categ_ids: d=each.presta_id.replace('[','') c=d.replace(']','') v=c.split() for i in v: if i.isdigit(): k=i cat = prestashop.get('categories',k) cat.get('category').update({ 'id': k, 'name': {'language': {'attrs': {'id': '1'}, 'value': str(each.name)}}, 'active': 1, 'id_parent': each.parent_id and str(each.parent_id.presta_id) or 0, }) cat.get('category').pop('level_depth') cat.get('category').pop('nb_products_recursive') result = prestashop.edit('categories', cat) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create({'all_operations': 'update_categories', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context shop.write({'prestashop_last_update_category_date': datetime.now()}) return True # @api.multi def update_cart_rules(self): cart_obj = self.env['cart.rules'] for shop in self: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) try: query = "select cart_id from cart_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_cart_rules = self.env.cr.fetchall() if fetch_cart_rules != None: fetch_cart_rules = [i[0] for i in fetch_cart_rules] if shop.prestashop_last_update_cart_rule_date: cart_ids = cart_obj.search([('write_date', '>=', shop.prestashop_last_update_cart_rule_date),('id','in',fetch_cart_rules)]) else: cart_ids = cart_obj.search([('id','in',fetch_cart_rules)]) for each in cart_ids: # try: cart = prestashop.get('cart_rules', each.presta_id) cart.get('cart_rule').update( { 'id': each.presta_id and str(each.presta_id), 'code': each.code and str(each.code), 'description': each.description and str(each.description), 'free_shipping': each.free_shipping and str(int(each.free_shipping)), 'id_customer': each.id_customer and each.id_customer.presta_id and str(each.id_customer.presta_id) or '0', 'date_to': str(each.date_to) or '0000-00-00 00:00:00', 'name': {'language': {'attrs': {'id': '1'}, 'value': each.name and str(each.name)}}, 'date_from': str(each.date_from) or '0000-00-00 00:00:00', 'partial_use': each.partial_use and str(int(each.partial_use)), 'quantity': str(each.quantity), }) prestashop.edit('cart_rules', cart) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create({'all_operations': 'update_cart_rules', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context shop.write({'prestashop_last_update_cart_rule_date': datetime.now()}) return True # @api.multi def update_catalog_rules(self): catalog_price_obj = self.env['catalog.price.rules'] for shop in self: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) try: query = "select catalog_id from catalog_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_catalog_rules = self.env.cr.fetchall() if fetch_catalog_rules is not None: fetch_catalog_rules = [i[0] for i in fetch_catalog_rules] if shop.prestashop_last_update_catalog_rule_date: catalog_ids = catalog_price_obj.search([('write_date', '>', shop.prestashop_last_update_catalog_rule_date),('id', 'in', fetch_catalog_rules)]) else: catalog_ids = catalog_price_obj.search([('id', 'in', fetch_catalog_rules)]) for each in catalog_ids: catalog = prestashop.get('specific_price_rules', each.presta_id) catalog.get('specific_price_rule').update({ 'id': str(each.presta_id), 'reduction_type': str(each.reduction_type), 'name': str(each.name), 'price': str(each.price), 'from_quantity': str(each.from_quantity), 'reduction': str(each.reduction), 'from': str(each.from_date) or '0000-00-00 00:00:00', 'to': str(each.to_date) or '0000-00-00 00:00:00', 'id_shop':1, 'id_country':0, 'id_currency':0, 'id_group':0, 'reduction_tax':0 }) prestashop.edit('specific_price_rules', catalog) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create({'all_operations': 'update_catalog_rules', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context shop.write({'prestashop_last_update_catalog_rule_date': datetime.now()}) return True # @api.multi def update_products(self,variant=False): #update product details,image and variants prod_templ_obj = self.env['product.template'] prdct_obj = self.env['product.product'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) query = "select product_id from product_templ_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_products = self.env.cr.fetchall() if fetch_products is not None: fetch_products = [i[0] for i in fetch_products] if shop.prestashop_last_update_product_data_date: product_data_ids = prod_templ_obj.search([('write_date', '>=',shop.prestashop_last_update_product_data_date),('id', 'in',fetch_products)]) else: product_data_ids = prod_templ_obj.search([('id', 'in',fetch_products)]) for each in product_data_ids: product = prestashop.get('products', each.presta_id) categ = [{'id': each.presta_categ_id.presta_id and str(each.presta_categ_id.presta_id)}] parent_id = each.presta_categ_id.parent_id while parent_id: categ.append({'id': parent_id.presta_id and str(parent_id.presta_id)}) parent_id = parent_id.parent_id product.get('product').get('associations').update({'categories': {'attrs': {'node_type': 'category'}, 'category': categ},}) product.get('product').update({ 'name': {'language': {'attrs': {'id': '1'}, 'value': each.name and str(each.name)}}, 'active': '1', 'type': 'simple', 'on_sale':'1', 'state': '1', 'online_only': '1', 'reference': each.default_code and str(each.default_code), 'wholesale_price': each.wholesale_price and str(each.wholesale_price), 'price': each.list_price and str(each.list_price), 'depth': each.product_lngth and str(each.product_lngth), 'width': each.product_width and str(each.product_width), 'weight': each.product_wght and str(each.product_wght), 'height': each.product_hght and str(each.product_hght), 'available_now': ({'language': {'attrs': {'id': '1'}, 'value': each.product_instock and str(int(each.product_instock))}}), 'on_sale' : each.product_onsale and str(int(each.product_onsale)) , 'id': each.presta_id and str(each.presta_id), 'id_supplier': each.supplier_id and str(each.supplier_id.presta_id) or '0', 'id_manufacturer': each.manufacturer_id and str(each.manufacturer_id.presta_id) or '0', 'id_category_default':each.presta_categ_id and str(each.presta_categ_id.presta_id), 'position_in_category':'', # 'description': {'language': {'attrs': {'id': '1'}, 'value': each.product_description}} # 'name': {'language': {'attrs': {'id': '1'}, 'value': each.prd_label}}, # 'product_img_ids':product.get('associations').get('images').get('image') or False, }) product.get('product').pop('quantity') combination_list = [] if each.attribute_line_ids: prod_variant_ids = prdct_obj.search([('product_tmpl_id', '=', each.id)]) for variant in prod_variant_ids: if variant.combination_id: prod_variants_comb = prestashop.get('combinations', variant.combination_id) option_values = [] for op in variant.product_template_attribute_value_ids: option_values.append({'id': op.presta_id and str(op.presta_id)}) prod_variants_comb.get('combination').get('associations').get('product_option_values').update({ 'product_option_value' : option_values[0] }) # prod_variants_comb.get('combination').update({ 'is_virtual':'1', 'id_product': variant.product_tmpl_id and str(variant.product_tmpl_id.presta_id), 'reference': variant.default_code and str(variant.default_code), 'id': variant.combination_id and str(variant.combination_id), 'minimal_quantity': '1', 'price': variant.prdct_unit_price and str(variant.prdct_unit_price), }) response_comb = prestashop.edit('combinations', prod_variants_comb) combination_list.append({'id': variant.combination_id}) if combination_list: product.get('product').get('associations').get('combinations').update({ 'combination' : combination_list }) product.get('product').pop('manufacturer_name') response = prestashop.edit('products', product) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'update_product_data', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context shop.write({'prestashop_last_update_product_data_date': datetime.now()}) return True # @api.multi # def update_product_price(self): # print ("======update_product_price======") # # update product price # prod_templ_obj = self.env['product.template'] # prdct_obj = self.env['product.product'] # stock_quant_obj = self.env['stock.quant'] # # for shop in self: # prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location, # shop.prestashop_instance_id.webservice_key,physical_url = shop.shop_physical_url or None) # # try: # query = "select product_id from product_templ_shop_rel where shop_id = %s"%shop.id # self.env.cr.execute(query) # fetch_products_price = self.env.cr.fetchall() # if fetch_products_price != None: # fetch_products_price = [i[0] for i in fetch_products_price] # # if shop.prestashop_last_update_product_data_date: # # product_data_ids = prod_templ_obj.search( # # [('write_date', '>=', shop.prestashop_last_update_product_data_date),('id', 'in',fetch_products_price)]) # # print ("=====product_data_ids111111======",product_data_ids) # # else: # product_data_ids = prod_templ_obj.search([('id', 'in',fetch_products_price)]) # for each in product_data_ids: # # print ("EACHHHHHHHHH",each) # # try: # product = prestashop.get('products', each.presta_id) # # print ("PRODUCTTTTTTTTTT",product) # categ = [{'id': each.presta_categ_id.presta_id}] # parent_id = each.presta_categ_id.parent_id # while parent_id: # categ.append({'id': parent_id.presta_id}) # parent_id = parent_id.parent_id # product.get('product').get('associations').update({ # 'categories': {'attrs': {'node_type': 'category'}, 'category': categ}, # }) # # product.get('product').update({ # # 'price': str(each.prdct_unit_price), # 'price': str(each.with_context(pricelist=self.pricelist_id.id).price), # # 'quantity':0, # 'wholesale_price': each.wholesale_price and str(each.wholesale_price), # 'id': each.presta_id and str(each.presta_id), # 'position_in_category':'', # 'id_category_default':each.presta_categ_id and str(each.presta_categ_id) and each.presta_categ_id.presta_id, # # 'available_now': ( # # {'language': {'attrs': {'id': '1'}, 'value': str(int(each.product_instock))}}), # # 'on_sale': str(int(each.product_onsale)), # # 'id': each.presta_id, # }) # # if each.attribute_line_ids: # # try: # prod_variant_ids = prdct_obj.search([('product_tmpl_id', '=', each.id)]) # # if not prod_variant_ids: # # for variant in prod_variant_ids: # if variant.combination_id: # print("=======prod_variant_ids========>",prod_variant_ids) # print("=======prestashop.get('combinations'========>",prestashop.get('combinations')) # prod_variants_comb = prestashop.get('combinations', variant.combination_id) # print("=======prod_variants_comb========>",prod_variants_comb) # # prod_variants_comb_price = prestashop.get('combinations', variant.combination_price) # # print "prod_variants_comb_price===>",prod_variants_comb_price # # option_values = [] # # for op in variant.attribute_value_ids: # # option_values.append({'id': op.presta_id}) # # prod_variants_comb.get('combination').get('associations').get('product_option_values').update({ # # 'product_option_value' : option_values # # }) # prod_variants_comb.get('combination').update({ # # 'id_product': variant.product_tmpl_id.presta_id, # # 'reference': variant.default_code, # 'minimal_quantity': '1', # # 'position_in_category':'', # # 'price': str(variant.prdct_unit_price), # # 'id': variant.combination_id and str(variant.combination_id), # # 'id_product': variant.product_tmpl_id and str(variant.product_tmpl_id.presta_id), # 'id_product': variant.product_tmpl_id and variant.product_tmpl_id.presta_id and str(variant.product_tmpl_id.presta_id), # 'price': str(variant.with_context(pricelist=self.pricelist_id.id).price), # 'wholesale_price': variant.wholesale_price and str(variant.wholesale_price), # }) # prod_variants_comb.get('combination').pop('quantity') # # print("==========result=======>",result) # prestashop.edit('combinations', prod_variants_comb) # # except: # # pass # # # product.get('product').pop('manufacturer_name') # product.get('product').pop('quantity') # prestashop.edit('products', product) # # except Exception as e: # # if self.env.context.get('log_id'): # # log_id = self.env.context.get('log_id') # # self.env['log.error'].create( # # {'log_description': str(e) + ' While updating product price %s' % (each.name), # # 'log_id': log_id}) # # else: # # log_id = self.env['prestashop.log'].create({'all_operations': 'update_product_price', # # 'error_lines': [(0, 0, {'log_description': str( # # e) + ' While updating product price %s' % ( # # each.name)})]}) # # self = self.with_context(log_id=log_id.id) # # # except Exception as e: # # if self.env.context.get('log_id'): # # log_id = self.env.context.get('log_id') # # self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) # # else: # # log_id = self.env['prestashop.log'].create( # # {'all_operations': 'update_product_price', 'error_lines': [(0, 0, {'log_description': str(e)})]}) # # self = self.with_context(log_id=log_id.id) # shop.write({'prestashop_last_update_product_data_date': datetime.now()}) # return True # @api.multi def update_presta_product_inventory(self): prod_templ_obj = self.env['product.template'] prdct_obj = self.env['product.product'] stck_quant = self.env['stock.quant'] try: for shop in self: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) # try: if self.env.context.get('product_ids'): p_ids = prod_templ_obj.browse(self.env.context.get('product_ids')) elif shop.prestashop_last_update_product_data_date: stck_ids = stck_quant.search([('write_date', '>', shop.prestashop_last_update_product_data_date)]) p_ids = [] for i in stck_ids: if i.product_id not in p_ids: p_ids.append(i.product_id) else: p_ids = prdct_obj.search([('presta_id', '!=',False)]) for each in p_ids: if each.presta_inventory_id: prod_variant_inventory = prestashop.get('stock_availables', each.presta_inventory_id) query = "SELECT sum(quantity) FROM stock_quant where product_id = %s and location_id = %s group by product_id"%(each.id, shop.warehouse_id.lot_stock_id.id) self.env.cr.execute(query) qty = self.env.cr.fetchone() if qty: if not each.combination_id: prod_variant_inventory.get('stock_available').update({ 'quantity': str(int(qty[0])), 'id': each.presta_inventory_id and str(each.presta_inventory_id), 'id_product': each.product_tmpl_id.presta_id, 'id_product_attribute':'0', 'depends_on_stock':0, 'out_of_stock':2, 'id_shop': shop.presta_id and str(shop.presta_id) }) else : prod_variant_inventory.get('stock_available').update({ 'quantity': str(int(qty[0])), 'id': each.presta_inventory_id and str(each.presta_inventory_id), 'id_product': each.product_tmpl_id.presta_id , 'id_product_attribute': each.combination_id and str(each.combination_id), 'depends_on_stock':0, 'out_of_stock':2, 'id_shop': shop.presta_id and str(shop.presta_id) }) r = prestashop.edit('stock_availables', prod_variant_inventory) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'update_inventory', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context shop.write({'prestashop_last_update_product_data_date': datetime.now()}) # @api.multi def update_order_status(self): sale_order = self.env['sale.order'] status_obj = self.env['presta.order.status'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) query = "select * from sale_order o, presta_order_status ps where o.presta_id is not null and ps.name in ('Awaiting check payment','Awaiting bank wire payment','Awaiting Cash On Delivery validation','Processing in progress') and shop_id = %s"%(shop.id) self.env.cr.execute(query) fetch_orders = self.env.cr.fetchall() if fetch_orders is not None: fetch_orders = [i[0] for i in fetch_orders] if shop.prestashop_last_update_order_status_date: sale_order_ids = sale_order.search([('id', 'in',fetch_orders),('order_status.name','in',['Awaiting check payment','Awaiting bank wire payment','Awaiting Cash On Delivery validation','Processing in progress'])]) else: sale_order_ids = sale_order.search([('id', 'in',fetch_orders)]) #import order status order_states = prestashop.get('order_states') os_status = order_states.get('order_states').get('order_state') if isinstance(os_status, list): os_status = os_status else: os_status = [os_status] for status in os_status: state_ids = status_obj.search([('presta_id', '=', status.get('attrs').get('id'))]) if state_ids: st_id = state_ids[0] else: orders_status_lst = prestashop.get('order_states', status.get('attrs').get('id')) st_id = status_obj.create( {'name': self.get_value(orders_status_lst.get('order_state').get('name').get('language')).get('value'), 'presta_id': orders_status_lst.get('order_state').get('id')}) for sale_order in sale_order_ids: order = prestashop.get('orders', sale_order.presta_id) order.get('order').update({ 'reference': sale_order.presta_order_ref and str(sale_order.presta_order_ref), # 'conversion_rate': '1.000000', 'module': str(sale_order.pretsa_payment_mode), 'id_customer':1, 'id_address_delivery':1, 'id_address_invoice' :1, 'id_cart':1, 'id_currency':1, 'total_products': str(sale_order.amount_total), 'id_carrier': sale_order.carrier_prestashop and str(sale_order.carrier_prestashop.presta_id), 'payment': {'bankwire': 'Bankwire'}, 'id': sale_order and str(sale_order.presta_id), 'id_lang':1, 'total_paid':sale_order.amount_untaxed and str(sale_order.amount_untaxed), 'total_paid_real':sale_order.amount_total and str(sale_order.amount_total), 'total_products_wt': 1, 'conversion_rate': 1 # 'id_shop': '1', }) if sale_order.invoice_status == 'invoiced': order.get('order').get('total_paid_tax_incl').update({'value': str(sale_order.amount_total)}) order.get('order').get('total_paid_tax_excl').update({'value': str(sale_order.amount_untaxed)}) shipping_product = shop.shipment_fee_product_id for line in sale_order.order_line: if line.product_id.id == shipping_product.id: shipping_cost = shipping_product.lst_price order.get('order').update({'total_shipping': str(shipping_cost)}) order.get('order').update({'total_shipping_tax_excl': str(shipping_cost)}) discount = 0.0 for line in sale_order.order_line: discount += line.discount if discount>0.0: order.get('order').update({'total_discounts':discount}) order.get('order').update({'total_discounts_tax_excl':discount}) if sale_order.order_status.name in ['Awaiting check payment','Awaiting bank wire payment','Awaiting Cash On Delivery validation','Processing in progress']: # print "inside iffffffff" invoice_not_done = False for invoice in sale_order.invoice_ids: if invoice.state == 'open' or invoice.state == "paid" : order.get('order').update({'invoice_number': str(invoice.number)}) order.get('order').update({'invoice_date': str(invoice.date_invoice)}) order.get('order').update({'total_paid_real': str(sale_order.amount_total)}) # order.get('order').update({'current_state': str(status_ids[0].presta_id)}) else: invoice_not_done = True if invoice_not_done == False: # sddddd status_ids = status_obj.search([('name','=','Payment accepted')]) order.get('order').update({'current_state': str(status_ids[0].presta_id)}) sale_order.order_status = status_ids[0].id picking_not_done = False for picking in sale_order.picking_ids: status_ids = status_obj.search([('name', '=', 'Shipped')]) if picking.state == 'done': order.get('order').update({'delivery_number': str(picking.name)}) order.get('order').update({'delivery_date': picking.scheduled_date}) order.get('order').update({'current_state': str(status_ids[0].presta_id)}) else: picking_not_done = True if picking_not_done == False: status_ids = status_obj.search([('name', '=', 'Shipped')]) order.get('order').update({'current_state': str(status_ids[0].presta_id)}) sale_order.order_status = status_ids[0].id prestashop.edit('orders', order) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'update_order_status', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context shop.write({'prestashop_last_update_order_status_date': datetime.now()}) return True # @api.multi def export_presta_products(self): # exports product details,image and variants prod_templ_obj = self.env['product.template'] prdct_obj = self.env['product.product'] stock_quanty = self.env['stock.quant'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) query = "select product_id from product_templ_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_shop_products = self.env.cr.fetchall() if self.env.context.get('product_ids'): product_ids = prod_templ_obj.browse(self.env.context.get('product_ids')) else: product_ids = prod_templ_obj.search([('product_to_be_exported','=',True)]) for product in product_ids: product_schema = prestashop.get('products', options={'schema': 'blank'}) categ = [{'id': product.presta_categ_id.presta_id}] parent_id = product.presta_categ_id.parent_id while parent_id: categ.append({'id': parent_id.presta_id}) parent_id = parent_id.parent_id product_schema.get('product').get('associations').update({ 'categories': {'attrs': {'node_type': 'category'}, 'category': categ}, }) product_schema.get('product').update({ #'name': {'language': {'attrs': {'id': '1'}, 'value': product.name}}, #'link_rewrite': {'language': {'attrs': {'id': '1'}, 'value': product.name.replace(' ', '-')}}, 'reference': product.default_code, #'wholesale_price': str(product.wholesale_price), #'depth': str(product.product_lngth), #'width': str(product.product_width), #'weight': str(product.product_wght), #'height': str(product.product_hght), #'price': product.list_price and str(product.list_price) or '0.00', 'date_upd': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'date_add': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'active': 1, # 'state': {'value': '1'}, #'type': {'attrs': {'notFilterable': 'true'}, 'value': 'simple'}, #'id_supplier': product.supplier_id and product.supplier_id.presta_id or '0', #'id_manufacturer': product.manufacturer_id and product.manufacturer_id.presta_id or '0', #'id_shop_default':self.id }) p_ids = prdct_obj.search([('product_tmpl_id', '=' ,product[0].id)]) product_var_ids = prdct_obj.search([('product_tmpl_id','=',product.id)]) presta_res = prestashop.add('products', product_schema) presta_id = self.get_value_data(presta_res.get('prestashop').get('product').get('id')) product.write({'presta_id': presta_id}) for prod_var in product_var_ids: stck_id = stock_quanty.search([('product_id','=',prod_var.id),('location_id','=',shop.warehouse_id.lot_stock_id.id)]) qty = 0 for stck in stck_id: qty += stck.quantity product_comb_schema = prestashop.get('combinations',options = {'schema': 'blank'}) option_values = [] for op in prod_var.product_template_attribute_value_ids: option_values.append({'id': op.presta_id}) product_comb_schema.get('combination').get('associations').get('product_option_values').update({ 'product_option_value' : option_values }) product_comb_schema.get('combination').update({ 'id_product' : presta_id, #'price' : prod_var.combination_price and str(prod_var.combination_price) or '0.00', 'reference': prod_var.default_code, 'quantity': str(int(prod_var.qty_available)), #'minimal_quantity': '1', }) combination_resp = prestashop.add('combinations', product_comb_schema) c_presta_id = self.get_value_data(combination_resp.get('prestashop').get('combination').get('id')) prod_var.write({ 'combination_id': c_presta_id, }) product.write({ 'product_to_be_exported': False, }) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'export_product_data', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return True # @api.multi def export_presta_categories(self): categ_obj = self.env['prestashop.category'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) query = "select categ_id from presta_categ_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_shop_category = self.env.cr.fetchall() prestashop.category = categ_obj.search([]) if self.env.context.get('category_ids'): category_ids = categ_obj.browse(self.env.context.get('category_ids')) else: category_ids = categ_obj.search([('to_be_exported','=',True),('id','in',fetch_shop_category)]) for category in category_ids: category_schema = prestashop.get('categories', options={'schema': 'blank'}) category_schema.get('category').update({ 'name' : {'language': {'attrs': {'id': '1'}, 'value': category.name and str(category.name)}} , 'id_parent': category.parent_id and category.parent_id.presta_id and str(category.parent_id.presta_id) or '0', 'link_rewrite': {'language': {'attrs': {'id': '1'}, 'value': category.name and str(category.name.replace(' ','-'))}}, 'active': '1', 'description': {'language': {'attrs': {'id': '1'}, 'value': category.name and str(category.name)}}, 'id_shop_default':self.id, }) presta_res = prestashop.add('categories', category_schema) if presta_res.get('prestashop').get('category').get('id'): categ_presta_id = self.get_value_data(presta_res.get('prestashop').get('category').get('id')) else: categ_presta_id = self.get_value_data(presta_res.get('prestashop').get('id')) category.write({ 'presta_id': categ_presta_id, 'to_be_exported': False, }) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'export_categories', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context return True # @api.one def search_state(self, prestashop, state_name,country_id): # To find the country id in prestashop state_obj = self.env['res.country.state'] state_ids = prestashop.search('states', options={'filter[name]': state_name.name}) if state_ids: state_id = state_ids[0] else: stats_schema = prestashop.get('states', options={'schema': 'blank'}) if stats_schema: stats_schema.get('state').update({ 'name': state_name.name, 'iso_code': state_name.code, 'id_country': country_id, }) stat_res = prestashop.add('states', stats_schema) state_id = stat_res.get('prestashop').get('state').get('id').get('value') return state_id # @api.one def search_country(self, prestashop, country_name): # To find the country id in prestashop country_ids = prestashop.search('countries', options={'filter[name]': country_name.name}) if country_ids: country_id = country_ids[0] else: country_schema = prestashop.get('countries', options={'schema': 'blank'}) country_schema.get('country').update({ 'name': {'language': {'attrs': {'id': '1'}, 'value': country_name.name}}, 'iso_code': country_name.code, 'alias': '' }) country_res = prestashop.add('countries', country_schema) country_id = country_res.get('prestashop').get('country').get('id').get('value') return country_id # @api.multi def export_presta_customers(self): res_partner_obj = self.env['res.partner'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) query = "select cust_id from customer_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_shop_customers = self.env.cr.fetchall() if self.env.context.get('customer_ids'): customer_ids = res_partner_obj.browse(self.env.context.get('customer_ids')) else: customer_ids = res_partner_obj.search([('to_be_exported', '=', True)]) # ('id','in',fetch_shop_customers) for customer in customer_ids: customer_schema = prestashop.get('customers', options={'schema': 'blank'}) customer_name = customer.name name_list = customer_name.split(' ') first_name = name_list[0] if len(name_list) > 1: last_name = name_list[1] else: last_name = name_list[0] dob = customer.date_of_birth customer_schema.get('customer').update({ 'firstname' : first_name and str(first_name), 'lastname' : last_name and str(last_name), 'email' : customer.email and str(customer.email), 'active': '1', 'date_upd': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'date_add': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'birthday': customer.date_of_birth and str(customer.date_of_birth) or False, 'website': customer.website and str(customer.website) or '' or False, }) presta_cust = prestashop.add('customers', customer_schema) customer_presta_id = self.get_value_data(presta_cust.get('prestashop').get('customer').get('id')) address_schema = prestashop.get('addresses', options={'schema': 'blank'}) address_schema.get('address').update({ 'firstname': first_name and str(first_name), 'lastname': last_name and str(last_name), 'address1' : customer.street and str(customer.street) or '', 'address2' : customer.street2 and str(customer.street2) or '', 'city' : customer.city and str(customer.city) or '', 'phone' : customer.phone and str(customer.phone) or '', 'phone_mobile' : customer.mobile and str(customer.mobile) or '', 'postcode' : customer.zip and str(customer.zip) or '', 'id_customer': customer_presta_id and str(customer_presta_id), 'alias': customer.type and str(customer.type), }) if customer.country_id: c_id = shop.search_country(prestashop, customer.country_id) if c_id: address_schema.get('address').update({ 'id_country': c_id, }) # if customer.state_id: # address_schema.get('address').update({ # 'id_state': shop.search_state(prestashop, customer.state_id,c_id) # }) presta_address = prestashop.add('addresses', address_schema) add_presta_id = self.get_value_data(presta_address.get('prestashop').get('address').get('id')) customer.write({ 'presta_id': customer_presta_id, 'to_be_exported': False, 'address_id' : add_presta_id, }) for child in customer.child_ids: address_schema = prestashop.get('addresses', options={'schema': 'blank'}) if child.name: name = child.name else: name = customer.name name_list = name.split(' ') first_name = name_list[0] if len(name_list) > 1: last_name = name_list[1] else: last_name = name_list[0] address_schema.get('address').update({ 'firstname': first_name and str(first_name), 'lastname': last_name and str(last_name), 'address1': child.street and str(child.street) or '', 'address2': child.streets and str(child.street2) or '', 'city': child.city and (child.city) or '', 'phone': child.phone and str(child.phone) or '', 'phone_mobile': child.mobile and str(child.mobile) or '', 'postcode': child.zip and str(child.zip) or '', 'id_customer': customer_presta_id and str(customer_presta_id), 'alias': customer.type and str(customer.type) or '' }) if customer.state_id: address_schema.get('address').update({ 'id_state': shop.search_state(prestashop, child.state_id) }) if customer.country_id: c_id = shop.search_country(prestashop, child.country_id) address_schema.get('address').update({ 'id_country': c_id[0], }) presta_address = prestashop.add('addresses', address_schema) add_presta_id = self.get_value_data(presta_address.get('prestashop').get('address').get('id')) child.write({ 'address_id': add_presta_id, 'to_be_exported':False }) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'Export_customers', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context # @api.multi def export_presta_customer_messages(self): order_msg_obj = self.env['order.message'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) query = "select mess_id from message_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_shop_customer_messages = self.env.cr.fetchall() if self.env.context.get('customer_message_ids'): customer_message_ids = order_msg_obj.browse(self.env.context.get('customer_message_ids')) else: customer_message_ids = order_msg_obj.search([('to_be_exported', '=', True)]) for customer_message in customer_message_ids: customer_message_schema = prestashop.get('customer_threads', options={'schema': 'blank'}) customer_message_schema.get('customer_thread').update({ 'token': customer_message.token and str(customer_message.token), 'email': customer_message.email and str(customer_message.email) , 'status': customer_message.status and str(customer_message.status), 'id_lang': '1', 'id_customer' : customer_message.customer_id and str(customer_message.customer_id.presta_id) or '0', 'id_contact': 0, 'id_order':customer_message.new_id and str(customer_message.new_id.presta_id) or '', }) customer_threads_res = prestashop.add('customer_threads', customer_message_schema) msg_presta_id = self.get_value_data(customer_threads_res.get('prestashop').get('customer_thread').get('id'))[0] customer_message.write({ 'presta_id': msg_presta_id, 'to_be_exported': False, }) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'export_customer_message', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context # @api.one def get_currency(self, prestashop, currency): currency_ids = prestashop.search('currencies', options={'filter[iso_code]': currency.name}) if currency_ids: currency_id = currency_ids[0] else: currency_schema = prestashop.get('currencies', options={'schema': 'blank'}) currency_schema.get('currency').update({ 'name': currency.name, 'iso_code': currency.name, 'sign': currency.name, 'active': '1', 'conversion_rate': '1' }) currency_res = prestashop.add('currencies', currency_schema) currency_id = currency_res.get('prestashop').get('currency').get('id').get('value') return currency_id # @api.one def get_languange(self, prestashop, languange): lang = self.env['res.lang'].search([('code','=',languange)]) languange_ids = prestashop.search('languages', options={'filter[iso_code]': lang.iso_code}) if languange_ids: languange_id = languange_ids[0] else: languange_schema = prestashop.get('languages', options={'schema': 'blank'}) languange_schema.get('language').update({ 'name': lang.name, 'iso_code': lang.iso_code, 'language_code' : lang.code.replace('_','-'), 'active': '1', 'date_format_lite': lang.date_format, }) languange_res = prestashop.add('languages', languange_schema) languange_id = self.get_value(languange_res.get('prestashop').get('language'))[0].get('id').get('value') return languange_id # @api.multi def export_presta_orders(self): sale_order_obj = self.env['sale.order'] status_obj = self.env['presta.order.status'] sale_order_line_obj = self.env['sale.order.line'] for shop in self: try: prestashop = PrestaShopWebServiceDict(shop.prestashop_instance_id.location,shop.prestashop_instance_id.webservice_key or None) query = "select saleorder_id from saleorder_shop_rel where shop_id = %s"%shop.id self.env.cr.execute(query) fetch_shop_sale_order = self.env.cr.fetchall() if self.env.context.get('ordered_ids'): order_ids = sale_order_obj.browse(self.env.context.get('ordered_ids')) else: order_ids = sale_order_obj.search([('to_be_exported', '=', True)]) for order in order_ids: order_schema = prestashop.get('orders', options={'schema': 'blank'}) carts_schema = prestashop.get('carts', options={'schema': 'blank'}) # lang_schema = prestashop.get('languages',1) payment_value = dict(self.env['sale.order'].fields_get(allfields=['pretsa_payment_mode'])['pretsa_payment_mode']['selection'])[order.pretsa_payment_mode] carts_schema = prestashop.get('carts', options={'schema': 'blank'}) order_schema.get('order').update({ 'allow_seperated_package': '', 'conversion_rate': '1.000000' , 'current_state': order.order_status and order.order_status.presta_id and str(order.order_status.presta_id), 'carrier_tax_rate': '0.000', 'date_upd': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'date_add': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'delivery_date': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'delivery_number': '0', 'id_shop': shop.presta_id and str(shop.presta_id), 'id_customer': order.partner_id and order.partner_id.presta_id and str(order.partner_id.presta_id), 'id_address_delivery': order.partner_id.address_id and str(order.partner_id.address_id), 'id_address_invoice': order.partner_invoice_id.address_id and str(order.partner_invoice_id.address_id), 'id_currency': shop.get_currency(prestashop, shop.pricelist_id.currency_id), 'id_carrier': order.carrier_prestashop.presta_id and str(order.carrier_prestashop.presta_id), 'invoice_number': '0', 'id_lang': shop.get_languange(prestashop, order.partner_id.lang), # 'id_shop_group': '1', 'mobile_theme': '0', 'module': order.pretsa_payment_mode.lower(), 'payment': order.pretsa_payment_mode.capitalize(), 'round_mode': '0', 'round_type': '0', 'reference': order.name and str(order.name), 'recyclable': '0', 'shipping_number': {'attrs': {'notFilterable': 'true'}, 'value': ''}, 'total_paid': '0.000000', 'total_paid_real': '0.000000', 'total_products': order.amount_total and str(order.amount_total), 'total_products_wt': '1.0' or '', 'total_discounts' : '0.000000', 'total_discounts_tax_excl' : '0.000000', 'total_discounts_tax_incl' : '0.000000', 'total_paid_tax_excl' : '0.000000', 'total_paid_tax_incl' : '0.000000', 'total_shipping' : '0.000000', 'total_shipping_tax_excl' : '0.000000', 'total_shipping_tax_incl' : '0.000000', 'total_wrapping_tax_excl' : '0.000000', 'total_wrapping_tax_incl' : '0.000000', 'total_wrapping' : '0.000000', 'valid': '1', }) if order.invoice_status == 'invoiced': order_schema.get('order').update({'total_paid_tax_incl': order.amount_total and str(order.amount_total)}) order_schema.get('order').update({'total_paid_tax_excl': order.amount_untaxed and str(order.amount_untaxed)}) shipping_product = shop.shipment_fee_product_id for line in order.order_line: if line.product_id.id == shipping_product.id: shipping_cost = shipping_product.lst_price and str(shipping_product.lst_price) order_schema.get('order').update({'total_shipping': shipping_cost and str(shipping_cost)}) order_schema.get('order').update({'total_shipping_tax_excl': shipping_cost and str(shipping_cost)}) discount = 0.0 status_ids=False for line in order.order_line: discount += line.discount if discount > 0.0: order_schema.get('order').update({'total_discounts': discount and str(discount)}) order_schema.get('order').update({'total_discounts_tax_excl': discount and str(discount)}) if order.order_status.name in ['Awaiting check payment', 'Awaiting bank wire payment', 'Awaiting Cash On Delivery validation', 'Processing in progress']: invoice_not_done = False for invoice in order.invoice_ids: if invoice.state == 'open' or invoice.state == "paid": order_schema.get('order').update({'invoice_number': invoice.number and str(invoice.number)}) order_schema.get('order').update({'invoice_date': invoice.date_invoice and str(invoice.date_invoice)}) order_schema.get('order').update({'total_paid_real': order.amount_total and str(order.amount_total)}) # order.get('order').update({'current_state': str(status_ids[0].presta_id)}) else: invoice_not_done = True if invoice_not_done == False: status_ids = status_obj.search([('name', '=', 'Payment accepted')]) order_schema.get('order').update({'current_state': status_ids[0].presta_id and str(status_ids[0].presta_id)}) order.order_status = status_ids[0].id picking_not_done = False for picking in order.picking_ids: if picking.state == 'done': order_schema.get('order').update({'delivery_number': picking.name and str(picking.name)}) order_schema.get('order').update({'delivery_date': picking.scheduled_date and str(picking.scheduled_date)}) # order_schema.get('order').update({'current_state': status_ids[0].presta_id and str(status_ids[0].presta_id)}) else: picking_not_done = True if picking_not_done == False: status_ids = status_obj.search([('name', '=', 'Shipped')]) if status_ids: order_schema.get('order').update({'current_state': status_ids[0].presta_id and str(status_ids[0].presta_id)}) order.order_status = status_ids[0].id lines = [] cart_line_list = [] if len(order.order_line)>1: for line in order.order_line: lines.append({ 'product_attribute_id': line.product_id.combination_id and str(line.product_id.combination_id) or '0', 'product_id': line.product_id.product_tmpl_id and line.product_id.product_tmpl_id.presta_id and str(line.product_id.product_tmpl_id.presta_id), 'product_name': line.name and str(line.name), 'product_price': str(int(line.price_unit)), 'product_quantity': str(int(line.product_uom_qty)), 'product_reference': line.product_id.default_code and str(line.product_id.default_code), }) cart_line_list.append({'id_address_delivery': order.partner_id.address_id and str(order.partner_id.address_id), 'id_product_attribute': line.product_id.combination_id and str(line.product_id.combination_id) or '0', 'id_product': line.product_id.product_tmpl_id and line.product_id.product_tmpl_id.presta_id and str(line.product_id.product_tmpl_id.presta_id), 'quantity': line.product_uom_qty and str(line.product_uom_qty), }) else: line = order.order_line[0] lines = { 'product_attribute_id': line.product_id.combination_id and str(line.product_id.combination_id) or '0', 'product_id': line.product_id.product_tmpl_id and line.product_id.product_tmpl_id.presta_id and str(line.product_id.product_tmpl_id.presta_id), 'product_name': line.name and str(line.name), 'product_price': str(int(line.price_unit)), 'product_quantity': str(int(line.product_uom_qty)), 'product_reference': line.product_id.default_code and str(line.product_id.default_code), } cart_line_list = { 'id_address_delivery': order.partner_id.address_id and str(order.partner_id.address_id), 'id_product_attribute': line.product_id.combination_id and str(line.product_id.combination_id) or '0', 'id_product': line.product_id.product_tmpl_id and line.product_id.product_tmpl_id.presta_id and str(line.product_id.product_tmpl_id.presta_id), 'quantity': line.product_uom_qty and str(line.product_uom_qty), } order_schema.get('order').get('associations').get('order_rows').update({ # 'attrs': {'nodeType': 'order_row', # 'virtualEntity': 'true'}, 'order_row': lines, }) carts_schema.get('cart').update({ 'id_carrier': order.carrier_prestashop and order.carrier_prestashop.presta_id and str(order.carrier_prestashop.presta_id), 'id_address_delivery': order.partner_id.address_id and str(order.partner_id.address_id), 'id_shop': shop.presta_id and str(shop.presta_id), 'id_customer': order.partner_id and order.partner_id.presta_id and str(order.partner_id.presta_id), 'id_lang': shop.get_languange(prestashop, order.partner_id.lang), 'id_address_invoice' : order.partner_id.address_id and str(order.partner_id.address_id), 'id_currency': shop.get_currency(prestashop, shop.pricelist_id.currency_id), # 'id_shop_group' : '1', 'mobile_theme': '0', 'id_shop': shop.presta_id and str(shop.presta_id), # 'gift': '0', # 'gift_message': '', # 'id_guest': '1', }) carts_schema.get('cart').get('associations').get('cart_rows').update({ # 'attrs': {'node_type': 'cart_row', # 'virtual_entity': 'true'}, # 'delivery_option': 'a:1:{i:3;s:2:"2,";}', 'cart_row': cart_line_list, }) sale_gift_ids = sale_order_line_obj.search([('order_id', '=', order.id), ('gift', '=', True)]) if sale_gift_ids: for gift_id in sale_gift_ids: gift_msg = gift_id.gift_message wrapping_cost = gift_id.wrapping_cost or '0.000' carts_schema.get('cart').update({ 'gift': '1', 'gift_message': gift_msg and str(gift_msg), }) order_schema.get('order').update( {'gift': '1', 'gift_message': gift_msg and str(gift_msg), 'total_wrapping': wrapping_cost and str(wrapping_cost), 'total_wrapping_tax_excl': wrapping_cost and str(wrapping_cost), }) presta_cart = prestashop.add('carts', carts_schema) cart_presta_id = self.get_value_data(presta_cart.get('prestashop').get('cart').get('id'))[0] order.write({ 'to_be_exported':False }) if cart_presta_id: order_schema.get('order').update({ 'id_cart' : cart_presta_id and str(cart_presta_id), }) presta_orders = prestashop.add('orders', order_schema) except Exception as e: if self.env.context.get('log_id'): log_id = self.env.context.get('log_id') self.env['log.error'].create({'log_description': str(e), 'log_id': log_id}) else: log_id_obj = self.env['prestashop.log'].create( {'all_operations': 'export_order_status', 'error_lines': [(0, 0, {'log_description': str(e), })]}) log_id = log_id_obj.id new_context = dict(self.env.context) new_context.update({'log_id': log_id}) self.env.context = new_context
UTF-8
Python
false
false
144,491
py
52
sale_shop.py
25
0.641184
0.636194
0
3,011
46.987047
257
chscheller/sc2_imitation_learning
2,078,764,217,310
087fe5ffb50f0ed8a4a640a826453c41aaa41f84
5c0e9170fc8a05d1e30777fb708757ce0944b1b6
/sc2_imitation_learning/behaviour_cloning/learner.py
250cab1853f6d296a92bdd2b50a2987d4a52766d
[ "MIT" ]
permissive
https://github.com/chscheller/sc2_imitation_learning
770cad1af0398b2983e4eb0508f04ecd732debc9
8dca03e9be92e2d8297a4bc34248939af5c7ec3b
refs/heads/master
2023-06-11T22:13:23.100108
2021-07-02T00:25:22
2021-07-02T00:25:22
372,315,766
10
2
null
null
null
null
null
null
null
null
null
null
null
null
null
import logging import math import os import time import timeit from typing import Optional, Callable, Dict import numpy as np import tensorflow as tf from sonnet.src.types import TensorNest from sc2_imitation_learning.agents import Agent, build_saved_agent from sc2_imitation_learning.common import utils from sc2_imitation_learning.common.progress_logger import ConsoleProgressLogger, TensorboardProgressLogger from sc2_imitation_learning.common.utils import make_dummy_batch, swap_leading_axes from sc2_imitation_learning.environment.environment import ObservationSpace, ActionSpace logger = logging.getLogger(__file__) def compute_correct_predictions(target_actions, learner_actions, label_mask_value: Optional[int] = -1): target_actions = tf.cast(target_actions, dtype=tf.int32) learner_actions = tf.cast(learner_actions, dtype=tf.int32) correct_predictions = tf.equal(target_actions, learner_actions) if label_mask_value is not None: masks = tf.not_equal(target_actions, label_mask_value) correct_predictions = tf.logical_and(correct_predictions, masks) num_samples = tf.math.count_nonzero(masks, dtype=tf.int32) else: num_samples = tf.size(target_actions, dtype=tf.int32) num_correct_predictions = tf.math.count_nonzero(correct_predictions, dtype=tf.int32) return num_correct_predictions, num_samples def compute_neg_log_probs(labels, logits, label_mask_value: Optional[int] = -1): """ Computes negative log probabilities of labels given logits, where labels equal to `label_mask_value` are zero-masked """ if label_mask_value is not None: # mask labels to prevent invalid (e.g. negative) label values mask = tf.math.not_equal(labels, label_mask_value) labels *= tf.cast(mask, dtype=labels.dtype) # calculate neg log probabilities neg_log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits) if label_mask_value is not None: # mask neg_log_probs with pre calculated mask neg_log_probs *= tf.cast(mask, dtype=neg_log_probs.dtype) return neg_log_probs def compute_cross_entropy_loss(labels, logits, label_mask_value: Optional[int] = -1): """ Computes the cross entropy loss, where labels equal to `label_mask_value` are ignored. """ neg_log_probs = tf.nest.map_structure( lambda x, y: compute_neg_log_probs(x, y, label_mask_value), labels, logits) # sum negative log probabilities and average across time dimension return tf.reduce_mean(sum(tf.nest.flatten(neg_log_probs)), axis=0) def evaluate_gradients( trajectory_ids: tf.Tensor, trajectories: TensorNest, global_batch_size: int, agent: Agent, agent_states: utils.Aggregator, l2_regularization=0.): trajectories = tf.nest.map_structure(swap_leading_axes, trajectories) # B x T -> T x B env_outputs = (trajectories['reward'], trajectories['done'], trajectories['observation']) prev_agent_states = agent_states.read(trajectory_ids) with tf.GradientTape() as tape: agent_outputs, curr_agent_states = agent( prev_actions=trajectories['prev_action'], env_outputs=env_outputs, core_state=prev_agent_states, unroll=True, teacher_actions=trajectories['action']) crosse_entropy_loss = tf.nn.compute_average_loss( per_example_loss=compute_cross_entropy_loss(trajectories['action'], agent_outputs.logits), global_batch_size=global_batch_size) if l2_regularization > 0.: l2_loss = tf.nn.scale_regularization_loss( regularization_loss=sum([tf.nn.l2_loss(v) for v in agent.trainable_variables])) else: l2_loss = 0. loss = crosse_entropy_loss + l2_regularization * l2_loss # Update current state. agent_states.replace(trajectory_ids, curr_agent_states) gradients = tape.gradient(loss, agent.trainable_variables) grad_norm = tf.linalg.global_norm(gradients) * (1 / tf.distribute.get_strategy().num_replicas_in_sync) correct_predictions = tf.nest.map_structure( compute_correct_predictions, trajectories['action'], agent_outputs.actions) summary = { 'loss': { 'loss': loss, 'ce': crosse_entropy_loss, 'l2': l2_loss, }, 'grad_norm': grad_norm, 'num_correct': { action_name: num_correct for action_name, (num_correct, _) in correct_predictions.items() }, 'num_samples': { action_name: num_samples for action_name, (_, num_samples) in correct_predictions.items() }, } return gradients, summary def accumulate_gradients( accumulated_gradients: tf.Tensor, trajectory_ids: tf.Tensor, trajectories: TensorNest, global_batch_size: int, agent: Agent, agent_states: utils.Aggregator, l2_regularization=0.): gradients, summary = evaluate_gradients( trajectory_ids=trajectory_ids, trajectories=trajectories, global_batch_size=global_batch_size, agent=agent, agent_states=agent_states, l2_regularization=l2_regularization) for t, g in zip(accumulated_gradients, gradients): t.assign_add(g) return summary def apply_gradients( accumulated_gradients: tf.Tensor, agent: Agent, update_frequency: int, optimizer: tf.optimizers.Optimizer): gradients = tuple([g / float(update_frequency) for g in accumulated_gradients]) optimizer.apply_gradients(zip(gradients, agent.trainable_variables)) for v in accumulated_gradients: v.assign(tf.zeros_like(v)) def train_step(trajectory_ids: tf.Tensor, trajectories: TensorNest, global_batch_size: int, agent: Agent, optimizer: tf.optimizers.Optimizer, agent_states: utils.Aggregator, l2_regularization=0.): gradients, summary = evaluate_gradients( trajectory_ids=trajectory_ids, trajectories=trajectories, global_batch_size=global_batch_size, agent=agent, agent_states=agent_states, l2_regularization=l2_regularization) optimizer.apply_gradients(zip(gradients, agent.trainable_variables)) return summary def learner_loop(log_dir: str, observation_space: ObservationSpace, action_space: ActionSpace, training_strategy: tf.distribute.Strategy, dataset_fn: Callable[[tf.distribute.InputContext], tf.data.Dataset], agent_fn: Callable[[], Agent], optimizer_fn: Callable[[], tf.keras.optimizers.Optimizer], total_train_samples: int, batch_size: int, sequence_size: int, l2_regularization: float, update_frequency: int, num_episodes: int, eval_fn: Callable[[Agent], Dict], eval_interval: int, max_to_keep_checkpoints: int = None, save_checkpoint_interval: float = 1800., # every 30 minutes tensorboard_log_interval: float = 10., console_log_interval: float = 60.) -> None: batch_samples = batch_size*sequence_size total_steps = math.ceil(total_train_samples/float(batch_samples)) eval_interval_steps = math.ceil(eval_interval/float(batch_samples)) global_step = tf.Variable(0, dtype=tf.int64) last_checkpoint_time = None with training_strategy.scope(): agent = agent_fn() optimizer = optimizer_fn() # initialize agent variables by feeding dummy batch: initial_agent_state = agent.initial_state(1) prev_actions, env_outputs = make_dummy_batch(observation_space, action_space) agent(prev_actions=prev_actions, env_outputs=env_outputs, core_state=initial_agent_state, unroll=True) # initialize all optimizer variables: _ = optimizer.iterations optimizer._create_hypers() optimizer._create_slots(agent.trainable_variables) checkpoint = tf.train.Checkpoint(agent=agent, optimizer=optimizer, step=global_step) checkpoint_manager = tf.train.CheckpointManager(checkpoint, log_dir, max_to_keep=max_to_keep_checkpoints) if checkpoint_manager.latest_checkpoint: logging.info(f'Restoring checkpoint: {checkpoint_manager.latest_checkpoint}') checkpoint.restore(checkpoint_manager.latest_checkpoint).assert_consumed() # agent states and accumulated gradients should not be shared between replicas: agent_state_specs = tf.nest.map_structure(lambda t: tf.TensorSpec(t.shape[1:], t.dtype), initial_agent_state) agent_states = utils.Aggregator(num_episodes, agent_state_specs, 'agent_states') if update_frequency > 1: accumulated_gradients = [tf.Variable(tf.zeros_like(v), trainable=False) for v in agent.trainable_variables] else: accumulated_gradients = None dataset = training_strategy.experimental_distribute_datasets_from_function(dataset_fn) @tf.function def distributed_train_step(trajectory_ids, sequences): if update_frequency > 1: per_replica_summary = training_strategy.run(accumulate_gradients, kwargs={ 'accumulated_gradients': accumulated_gradients, 'trajectory_ids': trajectory_ids, 'trajectories': sequences, 'global_batch_size': batch_size, 'agent': agent, 'agent_states': agent_states, 'l2_regularization': l2_regularization, }) if tf.math.mod(global_step, update_frequency) == 0: training_strategy.run(apply_gradients, kwargs={ 'accumulated_gradients': accumulated_gradients, 'agent': agent, 'update_frequency': update_frequency, 'optimizer': optimizer, }) else: per_replica_summary = training_strategy.run(train_step, kwargs={ 'trajectory_ids': trajectory_ids, 'trajectories': sequences, 'global_batch_size': batch_size, 'agent': agent, 'optimizer': optimizer, 'agent_states': agent_states, 'l2_regularization': l2_regularization }) summary = tf.nest.map_structure(lambda t: training_strategy.reduce("SUM", t, axis=None), per_replica_summary) return summary def should_evaluate(_step): return _step % eval_interval_steps == 0 def should_save_checkpoint(_time): return last_checkpoint_time is None or _time - last_checkpoint_time >= save_checkpoint_interval def iter_dataset(_dataset): dataset_iterator = iter(_dataset) while global_step.numpy() < total_steps: yield next(dataset_iterator) console_logger = ConsoleProgressLogger( final_step=total_steps, batch_samples=batch_samples, logging_interval=console_log_interval, initial_step=global_step.numpy()) console_logger.start() tensorboard_logger = TensorboardProgressLogger( summary_writer=tf.summary.create_file_writer(log_dir), logging_interval=tensorboard_log_interval, initial_step=global_step.numpy()) tensorboard_logger.start() last_step_time = timeit.default_timer() for batch in iter_dataset(dataset): step = global_step.numpy() train_summary = distributed_train_step(*batch) current_time = timeit.default_timer() step_duration = current_time - last_step_time last_step_time = current_time train_summary = tf.nest.map_structure(lambda s: s.numpy(), train_summary) train_summary['samples'] = (step+1) * batch_samples train_summary['samples_per_second'] = batch_samples / float(step_duration) train_summary['learning_rate'] = optimizer._decayed_lr('float32').numpy() train_summary['accuracy'] = { action_name: np.true_divide(train_summary['num_correct'][action_name], num_samples) for action_name, num_samples in train_summary['num_samples'].items() if num_samples > 0 } console_logger.log_dict(train_summary, step) tensorboard_logger.log_dict(train_summary, step) if should_evaluate(step): checkpoint_manager.save() saved_agent = build_saved_agent(agent, observation_space, action_space) tf.saved_model.save(saved_agent, os.path.join(log_dir, 'saved_model')) eval_summary = eval_fn(os.path.join(log_dir, 'saved_model')) tensorboard_logger.log_dict(eval_summary, step) now = time.time() if should_save_checkpoint(now): checkpoint_manager.save() saved_agent = build_saved_agent(agent, observation_space, action_space) tf.saved_model.save(saved_agent, os.path.join(log_dir, 'saved_model')) last_checkpoint_time = now global_step.assign_add(1) checkpoint_manager.save() saved_agent = build_saved_agent(agent, observation_space, action_space) tf.saved_model.save(saved_agent, os.path.join(log_dir, 'saved_model')) console_logger.shutdown() tensorboard_logger.shutdown()
UTF-8
Python
false
false
13,444
py
40
learner.py
38
0.649212
0.644079
0
324
40.493827
117
igavriil/two-player-ai
14,783,277,439,856
8014db81176e1eba8335bf7638f616fcd6f8d8f2
b32a2663be4842f652f0189759b86d1a4be9d93d
/src/two_player_ai/alpha_beta.py
f6fba9945f75386064d5e42da7f296988ec7b5b7
[ "MIT" ]
permissive
https://github.com/igavriil/two-player-ai
8d71449720d13f7a52946af4ca1c270cb15aa57e
f5e2ae9d714370da11650676f8619ea055730ad5
refs/heads/master
2018-07-10T05:18:52.902669
2018-07-01T13:40:31
2018-07-01T13:40:31
121,112,128
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from two_player_ai.utils import benchmark class AlphaBeta(object): def __init__(self, game=None, heuristic=None): self.game = game self.heuristic = heuristic @benchmark def run(self, state, player, maximize, alpha=-np.inf, beta=np.inf, depth=10): if depth == 0 or self.game.terminal_test(state, player): return state, self.heuristic(state, player) actions = self.game.actions(state, player) best_action = None if not actions: return best_action, 0 if maximize: value = -np.inf for action in actions: next_state, next_player = self.game.result(state, player, action) _, result = self.run(next_state, next_player, False, alpha, beta, depth - 1) if result > value: value = result best_action = action alpha = np.max([alpha, value]) if beta <= alpha: break return best_action, value else: value = +np.inf for action in actions: next_state, next_player = self.game.result(state, player, action) _, result = self.run(next_state, next_player, True, alpha, beta, depth - 1) if result < value: value = result best_action = action beta = np.min([beta, value]) if beta <= alpha: break return best_action, value
UTF-8
Python
false
false
1,770
py
25
alpha_beta.py
22
0.461582
0.458192
0
49
35.122449
81
saris20038/programacion01
884,763,274,969
15b3f03973cf7edcfd666c36cda8d9b39a099e7f
098a069f5870216caf2983ccaa6a9795fb742ca6
/TALLERES/TALLER2.py
6c7e446e03c704ebd04d8be4518191a6b9b9b884
[]
no_license
https://github.com/saris20038/programacion01
6adc4fc3a90001333aa65f25a958cf6868daa08f
62183a88f6c8cf174a456f761d3ed8489770ea61
refs/heads/main
2023-05-07T23:32:34.720216
2021-05-27T12:51:52
2021-05-27T12:51:52
335,283,326
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
## Usando el mismo codigo del taller 1, haré un mayor y menor. print("Segundo taller, con el codigo del primero") print("--Los dos numeros que tendré seran un supuesto de la nota de calculo que tengo y la nota necesaria para aprobar--") miNota = 2.8 notaMinima = 3 notaMaxima= 5 print("¿con la nota que tengo, gano la materia? ") isAprobado = miNota>= 3 pruebaV = True pruebaF= False print(isAprobado) print("Entonces, ¿cuanto me falta para ganar?") isMeFalta = notaMinima - miNota print(isMeFalta) print("Si multiplico mis esfuerzos y por lo tanto mi nota dos veces, ¿sobrepasa el 5? ") isDoble = miNota * 2 isSobrepasado = isDoble > notaMaxima print(isSobrepasado) print("Si divido mi nota entre la nota minima, ¿es menor que 1?") isMenor = miNota / notaMinima isMenorQueUno = isMenor < 1 print(isMenorQueUno) print("Elevando mi nota a la nota minima ¿sobrepasare la nota maxima?") isMayor= miNota ** notaMinima isVerdadSobrepasa = isMayor > notaMaxima print(isVerdadSobrepasa) print("¿Mi nota es diferente a la nota maxima?") isDiferente = miNota != notaMaxima print(isDiferente) ## AQUÍ EMPIEZAN LOS CAMBIOS MENSAJE_DESPEDIDA = "Hasta luego perdedora, te quedo la nota final de calculo en: " print (MENSAJE_DESPEDIDA, miNota) print("Ahora calcularemos el promedio de las dos materias, es decir de calculo con Programación") PREGUNTA_PROGRAMACIÓN = "¿Cual fue tu nota final en programación? : " notaProgramacion = float(input(PREGUNTA_PROGRAMACIÓN)) ##como las dos tienen 3 creditos valen lo mismo promedioDosMaterias = (notaProgramacion + miNota) / 2 print(f"su promedio es de: {promedioDosMaterias}") isPromedioAprobado = promedioDosMaterias > notaMinima print("¿Con este promedio aprueba (esta encima de 3)?" , isPromedioAprobado) TuNombre = "¿Como te llamas?: " nombrePerdedor = input(TuNombre) MENSAJE_BYE = "Hasta luego" MOTIVACIONES = ", estudia más porfi" print(MENSAJE_BYE , nombrePerdedor , MOTIVACIONES)
UTF-8
Python
false
false
1,938
py
37
TALLER2.py
35
0.765226
0.758459
0
45
41.711111
122
Helsinki-NLP/Opus-MT
16,587,163,711,102
cb207cf80a5712ee69bd4ce96733ce969992ebbd
b67e2939225aa8446ea8f367b1023217d8ae4a54
/telegram_bot/keyboards.py
04cf9807bb5e485b4b5e86856476ecb9b41d1885
[ "MIT", "CC-BY-4.0" ]
permissive
https://github.com/Helsinki-NLP/Opus-MT
7d8968f1208e89ea67866ef66e47d14b0f9f4c8d
c1980b571d3a34f963102b1460d5f78ce8bf4d55
refs/heads/master
2023-08-17T05:58:04.606847
2023-08-15T18:32:03
2023-08-15T18:32:03
203,664,345
387
55
MIT
false
2023-08-15T18:32:05
2019-08-21T21:05:30
2023-08-14T07:43:08
2023-08-15T18:32:03
38,458
382
54
41
Python
false
false
from aiogram import types KEYBOARDS = { 'hide': types.ReplyKeyboardRemove(selective=False), 'lang': { 'options': ['English', 'Finnish', 'German', 'Swedish', 'Ukrainian'], 'markup': None, }, } def fill_keyboards(): # scales markup = types.ReplyKeyboardMarkup(resize_keyboard=True) markup.row(*[types.KeyboardButton(variant) for variant in KEYBOARDS['lang']['options']]) KEYBOARDS['lang']['markup'] = markup fill_keyboards()
UTF-8
Python
false
false
474
py
49
keyboards.py
22
0.64346
0.64346
0
17
26.882353
92
dgjung0220/deepLearing_tensorflow
9,440,338,155,024
bf0a796d85a4759f6046c9807f9c4f9d99dc4483
f01a0412d19d0434d088a6d902dbe8a2f659f644
/DL_Source/Day_05_03_tensorboard.py
c3c524514acaff8a43c9183e68be8f5fd8917f16
[]
no_license
https://github.com/dgjung0220/deepLearing_tensorflow
eccf6cf519ce98ef2c130834d5bcf810bb4de8e0
8cd759dfb0384702dc96d8895bde12b9056cc378
refs/heads/master
2020-03-18T08:05:04.530830
2018-05-27T13:31:26
2018-05-27T13:31:26
134,488,732
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Day_05_03_tensorboard.py import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('mnist', one_hot=True) with tf.name_scope('input'): x = tf.placeholder(tf.float32, name='x') y = tf.placeholder(tf.float32, name='y') with tf.name_scope('weight'): w = tf.Variable(tf.zeros([784, 10]), name='w') b = tf.Variable(tf.zeros([10]), name='b') with tf.name_scope('model'): z = tf.matmul(x, w) + b hx = tf.nn.softmax(z) cost_i = tf.nn.softmax_cross_entropy_with_logits(logits=z, labels=y) cost = tf.reduce_mean(cost_i) with tf.name_scope('train'): optimizer = tf.train.AdamOptimizer(0.001) train = optimizer.minimize(cost) sess = tf.Session() sess.run(tf.global_variables_initializer()) # step 1. tf.summary.scalar('cost', cost) # step 2. merged = tf.summary.merge_all() # step 3. writer = tf.summary.FileWriter('board/mnist', sess.graph) epochs, batch_size = 15, 100 iter = mnist.train.num_examples // batch_size for i in range(epochs): total = 0 for j in range(iter): xx, yy = mnist.train.next_batch(batch_size) feed = {x: xx, y: yy} _, loss = sess.run([train, cost], feed) total += loss print('{:2} : {}'.format(i, total / iter)) # step 4. summary = sess.run(merged, {x: xx, y: yy}) writer.add_summary(summary, i) # step 5. # tensorboard --logdir=board/mnist
UTF-8
Python
false
false
1,487
py
39
Day_05_03_tensorboard.py
30
0.611298
0.590451
0
60
23.683333
62
humnaawan/3D-galaxies-kavli
8,546,984,922,359
e9b6f54a031725bbb497e61f9287c0f47eab51eb
02422b9e360118021f5eaa63c477b189c2305268
/runscripts/get_data/get_illustris_data.py
f75b9cbb97187dafbe36c60c8ce300a45bcecd68
[]
no_license
https://github.com/humnaawan/3D-galaxies-kavli
4235604ab54d71aa437da58e79f96ce34a6693df
5c011319fe32924a98f4adca8b0f432128ff6950
refs/heads/master
2020-06-20T20:46:51.889748
2019-09-19T00:31:28
2019-09-19T00:31:28
197,243,502
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import datetime, time, socket, os import numpy as np from d3g2d import get_data, get_time_passed, readme as readme_obj # ------------------------------------------------------------------------------ illustris_z0 = False # True for z=0.0 data; False for z=0.4 one # ------------------------------------------------------------------------------ if illustris_z0: path = '/Users/humnaawan/repos/3D-galaxies-kavli/data/illustris_mass_shape/mass-all-11p0/' z = 0.0 snap_num = 135 # get the haloIds haloIds = [] for file in os.listdir(path): haloIds.append( int( file.split('subhalo')[1].split('.dat')[0] ) ) haloIds = np.unique( haloIds ) else: # get z=0.4 cutouts path = '/Users/humnaawan/repos/3D-galaxies-kavli/data/sum_illustris/' z = 0.4 snap_num = 108 # get the haloIds haloIds = [] for file in os.listdir(path): haloIds.append( int( file.split('_')[4] ) ) haloIds = np.unique( haloIds ) # set up run_name = 'Illustris-1' outdir = '/Users/humnaawan/repos/3D-galaxies-kavli/outputs/illustris_z%s/' % z # ------------------------------------------------------------------------------ # set up the readme start_time = time.time() readme_tag = '' update = '%s\n' % datetime.datetime.now() update += 'Running on %s\n\n' % socket.gethostname() update += 'Outdir: %s\n' % outdir update += 'For z = %s, run_name = %s\n' % (z, run_name) update += '%s haloIds:\n%s\n' % ( len(haloIds), haloIds) readme = readme_obj(outdir=outdir, readme_tag=readme_tag, first_update=update) readme.run() # save the halo ids filename = 'haloIds.txt' np.savetxt('%s/%s' % (outdir, filename), haloIds, fmt='%s') readme.update(to_write='Saved %s' % filename) # now get the cutouts etc get_data(run_name=run_name, z=z, snap_num=snap_num, haloIds=haloIds, outdir=outdir, print_progress=True, readme=readme) readme.update(to_write='Done.\n## Time taken: %s\n' % get_time_passed(start_time) )
UTF-8
Python
false
false
1,951
py
33
get_illustris_data.py
26
0.573552
0.558175
0
52
36.519231
94
mozilla/ansible-junos-stdlib
1,941,325,258,373
bbc2d256948d4074af6494ee6513fa0b87bd67ff
7cf86e0b0a68d53c73f7cd144a0195a5ec1e840b
/version.py
6b78ccab0d3edc21f263c61c56733b64fe0ab0f2
[ "Apache-2.0" ]
permissive
https://github.com/mozilla/ansible-junos-stdlib
d59b464dfd787c0631054ca419db8a78461dfb76
79e65f3626c38e002ee0bf3e0656a0fba00c5f40
refs/heads/master
2023-07-04T02:23:08.237969
2017-01-29T23:46:59
2017-07-07T10:01:57
96,518,054
1
0
null
true
2017-07-07T08:38:42
2017-07-07T08:38:42
2017-06-27T14:36:45
2017-06-28T11:46:12
1,201
0
0
0
null
null
null
VERSION = "2.0.0+dev0" DATE = "2017-April-24"
UTF-8
Python
false
false
46
py
1
version.py
1
0.630435
0.413043
0
2
22
22
inlpi/anci_nn
10,797,547,789,564
58943c276476d77247bec44bc0f303eb49ddeb11
50d25e7059f99d16217da790c198f6c200f684b4
/extract_embeddings.py
aa235023db2d485abe0c2da1ac3f82303133d00b
[ "MIT" ]
permissive
https://github.com/inlpi/anci_nn
6ded0712d3db49a61fe956799ea0e2b8a83a26c0
81c23406ef983e403be9c71450dae987f3233da7
refs/heads/master
2022-09-27T13:59:34.099100
2020-06-03T20:39:30
2020-06-03T20:39:30
269,162,346
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Python 3.7.6 # -*- coding: utf-8 -*- # Author: Ines Pisetta import os import gensim import numpy as np extracted_embeddings_path = 'extracted_embeddings/' if not os.path.exists(extracted_embeddings_path+'tratz/'): os.makedirs(extracted_embeddings_path+'tratz') if not os.path.exists(extracted_embeddings_path+'oseaghdha/'): os.makedirs(extracted_embeddings_path+'oseaghdha') constituents_path = 'constituents/' constituents = [] transformations_path = 'transformations/tratz/' if not os.path.exists(transformations_path): os.makedirs(transformations_path) def extract_embeddings(unknown_emb_file, ds): extract_embeddings.unknown_emb = np.load(unknown_emb_file) extract_embeddings.con_vec = {} if ds == 'oseaghdha': # no transformations needed for word in constituents: get_vector_o(word) elif ds == 'tratz': with open('constituents/constituents_tratz_transformations.txt', 'r', encoding = 'utf-8') as t: extract_embeddings.first_transformation = {line.split(' -> ')[0]:line.split(' -> ')[1] for line in t.read().splitlines()} extract_embeddings.second_transformation = {} extract_embeddings.combined_transformation = {} for word in constituents: get_vector_t(word) tmp = 'transformations_' + unknown_emb_file.split('/')[1].rsplit('.', 1)[0].replace('_unknown', '') + '.txt' with open(transformations_path+tmp, 'w', encoding = 'utf-8') as t: for k,v in extract_embeddings.combined_transformation.items(): t.write(k + ' -> ' + v + '\n') else: print('Error') tmp = unknown_emb_file.split('/')[1].rsplit('.', 1)[0].replace('_unknown', '') + '.txt' output_file = extracted_embeddings_path + ds + '/emb_' + tmp with open(output_file, 'w', encoding = 'utf-8') as o: for k,v in extract_embeddings.con_vec.items(): o.write(k + ' ' + str(v) + '\n') with open(output_file.replace('.txt', '_indices.txt'), 'w', encoding = 'utf-8') as i: for count, k in enumerate(extract_embeddings.con_vec.keys()): i.write(k + ' ' + str(count) + '\n') lookuptable = np.array(list(extract_embeddings.con_vec.values())) #print('\n' + str(len(constituents)-lookuptable.shape[0]) + ' constituents filtered') print(lookuptable.shape) #print('\n\n') np.save(output_file.replace('.txt', '_vectors.npy'), lookuptable) def get_vector_o(word): vector = '' try: vector = vectors[word] except KeyError: #print(word, ' not in vocabulary') vector = extract_embeddings.unknown_emb assert len(vector) == 300 assert isinstance(vector, np.ndarray) extract_embeddings.con_vec[word] = vector def get_vector_t(word): word_t = word if word in extract_embeddings.first_transformation: word_t = extract_embeddings.first_transformation[word] if '_' in word_t: word_f = 0 words = word_t.split('_') if word_t in extract_embeddings.second_transformation: extract_embeddings.combined_transformation[word] = extract_embeddings.second_transformation[word_t] #print(word) pass else: if '-'.join(words) in vectors: vector = vectors['-'.join(words)] word_f = '-'.join(words) elif ' '.join(words) in vectors: vector = vectors[' '.join(words)] word_f = ' '.join(words) elif word_t in vectors: vector = vectors[word_t] word_f = word_t else: v = [] for w in words: # Vektoren der einzelnen Wörter try: v.append(vectors[w]) # es sei denn, diese sind unbekannt, dann das entsprechende Embedding verwenden except KeyError: v.append(extract_embeddings.unknown_emb) v = np.array(v) vector = v.mean(axis=0) word_f = '#'.join(words) assert len(vector) == 300 assert isinstance(vector, np.ndarray) assert isinstance(word_f, str) extract_embeddings.second_transformation[word_t] = word_f extract_embeddings.combined_transformation[word] = word_f extract_embeddings.con_vec[word_f] = vector # one-word expressions else: try: vector = vectors[word_t] except KeyError: #print(word_t, ' not in vocabulary') vector = extract_embeddings.unknown_emb assert len(vector) == 300 assert isinstance(vector, np.ndarray) extract_embeddings.combined_transformation[word] = word_t extract_embeddings.con_vec[word_t] = vector def load_glove(emb_file): vec = {} with open(emb_file, 'r', encoding = 'utf-8') as e: for line in e: line = line.rstrip() word = line.split(' ', 1)[0] vector_string = line.split(' ', 1)[1] vector_list = vector_string.split(' ') vector = np.array([float(x) for x in vector_list]) vec[word] = vector return vec if __name__ == '__main__': for ds in ['tratz', 'oseaghdha']: with open(constituents_path + 'constituents_' + ds + '.txt', 'r', encoding = 'utf-8') as c: constituents = c.read().splitlines() """ vectors = load_glove('embeddings/glove.6B.300d.txt') extract_embeddings('unknown_embeddings/glove.6B_unknown.npy', ds) vectors = load_glove('embeddings/glove.42B.300d.txt') extract_embeddings('unknown_embeddings/glove.42B_unknown.npy', ds) vectors = load_glove('embeddings/glove.840B.300d.txt') extract_embeddings('unknown_embeddings/glove.840B_unknown.npy', ds) """ vectors = gensim.models.KeyedVectors.load_word2vec_format('embeddings/GoogleNews-vectors-negative300.bin', binary=True) #extract_embeddings('unknown_embeddings/w2v_unknown.npy', ds) extract_embeddings('unknown_embeddings/w2v_unknown_1000.npy', ds)
UTF-8
Python
false
false
6,660
py
24
extract_embeddings.py
6
0.54783
0.538069
0
188
33.37766
133
jiyudonggithub/WebSpider
10,402,410,832,729
ad66136d0afc5183549919c6ca80ce73a933af45
c55758fe1b61828d4e8e46787e6c1683a5244c9b
/First/multithreading.py
42fc950739d9d3be42f7b27c60ab257223b5e7fd
[]
no_license
https://github.com/jiyudonggithub/WebSpider
b5625bb2a2c4b448ff4d7c66ebb70c0e16da1e8d
cf171e501ed75efedadeff80abcf33605041cd58
refs/heads/master
2023-01-03T11:10:47.516326
2020-11-04T03:26:38
2020-11-04T03:26:38
306,371,802
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # @Time : 2020/9/24 19:53 # @Author : Jiyudong # @FileName: multithreading.py # @Software: PyCharm import time import threading tasks = ['move1', 'move2', 'move3', 'move4', 'move5', 'move6', 'move7', 'move8', 'move9', 'move10'] def download(move): print(f'start downloading {move}') time.sleep(2) print(f'finish download {move}\n') if __name__ == '__main__': for task in tasks: thread = threading.Thread(target=download, args=(task,)) thread.start()
UTF-8
Python
false
false
510
py
50
multithreading.py
48
0.613725
0.566667
0
20
24.5
99
sbaguirr/Selenium-Test
1,142,461,321,024
0b6f0577fecf0bd063a2d0c9b8b2cc87712c3d32
4322a33a538be997b54fda4bd6057fb270fd3ca4
/Selenium/locators.py
fe917ed33820f4d98708296af9812822d7acecbc
[]
no_license
https://github.com/sbaguirr/Selenium-Test
3c9f07045802dc0cde18d108d56bc3538c6af546
583872149dac4c4676bdc8973333e6b7cfa9f7f5
refs/heads/master
2021-01-04T15:56:25.898261
2020-02-17T03:07:26
2020-02-17T03:07:26
240,624,183
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Selenium Test""" class EspolPageLocators: """ Class for Espol page locators. """ faculty_list_xpath = "//div[@id='accordion']/div/div/h4/a/strong" ul_list_xpath = "//div[@class='panel-body']/ul[2]" li_list_xpath = ".//li" career_link_xpath = ".//a" class BonusPageLocators: """ Class for Bonus page locators. """ elective_course_xpath = "//p[@id='informacion']/a" select_elements_xpath = "//select[@name='tbl_materias_complementarias_length']" rows_xpath = "//table[@id='tbl_materias_complementarias']/tbody/tr" career_xpath = "//h1" data_xpath = [".//td[1]", ".//td[2]", ".//td[3]"]
UTF-8
Python
false
false
653
py
6
locators.py
5
0.591118
0.58193
0
22
28.681818
83
JaviS1997/ie_python_course
6,760,278,528,224
0b56f51a691701736f9c84872057c10421ac07c0
b9a94ca39f346d21d5d5e63b7dc8fc83a84f44f2
/HW.py
3dd9f569a3457f536e20ad00f679fac23410a4b9
[]
no_license
https://github.com/JaviS1997/ie_python_course
cb0d39c02faa8706467afd02c5e1a7909a65e2f7
9d1aaf7619790b1b48b5b19c8a40e11825ceb295
refs/heads/master
2020-12-20T20:05:03.456979
2020-02-09T19:33:47
2020-02-09T19:33:47
236,196,235
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np def askName(): print("What's your name ?") name = input() print("Nice to meet you {} !".format(name)) return 1 def division(): print("Input two integer numbers for the division. \nNumerator :") num = int(input()) print("Denominator :") denominator = int(input()) # Rounded up to one decimal print("{} / {} = {}".format(num, denominator, round(num / denominator, 1))) return 1 def surfaceCircle(): print("Radius of the circle :") radius = float(input()) result = np.pi * radius ** 2 print("Surface = π * {}^2 = {}".format(radius, round(result, 2))) return 1 def maze(): moves = 0 answer = '' solution = 'SSNWES' print("You are in the magic maze") while answer != solution: print("Which way to go now ? (N,S,E,W)") key = input().upper() if key in ['S', 'N', 'E', 'W']: answer += key if answer == solution[0:moves + 1]: moves += 1 print("Correct! {} move(s) to finish".format(len(solution) - moves)) else: print('Wrong way ! You are going back to the beginning') answer = '' moves = 0 else: print('Input a correct direction!') return print("Congrats! You finished the maze") def substr(): print('Input the word whose substring we will use :') word = input() prior = word[0] substring = '' longest_substring = '' for c in word: if c >= prior: substring += c else: if len(substring) >= len(longest_substring): longest_substring = substring substring = '' + c prior = c print('The longest alphabetical substring is \'{}\''.format(longest_substring)) # askName() # division() # surfaceCircle() # maze() substr()
UTF-8
Python
false
false
1,891
py
2
HW.py
1
0.538095
0.531217
0
74
24.540541
84
aikram24/S3-Restore
12,489,764,939,456
fbb5e2ae6906073af1635039e6332ae3b4e3dae9
d4ff11e89fddbaeac676a2231bc90e1940b602a2
/s3_restore.py
d0fc91d5c331bee2f9a30adb927f9e13dc99c8d7
[]
no_license
https://github.com/aikram24/S3-Restore
261c62ad932852ff46d5335f6bd96e4b0929dd1c
a12b33af59a23e166b17dbbd2c3f71e48ab4b9de
refs/heads/master
2020-07-01T06:44:25.754151
2017-06-16T17:22:33
2017-06-16T17:22:33
74,093,047
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python2.7 # Ali Ikram # import os, sys, argparse from s3_functions import s3 parser = argparse.ArgumentParser(description='S3 Restore Script') parser.add_argument('-b','--bucketname', help='Bucket Name ex. s3-io-test-2292',required=True) parser.add_argument('-v','--version',help='Version ID', required=False) parser.add_argument('--getbucketinfo',help='Get bucket info', action='store_true', required=False) args = parser.parse_args() BUCKET_NAME = args.bucketname VERSION_ID = args.version GET_INFO = args.getbucketinfo if args.getbucketinfo: data = s3(BUCKET_NAME) data.get_bucket_list() elif args.bucketname and args.version: data = s3(BUCKET_NAME) elif args.version and args.getbucketinfo: print('You cannot provide version ID with "--getbucketinfo" options')
UTF-8
Python
false
false
788
py
3
s3_restore.py
2
0.746193
0.730964
0
23
33.217391
99
wyanlord/MyCode
2,843,268,352,465
871007239788e519ea16ff5f5fe85e36a02d20aa
1cf340eb13aed56263cfdc82326c78882026d743
/Linux/Ubuntu/安装.py
3c5f95c3de537703ea429ce4f37a6d26597dabf3
[]
no_license
https://github.com/wyanlord/MyCode
b9bb3a36a1f4f18ca49424993618f1640c87f5dd
225d744101e5ab339ff47770e13f52b4c1176f65
refs/heads/master
2017-12-21T17:23:43.946122
2017-02-23T09:28:03
2017-02-23T09:28:03
72,913,669
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#更新apt-get源 apt-get update #更新现有软件 apt-get upgrade #安装vim apt-get install vim #去掉系统的错误报告 vim /etc/default/apport enabled=0 reboot #首先安装ssh apt-get install ssh #安装 vm-tools mkdir /media/mnt && mount /dev/cdrom /media/mnt && cp /media/mnt/VMware* /root && umount /dev/cdrom && cd ~ && tar zxvf VMwareTools* && cd vmware-tools-distrib/ && ./vmware-install.pl reboot #一些常用的软件,chrome需要手动下载 apt-get install vim lrzsz gnome-software tree git python gcc unity-tweak-tool docky xchm #更换侧边栏,命令有时不能用 apt-get install dconf-editor (com->canonical->unity->launcher) gsettings set com.canonical.unity.launcher launcher-position Bottom gsettings set com.canonical.unity.launcher launcher-position Left #安装常用的软件 sublime-Text3 WPS sougoupinyin #sublime Text 3设置中文 suod apt-get install libgtk2.0-dev #新建一个文件sublime_imfix.c cd ~ && sudo touch sublime_imfix.c #添加内容 #include <gtk/gtkimcontext.h> void gtk_im_context_set_client_window (GtkIMContext *context, GdkWindow *window) { GtkIMContextClass *klass; g_return_if_fail (GTK_IS_IM_CONTEXT (context)); klass = GTK_IM_CONTEXT_GET_CLASS (context); if (klass->set_client_window) klass->set_client_window (context, window); g_object_set_data(G_OBJECT(context),"window",window); if(!GDK_IS_WINDOW (window)) return; int width = gdk_window_get_width(window); int height = gdk_window_get_height(window); if(width != 0 && height !=0) gtk_im_context_focus_in(context); } sudo gcc -shared -o libsublime-imfix.so sublime_imfix.c `pkg-config --libs --cflags gtk+-2.0` -fPIC sudo mv libsublime-imfix.so /opt/sublime_text/ sudo vim /usr/bin/subl #=>LD_PRELOAD=/opt/sublime_text/libsublime-imfix.so exec /opt/sublime_text/sublime_text "$@" sudo vim /usr/share/applications/sublime_text.desktop #=>Exec=bash -c "LD_PRELOAD=/opt/sublime_text/libsublime-imfix.so exec /opt/sublime_text/sublime_text %F" #=>Exec=bash -c "LD_PRELOAD=/opt/sublime_text/libsublime-imfix.so exec /opt/sublime_text/sublime_text -n" #=>Exec=bash -c "LD_PRELOAD=/opt/sublime_text/libsublime-imfix.so exec /opt/sublime_text/sublime_text --command new_file" #WPS安装 下载http://download.csdn.net/download/wl1524520/6333049 复制到/usr/share/fonts/wps_symbol_fonts/下面 mkfontdir mkfontscale fc-cache #安装主题 sudo add-apt-repository ppa:noobslab/themes sudo apt-get update sudo apt-get install flatabulous-theme #安装图标 sudo add-apt-repository ppa:noobslab/icons sudo apt-get update sudo apt-get install ultra-flat-icons #修改终端 sudo apt-get install zsh wget https://github.com/robbyrussell/oh-my-zsh/raw/master/tools/install.sh -O - | sh chsh -s /usr/bin/zsh #chsh -s /bin/bash可以切回,要修改/etc/passwd中的root路径 #安装苹果主题 sudo add-apt-repository ppa:noobslab/macbuntu sudo apt-get update sudo apt-get install macbuntu-os-icons-lts-v7 sudo apt-get install macbuntu-os-ithemes-lts-v7 #安装svn管理器 sudo add-apt-repository ppa:rabbitvcs/ppa sudo apt-get install python-nautilus python-configobj python-gtk2 python-glade2 python-svn python-dbus python-dulwich subversion meld sudo apt-get install rabbitvcs-cli rabbitvcs-gedit rabbitvcs-core rabbitvcs-nautilus nautilus -q nautilus reboot #安装IDE phpstorm clion IDEA mv ** /opt/* sudo ln -s /opt/clion/bin/clion.sh /usr/local/bin/clion sudo ln -s /opt/idea/bin/idea.sh /usr/local/bin/idea sudo ln -s /opt/phpstorm/bin/phpstorm.sh /usr/local/bin/phpstorm #安装QT5 sudo chmod +x ***.run sudo ./***.run sudo apt-get install fcitx-libs-qt fcitx-libs-qt5 sudo cp /usr/lib/x86_64-linux-gnu/qt5/plugins/platforminputcontexts/libfcitxplatforminputcontextplugin.so \ /opt/Qt5.7.1/Tools/QtCreator/lib/Qt/plugins/platforminputcontexts/ #在设置中去掉第三方的源,不要删除,然后重新update sudo apt-get update #把桌面文件夹改成英文,选择好以后记得重启 export LANG=en_US(export LANG=zh_CN.UTF-8) xdg-user-dirs-gtk-update #也可以修改~/.config/user.dir*同时修改桌面的文件夹名字 #安装下载工具,firefox要安装flashgot插件 sudo add-apt-repository ppa:plushuang-tw/uget-stable sudo add-apt-repository ppa:t-tujikawa/ppa sudo apt-get update sudo apt-get install uget aria2 #安装php开发环境 1、安装nginx wget http://nginx.org/keys/nginx_signing.key sudo apt-key add nginx_signing.key echo "deb http://nginx.org/packages/ubuntu/ trusty nginx" >> /etc/apt/sources.list echo "deb-src http://nginx.org/packages/ubuntu/ trusty nginx" >> /etc/apt/sources.list sudo apt-get update sudo apt-get install nginx sudo vim /etc/nginx/conf.d/default.conf sudo vim /etc/nginx/nginx.conf user www-data; /usr/sbin/nginx -v service nginx restart 2、安装php7 sudo apt-get install python-software-properties software-properties-common sudo add-apt-repository ppa:ondrej/php sudo apt-get update sudo apt-get -y install autoconf g++ make openssl libssl-dev libcurl4-openssl-dev sudo apt-get install php7.0-fpm php7.0-mysql php7.0-common php7.0-curl php7.0-cli php7.0-mcrypt php7.0-mbstring php7.0-xml php7.0-dev sudo vim /etc/php/7.0/fpm/php.ini sudo vim /etc/php/7.0/cli/php.ini service php7.0-fpm restart #安装pear sudo apt-get install php-pear pecl install redis 3、安装mysql sudo apt-get install mysql-server-5.7 mysql-client-5.7 mysql -uroot -p
UTF-8
Python
false
false
5,506
py
76
安装.py
65
0.752557
0.738395
0
140
34.314286
183
andyglez/external_access
4,269,197,522,733
0c46a0a78662e8dbd7cfbb94a21c3a6d6b19da0b
d42f4965db75d36464ddc013538c911fa00074cc
/controllers/search_ctr.py
3a3ffa6d75b6f471975cd631f5488c1c08f61d0d
[]
no_license
https://github.com/andyglez/external_access
13fe21f1cc167c3aa8c4f54a989297390a16e0e5
2ca68d6efdea87741c6070237efe1b6fa6694b06
refs/heads/master
2020-04-28T13:08:52.266332
2019-09-06T19:52:30
2019-09-06T19:52:30
175,299,247
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from settings import database as db from utils.cookies import Cookies def dont_have_permissions(roles): return roles['is_default'] def search(cookies, query, category): data = ([(u, n, a, e, p) for u, n, a, e, p in get_users(category) if by_category(query, category, u, n, a, e, p) and a == cookies.get('info')[2]] if cookies.get('roles')['is_dean'] or cookies.get('roles')['is_admin'] else [(u, n, a, e, p) for u, n, a, e, p in get_users(category) if by_category(query, category, u, n, a, e, p)]) cookies.set('query_value', query) return data def by_category(query, category, user, name, area, email, phone): if category == 'name': return query in name.lower() elif category == 'username': return query in user.lower() elif category == 'email': return query in email.lower() elif category == 'phone': return query in phone return query in area def get_users(category): return db.query('select UserName, Name, Area, email, phone from Users order by {0}'.format(category))
UTF-8
Python
false
false
1,072
py
37
search_ctr.py
23
0.633396
0.63153
0
26
40.269231
150
tijugeorge/Python-code-practice
9,878,424,784,980
7ddd8e1cae8af70abcb1c7ae3100afc74c8d38d7
b57152633d14bac5889aad76c0b233f6e3b9c720
/sum-of-array.py
55bb39d3d7eb53cb0dfeebe5443bdac7a34258ef
[]
no_license
https://github.com/tijugeorge/Python-code-practice
2f01fbaf88238a0e72d18cae4adb23fab3d6625d
8967a03a560160fa04e4801b3d7f0046687daf03
refs/heads/master
2022-10-21T02:10:28.784617
2022-10-09T22:56:26
2022-10-09T22:56:26
74,500,629
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import os def sum(numbers): ret=0 for i in numbers: ret += i return ret print sum([1,2,3,4,5]) #f= open(os.environ['OUTPUT_PATH'],'w')
UTF-8
Python
false
false
177
py
70
sum-of-array.py
68
0.553672
0.519774
0
14
11.571429
39
ducoquelicot/python_files
3,848,290,745,430
97e9cdcb10a3d73e8d4c4f4e956670d07385a21b
da7b4d8d632278a7e793590095c2e3940fdaff0d
/fuckery.py
0cd78b424cf89a15898dfc9733327515a3f0593a
[]
no_license
https://github.com/ducoquelicot/python_files
6a0519c637714e19fa3e3f85f2a4d88b33f747c5
aa3a070df16d04594f5e8645a05dc0a6853be73b
refs/heads/master
2022-12-31T19:17:57.068541
2019-11-05T12:40:37
2019-11-05T12:40:37
168,590,154
0
0
null
false
2022-12-08T05:56:52
2019-01-31T20:17:42
2019-11-05T12:41:00
2022-12-08T05:56:51
552,942
0
0
2
HTML
false
false
from bs4 import BeautifulSoup import csv import os import requests pa_agenda = {2019: 'https://www.cityofpaloalto.org/gov/depts/cou/council_agendas.asp', 2018:'https://www.cityofpaloalto.org/gov/agendas/council/2018.asp'} for year in pa_agenda.keys(): print(pa_agenda[2019]) for i in range(2002,2019): print(i) from bs4 import BeautifulSoup import os, urllib.request import fitz # cmd = 'pdftohtml -c -s /home/fabienne/Desktop/Python/Files/pdfs_2019_37.pdf /home/fabienne/Desktop/Python/html/pdfs_2019_37' # os.system(cmd) # response = urllib.request.urlopen('file:///home/fabienne/Desktop/Python/html/pdfs_2019_37-html.html', timeout=1) # html = response.read() # soup = BeautifulSoup(html, 'html.parser') # links = soup.select('a') # for row in links: # if '31-18' or '07-19' in row.getText(): # print(row) doc = fitz.open('/home/fabienne/Desktop/Python/Files/pdfs_2019_37.pdf') page = doc[2] links = page.getLinks() print(len(doc)) lastnum = range(len(doc))[-1] print(lastnum) for row in links: print(row['uri']) '/home/fabienne/Desktop/Python/PDF/pdfs_2019_37.pdf' # for recall in recalls: # filename = os.path.basename(recall)[:-4] # soup = BeautifulSoup(open(recall), 'html.parser') # with open(os.path.expanduser('~/Desktop/Python/Files/' +filename +'_soup.html'), 'w') as file: # file.write(str(soup))
UTF-8
Python
false
false
1,366
py
140
fuckery.py
19
0.693997
0.644217
0
47
28.085106
154
cthamilton/BootCamp2017
566,935,726,753
49ba6fbc8a8cd45d3190a560d1f9da77a3a183cf
90a979361002fd832ad0b1cee03adc8467dc1726
/ProbSets/Comp/Week4/CondStab/1.py
26c38d879f5c33a4ef39dd4a902fddc5dc735a76
[]
no_license
https://github.com/cthamilton/BootCamp2017
50a2c4fb96209983a08647a5933a4d456ae1c9ea
e50927a79f5031318b9d12c6a30a475d7e5f637e
refs/heads/master
2017-07-30T10:48:46.106675
2017-07-30T09:11:51
2017-07-30T09:11:51
94,893,563
0
0
null
true
2017-06-20T13:21:20
2017-06-20T13:21:19
2017-06-20T11:18:16
2017-06-20T13:15:29
11,430
0
0
0
null
null
null
import numpy as np import scipy.linalg as la def condcalc(A): x,y,z = la.svd(A) ma = np.max(y) mi = np.min(y) return ma / mi
UTF-8
Python
false
false
147
py
164
1.py
139
0.564626
0.564626
0
8
16.75
25
f981113587/Python
2,542,620,656,451
233fea320f14b1f57f79afe790369e8e2a574fa5
eee2e2c19867b8500a0176442084e35361a51475
/Aula 08/Desafios/018.py
46f2a764f0d25aa2cd4feef4c7f718875834ecb6
[]
no_license
https://github.com/f981113587/Python
71a30d1ddd9317571f20f7abb735e94997604a08
ef76f72c9caec4b4ba15315d1366f5fb1bbb42f0
refs/heads/main
2023-07-16T16:25:36.037368
2021-08-28T14:17:15
2021-08-28T14:17:15
400,808,061
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Faça um programa que leia um ângulo # qualquer e mostre na tela o valor # do seno, cosseno e tangete desse ângulo. from math import cos, sin, tan, radians angulo = float(input('Informe o valor do ângulo: ')) print('Cos({}) = {}'.format(angulo, cos(radians(angulo)))) print('Sin({}) = {}'.format(angulo, sin(radians(angulo)))) print('Tan({}) = {}'.format(angulo, tan(radians(angulo))))
UTF-8
Python
false
false
393
py
83
018.py
83
0.676093
0.676093
0
10
37.9
58
neviim/_commandos_
4,887,672,813,412
f371359e2093d1ce79f2ff4d1d0a28d64c7cd6ad
8c95394615cd1c4d973c43baa6fdb74aa4834993
/fcn/doc-script/[mongodb_install_config.py
b1d7147c8bf3965d8599a57917b20055f55f14e6
[]
no_license
https://github.com/neviim/_commandos_
fa250dc8198f178a36664a60c37cbcbd8b01e29c
6fb9c5dbe4b646f816d12e54f15529fe53859546
refs/heads/master
2021-05-14T12:32:18.116512
2020-02-28T18:35:50
2020-02-28T18:35:50
116,411,489
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# instalando mongodb centos 7 ::: Colocar repositorio MongoDB $ nano /etc/yum.repos.d/mongodb-org.repo [mongodb-org-4.0] name=MongoDB Repository baseurl=https://repo.mongodb.org/yum/redhat/7/mongodb-org/4.0/x86_64/ gpgcheck=1 enabled=1 gpgkey=https://www.mongodb.org/static/pgp/server-4.0.asc $ yum repolist $ yum install mongodb-org $ systemctl start mongod.service $ systemctl status mongod.service ::: Master e Slave
UTF-8
Python
false
false
460
py
283
[mongodb_install_config.py
144
0.704348
0.673913
0
21
20.809524
72
gitshaozhong/VideoSearchEngine
8,856,222,608,881
c6575a4a7df31f3de669cb9ee5691538c119dc95
5d0fe6e6210bfd3dcc149da08dd6f347d8cfb0a1
/VideoSearchEngine/NoisyFrameFilter.py
cc9e84160c4b3940c9748676d7b0df23a4a92bef
[ "MIT" ]
permissive
https://github.com/gitshaozhong/VideoSearchEngine
1d36aef87a62ab04f0cddeff9eab0c1fb9eba4b9
48281688fc1abcad7e81121f38a87ab88c91dc90
refs/heads/master
2020-05-30T02:57:26.588291
2019-05-31T01:25:14
2019-05-31T01:25:14
189,505,669
0
0
null
true
2019-05-31T01:22:22
2019-05-31T01:22:21
2019-05-30T13:17:38
2018-09-26T23:26:06
182,992
0
0
0
null
false
false
# Main file for given a frame, filter the noisy frames # Main API is here, more files may be used for the implementation def get_frame_filter(): ''' return the version specified in the configuration to use e.g. if there is a basic one and a complex one, the configuration should be able to decide which one to use ''' return None ''' Describe API supported here '''
UTF-8
Python
false
false
392
py
50
NoisyFrameFilter.py
41
0.701531
0.701531
0
15
25.2
84
blakecheng/stylegan_reimplementation
16,947,940,963,400
c187ca3955dd34dfad7d0a1395e0bf4b2c060bca
e42bd2a672c335cfd6192962be49677e80259703
/train.py
5f2436214e69bdc2cb24f1f842ca23405ebac8f2
[ "Apache-2.0" ]
permissive
https://github.com/blakecheng/stylegan_reimplementation
c57d2464946767c097c976037a6eddcab3da6583
f365a6fab9dd08c15480f76fee78da26ac942c9d
refs/heads/master
2022-11-11T19:57:41.394343
2020-06-24T02:08:57
2020-06-24T02:08:57
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import ast from collections import namedtuple #from tensorflow.python import debug as tf_debug from shutil import copy, copytree from tqdm import trange import csv import random import tensorflow as tf import numpy as np from data import get_dataset from models import Generator, Discriminator, MappingNetwork from ops import name_scope, upsample, downsample, downsample_nv from utils import filter_vars_with_checkpoint, build_label_list_from_file TrainHps = namedtuple("TrainingHyperparams", ["res_h", "res_w", "current_res_w", "psi_w", "batch_size", "epochs_per_res", "optimizer", "loss_fn", "profile", "ngpus", "learning_rate", "adam_beta1", "adam_beta2", "use_beholder", "model_dir", "gp_fn", "lambda_gp", "ncritic", "cond_uniform_fake", "do_pixel_norm", "start_res_h", "start_res_w", "map_cond", "tboard_debug", "cli_debug", "cond_weight", "cond_layers", "eager", "no_train", "lambda_drift", "conditional_type", "do_equalized_lr", "do_minibatch_stddev", "label_file", "steps_per_save", "save_paths", "do_traditional_input", "do_mapping_network", "do_add_noise", "resize_method"]) TrainHps.__new__.__defaults__ = (None,) * len(TrainHps._fields) SavePaths = namedtuple("SavePaths", ["gen_model", "dis_model", "mapping_network", "sampling_model", "gen_optim", "dis_optim", "mn_optim", "alpha", "step"]) SavePaths.__new__.__defaults__ = (None,) * len(SavePaths._fields) @name_scope("non_saturating_loss") def non_saturating_loss(real_logit, fake_logit): """ :param real_logit: logit(s) for real images (if None just return generator loss) :param fake_logit: logit(s) for fake images :return: loss for discriminator and generator (unless real_logit is None) """ loss_generator = .5 * tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(fake_logit), logits=fake_logit)) if real_logit is None: return loss_generator loss_discriminator_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(real_logit), logits=real_logit)) loss_discriminator_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.zeros_like(fake_logit), logits=fake_logit)) loss_discriminator = .5 * loss_discriminator_real + .5 * loss_discriminator_fake return loss_discriminator, loss_generator @name_scope("wasserstein_loss") def wasserstein_loss(real_logit, fake_logit): """ :param real_logit: logit(s) for real images (if None just return generator loss) :param fake_logit: logit(s) for fake images :return: loss for discriminator and generator (unless real_logit is None) """ loss_generator = - fake_logit if real_logit is None: return loss_generator loss_discriminator_real = - real_logit loss_discriminator_fake = fake_logit # this actually negates the need for a bias in the FC layer, it's cancelled out loss_discriminator = loss_discriminator_real + loss_discriminator_fake return loss_discriminator, loss_generator @name_scope("drift_penalty") def drift_penalty(real_logit): return tf.square(real_logit) @name_scope("interpolates") def get_interpolates(real_data, fake_data, alpha_interpolates=None): if alpha_interpolates is None: alpha_interpolates = tf.random_uniform([real_data.get_shape().as_list()[0], 1, 1, 1], 0., 1.) return alpha_interpolates*fake_data + (1-alpha_interpolates)*real_data @name_scope("R1_gp") def r1_gp(fake_image, real_image, dis_model, alpha, label_dict=None, conditional_type=None, **kwargs): output_sum = 0 if conditional_type == "acgan": output, class_logits = dis_model(real_image, alpha=alpha, y=None) if class_logits is not None: for label in label_dict.keys(): output_sum = output_sum + tf.reduce_sum(class_logits[label]) elif conditional_type == "proj": output, _ = dis_model(real_image, alpha=alpha, y=tf.concat([label_dict[l] for l in label_dict.keys()], axis=-1)) else: output, _ = dis_model(real_image, alpha=alpha, y=None) # sum of outputs for each image in batch. The derivative of a output for an image from a different # batch should be 0, so this won't scale with batch size # todo: is the sum even necessary? output_sum = output_sum + tf.reduce_sum(output) grads = tf.gradients(output_sum, [real_image])[0] # all but first axis (usually [1,2,3]) or the first axis if only that is available axis = np.arange(1, grads.get_shape().ndims) if grads.get_shape().ndims is not 1 else None l2_squared_grads = tf.reduce_sum(tf.square(grads), axis=axis) penalty = l2_squared_grads * 0.5 return penalty @name_scope("l2_gp") def l2_gp(input, output): if output.get_shape().ndims not in [0, 1, 2]: raise ValueError("output should be ranks 0 to 2 (list of losses or single loss)") grads = tf.gradients(output, [input])[0] # all but first axis (usually [1,2,3]) or the first axis if only that is available axis = np.arange(1, grads.get_shape().ndims) if grads.get_shape().ndims is not 1 else None l2_grads = tf.sqrt(tf.reduce_sum(tf.square(grads), axis=axis)) penalty = tf.square(l2_grads-1.) return penalty @name_scope("wgan_gp") def wgan_gp(fake_image, real_image, dis_model, alpha, alpha_interpolates=None): interps = get_interpolates(real_image, fake_image, alpha_interpolates) output = tf.reduce_sum(dis_model(interps, alpha=alpha)) return l2_gp(interps, output) @name_scope("wgan_gp_eager") def wgan_gp_eager(fake_image, real_image, dis_model, alpha, alpha_interpolates=None): interps = get_interpolates(real_image, fake_image, alpha_interpolates) with tf.GradientTape() as tape: tape.watch(interps) # interps is not trainable so not auto-watched output = dis_model(interps, alpha=alpha) if output.get_shape().ndims not in [0, 1, 2]: raise ValueError("output should be ranks 0 to 2 (list of losses or single loss)") grads = tape.gradient(output, interps) # all but first axis (usually [1,2,3]) or the first axis if only that is available axis = np.arange(1, grads.get_shape().ndims) if grads.get_shape().ndims is not 1 else None l2_grads = tf.sqrt(tf.reduce_sum(tf.square(grads), axis=axis)) penalty = tf.square(l2_grads-1.) return penalty def build_models(hps, current_res_w, use_ema_sampling=False, num_classes=None, label_list=None): # todo: fix num_classes mapping_network = MappingNetwork() if hps.do_mapping_network else None gen_model = Generator(current_res_w, hps.res_w, use_pixel_norm=hps.do_pixel_norm, start_shape=(hps.start_res_h, hps.start_res_w), equalized_lr=hps.do_equalized_lr, traditional_input=hps.do_traditional_input, add_noise=hps.do_add_noise, resize_method=hps.resize_method, use_mapping_network=hps.do_mapping_network, cond_layers=hps.cond_layers, map_cond=hps.map_cond) dis_model = Discriminator(current_res_w, equalized_lr=hps.do_equalized_lr, do_minibatch_stddev=hps.do_minibatch_stddev, end_shape=(hps.start_res_h, hps.start_res_w), resize_method=hps.resize_method, cgan_nclasses=num_classes, label_list=label_list) if use_ema_sampling: sampling_model = Generator(current_res_w, hps.res_w, use_pixel_norm=hps.do_pixel_norm, start_shape=(hps.start_res_h, hps.start_res_w), equalized_lr=hps.do_equalized_lr, traditional_input=hps.do_traditional_input, add_noise=hps.do_add_noise, resize_method=hps.resize_method, use_mapping_network=hps.do_mapping_network, cond_layers=hps.cond_layers, map_cond=hps.map_cond) return gen_model, mapping_network, dis_model, sampling_model else: return gen_model, mapping_network, dis_model def build_optimizers(hps): optimizer_g = build_optimizer_from_hps(hps) optimizer_d = build_optimizer_from_hps(hps) optimizer_m = build_optimizer_from_hps(hps, lr_multiplier=1.) return optimizer_g, optimizer_d, optimizer_m def build_data_iterator(hps, files, current_res_h, current_res_w, batch_size=None, label_list=None, num_shards=None, shard_index=None): random.shuffle(files) dataset = get_dataset(files, current_res_h, current_res_w, hps.epochs_per_res, batch_size, label_list=label_list, num_shards=None, shard_index=None) it = dataset.make_one_shot_iterator() return it @name_scope("optimizer") def build_optimizer_from_hps(hps, lr_multiplier=1.): if hps.optimizer == "adam": return tf.train.AdamOptimizer(learning_rate=hps.learning_rate*lr_multiplier, beta1=hps.adam_beta1, beta2=hps.adam_beta2) elif hps.optimizer == "gradient_descent": return tf.train.GradientDescentOptimizer(learning_rate=hps.learning_rate*lr_multiplier) @name_scope("generate_summary") def generate_image_summary(images, name, step=None): """ :param images: images to display (batch_size, h, w, c) :param name: name for summary :param batch_size: if batch size in get_shape() is ambiguous, use this :param step: step to specify for summary :return: summary for grid of images """ #if images.get_shape()[0] % 4 != 0: # raise ValueError("batch must be divisible by 4") images = tf.pad(images, [[0, (4-images.get_shape()[0] % 4)], [0, 0], [0, 0], [0, 0]]) images = tf.clip_by_value(images, -1., 1.) # essential due to how tf.summary.image scales values grid = tf.contrib.gan.eval.image_grid( images, grid_shape=[images.get_shape()[0]//4, 4], image_shape=images.get_shape().as_list()[1:3]) if tf.executing_eagerly(): return tf.contrib.summary.image(name, grid, step=step) else: return tf.summary.image(name, grid) def backup_model_for_this_phase(save_paths, writer_path): copy(save_paths.gen_model, writer_path) copy(save_paths.dis_model, writer_path) copy(save_paths.sampling_model, writer_path) if os.path.exists(save_paths.mapping_network): copy(save_paths.mapping_network, writer_path) copy(save_paths.alpha, os.path.join(writer_path, "alpha.txt")) copy(save_paths.step, os.path.join(writer_path, "step.txt")) copytree(os.path.dirname(save_paths.gen_optim), os.path.join(writer_path, os.path.basename(os.path.dirname(save_paths.gen_optim)))) copytree(os.path.dirname(save_paths.dis_optim), os.path.join(writer_path, os.path.basename(os.path.dirname(save_paths.dis_optim)))) if os.path.exists(save_paths.mn_optim): copytree(os.path.dirname(save_paths.mn_optim), os.path.join(writer_path, os.path.basename(os.path.dirname(save_paths.mn_optim)))) def save_alpha_and_step(alpha, step, save_paths): with open(save_paths.alpha, "w") as f: f.write(str(alpha)) with open(save_paths.step, "w") as f: f.write(str(step)) def save_models_and_optimizers(sess, gen_model, dis_model, mapping_network, sampling_model, optimizer_g, optimizer_d, optimizer_m, save_paths): """ :param sess: session if in graph mode, otherwise unused :param alpha: float value for alpha at time of saving :param gen_model: generator with defined variables :param dis_model: discriminator with defined variables :param optimizer_g: generator's optimizer :param optimizer_d: discriminator's optimizer :param save_paths: paths containing models, optimizers, and alpha on disk """ gen_model.save_weights(save_paths.gen_model, save_format='h5') dis_model.save_weights(save_paths.dis_model, save_format='h5') sampling_model.save_weights(save_paths.sampling_model, save_format='h5') if mapping_network is not None: mapping_network.save_weights(save_paths.mapping_network, save_format='h5') if tf.executing_eagerly(): saver_d = tf.contrib.eager.Saver(var_list=optimizer_d.variables()) saver_d.save(file_prefix=save_paths.dis_optim) saver_g = tf.contrib.eager.Saver(var_list=optimizer_g.variables()) saver_g.save(file_prefix=save_paths.gen_optim) saver_g = tf.contrib.eager.Saver(var_list=optimizer_m.variables()) saver_g.save(file_prefix=save_paths.mn_optim) else: saver_d = tf.train.Saver(var_list=optimizer_d.variables()) saver_d.save(sess=sess, save_path=save_paths.dis_optim) saver_g = tf.train.Saver(var_list=optimizer_g.variables()) saver_g.save(sess=sess, save_path=save_paths.gen_optim) if len(optimizer_m.variables()) > 0: saver_g = tf.train.Saver(var_list=optimizer_m.variables()) saver_g.save(sess=sess, save_path=save_paths.mn_optim) def restore_models_and_optimizers(sess, gen_model, dis_model, mapping_network, sampling_model, optimizer_g, optimizer_d, optimizer_m, save_paths): """ :param sess: session if in graph mode, otherwise unused :param gen_model: generator with defined variables :param dis_model: discriminator with defined variables :param optimizer_g: generator's optimizer :param optimizer_d: discriminator's optimizer :param save_paths: paths containing models, optimizers, and alpha on disk :return: read alpha value """ if gen_model is not None: gen_model.load_weights(save_paths.gen_model, by_name=True) if dis_model is not None: dis_model.load_weights(save_paths.dis_model, by_name=True) if mapping_network is not None: mapping_network.load_weights(save_paths.mapping_network, by_name=True) if sampling_model is not None: sampling_model.load_weights(save_paths.sampling_model, by_name=True) if optimizer_g is not None: vars_g = filter_vars_with_checkpoint(chkpt_path=save_paths.gen_optim, var_list=optimizer_g.variables()) if optimizer_d is not None: vars_d = filter_vars_with_checkpoint(chkpt_path=save_paths.dis_optim, var_list=optimizer_d.variables()) if optimizer_m is not None and \ mapping_network is not None and \ os.path.exists(os.path.dirname(save_paths.mn_optim)): vars_mn = filter_vars_with_checkpoint(chkpt_path=save_paths.mn_optim, var_list=optimizer_m.variables()) if tf.executing_eagerly(): if optimizer_d is not None: saver_d = tf.contrib.eager.Saver(var_list=vars_d) saver_d.restore(file_prefix=tf.train.latest_checkpoint(os.path.dirname(save_paths.dis_optim))) if optimizer_g is not None: saver_g = tf.contrib.eager.Saver(var_list=vars_g) saver_g.restore(file_prefix=tf.train.latest_checkpoint(os.path.dirname(save_paths.gen_optim))) if optimizer_m is not None and os.path.exists(os.path.dirname(save_paths.mn_optim)): saver_g = tf.contrib.eager.Saver(var_list=vars_mn) saver_g.restore(file_prefix=tf.train.latest_checkpoint(os.path.dirname(save_paths.mn_optim))) else: if optimizer_d is not None: saver_d = tf.train.Saver(var_list=vars_d) saver_d.restore(sess=sess, save_path=tf.train.latest_checkpoint(os.path.dirname(save_paths.dis_optim))) if optimizer_g is not None: saver_g = tf.train.Saver(var_list=vars_g) saver_g.restore(sess=sess, save_path=tf.train.latest_checkpoint(os.path.dirname(save_paths.gen_optim))) if optimizer_m is not None and \ mapping_network is not None and \ os.path.exists(os.path.dirname(save_paths.mn_optim)): saver_g = tf.train.Saver(var_list=vars_mn) saver_g.restore(sess=sess, save_path=tf.train.latest_checkpoint(os.path.dirname(save_paths.mn_optim))) def restore_alpha_and_step(save_paths): step = None alpha = None if save_paths.step is not None: with open(save_paths.step, "r") as f: step = int(f.read()) if save_paths.alpha is not None: with open(save_paths.alpha, "r") as f: alpha = float(f.read()) return alpha, step def weight_following_ema_ops(average_model, reference_model, decay=.99): return [tf.assign(average_weight, average_weight*decay + updated_weight*(1-decay) if updated_weight.trainable else updated_weight) for average_weight, updated_weight in zip(average_model.weights, reference_model.weights)] def train(hps, files): ngpus = hps.ngpus config = tf.ConfigProto() if ngpus > 1: try: import horovod.tensorflow as hvd config = tf.ConfigProto() config.gpu_options.visible_device_list = str(hvd.local_rank()) except ImportError: hvd = None print("horovod not available, can only use 1 gpu") ngpus = 1 # todo: organize current_res_w = hps.current_res_w res_multiplier = current_res_w // hps.start_res_w current_res_h = hps.start_res_h * res_multiplier tfrecord_input = any('.tfrecords' in fname for fname in files) # if using tfrecord, assume dataset is duplicated across multiple resolutions if tfrecord_input: num_files = 0 for fname in [fname for fname in files if "res%d" % current_res_w in fname]: for record in tf.compat.v1.python_io.tf_record_iterator(fname): num_files += 1 else: num_files = len(files) label_list = [] total_classes = 0 if hps.label_file: do_cgan = True label_list, total_classes = build_label_list_from_file(hps.label_file) else: do_cgan = False print("dataset has %d files" % num_files) try: batch_size = int(hps.batch_size) try_schedule = False except ValueError: try_schedule = True if try_schedule: batch_schedule = ast.literal_eval(hps.batch_size) else: batch_schedule = None # always generate 32 sample images (should be feasible at high resolutions due to no training) # will probably need to edit for > 128x128 sample_batch = 32 sample_latent_numpy = np.random.normal(0., 1., [sample_batch, 512]) if do_cgan: examples_per_class = sample_batch // total_classes remainder = sample_batch % total_classes sample_cgan_latent_numpy = None for i in range(0, total_classes): class_vector = [0.] * total_classes class_vector[i] = 1. if sample_cgan_latent_numpy is None: sample_cgan_latent_numpy = [class_vector] * (examples_per_class + remainder) else: sample_cgan_latent_numpy += [class_vector] * examples_per_class sample_cgan_latent_numpy = np.array(sample_cgan_latent_numpy) use_beholder = hps.use_beholder if use_beholder: try: from tensorboard.plugins.beholder import Beholder except ImportError: print("Could not import beholder") use_beholder = False while current_res_w <= hps.res_w: if ngpus > 1: hvd.init() print("building graph") if batch_schedule is not None: batch_size = batch_schedule[current_res_w] print("res %d batch size is now %d" % (current_res_w, batch_size)) gen_model, mapping_network, dis_model, sampling_model = \ build_models(hps, current_res_w, use_ema_sampling=True, num_classes=total_classes, label_list=label_list if hps.conditional_type == "acgan" else None) with tf.name_scope("optimizers"): optimizer_d, optimizer_g, optimizer_m = build_optimizers(hps) if ngpus > 1: optimizer_d = hvd.DistributedOptimizer(optimizer_d) optimizer_g = hvd.DistributedOptimizer(optimizer_g) optimizer_m = hvd.DistributedOptimizer(optimizer_m) with tf.name_scope("data"): num_shards = None if ngpus == 1 else ngpus shard_index = None if ngpus == 1 else hvd.rank() it = build_data_iterator(hps, files, current_res_h, current_res_w, batch_size, label_list=label_list, num_shards=num_shards, shard_index=shard_index) next_batch = it.get_next() real_image = next_batch['data'] fake_latent1 = tf.random_normal([batch_size, 512], 0., 1., name="fake_latent") fake_latent2 = tf.random_normal([batch_size, 512], 0., 1., name="fake_latent") fake_label_dict = None real_label_dict = None if do_cgan: fake_label_dict = {} real_label_dict = {} for label in label_list: if hps.cond_uniform_fake: distribution = np.ones_like([label.probabilities]) else: distribution = np.log([label.probabilities]) fake_labels = tf.random.categorical(distribution, batch_size) if label.multi_dim is False: normalized_labels = (fake_labels - tf.reduce_min(fake_labels)) / \ (tf.reduce_max(fake_labels) - tf.reduce_min(fake_labels)) fake_labels = tf.reshape(normalized_labels, [batch_size, 1]) else: fake_labels = tf.reshape(tf.one_hot(fake_labels, label.num_classes), [batch_size, label.num_classes]) fake_label_dict[label.name] = fake_labels real_label_dict[label.name] = next_batch[label.name] #fake_label_list.append(fake_labels) # ideally would handle one dimensional labels differently, theory isn't well supported # for that though (example: categorical values of short, medium, tall are on one dimension) # real_labels = tf.reshape(tf.one_hot(tf.cast(next_batch[label.name], tf.int32), num_classes), # [batch_size, num_classes]) #real_label_list.append(real_labels) fake_label_tensor = tf.concat([fake_label_dict[l] for l in fake_label_dict.keys()], axis=-1) real_label_tensor = tf.concat([real_label_dict[l] for l in real_label_dict.keys()], axis=-1) sample_latent = tf.constant(sample_latent_numpy, dtype=tf.float32, name="sample_latent") if do_cgan: sample_cgan_w = tf.constant(sample_cgan_latent_numpy, dtype=tf.float32, name="sample_cgan_latent") alpha_ph = tf.placeholder(shape=(), dtype=tf.float32, name="alpha") # From Fig 2: "During a resolution transition, # we interpolate between two resolutions of the real images" real_image = real_image*alpha_ph + \ (1-alpha_ph)*upsample(downsample_nv(real_image), method="nearest_neighbor") real_image = upsample(real_image, method='nearest_neighbor', factor=hps.res_w//current_res_w) if do_cgan: with tf.name_scope("gen_synthesis"): fake_image = gen_model(alpha_ph, zs=[fake_latent1, fake_latent2], mapping_network=mapping_network, cgan_w=fake_label_tensor, random_crossover=True) real_logit, real_class_logits = dis_model(real_image, alpha_ph, real_label_tensor if hps.conditional_type == "proj" else None) fake_logit, fake_class_logits = dis_model(fake_image, alpha_ph, fake_label_tensor if hps.conditional_type == "proj" else None) else: with tf.name_scope("gen_synthesis"): fake_image = gen_model(alpha_ph, zs=[fake_latent1, fake_latent2], mapping_network=mapping_network, random_crossover=True) real_logit, real_class_logits = dis_model(real_image, alpha_ph) # todo: make work with other labels fake_logit, fake_class_logits = dis_model(fake_image, alpha_ph) with tf.name_scope("gen_sampling"): average_latent = tf.constant(np.random.normal(0., 1., [10000, 512]), dtype=tf.float32) low_psi = 0.20 if hps.map_cond: class_vector = [0.] * total_classes class_vector[0] = 1. # one hot encoding average_w = tf.reduce_mean(mapping_network(tf.concat([average_latent, [class_vector]*10000], axis=-1)), axis=0) sample_latent_lowpsi = average_w + low_psi * \ (mapping_network(tf.concat([sample_latent, [class_vector]*sample_batch], axis=-1)) - average_w) else: average_w = tf.reduce_mean(mapping_network(average_latent), axis=0) sample_latent_lowpsi = average_w + low_psi * (mapping_network(sample_latent) - average_w) average_w_batch = tf.tile(tf.reshape(average_w, [1, 512]), [sample_batch, 1]) if do_cgan: sample_img_lowpsi = sampling_model(alpha_ph, intermediate_ws=sample_latent_lowpsi, cgan_w=sample_cgan_w) sample_img_base = sampling_model(alpha_ph, zs=sample_latent, mapping_network=mapping_network, cgan_w=sample_cgan_w) sample_img_mode = sampling_model(alpha_ph, intermediate_ws=average_w_batch, cgan_w=sample_cgan_w) sample_img_mode = tf.concat([sample_img_mode[0:2] + sample_img_mode[-3:-1]], axis=0) else: sample_img_lowpsi = sampling_model(alpha_ph, intermediate_ws=sample_latent_lowpsi) sample_img_base = sampling_model(alpha_ph, zs=sample_latent, mapping_network=mapping_network) sample_img_mode = sampling_model(alpha_ph, intermediate_ws=average_w_batch)[0:4] sample_images = tf.concat([sample_img_lowpsi, sample_img_mode, sample_img_base], axis=0) sampling_model_init_ops = weight_following_ema_ops(average_model=sampling_model, reference_model=gen_model) #sample_img_base = gen_model(sample_latent, alpha_ph, mapping_network) with tf.name_scope("loss"): loss_discriminator, loss_generator = hps.loss_fn(real_logit, fake_logit) if real_class_logits is not None: for label in label_list: label_loss = tf.nn.softmax_cross_entropy_with_logits(labels=next_batch[label.name], logits=real_class_logits[label.name]) loss_discriminator += label_loss * hps.cond_weight * 1./(len(label_list)) tf.summary.scalar("label_loss_real", tf.reduce_mean(label_loss)) if fake_class_logits is not None: for label in label_list: label_loss = tf.nn.softmax_cross_entropy_with_logits(labels=fake_label_dict[label.name], logits=fake_class_logits[label.name]) loss_discriminator += label_loss * hps.cond_weight * 1./(len(label_list)) tf.summary.scalar("label_loss_fake", tf.reduce_mean(label_loss)) loss_generator += label_loss * hps.cond_weight * 1./(len(label_list)) if hps.gp_fn: gp = hps.gp_fn(fake_image, real_image, dis_model, alpha_ph, real_label_dict, conditional_type=hps.conditional_type) tf.summary.scalar("gradient_penalty", tf.reduce_mean(gp)) loss_discriminator += hps.lambda_gp*gp dp = drift_penalty(real_logit) tf.summary.scalar("drift_penalty", tf.reduce_mean(dp)) if hps.lambda_drift != 0.: loss_discriminator = tf.expand_dims(loss_discriminator, -1) + hps.lambda_drift * dp loss_discriminator_avg = tf.reduce_mean(loss_discriminator) loss_generator_avg = tf.reduce_mean(loss_generator) with tf.name_scope("train"): train_step_d = optimizer_d.minimize(loss_discriminator_avg, var_list=dis_model.trainable_variables) # todo: test this with tf.control_dependencies(weight_following_ema_ops(average_model=sampling_model, reference_model=gen_model)): train_step_g = [optimizer_g.minimize(loss_generator_avg, var_list=gen_model.trainable_variables)] if hps.do_mapping_network: train_step_g.append( optimizer_m.minimize(loss_generator_avg, var_list=mapping_network.trainable_variables)) with tf.name_scope("summary"): tf.summary.histogram("real_scores", real_logit) tf.summary.scalar("loss_discriminator", loss_discriminator_avg) tf.summary.scalar("loss_generator", loss_generator_avg) tf.summary.scalar("real_logit", tf.reduce_mean(real_logit)) tf.summary.scalar("fake_logit", tf.reduce_mean(fake_logit)) tf.summary.histogram("real_logit", real_logit) tf.summary.histogram("fake_logit", fake_logit) tf.summary.scalar("alpha", alpha_ph) merged = tf.summary.merge_all() image_summary_real = generate_image_summary(real_image, "real") image_summary_fake_avg = generate_image_summary(sample_images, "fake_avg") #image_summary_fake = generate_image_summary(sample_img_base, "fake") global_step = tf.train.get_or_create_global_step() if hps.profile: builder = tf.profiler.ProfileOptionBuilder opts = builder(builder.time_and_memory()).order_by('micros').build() with tf.contrib.tfprof.ProfileContext(hps.model_dir, trace_steps=[], dump_steps=[]) as pctx: with tf.Session(config=config) as sess: #if hps.tboard_debug: # sess = tf_debug.TensorBoardDebugWrapperSession(sess, "localhost:6064") #elif hps.cli_debug: # sess = tf_debug.LocalCLIDebugWrapperSession(sess) sess.run(tf.global_variables_initializer()) sess.run(sampling_model_init_ops) alpha = 1. step = 0 if os.path.exists(hps.save_paths.gen_model) and os.path.exists(hps.save_paths.dis_model): if ngpus == 1 or hvd.rank() == 0: print("restoring") restore_models_and_optimizers(sess, gen_model, dis_model, mapping_network, sampling_model, optimizer_g, optimizer_d, optimizer_m, hps.save_paths) if os.path.exists(hps.save_paths.alpha) and os.path.exists(hps.save_paths.step): alpha, step = restore_alpha_and_step(hps.save_paths) print("alpha") print(alpha) if alpha != 1.: alpha_inc = 1. / (hps.epochs_per_res * (num_files / batch_size)) else: alpha_inc = 0. writer_path = \ os.path.join(hps.model_dir, "summary_%d" % current_res_w, "alpha_start_%d" % alpha) if use_beholder: beholder = Beholder(writer_path) writer = tf.summary.FileWriter(writer_path, sess.graph) writer.add_summary(image_summary_real.eval(feed_dict={alpha_ph: alpha}), step) print("Starting res %d training" % current_res_w) t = trange(hps.epochs_per_res * num_files // batch_size, desc='Training') if ngpus > 1: sess.run(hvd.broadcast_global_variables(0)) for phase_step in t: try: for i in range(0, hps.ncritic): if hps.profile: pctx.trace_next_step() pctx.dump_next_step() if step % 5 == 0: summary, ld, _ = sess.run([merged, loss_discriminator_avg, train_step_d if not hps.no_train else tf.no_op()], feed_dict={alpha_ph: alpha}) writer.add_summary(summary, step) else: ld, _ = sess.run([loss_discriminator_avg, train_step_d if not hps.no_train else tf.no_op()], feed_dict={alpha_ph: alpha}) if hps.profile: pctx.profiler.profile_operations(options=opts) if hps.profile: pctx.trace_next_step() pctx.dump_next_step() lg, _ = sess.run([loss_generator_avg, train_step_g if not hps.no_train else tf.no_op()], feed_dict={alpha_ph: alpha}) if hps.profile: pctx.profiler.profile_operations(options=opts) alpha = min(alpha+alpha_inc, 1.) #print("step: %d" % step) #print("loss_d: %f" % ld) #print("loss_g: %f\n" % lg) t.set_description('Overall step %d, loss d %f, loss g %f' % (step+1, ld, lg)) if use_beholder: try: beholder.update(session=sess) except Exception as e: print("Beholder failed: " + str(e)) use_beholder = False if phase_step < 5 or (phase_step < 500 and phase_step % 10 == 0) or (step % 1000 == 0): writer.add_summary(image_summary_fake_avg.eval( feed_dict={alpha_ph: alpha}), step) #writer.add_summary(image_summary_fake.eval( # feed_dict={alpha_ph: alpha}), step) if hps.steps_per_save is not None and step % hps.steps_per_save == 0 and (ngpus == 1 or hvd.rank() == 0): save_models_and_optimizers(sess, gen_model, dis_model, mapping_network, sampling_model, optimizer_g, optimizer_d, optimizer_m, hps.save_paths) save_alpha_and_step(1. if alpha_inc != 0. else 0., step, hps.save_paths) step += 1 except tf.errors.OutOfRangeError: break assert (abs(alpha - 1.) < .1), "Alpha should be close to 1., not %f" % alpha # alpha close to 1. (dataset divisible by batch_size for small sets) if ngpus == 1 or hvd.rank() == 0: print(1. if alpha_inc != 0. else 0.) save_models_and_optimizers(sess, gen_model, dis_model, mapping_network, sampling_model, optimizer_g, optimizer_d, optimizer_m, hps.save_paths) backup_model_for_this_phase(hps.save_paths, writer_path) save_alpha_and_step(1. if alpha_inc != 0. else 0., step, hps.save_paths) # Will generate Out of range errors, see if it's easy to save a tensor so get_next() doesn't need # a new value #writer.add_summary(image_summary_real.eval(feed_dict={alpha_ph: 1.}), step) #writer.add_summary(image_summary_fake.eval(feed_dict={alpha_ph: 1.}), step) tf.reset_default_graph() if alpha_inc == 0: current_res_h *= 2 current_res_w *= 2
UTF-8
Python
false
false
38,380
py
14
train.py
13
0.564982
0.558494
0
722
52.157895
162
protimaru/roma
8,778,913,188,721
831de6484c64a9eab3388c3956f04625b7e293cb
d99f9f3d5ee79ec5283320d9ce6a79570f5eea8a
/posts/views.py
df421a00b9ce72487fc4dab8f7974bf0cdaf416a
[]
no_license
https://github.com/protimaru/roma
72c648ffd3bee81dd2584d8056397034d9775c23
6531ba1d6a697c5182ba1c00240dc7cccdbaad04
refs/heads/master
2017-11-20T01:15:07.504443
2017-06-19T18:20:40
2017-06-19T18:20:40
94,805,944
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db.models import Q from django.http import HttpResponse from django.shortcuts import render, render_to_response, get_object_or_404 from posts.models import Post, Comment, Category, SubCategory from posts.forms import CommentForm def home(request): posts = Post.objects.all() category_ = Category.objects.all() popular_posts = Post.objects.order_by('-views')[:3] query = request.GET.get('search') if query: posts = posts.filter( Q(title__icontains=query) | Q(content__icontains=query) ).distinct() context = { 'popular_posts': popular_posts, 'posts': posts, 'category': category_ } return render(request, ['posts/index.html', 'sidebar.html', 'base.html'], context) def detail(request, slug): get_post = get_object_or_404(Post, slug=slug) category_ = Category.objects.all() comments = Comment.objects.filter(post=get_post) get_post.views += 1 get_post.save() form = CommentForm() if request.POST: form = CommentForm(request.POST or None) if form.is_valid(): sub = form.save(commit=False) sub.save() print(request.POST['post']) popular_posts = Post.objects.order_by('-views')[:3] context = { 'form': form, 'comments': comments, 'popular_posts': popular_posts, 'post': get_post, 'category': category_ } return render(request, ['posts/detail.html', 'sidebar.html', 'base.html'], context) def get_tag(tag): web = ['python', 'html', 'css', 'jquery'] mobile = ['android', 'ios'] if tag == 'web': return web elif tag == 'mobile': return mobile def category(request, tag): get = get_object_or_404(Category, category=tag) posts = Post.objects.filter(category__exact=get) category_ = Category.objects.all() query = request.GET.get('search') if query: posts = posts.filter( Q(title__icontains=query) | Q(content__icontains=query) ).distinct() popular_posts = Post.objects.order_by('-views')[:3] context = { 'tag': get_tag(tag), 'popular_posts': popular_posts, 'get': get, 'posts': posts, 'category': category_ } return render(request, ['posts/index.html', 'sidebar.html', 'base.html'], context) def sub_category(request, sub_cat): popular_posts = Post.objects.order_by('-views')[:3] category_ = Category.objects.all() # s = SubCategory.objects.filter() context = { 'popular_posts': popular_posts, # 'tag': SubCategory.objects.filter(sub_category__exact=sub_cat), 'tag': SubCategory.objects.filter(category__subcategory__sub_category__exact=sub_cat), 'posts': Post.objects.filter(sub_category__sub_category__exact=sub_cat), 'category': category_ } return render(request, ['posts/index.html', 'sidebar.html', 'base.html'], context) def about(request): category_ = Category.objects.all() popular_posts = Post.objects.order_by('-views')[:3] context = { 'popular_posts': popular_posts, 'category': category_ } return render(request, 'about.html', context)
UTF-8
Python
false
false
3,243
py
15
views.py
6
0.610854
0.606229
0
102
30.794118
94
leggitta/Analysis
8,083,128,498,088
e21553d6623270f85166a2a12bfc39b05bf7fb23
2c5cb98b22b6e4a0aa3e5c6df3f3c421a45a2d46
/merge_epochs.py
776094a9a29b348782d23599ce29f8397273810a
[]
no_license
https://github.com/leggitta/Analysis
8e26a691a621e220f8c7f952c4d9aa73e6b0e563
9f4b6b86dd47a4d5ed0b3c8d4b3242cb809855af
refs/heads/master
2016-09-03T06:39:39.072373
2015-11-30T23:14:23
2015-11-30T23:14:23
41,761,735
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import mne import os import numpy as np # suppress text output mne.set_log_level(False) # define the data directory data_dir = "../Data" # define the participants pids = range(1001, 1042) # additional parameters nt = 1638 # number of times nch = 69 # number of channels npa = len(pids) # number of participants # define the colors c = ['c', 'm', 'b', 'r'] # loop through the participants for p, pid in enumerate(pids): # create a list to store epochs epos = [] # loop through the blocks for b in ['PV0', 'PV1', 'WM0', 'WM1']: # get the data file epo_fname = "%s/POSTICA/%d_%s_postica-epo.fif" % (data_dir, pid, b) assert os.path.exists(epo_fname) # read the epoch file epo = mne.read_epochs(epo_fname, proj=False, add_eeg_ref=False) # re-code the event types if 'PV' in b: epo.events[:, 2] /= 4 epo.event_id = {'PV_NEU': 4096, 'PV_NEG': 8192} elif 'WM' in b: epo.event_id = {'WM_NEU': 16384, 'WM_NEG': 32768} # update the list epos.append(epo) # concatenate all epochs epo = mne.epochs.concatenate_epochs(epos) assert epo._data.shape == (160, nch, nt) # save the data epo.save('%s/EPODATA/%d-epo.fif' % (data_dir, pid))
UTF-8
Python
false
false
1,287
py
81
merge_epochs.py
49
0.591298
0.559441
0
51
24.235294
75
cpaszul/advent-of-code-2018
19,473,381,724,776
05f0f3f972669617456544c4392c94667ebbc84e
75bddb587f00d67084f06d12810c1f2a797800c7
/day10.py
0fa32bc5fe4c542ae9a08b7153fe6e20c8df3508
[]
no_license
https://github.com/cpaszul/advent-of-code-2018
742cd95f870c93ac0d31d42ff3bcf163c5bb0193
0444d93cb9e40713e20fbe8dc4ea1ed06e221a23
refs/heads/master
2021-06-23T01:07:55.875462
2020-12-08T19:35:53
2020-12-08T19:35:53
160,435,926
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import re DEFAULT_INPUT = 'day10.txt' class Point: def __init__(self, x, y, vx, vy): self.x = x self.y = y self.time = 0 self.vx = vx self.vy = vy def advance(self, n=1): for _ in range(n): self.x += self.vx self.y += self.vy self.time += 1 def reverse(self, n=1): for _ in range(n): self.x -= self.vx self.y -= self.vy self.time -= 1 def set_to_time(self, n): if n > self.time: self.advance(n - self.time) elif n < self.time: self.reverse(self.time - n) def day_10(loc=DEFAULT_INPUT): r = re.compile(r'position=< ?(-?\d+), +(-?\d+)> velocity=< ?(-?\d+), +(-?\d+)>') points = [] with open(loc) as f: for line in f.readlines(): line = line.rstrip() m = r.match(line) x = int(m.group(1)) y = int(m.group(2)) vx = int(m.group(3)) vy = int(m.group(4)) points.append(Point(x, y, vx, vy)) area = total_area(points) t = 0 while True: for point in points: point.advance() new_area = total_area(points) if new_area > area: closest_at = t break else: area = new_area t += 1 draw(points, t) return t def total_area(points): min_x = min(points, key=lambda p:p.x).x min_y = min(points, key=lambda p:p.y).y max_x = max(points, key=lambda p:p.x).x max_y = max(points, key=lambda p:p.y).y return (max_x - min_x + 1) * (max_y - min_y + 1) def draw(points, t=None): if t: for point in points: point.set_to_time(t) min_x = min(points, key=lambda p:p.x).x min_y = min(points, key=lambda p:p.y).y max_x = max(points, key=lambda p:p.x).x max_y = max(points, key=lambda p:p.y).y grid = [] width = max_x - min_x + 1 height = max_y - min_y + 1 for _ in range(height): row = ['.' for _ in range(width)] grid.append(row) for point in points: mod_x = point.x - min_x mod_y = point.y - min_y grid[mod_y][mod_x] = '#' print('\n'.join(''.join(row) for row in grid)) if __name__ == '__main__': print('Solution for Part Two:', day_10())
UTF-8
Python
false
false
2,345
py
25
day10.py
25
0.479318
0.470362
0
86
26.267442
84
diemol/programming_foundations_with_python
3,427,383,907,649
76df96e44625011f951ecb61e6542965eb64a960
338fc107b70382bfd425c9b5663a70472fd0b061
/movies/entertainment_center.py
9b1032b37ff5f1756555c30072393e8e657aaf7e
[]
no_license
https://github.com/diemol/programming_foundations_with_python
6ca978b4a503a96b67196257f306687a067c2394
6663b76b1f2054acc1c823c6aed06901e90a07a9
refs/heads/master
2016-08-11T11:11:23.953304
2016-02-09T19:46:54
2016-02-09T19:46:54
51,385,486
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import media import fresh_tomatoes toy_story = media.Movie("Toy Story", "A story of a boy and his toys that come to life", "https://upload.wikimedia.org/wikipedia/en/1/13/Toy_Story.jpg", "https://www.youtube.com/watch?v=4KPTXpQehio") avatar = media.Movie("Avatar", "A marine on an alien planet", "https://upload.wikimedia.org/wikipedia/en/b/b0/Avatar-Teaser-Poster.jpg", "https://www.youtube.com/watch?v=5PSNL1qE6VY") movies = [toy_story, avatar, toy_story, avatar, toy_story, avatar] # fresh_tomatoes.open_movies_page(movies)
UTF-8
Python
false
false
669
py
8
entertainment_center.py
6
0.587444
0.575486
0
16
40.625
95
nanome-ai/plugin-matryx
17,592,186,062,244
1c935cb7b3fec2e2245ace6011f3834fb87b6b4b
69875004057402c50f428f3ada7d9a00559633e7
/nanome_matryx/menus/select_winners/UpdateRoundMenu.py
2d1359d59d211d7e291b0c72878b3611f9cf0ae9
[ "MIT" ]
permissive
https://github.com/nanome-ai/plugin-matryx
20ad971da14860672dab4c0952d20c570fe58421
4030afd81348610e16c0787a74fca29aea601f33
refs/heads/master
2020-06-24T20:57:01.046999
2020-01-14T18:48:16
2020-01-14T18:48:16
199,087,399
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests from functools import partial from datetime import datetime, timedelta import calendar import math from components.Calendar import Calendar import nanome import utils from nanome.util import Logs class UpdateRoundMenu: def __init__(self, _plugin, select_winners_menu, on_close): self._plugin = _plugin menu = nanome.ui.Menu.io.from_json('menus/json/select_winners/update_round.json') menu.register_closed_callback(on_close) self._menu = menu self._menu_select_winners = select_winners_menu self._button_create = menu.root.find_node('Confirm').get_content() self._button_create.register_pressed_callback(self.update_new_round) self._button_cancel = menu.root.find_node('Cancel').get_content() self._button_cancel.register_pressed_callback(on_close) self._input_bounty = menu.root.find_node('Bounty Input').get_content() left_container = menu.root.find_node('Start Cal Container') self._calendar_start = Calendar(_plugin, left_container) right_container = menu.root.find_node('End Cal Container') self._calendar_end = Calendar(_plugin, right_container) now = datetime.now() self._start_datetime = now self._end_datetime = now + timedelta(days=30) self._calendar_start.set_datetime(self._start_datetime) self._calendar_start.set_readonly(True) self._calendar_end.set_datetime(self._end_datetime) self._calendar_end.set_min_datetime(now + timedelta(hours=1)) self._calendar_end.set_max_datetime(now + timedelta(days=365)) self._calendar_end.register_changed_callback(self.update_round_end) def show_menu(self, button=None): self._plugin.open_menu(self._menu) def update_new_round(self, button): if not self._input_bounty.input_text: self._plugin._modal.show_error('please enter a round bounty') return round_info = ( utils.date_to_timestamp(self._calendar_start._datetime), # start utils.diff_seconds(self._start_datetime, self._end_datetime), # duration 60 * 60 * 24 * 7, # review self._plugin._web3.to_wei(self._input_bounty.input_text) # bounty ) self._menu_select_winners.select_winners(1, round_info) def update_round_end(self, dt): self._end_datetime = dt self._plugin.refresh_menu()
UTF-8
Python
false
false
2,449
py
40
UpdateRoundMenu.py
23
0.658636
0.652511
0
66
36.121212
89
dyh1998/djangoweb
8,864,812,519,070
d2302a399de7ed3a493776258da8b49c7b4af04f
c3b96f6f23370c5d99667a7bf2e5b30679e990fc
/user/models.py
b8bd7a9428f7b898d0c640a9a0a16703fcfade0f
[]
no_license
https://github.com/dyh1998/djangoweb
5c25012da101571db906ef63d3dd50387658ac0f
5156651b197acc788daaf22d2e58329294c3acf8
refs/heads/main
2023-03-13T02:22:18.475184
2021-03-08T14:47:59
2021-03-08T14:47:59
341,481,731
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.contrib.auth.models import User # Create your models here. # class Profile(models.Model): # GENDER_CHOICES = (('M', 'Male'), ('F', 'Female')) # user = models.OneToOneField(User, on_delete=models.CASCADE, verbose_name='用户') # gender = models.CharField(max_length=1, choices=GENDER_CHOICES, verbose_name='性别') # 性别 # birth_date = models.DateField(null=True, blank=True, verbose_name='出生日期') # 出生日期 # tel_number = models.CharField(max_length=11)
UTF-8
Python
false
false
547
py
33
models.py
21
0.676301
0.67052
0
11
45.181818
94
chea-young/Financial-Statistics-Practice-Using-Python
9,620,726,772,177
d7132925d9402e9f75ab3e1acb289e0c9e8ab49d
ed5d4fcb6566030a491911dcb89a85c823cf0f7f
/13주차/45.py
8347bab89ea585c92725eb74be960e336f7fd75d
[]
no_license
https://github.com/chea-young/Financial-Statistics-Practice-Using-Python
8d02fa66e33e4ccdf1761467d586f4b49237e4b8
eac6a51b8798750117c1bd2d497e8ccf6e9caf3b
refs/heads/master
2023-07-01T00:16:01.662422
2021-08-11T10:27:42
2021-08-11T10:27:42
356,812,926
0
0
null
false
2021-07-10T13:39:48
2021-04-11T08:36:54
2021-07-04T05:32:39
2021-07-10T13:39:47
6,814
0
0
0
Python
false
false
""" ----------------------- 파이썬 금융통계 실습 ---------------------------""" # 지난 시간에 간단히 계산했던 평균과 기대값을 조금 더 살펴봅시다. #%% 1. 평균과 기대값 # 평균: 어떤 데이터를 하나로 요약할 수 있는 대표값으로서 일반적으로 산술평균을 의미 # average=1/n*sum(x_i)=sum(1/n*x_i) # 여기서 x_i는 i번째 데이터, # n은 자료의 갯수, 즉 x_i들의 갯수 # # 기대값: 데이터의 값에 데이터가 발생할 확률을 곱해서 구한 평균 # E(x)=sum(p_i*x_i) # 여기서, p_i는 데이터 x_i가 발생할 확률, 즉 P(x_i)=p_i # # 평균과 기대값의 차이? # - 평균: 사후적인 개념 ==> 평균을 계산하는 경우 동일한 가중치를 갖는 과거 데이터로부터 계산 # - 기대값: 사전적인 개념 ==> 평균을 계산하기 위해 미래 데이터가 발생가능한 확률을 부여한후 # 확률과 데이터의 곱을 합하여 계산 # 주사위 예제를 통해서 평균과 기대값의 차이를 살펴보도록 합시다. # 우선, 1~6까지 발생할 가능성이 동일한 주사위를 던진 결과를 생성하여 봅시다. import numpy as np n=10 # 주사위 던진 횟수 dice=np.random.randint(1,7,size=n) # 주사위 던진 결과 저장 # 평균 average=sum(dice)/n # 기대값: 주사위의 6개 수가 발생할 확률이 1/6으로 동일하다고 가정 case=np.array([1,2,3,4,5,6]) prob=np.array([1/6,1/6,1/6,1/6,1/6,1/6]) Expectation=sum(case*prob) # NOTE sum(p_i*x_i) 이 공식 사용 print(Expectation) #%% 위의 평균과 기대값을 비교해 보니 조금 다릅니다. # 왜 이런 차이가 발생할까요? # 기대값은 사전적으로 계산한 이론적인 평균인 반면 평균은 데이터로부터 경험적으로 계산한 평균 # 따라서, 과거 데이터의 요약에서는 평균(사후적)을 많이 사용하고, # 미래 데이터의 요약에서는 기대값(사전적)을 많이 사용 # 그렇다면 평균과 기대값은 항상 다른가요? # 우리가 미래를 예측한다고 할 때 # 과거의 충분한 양의 데이터를 가지고 있고, # 과거에 발생한 개별 사건에 대한 정확한 확률만 부여할 수 있다면, # 평균과 기대값은 일치하게 됩니다. # 다만, 가정: 미래의 발생할 사건은 과거의 발생할 사건의 무작위적인 반복 # 이를 확인하기 위해 앞의 주사위 예제에서 주사위 던진 횟수를 크게 증가시켜 봅시다. average=np.zeros(shape=(10000,2)) for n in range(1,10001): dice=np.random.randint(1,7,size=n) average[n-1,0]=n average[n-1,1]=sum(dice)/n import matplotlib.pyplot as plt fig=plt.figure() ax=fig.add_subplot(1,1,1) ax.plot(average[:,0], average[:,1]) #%% 위의 그림에서 데이터의 갯수가 커질수록 평균은 이론적인 평균값(기대값)인 3.5로 # 수렴해 가는 것을 확인할 수 있음(물론 1~6까지 각각 발생할 확률이 1/6이 맞다는 가정하에) # 앞의 주사위 예제에서 기대값은 주사위의 1~6까지 각각 발생할 확률을 안다고 가정하였다. # 하지만, 일반적으로 금융데이터의 경우 각각의 금융데이터가 발생할 확률을 미리 아는 경우는 없다. # 이런 경우 우리는 각각의 금융데이터가 미래에 발생할 확률을 과거의 자료로 부터 계산(추정)해야 한다. # 주사위 예제로 부터 1~6까지 각각의 경우가 발생할 확률을 구해서 평균과 비교해보자. n=100 # 주사위 던진 횟수 dice=np.random.randint(1,7,size=n) # 주사위 던진 결과 저장 average=dice.mean() # 평균계산 import pandas as pd dice_df=pd.DataFrame(dice, columns=["dice"]) # array --> dataframe print(dice_df) dice_df_prob=dice_df.groupby('dice').dice.count()/n # 각각의 경험적 확률 계산 sum(dice_df_prob) # 합이 1인지 확인 case=np.array([1,2,3,4,5,6]) # 주사위 발생 가능 수 prob=dice_df_prob.to_numpy() # NOTE ndarray-like이지만 ndarray가 아니므로 실제 ndarray가 필요한 상황에 사용 Expectation=sum(case*prob) # 기대값 계산 print(Expectation) #%% 위의 예제에서 평균(average)과 기대값(Expectation)은 정확하게 일치! # 즉, 미래 발생할 사건의 확률에 대하여 알 수 없는 경우 과거의 충분한 자료로부터 확률을 구하면 # 사후적 평균과 사전적 기대값은 일치하게 된다. # 여기서 중요한 것은 미래사건의 확률을 구하기 위하여 미래사건의 발생을 잘 반영하는 # 과거자료를 사용하여야 한다. # 주가 예제: 2020년 1월 1일부터 2020년 12월 31일까지 KOSPI 일별주가수익률에 대하여 # 일별주가수익률이 양인 경우를 1, 음인 경우를 0으로 두고 다음을 계산하여 봅시다. # i) 데이터를 바탕으로 일별주가수익률이 오를 확률과 내릴 확률 # ii) 과거 1년치 자료를 보았을 때 2021년 1월 1일 주가가 오를 확률은 얼마입니까? import yfinance as yf kospi = yf.download('^KS11', start="2020-01-01", end="2020-12-31") kospi = yf.download('^KS11', start="2020-01-01", end="2020-12-31")['Adj Close'] kospi_rtn = np.log(kospi / kospi.shift(1)) kospi_rtn.plot() prob_up=sum(kospi_rtn>0)/len(kospi_rtn) # 과거 1년 동안 코스피가 오른 경우에 대한 경험적 확률 print(prob_up) prob_down=1-prob_up # 과거 1년 동안 코스피가 내린 경우에 대한 경험적 확률 print(prob_down) # 위의 예시에서 우리는 내일의 주가가 오를지 내를지를 확률적으로 판단하기 위하여 # 얼마정도의 과거 데이터를 보아야 할까요? 다음 강의에서 다루어 봅시다.
UTF-8
Python
false
false
5,684
py
90
45.py
78
0.666667
0.623686
0
89
35.325843
88
rlbyrne/rlb_MWA
5,884,105,236,531
5d6a0d328f472a4a35169b2f2ad4cf8a2590f4b1
dec55c8820480cc4bb227fab7130f90104113de9
/sky_imaging/load_healpix_map_basic.py
a8fea3ff4e7ea808a415d4003c29212b2b50795a
[]
no_license
https://github.com/rlbyrne/rlb_MWA
0b59d540dd93f01c98c3c031c5088503636c4b7f
aa80e1c461493bf4182f366551edf7affdef3e67
refs/heads/master
2022-08-22T12:24:18.054575
2022-08-08T21:18:45
2022-08-08T21:18:45
41,505,677
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python from astropy.io import fits import numpy as np import healpy as hp contents = fits.open('/Users/ruby/Astro/diffuse_map.healfits') nside = contents[0].header['nside'] ordering = contents[0].header['ordering'] signal_data = contents[0].data freq = contents[0].header['crval2'] # Frequency in MHz pixel_vals = contents[1].data['hpx_inds'] contents.close() stokes_I = np.squeeze(signal_data[:, 0, 0]) stokes_Q = np.squeeze(signal_data[:, 0, 1]) stokes_U = np.squeeze(signal_data[:, 0, 2]) stokes_V = np.squeeze(signal_data[:, 0, 3]) coords = 'C' # Map uses equitorial coordinates, you'll need this param for some healpy functions if ordering.lower() == 'ring': nest = False elif ordering.lower() == 'nested': nest = True # Example of using healpy to calculate the pixel RA/Dec values ra_arr, dec_arr = hp.pixelfunc.pix2ang( nside, pixel_vals, nest=nest, lonlat=True ) # Example of converting Stokes I from explicit to implicit pixel ordering signal_I_implicit = np.full(12*nside**2, hp.pixelfunc.UNSEEN) signal_I_implicit[pixel_vals] = stokes_I
UTF-8
Python
false
false
1,081
py
150
load_healpix_map_basic.py
50
0.711378
0.694727
0
35
29.885714
97
RCOSDP/RDM-osf.io
14,396,730,403,294
f84eced411b3567205b2715c9c978004b5f27ddb
a394b1053f018ff8be63221c61682df03af4937b
/osf_tests/users/test_last_login_date.py
7115b2dbd1dc6ac66bbb3599dac39af53366a852
[ "Apache-2.0", "LGPL-2.0-or-later", "BSD-3-Clause", "LicenseRef-scancode-free-unknown", "MIT", "AGPL-3.0-only", "LicenseRef-scancode-unknown-license-reference", "MPL-1.1", "CPAL-1.0", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-warranty-disclaimer", "BSD-2-Clause" ]
permissive
https://github.com/RCOSDP/RDM-osf.io
81b11d9511f6248ec9bccb6c586b54a58429e1e7
5d632eb6d4566d7d31cd8d6b40d1bc93c60ddf5e
refs/heads/develop
2023-09-01T09:10:17.297444
2023-08-28T04:59:04
2023-08-28T04:59:04
123,298,542
12
24
Apache-2.0
true
2023-09-12T08:58:28
2018-02-28T14:46:05
2022-06-01T04:27:04
2023-09-12T08:58:28
220,791
10
20
18
Python
false
false
import mock import pytz import pytest import itsdangerous from datetime import datetime, timedelta from django.utils import timezone from website import settings from osf_tests.factories import ( AuthUserFactory, SessionFactory ) from tests.base import OsfTestCase @pytest.mark.django_db @pytest.mark.enable_enqueue_task class TestUserLastLoginDate(OsfTestCase): def setUp(self): super(TestUserLastLoginDate, self).setUp() self.user = AuthUserFactory() self.session = SessionFactory( data={ 'auth_user_id': self.user._id, 'auth_user_username': self.user.username } ) self.cookie = itsdangerous.Signer(settings.SECRET_KEY).sign(self.session._id).decode() @mock.patch.object(timezone, 'now') def test_date_last_login_updated_from_none(self, mock_time): now = datetime(2018, 2, 4, tzinfo=pytz.utc) mock_time.return_value = now assert self.user.date_last_login is None self.app.set_cookie(settings.COOKIE_NAME, self.cookie) self.app.get(f'{settings.DOMAIN}{self.user._id}') # user page will fail because not emberized self.user.refresh_from_db() assert self.user.date_last_login == now @mock.patch.object(timezone, 'now') def test_date_last_login_updated_below_threshold(self, mock_time): now = datetime(2018, 2, 4, tzinfo=pytz.utc) mock_time.return_value = now self.user.date_last_login = now self.user.save() # Time is mocked one second below the last login date threshold, so it should not change. mock_time.return_value = now + (settings.DATE_LAST_LOGIN_THROTTLE_DELTA - timedelta(seconds=1)) self.app.set_cookie(settings.COOKIE_NAME, self.cookie) self.app.get(f'{settings.DOMAIN}{self.user._id}') # user page will fail because not emberized self.user.refresh_from_db() # date_last_login is unchanged assert self.user.date_last_login == now @mock.patch.object(timezone, 'now') def test_date_last_login_updated_above_threshold(self, mock_time): now = datetime(2018, 2, 4, tzinfo=pytz.utc) mock_time.return_value = now self.user.date_last_login = now self.user.save() # Time is mocked one second below the last login date threshold, so it should not change. new_time = now + (settings.DATE_LAST_LOGIN_THROTTLE_DELTA + timedelta(seconds=1)) mock_time.return_value = new_time self.app.set_cookie(settings.COOKIE_NAME, self.cookie) self.app.get(f'{settings.DOMAIN}{self.user._id}') # user page will fail because not emberized self.user.refresh_from_db() # date_last_login is changed! assert self.user.date_last_login == new_time
UTF-8
Python
false
false
2,815
py
1,129
test_last_login_date.py
916
0.661812
0.654707
0
77
35.558442
103
ekazyam/Study
4,466,766,023,440
1b01688fcd559c04dd69c0c1635e816f4d8e94c5
fe647f264d49f240fe9e1d03270025900ec474ef
/パーフェクトPython/pp_057_グローバル変数.py
326084e9bb1dbae4cbe74271b1ceb1aaa19bc3c2
[ "MIT" ]
permissive
https://github.com/ekazyam/Study
0c61d8e5d5cfc3e51a80d0dccf9a71bb6cb16fdc
bd4d6bae8624c7b6e166881c898afa0afd3b0c70
refs/heads/master
2021-01-15T16:14:34.889391
2016-03-31T08:19:11
2016-03-31T08:19:11
34,328,191
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# グローバル変数という概念はpythonにはない # 最大スコープはモジュール単位である。 # globalを指定すると、モジュール無いの変数に直接アクセスできるようになる。 def globaltest(): global hogehoge hogehoge = 'hogehoge' return True globaltest() print(hogehoge)
UTF-8
Python
false
false
337
py
103
pp_057_グローバル変数.py
82
0.761194
0.761194
0
12
15.75
41
xutian2/hello-world
17,892,833,775,806
e47bcc2f63f6090bbfe090aa6381edab3f97b64f
0dbdb4917628967c77219310e0002cbdc6d83291
/py1.py
83dc1d1118649c5f9a79d13f8a615318687f84d4
[]
no_license
https://github.com/xutian2/hello-world
940b304aac0fe150964a97baf54f03c058de27ff
5dc23bb767b640d50aacb3c46a46de4384c0b96c
refs/heads/master
2020-03-28T16:39:36.238018
2018-09-14T02:34:21
2018-09-14T02:34:21
148,716,484
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def fibs(): a=0 b=1 iwhile a<100: a,b=b,a+b return a f=fibs() print(fibs)
UTF-8
Python
false
false
103
py
1
py1.py
1
0.456311
0.407767
0
10
9.3
15
ebrahimsalehi1/frontend_projects
5,291,399,729,558
607dc78f3b695194e37a5a018c71d373d01e8415
026f69fb57cda18def5720f3f2ded3b13b2a131a
/Python/ShekarAbadSky.py
a80594108c00d566bcfa1876c72c5b73aef3ffe4
[]
no_license
https://github.com/ebrahimsalehi1/frontend_projects
54962b0a2447c23f09e40fc50f906f8ed6226886
20fb76a6f8411499332c5d8487fc1d45770e598c
refs/heads/master
2023-04-18T04:51:22.516129
2023-04-08T20:48:03
2023-04-08T20:48:03
245,576,365
3
0
null
false
2023-03-06T23:12:12
2020-03-07T05:49:25
2021-11-23T20:03:18
2023-03-06T23:12:11
38,151
2
0
24
JavaScript
false
false
line1 = input('').strip().split(' '); m=int(line1[0]) n=int(line1[0]) countAll = 0 for i in range(m): line=input(''); countAll = countAll+line.count('*') print(countAll)
UTF-8
Python
false
false
189
py
243
ShekarAbadSky.py
208
0.571429
0.539683
0
10
17.4
39
Prateek478/ds_algo_problem_solving_python-
14,766,097,607,056
e490a024fe238d855655ae084b10b1b4626b035f
353c64425f87980101aa733088218da6187b8c75
/37_group_anagrams.py
4a2239110190d6859e0fe892dc067854b83df4e2
[]
no_license
https://github.com/Prateek478/ds_algo_problem_solving_python-
1187a92e336fd092de74fd1052d8d1c544ed1445
55e638f284297a7b64ba7a9c6b1240afe894704a
refs/heads/master
2020-09-26T19:12:09.510421
2020-03-04T18:35:52
2020-03-04T18:35:52
226,322,080
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Group Anagrams from given list Anagrams are the words that are formed by similar elements but the orders in which these characters occur differ Example: The original list : ['lump', 'eat', 'me', 'tea', 'em', 'plum'] The grouped Anagrams : [['me', 'em'], ['lump', 'plum'], ['eat', 'tea']] """ def group_anagrams(lst): occurances = dict() for i in lst: sort_input = "".join(sorted(i)) if sort_input in occurances.keys(): occurances[sort_input].append(i) else: occurances[sort_input] = list() occurances[sort_input].append(i) return occurances.values() def group_anagrams_2(lst): from itertools import groupby temp = lambda test_list : sorted(test_list) result = [] for key, val in groupby(sorted(lst, key=temp), temp): result.append(list(val)) return result if __name__ == "__main__": print (group_anagrams(['lump', 'eat', 'me', 'tea', 'em', 'plum'])) print (group_anagrams_2(['lump', 'eat', 'me', 'tea', 'em', 'plum']))
UTF-8
Python
false
false
1,034
py
28
37_group_anagrams.py
27
0.601547
0.599613
0
30
33.466667
112
olsonm16/python
8,117,488,229,619
be983d5e3a74e0959fc863e1e9ebc4c91cca6009
314f438766488135c67af70607bf3817a8206260
/CS112/Lab 5/lab5_1.py
6886d8fde2a40b50db42b70fe567ec87b1fab7e6
[]
no_license
https://github.com/olsonm16/python
b649dc871e5c863e47eecd9ba66fe648ff41e76e
bf83d6313ad2824cb7c4a52f57ba65f4c24cab25
refs/heads/master
2016-08-04T21:49:12.645932
2014-01-12T18:59:54
2014-01-12T18:59:54
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from array_set import ArraySet from edit_distance import * from hash_set import HashSet import string File = open("wordsEn.txt", "r") A = HashSet(9973) for line in File: line = line.strip('\n') A.add(hash(line)) File.close() def find_closest(word): File = open("wordsEn.txt", "r") #word = str(word) currentdistance = 10000 match = "No match" for line in File: line = line.strip('\n') newdistance = edit_distance(line, word) if newdistance < currentdistance: currentdistance = newdistance match = line return match File.close() input_file = open("input.txt", "r") for line in input_file: line = line.strip('\n') list_of_strings = line.split(" ") for word in list_of_strings: word = word.lower() if not A.contains(hash(word)): print("You said: " + word + ", did you mean: "+str(find_closest(word)) + "?")
UTF-8
Python
false
false
844
py
47
lab5_1.py
44
0.664692
0.654028
0
38
21.157895
80
binh234/eBookstore
11,768,210,442,432
8765d1b3b4179b96e3d2748e68b8c91549690039
ad3426da477c57f78934ca57f4aa61a035bf7293
/customer/customer_app/filters.py
273edc03ef2faca618f2ec1cc18b46fafaa330aa
[]
no_license
https://github.com/binh234/eBookstore
fbac09a09e8b71766cd95c60175cbbcfe5ecc743
a1fc9daf1aaa347b54a3f227bef2727697627551
refs/heads/main
2023-04-03T19:06:37.961356
2023-03-31T08:50:18
2023-03-31T08:50:18
314,125,130
0
0
null
false
2023-03-25T06:48:08
2020-11-19T03:24:16
2023-02-28T03:43:57
2023-03-25T06:47:59
41,713
0
0
1
CSS
false
false
from django_filters import * from django_filters.widgets import * from django_filters.fields import * from django import forms from django.db import models from django.db.models import Q from .models import * class MultiValueCharFilter(filters.BaseCSVFilter, filters.CharFilter): def filter(self, qs, value): values = value or [] if not values: return qs lookup = self.field_name + "__" + self.lookup_expr if self.distinct: qs = qs.distinct() query = Q() for value in values: if value in EMPTY_VALUES: return qs # if not queryset: # queryset = self.get_method(qs)(**{lookup: value}) # else: # queryset = queryset | self.get_method(qs)(**{lookup: value}) query |= Q(**{lookup: value}) return self.get_method(qs)(query) class BooleanForeignFilter(filters.BooleanFilter): def filter(self, qs, value): if value is not None: lookup = self.field_name + "__" + self.lookup_expr value = not value print(lookup, value) return self.get_method(qs)(**{lookup: value}) else: return qs class OrderByFilter(filters.ChoiceFilter): def filter(self, qs, value): if value: return qs.order_by(value) else: return qs class BookFilter(FilterSet): BOOK_ORDER_CHOICE = ( ("name", "Tên sách"), ("price", "Giá bán"), ("-avg_rating", "Đánh giá"), ) order = OrderByFilter(choices=BOOK_ORDER_CHOICE, label="Sắp xếp theo") ISBN = CharFilter(field_name="ISBN", lookup_expr="icontains", label="ISBN") name = CharFilter(lookup_expr="icontains", label="Tên sách") year = NumberFilter(label="Năm xuất bản") price = RangeFilter( field_name="price", widget=RangeWidget(attrs={"class": "col"}), label="Giá" ) topic = MultiValueCharFilter( field_name="topic__name", lookup_expr="icontains", label="Thể loại", widget=CSVWidget(), distinct=True, help_text=None, ) keyword = MultiValueCharFilter( field_name="keyword__keyword", lookup_expr="icontains", label="Từ khóa", widget=CSVWidget(), distinct=True, help_text=None, ) publisher = ModelChoiceFilter( queryset=Publisher.objects.all(), label="Nhà xuất bản" ) traditional = BooleanForeignFilter( field_name="traditional", lookup_expr="isnull", label="Sách truyền thống" ) electronic = BooleanForeignFilter( field_name="electronic", lookup_expr="isnull", label="Sách điện tử" ) authors = ModelMultipleChoiceFilter(queryset=Author.objects.all(), label="Tác giả") # topics = ModelMultipleChoiceFilter(field_name='topic__name', queryset=Topic.objects.values("name").distinct(), label='Thể loại') class Meta: model = Book fields = [ "order", "ISBN", "name", "year", "price", "topic", "keyword", "publisher", "traditional", "electronic", "authors", ] filter_overrides = { models.CharField: { "filter_class": CharFilter, "extra": lambda f: {"lookup_expr": "icontains"}, }, } def kFilter(self, queryset, name, value): return queryset.filter(**{name: value}) class AuthorFilter(FilterSet): ORDER_AUTHOR_CHOICE = ( ("name", "Tên"), ("book_count", "Số lượng sách"), ) order = OrderByFilter(choices=ORDER_AUTHOR_CHOICE, label="Sắp xếp theo") topic = MultiValueCharFilter( field_name="book__topic__name", lookup_expr="icontains", label="Thể loại", widget=CSVWidget(attrs={"class": "col ml-2"}), distinct=True, help_text=None, ) # topic = ModelChoiceFilter(queryset=Topic.objects.all().distinct(), label="Thể loại", method="topicFilter") keyword = MultiValueCharFilter( field_name="book__keyword__keyword", lookup_expr="icontains", label="Từ khóa", widget=CSVWidget(attrs={"class": "col ml-2"}), distinct=True, help_text=None, ) class Meta: model = Author fields = ["topic", "keyword", "order"] def topicFilter(self, queryset, name, value): field_name = "book__topic" return queryset.filter(**{field_name: value}).distinct() class OrderItemFilter(FilterSet): order_date = DateFromToRangeFilter( field_name="order__orderTime", label="Ngày mua", widget=RangeWidget(attrs={"type": "date"}), ) class Meta: model = OrderItem fields = ["order_date"] class OrderFilter(FilterSet): BOOK_CHOICE = (("both", "Cả sách điện tử và truyền thống"),) ORDER_BY_CHOICE = ( ("-orderTime", "Thời gian đặt hàng"), ("-book_count", "Số lượng sách"), ) order_date = DateFromToRangeFilter( field_name="orderTime", label="Ngày đặt hàng", widget=RangeWidget(attrs={"type": "date"}), ) status = MultipleChoiceFilter( field_name="status", choices=Order.ORDER_STATUS, label="Trạng thái", widget=forms.CheckboxSelectMultiple(), ) book_type = ChoiceFilter( field_name="orderitem__option", choices=BOOK_CHOICE, label="Loại sách", method="bookFilter", ) order = OrderByFilter(choices=ORDER_BY_CHOICE, label="Sắp xếp theo") class Meta: model = Order fields = ["order_date", "book_type", "order", "status"] def bookFilter(self, queryset, name, value): if value is None: return queryset elif value == "both": subquery = OrderItem.objects.filter(~Q(option="buy")).values_list( "order_id", flat=True ) return queryset.filter(**{name: "buy"}, id__in=subquery).distinct()
UTF-8
Python
false
false
6,225
py
70
filters.py
20
0.57255
0.572223
0
203
29.1133
134
serj162218/schoolprogram
17,944,373,385,847
c0954be0d069ec8fe489b1608398aedc6b5e72af
b768363d4eff367959fd4489564641651227e7e2
/programming language/Married.py
0025c0e5a6cee0cf35365153c501b9bfc10de448
[]
no_license
https://github.com/serj162218/schoolprogram
6496e0693e9af5b799f7aefb653ef603577bea76
b8871b16a686ade3a2479037e5f771f40704b1e4
refs/heads/master
2022-03-18T23:02:21.423864
2019-11-25T05:18:54
2019-11-25T05:18:54
223,866,314
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os name = input("Enter name: ") age = int(input("Enter age: ")) salary = int(input("Enter Salary: ")) if ((18<=age<=26 and salary >= 10000) or (age > 85 and salary > 1000000)): print("Welcome {0}!".format(name)) else: print("Sorry {0}!".format(name)) os.system("pause")
UTF-8
Python
false
false
294
py
34
Married.py
10
0.602041
0.534014
0
9
30.666667
74
tritechpaxos/PaxosSolutions
5,592,047,459,056
703e7d59b02eef055511a9236d5d2647219ec94e
fea795de450992d8421f7adbd3c36253ca21571e
/PaxosProducts/CellConfig/src/cellcfg/cellconfig/ui/web/ras/views.py
ee6bbb3a57b91f290eaf1933ebd9a8283bd22eaa
[]
no_license
https://github.com/tritechpaxos/PaxosSolutions
c4de5c538f33e091c3007ef364b24fa4ef2a4f51
dc481e143e3695499bce6a3da8e147dd57added0
refs/heads/master
2023-07-09T23:59:17.271576
2019-11-21T03:02:20
2019-11-21T03:02:20
63,924,770
0
1
null
false
2023-07-04T03:38:43
2016-07-22T04:59:06
2019-11-21T03:02:24
2023-07-04T03:38:38
6,853
0
1
0
C
false
false
# -*- coding: utf-8 -*- ########################################################################### # Cellcfg Copyright (C) 2016 triTech Inc. All Rights Reserved. # # This file is part of Cellcfg. # # Cellcfg is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Cellcfg is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Cellcfg. If not, see <http://www.gnu.org/licenses/>. ########################################################################### import logging from flask import request, redirect, url_for, abort, render_template from .. import app from cellconfig.model import Cell from cellconfig.ras.model import RasGroup, RasServer, RasTarget, RasAction from .forms import * from . import api, event logger = logging.getLogger(__name__) @app.template_global() def status2ctxclass(status): s = status['status'] if s == 'running': return 'success' elif s == 'stopped': return 'active' elif s == 'warning': return 'warning' elif s == 'error': return 'danger' else: return '' @app.template_global() def actiontype2label(atype): return RasActionForm.LABEL[atype] @app.template_global() def status2text(status): s = status['status'] if s == 'running': return u'正常' elif s == 'stopped': return u'停止' elif s == 'warning': return u'一部停止' elif s == 'error': return u'異常' else: return u'不明' @app.route('/rascell', methods=['GET', 'POST']) def rascell_list(): if request.method == 'GET': cells = Cell.select().where(Cell.type == 'RAS') return render_template('ras/cell_list.html', cells=cells) elif request.method == 'POST': form = RasCellForm(request.form) if not form.validate(): return render_template('ras/cell_create.html', form=form) form.create() return redirect(url_for('rasgrp_list')) @app.route('/rascell/create') def rascell_create(): form = RasCellForm() return render_template('ras/cell_create.html', form=form) @app.route('/rasclstr', methods=['GET', 'POST']) def rasgrp_list(): if request.method == 'GET': if Cell.select().where(Cell.type == 'RAS').count() == 0: return redirect(url_for('rascell_list')) grps = RasGroup.select() return render_template('ras/ras_index.html', groups=grps) elif request.method == 'POST': form = RasGroupForm(request.form) if not form.validate(): return render_template('ras/group_create.html', form=form) logger.debug('URL: {}'.format(request.url_root)) grp = form.create(request.url_root) logger.debug('GROUP: {}'.format(str(grp))) return redirect(url_for('rasgrp_list')) @app.route('/rasclstr/create') def rasgrp_create(): form = RasGroupForm() return render_template('ras/group_create.html', form=form) @app.route('/rasclstr/<int:id>', methods=['GET', 'POST']) def rasgrp_detail(id): if request.method == 'GET': group = RasGroup.get(RasGroup.id == id) return render_template('ras/group_show.html', group=group) elif request.method == 'POST': if request.form['operation'] == 'Delete': RasGroupForm.delete(id) return redirect(url_for('rasgrp_list')) @app.route('/rasclstr/<int:id>/update') def rasgrp_update(id): pass @app.route('/rasclstr/<int:id>/delete') def rasgrp_delete(id): grp = RasGroup.get(RasGroup.id == id) form = RasGroupForm(data=RasGroupForm.obj2dict(grp)) return render_template('ras/group_delete.html', form=form, id=id) @app.route('/rasclstr/<int:grpid>/rassrv/create') def rassrv_create(grpid): form = RasServerForm(group=grpid) return render_template('ras/server_create.html', form=form, grpid=grpid) @app.route('/rasclstr/<int:grpid>/rassrv/<int:srvid>/delete') def rassrv_delete(grpid, srvid): srv = RasServer.get(RasServer.id == srvid) form = RasServerForm(obj=srv) return render_template( 'ras/server_delete.html', form=form, grpid=grpid, srvid=srvid, group_name=srv.group.name) @app.route('/rasclstr/<int:grpid>/rassrv/<int:srvid>', methods=['POST']) def rassrv_detail(grpid, srvid): if request.form['operation'] == 'Delete': RasServerForm.delete(srvid) else: abort(400) return redirect(url_for('rasgrp_detail', id=grpid)) @app.route('/rasclstr/<int:grpid>/rassrv', methods=['POST']) def rassrv_list(grpid): if request.method == 'POST': form = RasServerForm(request.form, group=grpid) if not form.validate(): return render_template('ras/server_create.html', form=form, grpid=grpid) form.create(grpid) return redirect(url_for('rasgrp_detail', id=grpid)) _TARGET_FORMS = { 'cell': RasTargetCellForm, 'ras': RasTargetRasForm, 'app': RasTargetAppForm, } @app.route('/rasclstr/<int:grpid>/rastgt/create/<typ>') def rastgt_create(grpid, typ): form = _TARGET_FORMS[typ]() return render_template( 'ras/target_create.html', form=form, grpid=grpid, typ=typ) @app.route('/rasclstr/<int:grpid>/rastgt', methods=['POST']) def rastgt_list(grpid): typ = request.form['type'] form = _TARGET_FORMS[typ](request.form) if not form.validate(): return render_template( 'ras/target_create.html', form=form, grpid=grpid, typ=typ) form.create(grpid) return redirect(url_for('rasgrp_detail', id=grpid)) @app.route('/rasclstr/<int:grpid>/rastgt/delete/<typ>/<int:tgtid>') def rastgt_delete(grpid, typ, tgtid): tgt = RasTarget.get(RasTarget.id == tgtid) fclass = _TARGET_FORMS[typ] form = fclass(data=fclass.obj2dict(tgt)) return render_template( 'ras/target_delete.html', form=form, grpid=grpid, typ=typ, tgtid=tgtid, group_name=tgt.group.name) @app.route('/rasclstr/<int:grpid>/rastgt/<int:tgtid>') def rastgt_detail(grpid, tgtid): tgt = RasTarget.get(RasTarget.id == tgtid) return render_template('ras/target_show.html', target=tgt) @app.route('/rasclstr/<int:grpid>/rastgt/<typ>/<int:tgtid>', methods=['POST']) def rastgt_detail_op(grpid, typ, tgtid): if request.form['operation'] == 'Delete': _TARGET_FORMS[typ].delete(tgtid) else: abort(400) return redirect(url_for('rasgrp_detail', id=grpid)) _ACTION_FORMS = { 'smtp': RasActionMailForm, 'syslog': RasActionSyslogForm, 'http': RasActionHttpForm, 'restart': RasActionRestartForm, 'script': RasActionScriptForm, } @app.route('/rasclstr/<int:grpid>/rastgt/<int:tgtid>/rasact/create/<atype>') def rasact_create(grpid, tgtid, atype): form = _ACTION_FORMS[atype]() tgt = RasTarget.get(RasTarget.id == tgtid) return render_template( 'ras/action_create.html', form=form, grpid=grpid, target=tgt, atype=atype) @app.route('/rasclstr/<int:grpid>/rastgt<int:tgtid>/rasact', methods=['POST']) def rasact_list(grpid, tgtid): atype = request.form['type'] form = _ACTION_FORMS[atype](request.form) if not form.validate(): tgt = RasTarget.get(RasTarget.id == tgtid) return render_template( 'ras/action_create.html', form=form, grpid=grpid, target=tgt, atype=atype) script = request.files['script'] if 'script' in request.files else None form.create(tgtid, script) return redirect(url_for( 'rastgt_detail', grpid=grpid, tgtid=tgtid)) @app.route( '/rasclstr/<int:grpid>/rastgt/<int:tgtid>/rasact/delete/<typ>/<int:actid>') def rasact_delete(grpid, tgtid, typ, actid): act = RasAction.get(RasAction.id == actid) logger.debug('ACTION: {} type={}'.format(str(act), typ)) fclass = _ACTION_FORMS[typ] form = fclass(data=fclass.obj2dict(act)) return render_template( 'ras/action_delete.html', form=form, grpid=grpid, tgtid=tgtid, typ=typ, actid=actid, group_name=act.target.group.name, target_name=act.target.name) @app.route( '/rasclstr/<int:grpid>/rastgt/<int:tgtid>/rasact/update/<typ>/<int:actid>') def rasact_update(grpid, tgtid, typ, actid): act = RasAction.get(RasAction.id == actid) fclass = _ACTION_FORMS[typ] form = fclass(data=fclass.obj2dict(act)) return render_template( 'ras/action_update.html', form=form, grpid=grpid, tgtid=tgtid, typ=typ, actid=actid) @app.route( '/rasclstr/<int:grpid>/rastgt/<int:tgtid>/rasact/<typ>/<int:actid>', methods=['POST']) def rasact_detail(grpid, tgtid, typ, actid): if request.form['operation'] == 'Delete': _ACTION_FORMS[typ].delete(actid) elif request.form['operation'] == 'Update': fclass = _ACTION_FORMS[typ] form = fclass(request.form) act = RasAction.get(RasAction.id == actid) if not form.validate(): return render_template( 'ras/action_update.html', form=form, grpid=grpid, tgtid=tgtid, typ=typ, actid=actid) script = (request.files['script'] if 'script' in request.files else None) form.update(actid, tgtid, script) else: abort(400) return redirect(url_for( 'rastgt_detail', grpid=grpid, tgtid=tgtid))
UTF-8
Python
false
false
9,722
py
503
views.py
182
0.633223
0.630852
0
296
31.763514
79
cihanyatbaz/Trajectories
11,862,699,704,647
19b424378fb264b6271bcbe8480f633592e2b586
074ca044b0fa4f269fa499250eab187ea5b06d82
/Util.py
e51703cff3ac56e01a4f9faec78c7d14cf172676
[]
no_license
https://github.com/cihanyatbaz/Trajectories
11b5925b16bb9dcc5c4e5688ec589722fecb8f31
e94c7d5640057aa428e0985937a18cceab474556
refs/heads/master
2023-01-14T08:30:48.518214
2020-11-22T16:06:29
2020-11-22T16:06:29
221,267,830
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import math import pandas as pd def euclideanDistance(pos1, pos2): return math.sqrt(pow((pos1[0]-pos2[0]),2) + pow((pos1[1]-pos2[1]),2)) def dotProduct(a,b): result = 0 if len(a) == len(b): for i in range(len(a)): result += a[i] * b[i] return result else: return -1 def vectLen(a): val = dotProduct(a,a) return math.sqrt(val) def getSimilarity(a,b): return dotProduct(a,b) / (vectLen(a) * vectLen(b)) def plotTrajectory(T): # plotting trajectory T import matplotlib matplotlib.use("TKAgg") from matplotlib import pyplot as plt X = [int(elem) for elem in T["X (pixel)"].tolist()] Y = [int(elem) for elem in T["Y (pixel)"].tolist()] plt.scatter(X, Y, cmap="Paired") plt.title(str(T["Trajectory"].values[0]) + "and" + str(T["Trajectory"].values[-1])) plt.show()
UTF-8
Python
false
false
865
py
11
Util.py
4
0.595376
0.576879
0
34
24.470588
87
vagaganova/homeworks
13,048,110,678,947
496fa426bdf3593015949c9f057d4e5b728965ec
ee7f2ae9f58c6724c4774ab541661277f5019907
/HW08092020/HW2.py
b86f242aa104d6642f410b1124699aa4da0867f0
[]
no_license
https://github.com/vagaganova/homeworks
db55d74a16dd9f7c80442e8a0b8ed613139e6eb5
f41a0737fc0189d7040f1f1c2914a35c2ab10afc
refs/heads/master
2023-01-20T06:35:06.984628
2020-11-28T19:18:02
2020-11-28T19:18:02
290,870,266
0
0
null
false
2020-09-20T18:44:35
2020-08-27T20:03:57
2020-09-20T18:44:24
2020-09-20T18:44:21
25
0
0
1
Python
false
false
with open('my_file.txt') as my_file: lines = my_file.readlines() print ('Количество строк: ', len(lines)) for i in range(len(lines)): if len(lines[i].replace(' ', '').replace('\n','')) > 0: print('В строке ', i, ':', len(lines[i].split(' '))) else: print('В строке ', i, ':','0')
UTF-8
Python
false
false
361
py
41
HW2.py
39
0.493976
0.487952
0
8
40.5
64
zhangwei725/PythonBase
6,897,717,519,616
ad9c412c82ccafe7874cf5c9f288fd4435a6023c
147bc95b8b8a36014ec001bb1f79100095fa90a4
/day16/函数_装饰器_带参数.py
22bf57d40c5d8195c2bd1871b8f57978ab63352f
[]
no_license
https://github.com/zhangwei725/PythonBase
fd20293b7f7ebee9f11a5df8f4761cad7f1ff4c7
6c9165caed48418eb55cf7622359105c9124e580
refs/heads/master
2020-04-30T00:32:40.360722
2019-04-03T01:41:51
2019-04-03T01:41:51
176,505,618
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import time """ 1.装饰带参数 当修饰的函数有参数的时候,需要将参数定义在装饰器内部函数上 2> 如果修饰的函数有返回值 1 > 在调用核心函数的地方接受返回值 2 > 将返回的结果当做内部函数的返回值 """ # 带参数 无返回值 def outer(func): def inner(x, y): start = time.time() func(x, y) end = time.time() - start print(end) return inner # 带参数 带返回值 def outer1(func): def inner(x, y): start = time.time() result = func(x, y) end = time.time() - start print(end) return result return inner # 修饰的函数参数不固定, def outer2(func): def inner(x, y): start = time.time() result = func(x, y) end = time.time() - start print(end) return result return inner @outer1 def add(x, y): return x + y if __name__ == '__main__': # add = outer(func=add) # add(1,3) print(add(1, 2))
UTF-8
Python
false
false
1,038
py
136
函数_装饰器_带参数.py
125
0.525
0.511905
0
59
13.237288
33
pradionova/python67
9,354,438,810,164
636c207964992a39b0839b7f57c42c6c1f0ec5ac
8cb9325b3f13fcd8596fbf54638ee1a04e0dfef5
/chapter 1/test_1_12_7.py
eb9fcbb370f981c80816cc4f321f8a8cba3d5d64
[]
no_license
https://github.com/pradionova/python67
781ac8531bbcd00a67997ddd033dc0cd92b09251
67c8e536b7a3fd6da02ab1c6f4df6d6ced030e89
refs/heads/main
2023-04-25T22:37:07.700104
2021-05-29T13:31:36
2021-05-29T13:31:36
332,923,333
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import math a = input() pi = 3.14 if a == 'прямоугольник': b = int(input()) c = int(input()) print(b * c) elif a == 'треугольник': a = int(input()) b = int(input()) c = int(input()) p = (a + b + c) / 2 s = p * (p - a) * (p - b) * (p - c) print(math.sqrt(s)) elif a == 'круг': r = int(input()) print(pi * r * r)
UTF-8
Python
false
false
384
py
37
test_1_12_7.py
36
0.446629
0.435393
0
19
17.789474
39
PebbleDev/libpebble
16,140,487,119,338
d3ffa52efff7890e8915ac96ae073ffb4b8c1fdb
e5c93a0989572cb7a503acf6cd587cc69f4cc219
/pebble.py
40e9ed7a000538e58984b29b6981b679d126bf01
[]
no_license
https://github.com/PebbleDev/libpebble
a67e97de246b43459688dde0b3e362e334482ea5
42bac698328ff947d03a428892291e705e99a729
refs/heads/master
2021-01-21T00:56:28.883087
2013-02-07T02:32:27
2013-02-07T02:32:27
8,069,845
9
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python import serial, codecs, sys, binascii, time, threading, stm32_crc, zipfile from pprint import pprint from struct import * class EndpointSync(): timeout = 10 def __init__(self, pebble, endpoint): pebble.register_endpoint(endpoint, self.callback) self.marker = threading.Event() def callback(self, *args): self.data = args self.marker.set() def get_data(self): try: self.marker.wait(timeout=self.timeout) return self.data[1] except: return False class Pebble(object): endpoints = { "TIME": 11, "VERSION": 16, "PHONE_VERSION": 17, "SYSTEM_MESSAGE": 18, "MUSIC_CONTROL": 32, "PHONE_CONTROL": 33, "LOGS": 2000, "PING": 2001, "LOG_DUMP": 2002, "RESET": 2003, "APP": 2004, "NOTIFICATION": 3000, "RESOURCE": 4000, "APP_MANAGER": 6000, "PUTBYTES": 48879 } def __init__(self, id): self._alive = True self._endpoint_handlers = {} self._internal_endpoint_handlers = { self.endpoints["TIME"]: self._get_time_response, self.endpoints["VERSION"]: self._version_response, self.endpoints["PING"]: self._ping_response, self.endpoints["APP_MANAGER"]: self._appbank_status_response } try: self._ser = serial.Serial("/dev/tty.Pebble"+id+"-SerialPortSe", 19200, timeout=1) # we get a null response when we connect, discard it self._ser.read(5) self._read_thread = threading.Thread(target=self._reader) self._read_thread.setDaemon(True) self._read_thread.start() except: raise Exception("Failed to connect to Pebble") def __del__(self): try: self._ser.close() except: pass def _reader(self): while self._alive: endpoint, resp = self._recv_message() if resp == None: continue if endpoint in self._internal_endpoint_handlers: resp = self._internal_endpoint_handlers[endpoint](endpoint, resp) if endpoint in self._endpoint_handlers: self._endpoint_handlers[endpoint](endpoint, resp) def _build_message(self, endpoint, data): return pack("!HH", len(data), endpoint)+data def _send_message(self, endpoint, data, callback = None): if endpoint not in self.endpoints: raise Exception("Invalid endpoint specified") msg = self._build_message(self.endpoints[endpoint], data) self._ser.write(msg) def _recv_message(self): data = self._ser.read(4) if len(data) == 0: return (None, None) elif len(data) < 4: raise Exception("Malformed response with length "+str(len(data))) size, endpoint = unpack("!HH", data) resp = self._ser.read(size) return (endpoint, resp) def register_endpoint(self, endpoint_name, func): if endpoint_name not in self.endpoints: raise Exception("Invalid endpoint specified") endpoint = self.endpoints[endpoint_name] self._endpoint_handlers[endpoint] = func def notification_sms(self, sender, body): ts = str(int(time.time())*1000) parts = [sender, body, ts] data = "\x01" for part in parts: data += pack("!b", len(part))+part self._send_message("NOTIFICATION", data) def notification_email(self, sender, subject, body): ts = str(int(time.time())*1000) parts = [sender, subject, ts, body] data = "\x00" for part in parts: data += pack("!b", len(part))+part self._send_message("NOTIFICATION", data) def set_nowplaying_metadata(self, track, album, artist): ts = str(int(time.time())*1000) parts = [artist, album, track] data = pack("!b", 16) for part in parts: data += pack("!b", len(part))+part self._send_message("MUSIC_CONTROL", data) def get_versions(self, async = False): self._send_message("VERSION", "\x00") if not async: return EndpointSync(self, "VERSION").get_data() def get_appbank_status(self, async = False): self._send_message("APP_MANAGER", "\x01") if not async: return EndpointSync(self, "APP_MANAGER").get_data() def remove_app(self, appid, index): data = pack("!bII", 2, appid, index) self._send_message("APP_MANAGER", data) def get_time(self, async = False): self._send_message("TIME", "\x00") if not async: return EndpointSync(self, "TIME").get_data() def set_time(self, timestamp): data = pack("!bL", 2, timestamp) self._send_message("TIME", data) def install_app(self, pbz_path): with zipfile.ZipFile(pbz_path) as pbz: binary = pbz.read("pebble-app.bin") resources = pbz.read("app_resources.pbpack") apps = self.get_appbank_status() first_free = 1 for app in apps["apps"]: if app["index"] == first_free: first_free += 1 if first_free == apps["banks"]: raise Exception("No available app banks left") client = PutBytesClient(self, first_free, "BINARY", binary) self.register_endpoint("PUTBYTES", client.handle_message) client.init() while not client._done: pass client = PutBytesClient(self, first_free, "RESOURCES", resources) self.register_endpoint("PUTBYTES", client.handle_message) client.init() while not client._done: pass self._add_app(first_free) """ Valid commands: FIRMWARE_AVAILABLE = 0 FIRMWARE_START = 1 FIRMWARE_COMPLETE = 2 FIRMWARE_FAIL = 3 FIRMWARE_UP_TO_DATE = 4 FIRMWARE_OUT_OF_DATE = 5 """ def system_message(self, command): data = pack("!bb", 0, command) self._send_message("SYSTEM_MESSAGE", data) def ping(self, cookie = 0, async = False): data = pack("!bL", 0, cookie) self._send_message("PING", data) if not async: return EndpointSync(self, "PING").get_data() def reset(self): self._send_message("RESET", "\x00") def disconnect(self): self._alive = False self._ser.close() def _add_app(self, index): data = pack("!bI", 3, index) self._send_message("APP_MANAGER", data) def _ping_response(self, endpoint, data): restype, retcookie = unpack("!bL", data) return retcookie def _get_time_response(self, endpoint, data): restype, timestamp = unpack("!bL", data) return timestamp def _appbank_status_response(self, endpoint, data): apps = {} restype, = unpack("!b", data[0]) if restype == 1: apps["banks"], apps_installed = unpack("!II", data[1:9]) apps["apps"] = [] appinfo_size = 78 offset = 9 for i in xrange(apps_installed): app = {} app["id"], app["index"], app["name"], app["company"], app["flags"], app["version"] = \ unpack("!II32s32sIH", data[offset:offset+appinfo_size]) app["name"] = app["name"].replace("\x00", "") app["company"] = app["company"].replace("\x00", "") apps["apps"] += [app] offset += appinfo_size return apps def _version_response(self, endpoint, data): fw_names = { 0: "normal_fw", 1: "recovery_fw" } resp = {} for i in xrange(2): fwver_size = 47 offset = i*fwver_size+1 fw = {} fw["timestamp"],fw["version"],fw["commit"],fw["is_recovery"], \ fw["hardware_platform"],fw["metadata_ver"] = \ unpack("!i32s8s?bb", data[offset:offset+fwver_size]) fw["version"] = fw["version"].replace("\x00", "") fw["commit"] = fw["commit"].replace("\x00", "") fw_name = fw_names[i] resp[fw_name] = fw resp["bootloader_timestamp"],resp["hw_version"],resp["serial"] = \ unpack("!L9s12s", data[95:120]) resp["hw_version"] = resp["hw_version"].replace("\x00","") btmac_hex = binascii.hexlify(data[120:126]) resp["btmac"] = ":".join([btmac_hex[i:i+2].upper() for i in reversed(xrange(0, 12, 2))]) return resp class PutBytesClient(object): states = { "NOT_STARTED": 0, "WAIT_FOR_TOKEN": 1, "IN_PROGRESS": 2, "COMMIT": 3, "COMPLETE": 4, "FAILED": 5 } transfer_types = { "RESOURCES": 4, "BINARY": 5 } def __init__(self, pebble, index, transfer_type, buffer): self._pebble = pebble self._state = self.states["NOT_STARTED"] self._transfer_type = self.transfer_types[transfer_type] self._buffer = buffer self._index = index self._done = False def init(self): data = pack("!bIbb", 1, len(self._buffer), self._transfer_type, self._index) self._pebble._send_message("PUTBYTES", data) self._state = self.states["WAIT_FOR_TOKEN"] def wait_for_token(self, resp): res, = unpack("!b", resp[0]) if res != 1: self.abort() return self._token, = unpack("!I", resp[1:]) self._left = len(self._buffer) self._state = self.states["IN_PROGRESS"] self.send() def in_progress(self, resp): res, = unpack("!b", resp[0]) if res != 1: self.abort() return if self._left > 0: self.send() else: self._state = self.states["COMMIT"] self.commit() def commit(self): data = pack("!bII", 3, self._token & 0xFFFFFFFF, stm32_crc.crc32(self._buffer)) self._pebble._send_message("PUTBYTES", data) def handle_commit(self, resp): res, = unpack("!b", resp[0]) if res != 1: self.abort() return self._state = self.states["COMPLETE"] self.complete() def complete(self): data = pack("!bI", 5, self._token & 0xFFFFFFFF) self._pebble._send_message("PUTBYTES", data) def handle_complete(self, resp): res, = unpack("!b", resp[0]) if res != 1: self.abort() return self._done = True def abort(self): # error handling? what error handling! pass def send(self): datalen = min(self._left, 2000) rg = len(self._buffer)-self._left msgdata = pack("!bII", 2, self._token & 0xFFFFFFFF, datalen) msgdata += self._buffer[rg:rg+datalen] self._pebble._send_message("PUTBYTES", msgdata) self._left -= datalen def handle_message(self, endpoint, resp): if self._state == self.states["WAIT_FOR_TOKEN"]: self.wait_for_token(resp) elif self._state == self.states["IN_PROGRESS"]: self.in_progress(resp) elif self._state == self.states["COMMIT"]: self.handle_commit(resp) elif self._state == self.states["COMPLETE"]: self.handle_complete(resp) if __name__ == '__main__': pebble_id = sys.argv[1] if len(sys.argv) > 1 else "402F" pebble = Pebble(pebble_id) pebble.notification_sms("libpebble", "Hello, Pebble!") # install app.pbz #print "Installing app.pbz" #pebble.install_app("app.pbz") # delete all apps #for app in pebble.get_appbank_status()["apps"]: # pebble.remove_app(app["id"], app["index"]) versions = pebble.get_versions() curtime = pebble.get_time() apps = pebble.get_appbank_status() print "Pebble "+pebble_id print "Firmware "+versions["normal_fw"]["version"] print "Recovery "+versions["recovery_fw"]["version"] print "Timestamp: "+str(curtime) print "Installed apps:" for app in apps["apps"]: print " - "+app["name"]
UTF-8
Python
false
false
10,431
py
1
pebble.py
1
0.641453
0.623143
0.001055
397
25.274559
90
tchico/budget
1,949,915,156,331
5c3c571c09a0c17c48089a68eb4746b3d3d91249
9840040a49c030dbd85223c0e76d8e4921f29b19
/Budget/website/model/budget.py
a8f5d605b59054cffdf57d7c9cdd3d44b059c952
[]
no_license
https://github.com/tchico/budget
71c1fb2531c7e4bb3f0eb8b9489a3c3b8046cf31
1f980632f5e360df51150068f2ca1b0df64a59f6
refs/heads/master
2015-07-21T17:14:33
2015-07-07T22:16:40
2015-07-07T22:16:40
34,820,742
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Created on 18 Jun 2015 @author: zk9vist ''' from django.db import models from website.model.category_budget import CategoryBudget class Budget(models.Model): ''' Budget class ''' year = models.PositiveSmallIntegerField() month = models.PositiveSmallIntegerField() budget_categories = models.ForeignKey(CategoryBudget) def add_category_budget(self, category, amount): self.budget_categories[category.__name__] = {'amount': amount} def get_category_budget(self, category): return self.budget_categories.get(category)
UTF-8
Python
false
false
600
py
16
budget.py
12
0.676667
0.665
0
23
24.086957
70
Kwangsoo-kim/HW-Big
12,395,275,618,403
40551275d26ea0dd9773daea5836a5fb4f729ed2
2098d18347dbcc241859a95ceba8949abf7f02bf
/src/b_11_Django/ch04_haksa/students/urls.py
0f924775901d87251606ea133e4479fdaf1b138d
[]
no_license
https://github.com/Kwangsoo-kim/HW-Big
42775d813ecdc1d097ff84985a0b52a6790b44f2
9ea939894aa622950b949beee30191cf1cfd7040
refs/heads/main
2023-06-24T15:27:30.323867
2021-07-06T08:42:14
2021-07-06T08:42:14
317,099,102
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.urls import path from . import views app_name='students' urlpatterns=[ path('listAll/',views.listAll,name='listAll') ]
UTF-8
Python
false
false
138
py
750
urls.py
423
0.717391
0.717391
0
10
12.9
49
pell13/2021-Fall_Python-Algorithm-
12,257,836,669,240
0929a3d78b5a1347621d6a676c2f3149abb43e6a
279c21d9945390d85a5da6887b2028c41bcb010c
/BOJ_solution/2504.괄호의값.py
5bbf709e7e11965615bc0396eec70feb4d2cb009
[]
no_license
https://github.com/pell13/2021-Fall_Python-Algorithm-
2051b9f13a9158682855eb71f440b4d75895e61e
309dfab37fe13749dbaeea06d12d23e6ff53d785
refs/heads/main
2023-08-21T17:54:36.940977
2023-02-25T12:40:46
2023-02-25T12:40:46
415,779,121
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 문제 유형 : 구현 #시작시간: 1:15 -> 2시간 넘게 품.. ㅠㅠ #() -> 2 #[] -> 3 #오답노트 : 처음에는 괄호에서 시작하는대로 하려고 별의별 뻘짓을 다하다가, 재귀로도 해보다가... 어떻게 재는지 몰라서 계속 하다가 결국 while문으로 노가다하는 방식을 선택했다. #하지만 더하는 상황, 곱하는 상황을 분간하기가 너무 어려웠다... #굉장히 잘 한 답을 보니까 곱하는 걸 나중에 하는게 아니라 시작하면서 곱한다는 점이 좋아 보였고, 그리고 내 안에 브라켓이 있는지 체크할때 stack이 아니라 원본 어레이를 활용했다. #여는 걸 넣을때 값을 곱한다. 닫힌 괄호를 만나면 tmp를 전체 결과인 res에 넣고 괄호를 나눠준다. #아, 그러면 이게 어떻게 보면 분배법칙이 성립하는 셈이다 #(()[[]]) # 2 * ( 2 + 3 * 3 ) # 인데 이거를 2 * 2 + 2 * 3 * 3 이라고 풀어서 넣은 거다! # 여는 괄호를 할때 ( ( 로 4가 곱해진거고, ) 가 닫혔으니 4를 더해주고 ()만큼은 덧셈에 효력이 없으니 2로 나눠주는 감성이다. # 내 생각에는 오늘 밤새 이걸 풀었다고 해도 이 방법은 절대 생각 못했을 것 같다. while 문으로 어떻게든 꾸역꾸역 구현했지만 답을 보고 앞으로 쓸 수 있는 하나의 테크닉을 배웠다. def sol(arr): stack = [arr[0]] score = [] result = [] depth = [] flag = 0 for i in range(1, len(arr)): top = '' if len(stack) != 0: top = stack[-1] if (top == '[' and arr[i] == ']') or (top == '(' and arr[i] == ')'): depth.append(flag) flag = flag - 1 stack.pop() result.append(arr[i]) if top == '[': n = 3 if top == '(': n = 2 score.append(n) else: flag = flag + 1 stack.append(arr[i]) if len(stack) != 0: return 0 max_value = max(depth) while max_value > 0 : new_d = [] new_s = [] for i in range(len(depth) -1): if depth[i] == max_value and depth[i] == depth[i + 1]: score[i+1] += score[i] elif depth[i] == max_value and (depth[i+1] + 1 == (depth[i])): score[i+1] *= score[i] elif depth[i] != max_value: new_s.append(score[i]) new_d.append(depth[i]) new_d.append(depth[-1]) new_s.append(score[-1]) depth = new_d score = new_s max_value = max(depth) return sum(score) bracket_arr = input() print(sol(bracket_arr))
UTF-8
Python
false
false
2,673
py
62
2504.괄호의값.py
61
0.487868
0.46825
0
77
24.168831
104
yannickulrich/IRIS
11,055,245,848,607
f4877bd8c7912ea2691be1caab096c7fe8795b26
c1bc4c77d54d70f167a8063e917b286b2e27c655
/libs/tts/utils.py
085d4c5228cd8b75c097687f664040a7ce861c67
[]
no_license
https://github.com/yannickulrich/IRIS
09c0292506a1f4a112d29f7d9af8008a791762e2
fb13496308fff73640ae306b1bbd88a5bd71d59f
refs/heads/master
2018-01-12T08:56:28.559987
2016-03-02T16:57:05
2016-03-02T16:57:05
51,516,141
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def get_profile(profile, key="", default=""): tts_profile = {} if profile: if 'tts' in profile: tts_profile = profile['tts'] if key: if key in tts_profile: return tts_profile[key] elif default: return default else: raise KeyError("Key not found and default not set") else: return tts_profile
UTF-8
Python
false
false
397
py
36
utils.py
34
0.534005
0.534005
0
15
25.466667
63
atinghosh/Deep-learning-for-Glaucoma
9,466,107,924,434
739909b92677484647158a0d88d41c92d70571b6
2366e392f09fd50368acf69ff04cf32a3187d08a
/Huy/data.py
28492737d55a6706d79354a699ff09c6e3394dab
[]
no_license
https://github.com/atinghosh/Deep-learning-for-Glaucoma
b41de26604999424de6aaeaccaac33bb0d9b74e2
4993b5937cb87dcc9a660f30caa37b4346767a3d
refs/heads/master
2020-03-18T18:58:24.347534
2018-05-29T21:42:37
2018-05-29T21:42:37
135,125,903
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import os from os import path import glob import math import shutil import random import pandas as pd import numpy as np from scipy import signal from PIL import Image import torch import torch.utils.data as data import torchvision from torchvision import transforms as T import Huy.transforms as imgT #------------------------------------------------------------------------------ #Initial Dataset #------------------------------------------------------------------------------ def is_file(filename, exts): return any(filename.endswith(extension) for extension in exts) def convert_label(trainYn, nb_classes): a,b,c,_= np.shape(trainYn) trainY = np.zeros((a,b,c,nb_classes)) for i in range(0,a): trainY[i,:,:,0:4]= trainYn[i,:,:,0:4] trainY[i,:,:,4] = (trainYn[i,:,:,4] + trainYn[i,:,:,5] + trainYn[i,:,:,6] + trainYn[i,:,:,7]) return trainY def load_data(filelist): nb_classes = 5 inputData = np.load(filelist[0]) targetData = np.load(filelist[1]) targetData = convert_label(targetData, nb_classes) return inputData, targetData class DatasetFromFile(data.Dataset): """Maniplulate dataset before loading """ def __init__(self, filelist=['input','target'], transform=None, islabel=True): super(DatasetFromFile, self).__init__() for filepath in filelist: if not path.isfile(filepath): raise ValueError(filepath, ' is not a file') self.filelist = filelist self.transform = transform self.islabel = islabel #often use for prediction self.inputData, self.targetData = load_data(filelist) self.len = self.inputData.shape[0] def __getitem__(self, index): input = self.inputData[index] input = input/255 if self.islabel: target = self.targetData[index] if self.transform is not None: input, target = self.transform([input, target]) else: target = -1 input = self.transform(input) return input, target, index def __len__(self): return self.len #------------------------------------------------------------------------------ #Do transforms #------------------------------------------------------------------------------ def create_dark_mask(): """create dark mask for adding black box """ black_dx = 60 black_dy = 20 dark_mask = np.zeros((black_dx, black_dy)) for k in range(black_dy): dark_mask[:,k] = (np.abs(k-black_dy//2) / (black_dy/2.))**2 return dark_mask def create_elastic_indices(): """create indices for elastic deformation used once at the start epoch """ #initial values alpha, alpha2, sigma = 10, 15, 50 shape = (480, 352) #same as shape of input images x_mesh, y_mesh = np.meshgrid(np.arange(shape[1]), np.arange(shape[0])) #below is used once per epoch for the elastic deformation g_1d = signal.gaussian(300, sigma) kernel_deform = np.outer(g_1d, g_1d) dx = signal.fftconvolve(np.random.rand(*shape) * 2 - 1, kernel_deform, mode='same') dy = signal.fftconvolve(np.random.rand(*shape) * 2 - 1, kernel_deform, mode='same') dx = alpha * (dx - np.mean(dx)) / np.std(dx) dy = alpha2 * (dy - np.mean(dy))/ np.std(dy) indices_x, indices_y = x_mesh+dx, y_mesh+dy indices_x_clipped = np.clip(indices_x, a_min=0, a_max=shape[1]-1) indices_y_clipped = np.clip(indices_y, a_min=0, a_max=shape[0]-1) return indices_x_clipped, indices_y_clipped def train_transform(dark_mask, indices_x_clipped, indices_y_clipped): return imgT.EnhancedCompose([ #random flip T.Lambda(imgT.randomlyFlip), #intensity nonlinear [T.Lambda(imgT.intensityNonliearShift), None], #add blackbox [imgT.AddBlackBox(dark_mask), None], #imgT.RandomRotate(), #elastic deformation imgT.ElasticDeformation(indices_x_clipped, indices_y_clipped), #multiplicative gauss [imgT.AddGaussian(ismulti=True), None], #additive gauss [imgT.AddGaussian(ismulti=False), None], # for non-pytorch usage, remove to_tensor conversion [T.Lambda(imgT.to_tensor), T.Lambda(imgT.to_tensor_target)] ]) def val_transform(): return imgT.EnhancedCompose([ # for non-pytorch usage, remove to_tensor conversion [T.Lambda(imgT.to_tensor), T.Lambda(imgT.to_tensor_target)] ]) #------------------------------------------------------------------------------ #Get method (used for DataLoader) #------------------------------------------------------------------------------ def get_trainSet(train_filelist): dark_mask = create_dark_mask() indices_x_clipped, indices_y_clipped = create_elastic_indices() return DatasetFromFile(train_filelist, transform=train_transform(dark_mask, indices_x_clipped, indices_y_clipped)) def get_valSet(val_filelist): dark_mask = create_dark_mask() indices_x_clipped, indices_y_clipped = create_elastic_indices() return DatasetFromFile(val_filelist, transform= val_transform())#train_transform(dark_mask, indices_x_clipped, indices_y_clipped))
UTF-8
Python
false
false
5,236
py
11
data.py
10
0.582315
0.571429
0
139
36.661871
134
belatrix/BelatrixEventsBackend
17,695,265,280,752
f06677e1feb8a7c0108674b7219a8d4200b5c4cb
25766f56887a1c6975258d8b45c87389092c07d2
/events/admin.py
abb9ac8e813e040db26613970e4f3ab1d314a8d7
[ "MIT" ]
permissive
https://github.com/belatrix/BelatrixEventsBackend
275f757d754d1c42d70a27598274d883cf76671b
eb38574bba0ca0269b17d0be938cc46787c21895
refs/heads/master
2020-05-20T17:58:30.484229
2018-06-04T13:57:07
2018-06-04T13:57:07
84,498,341
0
0
MIT
false
2018-06-04T13:57:08
2017-03-09T23:28:38
2018-05-03T20:32:06
2018-06-04T13:57:08
172
0
0
4
Python
false
null
from django.contrib import admin from .models import City, Event, Interaction, Location, EventParticipant from .models import Meeting, Attendance class CityAdmin(admin.ModelAdmin): list_display = ('name', ) class EventAdmin(admin.ModelAdmin): list_display = ('title', 'datetime', 'image', 'details', 'is_upcoming', 'is_featured', 'get_cities', 'is_active') class EventParticipantAdmin(admin.ModelAdmin): list_display = ('event', 'participant') class InteractionAdmin(admin.ModelAdmin): list_display = ('text', 'event', 'votes') class LocationAdmin(admin.ModelAdmin): list_display = ('name', 'latitude', 'longitude') class MeetingAdmin(admin.ModelAdmin): list_display = ('name', 'start_date', 'end_date', 'event', 'is_over', 'is_active') class AttendanceAdmin(admin.ModelAdmin): list_display = ('datetime', 'meeting', 'participant') search_fields = ['participant__email'] admin.site.register(City, CityAdmin) admin.site.register(Event, EventAdmin) admin.site.register(EventParticipant, EventParticipantAdmin) admin.site.register(Interaction, InteractionAdmin) admin.site.register(Location, LocationAdmin) admin.site.register(Meeting, MeetingAdmin) admin.site.register(Attendance, AttendanceAdmin)
UTF-8
Python
false
false
1,244
py
67
admin.py
42
0.73955
0.73955
0
41
29.341463
117
seanmavley/Menpha
15,006,615,748,011
9b907ae5edf594a46ac5444682aa27332b5f13e9
c37a9705b51fb466fbe73c3ccfa10c274ed51063
/main/tests.py
74028a7f858ec62fea43f891c5c38e5820885900
[]
no_license
https://github.com/seanmavley/Menpha
812aa69f9aaa54f4c05d177df456ddae9bd1e832
f1164dda2349d0c2a273dc417c98c425b91c9b68
refs/heads/master
2016-04-03T03:36:30.962295
2015-02-15T08:17:52
2015-02-15T08:17:52
27,644,277
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.test import TestCase # from django.core.urlresolvers import resolve from .models import Item from django.contrib.auth.models import User class start(): def create_user(self): self.user_in = User.objects.create_user( 'khophi', 'email@email.com', 'password' ) # create user khophi self.user_in.save() def create_item(self): self.username = User.objects.get(username='khophi') self.item = Item( device='Google Nexus 6', slug='0000000000', type_of_item='md', description='An awesome phone I bought from Google', stolen='s', created_by=self.username ) self.item.save() # Check save and retrieve from DB class SaveToDBDirect(TestCase): def setUp(self): begin = start() begin.create_user() begin.create_item() def test_check_user_account(self): self.user = User.objects.all()[0] self.assertEqual(str(self.user), '[<User: khophi>]') def test_check_new_item(self): from_db = Item.objects.count() self.assertEqual(from_db, 1) # Check request, save and retrieve from DB works via views # Non REST class TestView(TestCase): def test_check_login(self): request = self.client.post('/admin/', {'username': 'khophi', 'password': 'password'}) self.assertEqual(request.status_code, 200) def test_check_details(self): request = self.client.get('/detail/0000000000') self.assertEqual(request.status_code, 200) # Check request, save and retrieve from DB works via views # REST way # Check post and get works via browser # Mr. Selenium comes in # Searched empty, response "Not searched for anything" # if not stolen, don't show in results # Mylist count # Account login, logout # get_absolute_urls on models
UTF-8
Python
false
false
1,923
py
47
tests.py
8
0.621425
0.606344
0
75
24.64
93
areski/Facio
8,358,006,368,416
27b461310273f4af7d80aaabc95a32c1d390cfc0
9e9c192fc5b72d61b2913f9b1e79bc2c8dd52757
/src/facio/config.py
cf83d8be0976f8e2be69190816965fee0fd28194
[ "BSD-2-Clause" ]
permissive
https://github.com/areski/Facio
98bc1cc00e7bcac93ee361c2a0209152a7dfc94c
73a5793c8fa7821173c400aa3192e3ba9c8cd4de
refs/heads/master
2021-01-18T08:56:00.493525
2013-05-19T10:21:03
2013-05-19T10:21:03
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" facio.config ------------ Sets up variables and configuration for Facio from command line and / or a configuration file. """ import ConfigParser import os import sys try: from clint.textui import puts, indent from clint.textui.colored import blue except ImportError: pass from random import choice from .cli import CLIOptions class ConfigFile(object): templates = {} sections = { 'misc': ['install', ], 'template': [], 'virtualenv': ['venv_create', 'venv_path', 'venv_use_site_packages'], } path = os.path.join(os.path.expanduser('~'), '.facio.cfg') def __init__(self): if os.path.isfile(self.path): self._parse_config() else: self.cfg_loaded = False def _parse_config(self): self.parser = ConfigParser.ConfigParser() try: self.parser.read(self.path) except ConfigParser.MissingSectionHeaderError: self.cfg_loaded = False # TODO: print warning to user except ConfigParser.ParsingError: # TODO: print warning to user self.cfg_loaded = False else: self.cfg_loaded = True with indent(4, quote=' >'): puts(blue('Loaded ~/.facio.cfg')) for section in self.sections: try: items = self.parser.items(section) except ConfigParser.NoSectionError: pass else: if section == 'template': self._add_templates(items) else: self._set_attributes(section, items) def _add_templates(self, items): for item in items: name, value = item self.templates[name] = value def _set_attributes(self, section, items): opts = self.sections[section] for opt in opts: try: opt, val = [(x, y) for x, y in items if x == opt][0] except IndexError: pass else: if val == '0' or val == '1': val = False if val == '0' else True setattr(self, opt, val) class Config(object): default_template = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'default_template') def __init__(self): self.cli_args = CLIOptions() self.file_args = ConfigFile() self.django_secret_key def _error(self, msg): self.cli_args._parser.error(msg) # # Project Properties # @property def project_name(self): return self.cli_args.project_name # # Template Properties # def _validate_template_options(self): if (not self._tpl.startswith('git+') and not os.path.isdir(self._tpl)): self._error('The path to your template does not exist.') def _template_choice_prompt(self): templates = self.file_args.templates max_tries = 5 template_list = list(templates) i = 0 sys.stdout.write("Please choose a template:\n\n") for name in templates: template = templates[name] sys.stdout.write("{0}) {1}: {2}\n".format((i + 1), name, template)) i += 1 i = 1 while True: if i > max_tries: self._error('You failed to enter a valid template number.') try: num = int(raw_input( '\nEnter the number for the template ' '({0} of {1} tries): '.format(i, max_tries))) if num == 0: raise ValueError template = templates[template_list[num - 1]] except (ValueError, IndexError): sys.stdout.write('\nPlease choose a number between 1 and ' '{0}\n'.format(len(template_list))) i += 1 else: return template @property def _cli_template(self): try: return self.cli_args.template except AttributeError: return False @property def _cli_choose_template(self): try: return self.cli_args.choose_template except AttributeError: return False @property def template(self): if not getattr(self, '_tpl', None): if self._cli_template: self._tpl = self._cli_template elif self._cli_choose_template: self._tpl = self._template_choice_prompt() else: try: self._tpl = self.file_args.templates['default'] except KeyError: self._tpl = self.default_template self._validate_template_options() return self._tpl @property def template_settings_dir(self): try: return self.cli_args.template_settings_dir except AssertionError: return False @property def variables(self): try: return self.cli_args.variables except AssertionError: return False # # Python Properties (Experimental) # @property def _file_args_install(self): try: return self.file_args.install except AttributeError: return False @property def _cli_args_install(self): try: return self.cli_args.install except AttributeError: return False @property def install(self): if self._cli_args_install or self._file_args_install: return True return False # # Virtual Environment Properties (Experimental) # def _validate_virtualenv_options(self): if not self.venv_path: self._error('You need to provide a virtualenv path where the ' 'venv will be created') @property def _file_args_venv_create(self): try: return self.file_args.venv_create except AttributeError: return False @property def _cli_args_venv_create(self): try: return self.cli_args.venv_create except AttributeError: return False @property def _file_args_venv_path(self): try: return self.file_args.venv_path except AttributeError: return False @property def _cli_args_venv_path(self): try: return self.cli_args.venv_path except AttributeError: return False @property def _file_args_venv_use_site_packages(self): try: return self.file_args.venv_use_site_packages except AttributeError: return False @property def _cli_args_venv_use_site_packages(self): try: return self.cli_args.venv_use_site_packages except AttributeError: return False @property def venv_create(self): if self._cli_args_venv_create or self._file_args_venv_create: self._validate_virtualenv_options() return True return False @property def venv_path(self): if self._file_args_venv_path and not self._cli_args_venv_path: return self._file_args_venv_path elif self._cli_args_venv_path: return self.cli_args.venv_path return False @property def venv_use_site_packages(self): if (self._cli_args_venv_use_site_packages or self._file_args_venv_use_site_packages): return True return False @property def venv_prefix(self): try: return self.cli_args.venv_prefix except AttributeError: return False # # Django Secret Key Generation # @property def django_secret_key(self): '''Generate a secret key for Django Projects.''' if hasattr(self, 'generated_django_secret_key'): return self.generated_django_secret_key else: choice_str = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)' key = ''.join([choice(choice_str) for i in range(50)]) self.generated_django_secret_key = key return key
UTF-8
Python
false
false
8,354
py
39
config.py
16
0.541776
0.537946
0
302
26.662252
79
olasson/SDCND-P3-BehavioralCloning
8,375,186,259,730
2d4f3ff87c840c00e8cd171d7153d61205250984
b0c576d458016fa6c3474be7f51d9f9ea66aa495
/code/io.py
12d45b305a86a1ff0f497984dce03ddb9b606880
[]
no_license
https://github.com/olasson/SDCND-P3-BehavioralCloning
0cf4962a9395fa5a433778e7e10c20f79930c780
2527bf63ac98171265c16cd9af04c53d6ae6e58b
refs/heads/master
2023-07-02T19:01:26.016259
2021-08-07T11:23:25
2021-08-07T11:23:25
386,737,758
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" This file contains save and load (I/O) functions. """ import json import pickle import numpy as np from glob import glob from pandas import read_csv from os.path import join as path_join import matplotlib.image as mpimg # Custom imports from code.misc import parse_file_path def load_image(file_path): # Wrapper image = mpimg.imread(file_path) return image # Images def load_images(file_paths): """ Load a set of images into memory Inputs ---------- file_paths : list or numpy.ndarray A list or array of file_paths - ['./example/myimg1.jpg'... './example/myimgN.jpg',] Outputs ------- images: numpy.ndarray Numpy array containing 'images' file_names: numpy.ndarray Numpy array containing the file names - ['myimg1.jpg'... 'myimgN.jpg',] """ n_images = len(file_paths) image_shape = load_image(file_paths[0]).shape n_rows = image_shape[0] n_cols = image_shape[1] # RGB or grayscale if len(image_shape) > 2: n_channels = 3 else: n_channels = 1 images = np.zeros((n_images, n_rows, n_cols, n_channels), dtype = np.uint8) file_names = np.zeros((n_images), dtype = 'U25') for i in range(n_images): images[i] = load_image(file_paths[i]) file_names[i] = parse_file_path(file_paths[i])[1] return images, file_names # Config def load_config(file_path): """ Check if a file exists Inputs ---------- file_path: str Path to a .json file. Outputs ------- config: dict Dictionary containing the config from file_path. """ if (file_path == '') or (file_path is None): return None with open(file_path) as f: config = json.load(f) return config # Pickled def save_pickled_data(file_path, data1, data2, key1 = 'images', key2 = 'angles'): """ Save two data files as a single pickled (.p) file. Inputs ---------- file_path: str File path to a pickled file - './path/to/myfile.p' data1,data2: numpy.ndarray, numpy.ndarray Numpy arrays containing data. key1, key2: str, str Dictionary keys. Outputs ------- N/A """ data = {key1: data1, key2: data2} with open(file_path, mode = 'wb') as f: pickle.dump(data, f, protocol = pickle.HIGHEST_PROTOCOL) def load_pickled_data(file_path, key1 = 'images', key2 = 'angles'): """ Load a single pickled (.p) file into two numpy arrays. Inputs ---------- file_path: str File path to a pickled file - './path/to/myfile.p' key1, key2: str, str Dictionary keys. Outputs ------- data1,data2: numpy.ndarray, numpy.ndarray Numpy arrays containing data. """ with open(file_path, mode = 'rb') as f: data = pickle.load(f) data1 = data[key1] data2 = data[key2] return data1, data2 def load_sim_log(path): """ Load the contents of the driving_log.csv Inputs ---------- path: str Path to driving_log.csv Outputs ------- angles: numpy.ndarray Numpy array of floats containing one angle for each cam file_paths: numpy.ndarray Numpy array of strings containing paths to a set of images """ sim_log = read_csv(path, names = ['center', 'left', 'right', 'angle', 'throttle', 'break', 'speed']) file_paths = sim_log[['center', 'left', 'right']].to_numpy().flatten() angles = sim_log[['angle', 'angle', 'angle']].to_numpy().flatten() return angles, file_paths
UTF-8
Python
false
false
3,669
py
12
io.py
9
0.578632
0.56882
0
169
20.680473
104
dkowsikpai/s1python
4,312,147,173,707
0dcbe50143aa53fe2fd9d576c244a0ae585e5602
aaba51e1466fb888cc0a351332fa198c610da014
/Python/gro_dic.py
3c6e7e0d81b85168a55eea5f32e22568ffcd0587
[]
no_license
https://github.com/dkowsikpai/s1python
01cdfefabf4abb37fa205605717589bb008ab28f
2dc0912326426214184746af8978b92715056fe7
refs/heads/master
2020-03-29T08:39:04.662383
2019-04-02T13:33:57
2019-04-02T13:33:57
149,721,539
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
it_db={} while True: it="" it=input("Enter the items:") if it!="": it_db[it]=int(input("Enter the price:")) else: break it_bt={} print("-------Purchase--------") while True: it="" it=input("Enter the items:") if it!="": it_bt[it]=int(input("Enter the quantity:")) it_bt[it]=it_bt[it]*it_db[it] else: break lt=it_bt.keys() Tsum=0 for i in lt: Tsum+=it_bt[i] print(i," : ",it_bt[i]) print("Grand Total: ",Tsum,"/-")
UTF-8
Python
false
false
478
py
26
gro_dic.py
26
0.514644
0.512552
0
22
20.727273
51
kayarre/vmtktools
14,525,579,428,487
e2dff9b5665ff163ee580881ddfa35f2ca0f525e
7bc5fca6d7e8bc7e38e7afeae10a116e4422d96c
/automatic_clipping.py
26942d88928217fdb76165a1d4495a0fe1022c62
[]
no_license
https://github.com/kayarre/vmtktools
be7b802a96dd101434b502e3092f7133c3dbaf24
0a32f6614b2bc3c386a631cc9e2a7c9e99060b76
refs/heads/master
2021-01-14T11:19:50.412840
2016-06-01T14:08:49
2016-06-01T14:08:49
68,652,798
0
3
null
true
2016-09-19T22:43:21
2016-09-19T22:43:21
2016-03-30T21:43:30
2016-06-01T14:08:54
112
0
0
0
null
null
null
from argparse import ArgumentParser from common import * import numpy as np def read_command_line(): """Read arguments from commandline""" parser = ArgumentParser() parser.add_argument('--d', '--dir_path', type=str, default=".", help="Path to the folder with all the cases") parser.add_argument('--m', type=str, default="model_smoothed.vtp", help="Name of the model file") parser.add_argument('--c', type=str, default="centerline_complete.vtp", help="Name of the centerline file") parser.add_argument('--anu', type=bool, default=False) args = parser.parse_args() return args.d, args.m, args.c, args.anu def move_past_sphere(cl, points, direction): i = 0 if not direction else cl.GetNumberOfPoints() - 1 j = 0 if direction else cl.GetNumberOfPoints() - 1 r = cl.GetPointData().GetArray(radiusArrayName).GetTuple1(i) center = cl.GetPoints().GetPoint(i) MISphere = vtk.vtkSphere() MISphere.SetCenter(center) MISphere.SetRadius(r*(1./3)) direction = -1 if direction else 1 for k in range(i, j, direction): value = MISphere.EvaluateFunction(cl.GetPoint(k)) if value >= 0: break return cl.GetPoint(k), cl.GetPointData().GetArray(radiusArrayName).GetTuple1(i) def getBoundingBox(cl, inlet): endPoint = cl.GetPoint(cl.GetNumberOfPoints() - 1) if inlet else cl.GetPoint(0) bottom, bottom_r = move_past_sphere(cl, endPoint, inlet) line = CenterlineAttribiutes(cl) E1 = get_array("ParallelTransportNormals", line, k=3) E1 = E1[E1.shape[0]-1,:] T = get_array("FrenetTangent", line, k=3) T = T[T.shape[0]-1,:] E2 = np.zeros(3) V = np.eye(3) V[:, 0] = T V[:, 1] = E1 V = GramSchmidt(V) E1 = V[:,1] * bottom_r * 1.5 E2 = V[:,2] * bottom_r * 1.6 T = T * bottom_r * 3 if not inlet else T * bottom_r * 3 * (-1) corners = [] for O in [bottom, bottom + T]: for dir1 in [1, -1]: for dir2 in [1, -1]: corners.append(O + dir1*E1 + dir2*E2) viz(line, [bottom, endPoint] + corners) corners = np.array(corners) limits = [] for i in range(3): for f in [np.min, np.max]: limits.append(f(corners[:,i])) return limits def clipp(dir_path, model, centerline, anu): cl = ReadPolyData(path.join(dir_path, centerline)) surface = ReadPolyData(path.join(dir_path, model)) #clipper = vtk.vtkBoxClipDataSet() box = vtk.vtkBox() clipper = vtk.vtkClipPolyData() clipper.SetInput(surface) clipper.SetClipFunction(box) inlet = True for i in [0] + range(cl.GetNumberOfLines() - anu): limits = getBoundingBox(ExtractSingleLine(cl, i), inlet) inlet = False box.SetBonds(limits[0], limits[1], limits[2], limits[3], limits[4], limits[5]) clipper.Update() #clipper.SetBoxClip(limits[0], limits[1], limits[2], limits[3], limits[4], limits[5]) clipper.GenerateClippedOutputOn() clipper.Update() filter = vtk.vtkGeometryFilter() filter.SetInput(clipper.GetClippedOutput()) filter.Update() surface.DeepCopy(filter.GetOutput()) clipper.Update() #TODO: Deep copy of surface and update clipper WritePolyData(surface, "test_clipping.vtp") sys.exit(0) if __name__ == "__main__": dir_path, model, centerline, anu = read_command_line() clipp(dir_path, model, centerline, anu)
UTF-8
Python
false
false
3,484
py
26
automatic_clipping.py
26
0.616533
0.597876
0
111
30.387387
111
jjh42/oldalgo
6,227,702,610,427
4dc7857a96a9cc78a9810bab3383b6395ad78eda
b31638e4bf085263922f0fcc78fce2b659e2815f
/mergesort.py
8422d1513f467c6650edf67f77738a18d4952439
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
https://github.com/jjh42/oldalgo
ba9023db7ccaf6a339bc28b0cbc81ba6c8c050f0
8fb748bcdcde05ebb6ed8b6b5749e2d3713d14ef
refs/heads/master
2020-06-03T16:32:07.595692
2014-08-10T20:56:33
2014-08-10T20:56:33
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def split(a): """Split array a into two halves with the larger half on the right for odd lengths.""" middle = len(a)/2 left = a[0:middle] right = a[middle:] return left, right def merge(left, right): """Merge two sorted arrays into a concatenated sorted array.""" leftindex = 0 rightindex = 0 m = [] for k in range(len(left) + len(right)): if left[leftindex] < right[rightindex]: m.append(left[leftindex]) leftindex += 1 if leftindex == len(left): # We've completed the left side m.extend(right[rightindex:]) break else: m.append(right[rightindex]) rightindex += 1 if rightindex == len(right): # We've completed the left side m.extend(left[leftindex:]) break return m def mergesort(a): """Use recursive merge sort (without any cleverness to reduce memory access) to sort the array a into a least first list. Returns sorted list. Assumes that all list elements are comparable""" # Deal with the base case if len(a) <= 1: return a # Recurse for everyone else left, right = split(a) left = mergesort(left) right = mergesort(right) return merge(left, right)
UTF-8
Python
false
false
1,309
py
7
mergesort.py
6
0.586707
0.58136
0
44
28.727273
90
RaspberryWallet/Backend
15,676,630,674,621
dd82c696129074ac6554931d4ab2af9d36bbedd8
f04eabeb86f64e0711566a089fbe74b389c5be7a
/Scripts/webapp/copyWebApp.py
3aafe0293ad2cdc4cc10526a05d35551c168b399
[]
no_license
https://github.com/RaspberryWallet/Backend
753069b94e4e5bd130c12f18bf455b6ddc6677bd
aa65c50746ac95d3c24e93175cf64d78ffb827bf
refs/heads/master
2022-11-22T18:20:13.577031
2019-11-13T12:34:27
2019-11-13T12:34:27
138,017,958
4
2
null
false
2022-11-15T23:52:23
2018-06-20T10:35:44
2019-11-13T12:34:31
2022-11-15T23:52:20
8,202
4
2
17
Java
false
false
#!/usr/local/bin/python3 import os import shutil while not os.getcwd().lower().endswith("backend"): os.chdir("..") shutil.rmtree("ServerHttp/src/main/resources/assets/static/js") os.system("cp -rf ../../JSProjects/raspberry-wallet-frontend/build/ ServerHttp/src/main/resources/assets/") os.system("git add ServerHttp/src/main/resources/assets")
UTF-8
Python
false
false
352
py
157
copyWebApp.py
139
0.741477
0.738636
0
11
31
107
ti132520/pytest-vlog
11,493,332,506,780
73b2356c10f62f85b8fd936a906feb034fae5f9d
a3529c0d2d26169b22244d6ff1bfdfc8d350eaf4
/backen-20210718/backend/server.py
44168c350894c30a6dd68a6ad1643e95af9f6781
[ "CC0-1.0" ]
permissive
https://github.com/ti132520/pytest-vlog
8041321f9e8ab0d892d20ebc42a28f18f6be4996
c6688ed2b1c5e10b91057a22e672dffc1cd54d53
refs/heads/main
2023-08-03T19:15:32.645834
2021-09-11T02:11:29
2021-09-11T02:11:29
355,898,041
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
import json from flask import Flask, request from flask_restful import Resource, Api from flask_sqlalchemy import SQLAlchemy from flask_cors import CORS app = Flask(__name__) api = Api(app) CORS(app, supports_credentials=True, origins="*") username = "root" pwd = "123456" ip = "134.175.28.202" port = "8888" database = "test_ck18" app.config['SQLALCHEMY_DATABASE_URI'] = f'mysql+pymysql://{username}:{pwd}@{ip}:{port}/{database}?charset=utf8' # 解决warning 问题 app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True db = SQLAlchemy(app) class Testcase(db.Model): id = db.Column(db.Integer, primary_key=True) nodeid = db.Column(db.String(80), nullable=False) remark = db.Column(db.String(120)) def as_dict(self): """ 返回一个标准的python 结构体 :return: """ return {"id": self.id, "nodeid": self.nodeid, "remark": self.remark} # 类代表是哪个接口资源,每个方法,代表对此资源的操作,比如 get、post等 # 在类服务中继承resource,表示使用flask-restful class TestCaseService(Resource): """ 测试用例服务 """ # 方法名,对应 app.route中的methods def get(self): """ 查询接口,查询用例数据信息 """ # request 获取 接口发过来的请求信息 case_id = request.args.get("id") if case_id: # 当传入caseID时,查询单条数据信息 case_data = Testcase.query.filter_by(id=case_id).first() app.logger.info(case_data) # data = [{"id": case_data.id, "nodeid": case_data.nodeid, "remark": case_data.remark}] data = [case_data.as_dict()] else: # 反之查询所有的用例信息 case_data = Testcase.query.all() # data = [{"id": i.id, "nodeid": i.nodeid, "remark": i.remark} for i in case_data] data = [i.as_dict() for i in case_data] return {"error": 0, "msg": {"data": data}} def post(self): # 增加一条用例 case_data = request.json app.logger.info(case_data) # 从接口中拿到的字典数据进行解包,使用关键字传参传入Testcase testcase = Testcase(**case_data) # 如果数据字段存在列表,需要做一次转换 testcase.nodeid = json.dumps(request.json.get("nodeid")) db.session.add(testcase) db.session.commit() return {"error": 0, "msg": "post success"} def put(self): """ 修改接口信息 :return: """ app.logger.info(request.json) # 获取被修改的接口信息 case_id = request.json.get("id") # 通过id 找到要修改的内容, 然后通过update修改对应的数据 # 找到被修改的接口信息然后做修改操作 case = Testcase.query.\ filter_by(id=case_id).\ update(request.json) app.logger.info(f"数据已修改,id{case}被修改为{request.json}") # 返回被修改数据的id return {"error": 0, "msg": {"id": case}} def delete(self): """ 删除操作 :return: """ case_id = request.args.get("id") if not case_id: return {"error": 40001, "msg": "Delete case_id can't be null"} # 返回一个主键 case = Testcase.query.filter_by(id=case_id).delete() db.session.commit() app.logger.info(case) return {"error": 0, "msg": {"id": case}} class TaskService(Resource): pass if __name__ == '__main__': # 把服务添加到app flask 中 # 第一个参数是添加的接口服务, 第二个参数,是指定对应接口服务使用的路由 # db.create_all() api.add_resource(TestCaseService, "/testcase") # api.add_resource(TaskService, "/task") app.run(debug=True)
UTF-8
Python
false
false
3,942
py
122
server.py
93
0.571471
0.560155
0
121
26.752066
111
smorenburg/python
3,874,060,523,770
5fd13e1533c54cd3f74a91116fd3448f99f73e4b
307b247f36383e8c54a7bc017358f9c84fd6a12b
/src/old/gen.py
d20fc5ffefb663570aab0abfbeafc5804a1b8542
[ "MIT" ]
permissive
https://github.com/smorenburg/python
4c6f5e7009156ec87ed535a119f97ff15347e850
74b1e72944dfd244f0169e8a7adb9e29ed1a7d27
refs/heads/main
2023-02-16T01:24:52.473945
2021-01-13T07:36:02
2021-01-13T07:36:02
313,896,985
0
0
MIT
false
2020-12-21T17:20:54
2020-11-18T10:19:33
2020-12-20T16:03:00
2020-12-21T17:20:53
55
0
0
0
Python
false
false
#!/usr/bin/env python3 def gen_range(stop, start=1, step=1): num = start while num <= stop: yield num num += step def gen_fib(): a, b = 0, 1 while True: a, b = b, a + b yield a
UTF-8
Python
false
false
228
py
85
gen.py
84
0.482456
0.460526
0
14
15.285714
37
92hackers/algorithms
16,552,803,961,039
cab14d3da92d25d6ac0995cbcfea2a8bef236675
fb8123ec81a0e12bb3f1e09c1afc070394d277c1
/linked_list.py
9f355a789e34011677f3c42baa37da33479a171a
[]
no_license
https://github.com/92hackers/algorithms
72ba1b68d56a882fda64a71e4b399b3bb3eea3a0
911b35d246b2cec84e99dc6deb82e2e2c3067fa3
refs/heads/master
2022-06-15T09:59:15.295332
2022-03-08T10:01:59
2022-03-08T10:01:59
216,991,634
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 链表 # 支持基本的增删改查操作 # TODO: how to sort a list class ListNode: def __init__(self, value): self.data = value self.next = None self.prev = None class LinkedList: def __init__(self, *args): self.head = None self.tail = None self.size = None self.build_list(*args) def build_list(self, *args): head = None tail = None for i in args: new_node = ListNode(i) if tail: tail.next = new_node new_node.prev = tail else: head = new_node tail = new_node self.head = head self.tail = tail self.get_size() # calculate the list size def insert(self, value, index): # return new size of the list max_index = self.size - 1 if index < 0 or index > max_index: raise Exception('index out of range') new_node = ListNode(value) self.size += 1 # insert as the new head if index == 0: new_node.next = self.head self.head.prev = new_node self.head = new_node return self.size target = self.head.next current_index = 1 while current_index < max_index + 1: if current_index == index: prev_node = target.prev prev_node.next = new_node new_node.prev = prev_node new_node.next = target target.prev = new_node return self.size else: current_index += 1 target = target.next def push(self, value): new_node = ListNode(value) if self.tail: self.tail.next = new_node new_node.prev = self.tail else: self.head = new_node self.tail = new_node self.size += 1 return self.size def pop(self): # 从链表中去除该元素 if self.size == 0: return if self.size == 1: result = self.head.data self.head = None self.tail = None self.size = 0 return result self.size -= 1 target = self.tail.prev target.next = None # 返回 result = self.tail.data self.tail = target return result def delete(self, value): if value == self.head.data: next_head = self.head.next next_head.prev = None self.head.next = None self.head = next_head self.size -= 1 return self.size if value == self.tail.data: next_tail = self.tail.prev next_tail.next = None self.tail.prev = None self.tail = next_tail self.size -= 1 return self.size target = self.head.next while target is not None: if value == target.data: prev_node = target.prev next_node = target.next prev_node.next = next_node next_node.prev = prev_node self.size -= 1 return self.size else: target = target.next raise Exception(value + ' not found in the linked list') def indexOf(self, value): # get index of a value in list target = self.head count = 0 while target is not None: if target.data == value: return count target = target.next count += 1 return -1 def get_size(self): if self.size is not None: return self.size count = 0 target = self.head while target is not None: count += 1 target = target.next self.size = count return count def get_list(self): target = self.head arr = [] while target is not None: arr.append(target.data) target = target.next return arr def get_reversed(self): target = self.tail arr = [] while target is not None: arr.append(target.data) target = target.prev return arr a = LinkedList(23, 19, 0, 34, 29) print(a.get_list()) a.push(99) print(a.get_list()) a.pop() print(a.get_list()) print(a.indexOf(10)) a.insert(555, 4) print(a.get_list()) a.insert(999, 0) print(a.get_list()) print(a.get_reversed()) a.insert(66666, a.get_size() - 1) print(a.get_list()) print(a.get_reversed()) a.delete(555) print(a.get_list()) print(a.get_reversed())
UTF-8
Python
false
false
4,712
py
15
linked_list.py
15
0.494425
0.483705
0
201
22.20398
64
fireae/PyLf
7,911,329,772,408
0ec2d9a6dc5746422e14436d93e3afdcadd67cb5
bbc459427a89ed7d316ca4892298d0886d398e7e
/tests/util.py
249afb731bb49631bad97d3e56c8b56b6442802b
[ "BSD-3-Clause" ]
permissive
https://github.com/fireae/PyLf
a91030c0aa11acce86c0664f0c24dfb0697a810a
54d65284bef0328842b1534dd1899710e7803821
refs/heads/master
2020-03-21T07:29:28.978804
2018-06-16T15:17:31
2018-06-16T15:17:31
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ This module provides the essential functionality for the whole test suite. WARNING: Do not change the location of this file! """ import math import os from PIL import ImageFont as image_font THRESHOLD = 17.0 def compare_histogram(image1, image2) -> float: """ Compare the two images and return the root mean square in histogram This algorithm is inspired by the discussion about "Compare two images the python/linux way" in Stackoverflow """ if image1.mode != image2.mode or image1.size != image2.size: raise ValueError("image1 and image2 must have same mode and same size") h1 = image1.histogram() h2 = image2.histogram() assert len(h1) == len(h2) s = 0 for c1, c2 in zip(h1, h2): s += (c1 - c2) ** 2 return math.sqrt(s / len(h1)) def absolute_equal(image1, image2) -> bool: return image1.tobytes() == image2.tobytes() def compare_pixel(image1, image2) -> float: """ Compare the two images pixel by pixel and return the root mean square """ # TODO pass def get_path(path:str) -> str: return os.path.join(os.path.abspath(os.path.dirname(__file__)), path) def get_short_text() -> str: """ Return one short sentence """ return "我能吞下玻璃而不伤身体。" def get_long_text() -> str: """ Return a article """ with open(get_path("data/texts/荷塘月色.txt"), encoding='utf-8') as f: return f.read() def get_default_font(): return image_font.truetype(get_path("data/fonts/Bo Le Locust Tree Handwriting Pen Chinese Font-Simplified Chinese Fonts.ttf"))
UTF-8
Python
false
false
1,612
py
13
util.py
8
0.663924
0.642405
0
57
26.719298
130
dyunttang/PythonWorkSpace
18,098,992,221,541
c2f737c7fb0300fbee4d3af3d13579b1631bff48
0f74ad63b648043f68189f1f6cd0bdc9114972d5
/ex01/strex01.py
336c735a65211002c7ea93cde27890161ea2ebad
[]
no_license
https://github.com/dyunttang/PythonWorkSpace
e6253ace3c2245ff189b3818ea48008b71fdd509
6645bd1ed0c9115d440d2c9b8cdaa5aed6a00594
refs/heads/master
2023-08-08T04:08:31.926432
2021-09-14T02:07:42
2021-09-14T02:07:42
405,211,922
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
a = '홍길동' print(a) print("="*50) b = "가나다라마" # CharSequence print(len(b)) print(b[0]) print(b[4]) print(b[-1]) print(b[0:3]) print(b[1:]) print(b[:3]+"...")
UTF-8
Python
false
false
179
py
20
strex01.py
19
0.533742
0.478528
0
16
9.1875
27
DRAMCO/Interreg-NOMADe
19,061,064,898,733
6f282963746f28fe874b2f94b264238c5b184495
4425c77c34ae4155222619384adf7d062c1daf65
/PythonScripts/Plot_orientation_all_sensors/functions.py
afd8b06e801488568fba5bd1c21b10316dd849bf
[]
no_license
https://github.com/DRAMCO/Interreg-NOMADe
a21faf18f161eb510c31b1815ff7e621af8f4fcb
cf4cc04800ca8f0355cf6cbd914a8c7413348f5a
refs/heads/master
2023-04-19T03:20:38.310061
2021-04-16T06:44:38
2021-04-16T06:44:38
243,491,542
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# ____ ____ _ __ __ ____ ___ # | _ \| _ \ / \ | \/ |/ ___/ _ \ # | | | | |_) | / _ \ | |\/| | | | | | | # | |_| | _ < / ___ \| | | | |__| |_| | # |____/|_| \_\/_/ \_\_| |_|\____\___/ # research group # dramco.be/ # # KU Leuven - Technology Campus Gent, # Gebroeders De Smetstraat 1, # B-9000 Gent, Belgium # # File: functions.py # Created: 2020-10-06 # Author: Jarne Van Mulders # Version: V1.0 # # Description: # Plot the data from multiple IMU # # Commissioned by Interreg NOMADe Project import matplotlib.pyplot as plt import numpy as np import csv import math as m def load_measurement_data(number_of_lines, y, path): for i in range(number_of_lines): y.append([]) with open(path, 'r') as csvfile: plots = csv.reader(csvfile, delimiter=',') for row in plots: for i in range(number_of_lines): y[i].append(float(row[i])) def get_data_lines(y): return len(y[0]) def get_no_connected_sensors(y, total_number_of_data_rows, sensor_slot_data_available): x = 0 for i in range(1, 7): for j in range(total_number_of_data_rows): if y[0][j] == i: sensor_slot_data_available[i - 1] = 1 break return sensor_slot_data_available.count(1) def plot_quaternions_all_sensors(connected_sensors, sampling_frequency, sample_list, plot_name): lab = ["q0", "q1", "q2", "q3"] color = ["blue", "green", "cyan", "grey"] fig = plt.figure(figsize=(18, 9)) for j in range(6): if connected_sensors[j]: samples = len(sample_list[j][0]) x = np.linspace(0, samples / 1000, samples) plt.subplot(2, 3, j + 1) plt.title('Sensor slot %s [%s Hz]' % (int(j + 1), int(sampling_frequency))) for i in range(4): plt.plot(x, sample_list[j][i], label=lab[i], color=color[i]) plt.ylabel('Value [-]') plt.xlabel('Samples [KS]') plt.tight_layout() plt.legend() plt.grid(True) fig.savefig(plot_name, dpi=100) def plot_ypr_all_sensors(ypr_sample_list, sampling_frequency, connected_sensors, plot_name): lab = ["Yaw", "Pitch", "Roll"] color = ["blue", "green", "cyan"] fig = plt.figure(figsize=(18, 9)) for j in range(6): if connected_sensors[j]: samples = len(ypr_sample_list[j][0]) x = np.linspace(0, samples / 1000, samples) plt.subplot(2, 3, j + 1) plt.title('Sensor slot %s [%s Hz]' % (int(j+1), int(sampling_frequency))) for i in range(3): plt.plot(x, ypr_sample_list[j][i], label=lab[i], color=color[i]) plt.ylabel('Degrees [°]') plt.xlabel('Samples [KS]') plt.tight_layout() plt.legend() plt.grid(True) fig.savefig(plot_name, dpi=100) def convert_txt_file(sample_list, y, connected_sensors, no_samples, tot_no_datarows): no_variables = 4 # Create 3 dimensional list create_3d_list(sample_list, no_samples, no_variables) # Seperate samples in 3 dimensional list for i in range(0, 6): if connected_sensors[i]: u = 0 for j in range(tot_no_datarows): if y[0][j] == i + 1: for k in range(no_variables): sample_list[i][k][u] = y[k + 3][j] u = u + 1 def create_3d_list(sample_list, no_samples, no_variables): for i in range(6): sample_list.append([]) for j in range(no_variables): sample_list[i].append([]) for k in range(no_samples): sample_list[i][j].append(0) def convert_sample_list_ypr(sample_list, new_sample_list, connected_sensors): for k in range(6): if connected_sensors[k]: transp = np.array(sample_list[k]) sens_samples = np.transpose(transp) clms = len(transp[0]) sens_samples_ypr = np.zeros((clms, 3)) for i in range(clms): convert_quaternion_sample_to_ypr(sens_samples[i], sens_samples_ypr[i]) new_sample_list.append(np.transpose(sens_samples_ypr).tolist()) else: new_sample_list.append([]) def convert_sample_list_ypr_degrees(ypr_sample_list, connected_sensors): for i in range(6): if connected_sensors[i]: for k in range(3): for l in range(len(ypr_sample_list[i][k])): ypr_sample_list[i][k][l] = ypr_sample_list[i][k][l] * 180/m.pi + 180 def convert_quaternion_sample_to_ypr(data, new_data): q = np.zeros((4, 1)) q[0] = data[0] / 16384.0 q[1] = data[1] / 16384.0 q[2] = data[2] / 16384.0 q[3] = data[3] / 16384.0 gravity = np.zeros((3, 1)) gravity[0] = 2 * (q[1] * q[3] - q[0] * q[2]) #x gravity[1] = 2 * (q[0] * q[1] + q[2] * q[3]) #y gravity[2] = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3] #z # yaw: (about Z axis) new_data[0] = m.atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0] * q[0] + 2 * q[1] * q[1] - 1) # pitch: (nose up/down, about Y axis) new_data[1] = m.atan2(gravity[0], m.sqrt(gravity[1] * gravity[1] + gravity[2] * gravity[2])) # roll: (tilt left/right, about X axis) new_data[2] = m.atan2(gravity[1], gravity[2]) if gravity[2] < 0: if new_data[1] > 0: new_data[1] = m.pi - new_data[1] else: new_data[1] = -m.pi - new_data[1]
UTF-8
Python
false
false
5,659
py
102
functions.py
14
0.510251
0.478614
0
168
32.684524
99
v0001/python_dojang
5,188,320,499,233
c773c91f4f9bb37fd46a4b5b40cceeb1ba511368
b5244df01da4feacb4fb027387fea650e4752065
/Easy EX/ex1.py
abfbc9395518443584640a678960cf86be1d323c
[]
no_license
https://github.com/v0001/python_dojang
122f517939f432e5f2a0fab971b9dc776a941d4e
dba3d4bab85f95b68f68786fb8fcca616a055c2c
refs/heads/master
2022-12-13T15:06:52.942858
2020-08-31T13:09:32
2020-08-31T13:09:32
291,714,164
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
print('Hello World') print(int(3.3)) # 숫자 print(divmod(5,2)) a, b = divmod(7,3) print(a,b)
UTF-8
Python
false
false
100
py
2
ex1.py
2
0.59375
0.53125
0
8
10.75
20
adhaka/summers
3,796,751,132,571
4a329b6a07b81f3927dab32da4e90700e7ec3051
c51bd00a697e04fb429ec80a1648ed3335b93ea1
/pythonwork/linearRegression.py
0f3ace89d2371a8752756584c67a89a3e2b474ed
[]
no_license
https://github.com/adhaka/summers
c8282c06e5fb10d8084a8151a83df0e5ee7f1355
ae59dc770091776abf8eea156b4cb0702158567a
refs/heads/master
2017-12-21T19:15:50.029085
2015-08-31T10:50:00
2015-08-31T10:50:00
38,587,234
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import random import theano import theano.tensor as T from theano import function class LinearRegression(): def __init__(self, x, y): if x.shape[0] != len(y): raise Exception("x and y are not of the same length") self.x = x self.y = y def train(self): iters = 500 train = self.compileTrain() for i in xrange(iters): train(self.x, self.y) def compileTrain(self): x = T.dmatrix('x') y = T.vector('y') self.dims = self.x.shape[1] self.w = theano.shared(value= np.zeros(self.dims, dtype=theano.config.floatX), name='w') self.b = theano.shared(value=0., name='b') # estimate = self.model(self.w) # cost = self.cost(estimate) estimate = T.dot(x, self.w) + self.b rms = (y - estimate) ** 2 cost = rms.mean() gw, gb = T.grad(cost=cost, wrt=[self.w, self.b]) updates = [[self.w, self.w - gw* 0.01], [self.b, self.b - gb * 0.01]] train = theano.function(inputs=[x, y], outputs=[estimate, rms], updates=updates, allow_input_downcast = True) return train # def __str__(self): # pass # return "Weight is:" +self.w.get_value() + " " + "bias is:" + self.b.get_value() def prettyprint(self): print self.w.get_value() print self.b.get_value() print self.model() def model(self): model = T.dot(self.x, self.w) + self.b return model def cost(self, estimate): cost = (self.y - estimate) ** 2 return cost.mean() if __name__ == "__main__": x = np.random.randn(100,5) y = np.random.random(size = 100) LR1 = LinearRegression(x, y) LR1.train() LR1.prettyprint() print LR1
UTF-8
Python
false
false
1,571
py
10
linearRegression.py
10
0.624443
0.60853
0
74
20.202703
111
gfcastellano/Agenda_Leonel
13,709,535,636,300
47b4d98e54657894c074dfb3908fce674a369f48
811ef9d490209900a5e1e272d0a4d5da7ded3a7c
/kivymd/uix/snackbar.py
f2ed3453fa96fc8d8da6130696173fc1da240c69
[]
permissive
https://github.com/gfcastellano/Agenda_Leonel
c98823b092706e46ec25d2ecb999ce30969a003d
543dd46e1836410ec1ad7093ef4a07c2f84678a6
refs/heads/master
2022-12-05T18:14:22.562930
2020-07-28T19:17:55
2020-07-28T19:17:55
269,536,042
1
0
MIT
false
2020-08-26T18:54:48
2020-06-05T05:09:44
2020-08-08T14:56:36
2020-08-26T18:54:47
15,448
1
0
0
Python
false
false
""" Components/Snackbar =================== .. seealso:: `Material Design spec, Snackbars <https://material.io/components/snackbars>`_ .. rubric:: Snackbars provide brief messages about app processes at the bottom of the screen. .. image:: https://github.com/HeaTTheatR/KivyMD-data/raw/master/gallery/kivymddoc/snackbar.png :align: center Usage ----- .. code-block:: python from kivy.lang import Builder from kivymd.app import MDApp KV = ''' #:import Snackbar kivymd.uix.snackbar.Snackbar Screen: MDRaisedButton: text: "Create simple snackbar" on_release: Snackbar(text="This is a snackbar!").show() pos_hint: {"center_x": .5, "center_y": .5} ''' class Test(MDApp): def build(self): return Builder.load_string(KV) Test().run() .. image:: https://github.com/HeaTTheatR/KivyMD-data/raw/master/gallery/kivymddoc/snackbar-simple.gif :align: center Usage with padding ------------------ .. code-block:: python Snackbar(text="This is a snackbar!", padding="20dp").show() .. image:: https://github.com/HeaTTheatR/KivyMD-data/raw/master/gallery/kivymddoc/snackbar-padding.gif :align: center Usage with button ----------------- .. code-block:: python Snackbar( text="This is a snackbar", button_text="BUTTON", button_callback=app.callback ).show() .. code-block:: python def callback(self, instance): from kivymd.toast import toast toast(instance.text) .. image:: https://github.com/HeaTTheatR/KivyMD-data/raw/master/gallery/kivymddoc/snackbar-button.gif :align: center Using a button with custom color ------------------------------- .. code-block:: python Snackbar( text="This is a snackbar!", padding="20dp", button_text="ACTION", button_color=(1, 0, 1, 1) ).show() .. image:: https://github.com/HeaTTheatR/KivyMD-data/raw/master/gallery/kivymddoc/snackbar-button-custom-color.gif :align: center Custom usage ------------ .. code-block:: python from kivy.lang import Builder from kivy.animation import Animation from kivy.clock import Clock from kivy.metrics import dp from kivymd.app import MDApp from kivymd.uix.snackbar import Snackbar KV = ''' Screen: MDFloatingActionButton: id: button x: root.width - self.width - dp(10) y: dp(10) on_release: app.snackbar_show() ''' class Test(MDApp): def __init__(self, **kwargs): super().__init__(**kwargs) self.screen = Builder.load_string(KV) self.snackbar = None self._interval = 0 def build(self): return self.screen def wait_interval(self, interval): self._interval += interval if self._interval > self.snackbar.duration: anim = Animation(y=dp(10), d=.2) anim.start(self.screen.ids.button) Clock.unschedule(self.wait_interval) self._interval = 0 self.snackbar = None def snackbar_show(self): if not self.snackbar: self.snackbar = Snackbar(text="This is a snackbar!") self.snackbar.show() anim = Animation(y=dp(72), d=.2) anim.bind(on_complete=lambda *args: Clock.schedule_interval( self.wait_interval, 0)) anim.start(self.screen.ids.button) Test().run() .. image:: https://github.com/HeaTTheatR/KivyMD-data/raw/master/gallery/kivymddoc/snackbar-custom-usage.gif :align: center Custom Snackbar --------------- .. code-block:: python from kivy.lang import Builder from kivy.properties import StringProperty from kivymd.app import MDApp from kivymd.uix.snackbar import Snackbar KV = ''' <-Snackbar> MDCard: id: box size_hint_y: None height: dp(58) spacing: dp(5) padding: dp(10) y: -self.height x: root.padding md_bg_color: get_color_from_hex('323232') radius: (5, 5, 5, 5) if root.padding else (0, 0, 0, 0) elevation: 11 if root.padding else 0 MDIconButton: pos_hint: {'center_y': .5} icon: root.icon opposite_colors: True MDLabel: id: text_bar size_hint_y: None height: self.texture_size[1] text: root.text font_size: root.font_size theme_text_color: 'Custom' text_color: get_color_from_hex('ffffff') shorten: True shorten_from: 'right' pos_hint: {'center_y': .5} Screen: MDRaisedButton: text: "SHOW" pos_hint: {"center_x": .5, "center_y": .45} on_press: app.show() ''' class CustomSnackbar(Snackbar): icon = StringProperty() class Test(MDApp): def build(self): return Builder.load_string(KV) def show(self): CustomSnackbar( text="This is a snackbar!", icon="information", padding="20dp", button_text="ACTION", button_color=(1, 0, 1, 1) ).show() Test().run() .. image:: https://github.com/HeaTTheatR/KivyMD-data/raw/master/gallery/kivymddoc/snackbar-custom.png :align: center """ __all__ = ("Snackbar",) from kivy.animation import Animation from kivy.clock import Clock from kivy.core.window import Window from kivy.lang import Builder from kivy.metrics import dp from kivy.properties import ( ListProperty, NumericProperty, ObjectProperty, StringProperty, ) from kivymd.uix.button import MDFlatButton from kivymd.uix.floatlayout import MDFloatLayout Builder.load_string( """ #:import get_color_from_hex kivy.utils.get_color_from_hex <Snackbar> MDCard: id: box size_hint_y: None height: dp(58) spacing: dp(5) padding: dp(10) y: -self.height x: root.padding md_bg_color: get_color_from_hex('323232') radius: (5, 5, 5, 5) if root.padding else (0, 0, 0, 0) elevation: 11 if root.padding else 0 MDLabel: id: text_bar size_hint_y: None height: self.texture_size[1] text: root.text font_size: root.font_size theme_text_color: 'Custom' text_color: get_color_from_hex('ffffff') shorten: True shorten_from: 'right' pos_hint: {'center_y': .5} """ ) class Snackbar(MDFloatLayout): text = StringProperty() """The text that will appear in the snackbar. :attr:`text` is a :class:`~kivy.properties.StringProperty` and defaults to `''`. """ font_size = NumericProperty("15sp") """The font size of the text that will appear in the snackbar. :attr:`font_size` is a :class:`~kivy.properties.NumericProperty` and defaults to `'15sp'`. """ button_text = StringProperty() """The text that will appear in the snackbar's button. .. Note:: If this variable is None, the snackbar will have no button. :attr:`button_text` is a :class:`~kivy.properties.StringProperty` and defaults to `''`. """ button_callback = ObjectProperty() """The callback that will be triggered when the snackbar's button is pressed. .. Note:: If this variable is None, the snackbar will have no button. :attr:`button_callback` is a :class:`~kivy.properties.ObjectProperty` and defaults to `None`. """ button_color = ListProperty() """Button color. :attr:`button_color` is a :class:`~kivy.properties.ListProperty` and defaults to `[]`. """ duration = NumericProperty(3) """The amount of time that the snackbar will stay on screen for. :attr:`duration` is a :class:`~kivy.properties.NumericProperty` and defaults to `3`. """ padding = NumericProperty("0dp") """Snackbar padding. :attr:`padding` is a :class:`~kivy.properties.NumericProperty` and defaults to `'0dp'`. """ _interval = 0 def __init__(self, **kwargs): super().__init__(**kwargs) if self.button_text != "": button = MDFlatButton(text=self.button_text) button.text_color = ( (1, 1, 1, 1) if not self.button_color else self.button_color ) self.ids.box.add_widget(button) if self.button_callback: button.bind(on_release=self.button_callback) def show(self): """Show the snackbar.""" def wait_interval(interval): self._interval += interval if self._interval > self.duration: anim = Animation(y=-self.ids.box.height, d=0.2) anim.bind( on_complete=lambda *args: Window.parent.remove_widget(self) ) anim.start(self.ids.box) Clock.unschedule(wait_interval) self._interval = 0 self.size_hint_x = None self.width = Window.width - dp(self.padding) * 2 Window.parent.add_widget(self) anim = Animation(y=self.padding, d=0.2) anim.bind( on_complete=lambda *args: Clock.schedule_interval(wait_interval, 0) ) anim.start(self.ids.box)
UTF-8
Python
false
false
9,628
py
91
snackbar.py
73
0.5699
0.55941
0
370
25.021622
114