repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
awelzel/influxpy
4,818,953,337,795
b043587373df06bf2ebd5c583f30ff2f1e8787c3
55a4aab4f21713ee1f43005a053c2b702fbf2661
/tests/test_handler.py
27bbea6eafede7e007c6b2afa907f25b1302c206
[ "BSD-3-Clause" ]
permissive
https://github.com/awelzel/influxpy
8805cca2ea89d7c6e2655dfdd1dfeb3c53d7e410
773179ff56a1128b246a63736483b9e3bc76f083
refs/heads/master
2020-03-25T07:04:37.177208
2018-08-05T21:48:04
2018-08-05T22:03:54
143,539,960
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import logging import socket import unittest from unittest import mock from influxpy import UDPHandler class TestHandler(unittest.TestCase): """ We mock UDP socket of the DatagramHandler and look at the sendto() call. """ def setUp(self): self.logger = logging.getLogger("test_logger") for h in self.logger.handlers[:]: self.logger.removeHandler(h) self.logger.setLevel(logging.DEBUG) self.logger.propagate = False self.sock_mock = mock.Mock(spec=socket.socket) self.handler = None def tearDown(self): if self.handler: self.handler.close() def test__log_defaults(self): self.handler = UDPHandler("127 0 0 1", -1, "test", sock=self.sock_mock) self.logger.addHandler(self.handler) self.logger.info("Hello") self.sock_mock.sendto.assert_called_once() data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertRegex(data, "^test,") self.assertRegex(data, " [0-9]{15,}$") self.assertIn("level_name=INFO", data) self.assertIn('message="Hello"', data) self.assertNotIn('function=', data) def test__log_debugging_fields_true(self): self.handler = UDPHandler("127 0 0 1", -1, "xyz", debugging_fields=True, sock=self.sock_mock) self.logger.addHandler(self.handler) self.logger.info("A very long message.") self.sock_mock.sendto.assert_called_once() data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertIn("pid=", data) self.assertIn('function="test_', data) def test__log_utf8_message(self): self.handler = UDPHandler("127 0 0 1", -1, "xyz", sock=self.sock_mock) self.logger.addHandler(self.handler) self.logger.info("Yes: " + b"\xE2\x9C\x8C".decode("utf-8")) self.sock_mock.sendto.assert_called_once() data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertIn('message="Yes: \u270C"', data) def test__localname(self): self.handler = UDPHandler("127 0 0 1", -1, "A", localname="test-host", sock=self.sock_mock) self.logger.addHandler(self.handler) self.logger.info("Aloha") self.sock_mock.sendto.assert_called_once() data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertIn("host=test-host", data) def test__mocked_gethostbyname(self): self.handler = UDPHandler("127 0 0 1", -1, "A", sock=self.sock_mock) self.logger.addHandler(self.handler) with mock.patch("socket.gethostname") as m: m.return_value = "mock-host" self.logger.info("Aloha") data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertIn("host=mock-host", data) def test__mocked_getfqdn(self): self.handler = UDPHandler("127 0 0 1", -1, "A", fqdn=True, sock=self.sock_mock) self.logger.addHandler(self.handler) with mock.patch("socket.getfqdn") as m: m.return_value = "fqdn-host" self.logger.info("Aloha") data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertIn("host=fqdn-host", data) def test__extra_fields(self): self.handler = UDPHandler("127 0 0 1", -1, "xyz", sock=self.sock_mock) self.logger.addHandler(self.handler) extra = { "emails_processed": 10, "disk_utilization": 73.1, } self.logger.info("Processed 10 mails", extra=extra) data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertIn('emails_processed=10i', data) self.assertIn('disk_utilization=73.1', data) def test__extra_fields_disabled(self): self.handler = UDPHandler("127 0 0 1", -1, "X", extra_fields=False, sock=self.sock_mock) self.logger.addHandler(self.handler) extra = { "emails_processed": 10, "disk_utilization": 73.1, } self.logger.info("Processed 10 mails", extra=extra) data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertNotIn('emails_processed', data) self.assertNotIn('disk_utilization', data) def test__global_tags(self): self.handler = UDPHandler("127 0 0 1", -1, "X", global_tags={ "datacenter": "us-west", }, sock=self.sock_mock) self.logger.addHandler(self.handler) self.logger.info("I'm not the only one here!") data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertRegex(data, r'^[^ ]+datacenter=us-west.* .*[0-9]+$') def test__log_exception(self): self.handler = UDPHandler("127 0 0 1", -1, "X", sock=self.sock_mock) self.logger.addHandler(self.handler) try: puff_the_magic_dragon() except NameError: self.logger.exception("No dragons here.") data, to = self.sock_mock.sendto.call_args[0] data = data.decode("utf-8") self.assertIn('message="No dragons here."', data) full_msg = ( 'full_message="No dragons here.\n' 'Traceback (most recent call last):\n' ) self.assertIn(full_msg, data) def test__using_reserved_global_tag_fails(self): with self.assertRaisesRegex(ValueError, "host.*in global_tags impossible"): UDPHandler("127 0 0 1", -1, "X", global_tags={"host": "reserved"})
UTF-8
Python
false
false
6,198
py
8
test_handler.py
6
0.549209
0.528235
0.000484
156
38.730769
83
kmcheung12/advent-of-code-2019
13,804,024,931,286
557ddc47b23d5c89a9526ee597cb61dd9465a228
a3d37c6ca273bf826a36565122d896f4cb760f5d
/day1.py
738a1d27d5b6ee68496ee7f164e6097730c45e14
[]
no_license
https://github.com/kmcheung12/advent-of-code-2019
d99332e0f9f5505b9a1846a72693af0cf0cee635
3daafb2f7fc9e3b81eaac5e3a6ece9288bd87787
refs/heads/master
2020-09-26T04:37:19.047272
2019-12-08T17:01:01
2019-12-08T17:01:01
226,166,853
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys def fuel(mass, acc=0): s = int(mass/3) - 2 if s < 9: return s + acc else: return fuel(s, s + acc) def compute(params): return sum(fuel(p) for p in params) def preprocess(inputs): return map(int, inputs) if __name__ == '__main__': raw = sys.argv[1:] params = preprocess(raw) output = compute(params) print(output)
UTF-8
Python
false
false
381
py
8
day1.py
8
0.566929
0.553806
0
19
19.052632
39
simonsben/intent_detection
12,025,908,450,286
c4e6626a2a53fb59ee84b4bef59a984246876fc0
66e7fdfb8498c7573719dda5e3f7744a544bec80
/model/layers/realtime_embedding.py
8a502ee5679c33ee444acee9668677ed1ba45671
[]
no_license
https://github.com/simonsben/intent_detection
d172976ead7d9d7d33f2ad0803c92cdc1afe28e3
7ca7e4e1f0e7ec92c034f459a8a8b199d37dfb17
refs/heads/master
2023-07-14T18:47:48.077452
2020-09-18T16:21:58
2020-09-18T16:21:58
257,970,547
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from fasttext.FastText import _FastText from tensorflow.keras.utils import Sequence from numpy import zeros, ones, ndarray, abs from config import batch_size, max_tokens from math import ceil class RealtimeEmbedding(Sequence): """ Extends TensorFlow Sequence to provide on-the-fly fastText token embedding """ def __init__(self, embedding_model, data_source, labels=None, uniform_weights=False): """ Implements Keras data sequence for on-the-fly embedding generation :param _FastText embedding_model: FastText embedding model :param ndarray data_source: List of documents to embed on the fly :param ndarray labels: Array of data labels :param bool labels_in_progress: Whether passed labels should be taken as initial labels and marked :param bool uniform_weights: Whether weights should be uniform (i.e. 1) """ self.embedding_model = embedding_model self.embedding_dimension = embedding_model.get_dimension() self.embedding_cache = {} self.data_source = data_source self.working_data_source = self.data_source self.labels = labels self.working_labels = self.labels self.working_mask = None self.is_training = False self.concrete_weight = 1 self.midpoint = 0.5 self.uniform_weights = uniform_weights self.data_length = ceil(len(self.working_data_source) / batch_size) def update_labels(self, new_labels): """ Updates the labels being fed """ self.labels = new_labels.copy() self.set_mask(self.working_mask) # TODO add line to automatically mask uncertain values when training def set_usage_mode(self, is_training): """ Changes usage mode """ if is_training is True and self.labels is None: raise AttributeError('Cannot use in training mode if there are no labels.') self.is_training = is_training def set_mask(self, definite_mask): """ Updates the current mask being applied to the data """ self.working_mask = definite_mask if self.working_mask is not None: # If not None, apply mask to data self.working_data_source = self.data_source[self.working_mask] self.working_labels = self.labels[self.working_mask] # If updated mask is None, make working set entire set else: self.working_data_source = self.data_source self.working_labels = self.labels # Recompute data length self.data_length = ceil(len(self.working_data_source) / batch_size) def get_sample_weights(self, batch_start, batch_end): """ Returns sample weights for data samples. Weights are computed using the function w = 2(x - .5) when x = (.5, 1], and the negation when x = [0, .5) """ if self.uniform_weights: return ones(batch_end - batch_start) labels = self.working_labels[batch_start:batch_end] weights = compute_sample_weights(labels, self.midpoint) return weights def embed_data(self, data_subset): """ Computes word embeddings for provided data subset """ # Initialize embedding of data embedded_data = zeros((data_subset.shape[0], max_tokens, self.embedding_dimension), float) # Embed all documents for doc_index, document in enumerate(data_subset): document_tokens = document.split(' ')[:max_tokens] # Split document into tokens and limit # For each token in document for token_index, token in enumerate(document_tokens): # If token embedding is not already cached, compute it and store if token not in self.embedding_cache: self.embedding_cache[token] = self.embedding_model.get_word_vector(token) # Add embedding to array embedded_data[doc_index, token_index] = self.embedding_cache[token] return embedded_data def __len__(self): """ Overrides length method to compute the length in batches """ if self.is_training: return self.data_length return ceil(len(self.data_source) / batch_size) def __getitem__(self, index): """ Provides the batch of data at a given index """ batch_start = int(index * batch_size) batch_end = batch_start + batch_size # Get batch of data source = self.working_data_source if self.is_training else self.data_source working_data = source[batch_start:batch_end] # Correct batch end to reflect current atch index if batch_end > len(source): batch_end = len(source) embedded_data = self.embed_data(working_data) # If training also return labels if self.is_training: # Get batch labels and convert to boolean label_subset = self.working_labels[batch_start:batch_end] label_subset = label_subset > self.midpoint loss_weights = self.get_sample_weights(batch_start, batch_end) return embedded_data, label_subset, loss_weights return embedded_data def compute_sample_weights(labels, midpoint=0.5): """ Computes sample weights for training :param ndarray labels: Array of current labels :param float midpoint: Midpoint for computing the loss weight around """ return 2 * abs(labels - midpoint)
UTF-8
Python
false
false
5,610
py
165
realtime_embedding.py
153
0.627451
0.624955
0
143
37.230769
113
glujan/lapka
7,404,523,653,016
5b25bb2e7d6282c3b3bb8e3676047bc9a9100043
642a6d97425dfc04ebd67de99b2eb8b4b96d1c48
/lapka/fetch.py
5ad86a2825cf143aa27e2d9b86c46387ab097df1
[ "MIT" ]
permissive
https://github.com/glujan/lapka
29cc286a993cea5dc2c5d0834627190568dcb0a3
6ae8202e8c54210becb306cb87d9a3de2b9c3626
refs/heads/master
2020-05-28T09:49:11.547668
2018-06-22T07:41:23
2018-06-22T07:42:44
82,586,331
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Fetch and parse data from shelters' websites to a common format.""" import asyncio from functools import partial from urllib.parse import urljoin, urlparse import aiohttp from lxml import etree class Shelter: """Base class for extracting data about from shelters websites.""" animal_url = "" """"XPath expression to find URLs to animals profiles""" next_url = "" """XPath expression to find next website in pagination""" start_url = "" """URL to the beginning of animals list""" def __init__(self, session=None): """Initialize a new SchroniskoWroclawPl instance.""" self.session = session url = urlparse(self.start_url) self._full_url = partial(urljoin, f"{url.scheme}://{url.netloc}/") """Transform partial URL to a full one. Use with instance of this class.""" async def parse(self, session=None): """Crawl shelter's website and return data in an unified format.""" if session: self.session = session async def task(url): async with self.session.get(url) as resp: content = await resp.text() data = self._parse(content) data['url'] = url return data coros = [task(a_url) async for a_url in self._animals_urls()] return await asyncio.gather(*coros) async def _animals_urls(self): url = self.start_url while url: async with self.session.get(url) as resp: content = await resp.read() doc = etree.HTML(content) for a_url in doc.xpath(self.animal_url): yield self._full_url(a_url) try: new_url = self._full_url(doc.xpath(self.next_url)[0]) url = new_url if new_url != url else None except IndexError: url = None def _parse(self, content: str) -> dict: """Extract data from animal's page.""" raise NotImplementedError class SchroniskoWroclawPl(Shelter): """Extract data about animals from schroniskowroclaw.pl website.""" animal_url = "//div[@class='filter-item']//h5/a/@href" next_url = "//ul[@class='page-numbers']//a[@class='next page-numbers']/@href" start_url = "http://schroniskowroclaw.pl/zwierzeta-do-adopcji/" def _parse(self, content): html = etree.HTML(content) if html is None: return {} try: doc = html.xpath("//div[@class='project']")[0] name = doc.xpath("//div[@class='project-details']//h1/text()")[0].split(' ')[0] a_id, since, *other = doc.xpath("//*[@class='project-info']//span/text()") category = other[0] if other else None # FIXME Normalize categories photos = map(self._full_url, doc.xpath("//div[@class='project-slider']//img/@src")) data = { 'name': name.strip().title(), 'id': a_id, 'since': since, 'category': category, 'photos': list(photos), 'description': doc.xpath("//div[@class='project-details']/p/text()"), } except (IndexError, etree.XMLSyntaxError): # TODO Add logging that couldn't parse website data = {} return data class NaPaluchuWawPl(Shelter): """Extract data about animals from schroniskowroclaw.pl website.""" animal_url = "//div[@id='ani_search_result_cont']//a[@class='animals_btn_list_more']/@href" next_url = "//div[@class='pagination']/a[@class='next']/@href" start_url = "http://www.napaluchu.waw.pl/czekam_na_ciebie/wszystkie_zwierzeta_do_adopcji" def _parse(self, content): html = etree.HTML(content) if html is None: return {} try: doc = html.xpath("//div[@class='ani_one_container']")[0] name = doc.xpath("//h5/text()")[0] category, *_, since, a_id = doc.xpath("//div[@class='info']//span[not(@class)]/text()") photos = map(self._full_url, doc.xpath("//div[@id='main_image_cont']//a/@href")) raw_desc = doc.xpath("//div[@class='description']//text()") desc = filter(bool, map(lambda s: s.strip(), raw_desc)) data = { 'name': name.strip().title(), 'id': a_id.split(': ')[-1], 'since': since.strip().split(': ')[-1], 'category': category.strip().split(': ')[-1], # TODO Normalize 'photos': list(photos), 'description': list(desc), } except (IndexError, etree.XMLSyntaxError): # TODO Add logging that couldn't parse website data = {} return data if __name__ == '__main__': async def _main(): import pickle from itertools import chain from lapka import models async with aiohttp.ClientSession() as session: tasks = (sh.parse(session) for sh in (SchroniskoWroclawPl(), NaPaluchuWawPl())) fetched = await asyncio.gather(*tasks) animals = [models.AnimalDummy(**data) for data in chain(*fetched)] print('Gathered', len(animals), 'animals') with open(models._pickle_path, 'wb') as fp: pickle.dump(animals, fp) loop = asyncio.get_event_loop() loop.run_until_complete(_main()) loop.close()
UTF-8
Python
false
false
5,417
py
30
fetch.py
15
0.560273
0.557873
0
156
33.724359
99
alsandiego/UCI_Bootcamp_Project2
1,288,490,210,644
5755a137f4f40ecdc3cbb8e75c3ea9a776a50c60
9c576e3cd37d29579b4053d9de876232f5e18224
/app.py
56ae7403a8ad4476d69766fcea7f834f2428eaf8
[]
no_license
https://github.com/alsandiego/UCI_Bootcamp_Project2
cacea93d0ff01f59b7dbb45a23e2f70c5d54f9a9
04c619116cd870d5d605d3558610dd36ab8d3da9
refs/heads/master
2020-11-26T15:08:46.377880
2020-01-14T03:46:58
2020-01-14T03:46:58
229,116,719
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import pandas as pd import numpy as np import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine from flask import Flask, jsonify, render_template from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) ################################################# # Database Setup ################################################# app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///db/oc_salary_db.sqlite" db = SQLAlchemy(app) # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(db.engine, reflect=True) # Save references to each table oc_salary_db = Base.classes.oc_salary @app.route("/") def index(): """Return the homepage.""" return render_template("index.html") @app.route("/page2") def index2(): """Return the homepage.""" return render_template("page2.html") @app.route("/year") def year(): """Return a list of years.""" # Use Pandas to perform the sql query stmt = db.session.query(oc_salary_db).statement df = pd.read_sql_query(stmt, db.session.bind, coerce_float=False) # Return a list of the column names (sample names) return jsonify(list(df.columns)[3:]) # shows the department salary total for selected year @app.route("/year/<year>") def year_dept_total(year): """Return department total for selected year""" # Use Pandas to perform the sql query stmt = db.session.query(oc_salary_db).statement df = pd.read_sql_query(stmt, db.session.bind) # sample_data = df.loc[(df[year] > 0), ["department", year]] groupby_sum = df.groupby(["department"])[year].sum().reset_index() # Sort by sample groupby_sum.sort_values(by="department", ascending=True, inplace=True) # Format the data to send as json data = { "department": groupby_sum.department.tolist(), "total_salary": groupby_sum[year].values.tolist(), } return jsonify(data) # shows salary and position for selected year and department @app.route("/<yr>/<dept>") def year_dept(yr, dept): """Return department salary for year selected.""" # Use Pandas to perform the sql query stmt = db.session.query(oc_salary_db).statement df = pd.read_sql_query(stmt, db.session.bind) # print(dept.upper()) dept_total = df.loc[(df[yr] >0) & (df["department"] == dept.upper()), [dept, "position", yr]] # Format the data to send as json data = { "salary": dept_total[yr].values.tolist(), "position": dept_total.position.tolist() } return jsonify(data) @app.route("/department") def department(): """Return a list of departments.""" # Use Pandas to perform the sql query stmt = db.session.query(oc_salary_db).statement df = pd.read_sql_query("select department from oc_salary group by department", db.session.bind, coerce_float=False) # Return a list of the column names (sample names) return jsonify(list(df["department"].values)) @app.route("/department/<year>") def dept(year): """Return department, position.""" stmt = db.session.query(oc_salary_db).statement df = pd.read_sql_query(stmt, db.session.bind) # Filter the data based on the sample number and # only keep rows with values above 1 # sample_data = df.loc[(df[year] >0) & (df["department"]== "ACCOUNTING"), ["department", "position", year]] sample_data = df.loc[(df[year] >0), ["position", year]] # Sort by sample sample_data.sort_values(by="position", ascending=True, inplace=True) # Format the data to send as json data = { "position": sample_data.position.tolist(), "salary": sample_data[year].values.tolist() } return jsonify(data) @app.route("/position/<year>") def position(year): """Return department, position.""" stmt = db.session.query(oc_salary_db).statement df = pd.read_sql_query(stmt, db.session.bind) # Filter the data based on the sample number and # only keep rows with values above 1 # sample_data = df.loc[(df[year] >0) & (df["department"]== "ACCOUNTING"), ["department", "position", year]] sample_data = df.loc[(df[year] >0), ["department", "position", year]] # Sort by sample sample_data.sort_values(by="department", ascending=True, inplace=True) # Format the data to send as json data = { "department": sample_data.department.values.tolist(), "salary": sample_data[year].values.tolist(), "position": sample_data.position.tolist(), } return jsonify(data) # shows salary for selected department and position @app.route("/bubble/<department>/<position>") def bubblechart(department, position): """Return all salary for dept and position selected.""" # Use Pandas to perform the sql query stmt = db.session.query(oc_salary_db).statement df = pd.read_sql_query(stmt, db.session.bind) # print(dept.upper()) dept_total = df.loc[(df["department"] == department.upper()) & (df["position"] == position.upper()), [department, position, "2014","2015","2016","2017","2018"]] # Format the data to send as json data = { "2014": dept_total["2014"].tolist(), "2015": dept_total["2015"].tolist(), "2016": dept_total["2016"].tolist(), "2017": dept_total["2017"].tolist(), "2018": dept_total["2018"].tolist() } return jsonify(data) @app.route("/bubble2/<department>") def bubble2(department): """Return department, position.""" stmt = db.session.query(oc_salary_db).statement df = pd.read_sql_query(stmt, db.session.bind) # Filter the data based on the sample number and # only keep rows with values above 1 # sample_data = df.loc[(df[year] >0) & (df["department"]== "ACCOUNTING"), ["department", "position", year]] sample_data = df.loc[(df["department"] == department.upper()), ["position", "2014","2015","2016","2017","2018"]] # Sort by sample sample_data.sort_values(by="position", ascending=True, inplace=True) # Format the data to send as json data = { "position": sample_data.position.tolist(), "2014": sample_data["2014"].tolist(), "2015": sample_data["2015"].tolist(), "2016": sample_data["2016"].tolist(), "2017": sample_data["2017"].tolist(), "2018": sample_data["2018"].tolist() } return jsonify(data) if __name__ == "__main__": app.run(debug=True)
UTF-8
Python
false
false
6,471
py
5
app.py
3
0.639005
0.617988
0
196
32.020408
164
juanjavierlimachi/mipagina
19,121,194,415,997
6e64bf6289b3f30d3dba977832f5c73f63dc9ae9
7ac31c08e3727297d04eb8dbdc1e7d48b0bd2fed
/mipagina/apps/proveedor/models.py
a1ad2d0d9a5f6c170757b4f1488221321ffd5d27
[]
no_license
https://github.com/juanjavierlimachi/mipagina
06cc8b7748b474f5606fa12ef5874583531c3a80
5e9c0ab89bac40edff43b86675a72860442c79f4
refs/heads/master
2021-01-20T05:29:33.600400
2017-05-27T15:58:49
2017-05-27T15:58:49
89,789,828
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models # Create your models here. class Proveedor(models.Model): Nombre_Razon_Social=models.CharField(max_length=200, unique=True) Nit=models.PositiveIntegerField(max_length=15, unique=True) Telefono=models.PositiveIntegerField(max_length=8, unique=True) Direccion=models.CharField(max_length=150) Email=models.EmailField(unique=True) fecha_registro = models.DateTimeField(auto_now=True) estado=models.IntegerField(default=0) def __unicode__(self): return "%s Nit:%s Telf:%s"%(self.Nombre_Razon_Social,self.Nit,self.Telefono)
UTF-8
Python
false
false
558
py
64
models.py
16
0.786738
0.768817
0
12
45.5
78
yeyeto2788/GetTheUmbrella
498,216,209,102
a19a6f6a8c4aa517375816b341fb7a545ae53cf8
4a58a20a8bf66832d62cef42e61fb5504808656d
/GetTheUmbrella.py
309f9e899a4f9fde28041f6f79e5cbf01335454b
[]
no_license
https://github.com/yeyeto2788/GetTheUmbrella
2ad6146ff1f3655455b4fa3d5561a68b8f032e8b
68f30d47a37b30d8af5234c6d73c976ffaa54998
refs/heads/master
2020-02-21T16:42:13.897157
2018-10-08T12:41:22
2018-10-08T12:41:22
99,704,472
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import os import time import json import inspect import logging import smtplib import requests import datetime from email.mime.text import MIMEText from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart class GetUmbrella(object): def __init__(self): filename = inspect.getframeinfo(inspect.currentframe()).filename script_path = os.path.dirname(os.path.abspath(filename)) self.script_path = script_path self.config = self.load_config() self.blnSend = 0 self.send_mail(self.parse_conditions(self.get_cities_forecast())) def load_config(self): """ Load configuration from the config.json file. Returns: json object with configuration. """ config_file = "config.json" script_root = self.script_path with open(os.path.join(script_root, config_file), "r") as ConfigFile: return json.load(ConfigFile) def get_cities_forecast(self): """ Retrieve the forecast for several cities Returns: cities_conditions: List with the city list conditions """ cities_conditions = [] for city in self.config["openweathermap"]["cities"]: cities_conditions.append([city, self.get_forecast(city)]) return cities_conditions def parse_conditions(self, lst_conditions): """ This will parse the weather conditions and convert it into html to me sent. Args: lst_conditions: List with weather conditions Returns: msg: String with formatted HTML text. """ msg = "Weather conditions for tomorrow.<br>" for iteraction, cities in enumerate(lst_conditions): city = lst_conditions[iteraction][0] city_conditions = lst_conditions[iteraction][1] if len(city_conditions) > 1: msg += "<br>In <b>{}</b>:<br>".format(city) for condition in city_conditions: condition_date = condition[0] min_tem = condition[1] max_temp = condition[2] strcondition = condition[3] icon = condition[4] msg += """<br>At <b>{}</b> there will be <b>{}</b> <br>with the following temperatures:<br> <b>Minimum temperature:</b>{}<br> <b>Maximum temperature:</b> {}<br> <img src="cid:{}"><br>""".format(condition_date, strcondition, min_tem, max_temp, icon) return msg def get_forecast(self, strcity): """ This function will get 5 days forecast weather in Barcelona to sent through the Bot Args: strcity: String with the city name you want to retrieve the forecast from. Returns: conditions: list with the conditions retrieved """ conditions = [] r = requests.get("http://api.openweathermap.org/data/2.5/forecast?q={}&appid={}".format(strcity, self.config["openweathermap"]["API_KEY"])).json() umbrella_conditions = ("heavy rain", "light rain", "rain", "moderate rain", "shower rain", "thunderstorm") for i in range(len(r["list"])): min_temp = int(r["list"][i]["main"]["temp_min"] - 273.15) max_temp = int(r["list"][i]["main"]["temp_max"] - 273.15) Date = str(r["list"][i]["dt_txt"]) condition = str(r["list"][i]["weather"][0]["description"]) icon = str(r["list"][i]["weather"][0]["icon"]) tomorrow = str(datetime.date.today() + datetime.timedelta(days=1)) if Date.split(" ")[0] == tomorrow: if condition in umbrella_conditions: self.blnSend = 1 conditions.append([Date, min_temp, max_temp, condition, icon]) return conditions def log(self, strlog): """ This function will log every command and msg received by the bot or any other info the user wants to log on the file. Args: strlog: String with the message or data to want to write on the file. Returns: Nothing. """ if self.config['log']: FORMAT = '%(levelname)s,%(name)s,%(message)s' logging.basicConfig(format=FORMAT, filename=os.path.join(self.script_path, 'LogFile.log'), level=logging.INFO) time_now = time.strftime("%Y-%m-%d,%H:%M:%S", time.gmtime()) logging.info(time_now + "," + strlog) def send_mail(self, strmsg): """ Send the mail warning about weather condition Args: strmsg: String with the message to be sent. Returns: Nothing. """ if self.blnSend: # Email of sender data. from_email = self.config["emails"]["from"] email_passwd = self.config["emails"]["password"] to_emails = self.config["emails"]["to"] for to_email in to_emails: # Compose the email to be sent message = MIMEMultipart() message['Subject'] = 'Rain Alert!!!' message['From'] = from_email message['To'] = to_email # Read image to sent for icon in self.config['icons']: imageToMail = os.path.normpath(os.path.join(self.script_path, "icons", icon+".png")) with open(imageToMail, 'rb') as fp: img = MIMEImage(fp.read()) img.add_header('Content-ID', '<{}>'.format(icon)) fp.close() message.attach(img) # Add text to message msgText = MIMEText('<p>{}</p><br><br>'.format(strmsg), 'html') message.attach(msgText) # The actual mail send server = smtplib.SMTP("smtp.gmail.com:587") server.starttls() server.login(from_email, email_passwd) server.sendmail(from_email, to_email, str(message)) server.quit() self.log("Email sent to {} .".format(to_email)) else: self.log("No email sent since there were no conditions to get the umbrella.") """ Execute the code """ Umbrella = GetUmbrella()
UTF-8
Python
false
false
6,520
py
3
GetTheUmbrella.py
1
0.549233
0.544479
0
180
35.222222
154
BCHoagland/Sutton-and-Barto
10,368,051,072,749
2572abe07aa6f102f53623cb5acb476e62a25e12
49ef500e0921d114963d48844b353fd8de15c4eb
/08 - Planning and Learning with Tabular Methods/priority_sweeping/envs/shortcut_env.py
af357d6d1cc1933360f0683a3993eba5f415f389
[]
no_license
https://github.com/BCHoagland/Sutton-and-Barto
d282a8b493ad45f8c3e444eec095cb7d26d558f2
ec4a049820b6098462e9aadd43109fc6c83d0fc5
refs/heads/master
2020-04-17T02:36:38.925765
2019-03-08T18:48:57
2019-03-08T18:48:57
166,143,693
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np class ShortcutEnv(): def __init__(self): self.name = 'Shortcut Maze' self.width = 9 self.height = 6 self.start_pos = np.array([3, 0]) self.goal = np.array([self.width-1, self.height-1]) self.old_obstacles = [[1, 2], [2, 2], [3, 2], [4, 2], [5, 2], [6, 2], [7, 2], [8, 2]] self.new_obstacles = [[1, 2], [2, 2], [3, 2], [4, 2], [5, 2], [6, 2], [7, 2]] self.obstacles = self.old_obstacles self.actions = [[0, 1], [1, 0], [0, -1], [-1, 0]] self.actions = [np.array(a) for a in self.actions] self.t = 0 def reset_t(self): self.t = 0 self.obstacles = self.old_obstacles def reset(self): self.pos = self.start_pos return self.pos def at_goal(self): return tuple(self.pos) == tuple(self.goal) def step(self, a): self.t += 1 if self.t == 3000: self.obstacles = self.new_obstacles next_pos = np.clip(self.pos + self.actions[a], 0, [self.width-1, self.height-1]) if next_pos.tolist() not in self.obstacles: self.pos = next_pos if self.at_goal(): return self.pos, 1, True return self.pos, 0, False
UTF-8
Python
false
false
1,247
py
81
shortcut_env.py
48
0.510024
0.465116
0
42
28.690476
93
doolieSoft/djangobourse
14,061,722,976,424
5dc4aef8fbee2148937583584107b0224e5d335a
2eb06ad3b2cae9dc25d5332350a514b8b75d25af
/src/djangobourse/migrations/0012_auto_20190107_1745.py
628d2c2a91f3ee1b25017ac586e684c11f848979
[]
no_license
https://github.com/doolieSoft/djangobourse
470c2d71a4f386a97b9c6f218f82f31d5384be7a
da921defaf6ef44ac621065a63b060cd79bfb1d6
refs/heads/master
2020-04-16T08:24:59.925043
2019-01-12T18:56:59
2019-01-12T18:56:59
165,424,276
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.1.5 on 2019-01-07 16:45 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('djangobourse', '0011_share_valeur'), ] operations = [ migrations.AlterField( model_name='share', name='action', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='djangobourse.ActionSignaletique'), ), migrations.AlterField( model_name='share', name='portefeuille', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='djangobourse.Portefeuille'), ), migrations.AlterField( model_name='transaction', name='share', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='djangobourse.Share'), ), ]
UTF-8
Python
false
false
940
py
21
0012_auto_20190107_1745.py
18
0.623404
0.603191
0
29
31.413793
122
gayatribasude/GayatrisWorld
3,556,232,949,513
cae92af273f1a5efe31081ee9599e0c76cea9427
8d3835e39cbc2c74d8535b809686d6ab3033c0d0
/ecommerce/carts/migrations/0029_auto_20210731_2132.py
1da0307730c4529cce0432ee8019cff46ff0e1d6
[]
no_license
https://github.com/gayatribasude/GayatrisWorld
125698955cd8b98a5aa2377331293587a57f2911
552ea2ef946e95f5bccc4e51d4030484ab0bc438
refs/heads/master
2023-06-25T19:45:03.232059
2021-08-02T16:43:47
2021-08-02T16:43:47
384,343,617
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.1.3 on 2021-07-31 16:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('carts', '0028_auto_20190130_2301'), ] operations = [ migrations.AlterField( model_name='cart', name='items', field=models.ManyToManyField(blank=True, to='carts.Item'), ), ]
UTF-8
Python
false
false
401
py
93
0029_auto_20210731_2132.py
66
0.588529
0.511222
0
18
21.277778
70
dekasthiti/pythonic
5,686,536,735,973
51b9926d5b21da5b3d358082c09a0cbffd72b447
d550cc0b4a8567d75da3d6e923533271309c6347
/pythonic.py
f27ccfb99c9d65965b9dde19f3c0d9f9936579e5
[]
no_license
https://github.com/dekasthiti/pythonic
23349638caf4e70ca65b89b6b5a1f184580f2235
f7d28ff787a27af828b46e4cc3bd52acfbf98f37
refs/heads/master
2023-06-14T08:50:46.108612
2021-07-11T00:45:10
2021-07-11T00:45:10
103,495,862
0
0
null
false
2021-07-11T00:24:42
2017-09-14T06:42:50
2021-07-10T22:59:02
2021-07-11T00:24:41
53
0
0
0
Python
false
false
from collections import defaultdict import heapq import functools def compute_top_k_variance(students, scores, k): """ Students and scores are equal length lists of strings and floats, respectively. The function computes for each string that appears at least k times in the list the variance of the top k scores that correspond to it. Strings that appear fewer than k times are not considered. """ counts = {} # Lot of boilerplate code is non-pythonic if not pythonic: # First, count the scores a student has for i in range(len(students)): if students[i] not in counts: counts[students[i]] = 1 else: counts[students[i]] += 1 # If a student has more than k scores, initialize an empty list for that student all_scores = {} for key in counts: if counts[key] >= k: all_scores[key] = [] # Accumulate the actual scores of the student for i in range(len(students)): if students[i] in all_scores: all_scores[students[i]].append(scores[i]) # Now sort the scores of the student, and save the topk top_k_scores = {} for key in all_scores: sorted_scores = sorted(all_scores[key]) top_k_scores[key] = [] for i in range(k): top_k_scores[key].append(sorted_scores[len(sorted_scores) - 1 - i]) # Calculate variance result = {} for key in top_k_scores: total = 0 for score in top_k_scores[key]: total += score mean = total / k variance = 0 for score in top_k_scores[key]: variance = variance + (score - mean) * (score - mean) result[key] = variance else: # Using defaultdict with initialized list all_scores = defaultdict(list) for student, score in zip(students, scores): all_scores[student].append(score) # Dictionary comprehension with conditional top_k_scores = {student: heapq.nlargest(k, scores) for student, scores in all_scores.items() if len(scores) >= k} # This is pythonic, but just not readable to me if not readable: result = { student: functools.reduce(lambda variance, score: variance + (score - mean) ** 2, scores, 0) for student, scores, mean in ( (student, scores, sum(scores) / k) for student, scores in top_k_scores.items() ) } # This is pythonic and readable to me else: result = defaultdict(float) for student, scores in top_k_scores.items(): mean = sum(scores) / k result[student] = functools.reduce(lambda variance, score: variance + (score - mean) ** 2, scores, 0) return result if __name__ == '__main__': pythonic = True readable = True students = ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C'] scores = [10, 20, 30, 0, 5, 10, 30, 20, 30] k = 2 result = compute_top_k_variance(students, scores, k) print(result)
UTF-8
Python
false
false
3,359
py
53
pythonic.py
52
0.536171
0.528431
0
93
35.129032
117
crazyqipython/MLFHPY3
807,453,854,010
645afa56af0a6e1105e12100ebc282e04a4c5081
2c98108963be84092d097c1ee281c30b12ffa652
/tests/test_ch4.py
efc5b51a7e7ed84ecb05ac86326bfc395f6ea556
[]
no_license
https://github.com/crazyqipython/MLFHPY3
db7606096e05c3dcaaf4d9cff35db9f05bfb9666
966d08f81382211c9f60c75518a2a0b36d035c66
refs/heads/master
2021-09-03T16:36:38.378393
2018-01-10T13:38:41
2018-01-10T13:38:41
115,197,470
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#coding:utf-8 import os import unittest from unittest import mock import shutil import tempfile from pandas import * from pandas.util.testing import assert_frame_equal from ch4 import easyham_path, parse_email_list, parse_email,\ get_header_and_message, get_date, get_sender, get_subject,\ make_email_df,train_test_split,thread_flags, clean_subject import dateutil.parser as dtp class TestParseEmailList(unittest.TestCase): def test_eashham_pass(self): self.assertEqual(easyham_path, "../data/easyham") @mock.patch("ch4.parse_email", return_value=3) def test_parse_email_list(self, mock): result = parse_email_list(['a', 'b','c']) self.assertEqual(list(result), [3,3,3]) class TestParseEmail(unittest.TestCase): def setUp(self): self.dir = tempfile.mkdtemp() self.path = os.path.join(self.dir + 'test.txt') self.f = open(self.path, 'w') self.f.write('aaaa\n\nThe owls are not what they seem') self.f.close() def tearDown(self): shutil.rmtree(self.dir) @mock.patch("ch4.get_subject", return_value='d') @mock.patch("ch4.get_sender", return_value='c') @mock.patch("ch4.get_date", return_value='b') @mock.patch("ch4.get_header_and_message", return_value=['a','g']) def test_parse_email(self, mock1, mock2, mock3, mock4): result = parse_email(self.path) self.assertEqual(result[:4],('b','c','d','g')) def test_get_header_and_message(self): result = get_header_and_message(self.path) self.assertEqual((['aaaa\n'], ['The owls are not what they seem']), result) def test_get_date(self): result = get_date(["Date: 2017-01-12"]) self.assertEqual(result, dtp.parse('2017-01-12')) def test_get_sender(self): result = get_sender(["X-Egroups-From: Steve Burt <steve.burt@cursor-system.com> ", "From: Steve Burt <Steve_Burt@cursor-system.com>", "X-Yahoo-Profile: pyruse"]) self.assertEqual(result, "steve.burt@cursor-system.com") def test_get_subject(self): result = get_subject(["Subject: [IIU] Eircom aDSL Nat'ing"]) self.assertEqual(result, "[iiu] Eircom aDSL Nat'ing".lower()) class TestMakeEmailDf(unittest.TestCase): def setUp(self): self.dir = tempfile.mkdtemp() self.df = DataFrame({}, columns=['date', 'sender', 'subject', 'message', 'filename'], index=[]) def test_make_email_df(self): result = make_email_df(self.dir) assert_frame_equal(result, self.df) class TestTrainSplit(unittest.TestCase): def setUp(self): self.df = DataFrame({}, columns=['date', 'sender', 'subject', 'message', 'filename']) def test_train_set_split(self): result = train_test_split(self.df) assert_frame_equal(result, self.df) class TestThreadFlags(unittest.TestCase): def test_thread_flags(self): s = "re:asdfs" result = thread_flags(s) self.assertTrue(result) def test_clean_subject(self): s = "fw:aaa" result = clean_subject(s) self.assertEqual(result, 'aaa')
UTF-8
Python
false
false
3,291
py
16
test_ch4.py
14
0.606199
0.596475
0
94
33.031915
169
hikaru76/42tokyo
11,029,476,031,300
d7315613b627d5c064f784f2eca2eea1f6b475a4
481162d1e296ff8d7e48baacfadf4e43a0921cbc
/python-piscine/04/00/main.py
113b5f7fc92221975733dac52d25363c2802b610
[]
no_license
https://github.com/hikaru76/42tokyo
1731a9dc03a77c8db5d2d8557b985f1a07b91daf
a2bcc870835edcd7a8488126024b082dfd2e2459
refs/heads/master
2023-06-04T08:30:02.194940
2021-06-28T12:18:37
2021-06-28T12:18:37
346,692,343
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests from urllib import request import sys from bs4 import BeautifulSoup class PokeWiki: def __init__(self, name: str): self.name = name self.url = "https://pokemon.fandom.com/wiki/" + name response = request.urlopen(self.url) self.soup = BeautifulSoup(response) response.close() def species(self): return (self.soup.text) def abilities(self): return (self.name) def main(): print("Which pokemon do you want to know?") name = sys.stdin.readline() poke = PokeWiki(name) print(poke.species()) if __name__ == '__main__': main()
UTF-8
Python
false
false
628
py
20
main.py
9
0.619427
0.617834
0
27
22.296296
60
abhi8893/Intensive-python
10,204,842,342,915
1bccc439c6508f7de6463a2480ed2b68ac1e81ae
b59189970730d2093e33d9c7ba33129baf2d683e
/tutorials/argparse-tutorial/greet_and_show_time.py
93353d2dfdd4da8dee31f6a702ed281667120727
[]
no_license
https://github.com/abhi8893/Intensive-python
be2c11a59c220ad02fd9f007f9ab5f85caaadbbc
e4b16926aa667760686ff111ecb71269c207acb4
refs/heads/master
2020-09-21T15:59:59.635512
2020-08-31T09:25:35
2020-08-31T09:25:35
224,839,629
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# Link: https://t.ly/5882b # Greet the person and show current time import datetime as dt def greet(name, show_time): print(f'Hello {name}!') if show_time: print(f'The time right now is {dt.datetime.now()}') if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='Greet the user and show the time if requested.') parser.add_argument( '--name', required=True) # NOTE: dest is used for the namespace if it's provided. # show_time seems like a more apt name for a logical. # But the user would just like a simple -t or --time option. parser.add_argument('-t', '--time', dest='show_time', action='store_true') args = parser.parse_args() name, show_time = args.name, args.show_time greet(name, show_time)
UTF-8
Python
false
false
833
py
143
greet_and_show_time.py
126
0.627851
0.623049
0
29
27.758621
78
fenn/skdb
7,524,782,746,531
f5d2ae120b0c0c3770bfbf0968f1f41db2083369
e74e2d3a8babb739b15c825bdfb14c7828af2344
/inventory/fabmap/models.py
e73179f88e9917c1049bc244dd47d8994a0d7240
[]
no_license
https://github.com/fenn/skdb
97ea9a4cc584c4b24ea5275ac36cfdd3f34118de
dfb6ec81952030c2d0c1dec880eb93da1d629667
refs/heads/master
2020-05-07T21:55:52.979394
2014-11-15T12:33:28
2014-11-15T12:33:28
3,238,526
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.contrib.auth.models import User from django.contrib import admin from django import forms from django.forms import ModelForm # # Defining models # # class AccessModel(models.Model): name = models.CharField(max_length=200) description = models.TextField() def __unicode__(self): return self.name class EquipmentCapability(models.Model): name = models.CharField(max_length=200) def __unicode__(self): return self.name class EquipmentType(models.Model): name = models.CharField(max_length=200) maker = models.CharField(max_length=200) website = models.URLField(blank=True) capabilities = models.ManyToManyField(EquipmentCapability) def __unicode__(self): return self.maker + " " + self.name class Site(models.Model): lat = models.FloatField("Latitude") lon = models.FloatField("Longitude") name = models.CharField("Site name", max_length=200) locname = models.CharField("Town/city", max_length=200) website = models.URLField(blank=True) manager = models.ForeignKey(User) access = models.ForeignKey(AccessModel, verbose_name="Access model") def __unicode__(self): return self.name class Equipment(models.Model): type = models.ForeignKey(EquipmentType) site = models.ForeignKey(Site) notes = models.TextField() def __unicode__(self): return self.type # class Material(models.Model): # # DEFINEME # name = models.CharField(max_length=500) # formula = models.CharField(max_length=200, blank=True) # iselement = models.BooleanField() # description = models.TextField(blank=True) # # meltingpoint = models.FloatField("Melting point", blank=True) # boilingpoint = models.FloatField("Boiling point", blank=True) # # density = models.FloatField(blank=True) # # modulus_elasticity = models.FloatField("Modulus of elasticity", blank=True) # modulus_youngs = models.FloatField("Young's modulus", blank=True) # # hardness_mohs = models.FloatField(blank=True) # hardness_brinnel = models.FloatField(blank=True) # # thermal_inductance = models.FloatField(blank=True) # thermal_capacity = models.FloatField(blank=True) # thermal_expansion = models.FloatField("Coefficient of thermal expansion (CTE)", blank=True) # # electrical_inductance = models.FloatField(blank=True) # electrical_capacity = models.FloatField(blank=True) # # nuclear profile? radioactivity_profile? # # electrical profile? # # thermal profile? # #class MaterialProperty(models.Model): # name = models.CharField(max_length=200) # # #class Method(models.Model): # Process? Method? TODO: DECIDE ON TERMINOLOGY # # DEFINEME # pass # # # Registering tables with admin site # # admin.site.register(EquipmentType) admin.site.register(Site) admin.site.register(EquipmentCapability) admin.site.register(Equipment) admin.site.register(AccessModel) # # Defining forms # # class SiteForm(ModelForm): class Meta: model = Site exclude = ('manager')
UTF-8
Python
false
false
3,363
py
174
models.py
82
0.643176
0.635147
0
112
29.026786
99
jeffzpy/py-sql-generator
6,365,141,562,579
f2c9121adb6743c38dd85c3da519539b9f5778fb
330987aa81ea79768a96ab620110c877189093bd
/settings.py
56f679f6c7323823537304d1058f0ae6b3404756
[]
no_license
https://github.com/jeffzpy/py-sql-generator
97998272c8f4c131aec8ccfd8b1992534c88a170
ef8542d74f518df4b536bf7e7f0089fef8327fa9
refs/heads/master
2020-03-25T21:57:24.863269
2018-08-09T19:41:09
2018-08-09T19:41:09
144,197,244
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
SQLALCHEMY_DATABASE_URI = 'mysql://username:password@ip:port/database?charset=utf8'
UTF-8
Python
false
false
83
py
1
settings.py
1
0.807229
0.795181
0
1
83
83
Knight-RS/CodeSmell
901,943,150,095
9e5d2a614e5a3213b8ce798c0355c6186eb961aa
3c5ef501cb8398b143aeeca015721d9da2e05f9f
/GodClassDetection/code/python/fine_tune_0716.py
c79efba2ffcffb62c4bc606d535ed0b7e26e96f5
[]
no_license
https://github.com/Knight-RS/CodeSmell
1e5e6996a02c11ba18e07ca11e85a1d6479ae7f3
1ad6b55604554372bcabfa236124f1ce7b47f1ae
refs/heads/master
2021-05-16T21:57:31.764943
2020-09-11T03:23:29
2020-09-11T03:25:05
250,485,703
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- encoding: utf-8 -*- """ @File : fine_tune.py.py @Time : 2020-05-14 20:23 @Author : knight """ # os.environ["CUDA_VISIBLE_DEVICES"] = "0" import os import time import keras import matplotlib.pyplot as plt import preprocess1 # 引入自定义的preprocess.py,所以preprocess.py不是主函数 from keras.models import load_model from sklearn import metrics from keras.models import model_from_json from sklearn.model_selection import KFold os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' localtime = time.asctime(time.localtime(time.time())) print("begin time", localtime) # # 从JSON文件中加载模型 # with open(r'/Users/knight/Desktop/GodClassDetection-master-mao-new/trained_model/pre_training_model.json', 'r') as file: # model_json = file.read() # # # 加载模型 # new_model = model_from_json(model_json) # new_model.load_weights('model.json.h5') # 加载预训练的模型 model_path = '/Users/knight/Desktop/GodClassDetection/trained_model/pre_training_model.h5' # model_path = '/Users/knight/Desktop/GodClassDetection-master-mao-new/trained_model/pre_training_lstm_att_model.h5' model = load_model(model_path) # model.summary() EMBEDDING_DIM = 200 MAX_SEQUENCE_LENGTH = 50 MAX_JACCARD_LENGTH = 30 INC_BATCH_SIZE = 80000 BASE_DIR = '' # W2V_MODEL_DIR = '/Users/knight/Desktop/GodClassDetection/embedding_model/new_model6.bin' W2V_MODEL_DIR = '/Users/knight/Desktop/GodClassDetection/embedding_model/new_model6_nltk.bin' TRAIN_SET_DIR = '/Users/knight/Desktop/GodClassDetection/trainset' # 直接改成自己的路径 FULL_MN_DIR = TRAIN_SET_DIR tokenizer = preprocess1.get_tokenizer(FULL_MN_DIR) all_word_index = tokenizer.word_index embedding_matrix = preprocess1.get_embedding_matrix(all_word_index, W2V_MODEL_DIR, dim=EMBEDDING_DIM) acc_list = [] loss_list = [] projects = [] x_k = [] y_k = [] x_train = [] y_train = [] x_test = [] y_test = [] f1_scores = [] data_path = '/Users/knight/Desktop/GodClassDetection/trainset/test' for project in sorted(os.listdir(data_path)): projects.append(project) path = data_path + "/" + project print("path:", path) x, y = preprocess1.get_xy_train1(path, tokenizer=tokenizer, mn_maxlen=MAX_SEQUENCE_LENGTH, embedding_matrix=embedding_matrix) x_k.append(x) y_k.append(y) # print(len(x_k)) print('Fine tune model.') # 微调 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) idx = 0 for i in range(len(projects)): for j in range(len(projects)): if j == idx: x_test.append(x_k[j]) y_test.append(y_k[j]) else: x_train.append(x_k[j]) y_train.append(y_k[j]) idx = idx + 1 print("x_train:", len(x_train[0])) print("y_train:", len(y_train)) print("x_test", len(x_test)) print("y_test:", len(y_test)) # print("x_train:", x_train) # print("y_train:", y_train) # print("x_test", x_test[0]) # print("y_test:", y_test[0]) # print("\n") # 训练集度量值 hist = model.fit(x_train, y_train, nb_epoch=10, batch_size=5, verbose=1) score = model.evaluate(x_train, y_train, verbose=0) print("训练集的一些参数:!!!!!!!!!!!!") print('train mse:', score[0]) print('train accuracy:', score[1]) loss_list.append(score[0]) acc_list.append(score[1]) localtime = time.asctime(time.localtime(time.time())) print("endding time", localtime) avg_accuracy = sum(acc_list) / len(acc_list) avg_loss = sum(loss_list) / len(loss_list) print("average accuracy: ", avg_accuracy) print("average loss: ", avg_loss) # 验证集度量值 print("\n验证集的一些参数:!!!!!!!!!!!!") print("project:", projects[i]) score = model.evaluate(x_test, y_test, verbose=0) # print model.metrics_names print('Test score:', score[0]) print('Test accuracy:', score[1]) # input() predict_posibility = model.predict(x_test) predict_label = [] godclass_indices = [] for i, item in enumerate(predict_posibility): if item <= 0.5: predict_label.append(0) else: godclass_indices.append(i) predict_label.append(1) labeld_godclasses = [] for i, item in enumerate(y_test): if item == 1: labeld_godclasses.append(i) precision = metrics.precision_score(y_test, predict_label) recall = metrics.recall_score(y_test, predict_label) f1_score = metrics.f1_score(y_test, predict_label) print('test precision:', precision) print('test recall', recall) print('test f1 score:', f1_score) f1_scores.append(f1_score) x_train = [] y_train = [] x_test = [] y_test = [] avg_f1 = sum(f1_scores) / len(f1_scores) print("average f1: ", avg_f1) localtime = time.asctime(time.localtime(time.time())) print("end time", localtime) # # 模型保存JSON文件 # model_json = model.to_json() # with open(r'/Users/knight/Desktop/GodClassDetection/trained_model/fine_tune_model.json', 'w') as file: # file.write(model_json) # # # 保存微调后的模型 # model.save('/Users/knight/Desktop/GodClassDetection/trained_model/fine_tune_model.h5') # # model.summary()
UTF-8
Python
false
false
5,270
py
143
fine_tune_0716.py
16
0.648236
0.633571
0
173
28.156069
122
summychou/Py2Ja
16,234,976,394,803
d3bd64c0878e9f4f41901a33feafd98677961ae8
2c82fcf5af5de3482bf448f62ca3b3c62c6b2627
/Py2Ja/blog/urls.py
a6637ec35849b4269467532eb080a614082151d7
[ "Apache-2.0" ]
permissive
https://github.com/summychou/Py2Ja
c91d2f4bceaef7e84e295c650ffaa099a89fb1e0
99fda288f74b7a8761ac3d4ed0ce4440b976918d
refs/heads/master
2016-09-13T05:59:43.385757
2016-05-05T13:15:53
2016-05-05T13:15:53
58,128,764
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.conf.urls import url urlpatterns = [ url(r'^list', "blog.views.list_blogs", name="blog_list"), url(r'^view/(?P<blog_id>\d+)', "blog.views.view_blog", name="blog_view"), url(r'^write', "blog.views.write_blog", name="blog_write"), url(r'^write', "blog.views.write_blog", name="blog_write"), url(r'^write/image-upload/', "blog.views.upload_image", name="blog_write"), ]
UTF-8
Python
false
false
400
py
73
urls.py
40
0.635
0.635
0
9
43.444444
79
Bsoong/CS-115
15,307,263,472,623
368151ce70e1d5185e535fbd4a0d376838f0faa4
30d826d0281ee214e6fb8fdf36ebbaa6b2cb7b2c
/Hw files/hw1.py
36be9a841d64f82c1626010122d939bf1768a756
[]
no_license
https://github.com/Bsoong/CS-115
66717a5bc29437f004db3bad3899938293bc71c8
b0f3c8d309214c7f483bcfd90ebd454bcbb5948f
refs/heads/master
2020-03-23T23:09:06.584267
2018-11-21T06:14:40
2018-11-21T06:14:40
142,218,694
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Created on Sep 10, 2017 @author: brand ''' from cs115 import map, reduce def mult(x,y): return x*y def factorial(n): """Using an if and an else statement, it allows for the function to hit all parameters or any number that may be put in. The if makes sure the statement is possible and the the else multiplies by itself to create the value of n!""" return reduce(mult, range(1,n+1)) def add(a,b): """Simple add function to add two numbers together""" return a+b def mean(x): """Mean is the sum of the numbers/the amount, so using reduce and the add function youre able to add x value and then divide it by the list""" list= len(x) return ((reduce(add, x)/list)) list=[] def prime(n): if n==1: return True return factorial(n-1)%n==n-1 print(prime(1))
UTF-8
Python
false
false
910
py
34
hw1.py
32
0.595604
0.579121
0
34
23.705882
104
Manchangdx/daxiangmu
18,751,827,248,238
6d542eec9afc583f5de0cec48f092802fa0a2e9e
5fc6b9810d3ef030345246a3030dc2bf7809da04
/jobplus/jobplus/handlers/admin.py
7a5bfb802749bbd7b58ceb88912613b287aa3be1
[]
no_license
https://github.com/Manchangdx/daxiangmu
f8d828929a2e9e4b05c63e38a877474c204e61c0
9882643a923b1d87068fe68155e61a46eade7922
refs/heads/master
2023-05-25T11:26:49.134919
2022-04-04T13:06:38
2022-04-04T13:06:38
131,313,758
0
0
null
false
2023-05-01T22:24:34
2018-04-27T15:25:35
2022-03-07T11:12:06
2023-05-01T22:24:33
422
1
0
4
Python
false
false
from flask import (Blueprint, render_template, request, current_app, redirect, url_for, flash) from jobplus.decorators import admin_required from jobplus.models import User, db, Job admin = Blueprint('admin', __name__, url_prefix='/admin') @admin.route('/') @admin_required def index(): return render_template('admin/index.html') @admin.route('/user') @admin_required def user(): page = request.args.get('page', default=1, type=int) pagination = User.query.paginate( page=page, per_page=current_app.config['ADMIN_PER_PAGE'], error_out=False ) return render_template('admin/users.html', pagination=pagination) @admin.route('/users/<int:user_id>/disable') @admin_required def disable_user(user_id): user = User.query.get_or_404(user_id) if user.is_disable: user.is_disable = False flash('该用户已启用', 'success') else: user.is_disable = True flash('该用户已禁用', 'info') db.session.add(user) db.session.commit() return redirect(url_for('.user')) @admin.route('/job') @admin_required def job(): page = request.args.get('page', default=1, type=int) pagination = Job.query.paginate( page=page, per_page=current_app.config['ADMIN_PER_PAGE'], error_out=False ) return render_template('admin/jobs.html', pagination=pagination)
UTF-8
Python
false
false
1,387
py
36
admin.py
15
0.655172
0.651504
0
51
25.72549
69
developeryuldashev/python-core
3,135,326,151,161
d5e0c1d90875b85c98cb9afac5d0304f2397dd36
47deebe6fefedb01fdce5d4e82f58bb08f8e1e92
/python core/Lesson_13/file_1.py
1148a464babb7ffd09f12e200c2a2ee0a66610df
[]
no_license
https://github.com/developeryuldashev/python-core
5bb162603bdb5782acf05e3fb25ca5dd6347067a
08fca77c9cfde69d93a7875b3fb65b98f3dabd78
refs/heads/main
2023-08-21T03:33:12.160133
2021-10-19T04:56:53
2021-10-19T04:56:53
393,383,696
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
exept='/\:|=?;[],^<>' path='file1?.txt' r=True for char in path: r=r and (char not in exept) if r: f=open(path,'w') f.close() else: print('bu nom bilan fayl yaratib bo\'lmaydi')
UTF-8
Python
false
false
193
py
426
file_1.py
411
0.57513
0.569948
0
10
18.4
49
nileshhadalgi016/SQLite3-Tutorial
11,132,555,252,549
88d0ced41a8f176a8a12bba6406b4162ea6dfc52
0482dec67616fc6a74095d9c248ba33ae28fcc96
/superMarketApp/database.py
685dc44b4c24623f5da15259e71f231cd4e95e95
[]
no_license
https://github.com/nileshhadalgi016/SQLite3-Tutorial
741289230d1a4492cabc7a1621c566d6c8c57f79
35719f92276667d357d013740a8735f852af5b6c
refs/heads/main
2023-02-18T16:31:42.244311
2021-01-20T11:32:51
2021-01-20T11:32:51
326,337,046
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sqlite3 # cur.execute('CREATE TABLE admin(username TEXT,password TEXT)') # conn.commit() # cur.execute("INSERT INTO admin VALUES('nilesh','nilesh')") # conn.commit() def verif_admin(username, password): try: conn = sqlite3.connect('SuperMarket.db') cur = conn.cursor() print(username) print(password) data = cur.execute('SELECT password FROM admin WHERE username = "{}"'.format(username)).fetchall()[0][0] conn.close() if password == data: return True else: return False except: return False def add_product(id_, name, quantity, cost): if id_ == '' and name == '' and quantity == '' and cost == '': return False, " You Cannot Leave It Empty " try: conn = sqlite3.connect('SuperMarket.db') cur = conn.cursor() print(id_, name, quantity, cost) try: quantity = int(quantity) cost = int(cost) print(id_, name, quantity, cost) print(type(id_), type(name), type(quantity), type(cost)) check = cur.execute(f"SELECT * FROM products WHERE id = '{id_}'").fetchall() if len(check) > 0: return False, " This Product Already Exist Try Updating " else: cur.execute('INSERT INTO products VALUES("{}","{}",{},{})'.format(id_, name, quantity, cost)) conn.commit() conn.close() return True, " Product Added Successfully " except: return False, " Quantity and Cost are Integers " except: return False, " Failed Connecting Database " def get_product_detail(prod_id): if prod_id == '': return False, " Enter Product Id " else: conn = sqlite3.connect('SuperMarket.db') cur = conn.cursor() data = cur.execute(f"SELECT rowid,* FROM products where id='{prod_id}'").fetchall() conn.close() if len(data) == 0: return False, " Product Don't Exist " return True, data def update_delete_product(rowid, id_, name, quantity, cost, qry): if id_ == '' and name == '' and quantity == '' and cost == '': return False, " You Cannot Leave It Empty " try: conn = sqlite3.connect('SuperMarket.db') cur = conn.cursor() try: quantity = int(quantity) cost = int(cost) if qry == 'update': cur.execute( f"UPDATE products SET id = '{id_}',name='{name}',quantity = {quantity},cost={cost} WHERE rowid = {rowid}") conn.commit() return True, " Product Updated Successfully " if qry == "delete": cur.execute(f"DELETE FROM products WHERE rowid={rowid} ") conn.commit() return True, " Product Deleted Successfully " conn.commit() conn.close() except: return False, " Quantity and Cost are Integers " except: return False, " Failed Connecting Database " def showProducts_all(): conn = sqlite3.connect('SuperMarket.db') cur = conn.cursor() data = cur.execute("SELECT * FROM products").fetchall() return True, data def added_to_cart(prod_id, qry): if prod_id == '': return False, " Please Enter Product Id ",1 else: conn = sqlite3.connect('SuperMarket.db') cur = conn.cursor() if qry == "add": try: cur.execute("""CREATE TABLE cart( id TEXT, name TEXT, quantity INTEGER, cost INTEGER) """) except: pass data = cur.execute(f"""SELECT * FROM products WHERE id = '{prod_id}'""").fetchall() cart_check = cur.execute(f"""SELECT * FROM cart WHERE id = '{prod_id}' """).fetchall() if len(cart_check) == 0: cur.execute(f"""INSERT INTO cart VALUES('{data[0][0]}','{data[0][1]}',1,{data[0][3]})""") conn.commit() cur.execute(f"""UPDATE products SET quantity = {(data[0][2] - 1)} WHERE id ='{prod_id}'""") conn.commit() all_prods = cur.execute("SELECT * FROM cart").fetchall() return True, " Product Added To Cart Successfully ",all_prods elif len(cart_check) > 0: cur.execute( f"""UPDATE cart SET quantity = {(cart_check[0][2] + 1)},cost={(cart_check[0][3] + data[0][3])} WHERE id ='{prod_id}'""") conn.commit() cur.execute(f"""UPDATE products SET quantity = {(data[0][2] - 1)} WHERE id ='{prod_id}'""") conn.commit() all_prods = cur.execute("SELECT * FROM cart").fetchall() return True, " Product Added To Cart Successfully ",all_prods if qry == "remove": cart_check = cur.execute(f"""SELECT * FROM cart WHERE id = '{prod_id}' """).fetchall() if len(cart_check) == 0: all_prods = cur.execute("SELECT * FROM cart").fetchall() return True," Product Doesn't Exist ",all_prods elif len(cart_check) > 0: data = cur.execute(f"""SELECT * FROM products WHERE id = '{prod_id}'""").fetchall() cur.execute(f"UPDATE products SET quantity = {(data[0][2]+cart_check[0][2])} WHERE id ='{prod_id}'") conn.commit() cur.execute(f"DELETE FROM cart WHERE id = '{prod_id}'") conn.commit() all_prods = cur.execute("SELECT * FROM cart").fetchall() return True," Product Deleted Successfully ",all_prods conn.close() def get_cost(): conn = sqlite3.connect('SuperMarket.db') cur = conn.cursor() data = cur.execute("SELECT * FROM cart").fetchall() cost = 0 for i in data: cost = cost+i[3] return cost def done_Drp(): conn = sqlite3.connect('SuperMarket.db') cur = conn.cursor() cur.execute("DROP TABLE cart") conn.commit()
UTF-8
Python
false
false
6,199
py
3
database.py
3
0.524439
0.517342
0
171
35.245614
140
andy90/ShortSolventModel
18,640,158,093,324
3e157d839ab449c496ccf5a39a776b1e3e268cff
7cdf32b4ac717fe30eac1b14106d6ab1730adb2f
/data_ions/Na_Ca_Cl_potentials/plot_compare_Cl_2Cl.py
c558116b68681195091b4d78e6ccad2386889434
[]
no_license
https://github.com/andy90/ShortSolventModel
7d64cfef3f41c2e266cf6a3ec87974784a248fe4
daff3ace5f5e4b24da20a385374baa11ea789d1e
refs/heads/master
2020-09-23T10:03:44.959876
2020-08-18T20:17:59
2020-08-18T20:17:59
225,467,170
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# compare the pmf Ca Cl with one or 2 Cl in the box import numpy as np import matplotlib.pyplot as plt import scipy.interpolate as interp from matplotlib import rc, font_manager import scipy.integrate as integrate pmf1Cl=np.loadtxt("pmf_CaCl.xvg",unpack=True) pmf2Cl=np.loadtxt("pmf_CaCl_2Cl.xvg",unpack=True) pmf1=interp.InterpolatedUnivariateSpline(pmf1Cl[0],pmf1Cl[1]) pmf2=interp.InterpolatedUnivariateSpline(pmf2Cl[0],pmf2Cl[1]) kT=300.0/120.0 plt.rc('text', usetex=True) plt.rc('font', **{'family':'serif', 'serif':['Computer Modern Roman']}) r=np.linspace(0.26,1.25,100) plt.figure() ax1 = plt.subplot(111) ax1.plot(r,np.exp(-(pmf1(r)-pmf1(1.25))),color="black",lw=3,label=r"$g_{\mathrm{CaCl}}(r) $") ax1.plot(r,np.exp(-(pmf2(r)-pmf2(1.25))),color="blue",lw=3,label=r"$g_{\mathrm{CaCl}}(r) $, 2 Cl") legend=ax1.legend(bbox_to_anchor=(1, 1),prop={'size':20}) frame=legend.get_frame() ax1.tick_params(axis='both', which='major',length=5, pad=12,top='off', right='off') plt.xticks( fontsize = 20) plt.yticks( fontsize = 20) plt.xlabel(r"$r$(nm)",fontsize=25) plt.xlim(0.2,1.25) plt.ylim(0,7) plt.gcf().subplots_adjust(bottom=0.15) plt.savefig("comp_2Cl.pdf") plt.show()
UTF-8
Python
false
false
1,182
py
39
plot_compare_Cl_2Cl.py
7
0.70643
0.642132
0
38
30.131579
98
JonAWhite/BitcoinBudget
15,264,313,817,148
cbb8787c3d8219bf7a4e2f98d2c265fb6376eed1
58c73027252736b1ee236d329cc6f82e8dd71d8d
/coinbase_execute_budget.py
5b6c502eee1865fadcc8e63c8bfcb9c5b5caeacd
[ "MIT" ]
permissive
https://github.com/JonAWhite/BitcoinBudget
912f0a77416a95063176b7e5c337597942d7746a
cb600ca047bf5aa79651515382c9ba6ae4d84c53
refs/heads/master
2021-01-19T09:27:12.674106
2017-02-16T09:54:35
2017-02-16T09:54:35
82,111,619
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from coinbase.wallet.client import Client import argparse import json def find_account(accounts, name): for x in range(len(accounts)): account = accounts[x] if account.name == name: return account parser = argparse.ArgumentParser() parser.add_argument("budget_file", help='JSON file in the form [{"name":"Budget Item 1", "amount_usd":5.50}]') parser.add_argument("bitcoin_paid_price", help='The price you paid for the coins') parser.add_argument("coinbase_api_key", help='Get this from coinbase.com') parser.add_argument("coinbase_api_secret", help='Get this from coinbase.com') args = parser.parse_args() with open(args.budget_file) as data_file: budget_accounts = json.load(data_file) client = Client(args.coinbase_api_key, args.coinbase_api_secret) primary_account = client.get_primary_account() bitcoin_spot_price_in_usd = client.get_spot_price(currency_pair = 'BTC-USD')["amount"] bitcoin_paid_price_in_usd = args.bitcoin_paid_price accounts_obj = client.get_accounts(limit="100") assert (accounts_obj.pagination is None) or isinstance(accounts_obj.pagination, dict) accounts = accounts_obj[::] total_usd = 0 for budget_account in budget_accounts: total_usd += budget_account["amount_usd"] total_btc = 0 for budget_account in budget_accounts: budget_account_name = budget_account["name"] budget_account_id = find_account(accounts, budget_account_name).id budget_account_amount_usd = budget_account["amount_usd"] budget_account_amount_btc = float("{0:.8f}".format(budget_account_amount_usd / float(bitcoin_paid_price_in_usd))) total_btc += budget_account_amount_btc print 'Transfering ' + str(budget_account_amount_btc) + ' BTC from ' + primary_account.name + ' (' + primary_account.id + ') to ' + budget_account_name + ' (' + budget_account_id + ')' #client.transfer_money(primary_account.id, to=budget_account_id, amount=str(budget_account_amount_btc), currency="BTC") print 'BTC-USD Spot Price: ' + str(bitcoin_spot_price_in_usd) print 'BTC-USD Paid Price: ' + bitcoin_paid_price_in_usd print 'Budget Total: $' + str("%.2f" % total_usd) print 'Budget Total: ' + str("%.8f" % total_btc) + ' BTC'
UTF-8
Python
false
false
2,181
py
3
coinbase_execute_budget.py
3
0.709766
0.703806
0
46
46.391304
189
misrayazgan/METU-CENG-Coursework
12,567,074,348,966
35d16b276b6ecfe071cdf4e22ebdd9ad86a12c79
fa36955459af1fe1db712aeaf17e5cc0051886f0
/Ceng483 - Introduction to Computer Vision/THE3/the3.py
81f1ad179ddb0aa6e5eea25206d0fa3311ce18fd
[]
no_license
https://github.com/misrayazgan/METU-CENG-Coursework
e97ab42f48f517bbc190736c3d100601a2d2e592
bf7e429b620db2e71b6c127a26eb7a01a52bb251
refs/heads/master
2022-11-24T21:55:37.334017
2020-07-19T16:48:00
2020-07-19T16:48:00
180,148,418
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Feel free to change / extend / adapt this source code as needed to complete the homework, based on its requirements. # This code is given as a starting point. # # REFEFERENCES # The code is partly adapted from pytorch tutorials, including https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html # ---- hyper-parameters ---- # You should tune these hyper-parameters using: # (i) your reasoning and observations, # (ii) by tuning it on the validation set, using the techniques discussed in class. # You definitely can add more hyper-parameters here. batch_size = 16 max_num_epoch = 100 hps = {'lr': 0.01, 'n_conv_layers': 2, 'kernel_size': 3, 'n_kernels': 8} # n_conv_layers: 1,2,4 # kernel_size: 3,5 # n_kernels: 2,4,8 # learning_rate: between 0.0001 and 0.1 # ---- options ---- DEVICE_ID = 'cpu' # set to 'cpu' for cpu, 'cuda' / 'cuda:0' or similar for gpu. LOG_DIR = 'checkpoints' VISUALIZE = False # set True to visualize input, prediction and the output from the last batch LOAD_CHKPT = False # --- imports --- import torch import os import matplotlib.pyplot as plt import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as transforms import hw3utils from utils import read_image torch.multiprocessing.set_start_method('spawn', force=True) # ---- utility functions ----- def get_loaders(batch_size,device): data_root = 'ceng483-s19-hw3-dataset' train_set = hw3utils.HW3ImageFolder(root=os.path.join(data_root,'train'),device=device) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0) val_set = hw3utils.HW3ImageFolder(root=os.path.join(data_root,'val'),device=device) val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=0) test_set = hw3utils.HW3ImageFolder(root=os.path.join(data_root, 'test'), device=device) test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0) return train_loader, val_loader, test_loader # ---- ConvNet ----- class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.n_conv_layers = hps['n_conv_layers'] self.n_kernels = hps['n_kernels'] self.kernel_size = hps['kernel_size'] self.padding = (self.kernel_size - 1) // 2 # nn.conv2d(in_channels, out_channels, kernel_size, stride, padding, ...) self.four_layers = nn.Sequential( nn.Conv2d(1, self.n_kernels, self.kernel_size, padding=(self.padding, self.padding)), #nn.BatchNorm2d(self.n_kernels), nn.ReLU(), nn.Conv2d(self.n_kernels, self.n_kernels, self.kernel_size, padding=(self.padding, self.padding)), #nn.BatchNorm2d(self.n_kernels), nn.ReLU(), nn.Conv2d(self.n_kernels, self.n_kernels, self.kernel_size, padding=(self.padding, self.padding)), #nn.BatchNorm2d(self.n_kernels), nn.ReLU(), nn.Conv2d(self.n_kernels, 3, self.kernel_size, padding=(self.padding, self.padding))) self.two_layers = nn.Sequential( nn.Conv2d(1, self.n_kernels, self.kernel_size, padding=(self.padding, self.padding)), #nn.BatchNorm2d(self.n_kernels), nn.ReLU(), nn.Conv2d(self.n_kernels, 3, self.kernel_size, padding=(self.padding, self.padding))) self.one_layer = nn.Sequential( nn.Conv2d(1, 3, self.kernel_size, padding=(self.padding, self.padding))) def forward(self, grayscale_image): # apply your network's layers in the following lines: if self.n_conv_layers == 4: x = self.four_layers(grayscale_image) elif self.n_conv_layers == 2: x = self.two_layers(grayscale_image) elif self.n_conv_layers == 1: x = self.one_layer(grayscale_image) return x # ---- training code ----- device = torch.device(DEVICE_ID) #print('device: ' + str(device)) net = Net().to(device=device) criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=hps['lr']) train_loader, val_loader, test_loader = get_loaders(batch_size,device) if LOAD_CHKPT: #print('loading the model from the checkpoint') model.load_state_dict(os.path.join(LOG_DIR,'checkpoint.pt')) prev_val_loss = float("inf") optimal_epoch = 0 #print('training begins') for epoch in range(max_num_epoch): running_loss = 0.0 # training loss of the network n_training = 0 for iteri, data in enumerate(train_loader, 0): n_training += 1 #print(" train iteri:", iteri) inputs, targets = data # inputs: low-resolution images(grayscale), targets: high-resolution images(rgb). optimizer.zero_grad() # zero the parameter gradients # do forward, backward, SGD step preds = net(inputs) # get train outputs loss = criterion(preds, targets) # get loss for each mini-batch(16 images) loss.backward() optimizer.step() # print loss running_loss += loss.item() print_n = 100 # feel free to change this constant if iteri % print_n == (print_n-1): # print every print_n mini-batches(16 images) print('[%d, %5d] network-loss: %.3f' % (epoch + 1, iteri + 1, running_loss / 100)) running_loss = 0.0 if (iteri==0) and VISUALIZE: hw3utils.visualize_batch(inputs,preds,targets) #print(epoch + 1, running_loss / n_training) '''acc = 0 with torch.no_grad(): for i, val_data in enumerate(val_loader, 0): val_inputs, val_targets = val_data val_preds = net(val_inputs) for j, pred in enumerate(val_preds): pred = pred.to(torch.float64) val_target = val_targets[j] val_target = val_target.to(torch.float64) colored_target = (val_target/2 + 0.5) * 255 colored_target = colored_target.permute(1,2,0) colored_pred = (pred/2 + 0.5) * 255 # First take to range [0, 1], then to [0, 255] colored_pred = colored_pred.permute(1,2,0) # Convert too 80x80x3 #print(colored_pred.shape, colored_target.shape) est = colored_pred.cpu().numpy().astype(np.int64) cur = colored_target.cpu().numpy().astype(np.int64) cur_acc = (np.abs(cur - est) < 12).sum() / cur.shape[0] acc += cur_acc acc /= 5001 print(epoch + 1, acc)''' if epoch % 5 == 4: # Compute average validation loss every 5 epochs by a full pass over the validation set. val_running_loss = 0.0 n_validation = 0 for i, val_data in enumerate(val_loader, 0): n_validation += 1 val_inputs, val_targets = val_data val_preds = net(val_inputs) # get validation outputs val_loss = criterion(val_preds, val_targets) # get loss for each mini-batch(16 images) val_running_loss += val_loss.item() # print("Epoch", epoch + 1, "is over. Validation set loss:", val_running_loss / 125) # print(epoch + 1, val_running_loss / n_validation) # If loss has increased, apply early stopping. if prev_val_loss < val_running_loss: optimal_epoch = epoch - 5 # print("optimal number of epochs is:", optimal_epoch) # print("prev_val_loss is:", prev_val_loss / 125) # print("current loss is:", val_running_loss / 125) break else: # If current loss < prev loss, then save the model #print('Saving the model, end of epoch %d' % (epoch+1)) if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR) torch.save(net.state_dict(), os.path.join(LOG_DIR,'checkpoint.pt')) hw3utils.visualize_batch(inputs,preds,targets,os.path.join(LOG_DIR,'example.png')) prev_val_loss = val_running_loss #print('Finished Training') # number of validation images: 2000, size: 80x80x3 # number of test images: 2000, size: 80x80x3 validation_estimations = np.zeros((2000, 80, 80, 3)) test_estimations = np.zeros((2000, 80, 80, 3)) # One full pass over the validation set with torch.no_grad(): # Run model without backpropagation for i, data in enumerate(val_loader): inputs, targets = data preds = net(inputs) for j, pred in enumerate(preds): pred = pred.to(torch.float64) colored_pred = (pred/2 + 0.5) * 255 # First take to range [0, 1], then to [0, 255] colored_pred = colored_pred.permute(1,2,0) # Convert too 80x80x3 validation_estimations[i * batch_size + j] = colored_pred.cpu().numpy() print("val est", validation_estimations) # One full pass over the test set with torch.no_grad(): # Run model without backpropagation for i, data in enumerate(test_loader): inputs, targets = data preds = net(inputs) for j, pred in enumerate(preds): pred = pred.to(torch.float64) colored_pred = (pred/2 + 0.5) * 255 # First take to range [0, 1], then to [0, 255] colored_pred = colored_pred.permute(1,2,0) # Convert too 80x80x3 test_estimations[i * batch_size + j] = colored_pred.cpu().numpy() print("test shape:", colored_pred.shape) np.save("estimations_validation.npy", validation_estimations) np.save("estimations_test.npy", test_estimations)
UTF-8
Python
false
false
9,878
py
46
the3.py
24
0.603563
0.578761
0
228
42.324561
129
cohesity/management-sdk-python
5,342,939,352,212
c0ddf5ca0ef1bc8e4b2a8c34e87b8fa2fba8a98b
09f8a3825c5109a6cec94ae34ea17d9ace66f381
/cohesity_management_sdk/models/amqp_target_config.py
1ff3075ffe529ed43c43a56b8b638aa82f875310
[ "Apache-2.0" ]
permissive
https://github.com/cohesity/management-sdk-python
103ee07b2f047da69d7b1edfae39d218295d1747
e4973dfeb836266904d0369ea845513c7acf261e
refs/heads/master
2023-08-04T06:30:37.551358
2023-07-19T12:02:12
2023-07-19T12:02:12
134,367,879
24
20
Apache-2.0
false
2023-08-31T04:37:28
2018-05-22T06:04:19
2023-08-28T20:41:21
2023-08-31T04:37:26
55,712
20
18
5
Python
false
false
# -*- coding: utf-8 -*- # Copyright 2023 Cohesity Inc. class AMQPTargetConfig(object): """Implementation of the 'AMQPTargetConfig' model. TODO: type description here. Attributes: certificate (string): Specifies the certificate. exchange (string): Specifies the exchange. filer_id (long|int): Specifies the filer id. password (string): Specifies the password. server_ip (string): Specifies the server ip. username (string): Specifies the username. virtual_host (string): Specifies the virtual host. """ # Create a mapping from Model property names to API property names _names = { "certificate":'certificate', "exchange":'exchange', "filer_id":'filerId', "password":'password', "server_ip":'serverIp', "username":'username', "virtual_host":'virtualHost', } def __init__(self, certificate=None, exchange=None, filer_id=None, password=None, server_ip=None, username=None, virtual_host=None, ): """Constructor for the AMQPTargetConfig class""" # Initialize members of the class self.certificate = certificate self.exchange = exchange self.filer_id = filer_id self.password = password self.server_ip = server_ip self.username = username self.virtual_host = virtual_host @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary certificate = dictionary.get('certificate') exchange = dictionary.get('exchange') filer_id = dictionary.get('filerId') password = dictionary.get('password') server_ip = dictionary.get('serverIp') username = dictionary.get('username') virtual_host = dictionary.get('virtualHost') # Return an object of this model return cls( certificate, exchange, filer_id, password, server_ip, username, virtual_host )
UTF-8
Python
false
false
2,660
py
1,430
amqp_target_config.py
1,405
0.577068
0.575188
0
89
28.898876
81
pcuzner/gluster-deploy
11,897,059,433,362
80e181cb2efe3aeff387bf9d4af382f3e3301b18
4c36e33ee5577416146622eb436d9a0938011d53
/functions/config.py
e93be51f8e0f64753b99cfb6c8c17c43277b8087
[]
no_license
https://github.com/pcuzner/gluster-deploy
1167ed26d838ef559d26ee5ac64867d1a35a6134
151a8b62c742a23f952b792561616f00f007dc43
refs/heads/master
2021-01-21T21:55:04.201990
2016-03-30T23:12:11
2016-03-30T23:12:11
35,012,116
5
2
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # config.py # # Copyright 2013 Paul Cuzner <paul.cuzner@redhat.com> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # import logging import os import sys def init(): """ Initialise global variables """ global LOGFILE global LOGLEVEL global ACCESSKEY global LOGGER global SVCPORT global HTTPPORT global NICPREFIX global PGMROOT global MSGSTACK global BTRFSKERNEL global SERVERLIST global BRICKPATH global VGNAME global LVNAME global CLUSTER global STRIPEUNIT global STRIPEWIDTH global SNAPSHOTVERSION # import is placed inside the function to prevent circular imports from functions.utils import MsgStack from functions.gluster import Cluster SNAPSHOTVERSION = '3.6' LOGFILE = 'gluster-deploy.log' LOGLEVEL = logging.getLevelName('DEBUG') # DEBUG | INFO | ERROR logging.basicConfig(filename=LOGFILE, level=LOGLEVEL, filemode='w') LOGGER = logging.getLogger() # NIC types that would be presented to the admin for subnet # selection NICPREFIX = ('eth', 'bond', 'em','virbr0','ovirtmgmt','rhevm') # TCP port for glusterd SVCPORT = 24007 # Default port for the web UI HTTPPORT = 8080 # create a msgstack object used to track task progress MSGSTACK = MsgStack() # Minimum kernel version required to support btrfs filesystem bricks BTRFSKERNEL = '3.6' PGMROOT = os.path.split(os.path.abspath(os.path.realpath(sys.argv[0])))[0] # List of servers specified through the config file (deploy.cfg) SERVERLIST = [] # default path for the gluster brick to be bound to (overriden by deploy.cfg) BRICKPATH = "/gluster/brick1" VGNAME = "gluster" LVNAME = "gluster" # define the vars used to describe the raidgroup STRIPEUNIT = '' STRIPEWIDTH = '' # Create a cluster object to act as the top level object CLUSTER = Cluster()
UTF-8
Python
false
false
2,545
py
43
config.py
23
0.72888
0.715521
0
97
25.226804
78
YY87927/2021_IoTProject
7,009,386,666,413
3dcc6bdd9a2eeea1ced801524f18ccfba8688c1a
4ffb4ebaaa484ccc27572434c0d673e35254f630
/final/first_rpi/cloud_autopilot_rpi.py
da6a99a23b5fc6dd474adfa3c8ab08552d8f3921
[]
no_license
https://github.com/YY87927/2021_IoTProject
e0c577f28a1708d727694777d0ff3bc1a24b23ab
c172f2c27dae030f8e3c50a249feae51bdb479d2
refs/heads/master
2023-02-15T23:20:05.130251
2021-01-11T01:17:18
2021-01-11T01:17:18
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import time import http.client, urllib import json import sys import RPi.GPIO as GPIO from directions import * from mcs_functions import * import threading v=343 TRIGGER_PINL = 31 ECHO_PINL = 29 TRIGGER_PINR = 11 ECHO_PINR = 13 LIGHT_SENSE = 36 LED_PIN = 40 GPIO.setmode(GPIO.BOARD) GPIO.setwarnings(False) GPIO.setup(LED_PIN, GPIO.OUT) auto_speed = 25 auto_turn_speed = 40 manual_speed = 17 manual_turn_speed = 20 def measure_distance(trigger, echo): GPIO.output(trigger, GPIO.HIGH) time.sleep(0.00001) GPIO.output(trigger, GPIO.LOW) pulse_start = time.time() while GPIO.input(echo) == GPIO.LOW: pulse_start = time.time() while GPIO.input(echo) == GPIO.HIGH: pulse_end = time.time() t = pulse_end - pulse_start d = t * v d = d/2 return d def parse_response(response, channel): response = response[response.find(channel):] response = response[response.rfind("value"):] # response = response[response.find(":")+2:response.find("\"")+1] response = response[response.find(":")+2:] response = response[:response.find("\"")] return response def readLDR(): reading = 0 GPIO.setup(LIGHT_SENSE, GPIO.OUT) GPIO.output(LIGHT_SENSE, False) time.sleep(.1) GPIO.setup(LIGHT_SENSE, GPIO.IN) while(GPIO.input(LIGHT_SENSE)==False): reading = reading+1 return reading def control_LED(): while True: if readLDR()>30000: GPIO.output(LED_PIN, True) else: GPIO.output(LED_PIN, False) def main(): mode = 1 old_distanceL = 100 old_distanceR = 100 turn = False t = threading.Thread(target=control_LED) t.start() while True: distanceL = measure_distance(TRIGGER_PINL, ECHO_PINL) distanceR = measure_distance(TRIGGER_PINR, ECHO_PINR) payload = {"datapoints":[{"dataChnId":"auto","values":{"value":str(distanceL) + "," + str(distanceR)}}]} post_to_mcs(payload) if mode==1: response = parse_response(str(get_from_mcs("direction_m")), "direction_m") if response=='2': mode = 2 continue manual_control(response) if mode==2: response = parse_response(str(get_from_mcs("direction")), "direction") response2 = parse_response(str(get_from_mcs("direction_m")), "direction_m") if response2=='1': mode = 1 continue auto_pilot(response, distanceR, distanceL, old_distanceR, old_distanceL, turn) stop() time.sleep(.2) old_distanceR = distanceR old_distanceL = distanceL if __name__ == '__main__': main()
UTF-8
Python
false
false
2,643
py
11
cloud_autopilot_rpi.py
10
0.620885
0.599319
0
101
25.178218
112
hwiyoung/OpenCV_with_Python
4,028,679,344,373
43442c0043f671bbfcfdee6d929391d086075fea
f8a3bf08fe0400bac87bb9c6e34b80e3f63fb58d
/Chapter02/blurring.py
4ab81eebf734a4373104c024149342518d5880c7
[]
no_license
https://github.com/hwiyoung/OpenCV_with_Python
f0bf706317fe93e1dea10a65ab09f2cc48297fe0
4564cf723e79546bf9a3a7de32c2866e6c53937e
refs/heads/master
2021-09-19T17:09:29.454548
2018-07-30T04:38:45
2018-07-30T04:38:45
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import cv2 import numpy as np img = cv2.imread('./images/IMG.jpg') rows, cols = img.shape[:2] # row, column, channel kernel_identity = np.array([ [0, 0, 0], [0, 1, 0], [0, 0, 0] ]) kernel_3x3 = np.ones((3, 3), np.float32) / 9.0 # normalization kernel_5x5 = np.ones((5, 5), np.float32) / 25.0 # normalization cv2.imshow('Original', img) output = cv2.filter2D(img, -1, kernel_identity) cv2.imshow('Identity filter', output) output = cv2.filter2D(img, -1, kernel_3x3) #output = cv2.blur(img, (3, 3)) cv2.imshow('3x3 filter', output) output = cv2.filter2D(img, -1, kernel_5x5) #output = cv2.blur(img, (5, 5)) cv2.imshow('5x5 filter', output) cv2.waitKey()
UTF-8
Python
false
false
659
py
24
blurring.py
24
0.655539
0.569044
0
24
26.458333
63
M9Bnhf57/recognition
14,388,140,482,316
fa9adde3d1d75d726134ec6a84660c467cf1ee33
46461628949c24e48cbe117d91d4e9be6faeeb77
/Untitled-1.py
dd402f6e4a50dc225e87024e09e7eba8802fd88f
[]
no_license
https://github.com/M9Bnhf57/recognition
4f00b97d72aa4e996b54bfb7c14ec0834babcfb5
cf33682557ac4cb6b9e9aae84d986f6488d8f31d
refs/heads/master
2020-09-13T03:42:14.980740
2019-11-19T08:35:15
2019-11-19T08:35:15
222,646,695
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import cv2 import numpy import matplotlib.pyplot as plt import skimage.data from skimage import io k=1 while k < 76: path = "C:/dataset_segmentation/"+ str(k) +".jpg" #str(k) img = cv2.imread(path,cv2.IMREAD_GRAYSCALE) imgarray = numpy.array(img) imgarray[imgarray<200] = 1.0 imgarray[imgarray>=56] = 0.0 i=0 while i < 3: array = numpy.array([[1]*21*i]*21*i) imgarray = cv2.morphologyEx(imgarray, cv2.MORPH_OPEN, array) array = numpy.array([[1]*63*i]*63*i) imgarray = cv2.morphologyEx(imgarray, cv2.MORPH_CLOSE, array) i = i + 1 plt.imshow(imgarray, cmap='Greys') #Needs to be in row,col order plt.savefig(str(k) + ".jpg", cmap='Greys') k += 1
UTF-8
Python
false
false
730
py
5
Untitled-1.py
5
0.620548
0.575342
0
29
24.206897
69
samyakbvs/Internship_backend
19,095,424,634,679
e29f134dc39002b3d9a811d34455bad5d128919a
7817e3acb344d760873b26d0d64f9c6d81e04b42
/lms/migrations/0001_initial.py
b8a26ad4c322e20c1113b73fa0ce974ca46c400f
[]
no_license
https://github.com/samyakbvs/Internship_backend
3d07aeb1d64e5be0e1b62b5df026639e71bd23f6
718864f41b269be2a217fb6cc7959bdf8127db63
refs/heads/master
2021-01-04T13:18:47.016927
2020-04-30T11:12:01
2020-04-30T11:12:01
240,568,333
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.1 on 2020-01-26 16:30 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Name', models.CharField(max_length=264)), ('Init_time', models.DateTimeField()), ('Description', models.TextField()), ('Author', models.CharField(max_length=264)), ('Image', models.ImageField(upload_to='')), ], ), ]
UTF-8
Python
false
false
712
py
12
0001_initial.py
12
0.543539
0.515449
0
25
27.48
114
kongyanye/cgnattest
18,468,359,385,102
0667d1887f86876a7ba8604072504c17a4e29f5e
e86a26c6cf60699200c955b6ec12ea4269b95db3
/clearsession.py
c00412456ed7a010aa4640e840d011770ff7b59e
[]
no_license
https://github.com/kongyanye/cgnattest
d69438e0344423236050bd3801c542f2652eb179
2139b5f48f269f65df63a28d99c59c6fe515d22b
refs/heads/master
2023-01-12T00:41:16.485607
2020-11-22T14:45:23
2020-11-22T14:45:23
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from scapy.all import * from paramiko import SSHClient, AutoAddPolicy import pdb import random import string import ipaddress import time def ssh_fgt(ipadd,user,pwd,command): client = SSHClient() client.set_missing_host_key_policy(AutoAddPolicy()) client.connect(ipadd,username=user,password=pwd) stdin, stdout, stderr = client.exec_command(command) print(stdout.read()) client.close() fgtip="10.10.1.1" fgtuser="admin" fgtpass="fortinet" ssh_fgt(fgtip, fgtuser, fgtpass, "diag sys session clear")
UTF-8
Python
false
false
529
py
14
clearsession.py
14
0.73913
0.727788
0
25
20.16
58
theredferny/CodeCademy_Learn_Python_3
14,937,896,293,334
a63cec6dc72ce3fb63c17512b583ce2daf48399a
0ad2a8e86c69d6d95d042ddfe6ee6449b25d84c9
/Unit_09-Files/09_01_11-Reading_a_JSON_File.py
d7792f4497d39cd67cecaf94676de6432874a660
[]
no_license
https://github.com/theredferny/CodeCademy_Learn_Python_3
31747cc8a640039012af34fc78e9113932ce6909
d0f34dedf041d1c70f4fb5df1b2baf681c97739e
refs/heads/master
2023-03-24T10:00:48.755045
2021-03-16T15:18:19
2021-03-16T15:18:19
342,673,969
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json with open('message.json') as message_json: message = json.load(message_json) print(message['text']) """ message.json { "text": "Now that's JSON!", "secret text": "Now that's some _serious_ JSON!" } """ """ CSV isn’t the only file format that Python has a built-in library for. We can also use Python’s file tools to read and write JSON. JSON, an abbreviation of JavaScript Object Notation, is a file format inspired by the programming language JavaScript. The name, like CSV is a bit of a misnomer — some JSON is not valid JavaScript (and plenty of JavaScript is not valid JSON). JSON’s format is endearingly similar to Python dictionary syntax, and so JSON files might be easy to read from a Python developer standpoint. Nonetheless, Python comes with a json package that will help us parse JSON files into actual Python dictionaries. Suppose we have a JSON file like the following: purchase_14781239.json { 'user': 'ellen_greg', 'action': 'purchase', 'item_id': '14781239', } We would be able to read that in as a Python dictionary with the following code: json_reader.py import json with open('purchase_14781239.json') as purchase_json: purchase_data = json.load(purchase_json) print(purchase_data['user']) # Prints 'ellen_greg' First we import the json package. We opened the file using our trusty open() command. Since we’re opening it in read-mode we just need to pass the file name. We save the file in the temporary variable purchase_json. We continue by parsing purchase_json using json.load(), creating a Python dictionary out of the file. Saving the results into purchase_data means we can interact with it. We print out one of the values of the JSON file by keying into the purchase_data object."""
UTF-8
Python
false
false
1,774
py
113
09_01_11-Reading_a_JSON_File.py
111
0.747732
0.734127
0
48
35.770833
373
kevin-bigler/pytris
17,128,329,607,748
632296f308036f19d8d108c0c69160e75bbeb3d7
be2955418744c1d530e229dd316e40987c4e9428
/grid.py
95b9ceedd3ac3ab3fca94440ca3f20cea682b830
[]
no_license
https://github.com/kevin-bigler/pytris
113f33ed9cdc8b479fff2a6d97204f5a94dd242a
0fa65422127e61dc2567551bdd15b36aa21de2c3
refs/heads/master
2023-04-05T19:13:23.874664
2021-05-08T17:59:19
2021-05-08T17:59:19
338,723,791
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Grid data structure, for convenience""" class Grid: def __init__(self, width, height, initFn=lambda x, y: {}): """ Args: width height initFn - invoked to initialize each grid item's value, ie initFn(x, y). default is empty map """ self.width = width self.height = height def get_row(y): return [initFn(x, y) for x in range(width)] self.arr = [get_row(y) for y in range(height)] def __call__(self, x, y): return self.arr[y][x] def debug_print(self): print('grid width x height =', len(self.arr[0]), 'x', len(self.arr)) def __iter__(self): """Each element is returned as a tuple of (val, pos), as in (val, (x, y))""" for y in range(self.height): for x in range(self.width): yield (self.arr[y][x], (x, y)) def vals(self): """Iterator for grid values""" for y in range(self.height): for x in range(self.width): yield self.arr[y][x] @property def size(self): return (self.width, self.height)
UTF-8
Python
false
false
1,141
py
16
grid.py
15
0.521472
0.520596
0
38
29.026316
104
oliviamikola/choosemybook
4,148,938,454,912
acbd3668dd2140acbf9249660451cc0cc82cc518
a2231de311cfe71884940243e411f6e6e1e11254
/receiver.py
48b503fc5976b8934ceed03a343fd1e84daed858
[]
no_license
https://github.com/oliviamikola/choosemybook
2f81c7ed8fcd2ef591a820cbcdbb54107db2b726
3e3969921228238775c7eb88e0854a527a2fd426
refs/heads/master
2021-05-18T07:39:07.006190
2020-07-07T03:41:07
2020-07-07T03:41:07
251,183,262
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests import time import xmltodict from typing import Dict from Objects.book import Book from Objects.user import User from Exceptions.apiConnectionError import ApiConnectionError from Exceptions.authorizationError import AuthorizationError class Receiver: def __init__(self, user: User): """ Initializes important user data to collect book data :param user: The user whose data is being collected """ self._user = user self._last_checked_time = time.time() def collect_books(self, shelf: str = "to-read") -> Dict[str, Book]: """ Collects the books from the given shelf :param shelf: shelf to get books from :return: dictionary containing books from shelf """ url = "https://www.goodreads.com/review/list" params = {**{"v": 2, "shelf": shelf, "page": 1, "per_page": 200}, **(self._user.set_user_params())} self.__update_time() # Will contain all books on the shelf and their data books_on_shelf = {} while True: goodreads_data = self.__retry(url, params) # Getting the number of books on the shelf and the last one received book_stats = goodreads_data.split("\n")[10].split('"') total_books = book_stats[5] last_book_in_list = book_stats[3] self.__translate_data(goodreads_data, books_on_shelf) # Check if all the books are accounted for if total_books == last_book_in_list: break params["page"] += 1 self.__keep_time() return books_on_shelf def __keep_time(self) -> None: """ Ensures goodreads API usage rules are followed :return: None """ while time.time() - self._last_checked_time < 1.0: pass self.__update_time() def __update_time(self) -> None: """ Updates the last checked time :return: None """ self._last_checked_time = time.time() def __retry(self, url: str, params: Dict[str, object]) -> str: """ Attempts data collection from goodreads Raises an error if unable to connect :param url: request url :param params: params required to get goodreads data :return: received data if successful, otherwise raises error """ for _ in range(5): self.__update_time() request = requests.get(url, params=params) if request.status_code == 200: return request.text if request.status_code == 401: raise AuthorizationError("Not authorized to access goodreads data") self.__keep_time() else: raise ApiConnectionError("Unable to connect to goodreads API") def __translate_data(self, goodreads_data: str, books_on_shelf: Dict[str, Book]) -> None: """ Translates goodreads data from received XML to a dictionary of Book objects :param goodreads_data: data received from goodreads API call :param books_on_shelf: dictionary containing Book objects :return: None """ dict_data = xmltodict.parse(goodreads_data)["GoodreadsResponse"]["reviews"]["review"] # Get essential data about the book and add to dictionary for book_data in dict_data: book_data = book_data["book"] book = Book(book_data) books_on_shelf[book.get_id()] = book
UTF-8
Python
false
false
3,534
py
8
receiver.py
6
0.591398
0.586022
0
103
33.31068
107
jayasindhura/OMK
10,307,921,521,417
7fbfb33ed2e709532fe1849a5308abee27a50a26
09082a4e2ee10340d8a1581d377d9dd064cf8169
/sma/admin.py
5a83bbae3406904620f834efc40b0f711aa9493b
[]
no_license
https://github.com/jayasindhura/OMK
819d42d57ec330e7b1036eb1707d12ff82c1a67c
90cc6e20f94af18561bbe29cb42c2d2c61893e16
refs/heads/master
2021-01-09T17:42:07.964008
2020-02-22T18:46:13
2020-02-22T18:46:13
242,393,531
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib import admin from .models import School,Grade,Student,Mentor,Student_Group_Mentor_Assignment,Session_Schedule # Register your models here. class SchoolList(admin.ModelAdmin): list_display = ('school_name', 'school_email', 'school_phone') list_filter = ('school_name', 'school_email') search_fields = ('school_name',) ordering = ['school_name'] class GradeList(admin.ModelAdmin): list_display = ('school','grade_num') list_filter = ('school','grade_num') search_fields = ('school','grade_num') ordering = ['school'] class StudentList(admin.ModelAdmin): list_display = ('student_first_name','student_middle_name', 'student_last_name','school_id','grade_id') list_filter = ('student_first_name', 'student_last_name','school_id','school_id') search_fields = ('student_first_name', 'student_last_name','school_id','school_id') ordering = ['student_first_name'] class MentorList(admin.ModelAdmin): list_display = ('mentor_first_name','mentor_middle_name', 'mentor_last_name','mentor_email','mentor_phone') list_filter = ('mentor_first_name','mentor_middle_name', 'mentor_last_name','mentor_email','mentor_phone') search_fields = ('mentor_first_name','mentor_middle_name', 'mentor_last_name','mentor_email','mentor_phone') ordering = ['mentor_first_name'] class GroupMentorAssignmentList(admin.ModelAdmin): list_display = ('group_name','school','grade','mentor') list_filter = ('group_name','school','grade','mentor') search_fields = ('group_name','school','grade','mentor') ordering = ['group_name'] class SessionScheduleList(admin.ModelAdmin): list_display = ('session_location','mentor','group','session_start_date','session_start_date') list_filter = ('session_location','mentor','group','session_start_date','session_start_date') search_fields = ('session_location','mentor','group','session_start_date','session_start_date') ordering = ['session_location'] admin.site.register(School,SchoolList) admin.site.register(Grade,GradeList) admin.site.register(Student,StudentList) admin.site.register(Mentor,MentorList) admin.site.register(Student_Group_Mentor_Assignment,GroupMentorAssignmentList) admin.site.register(Session_Schedule,SessionScheduleList)
UTF-8
Python
false
false
2,275
py
17
admin.py
17
0.712967
0.712967
0
46
48.391304
112
tikiet/sbuild
1,228,360,671,471
ef9ef4bb8b9f941d1325f4caab5a040d1c8ba577
25d845f4cc6eaed16cee8cf34942f13fddeefbd3
/tools/get_keys.py
94e14cc6a187ec42758eda0545fd59ce62ad33ee
[]
no_license
https://github.com/tikiet/sbuild
8b50fcd3e4151c191de276a38f96095696175916
3f9e88af33073f8f3b47697dd930820538dde322
refs/heads/master
2021-01-18T05:29:05.060028
2015-03-26T14:07:56
2015-03-26T14:09:55
32,930,394
0
0
null
true
2015-03-26T13:56:30
2015-03-26T13:56:30
2015-03-26T13:55:07
2015-03-26T13:46:02
165
0
0
0
null
null
null
import os, shutil from sys import argv import xml.etree.ElementTree as ET import itertools string_names = open('string_names.txt', 'w') def parse(_file): l = [] tree = ET.parse(_file) root = tree.getroot() for string in root: l.append(string.get('name')) return l def get_keys(path_to_res): big_l = [] for root, dirs, files in os.walk(path_to_res): for f in files: little_l = parse(os.path.join(root, f)) big_l.append(little_l) return big_l def main(path_to_res): big_l = get_keys(path_to_res) combined = list(itertools.chain.from_iterable(big_l)) for name in combined: name = str(name) string_names.write(name +'\n') string_names.close() if __name__ == "__main__": main(argv[1])
UTF-8
Python
false
false
797
py
5
get_keys.py
3
0.593476
0.592221
0
33
23.151515
57
clhiker/WPython
18,554,258,734,869
b23089d09cd4d6ca097a4e97967aa172f58dc5db
c1edf63a93d0a6d914256e848904c374db050ae0
/Python/Python基础知识/面对对象编程/test.py
2f0cde920f3a2e41e1d0579c490590551fbc8a3d
[]
no_license
https://github.com/clhiker/WPython
97b53dff7e5a2b480e1bf98d1b2bf2a1742cb1cd
b21cbfe9aa4356d0fe70d5a56c8b91d41f5588a1
refs/heads/master
2020-03-30T03:41:50.459769
2018-09-28T07:36:21
2018-09-28T07:36:21
150,703,520
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def main(): test = "p|q&f|~d" pos = test.find("m") print(pos) pro_var = {""} standard_oper = "|&~" for i in range(0, len(test)): if (standard_oper.find(test[i]) == -1): pro_var.add(test[i]) l = list(pro_var) for i in range(len(l)): print(l[i]) pattern = test.split("|") for i in range(len(pattern)): print(pattern[i],end=" ") def test(): test = "p|q&f|~d" for i in range(len(test)): if(test[i] != '~'): print("fdsa") test()
UTF-8
Python
false
false
529
py
171
test.py
165
0.470699
0.466919
0
23
22.043478
47
LiveTowardTheSea/bert_model
17,549,236,384,239
fc2483cb39999adda038e59e93f8b5d98285b6bf
80b6c944728ca61ddc477fa2bb9fa312e1c4c81d
/model/bert_model.py
69d77c305e6447c6c44e1ff54c58175468f93f2e
[]
no_license
https://github.com/LiveTowardTheSea/bert_model
c2f480cf4bdbec10ad7830584ca2d84f90345082
8ce207a8319bf53e064dacb7d574ff8f912e863a
refs/heads/master
2023-04-28T06:15:13.337520
2021-05-20T13:44:26
2021-05-20T13:44:26
369,202,848
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from model.Linear_Decoder import Softmax_decoder import torch.nn as nn from Encoder import * from CRF_Decoder import * from Linear_Decoder import * class bert_model(nn.Module): def __init__(self,config,tag_num): super(bert_model, self).__init__() self.config = config self.encoder = Encoder() if self.config.decoder == 'crf': self.decoder = CRF_decoder(config.d_model, tag_num) elif self.config.decoder == 'softmax': self.decoder = Softmax_decoder(config.d_model,tag_num) def forward(self, src, trg, src_mask, trg_mask,use_gpu): # src: (batch_size,seq_len) # trg: (batch_size,seq_len) # src_mask (batch_size,seq_len) # 如果 return_atten 为 true 的话,返回每一层的attention,否则是一个空列表 encoder_output = self.encoder(src, src_mask, use_gpu) encoder_output = encoder_output[:,1:-1,:] loss,path_ = self.decoder.loss(encoder_output, trg, trg_mask, use_gpu) return loss,path_
UTF-8
Python
false
false
1,033
py
5
bert_model.py
4
0.632694
0.630676
0
24
40.333333
78
2Ler/python
7,765,300,884,076
97728613c8cf5ee0a0731260609304e53c373851
ba59ad9dfd9d63892d1ed4c02cdc154a9af884a5
/reverse_string.py
d41d3a6a9014d4d81433ed07ed2186bdbf4b5a4e
[]
no_license
https://github.com/2Ler/python
e1fb21785f14d73c12a6a4b3e19f0b58fdabe906
9aaf4d5a23d004618a71bc4adc738138e5abf9a9
refs/heads/master
2020-03-19T05:07:29.922983
2018-06-04T10:01:14
2018-06-04T10:01:14
135,902,764
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
s=raw_input() reverse="" for i in xrange(len(s)-1,-1,-1): reverse+=s[i] print reverse
UTF-8
Python
false
false
88
py
24
reverse_string.py
23
0.636364
0.602273
0
5
16.6
32
KevSed/ML_Seminar
17,987,323,044,174
764621fd285a1972c6a4fac5407831179222086b
c99a1f59c7219ea34a931f03a4764519ce8b58be
/Alternative/runAnalysis.py
c9ad9bb344d537ade283604758cdb11bf683897a
[ "MIT" ]
permissive
https://github.com/KevSed/ML_Seminar
8fc5ae601745e1c0c71017fc857518db43fb2d1a
3360d56e5808e041627f82d8309d70aa86563058
refs/heads/master
2020-03-20T06:00:51.634676
2018-07-31T16:56:12
2018-07-31T16:56:12
137,234,962
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from dataprep import * import numpy as np import matplotlib.pyplot as plt import multiprocessing from keras import backend as K from keras.models import Sequential from keras.layers import Dense, Dropout from keras.models import model_from_json import h5py from keras import optimizers from sklearn.metrics import confusion_matrix,classification_report import itertools from performance import * from grid import * """ These are important things to read!!! This is the file where you should put everything what you want to run. * dataprep.py: Contains methods for data preparation: - get_data(Folder, File) reads all images from Folder and saves it to File. This File should be a hdf5 file, which contains the pixel arrays of each image in File['X_Train'] and labels in File['Y_Train']. By default images are resized to (50,100) shape. - prep_eval(file, outfile) reads in file obtained by get_data(Folder,File) and performs the image scan. The image scan calculates the means of all pixels within a defined window. By default this window has the dimension (2,4). Furthermore, it performs train_test and train_val splits and saves all datasets to outfile. To take the different class sizes into account weights are calculated and saved in outfile as well. * grid.py: Contains the class grid. A class member has to be initialized with a dataset obtained from prep_eval containing training and validation datasets and their corresponding weightsself. By default it contains a string in Path_base containing the path to the folder where model structures to test are saved and a string in Out_file containing the path to the folder where fitted model structures, histories and trained weights are saved and have to be set correctly by the user before calling a method of this class. - make_model(self, dense_layer, activation, dropouts, out_activation, number) receives a network structure to be tested and saves the structure in a json file. The user has to assign a number to this model which is saved in the suffix of this file - fit_model(self, number, outnumber, outfile): Fits model corresponding to number and saves model and history of the training in Out_file as .json file and trained weights as .hdf5 file. The user has to assign a outnumber to this run. Loss and accuravy histories are saved in outfile. * performance.py: Contains methods to evaluate the performance of models and to select models from grid search. - model_evaluator(mod, infiles, outfiles, lab, unblind=False): receives number corresponding to fitted model and the folder containing the corresponding json file for the model structure and hdf5 files for trained weights in infiles. Confusion matrix is plotted, classification_report is printed and the NN output for a given label correspondig to a analyzed class. This label is defined by lab. Outputs are saved to outfiles. If unblind is set to True the Performance will be evluated on the test dataset, otherwise on the validation dataset - model_selector(infiles, batch_size, tested_models, acc_thr, loss_thr, outfile) selects models tested in grid search passing the two step selection. A model has to pass a minimum validation accuracy threshold, defined by the train accuracy - validation accuracy, and a loss threshold defined by the loss function after all epochs being smaller than loss_thr*loss function after 1 epoch. It returns an array with all numbers corresponding to models passing the selection. tested_models correspond to the tested number of layer structures (This is very hard coded, sorry for that) - model_plotter(infiles,outfiles, batch_size, tested_models) plots for all tested layer structures the validation accuracy and loss after all epochs as function of the tested batch size given in batch_size and tested acitvation functions for the hidden layers and output layer. Outputs are saved to out files. * A complete example of the analysis is given below. Note that it is necessary to download the Dataset first: https://www.kaggle.com/paultimothymooney/kermany2018. Example_plots shows images after resizing and input distributions for the DNN The hdf5 file will be 3.3GB large, if you use the train dataset in the OCT2017 folder """ Path = '/home/bjoern/Studium/ML' example_plots() get_data(Path + '/OCT2017/test/', 'test.hdf5') prep_eval('test.hdf5', 'evaluate_test.hdf5') dataset = h5py.File('evaluate_test.hdf5', mode='r') X = grid(dataset) X.Path_Base = Path + '/ML_Seminar/Alternative/TestOutput/ModelBase/' X.Out_file = Path + '/ML_Seminar/Alternative/TestOutput/Files/' # Tested models dense_layer =[[1024,512,128,64,32], [1024, 512,256,128,64,32,16], [512,256,128,64,32,16], [1024, 256, 64, 16], [512, 128, 32]] activation = ['relu', 'elu'] out_activation = ['softmax', 'sigmoid'] dropouts = [[0.5, 0.4,0.4, 0.3, 0.2], [0.5, 0.4, 0.4, 0.4, 0.2, 0.2, 0.1], [0.4, 0.4, 0.3, 0.3, 0.2, 0.1], [0.6, 0.4, 0.2, 0.1], [0.5, 0.3, 0.1]] tested_models = [] number = 0 for i in range(len(dense_layer)): for acti in activation: for out_acti in out_activation: X.make_model(dense_layer[i], acti, dropouts[i], out_acti, number) tested_models.append(number) number += 1 batch_size = [50, 64,100, 128, 256, 512] for i in tested_models: for b in range(len(batch_size)): X.batch_size = batch_size[b] X.fit_model(i, i*len(batch_size)+b, Path + '/ML_Seminar/Alternative/TestOutput/Output/') models = model_selector(Path + '/ML_Seminar/Alternative/TestOutput/Files/', [50,64,100,128,256,512], 5, 0.20, 1, Path + '/ML_Seminar/Alternative/TestOutput/AfterSel/') model_plotter(Path + '/ML_Seminar/Alternative/TestOutput/Files/', Path + '/ML_Seminar/Alternative/TestOutput/ModelEval/',[50,64,100,128,256,512],5) print(models) accuracy = [] for i in models: accuracy.append(model_evaluator(i, 'evaluate_test.hdf5',Path + '/ML_Seminar/Alternative/TestOutput/Files/',Path + '/ML_Seminar/Alternative/TestOutput/Performance/',0, unblind=False )) # Spoiler ALERT: This is the model which wins the test !!! model_evaluator(6,'evaluate_test.hdf5', Path + '/ML_Seminar/Alternative/TestOutput/Files/',Path + '/ML_Seminar/Alternative/TestOutput/PerformanceTest/',0, unblind=True ) print(accuracy) # Select the model with the highest accuracy
UTF-8
Python
false
false
6,495
py
35
runAnalysis.py
16
0.730408
0.698075
0
132
48.204545
187
jonatasoli/djangorestframework_example
10,849,087,394,013
c5b4eca79bc54b8df26f543ba310a534f07e001d
01e997012763f746242ed79096cafb50e1d5022a
/todo/tests/test_todo_api.py
0202beee6c5f14d61c1a4d048139397916b62cc0
[]
no_license
https://github.com/jonatasoli/djangorestframework_example
824210b5cd891beeb2562bb722b991113f814069
7d8e2d26164eb1453df4e39021c1c1d502ce12bd
refs/heads/master
2020-04-29T20:34:57.984079
2019-03-25T22:17:08
2019-03-25T22:17:08
176,387,834
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Todo from todo.serializers import TodoSerializer TODO_URL = reverse('todo:todo-list') class PublicTodoApiTests(TestCase): """Test the publically available todos API""" def setUp(self): self.client = APIClient() def test_login_required(self): """Test that login is required to access this endpoint""" res = self.client.get(TODO_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateTodoAPITests(TestCase): """Test todos can be retrieved by authorized user""" def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( 'test@jonatasoliveira.me', 'testpass' ) self.client.force_authenticate(self.user) def test_retrieve_todo_list(self): """Test retrieving a list of todos""" Todo.objects.create(user=self.user, task='first', description='Todo 1') Todo.objects.create(user=self.user, task='second', description='Todo 2') res = self.client.get(TODO_URL) todos = Todo.objects.all().order_by('id') serializer = TodoSerializer(todos, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_todos_limited_to_user(self): """Test that only todos for authenticated user are returned""" user2 = get_user_model().objects.create_user( 'other@jonatasoliveira.me', 'testpass' ) Todo.objects.create(user=user2, task='New', description='New todo') todo = Todo.objects.create(user=self.user, task='User Task', description='User Task Description') res = self.client.get(TODO_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['task'], todo.task) def test_create_todo_successful(self): """Test creating a new Todos""" payload = {'task': 'Todo Successful', 'description': 'Description Successful'} self.client.post(TODO_URL, payload) exists = Todo.objects.filter( user=self.user, task=payload['task'] ).exists() self.assertTrue(exists) def test_create_todo_invalid(self): """Test creating invalid ingredient fails""" payload = {'task:': '', 'description': ''} res = self.client.post(TODO_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
UTF-8
Python
false
false
3,000
py
8
test_todo_api.py
4
0.597333
0.591333
0
92
31.608696
86
netiapaul/python-prac
8,074,538,542,699
0a69c51b65c7cf9e37e13c451cde5de9a0e115a5
68f1a9282ae9e6b6be3d9709b70bc6b534e24235
/prac.py
38d7bd11075c2570740f618e77d27b5a7f20967a
[]
no_license
https://github.com/netiapaul/python-prac
c24e74db78d22f58a9ac05d4587fd3a828dccf45
148a3f3d786bcbf26da2ad37d160395e079ec4f2
refs/heads/master
2020-05-17T14:19:11.363943
2019-04-27T11:06:10
2019-04-27T11:06:10
183,761,868
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Question 1: Accept two int values from user and return their product. If the product is greater than 1000, then return their sum a=int(input('Enter a number: ')) b=int(input('Enter a second number: ')) c=a*b print(c) if c > 1000: d=a+b print(d) # Question 2: Given a two list of ints create a third list such that should contain only odd numbers from the first list and even numbers from the second list def mergeList(listOne, listTwo): thirdList = [] for num in listOne: if(num % 2 != 0): thirdList.append(num) for num in listTwo: if(num % 2 == 0): thirdList.append(num) return thirdList print("Merged List is") listOne = [10, 20, 23, 11, 17] listTwo = [13, 43, 24, 36, 12] print(mergeList(listOne, listTwo)) # Question 3: Given a list of numbers, Iterate it and print only those numbers which are divisible of 5 rand=[value for value in range(1,21)] for num in rand: if num % 5 == 0: print(num) # Question 4: Given a list of ints, return True if first and last number of a list is same numList = [10, 20, 30, 40, 10] firstnum=numList[0] lastnum=numList[-1] if firstnum == lastnum: print(True) else: print(False) # Question 5: Given a string and an int n, remove characters from string starting from zero upto n and return a new string def removeChars(str, n): return str[:n] print("Removing n number of chars") print(removeChars("programmer", 4)) # Question 6: Given a range of numbers. Iterate from o^th number to the end number and print the sum of the current number and previous number def sumNum(num): previousNum=0 for i in range(num): sum = previousNum + i print(sum) print("Printing current and previous number sum in a given range") sumNum(10)
UTF-8
Python
false
false
1,755
py
2
prac.py
1
0.691738
0.65755
0
66
25.606061
159
bomb1e/gotgit
14,482,629,764,979
38dcf2a0f86f865f4186f8a22ed61546cae2f3f0
7192da38b6afd3c60f80ccbecb3040cf34369ce3
/5bf281fb-178c-493c-8c7a-422ac4bf1fe0.py
17b5e2676c69807688a7079e0ac67acd2c1895ef
[]
no_license
https://github.com/bomb1e/gotgit
6699fa9e6adb0a79f22441df41a102b09b78c2ce
3c14cb6d1d0c4cba6a1e24a9899462d2e4bee2ce
refs/heads/master
2020-06-12T06:00:34.695425
2018-08-01T02:00:02
2018-08-01T02:00:02
75,600,461
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import print_function def func38(arg218, arg219): var223 = func39(arg218, arg219) var268 = var226(var223, arg219) def func47(arg269, arg270): var271 = 1861037871 | (arg218 + var223) ^ 775 var272 = arg219 ^ arg270 var273 = arg219 | arg270 var274 = arg269 | -460 var275 = arg219 ^ var271 var276 = (var223 & var271) & var273 var277 = (var272 ^ (arg269 + 671)) ^ -499988221 var278 = var268 - (var268 - var268) + var276 var279 = arg219 ^ arg269 var280 = (arg270 - var274) | var276 var281 = (arg218 & var280) & (var278 | var280) var282 = arg270 | var277 | var268 + 1168894387 result = var281 - (arg218 | var282 + var282 & (var278 - (arg270 | arg270))) return result var283 = func47(var223, var268) var284 = -1900041792 & (var283 & (var223 | 1659806111)) var285 = 746729960 | (var284 + arg218) var286 = arg219 ^ (arg218 - var268) + arg218 var287 = ((var284 | -466928079) | arg219) - var285 var288 = (var287 & (var283 - arg219)) ^ var223 var289 = (var286 ^ var283 + arg218) - var284 var290 = var284 - var284 ^ (var287 + var289) var291 = (594 + var223 + arg218) ^ arg219 if arg218 < var284: var292 = arg218 | var290 & arg218 & var288 else: var292 = var290 | ((var286 - var288) + var289) var293 = 1769219912 + var223 var294 = (var283 & var290 & -876529538) ^ var285 if var293 < arg218: var295 = (var268 & arg219 ^ var290) ^ var291 else: var295 = var288 | var291 if var285 < var284: var296 = (var223 - arg218) | var289 else: var296 = arg218 ^ var294 + var223 & var293 var297 = var223 & var291 var298 = (var297 - var283 ^ var223) + var286 var299 = 1236150398 + var284 var300 = (var283 + var290) & arg218 + var286 var301 = (var287 ^ var287) - var297 ^ var298 var302 = var223 & (var284 + arg218) & var287 if var302 < var293: var303 = var283 ^ (var302 ^ var223) + var302 else: var303 = var293 | var293 var304 = var283 ^ (var293 - var223) ^ var268 var305 = (var301 + var285) & var300 - var291 result = var283 ^ ((var302 + (var302 | ((var291 + var285) + var294 ^ var268) - var304 + var287 & var301) | var268) + arg218) return result def func43(arg227, arg228): var245 = func44(arg227, arg228) var246 = arg228 & -871 - -85142947 - arg227 var247 = var245 ^ (var245 | arg227) ^ var246 var248 = var245 & arg228 - var246 | -1983456900 var249 = var248 + ((arg228 + 661) - arg228) var250 = var246 | (var247 | var249) var251 = var247 ^ (var250 - (var250 + var248)) var252 = var247 + var247 + -611862821 var253 = ((arg228 & var251) ^ arg228) ^ var250 var254 = (var252 & (var251 ^ var246)) + var248 var255 = -71 | (var251 - (var253 - arg227)) var256 = var248 & var245 var257 = var256 - var256 & var256 + var249 var258 = var245 ^ var248 var259 = (1446724509 | arg228) ^ var257 - var258 var260 = var245 | var254 - var248 var261 = var250 + var245 var262 = var251 ^ var253 var263 = (var245 & var259) - var252 + var248 var264 = (84 ^ var252) ^ var253 ^ var250 var265 = var245 - (var248 - (var251 - var262)) if var265 < var246: var266 = var255 + var255 | var253 & var264 else: var266 = (var253 - var249 & -456) + var258 var267 = var258 & arg227 & var251 | var251 result = var258 | -591693613 return result def func46(arg231, arg232): var233 = (793 - arg232 | 523) + arg232 var234 = (arg231 & arg232) - arg232 var235 = arg232 ^ var233 var236 = arg232 + (arg232 & arg231) - arg231 var237 = var233 & (1957523330 ^ 977 + var233) var238 = var235 - (var233 & var235) ^ 1688429538 var239 = ((var234 & arg232) + var233) & arg232 var240 = var234 + var238 var241 = var236 & var239 var242 = var241 + var237 | arg232 | var238 var243 = var233 + var235 - var242 result = (var236 | (arg232 & var237 & (var240 - var234 + var236 & var242 & -417)) & -922225234 + var237 + -171) ^ arg231 return result def func42(): closure = [9] def func41(arg224, arg225): closure[0] += func43(arg224, arg225) return closure[0] func = func41 return func var226 = func42() def func26(arg192, arg193): if arg193 < arg192: var198 = class27() else: var198 = class29() for var199 in (6 + i for i in range(5)): var200 = var198.func28 var200(var199, var199) var204 = func31(arg192, arg193) if arg192 < arg192: var209 = class33() else: var209 = class35() for var210 in range(5): var211 = var209.func34 var211(arg193, var204) var216 = func37(arg193, var204) var217 = var216 & 831 - arg192 + (var216 ^ ((-828 + var204 & (((-556 & (var204 | (arg193 + 213946737 - var216 | var204 & var216 ^ 957 - var204) | var216) & arg193) | -614308809) - arg193)) - var216) ^ arg193) & arg193 result = -722 & arg192 | ((-216 | (38 ^ var217 ^ (var204 + arg192 & arg192) ^ arg193 - var217)) | 678 - var217) return result def func37(arg212, arg213): var214 = 0 for var215 in range(15): var214 += var214 | arg213 - arg212 return var214 class class35(object): def func34(self, arg207, arg208): return 0 class class33(class35): def func34(self, arg205, arg206): return 0 class class29(object): def func28(self, arg196, arg197): result = (arg197 - ((arg197 + (-1853737721 ^ arg197) & -1) ^ arg196)) | arg197 return result class class27(class29): def func28(self, arg194, arg195): result = -129390661 | arg195 - arg195 return result def func23(arg166, arg167): var171 = func24(arg166, arg167) var172 = ((arg167 | arg167) + arg167) & arg166 var173 = -558 & (arg166 ^ var171) | -892092737 var174 = var171 + (arg166 & 869) | arg166 var175 = var173 + var173 var176 = ((arg166 ^ 397) | -66987574) - 491 var177 = arg166 | ((var175 + var173) | var173) var178 = var175 + var173 if var176 < arg167: var179 = (arg166 & var173 - 734628731) + var173 else: var179 = (var176 | arg166 | var172) ^ -2115848754 var180 = var174 & var171 & var171 - arg167 var181 = var180 & (-1279410669 | var178 ^ var177) var182 = var180 - var172 var183 = var174 & (var177 ^ (var174 | var175)) var184 = arg167 & var180 var185 = var176 ^ (arg167 & (var173 + var176)) var186 = var174 & var175 - var184 - 251 if var183 < var175: var187 = var186 - (var173 - var185) else: var187 = var181 - var176 if arg166 < var173: var188 = var176 ^ ((var171 & var175) | var176) else: var188 = (var186 + var186) + var181 + var171 var189 = ((var183 & var172) + var173) & var176 var190 = var181 | (var171 | var178) var191 = 752 | (var184 | -207739077) & var183 result = var182 | var189 ^ var182 ^ (var184 + -724 ^ var177 | arg167) & var185 + var174 - var189 & var189 + -530683127 return result def func14(arg112, arg113): var117 = func15(arg113, arg112) var147 = func17(arg113, var117) def func22(arg148, arg149): var150 = (-1087146933 + 1164014654) - arg112 ^ arg112 var151 = (arg113 - 1960645414) | arg113 var152 = -529920019 | var151 - arg148 - var150 var153 = arg149 & (arg112 ^ var151) var154 = var117 | var152 if arg112 < var154: var155 = (var147 + arg149 + var151) ^ arg149 else: var155 = ((var152 - arg112) + 1430726206) ^ var154 var156 = arg149 - var117 var157 = var117 & arg148 var158 = 299 & var157 ^ (-1331392972 + arg112) if arg113 < var117: var159 = var151 - var150 ^ -617 | var156 else: var159 = (var154 + var152 | arg148) & arg113 var160 = var147 - arg149 - arg113 var161 = var153 | (var147 + var158) & arg112 var162 = var150 | var152 | var150 + var153 result = (arg148 | arg113) ^ var162 return result var163 = func22(var147, arg113) var164 = arg112 | var117 var165 = arg112 & (-126926423 & var163) result = arg113 + 912699397 + var165 return result def func17(arg118, arg119): var124 = func18(arg119, arg118) var125 = func21() if arg118 < var125: var126 = arg118 ^ (-323 - var125) & arg118 else: var126 = 768 | var124 var127 = arg118 + var125 var128 = var127 - -1782558051 + arg119 | 1317133696 var129 = -257385621 - -570 var130 = arg118 | arg119 + var125 ^ var129 var131 = arg118 ^ var128 | var128 | 210 var132 = var128 | var131 var133 = var130 & var129 & (var129 & var124) var134 = (var124 | var133) & var130 var135 = arg119 ^ -2031051419 & var133 | var124 if var127 < var132: var136 = -192653490 | (var125 | 19 & 740) else: var136 = var131 - arg119 var137 = var135 - var131 | var132 | var125 var138 = 1242342693 | var125 var139 = (467 ^ var125 & var128) - arg118 var140 = var137 & (var131 ^ var129 - var128) var141 = var128 & (var129 - var129) var142 = (var139 ^ var133) | var140 | arg118 var143 = var133 ^ var138 & var128 var144 = var129 - (var138 ^ var131 & var137) var145 = var133 | (var144 & var135 + var133) var146 = var124 & (var143 | var124 + var127) result = (var133 ^ (var141 ^ var138)) | var124 - 811062646 return result def func21(): func19() result = len(range(35)) func20() return result def func20(): global len del len def func19(): global len len = lambda x : -9 def func18(arg120, arg121): var122 = 0 for var123 in range(19): var122 += arg121 & arg121 - 5 return var122 def func7(arg66, arg67): var107 = func8(arg66, arg67) var108 = (-1424109015 + (((arg66 - var107) ^ 419 | ((((var107 - (833 | (arg66 - -758)) | (-1447654260 + 641) + arg67) & arg66 + (var107 - var107)) | var107 - var107) & 856927050)) + var107)) & -528 - 357796952 ^ arg66 - arg66 var109 = var108 & (195035338 ^ arg66 + arg67 ^ -626681852) var110 = ((1277437794 - (arg66 | var108 - (270 + (-340 & var108 | var108 ^ (arg66 | var108) & var108))) - arg66 ^ arg66 - arg66) + var107) | arg67 var111 = var110 ^ var107 | arg67 result = var111 - var107 return result def func8(arg68, arg69): var70 = 0 for var106 in func9(arg69, var70): var70 += arg69 ^ arg68 - var70 return var70 def func10(arg73, arg74): var79 = func11(arg73, arg74) var84 = func12(arg73, var79) def func13(arg85, arg86): var87 = arg85 | var84 var88 = var84 & 534440213 - 987 - (var84 + (arg74 + var84) - var79) - var87 var89 = (var88 & -1183127773) & arg74 + (var79 + var88) result = (var79 ^ var88) | (var87 ^ arg85) return result var90 = func13(var84, var79) var91 = -1783670203 + arg73 var92 = -1987296275 ^ arg73 | -1636295380 & ((-1502093551 ^ -316) - arg73 - -121 + 224 - var91) var93 = arg73 + var90 var94 = (((var91 - var91 - arg73 - arg74 + var91 - (var93 + var93 + arg73) ^ var93) - var90 ^ ((var79 | (var79 + ((arg74 - (var84 & var92)) + var90)) & var84) - var90) & 577 | var91) + var91) - var84 result = arg74 ^ 198630352 return result def func12(arg80, arg81): var82 = 0 for var83 in range(14): var82 += arg81 & (7 + arg81) return var82 def func11(arg75, arg76): var77 = 0 for var78 in range(17): var77 += var77 & arg76 | arg75 return var77 def func9(arg71, arg72): var95 = func10(-1670616381, -783) yield var95 var96 = 600 ^ 105 yield var96 var97 = -687 + 981427770 & arg71 yield var97 var98 = (861736703 | var96 - arg72) - var96 yield var98 var99 = (-959 - arg71 & arg71) | arg72 yield var99 var100 = -103 & -549 yield var100 var101 = arg72 | ((arg71 - var98) & var97) yield var101 var102 = (var101 ^ var97 & var97) & var98 yield var102 var103 = (var100 + var96 - var102) | -606 yield var103 var104 = ((76 ^ var102) + arg71) & var103 yield var104 var105 = var99 | var101 yield var105 def func1(arg1, arg2): var15 = func2(arg2, arg1) var20 = func4(arg1, var15) def func5(arg21, arg22): if arg22 < arg1: var23 = -1597816210 - var15 else: var23 = var20 | arg1 var24 = ((var20 + arg22) - var15) - arg1 var25 = 209843346 | arg22 - var24 + var24 var26 = (var15 | arg1) + (var20 & var15) var27 = var24 | arg21 var28 = (arg21 & (var27 ^ var25)) + var26 var29 = -1006568382 & (var27 - (var24 & var28)) var30 = var28 & arg2 | var29 + arg22 var31 = arg1 - var29 var32 = ((arg21 ^ -413) + var15) | var28 result = arg1 & var29 & arg2 return result var33 = func5(arg1, var15) def func6(arg34, arg35): var36 = ((arg35 & var15) ^ var20) - var33 var37 = (var36 ^ arg35) | var15 + arg1 var38 = var15 | arg35 | var33 if var37 < arg34: var39 = var38 + var20 else: var39 = 564639441 + (var15 ^ arg35) ^ arg35 var40 = 919589444 ^ arg34 var41 = var36 + arg2 var42 = arg1 ^ (1113512850 - var20 ^ var33) var43 = (arg1 & var33) | var38 & var37 var44 = (var33 + var43) & 973708478 & var43 var45 = var33 + (var44 ^ var33) + var20 var46 = var45 & arg35 + var45 var47 = arg34 - var44 - var42 - var46 var48 = var47 + var38 + var44 var49 = (var36 + var38) & arg34 + arg1 var50 = 643871592 ^ var44 var51 = arg34 & arg34 ^ var46 | var33 var52 = var15 | var44 - var38 if var45 < var44: var53 = (var42 - 657 & var50) ^ var52 else: var53 = var44 - (var46 ^ var20) | arg1 var54 = 869 & arg34 | var36 & arg34 var55 = arg35 ^ -1856795692 var56 = var41 + var45 var57 = var47 | var52 & var42 - arg2 var58 = var56 - (var46 & -784) var59 = ((var40 - var45) - 458) ^ 829 result = ((((arg34 - var36) | var48) & var50 - var58) & ((var46 ^ ((var56 + var46 & var51) + var51)) - var48)) ^ arg35 return result var60 = func6(var33, arg1) var61 = var15 ^ var15 var62 = arg1 ^ arg1 var63 = var33 & ((1939695419 & ((var60 & var20 + var33 | var20 & var33) - (-1674400426 ^ 964630041))) | ((((((var60 & arg2) - arg2) - var20) - -2125333711 - ((var20 | 2045898726 + var33) + var61)) - var15 - var62) ^ -279)) ^ arg1 var64 = (((var63 | -745) | arg2 & arg2) ^ var61 + var62) ^ var15 | ((var15 ^ var60) | var61 + ((var63 | var63 & arg2 | var61) ^ arg1 & -1907774184 ^ var33 | var61) ^ var62 | var60 ^ arg1 & arg1) var65 = var60 + (1330880070 ^ var33) ^ var20 + (-882 & var33) result = var61 + (var64 & arg1) - var62 return result def func4(arg16, arg17): var18 = 0 for var19 in range(46): var18 += arg16 & -2 ^ arg17 return var18 def func2(arg3, arg4): var9 = func3(arg3, arg4) var10 = 1296270875 | -405816451 var11 = ((arg3 | (((1605404532 & arg4 + (var10 - arg4 - var9 & arg3)) ^ -1231414641) | 354) & -782527097) ^ (-44 ^ ((var9 & var9) | -1018372679) - -782 & arg3) + (var9 | var10 ^ arg3) | var9 & -2012637171) ^ 1221212954 var12 = arg4 - (arg4 | -113227876) var13 = (662 + 1870126003) - -1612965323 var14 = -657 & arg3 result = var9 ^ (((var10 + var12) + ((var12 - var13) + (var10 ^ var9)) - (arg4 - -730) | var14) & 728) ^ var11 return result def func3(arg5, arg6): var7 = 0 for var8 in range(32): if arg6 < arg5: var7 += var7 - var7 | arg5 else: var7 += arg6 + arg6 return var7 def func15(arg114, arg115): def func16(acc, rest): var116 = (-8 & -10) + 9 if acc == 0: return var116 else: result = func16(acc - 1, var116) return result result = func16(10, 0) return result def func24(arg168, arg169): closure = [0] def func25(acc, rest): var170 = (4 & (-7 | (rest & -7)) ^ -7) ^ -7 | -7 closure[0] += var170 if acc == 0: return var170 else: result = func25(acc - 1, var170) return result result = func25(10, 0) return result def func31(arg201, arg202): def func32(acc, rest): var203 = -10 | -2 ^ -8 if acc == 0: return var203 else: result = func32(acc - 1, var203) return result result = func32(10, 0) return result def func39(arg220, arg221): def func40(acc, rest): var222 = 0 ^ acc - -10 if acc == 0: return var222 else: result = func40(acc - 1, var222) return result result = func40(10, 0) return result def func44(arg229, arg230): def func45(acc, rest): var244 = func46(-10, rest) if acc == 0: return var244 else: result = func45(acc - 1, var244) return result result = func45(10, 0) return result if __name__ == "__main__": print('prog_size: 5') print('func_number: 7') print('arg_number: 66') for i in range(25000): x = 5 x = func1(x, i) print(x, end='') print('prog_size: 5') print('func_number: 14') print('arg_number: 112') for i in range(25000): x = 5 x = func7(x, i) print(x, end='') print('prog_size: 5') print('func_number: 23') print('arg_number: 166') for i in range(25000): x = 5 x = func14(x, i) print(x, end='') print('prog_size: 1') print('func_number: 26') print('arg_number: 192') for i in range(25000): x = 5 x = func23(x, i) print(x, end='') print('prog_size: 5') print('func_number: 38') print('arg_number: 218') for i in range(25000): x = 5 x = func26(x, i) print(x, end='') print('prog_size: 5') print('func_number: 48') print('arg_number: 306') for i in range(25000): x = 5 x = func38(x, i) print(x, end='')
UTF-8
Python
false
false
18,305
py
25,849
5bf281fb-178c-493c-8c7a-422ac4bf1fe0.py
25,848
0.568479
0.316963
0
497
35.832998
233
shabana-123/github
833,223,668,007
721aa46d08d29f3951622d8b166416d63afc254e
9c5a7f1c65fafc89d59ceff76c400cf424bb17e0
/example2.py
1f671a8862a045f353928eeb285299888fdfd9d0
[]
no_license
https://github.com/shabana-123/github
989819eeeb7c36aeca23c6c41555fb75e5decf8f
c51c8dd0021f050ccc61e92b322a9e2a5606eeb2
refs/heads/master
2023-02-26T07:25:49.461072
2021-02-01T10:16:18
2021-02-01T10:16:18
334,840,090
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
x=input("enter input") if x=="yes": print("eat pizza") else: print("drink")
UTF-8
Python
false
false
78
py
3
example2.py
1
0.628205
0.628205
0
5
14.6
22
wilsonhuangnice/AE401wilson
627,065,256,244
77ab4e185b2640716efebb66ed70f9fd547a8337
bb8a50d51cfb1817777f717c46d28ff902a619f3
/1017.py
06d916f2b94ce5e6b3fbf28f5177e4b3f896ad3c
[]
no_license
https://github.com/wilsonhuangnice/AE401wilson
75708fbee65b7981429fdf555a195750fdb9455b
f0eb82ecd485111174ea713a63a74504f39ecbb2
refs/heads/master
2023-02-03T16:13:28.655717
2020-12-26T03:54:46
2020-12-26T03:54:46
296,778,906
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 17 10:20:15 2020 @author: michael """ from mcpi.minecraft import Minecraft mc = Minecraft.create() x,y,z = mc.player.getTilePos() from mcpi.minecraft import Minecraft mc = Minecraft.create() x,y,z = mc.player.getTilePos() mc.setBlock(x,y+1,z,57) mc.setBlock(x,y+2,z,57) mc.setBlock(x,y+3,z,57) mc.setBlock(x,y+4,z,57) mc.setBlock(x,y+5,z,57) mc.setBlock(x,y+6,z,57) mc.setBlock(x,y+7,z,57) mc.setBlock(x,y+8,z,57) mc.setBlock(x,y+9,z,57) mc.setBlock(x,y+10,z,57) mc.setBlock(x,y+11,z,57) mc.setBlock(x,y+12,z,57) mc.setBlock(x,y+13,z,57) x,y,z = mc.player.getTilePos() mc.setBlock(x,y,z+1,57) mc.setBlock(x-1,y,z,57) mc.setBlock(x+1,y,z,57) mc.setBlock(x,y,z-1,57) mc.setBlock(x-1,y,z+1,57) mc.setBlock(x+1,y,z+1,57) mc.setBlock(x-1,y,z-1,57) mc.setBlock(x+1,y,z-1,57)
UTF-8
Python
false
false
874
py
12
1017.py
12
0.653318
0.556064
0
66
12.19697
36
emilykjensen/CSCI5352_Project
10,110,353,048,909
725a483524e73745ab54c34568d7e4ae840c8b60
c698a4452e4ced2daa51854c2a8b678eb5570bfd
/Code/video-processing.py
55d9445252d161c9057d45a47e654ea28e10a679
[]
no_license
https://github.com/emilykjensen/CSCI5352_Project
ab97bfce3e76e87e1152d52500517fe9c5ffa13a
21d9ca6e54b097967ce1b8f338d5d07f99007c91
refs/heads/master
2020-11-24T10:26:21.431767
2019-12-16T19:43:12
2019-12-16T19:43:12
228,106,994
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pandas as pd import numpy as np import networkx as nx import matplotlib.pyplot as plt import random from os import listdir from networkx.algorithms import bipartite ############################## ### Combine 2-week files ### ############################## data_dir = "/your/directory/here/" files = listdir(data_dir) dfs = [] for f in files: df = pd.read_csv(data_dir + f) dfs.append(df) combined = pd.concat(dfs) combined.to_csv(data_dir + 'video-data.csv') ###################### ### Get datasets ### ###################### combined = pd.read_csv(data_dir+'video-data.csv') sessions, session_counts = np.unique(combined['session_id'].values, return_counts = True) students, student_counts = np.unique(combined['useraccount_id'].values, return_counts = True) videos, video_counts = np.unique(combined['video_id'].values, return_counts = True) print('There are {} unique sessions, {} students, and {} videos'.format(len(sessions),len(students),len(videos))) pd.Series(session_counts).describe() pd.Series(student_counts).describe() pd.Series(video_counts).describe() ######################### ### Build a network ### ######################### # One group is student IDs # The other group is video IDs G = nx.Graph() G.add_nodes_from(students, bipartite=0) G.add_nodes_from(videos, bipartite=1) G.add_edges_from(list(zip(combined['useraccount_id'].values, combined['video_id'].values))) cluster_all = bipartite.average_clustering(G) density_all = bipartite.density(G) # Get degrees for unprojected graph student_degree = G.degree(students) list_student_degree = [val for (node, val) in student_degree] plt.hist(list_student_degree) plt.xlabel('Number of Unique Videos') plt.ylabel('Number of Students') plt.show() pd.Series(list_student_degree).describe() video_degree = G.degree(videos) list_video_degree = [val for (node, val) in video_degree] plt.hist(list_video_degree) plt.xlabel('Number of Unique Accessing Students') plt.ylabel('Number of Videos') plt.show() pd.Series(list_video_degree).describe() # Attempt at student projection sample_rate = 0.3 n_sampled = int(sample_rate * len(students)) sampled_students = random.sample(list(students), n_sampled) student_projection = bipartite.projected_graph(G,sampled_students) # MEMORY ERROR HERE # Video projection video_projection = bipartite.projected_graph(G,videos) video_proj_degree = video_projection.degree() list_video_proj_degree = [val for (node, val) in video_proj_degree] plt.hist(list_video_proj_degree) plt.xlabel('Number of Neighbors') plt.ylabel('Number of Videos') plt.show() pd.Series(list_video_proj_degree).describe() nx.density(video_projection) # Degree centrality deg = nx.degree_centrality(video_projection) deg_list = list(deg.values()) pd.Series(deg_list).describe() plt.hist(deg_list) plt.xlabel('Degree Centrality') plt.ylabel('Number of videos') plt.show() # Eigenvector centrality eig = nx.eigenvector_centrality(video_projection) eig_list = list(eig.values()) pd.Series(eig_list).describe() plt.hist(eig_list) plt.xlabel('Eigenvector Centrality') plt.ylabel('Number of videos') plt.show() # Closeness centrality close = nx.closeness_centrality(video_projection) close_list = list(close.values()) pd.Series(close_list).describe() plt.hist(close_list) plt.xlabel('Closeness Centrality') plt.ylabel('Number of videos') plt.show() # Betweenness centrality between = nx.betweenness_centrality(video_projection) between_list = list(between.values()) pd.Series(between_list).describe() plt.hist(between_list) plt.xlabel('Betweenness Centrality') plt.ylabel('Number of videos') plt.show() # Triangles and clustering coefficient tri = nx.triangles(video_projection) tri_list = list(tri.values()) print("There are {} triangles".format(np.sum(tri_list)/3)) cluster = nx.clustering(video_projection) cluster_list = list(cluster.values()) pd.Series(cluster_list).describe() plt.hist(cluster_list,bins=15) plt.xlabel('Clustering Coefficient') plt.ylabel('Number of videos') plt.show() # Diameter print("The diameter is {}".format(nx.diameter(video_projection))) print("Because minimum degree is {}".format(min(deg_list))) ########################### ### Changes over time ### ########################### combined['ts_created'] = pd.to_datetime(combined['ts_created']) combined.index = combined['ts_created'] combined['month'] = combined.index.month combined_sorted = combined.sort_values(by=['month']) video_by_month = combined.groupby(['video_id',combined.index.month]).count() student_by_month = combined.groupby(['useraccount_id',combined.index.month]).count().drop(columns=['ts_created']) student_by_month = student_by_month.reset_index(level='ts_created') # Month of first view per video video_first = combined_sorted.drop_duplicates(subset='video_id')['month'] plt.hist(video_first.values) plt.xlabel('Month of first view') plt.ylabel('Number of Videos') plt.show() # Average month view per video video_avg_month = combined.groupby(['video_id']).mean()['month'] plt.hist(video_avg_month.values,bins=25) plt.xlabel('Average Month') plt.ylabel('Number of Videos') plt.show() # Count of video views per month plt.hist(combined.index.month.values) plt.xlabel('Month') plt.ylabel('Number of video views') plt.show() month_counts = combined['video_id'].groupby(combined.index.month).count() pd.Series(month_counts).describe() # Average number of student views per month avgs = [] for i in range(1,7): filtered = student_by_month.loc[student_by_month['ts_created'] == i] avgs.append(np.mean(filtered['session_id'].values)) plt.plot(range(1,7),avgs) plt.ylim((0,8)) plt.xlabel('Month') plt.ylabel('Average video views per student') plt.show()
UTF-8
Python
false
false
5,861
py
4
video-processing.py
2
0.690667
0.687937
0
186
29.510753
113
yesito/Valuation
16,922,171,152,137
660bf99051b4fa0eaae2672448a991f8d958c0d9
456cbffd38c331da14df0555a6ab0a0e990e2e08
/conversor_pdf_df.py
4ec36f3bd9b8ba5d4c34bbbd50258a9cbc2090e6
[]
no_license
https://github.com/yesito/Valuation
ebb9048b2449b4bd0048c820179ee804d8f47583
5f289bad96b2f57dbc9ac15c852b32b03110c7bd
refs/heads/main
2023-05-31T23:30:36.302775
2021-06-14T18:17:00
2021-06-14T18:17:00
376,911,680
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Sun Dec 20 13:20:54 2020 @author: lucab """ import pdftotext from datetime import datetime import pandas as pd import sys pd.set_option('display.max_columns', None) # or 1000 pd.set_option('display.max_rows', None) # or 1000 #print("Welcome! This app is intended to get financial data from companies in trimestral relatories (PDF)") #print("and tranform this information into Data Frames, being able to export them as CSV files.") #print("\n") #print("To start, please:") def main(): filename = "ITRweg1T2019" #insert only the file name whithout the extension filename = filename.strip() filename += ".pdf" folderpath = "C:\\Users\\lucab\\OneDrive\\A&M\\DemonstrativosFinanceiros\\PDF\\weg2019" #insert the folder path where the pdf is: folderpath = folderpath.strip() pages = [6] #input the number of the pages in which the tablesheet is (list): filepath = folderpath + "\\" + filename listofpagetxt = read(filepath, pages) #print(listofpagetxt) pagelsts = txtorganizerinlst(listofpagetxt) #print(pagelsts) table = cleanheaderandfooter(pagelsts) print(table) perioddirty = perio(pagelsts) label = extractlabel(table) code = extractcode(table) period = cleanperiod(perioddirty) values = extractvalues(table) print(values) #print(len(values),len(code),len(label)) dictionary = createdict(label, code, period, values) #print(dictionary) dataframe = createdataframe(dictionary) print (dataframe) flag = True while flag == True: answer = input("do you wish to export your Data in a CSV format? (Answer Yes or No) ") .lower() answer = answer.strip() if answer == "yes": exportcsv(dataframe) print("file sucssessfully exported!") flag = False elif answer == "no": flag = False else: print("invalid input") flag = True flag = True while flag == True: answer2 = input("Do you wish to make another Data Frame? (Answer Yes or No) ") .lower() answer2 = answer2.strip() if answer2 == "yes": flag = False main() elif answer2 == "no": while flag == True: answer3 = input("Do you wish to exit? (Answer Yes or No) ") .lower() answer3 = answer3.strip() if answer3 == "yes": flag == False sys.exit() elif answer3 == "no": flag == False main() else: print("invalid input") flag == True else: print("invalid input") flag = True def read(filepath,pages): listofpagen = [] listofpagetxt = [] with open (filepath, "rb") as infile: pdfread = pdftotext.PDF(infile) for i in range (0,len(pages),1): page = pages[i] listofpagen += [page] for i in range (0,len(listofpagen),1): pagetext = pdfread[listofpagen[i]-1] listofpagetxt += [pagetext.split("\n")] return listofpagetxt def txtorganizerinlst(listofpagetxt): pagelsts = [] for i in range (0,len(listofpagetxt),1): pagelnlst = [] for j in range(0,len(listofpagetxt[i]),1): linelst = listofpagetxt[i][j].split() if linelst != []: pagelnlst += [linelst] pagelsts += pagelnlst return pagelsts def cleanheaderandfooter(pagelsts): table = [] for i in range (0,len(pagelsts),1): try: new = "" test = pagelsts[i][0] for j in range(0,len(test),1): if test[j] != ".": new += test [j] int(new) except: pass else: table += [pagelsts[i]] return table def perio(pagelsts): period = [] for i in range (0,len(pagelsts),1): for j in range(0,len(pagelsts[i]),1): test = "" if len(pagelsts[i][j]) == 10: for l in range (0,len(pagelsts[i][j]),1): if pagelsts[i][j][l] != "/": test += pagelsts[i][j][l] try: int(test) except: pass else: if pagelsts[i] not in period: period += [pagelsts[i]] return period def extractlabel(table): x = 0 for j in range(len(table[1])-1,-1,-1): valued = table[1][j] valuelst = valued.split(".") value = "" for h in range(0,len(valuelst),1): value += str(valuelst[h]) try: value = int(value) except: break else: x += 1 lst = [] for i in range (0, len(table),1): label = "" for j in range(1,len(table[i])-x,1): label += " " + table[i][j] lst += [label.strip()] return lst def extractcode(table): lst = [] for i in range(0,len(table),1): lst += [table[i][0]] return lst def cleanperiod(period): lst = [] for i in range(0,len(period),1): for j in range (0,len(period[i]),1): test = "" for l in range (0, len(period[i][j]),1): if period[i][j][l] != "/": test += period[i][j][l] try: int(test) except: pass else: if period[i][j] not in lst and len(period[i][j]) == 10: lst += [period[i][j]] lstdt = [] for i in range(0,len(lst),1): date = lst[i] date_object = datetime.strptime(date, "%d/%m/%Y") lstdt += [date_object] lstdts = sorted(lstdt) lst = [] for i in range(0,len(lstdts),1): date = lstdts[i] new = date.strftime("%d/%m/%Y") lst += [new] if len(lst) == 2: return [lst[1],lst[0]] elif len(lst) == 4: return [lst[3],lst[1]] else: #print ("No period could be identified correctly") return None def extractvalues(table): values = [] for i in range (0, len(table),1): nested = [] nestedinv = [] for j in range(len(table[i])-1,-1,-1): valued = table[i][j] valuelst = valued.split(".") value = "" for h in range(0,len(valuelst),1): value += str(valuelst[h]) try: value = int(value) except: valued = table[i][j] valuelst = valued.split(",") value = "" h = 0 for h in range(0,len(valuelst),1): value += str(valuelst[h]) try: value = int(value) except: break else: nested += [table[i][j]] else: nested += [table[i][j]] for i in range(len(nested)-1,-1,-1): nestedinv += [nested[i]] values += [nestedinv] return values def createdict(label, code, period, values): dictionary2 = {} if period != None: for i in range(0,len(period),1): dictionary1 = {} for j in range(0, len(label),1): try: dictionary1[code[j],label[j]] = values[j][i] except: dictionary1[code[j],label[j]] = None dictionary2[period[i]] = dictionary1 return dictionary2 else: dictionary1 = {} for i in range(0,len(values[1]),1): dictionary1 = {} for j in range(0,len(label),1): try: dictionary1[code[j],label[j]] = values[j][i] except: dictionary1[code[j],label[j]] = None dictionary2[i] = dictionary1 return dictionary2 def createdataframe(dictionary): frame = pd.DataFrame(dictionary) return frame def exportcsv(dataframe): folderpath = input("where do you want to export your .csv file (enter a folder path): ") folderpath = folderpath.strip() filename = input("how do you want to name your file? ") filename = filename.strip() filename += ".csv" filepath = folderpath + "\\" + filename csv = dataframe.to_csv(path_or_buf = filepath, encoding = "utf-8" ) return csv if __name__ == "__main__": main()
UTF-8
Python
false
false
9,275
py
5
conversor_pdf_df.py
4
0.466415
0.451968
0
317
27.246057
133
ertyseidohl/python-quiz
8,890,582,318,232
285ed12566a3b269e26036ab488e3397d1bafa57
8e7a67f947c3b3c538e94f4159082d7c53856de9
/examples/1.1.3.py
0abf771dcc659093e50cecd764ef04e355b7880e
[]
no_license
https://github.com/ertyseidohl/python-quiz
cac5d485c082dae5af668cca4324b27381d491be
8b9a7dfce077350402ea510869b7fda444f2970c
refs/heads/master
2021-01-10T11:50:10.277444
2016-03-01T07:05:13
2016-03-01T07:05:13
52,807,932
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
a = 0 while (a < 10): a = a + 1 print(a)
UTF-8
Python
false
false
41
py
40
1.1.3.py
40
0.463415
0.365854
0
4
9.5
15
Rossbin/justapi
17,179,869,219,505
d76ef1f8f11bb25982d64f9cf7534eea21e8d179
a47215cb2cadf3e2bb97ff0ff4b737490538f3ea
/scripts/celery_task/task1.py
a954b6f1cb4d11a9f0d6110387e355d8e3518719
[]
no_license
https://github.com/Rossbin/justapi
a910f5e1f6995893e53e8eac686632a27620a64b
809c8793406245cf13298a7b2f52593590c37c70
refs/heads/master
2023-04-18T11:50:17.642279
2021-05-04T08:44:28
2021-05-04T08:44:28
350,808,584
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from .celery import app @app.task def add(x,y): print(x,y) return x+y # @app.task # def updata_banner(): # # # 在脚本中调用django项目 # os.environ.setdefault("DJANGO_SETTINGS_MODULE", "untitled15.settings") # import django # django.setup() # # from app01 import models # from django.core.cache import cache # books = models.Book.objects.all() # print(books)
UTF-8
Python
false
false
411
py
64
task1.py
63
0.635443
0.625316
0
20
18.65
76
punish4424/django-rest-framework-boilerplate
4,587,025,095,658
fc1786083c47b3b4e966ea203e6454b7d96c5c03
3ebbdacadaf648255e1d8c6a32728f063da605ab
/{{cookiecutter.repo_name}}/{{cookiecutter.project_name}}/apps/utils/serializers.py
a8ae73bd57131d3812847df9ab1a433d9fed1ccf
[ "BSD-2-Clause-Views", "BSD-3-Clause" ]
permissive
https://github.com/punish4424/django-rest-framework-boilerplate
223daa483759d0a7edda95426cfc90312c1ed1cd
618c6f66d1c4c4deaf50e4e996107fb65c836589
refs/heads/main
2023-05-09T00:34:23.994184
2021-06-05T22:04:23
2021-06-05T22:04:23
374,174,241
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib.auth import get_user_model from rest_framework import serializers User = get_user_model() class CustomUserSerializer(serializers.ModelSerializer): def __init__(self, *args, **kwargs): super(CustomUserSerializer, self).__init__(*args, **kwargs) if self.context and self.context['request'].method in ["PUT", "PATCH"]: self.fields.pop('email') self.fields.pop('password') password = serializers.CharField(style={'input_type': 'password'}, trim_whitespace=False, write_only=True) def create(self, validated_data): user = User.objects.create_user(**validated_data) return user def to_representation(self, instance): rep = super().to_representation(instance) rep['email'] = instance.email return rep
UTF-8
Python
false
false
816
py
14
serializers.py
8
0.664216
0.664216
0
23
34.478261
110
ausaki/data_structures_and_algorithms
10,110,353,048,340
1d34044209e34f29e7c9f67fca9b32070d7fd4d7
58afefdde86346760bea40690b1675c6639c8b84
/leetcode/unique-binary-search-trees-ii/147199063.py
dd1e188a3b2577f34995a65b4425d3fbb4f6bafb
[]
no_license
https://github.com/ausaki/data_structures_and_algorithms
aaa563f713cbab3c34a9465039d52b853f95548e
4f5f5124534bd4423356a5f5572b8a39b7828d80
refs/heads/master
2021-06-21T10:44:44.549601
2021-04-06T11:30:21
2021-04-06T11:30:21
201,942,771
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# title: unique-binary-search-trees-ii # detail: https://leetcode.com/submissions/detail/147199063/ # datetime: Tue Mar 27 16:59:18 2018 # runtime: 104 ms # memory: N/A # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def copyTree(self, root): if root is None: return None parent = TreeNode(root.val) parent.left = self.copyTree(root.left) parent.right = self.copyTree(root.right) return parent def generateTrees(self, n): """ :type n: int :rtype: List[TreeNode] """ # Dynamic Programing # T(n) = C(n, T(n - 1)) if n == 0: return [] if n == 1: return [TreeNode(1)] new_trees = [] trees = self.generateTrees(n - 1) node_n = TreeNode(n) # node_n as the new root node # node_n.left = old_root for tree in trees: node_n = TreeNode(n) node_n.left = tree new_trees.append(node_n) for tree in trees: current_node = tree while current_node: root = self.copyTree(tree) node = root while node.val != current_node.val: node = node.right node_n = TreeNode(n) right_node = node.right node.right = node_n node_n.left = right_node new_trees.append(root) current_node = right_node return new_trees
UTF-8
Python
false
false
1,752
py
2,030
147199063.py
1,912
0.480023
0.46347
0
61
27.442623
60
ashleyconnor/leetcode
13,589,276,531,731
6f2e105b2e5e01cdc82d3fc4c6ff20e9ce4576cf
8945f7e126b88b036a375985365979c3ba611973
/src/two_sum/test_solution.py
d0da5b55ec6f35483911d24dd8b9c5bc4e9d1162
[]
no_license
https://github.com/ashleyconnor/leetcode
11a9fb7ccaa45f7f69daef0692c30f55ff04102d
1f2a9ce6c2eff85536537207db9cb322868ef1fd
refs/heads/master
2021-06-26T11:43:39.477836
2021-01-09T18:39:06
2021-01-09T18:39:06
201,158,333
0
0
null
false
2021-01-09T18:39:07
2019-08-08T01:58:32
2021-01-09T18:26:09
2021-01-09T18:39:07
28
0
0
0
Python
false
false
import pytest from .solution import Solution class TestSolution: @pytest.mark.parametrize( "numbers,target,expected", [([2, 7, 11, 15], 9, (0, 1)), ([5, 4, 3, 10, 7], 12, (0, 4))], ) def test_two_sum(self, numbers, target, expected): assert Solution().two_sum(numbers, target) == expected
UTF-8
Python
false
false
328
py
23
test_solution.py
15
0.594512
0.536585
0
12
26.333333
70
sankalp30/shuford_costing
7,327,214,209,403
6c163d40d2eb9276a2ffe2ebed842e5c36b91ee4
49a458025f3c3afd7d75448f72ebaf97782a3496
/hs_allstds.py
df2a257d1871e3636d254798c3854bc561c4d29f
[]
no_license
https://github.com/sankalp30/shuford_costing
3986fae1ff2ce94e494919db0c1aaa4e8ad86003
707968d38b30c1ce19460b55ab3cbafd3522f4d4
refs/heads/master
2022-12-22T13:17:56.747613
2020-09-29T13:01:45
2020-09-29T13:01:45
299,617,881
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jul 21 13:19:42 2020 @author: SankalpMishra """ import numpy as np import pandas as pd import xlwings as xw import time #%% start_time = time.time() path = r'\\shufordyarnsllc.local\SYDFS\UserFiles$\SankalpMishra\Desktop\Sankalp_all\cost_assistanceproject_8_19_2019\Hickory Spinners' path = path.replace("\\", "/") col_cno = ['cno', 'yno', 'ply', 'blend', 'tr', 'inv_description', 'case', 'units', 'tare', 'customer'] #df_cno = pd.read_excel(path + 'Cheat Sheet 7-19-20' + '.xlsx', sheet_name = 'ALL YARNS' , usecols = [0,1,2,3,4,5,6,7,8,9]) #df_cno.columns = col_cno #df_cno['cno'] = df_cno['cno'].astype(str) #%% #df_select = df_cno[df_cno['cno'].isin(list(df_input['cno']))] #%%not used def proc_pkgwt(inv_desc): inv = inv_desc.lower() inv = inv.replace('"', '') wax_tokens = ['wax', 'wx'] bag_tokens = ['bag', 'bg'] cond_tokens = ['cond', 'cd'] l_pkgtype = ['351', '557', '5406rn', 'owt', 'pt', 'pencil tube', 'penciltube', '190', \ '190dt', 'cs', '150', '150dt', 'dt', 'OWT5406RN', 'mf', '190mf', '150mf'] l_inv = inv.split(' ') for token in l_inv: if 'x' in list(token) and 'w' not in list(token) and len(token)> 1: #wax should contain a w with x but dimension token will only have x pkg_len = token.split('x')[0] pkg_dia = token.split('x')[1] if token == 'wax' or token == 'wx': pass return l_inv, pkg_len, pkg_dia #%% Not used def twist_breakdown(twist): try: tw_sp = int(''.join(list(str(twist))[:2]))# don't divide by 10. It is done in integrated standards sheet except: tw_sp = 0 try: tw_tw = int(''.join(list(str(twist))[2:4])) if tw_tw >15: tw_tw = tw_tw/10 # this division by 10 is not done in the standards sheet else: pass except: tw_tw = 0 try: if len(list(twist))>4: tw_cable = tw_tw = int(''.join(list(str(twist))[4:6])) if tw_tw >15: tw_cable = tw_cable/10 # this division by 10 is not done in the standards sheet else: pass else: tw_cable = 0 except: tw_cable = 0 return tw_sp, tw_tw, tw_cable #%% def putup_breakdown(putup): ls_dt = ['190', '150'] ls_tube = ['owt'] ls_cone = ['557', '351'] pw_tube = ['pwt', 'pw'] putup = str(putup).lower()[:3] if putup in ls_dt: return 'dyetube' elif putup in ls_tube: return 'tube' elif putup in ls_cone: return 'cone' elif putup in pw_tube: return 'pwt' else: return 'default' def blend_extract(cno): try: return str(cno)[:3] except: return 'default' #%% df_input = pd.read_excel(path + '/mar_2020/mar20_hs_pp' + '.xlsx', sheet_name= 'hs_pp') df_input['cno'] = df_input['Item Number'].map(lambda x: str(x)[:-6]) df_input['cno'] = df_input['cno'].map(lambda x: str(x)[-6:]) #%% df_cno = pd.read_csv(path+ '/mar_2020/dfall_hs_mar20.csv') df_cno['cno'] = df_cno['cno_itemnum'].map(lambda x: str(x)[-6:]) #%% wb = xw.Book(r'//shufordyarnsllc.local/SYDFS/UserFiles$/SankalpMishra/Desktop/Sankalp_all/standards_costing_program/HS/tbl/HS_Standards_all.xlsm') sheet = wb.sheets['Main'] app = wb.app #blend_summary_mcro = app.macro("carding_drawing_roving_summary") - example from dudley shoals plant script summary_macro = app.macro("HS_summary") #%% purchased_list = ['ct1', 'ct2', 'pyn'] ls_notfound = [] for item in list(df_input['cno']): try: print(item) df_current = df_cno[df_cno['cno'] == item] cno_item = df_current['cno_itemnum'].values[0] cno_yno = float(str(cno_item)[4:8])/100 cno_ply = df_current['ply'].values[0] tw_sp = df_current['tw_sp'].values[0] tw_tw = df_current['tw_tw'].values[0] cno_wax = df_current['cno_wax'].values[0] cno_bag = df_current['cno_bag'].values[0] cno_cond = df_current['cno_cond'].values[0] cno_doubspeed = df_current['cno_doubspeed'].values[0] cno_twrpm = df_current['cno_twistrpm'].values[0] cno_spinrpm = df_current['cno_spinspeed'].values[0] cno_pkg = df_current['cno_pkg'].values[0] cno_putup = df_current['cno_putup'].values[0] cno_putup = putup_breakdown(cno_putup) abbrev = blend_extract(cno_item) cno_oil = df_current['cno_oil'].values[0] print('base variables extracted') print(cno_item, cno_yno, cno_ply, tw_sp, tw_tw, cno_wax, cno_bag, cno_cond, cno_doubspeed, \ cno_twrpm, cno_spinrpm, cno_pkg, cno_putup, abbrev, cno_oil) #%%Basic setup sheet.range("A4").value = cno_item sheet.range("B4").value = abbrev sheet.range("C4").value = tw_sp sheet.range("C5").value = tw_tw sheet.range("E4").value = cno_yno sheet.range("E5").value = cno_pkg sheet.range("G4").value = cno_ply if str(cno_wax).lower() == 'wx': sheet.range("J4").value = 'Yes' else: sheet.range("J4").value = 'No' if str(cno_bag).lower() == 'bg': sheet.range("K4").value = 'Yes' else: sheet.range("K4").value = 'No' pkg_wt = sheet.range("H4").value if cno_ply > 1: creel_wt = pkg_wt/1.8 # not included creel per crate variable as it is not used in HS doubling/ twisting sheets else: creel_wt = pkg_wt sheet.range("J6").value = creel_wt # possible error point if a construction number is skipped! print('basic sheet setup done') #%%carding setup sheet.range("A9").value = 'Yes' sheet.range("B10").value = abbrev print('carding setup complete') #%% Drawing setup sheet.range("D9").value = "Yes" sheet.range("E10").value = abbrev print('drawing setup complete') #%%ACO8 Spin setup sheet.range("G9").value = "Yes" #sheet.range("H10").value == ___ #skipping blend match for aco as it doesn't affect output if cno_ply == 1: sheet.range("H14").value = 'Sales' sheet.range("H21").value = 'Wood Pallet TP-Sales' else: sheet.range("H14").value = 'Doubler' sheet.range("H21").value = 'Crate' if cno_putup == 'dyetube': sheet.range("H20").value = 'Case-DT' sheet.range("H22").value = 'Yes' else: sheet.range("H20").value = 'Crate-PL' # not much difference between case-pa and crate-pl sheet.range("H22").value = 'No' sheet.range("H15").value = cno_spinrpm sheet.range("H19").value = 0.9 aco_efftemp = sheet.range("H27").value sheet.range("H19").value = aco_efftemp print('aco8 setup complete') #%% Doubler setup if cno_ply>1: sheet.range("A20").value = 'Yes' else: sheet.range("A20").value = 'No' sheet.range("B24").value = cno_doubspeed rcom_machine = sheet.range("C27").value sheet.range("B27").value = rcom_machine print('doubler setup complete') #%% Twisting setup if cno_ply > 1: sheet.range("A37").value = "Yes" else: sheet.range("A37").value = "No" # recommended machine --> sheet.range("B42").value = rcom_machine sheet.range("B43").value = cno_twrpm if cno_putup == 'dyetube': sheet.range("B46").value = "Yes" # tieoff sheet.range("B51").value = 'No' # label else: sheet.range("B46").value = "No" sheet.range("B51").value = 'Yes' if str(cno_oil).lower() == 'yes': sheet.range("B52").value = 'Yes' else: sheet.range("B52").value = 'No' print('twist setup complete') #%% Pencil Winder setup if cno_putup == 'pwt': sheet.range("D20").value = 'Yes' else: sheet.range("D20").value = 'No' print('pencil winder setup complete') #%%conditioning setup if str(cno_cond).lower() == 'cd': sheet.range("D44").value = 'Yes' sheet.range("E47").value = 2 else: sheet.range("D44").value = 'No' print('condition setup complete') #%% shipping/ receiving setup sheet.range("G37").value = 'Yes' print('shipping setup complete') #%%Pyn /CT1 removal, Macro run if str(abbrev).lower() in purchased_list: sheet.range("A9").value = "No" sheet.range("D9").value = "No" sheet.range("G9").value = "No" print('running summary macro') summary_macro() print('--------||---------------||---------'*4) #%% except: print(item, 'not_found') ls_notfound.append(item) #%% end_time = time.time() print('numbers not found:') print(ls_notfound) print('script runtime', (end_time - start_time)/60, 'minutes')
UTF-8
Python
false
false
9,783
py
8
hs_allstds.py
7
0.507411
0.481958
0
299
30.665552
146
LennartKeller/exmlc
7,971,459,302,881
e7ee6dd6e12d22a76332126b48719aa4cc2001bc
949c48edba7a2fd114a5565ec5021901c6ba8811
/exmlc/tag_embeddings/word_embeddings.py
924c78613311ea2af4a0e93da8893e4f46f388bd
[ "Apache-2.0" ]
permissive
https://github.com/LennartKeller/exmlc
0b5882bae339351d15739c09c7023b15dde3872b
912d51451a448b5d56bfe921bfdaaea82c7b7084
refs/heads/master
2022-04-01T08:22:45.995417
2020-02-18T14:13:00
2020-02-18T14:13:00
213,160,571
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import annotations import numpy as np from sklearn.base import BaseEstimator from gensim.models import Word2Vec from scipy.sparse import csr_matrix, lil_matrix from typing import * from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.neighbors import NearestNeighbors from gensim.models.fasttext import FastText from gensim.models.word2vec import Word2Vec from sklearn.exceptions import NotFittedError import logging from tqdm import tqdm from gensim.similarities.docsim import WmdSimilarity class Word2VecTagEmbeddingClassifier(BaseEstimator): def __init__(self, embedding_dim: int = 300, min_count: int = 1, window_size: int = 5, epochs: int = 10, model: str = 'doc2vec', distance_metric: str = 'cosine', tfidf_weighting: bool = True, pooling_func: callable = lambda x: np.mean(x, axis=0), # column wise average n_jobs: int = 1, verbose: bool = False ) -> None: self.embedding_dim = embedding_dim self.min_count = min_count self.window_size = window_size self.epochs = epochs self.model = model self.distance_metric = distance_metric self.tfidf_weighting = tfidf_weighting self.pooling_func = pooling_func self.n_jobs = n_jobs self.verbose = verbose def fit(self, X: np.array, y: csr_matrix): if self.verbose: #logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) # TODO revert this pass X_splitted = np.array([s.split() for s in X]) #docs = [TaggedDocument(words=tokens, tags=[index]) for index, tokens in enumerate(X_splitted)] if self.model.lower() == 'fasttext': self.wv_model_ = FastText( sentences=X_splitted.tolist(), size=self.embedding_dim, iter=self.epochs, min_count=self.min_count, window=self.window_size, workers=self.n_jobs ) elif self.model.lower() == 'doc2vec': self.wv_model_ = Word2Vec( sentences=X_splitted.tolist(), size=self.embedding_dim, iter=self.epochs, min_count=self.min_count, window=self.window_size, workers=self.n_jobs, ) else: raise NotImplementedError tag_doc_mapping = self._create_tag_docs(y) if self.tfidf_weighting: self.tfidf_ = TfidfVectorizer() self.texts_tfidf_ = self.tfidf_.fit_transform(X) self.tag_embeddings_ = np.empty((y.shape[1], self.embedding_dim), dtype='float64') if self.verbose: tac_doc_iterator = tqdm(enumerate(tag_doc_mapping), desc='Computing tag embeddings') else: tac_doc_iterator = enumerate(tag_doc_mapping) for tag_id, texts_idx in tac_doc_iterator: # will be of shape(n_texts, embedding_dim) tag_word_embeddings = [] for text_ind in texts_idx: for token in list(set(X_splitted[text_ind])): try: word_embedding = self.wv_model_.wv[token] except KeyError: # if words occur that are ignored due to min_count continue if self.tfidf_weighting: token_ind = self.tfidf_.vocabulary_.get(token, -1) if token_ind > -1: tfidf_value = self.texts_tfidf_[text_ind, token_ind] word_embedding = word_embedding * tfidf_value tag_word_embeddings.append(word_embedding) self.tag_embeddings_[tag_id] = self.pooling_func(tag_word_embeddings) return self def predict(self, X: List[str], n_labels: int = 10) -> np.array: if not hasattr(self, 'tag_embeddings_'): raise NotFittedError X_splitted = [s.split() for s in X] X_embeddings = [] for text in X_splitted: text_word_embeddings = [] for token in text: try: word_embedding = self.wv_model_.wv[token] except KeyError: continue text_word_embeddings.append(word_embedding) X_embeddings.append(self.pooling_func(text_word_embeddings)) nn = NearestNeighbors(metric=self.distance_metric, n_neighbors=n_labels, n_jobs=self.n_jobs) nn.fit(self.tag_embeddings_) y_pred = lil_matrix((len(X), self.tag_embeddings_.shape[0]), dtype='int8') for sample_ind, text_embedding in enumerate(X_embeddings): nearest_neighbors = nn.kneighbors([text_embedding])[1][0] y_pred[sample_ind, nearest_neighbors] = 1 return y_pred.tocsr() def decision_function(self, X: List[str], n_labels: int = 10): if not hasattr(self, 'tag_embeddings_'): raise NotFittedError X_splitted = [s.split() for s in X] X_embeddings = [] for text in X_splitted: text_word_embeddings = [] for token in text: try: word_embedding = self.wv_model_.wv[token] except KeyError: continue text_word_embeddings.append(word_embedding) X_embeddings.append(self.pooling_func(text_word_embeddings)) nn = NearestNeighbors(metric=self.distance_metric, n_neighbors=n_labels, n_jobs=self.n_jobs) nn.fit(self.tag_embeddings_) y_pred = lil_matrix((len(X), self.tag_embeddings_.shape[0]), dtype='float') for sample_ind, sample_vec in enumerate(X_embeddings): distances, indices = nn.kneighbors([sample_vec]) for distance, label_index in zip(distances, indices): y_pred[sample_ind, label_index] = distance return y_pred.tocsr() def log_decision_function(self, X: Iterable[str], n_labels: int = 10): if not hasattr(self, 'tag_embeddings_'): raise NotFittedError # TODO Uncomment this if sure that nothing will break distances = self.decision_function(X=X, n_labels=n_labels) log_distances = self._get_log_distances(distances) return log_distances def _get_log_distances(self, y_distances: csr_matrix, base=0.5) -> csr_matrix: """ Returns the logarithmic version (base default: 0.5) of the distance matrix returned by TODO. This must be used in order to compute valid precision@k scores since small Distances should be ranked better than great ones. :param y_distances: sparse distance matrix (multilabel matrix with distances instead of binary indicators) :param base: base of the log function (must be smaller then one) :return: sparse matrix with the log values """ log_y_distances = y_distances.tocoo() log_y_distances.data = np.log(log_y_distances.data) / np.log(base) return log_y_distances.tocsr() def _create_tag_docs(self, y: csr_matrix) -> np.ndarray: """ Creates a mapping of each tags and their associated texts. :param y: sparse label matrix :return: array of shape (n_labels,) containing the indices of each text connected to a label """ self.classes_ = y.shape[1] if self.verbose: print('Sorting tag and docs') iterator = tqdm(y.T) else: iterator = y.T tag_doc_idx = list() for tag_vec in iterator: t = tag_vec.nonzero() pos_samples = tag_vec.nonzero()[1] # get indices of pos samples tag_doc_idx.append(pos_samples) return np.asarray(tag_doc_idx) def wmd(self, X_train, y_train, X_test, n_labels: int = 10, n_ev: int = 2): """ Compute docs similarity scores using the word mover distance (Kusner et. al, 2015) Since this is computationally expensive because every docs from test set has to be compared to each doc in train set the centroid optimatzion as described by Kusner et. al is used. :param X_train: :param X_test: :param n_labels: number of desired label to predict :param n_ev: factor for size of search space the search space for wdm which is precomputed will be of size n_labels * n_ev :return: """ # Compute and store mean doc embedding for each doc in train-set # => is done while fitting so we can use the self.tag_embeddings_ attribute # For each sample in X_test X_embeddings = [] # store mean doc embeddings for X_test for x_sample in X_test: x_sample = x_sample.split() # Compute mean doc embedding for test doc x_embeddings = [] for token in x_sample: try: word_embedding = self.wv_model_.wv[token] except KeyError: continue x_embeddings.append(word_embedding) X_embeddings.append(np.mean(x_embeddings, axis=0)) nn = NearestNeighbors(n_neighbors=n_labels * n_ev).fit(self.tag_embeddings_) X_nearest_tags = nn.kneighbors(X_embeddings)[1] # indices of most simiilar tag docs # recompute tag docs tag_doc_idx = self._create_tag_docs(y_train) tag_docs = [[] for _ in range(len(tag_doc_idx))] for doc_idx, entry in zip(tag_doc_idx, tag_docs): for doc_id in doc_idx: entry.extend(X_train[doc_id].split()) tag_docs = np.array(tag_docs) results = [] y_pred = lil_matrix((X_test.shape[0], y_train.shape[1]), dtype='int8') if self.verbose: iterator = tqdm(enumerate(zip(X_nearest_tags, X_test)), desc='Computing wdm distances') else: iterator = enumerate(zip(X_nearest_tags, X_test)) for sample_ind, (nearest_tag_doc_idx, x_sample) in iterator: # TODO fix typo in loop var wmd = WmdSimilarity(tag_docs[nearest_tag_doc_idx], self.wv_model_, num_best=n_labels) sim_mat = wmd[x_sample.split()] results.append(nearest_tag_doc_idx[[i[0] for i in sim_mat]]) y_pred[sample_ind, nearest_tag_doc_idx[[i[0] for i in sim_mat]]] = 1 return y_pred if __name__ == '__main__': X = np.array([ 'Das ist ein Auto', 'Das ist ein Kino', 'Das ist ein Buch', 'Das ist ein Zug', 'Das ist ein Flugzeug', 'Das ist ein Computer' ]) y = [ [1, 2], [1, 4], [4, 5, 6], [1, 2, 3], [2, 5, 1], [9, 7] ] from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) mb = MultiLabelBinarizer(sparse_output=True) y_train = mb.fit_transform(y_train) y_test = mb.transform(y_test) import pandas as pd from exmlc.preprocessing import clean_string from exmlc.metrics import sparse_average_precision_at_k df = pd.read_csv('~/ba_arbeit/BA_Code/data/Stiwa/df_5.csv').dropna(subset=['keywords', 'text']) df, df_remove = train_test_split(df, test_size=0.99, random_state=42) df.keywords = df.keywords.apply(lambda x: x.split('|')) df.text = df.text.apply(lambda x: clean_string(x, drop_stopwords=True)) df_train, df_test = train_test_split(df, test_size=0.2, random_state=42) X_train = df_train.text.to_numpy() X_test = df_test.text.to_numpy() mlb = MultiLabelBinarizer(sparse_output=True) y_train = mlb.fit_transform(df_train.keywords) y_test = mlb.transform(df_test.keywords) clf = Word2VecTagEmbeddingClassifier(embedding_dim=300, min_count=5, model='doc2vec', epochs=20, window_size=5, tfidf_weighting=False, verbose=True, n_jobs=4) clf.fit(X_train, y_train) #y_scores = clf.log_decision_function(X_test, n_labels=10) y_pred = clf.wmd(X_train, y_train, X_test) #print(sparse_average_precision_at_k(y_test, y_scores, k=3)) from sklearn.metrics import f1_score print(f1_score(y_test, y_pred, average='macro'))
UTF-8
Python
false
false
12,808
py
24
word_embeddings.py
23
0.575109
0.567458
0
324
38.530864
114
microsoft/Recognizers-Text
16,664,473,131,387
cb6fda1d47d8a8f6527da99ee15f62c227b6d93a
af02c1c94e1447adb32b35a9733a609294b286b8
/Python/libraries/recognizers-date-time/recognizers_date_time/date_time/german/time_extractor_config.py
8f16dbb335988d8dcb41a3de22498342862dcf63
[ "MIT" ]
permissive
https://github.com/microsoft/Recognizers-Text
1bb885d05ac5ea14abc6e07656220e03de9de8e5
8d2eeda04e4eeef00bb00b1ae886289c84a6b67f
refs/heads/master
2023-09-01T15:09:42.815524
2023-07-31T20:42:44
2023-07-31T20:42:44
88,544,417
1,188
324
MIT
false
2023-09-14T14:27:21
2017-04-17T19:45:47
2023-09-14T02:59:02
2023-09-14T14:26:25
50,939
1,593
426
190
C#
false
false
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from typing import List, Pattern from recognizers_text.utilities import RegExpUtility from ...resources.german_date_time import GermanDateTime from ..base_time import TimeExtractorConfiguration from ..utilities import DateTimeOptions from ..base_timezone import BaseTimeZoneExtractor from .timezone_extractor_config import GermanTimeZoneExtractorConfiguration class GermanTimeExtractorConfiguration(TimeExtractorConfiguration): @property def time_zone_extractor(self): return self._time_zone_extractor @property def time_regex_list(self) -> List[Pattern]: return self._time_regex_list @property def at_regex(self) -> Pattern: return self._at_regex @property def ish_regex(self) -> Pattern: return self._ish_regex @property def time_before_after_regex(self) -> Pattern: return self._time_before_after_regex def __init__(self): super().__init__() self._time_regex_list: List[Pattern] = GermanTimeExtractorConfiguration.get_time_regex_list( ) self._at_regex: Pattern = RegExpUtility.get_safe_reg_exp( GermanDateTime.AtRegex) self._ish_regex: Pattern = RegExpUtility.get_safe_reg_exp( GermanDateTime.IshRegex) self._time_before_after_regex: Pattern = RegExpUtility.get_safe_reg_exp( GermanDateTime.TimeBeforeAfterRegex) self._options = DateTimeOptions.NONE self._time_zone_extractor = BaseTimeZoneExtractor( GermanTimeZoneExtractorConfiguration()) @staticmethod def get_time_regex_list() -> List[Pattern]: return [ RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex1), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex2), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex3), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex4), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex5), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex6), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex7), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex8), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex9), RegExpUtility.get_safe_reg_exp(GermanDateTime.TimeRegex10), RegExpUtility.get_safe_reg_exp(GermanDateTime.ConnectNumRegex) ]
UTF-8
Python
false
false
2,525
py
1,927
time_extractor_config.py
1,013
0.69901
0.694653
0
63
39.079365
100
kannan2796/Academic-Projects
17,910,013,636,390
c805ff1a6b37a2fc19fbae81fc41f14d37f3de2b
b7ea3e54b911be16766eb1cd00c7af06b8d0f093
/Credit card Defaulter/SVM - Final2.py
cd24cabbd6867da083a1a893aa6b71af28ec9cd0
[]
no_license
https://github.com/kannan2796/Academic-Projects
8ba72819ffb5b40af8014457732a8f5f3e5117ef
6af3e7692152d30f96d9e569b67f8ffbd88e091d
refs/heads/master
2021-05-15T20:54:56.626678
2018-02-02T04:30:29
2018-02-02T04:30:29
107,909,916
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# changing the directory import os print (os.getcwd()) # see where you are os.chdir(r'C:\Users\iamka\Desktop\Quarter 5\Python\Final project') # KANNAN # CREDIT CARD DEFAULT PREDICTION # MODEL : LOGISTIC REGRESSION # DATA : 12/04/2017 - PYTHON FINAL PRESENTATION # Libraries import pandas as pd import numpy as np import sklearn as sk # Load Data File df = pd.read_excel('default of credit card clients1.xlsx') # Transformation of columns #j='default payment next month' #df[j] = df[j].astype(int) #corr = {'asis':0, 'log':0, 'exp':0, 'sqrt':0, 'pow2':0} #for i in df.columns.tolist(): # if df.dtypes[i] != 'object': # corr['asis'] = abs(np.corrcoef(df[i], df[j])[1][0]) # if all((df[i]>=0)): # corr['log'] = abs(np.corrcoef(np.log(df[i] + 0.00001), df[j])[1][0]) # corr['sqrt'] = abs(np.corrcoef(np.sqrt(df[i] + 0.00001), df[j])[1][0]) # else: # corr['log'] = 0 # corr['sqrt'] = 0 # corr['exp'] = abs(np.corrcoef(np.exp(df[i]), df[j])[1][0]) # corr['pow2'] = abs(np.corrcoef(np.power(df[i],2), df[j])[1][0]) # if max(corr,key=corr.get) == 'asis': # df[i]=df[i] # print 'asis:',i # elif max(corr,key=corr.get) == 'log': # df[i]=abs(np.log(df[i])) # print 'log',i # elif max(corr,key=corr.get) == 'sqrt': # df[i]=np.sqrt(df[i]) # print 'sqrt',i # elif max(corr,key=corr.get) == 'exp': # df[i]=abs(np.exp(df[i])) # print 'exp',i # else: # print 'power',i # df[i]=np.power(df[i],2) # # #df1= pd.DataFrame(df) #df1=df1.replace([np.inf, -np.inf], np.nan) # replace all infinite values with NA values #df1=df1.dropna() # drop the row if any of the values is NA #df=df1 # Feature Extraction with RFE from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression # load data array = df.values X = array[:,0:23] Y = array[:,-1] # feature extraction model = LogisticRegression() rfe = RFE(model, 7) # Selecting top 9 variables from df fit = rfe.fit(X, Y) print("Num Features: %d") % fit.n_features_ print("Selected Features: %s") % fit.support_ print("Feature Ranking: %s") % fit.ranking_ a=fit.ranking_ # Dropping columns based on variable selection df.drop(df.columns[[0,2,4,8,9,10,11,12,13,14,15,16,19,20,21,22]], axis=1, inplace=True) # Splitting the predictor and target variable x1 = df.values #returns a numpy array X = x1[:,0:6] Y=x1[:,-1] # Scaling the filtered columns from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) rescaledX = scaler.fit_transform(X) df1 = pd.DataFrame(rescaledX) # summarize transformed data # Assigning Values to X & Y after data transformation X =df1.iloc[:,0:6] Y =df.iloc[:,-1] # Splitting Data set into Train and Test from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X,Y) # Create SVM classification object from sklearn import svm model = svm.SVC(kernel='rbf', C=100, gamma=10) # tune model by using kernel='linear', C=1,10, gamma=0.2,10,100,1000) model.fit(X_train, Y_train) #Model created using train data model.score(X_test, Y_test) #Model Accuracy #Predict Output predicted= model.predict(X_test) # Confusion Matrix, Accuracy & Classification Report from sklearn.metrics import confusion_matrix, accuracy_score,classification_report cnf_matrix = confusion_matrix(Y_test,predicted) # Confusion matrix to calculate Precision, Recall print(classification_report(Y_test,predicted)) print(accuracy_score(Y_test,predicted)) # Performing Cross Validation from sklearn.model_selection import cross_val_score cross= cross_val_score(model,X,Y,cv=5) # for performing Cross validation # Runs for atleat 5min
UTF-8
Python
false
false
4,153
py
16
SVM - Final2.py
14
0.607513
0.579099
0
122
32.057377
116
adamlehenbauer/cliptwit
14,714,557,984,293
72c278f8cc33869a6b4203083c8ad4c673683ed8
d89403011736904818e7f1826a3626b0465b7cee
/clip.py
70fdefa8b5c63b3484078c51e58e47c740321616
[]
no_license
https://github.com/adamlehenbauer/cliptwit
2c64779d387ee830648f5e1c4a717d3484136d65
6e5e1ca43be81a23064f623077cabf9b9a356921
refs/heads/master
2018-12-29T08:23:32.673470
2011-03-03T20:05:38
2011-03-03T20:05:38
1,436,393
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python import pygtk pygtk.require('2.0') import gtk import sys import tweepy from local_keys import * def tweet(message): auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_KEY, ACCESS_SECRET) api = tweepy.API(auth) result = api.update_status(message) return result if __name__ == '__main__': f = open('/tmp/clip.log', 'a') f.write("running clip\n") message = gtk.clipboard_get().wait_for_text() if len(message) > 140: message = message[0:140] f.write("message to post is: %s\n" % message) result = tweet(message) f.write('result: ' + str(result) + "\n") f.close()
UTF-8
Python
false
false
688
py
3
clip.py
1
0.627907
0.614826
0
31
21.193548
61
BrunnerLivio/mk-deps
18,159,121,741,909
50117994335d20e4aadfce73f9107e62150b8fef
93edf7de74b31e64ac8b13ae463ccab406022e78
/mkdeps/cli.py
f270046b05396fbef57c1d40e0cfd746567b557a
[ "Apache-2.0" ]
permissive
https://github.com/BrunnerLivio/mk-deps
faf9006ea9777959b1d4b1eaaaf625961deb9c29
c5a0ea59ae77265a80cff4a85617f619c6c42828
refs/heads/master
2021-09-15T23:58:30.081482
2018-06-13T10:19:56
2018-06-13T10:19:56
84,289,493
4
1
null
null
null
null
null
null
null
null
null
null
null
null
null
""" `mk-deps` - Cli tool for installing runtime dependencies of a debian package :copyright: (c) by Livio Brunner :license: See LICENESE for details """ import sys import logging import click from .core import install_dependencies, print_version from .exit_status import ExitStatus @click.group() @click.option("--version", count=True, default=False, help="Show version and copyright information") def cli(version): """ Install runtime dependencies of a debian package """ if version: print_version() @cli.command() @click.option("--package", help="Installs just the given package from the given control file") @click.option("--dry-run", count=True, default=False, help="Run the command without actually installing packages") @click.argument("control_file") def install(package, dry_run, control_file): """ Install runtime-dependencies a debian package """ exit_status = ExitStatus.SUCCESS print("\033[94mInstalling runtime dependencies..\033[0m") exit_status = install_dependencies(control_file, package, dry_run) print("\033[92mDone!\033[0m") sys.exit(exit_status)
UTF-8
Python
false
false
1,240
py
14
cli.py
8
0.656452
0.641935
0
45
26.555556
81
0Azore/Coral-Screen-Lib
7,842,610,332,090
a3f81262c7a01fe4f5f3e220e8ba3c8f78215e00
75897dee7df71878e2b58ab7b4fc234d5fde2ea7
/lib/python3.7/dist-packages/adafruit_blinka/board/coral_edge_tpu.py
42e88962ccad9ed8140795db1eaabfedc5d2c705
[]
no_license
https://github.com/0Azore/Coral-Screen-Lib
b7ed8612ab0d3ab4bfdda7548c9f266927699c30
667ded719b55d516b28b56cb839e098a5832147c
refs/heads/master
2022-05-20T11:40:25.024807
2020-04-16T04:02:48
2020-04-16T04:02:48
256,094,894
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Pin definitions for the Coral Edge TPU Dev board.""" from adafruit_blinka.microcontroller.nxp_imx8m import pin UART1_RXD = pin.UART1_RXD UART1_TXD = pin.UART1_TXD SDA = pin.I2C2_SDA SCL = pin.I2C2_SCL PWM1 = pin.PWM1 PWM2 = pin.PWM2 PWM3 = pin.PWM3 GPIO_P22 = pin.GPIO22 GPIO_P13 = pin.GPIO6 GPIO_P16 = pin.GPIO73 GPIO_P18 = pin.GPIO138 GPIO_P29 = pin.GPIO7 GPIO_P31 = pin.GPIO8 GPIO_P36 = pin.GPIO141 GPIO_P37 = pin.GPIO77 MISO = pin.ECSPI1_MISO MOSI = pin.ECSPI1_MOSI SCLK = pin.ECSPI1_SCLK SCK = pin.ECSPI1_SCLK SS0 = pin.ECSPI1_SS0
UTF-8
Python
false
false
546
py
3
coral_edge_tpu.py
2
0.725275
0.628205
0
28
18.464286
57
DrFirestream/Tabaqui
8,684,423,876,053
859de5526387de2b0eb00146d766243d45674b65
4ac11b3ac16e8ede6075b7da7008b6c63aab2788
/script.py
103b536a86570bdfa2139af92d74a32e9fbfda4c
[ "MIT" ]
permissive
https://github.com/DrFirestream/Tabaqui
59faa185db7fc030dcb9e8278441e3a9bf9413af
dad4fe2b3dcf01195bac330de509663ea2bd6e54
refs/heads/master
2022-12-24T15:20:27.472475
2020-09-19T21:22:22
2020-09-19T21:22:22
296,133,707
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters from collections import defaultdict, deque import random import boto3 import botocore import os import json import requests aws_key = os.environ['AWS_ACCESS_KEY_ID'] aws_secret_key = os.environ['AWS_SECRET_ACCESS_KEY'] telegram_token = os.environ['TELEGRAM_TOKEN'] server_url = os.environ['SERVER_URL'] users = json.loads(os.environ['CHAT_USERS']) class GPTBot: def __init__(self, max_len = 5): self.updater = Updater(telegram_token, use_context = True) self.messages = defaultdict(lambda: deque(maxlen=max_len)) dp = self.updater.dispatcher dp.add_handler(CommandHandler('start',self.start)) dp.add_handler(CommandHandler('whatabout',self.whatabout)) dp.add_handler(MessageHandler(Filters.text & (~Filters.command),self.on_message)) def start(self, update, context): context.bot.send_message(update.message.chat_id, 'Usage: just write something then write /whatabout') def on_message(self, update, context): if not update or not update.message or not update.message.chat_id or not update.message.text or not update.message.from_user: return msg = self.messages[update.message.chat_id] userm = update.message.from_user user = users.get(userm.first_name + ' ' + userm.last_name, None) if user and update.message.text: msg.append(user + ': "' + update.message.text + '"\n') else: print(userm) def whatabout(self, update, context): chat_id = update.message.chat_id msgs = self.messages[chat_id] ruser = random.choice(list(users.values())) if not msgs: text = '"Дом мой пуст"' else: cfg = botocore.config.Config(retries={'max_attempts': 0}, read_timeout=360, connect_timeout=360, region_name="eu-central-1" ) client = boto3.client('lambda', config=cfg, region_name='eu-central-1', aws_access_key_id=aws_key, aws_secret_access_key=aws_secret_key) payload={"Prompt": ''.join(msgs) + ruser + ': "', "Temperature": 0.9, "NQuotes": 1} response = client.invoke(FunctionName = 'tabaqui_response', InvocationType = 'RequestResponse', LogType = 'Tail', Payload = json.dumps(payload)) dictj = json.loads(response['Payload'].read().decode()) text = dictj['Response'] text = [s for s in text.split('"') if len(s) > 0][:1] context.bot.send_message(chat_id, text[0] if text and text[0] else 'Акела промахнулся') def main(): r = requests.get(url = 'https://api.telegram.org/bot%s/setWebHook'%(telegram_token)) bot = GPTBot() bot.updater.start_polling() bot.updater.idle() r = requests.get(url = 'https://api.telegram.org/bot%s/setWebHook?url=%s'%(telegram_token, server_url)) if __name__ == '__main__': main()
UTF-8
Python
false
false
2,986
py
4
script.py
2
0.635135
0.628716
0
63
44.984127
156
Kamik423/advent-of-code-2020
6,133,213,332,761
142df6d51595bfb4d28a8eee6708390624d9cff0
5dd7af5235148ca22df8ace91a820cc5117671f5
/07_alternate.py
185c5de6556791c33c420f94514fb60b6717de45
[]
no_license
https://github.com/Kamik423/advent-of-code-2020
fc5a6745049ead3923428119eb3bec23dc259769
dd9335bf961f28d9746a016f4766d90791b478c8
refs/heads/main
2023-02-14T16:05:27.514571
2020-12-27T11:52:53
2020-12-27T11:52:53
317,509,326
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 from __future__ import annotations from typing import Dict, List, Tuple import aoc import regex from cached_property import cached_property class Graph: rules: Dict[str, Rule] = {} def __init__(self, description: str): for line in description.split("\n"): rule = Rule(line, self) self.rules[rule.color] = rule class Rule: children_specs: Dict[str, int] @cached_property def children(self) -> List[Tuple[Rule, 1]]: return [ (self.graph.rules[color], count) for color, count in self.children_specs.items() ] @cached_property def contains_shiny_gold(self) -> bool: return any( child.color == "shiny gold" or child.contains_shiny_gold for child, _ in self.children ) @cached_property def contained_bags(self) -> int: return sum( [count * (child.contained_bags + 1) for child, count in self.children] ) color: str graph: Graph def __init__(self, line: str, graph: Graph): self.graph = Graph match = regex.fullmatch( r"^([a-z ]+?) bags contain (?:(no|\d+) ([a-z ]+?) bags?(?:\.$|, ))+", line, ) self.color = match[1] self.children_specs = {} for amount, color in zip(match.captures(2), match.captures(3)): if amount not in ["no", "0"]: self.children_specs[color] = int(amount) def main() -> None: graph = Graph(aoc.get_str(7).strip()) print(len([rule for rule in graph.rules.values() if rule.contains_shiny_gold])) print(graph.rules["shiny gold"].contained_bags) if __name__ == "__main__": main()
UTF-8
Python
false
false
1,734
py
26
07_alternate.py
24
0.564591
0.559977
0
66
25.272727
83
elchuzade/racing-game-ai-dqn
16,535,624,131,006
d2ae2abbf763af1de9720c9f16d19ba403b1ed16
cb6adaeee38183fc06c4eb89c235ef1647fabff3
/helpers/utils.py
990abda70424e0485ea8d56479873840b0602d68
[]
no_license
https://github.com/elchuzade/racing-game-ai-dqn
d8ff905af6064e852d92508590ffc538d2873067
c0fcb6c0cb355fadd870ac642dfff7efadb356d3
refs/heads/master
2020-12-06T17:01:51.002830
2020-01-09T11:54:25
2020-01-09T11:54:25
232,513,130
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from constants import Constants from helpers.core import * import random import pygame import numpy as np def map_cars_to_state(cars, my_car): my_position = find_my_position(my_car) lines = map_cars_to_lines(cars, my_car) all_distances = find_all_distances(lines) state = [my_position, all_distances[0], all_distances[1], all_distances[2]] return state def find_all_distances(lines): # Returns an array of 3 numbers representing distances to the nearest cars on each road line all_distances = [] distance_0 = find_closest_car(lines, 0) all_distances.append(distance_0) distance_1 = find_closest_car(lines, 1) all_distances.append(distance_1) distance_2 = find_closest_car(lines, 2) all_distances.append(distance_2) return all_distances def find_my_position(my_car): # returns index of a line my car is at (0 or 1 or 2) return int(my_car.x // Constants.LINE_WIDTH.value) def map_cars_to_lines(cars, my_car): # lines will represent 3 arrays corresponsding to 3 vertical road lines lines = [[0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]] for car in cars: # 2 is a label for enemy cars coord_x = car.x // Constants.LINE_WIDTH.value coord_y = car.y // Constants.LINE_WIDTH.value lines[int(coord_x)][int(coord_y)] = 2 # 1 is a label for my car my_coord_x = my_car.x // Constants.LINE_WIDTH.value my_coord_y = my_car.y // Constants.LINE_WIDTH.value lines[int(my_coord_x)][int(my_coord_y)] = 1 return lines def check_if_lost(cars, my_car): # For all cars on map check if x and y coordinates are equal to my_car's for car in cars: if car.x == my_car.x and car.y == my_car.y: return True return False def find_closest_car(lines, index): # Find and return the distance to the first car on a line given by index count = -1 # Loops through each line and finds the number 2 which represents the enemy car for i in reversed(lines[index]): # When found an enemy car returns a distance from my car to enemy car if i == 2: return count count += 1 # If there are no cars on the line, returns max possible number ie length of the line return count def deactivate_cars(cars): # deactivate_cars checks if a car is outside of map boundaries and deactivates it for car in cars: # If the enemy_car has reached the bottom of any road line, deactivate it if car.y > Constants.HEIGHT.value - Constants.MARGIN.value - Constants.CAR_HEIGHT.value/2: car.active = False return cars def move_cars(cars): # move_cars calls move method of each car in cars state if the car is active for car in cars: if car.active == True: car.move() return cars def move_my_car(my_car, action): if action == 0: my_car.move("left") elif action == 2: my_car.move("right") elif action == 1: my_car.move("up") return my_car def perform_action(action, cars, my_car): cars = move_cars(cars) my_car = move_my_car(my_car, action) cars = deactivate_cars(cars) for car in cars: if car.active == False: cars.remove(car) return cars, my_car def add_new_car(cars): # add_new_car will add a new enemy_car on the top level of one of the lines picked randomly index = random.randint(0, 2) # Y coordinate of new cars y = Constants.MARGIN.value + Constants.CAR_HEIGHT.value/2 if index == 0: # Center of first line x = Constants.MARGIN.value + Constants.CAR_WIDTH.value/2 elif index == 1: # Center of second line x = Constants.MARGIN.value + Constants.CAR_WIDTH.value/2 + Constants.LINE_WIDTH.value elif index == 2: # Center of third line x = Constants.MARGIN.value + Constants.CAR_WIDTH.value / \ 2 + Constants.LINE_WIDTH.value*2 car = Enemy_car(x, y) cars.append(car) return cars def initialize_screen(): # Size is the game screen size in pixels SIZE = width, height = Constants.WIDTH.value, Constants.HEIGHT.value SCREEN = pygame.display.set_mode(SIZE) pygame.display.flip() return SCREEN def draw_cars(screen, cars): # draw_cars will draw each car from cars array on screen using its icon for car in cars: screen.blit( Constants.ENEMY_CAR_ICON.value, (car.x - car.width/2, car.y - car.height/2)) def draw_my_car(screen, my_car): # draw_my_car will draw my car on screen using its icon screen.blit(Constants.MY_CAR_ICON.value, (my_car.x - my_car.width / 2, my_car.y - my_car.height/2)) def draw_vertical_lines(screen): # draw left vertical line to separate roads pygame.draw.rect(screen, Constants.GREY.value, (Constants.LINE_WIDTH.value - Constants.ROAD_LINE_WIDTH.value / 2, 0, Constants.ROAD_LINE_WIDTH.value, Constants.HEIGHT.value)) # draw right vertical line to separate roads pygame.draw.rect(screen, Constants.GREY.value, (Constants.LINE_WIDTH.value * 2 - Constants.ROAD_LINE_WIDTH.value / 2, 0, Constants.ROAD_LINE_WIDTH.value, Constants.HEIGHT.value)) def ai_model(model, cars, my_car): # AI will put state into model, predict the action and perform it # Build input array for ai model input_state = map_cars_to_state(cars, my_car) # Pass input through model to find action action = predict(input_state, model) lost = check_if_lost(cars, my_car) if lost: print("Ops! Your model has crashed!") # Perform the action suggested by ai model perform_action(action, cars, my_car) def predict(input_array, model): # Puts input state into neural network and returns an action predicted by model # Convert array into model input format input_state = np.array([input_array]) # Pass input through model to get prediction action = model.predict_classes(input_state) return action
UTF-8
Python
false
false
6,124
py
6
utils.py
4
0.644024
0.632103
0
185
32.102703
153
minghao2016/networksize
13,486,197,333,027
ec00469f1fa2380c9e1f26e8f3986e48bb843dca
1d9723eb409dfaaec56d5dabcce35833142e08ef
/networksize/__init__.py
e668182846518894042074426718f5e389e09fd4
[]
no_license
https://github.com/minghao2016/networksize
67be4a60a55c5e0b4d57a5e60ff140b2bb44b2ba
786dbee016e3c69ee5b977ac45467aff4221a2aa
refs/heads/master
2021-04-30T18:05:40.477542
2015-08-27T19:59:29
2015-08-27T19:59:29
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from importer import * from experiment import * from crawler import * from graphtools import * from graphserver import *
UTF-8
Python
false
false
121
py
23
__init__.py
19
0.793388
0.793388
0
5
23.2
25
igwangsung/nomadgram
16,801,912,067,715
8a3b88840b2e60d0a1ab42ba64095c55e431f334
ad4839bc68f3985f11296ed423cca6c319f6e02b
/nomad_coder/images/views.py
5f13e1a4c6deff035303ca4271208785e1fdfb0b
[ "MIT" ]
permissive
https://github.com/igwangsung/nomadgram
5872820a1e699a5680a047ac294397d2e31a580b
ec902cc3820f8b9ff082dd782a56ebef4de8c2e6
refs/heads/master
2023-02-05T09:06:21.736680
2019-03-19T17:58:19
2019-03-19T17:58:19
153,406,125
0
0
MIT
false
2023-01-26T05:38:21
2018-10-17T06:26:28
2022-12-03T01:41:03
2023-01-26T05:38:17
5,840
1
0
29
JavaScript
false
false
#from django.shortcuts import render #For using Template Concept of Django from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from . import models, serializers from nomad_coder.notifications import views as notification_views from nomad_coder.users import models as user_models from nomad_coder.users import serializers as user_serializers class ListAllImages(APIView): def get(self, request, format=None): #form=None means returning JSON all_images = models.Image.objects.all() serializer = serializers.ImageSerializer(all_images, many=True, context={'request':request}) #serializer is Class return Response(data=serializer.data) #data 쓰는거 잊지말기!! class ListAllComments(APIView): def get(self, request, format=None): all_comments = models.Comment.objects.all() serializer = serializers.CommentSerializer(all_comments, many=True) return Response(data=serializer.data) class ListAllLikes(APIView): def get(self, request, format=None): all_likes = models.Like.objects.all() serializer = serializers.LikeSerializer(all_likes, many=True) return Response(data=serializer.data) class Images(APIView): def get(self, request, format=None): user = request.user following_users = user.following.all() image_list = [] for following_user in following_users: user_images = following_user.images.all()[:2] for image in user_images: image_list.append(image) my_images = user.images.all()[:2] for image in my_images: image_list.append(image) #There are some bugs bc of created_at, updated_at Field #InLine Function --> lambda sorted_list = sorted(image_list,key=lambda image: image.created_at, reverse=True) #context 전달하기 시리얼라이즈에 view에 있는 정보 전달하기 serializer = serializers.ImageSerializer(sorted_list, many=True, context={'request':request}) return Response(data=serializer.data) def post(self, request, format=None): user = request.user serializer = serializers.InputImageSerializer(data=request.data) if serializer.is_valid(): serializer.save(creator=user) return Response(data=serializer.data, status=status.HTTP_201_CREATED) else: return Response(data=serializer.errors, status=status.HTTP_400_BAD_REQUEST) class ImageDetail(APIView): def find_own_image(self, image_id, user): try: image = models.Image.objects.get(id=image_id, creator=user) return image except models.Image.DoesNotExist: return None def get(self, request, image_id, format=None): user = request.user try: image = models.Image.objects.get(id=image_id) except models.Image.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) #Is Single so, I don't need 'many=True' serializer = serializers.ImageSerializer(image, context={'request':request}) return Response(data=serializer.data, status=status.HTTP_200_OK) def put(self, request, image_id, format=None): user = request.user image = self.find_own_image(image_id, user) if image is None: return Response(status=status.HTTP_401_UNAUTHORIZED) #부분 update 할때 partial 속성 이용하기 serializer = serializers.InputImageSerializer(image, data=request.data, partial=True) if serializer.is_valid(): serializer.save(creator=user) return Response(data=serializer.data, status=status.HTTP_204_NO_CONTENT) else: return Response(data=serializer.error, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, image_id, format=True): user = request.user image = self.find_own_image(image_id, user) if image is None: return Response(status=status.HTTP_400_BAD_REQUEST) image.delete() return Response(status=status.HTTP_204_NO_CONTENT) class LikeImage(APIView): #updated_at, created_at is datetime.datetime(), tzinfo=<UTC> #query 안의 데이터들을 추출할수있고 볼수있다!!!!! def get(self, request, image_id, format=None): likes = models.Like.objects.filter(image__id=image_id) like_creator_ids = likes.values('creator_id') # DB objects makes automatically creator_id...? users = user_models.User.objects.filter(id__in=like_creator_ids) #, context={"request":request} 이게 무슨 의미일까? serializer = user_serializers.ListUserSerializer(users, many=True, context={"request":request}) return Response(data=serializer.data, status=status.HTTP_200_OK) def post(self, request, image_id, format=None): user = request.user #create notification for like try: found_image = models.Image.objects.get(id=image_id) except models.Image.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) try: preexisting_like = models.Like.objects.get( creator=user, image=found_image ) return Response(status=status.HTTP_304_NOT_MODIFIED) except models.Like.DoesNotExist: new_like = models.Like.objects.create( creator=user, image=found_image ) new_like.save() notification_views.create_notification(creator=user, to=found_image.creator, type='like', image=found_image) return Response(status=status.HTTP_201_CREATED) # class UnLikeImage(APIView): # def delete(self, request, image_id, format=None): # user = request.user # try: # found_image = models.Image.objects.get(id=image_id) # except models.Image.DoesNotExist: # return Response(status=status.HTTP_404_NOT_FOUND) # try: # preexisting_like = models.Like.objects.get( # creator=user, # image=found_image # ) # preexisting_like.delete() # return Response(status=status.HTTP_204_NO_CONTENT) # except models.Like.DoesNotExist: # return Response(status=status.HTTP_304_NOT_MODIFIED) class UnLikeImage(APIView): def delete(self, request, image_id, format=None): user = request.user try: preexisiting_like = models.Like.objects.get( creator=user, image__id=image_id ) preexisiting_like.delete() return Response(status=status.HTTP_204_NO_CONTENT) except models.Like.DoesNotExist: return Response(status=status.HTTP_304_NOT_MODIFIED) class CommentOnImage(APIView): def post(self, request, image_id, format=None): user = request.user try: found_image = models.Image.objects.get(id=image_id) except models.Image.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) serializer = serializers.CommentSerializer(data=request.data) if serializer.is_valid(): serializer.save(creator=user, image=found_image) notification_views.create_notification(creator=user, to=found_image.creator, type='comment', image=found_image, comment=serializer.data["message"]) return Response(data=serializer.data, status=status.HTTP_201_CREATED) #Response Django REST 에서 보이는거 else: return Response(data=serializer.errors, status=status.HTTP_400_BAD_REQUEST) class Comment(APIView): def delete(self, request, comment_id, format=None): user = request.user #create notification for Comment try: comment = models.Comment.objects.get(id=comment_id, creator=user) comment.delete() return Response(status=status.HTTP_204_NO_CONTENT) except models.Comment.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) #timezone.now() 공부하기 class ModerateComment(APIView): def delete(self, request, image_id, comment_id, format=None): user = request.user #Comment Model has the Image Attribute try: comment_to_delete = models.Comment.objects.get(id=comment_id, image__id=image_id, image__creator=user) comment_to_delete.delete() except models.Comment.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) return Response(status=status.HTTP_204_NO_CONTENT) class Search(APIView): def get(self, request, format=None): hashtags = request.query_params.get('hashtags', None) if hashtags is not None: hashtags = hashtags.split(',') images = models.Image.objects.filter(tags__name__in=hashtags).distinct() serializer = serializers.CountImageSerializer(images, many=True, context={'request':request}) return Response(data=serializer.data, status=status.HTTP_200_OK) else: images = models.Image.objects.all()[:20]#전체 URL을 볼수 있도록!! serializer = serializers.CountImageSerializer(images, many=True, context={'request':request}) return Response(data=serializer.data, status=status.HTTP_200_OK)
UTF-8
Python
false
false
9,784
py
12
views.py
7
0.632066
0.623234
0
311
29.913183
159
Captricity/cappa
3,994,319,601,085
bfe9a55885c4bcd5962e6b006f83a951aa820ab6
94cd09a01b3f5ae57bc70802f3319b08fdf8a999
/setup.py
1d0f27d168011f317f2724bfc8442b0ece913da0
[ "MIT" ]
permissive
https://github.com/Captricity/cappa
922243179939e886efad58e05f42fb265e080c92
6fa541e145c7fac7c499a63f7625be0dc8d3ea5d
refs/heads/master
2022-11-12T23:21:23.177751
2020-11-18T19:16:24
2020-11-18T19:16:24
28,253,428
3
1
MIT
false
2022-10-28T17:37:02
2014-12-20T01:51:48
2020-11-18T19:16:28
2022-10-28T17:36:48
95
2
1
8
Python
false
false
from setuptools import setup, find_packages setup( name="cappa", version="0.19.0", description="Package installer for Captricity. Supports apt-get, pip, bower, npm, and yarn.", author="Yoriyasu Yano", author_email="yorinasub17@gmail.com", packages=find_packages(), scripts=["scripts/cappa"], install_requires=open("requirements.txt").read().split(), tests_requires=open("test_requirements.txt").read().split(), test_suite='tests' )
UTF-8
Python
false
false
474
py
57
setup.py
35
0.681435
0.668776
0
15
30.6
97
diaojingwen/pytest1
16,716,012,758,875
4d03cf7940982c46c0703451671391d9fe1a650a
7c3fd970bed4d234bf1b990b1e93296c9c321717
/hello.py
0c564def238e2b5f72a7830527df78c8f25894b3
[]
no_license
https://github.com/diaojingwen/pytest1
ac0b76f2ae11c37714457ed347416833d99efd66
b2f478b3b1a1633d09137373885ebed32e78c84e
refs/heads/master
2023-01-19T14:42:45.468574
2020-11-26T08:09:00
2020-11-26T08:09:00
316,162,567
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import allure import pytest def inc(x): return x + 1 def test_answer(): assert inc(3) == 4 class Testa: def test_demo_1(self): assert inc(1) == 3 def test_demo_2(self): assert not inc(2) != 4 @pytest.mark.parameterize("data,expect",[ (1,2), (3,4), (10.11), (14,17) ]) def test_data(self,data,expect): allure.attach("this is test",attachment_type=allure.attachment_type.TEXT) allure.attach('<img src="https://img-blog.csdnimg.cn/2020102316024217.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzYyMTkx,size_16,color_FFFFFF,t_70#pic_center" alt="在这里插入图片描述">', attachment_type=allure.attachment_type.HTML) assert inc(data) == expect def teardown(self): print("teardown")
UTF-8
Python
false
false
908
py
4
hello.py
1
0.614607
0.55618
0
33
26
253
eLOPy/Asteroids
1,795,296,348,209
81a386485e1be3e99aabf733f999fdd2d59c38b7
c19020cb7abac2ff32a07f2844bd9ec1061914b1
/Game.py
460e97e6dbfec0bd90ca4c6eefa428f17b31d2d3
[]
no_license
https://github.com/eLOPy/Asteroids
00b7fa9c367f0f37c6fa244e3373bc6cda56443e
68f05e96d0a053ac9f6fd06e691a6512b79f44cf
refs/heads/master
2018-01-07T11:44:36.180266
2015-08-14T01:24:54
2015-08-14T01:24:54
40,689,409
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
__author__ = 'Muneer' import Consts, pygame, random, GUI, Sound from game_objects.Asteroid import Asteroid from game_objects.Ship import Ship from game_objects.Item import Item from game_objects.Bullet import Bullet from game_objects.GameObjectManager import GameObjectManager class Game(): def __init__(self): self.score = 0 self.level = 1 # make the gui self.gui = GUI.GUI() # make the game object manager self.game_object_manager = GameObjectManager() # create the bullets temp_bullets = [] for index in range(Consts.MAX_BULLETS): temp_bullets.append(Bullet()) self.game_object_manager.add_game_object(temp_bullets[index]) # make a player self.player = Ship(Consts.CENTER, temp_bullets) self.game_object_manager.add_game_object(self.player) # spawn the asteroids self.spawn_asteroids() self.add_sounds() Sound.sound_manager.play_sound(Sound.sounds.begin) def reinit(self, deltaT): self.level = 1 self.score = 0 self.clear_everything_except_player() self.spawn_asteroids() self.player.reinit() self.game_object_manager.update(deltaT) def draw(self, screen): # clear the screen Consts.screen.fill(Consts.BLACK) # draw the game objects self.game_object_manager.draw(screen) # draw the ui self.draw_ui(screen) # flip the buffer pygame.display.flip() def update(self, deltaT): self.game_object_manager.update(deltaT) self.game_object_manager.collision_detection() self.game_logic(deltaT) self.split_hurt_asteroids() self.check_for_homing() def game_logic(self, deltaT): # if the player has died finish the game and restart if self.player.lives <= 0: self.show_end_screen() self.reinit(deltaT) # if there are no more asteroids advance the level if len(self.get_asteroids_remaining()) == 0: self.advance_level() def show_end_screen(self): self.gui.draw_text("You lost!",Consts.CENTER, Consts.screen) self.gui.draw_text("Score: " + str(self.score),(Consts.CENTER[0], Consts.CENTER[1]+50), Consts.screen) pygame.display.flip() pygame.time.delay(1500) def advance_level(self): self.level += 1 self.spawn_asteroids() self.player.reset_bullets() Sound.sound_manager.play_sound(Sound.sounds.begin) def spawn_asteroids(self): for index in range(0, self.level): self.game_object_manager.add_game_object(Asteroid(32, Consts.SCREENLENGTHS, self.player)) def clear_everything_except_player(self): for game_object in self.game_object_manager.game_objects: if not(isinstance(game_object,Ship) or isinstance(game_object, Bullet)): game_object.needs_removing = True def split_hurt_asteroids(self): # splits any asteroids that need splitting for go in self.game_object_manager.game_objects: if isinstance(go, Asteroid): if go.isHurt: self.increase_score(go.radius) if go.radius > 4: # if its big enough split it self.split_asteroid(go) if go.radius == 32: # chance an item drop when asteroid is 32 big self.chance_a_health_drop(go) else: # else just kill it go.needs_removing = True def split_asteroid(self, asteroid): for index in range(2): self.game_object_manager.add_game_object(Asteroid(asteroid.radius/2,Consts.SCREENLENGTHS, self.player, asteroid.position)) self.game_object_manager.remove_game_object(asteroid) def chance_a_health_drop(self, go): if random.randint(1,2) == 1: self.game_object_manager.add_game_object(Item(go.position)) def increase_score(self, amount): self.score += amount def get_asteroids_remaining(self): # Returns the amount of asteroids in the game asteroids = [] for game_object in self.game_object_manager.game_objects: if isinstance(game_object, Asteroid): asteroids.append(game_object) return asteroids def check_for_homing(self): small_count = 0 asteroids_in_game = self.get_asteroids_remaining() for asteroid in asteroids_in_game: if asteroid.radius == 4: small_count += 1 if small_count == len(asteroids_in_game): for asteroid in asteroids_in_game: asteroid.is_homing = True asteroid.target = self.player.position if Sound.sound_manager.sounds[Sound.sounds.homing].get_num_channels() == 0: Sound.sound_manager.play_sound(Sound.sounds.homing, 20) def add_sounds(self): Sound.sound_manager.add_sound(pygame.mixer.Sound("Sounds/start.wav")) Sound.sound_manager.add_sound(pygame.mixer.Sound("Sounds/shoot.wav")) Sound.sound_manager.add_sound(pygame.mixer.Sound("Sounds/asteroid_hurt.wav")) Sound.sound_manager.add_sound(pygame.mixer.Sound("Sounds/item_pickup.wav")) Sound.sound_manager.add_sound(pygame.mixer.Sound("Sounds/ship_thrusters2.wav")) Sound.sound_manager.add_sound(pygame.mixer.Sound("Sounds/homing_alarm.wav")) Sound.sound_manager.add_sound(pygame.mixer.Sound("Sounds/player_hurt.wav")) def draw_ui(self,screen): self.gui.draw_text("Level: " + str(self.level), (10,10), screen) #show the level top right self.gui.draw_text( "Asteroids Remaining: " + str(len(self.get_asteroids_remaining())) , (10, 40), screen) #show remaining asteroids - top right self.gui.draw_text("Score: " + str(self.score), (10, 70), screen) self.gui.draw_text("Lives: " + str(self.player.lives), (10, 100), screen) #show players health - top left
UTF-8
Python
false
false
6,315
py
14
Game.py
14
0.599367
0.591132
0
152
40.552632
134
jirikuncar/renku-gateway
7,602,092,116,520
7ffae633cc521565fbafc9388b6fe0ac8c3d829c
7d41460728007bc32bb7e33b35268ec18cd821d1
/app/config.py
7b2baea71a9f8d66def44f0c1eb6363b4d34d6e3
[ "Apache-2.0" ]
permissive
https://github.com/jirikuncar/renku-gateway
06f21c96638b08e9044c3889e7eec93896080be3
7e9882f48f7020d143d6ccdc8c7dfaa433fdebea
refs/heads/master
2020-04-11T02:51:01.890298
2018-11-27T14:51:55
2018-11-28T22:11:16
161,458,507
0
0
Apache-2.0
true
2018-12-12T08:45:04
2018-12-12T08:45:03
2018-11-28T22:11:19
2018-12-11T15:56:47
239
0
0
0
null
false
null
# -*- coding: utf-8 -*- # # Copyright 2018 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Global settings.""" import json import os import re import requests import sys from time import sleep from logging import getLogger from collections import OrderedDict logger = getLogger(__name__) config = dict() config['HOST_NAME'] = os.environ.get('HOST_NAME', 'http://gateway.renku.build') if 'GATEWAY_SECRET_KEY' not in os.environ and "pytest" not in sys.modules: logger.critical('The environment variable GATEWAY_SECRET_KEY is not set. It is mandatory for securely signing session cookie.') exit(2) config['SECRET_KEY'] = os.environ.get('GATEWAY_SECRET_KEY') # We need to specify that the cookie is valid for all .renku.build subdomains if 'gateway.renku.build' in config['HOST_NAME']: config['SESSION_COOKIE_DOMAIN'] = '.'.join([''] + config['HOST_NAME'].split('.')[1:]) else: config['SESSION_COOKIE_DOMAIN'] = None config['SESSION_COOKIE_HTTPONLY'] = True config['SESSION_COOKIE_SECURE'] = config['HOST_NAME'].startswith('https') config['ALLOW_ORIGIN'] = os.environ.get('GATEWAY_ALLOW_ORIGIN', "").split(',') config['REDIS_HOST'] = os.environ.get('GATEWAY_REDIS_HOST', 'renku-gw-redis') config['RENKU_ENDPOINT'] = os.environ.get('RENKU_ENDPOINT', 'http://renku.build') config['GITLAB_URL'] = os.environ.get('GITLAB_URL', 'http://gitlab.renku.build') config['GITLAB_PASS'] = os.environ.get('GITLAB_PASS', 'dummy-secret') config['GITLAB_CLIENT_ID'] = os.environ.get('GITLAB_CLIENT_ID', 'renku-ui') config['GITLAB_CLIENT_SECRET'] = os.environ.get('GITLAB_CLIENT_SECRET', 'no-secret-needed') if 'GITLAB_CLIENT_SECRET' not in os.environ: logger.warning('The environment variable GITLAB_CLIENT_SECRET is not set. It is mandatory for Gitlab login.') config['JUPYTERHUB_URL'] = os.environ.get('JUPYTERHUB_URL', '{}/jupyterhub'.format(config['HOST_NAME'])) config['JUPYTERHUB_CLIENT_ID'] = os.environ.get('JUPYTERHUB_CLIENT_ID', 'gateway') config['JUPYTERHUB_CLIENT_SECRET'] = os.environ.get('JUPYTERHUB_CLIENT_SECRET', 'dummy-secret') if 'JUPYTERHUB_CLIENT_SECRET' not in os.environ: logger.warning('The environment variable JUPYTERHUB_CLIENT_SECRET is not set. It is mandatory for JupyterHub login.') config['OIDC_ISSUER'] = os.environ.get('KEYCLOAK_URL', 'http://keycloak.renku.build:8080') \ + '/auth/realms/Renku' config['OIDC_CLIENT_ID'] = os.environ.get('OIDC_CLIENT_ID', 'gateway') config['OIDC_CLIENT_SECRET'] = os.environ.get('OIDC_CLIENT_SECRET', 'dummy-secret') if 'OIDC_CLIENT_SECRET' not in os.environ: logger.warning('The environment variable OIDC_CLIENT_SECRET is not set. It is mandatory for OpenId-Connect login.') config['SERVICE_PREFIX'] = os.environ.get('GATEWAY_SERVICE_PREFIX', '/') # Get the public key of the OIDC provider to verify access- and refresh_tokens # TODO: The public key of the OIDC provider should go to the app context and be refreshed # TODO: regularly or whenever the validation of a token fails and the public key has not been # TODO: updated in a while. config['GATEWAY_ENDPOINT_CONFIG_FILE'] = os.environ.get('GATEWAY_ENDPOINT_CONFIG_FILE', 'endpoints.json') def load_config(): from . import app app.config['GATEWAY_ENDPOINT_CONFIG'] = {} try: with open(app.config['GATEWAY_ENDPOINT_CONFIG_FILE']) as f: c = json.load(f, object_pairs_hook=OrderedDict) for k, v in c.items(): app.config['GATEWAY_ENDPOINT_CONFIG'][re.compile(r"{}(?P<remaining>.*)".format(k))] = v except: logger.error("Error reading endpoints config file", exc_info=True) logger.debug(app.config['GATEWAY_ENDPOINT_CONFIG']) if "pytest" in sys.modules: okKey = True else: okKey = False attempts = 0 while attempts < 20 and not okKey: attempts += 1 try: raw_key = requests.get(config['OIDC_ISSUER']).json()['public_key'] config['OIDC_PUBLIC_KEY'] = '-----BEGIN PUBLIC KEY-----\n{}\n-----END PUBLIC KEY-----'.format(raw_key) okKey = True logger.info('Obtained public key from Keycloak.') except: logger.info('Could not get public key from Keycloak, trying again...') sleep(10) if not okKey: logger.info('Could not get public key from Keycloak, giving up.') exit(1)
UTF-8
Python
false
false
4,953
py
24
config.py
16
0.70291
0.698464
0
120
40.233333
131
adfinis-sygroup/freewvs-wrapper
9,337,258,923,283
793c1e5f8ca4165465f02b3f097953ec39cc7c64
44097dfffb147f89260f71630789ba2485e42ba2
/processResults.py
89109febcc95d308eacc7908d04b9dfb34efe5e5
[ "LicenseRef-scancode-unknown-license-reference", "CC0-1.0" ]
permissive
https://github.com/adfinis-sygroup/freewvs-wrapper
d19bc8b0a204cc02d42010da89d1651d6cb8a6fe
ef6f4a98a25923e1caf709886604d054d27908af
refs/heads/master
2021-01-11T05:40:47.501350
2019-12-18T12:18:00
2019-12-18T12:18:00
71,562,253
2
2
NOASSERTION
false
2019-12-18T12:18:02
2016-10-21T12:14:39
2019-12-17T16:22:48
2019-12-18T12:18:01
9
1
1
0
Python
false
false
# process freewvs results # # Parses the resulting xml into csv and sends it via email to subscribers. # All settings are in settings.py module. # # Usage: # ./freewvs -x path/to/hostings > vulnscan.xml && python processResults.py # # I recommand updating the freewvsdb/ dir or it won't work too long. You can # pass the output from `svn up` to this script as the first arg and it will be # included in the mail. # # Example: # update="$(svn up $install_dir/freewvsdb)" # python ./processResults.py "${update}" # # Please note this script is not trying to win a beauty contest, it was written # specifically to deal with the freewvs results. import csv import time import os import sys import re import settings from lxml import etree def parse_script_path(path, split): # make sure split keyword ends with a slash or the following split # won't make sense if not split.endswith('/'): split += '/' parts = path.partition(split) return parts[2].split('/', 1) def parse_result_xml(in_file, out_file): """Parse freewvs result xml into csv""" with open(out_file, 'w') as fds: header = ( 'appname', 'version', 'hosting', 'path', 'safeversion', 'vulninfo') writer = csv.writer(fds) writer.writerow(header) root = etree.parse(in_file) for app in root.iter('app'): # split directory into hosting name and relative path to script # directory hosting, path = parse_script_path( app.find('directory').text, settings.HOSTING_DIR ) appname = app.find('appname').text version = app.find('version').text hosting = hosting path = path safeversion = app.find('safeversion').text vulninfo = app.find('vulninfo').text row = appname, version, hosting, path, safeversion, vulninfo writer.writerow(row) def email_results(recipients, attachments, text_addon): """Send an email with attachment(s)""" from smtplib import SMTP from email.mime.text import MIMEText from email.MIMEMultipart import MIMEMultipart from email.MIMEBase import MIMEBase from email import Encoders import socket # scan results from <datetime> on <hostname> text = ( "Web vulnerability scan results from %s on %s." % ( time.strftime('%d.%m.%Y %H:%M'), socket.gethostname() ) ) if text_addon: text += '\n\n' + text_addon text += '\n\nPowered by freewvs and Adfinis SyGroup AG.' text += '\nhttps://wiki.adfinis-sygroup.ch/adsy/index.php/Freewvs' # build message msg = MIMEMultipart() msg['Subject'] = 'Vulnerability scan results %s' % time.strftime('%Y%m%d') msg['From'] = settings.SMTP_USER msg['To'] = ', '.join(recipients) msg.attach(MIMEText(text)) for fds in attachments: part = MIMEBase('application', 'octet-stream') part.set_payload(open(fds, 'rb').read()) Encoders.encode_base64(part) part.add_header( 'Content-Disposition', 'attachment; filename="%s"' % os.path.basename(fds) ) msg.attach(part) # send mail smtp = SMTP(settings.SMTP_HOST, settings.SMTP_PORT) smtp.starttls() if settings.SMTP_PASS: smtp.login(settings.SMTP_USER, settings.SMTP_PASS) smtp.sendmail(msg['From'], recipients, msg.as_string()) smtp.quit() # get output from `svn up` try: update_output = sys.argv[1] # get revision from update message match = re.search('revision (\d+)?', update_output) db_version = match.groups()[0] # there was an update if update_output.lower().find('updated') >= 0: update_msg = 'freewvsdb was automatically updated to revision %s' % ( db_version ) # no update else: update_msg = 'freewvsdb is up-to-date at revision %s' % db_version except: update_msg = 'Notice: freewvsdb updater is not working. ' \ 'This should be fixed!' # parse freewvs xml to csv parse_result_xml(settings.IN_FILE, settings.OUT_FILE) # notify subscribers and send csv as attachment email_results( recipients=settings.SUBSCRIBERS, attachments=[settings.OUT_FILE], text_addon=update_msg ) # log some infos print( "\n[%s] Vulnerability scan complete. Sent email." % time.strftime('%Y-%m-%d-%H:%M') ) print("Purged generated file %s" % settings.OUT_FILE) print(update_msg) print('Output from `svn update freewvsdb`:') print(update_output) os.remove(settings.OUT_FILE)
UTF-8
Python
false
false
4,618
py
5
processResults.py
3
0.631875
0.630359
0
153
29.183007
79
VivekSumanth/Code-Everyday
515,396,080,174
d7b4e1a5d7c2015062256595efc0213c63308d4d
5cf0343353f3f408f165ba3fd7c1e313265b7723
/june 20/19.py
a0ef850974a89ec35a0dcbaa080348419593478c
[]
no_license
https://github.com/VivekSumanth/Code-Everyday
8722876da8e1db5c541eb7d7266fceaba94ebcd0
f979abecd32491951d9c28c24aa9d28cad3792d7
refs/heads/master
2023-01-31T16:51:06.116364
2020-12-13T02:50:27
2020-12-13T02:50:27
264,581,622
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# date:12/06/20 # 19. Remove Nth Node From End of List # Medium # 3137 # 229 # Add to List # Share # Given a linked list, remove the n-th node from the end of list and return its head. # Example: # Given linked list: 1->2->3->4->5, and n = 2. # After removing the second node from the end, the linked list becomes 1->2->3->5. # Note: # Given n will always be valid. # Follow up: # Could you do this in one pass? # Accepted # Definition for singly-linked list. # class ListNode(object): # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution(object): def removeNthFromEnd(self, head, n): """ :type head: ListNode :type n: int :rtype: ListNode """ fast = head temp = head for i in range(n): fast = fast.next if fast == None: return head.next while(fast.next): temp = temp.next fast = fast.next temp.next = temp.next.next return head # Runtime: 16 ms, faster than 93.94% of Python online submissions for Remove Nth Node From End of List. # Memory Usage: 12.7 MB, less than 85.40% of Python online submissions for Remove Nth Node From End of List.
UTF-8
Python
false
false
1,293
py
140
19.py
137
0.584687
0.554524
0
59
20.932203
108
DSchana/Final-Project-11
2,353,642,113,740
f333ae12e14acb4ea8eeef06a7c0441988c22735
1d672d29dd7299947034a13e8a426a6b9bf4297d
/Compsci Final Project/attackSprites (old).py
795c659b930a6fb414e05f1cb2167fbec641ee96
[]
no_license
https://github.com/DSchana/Final-Project-11
c2fc66b48fbd4fae165c25dfc058fd59faf0f3ff
30cdf62443b1c152068ce11f5a913728248c66b5
refs/heads/master
2020-04-09T16:50:51.605326
2015-10-02T03:36:33
2015-10-02T03:36:33
30,880,912
0
2
null
false
2019-11-30T08:43:04
2015-02-16T18:04:03
2015-06-12T20:03:06
2015-10-02T03:36:33
125,239
0
2
1
Python
false
false
#Cast Spell Sprites #This code controls the animations for the player when he casts spells #Load the sprites in the loading screen ****** from pygame import* screen = display.set_mode((850,600)) #The following lists store the sprites for casting spells (attacking) castSpellRightSpriteList = [] for i in range(6): castSpellRightSpriteList.append(image.load("castSpellRight\\castSpellRight" + str(i) + ".png")) castSpellLeftSpriteList = [] for i in range(6): castSpellLeftSpriteList.append(image.load("castSpellLeft\\castSpellLeft" + str(i) + ".png")) castSpellUpSpriteList = [] for i in range(6): castSpellUpSpriteList.append(image.load("castSpellUp\\castSpellUp" + str(i) + ".png")) castSpellDownSpriteList = [] for i in range(6): castSpellDownSpriteList.append(image.load("castSpellDown\\castSpellDown" + str(i) + ".png")) castSpellUpRightSpriteList = [] for i in range(6): castSpellUpRightSpriteList.append(image.load("castSpellUpRight\\castSpellUpRight" + str(i) + ".png")) castSpellUpLeftSpriteList = [] for i in range(6): castSpellUpLeftSpriteList.append(image.load("castSpellUpLeft\\castSpellUpLeft" + str(i) + ".png")) castSpellDownRightSpriteList = [] for i in range(6): castSpellDownRightSpriteList.append(image.load("castSpellDownRight\\castSpellDownRight" + str(i) + ".png")) castSpellDownLeftSpriteList = [] for i in range(6): castSpellDownLeftSpriteList.append(image.load("castSpellDownLeft\\castSpellDownLeft" + str(i) + ".png")) playerX, playerY = 400,300 #placeholder values screen.fill((255,255,255)) direction = "upRight" frame = 0 #I assume you have some variable that keeps track of the direction that the player is facing, #in this file I just called it "direction" running = True while running: mb = mouse.get_pressed() mx,my = mouse.get_pos() for e in event.get(): if e.type == QUIT: running = False if key.get_pressed()[K_SPACE]: if direction == "left": screen.fill((255,255,255)) #Replace fill with subsurface screen.blit(castSpellLeftSpriteList[frame],(playerX,playerY)) time.wait(20) #Find better way to delay animations frame += 1 if frame>5: frame = 0 elif direction == "right": screen.fill((255,255,255)) screen.blit(castSpellLeftSpriteList[frame],(playerX,playerY)) time.wait(20) frame += 1 if frame>5: frame = 0 elif direction == "up": screen.fill((255,255,255)) screen.blit(castSpellUpSpriteList[frame],(playerX,playerY)) time.wait(20) frame += 1 if frame>5: frame = 0 elif direction == "down": screen.fill((255,255,255)) screen.blit(castSpellDownSpriteList[frame],(playerX,playerY)) time.wait(20) frame += 1 if frame>5: frame = 0 elif direction == "upRight": screen.fill((255,255,255)) screen.blit(castSpellUpRightSpriteList[frame],(playerX,playerY)) time.wait(20) frame += 1 if frame>5: frame = 0 elif direction == "upLeft": screen.fill((255,255,255)) screen.blit(castSpellUpLeftSpriteList[frame],(playerX,playerY)) time.wait(20) frame += 1 if frame>5: frame = 0 elif direction == "downRight": screen.fill((255,255,255)) screen.blit(castSpellDownRightSpriteList[frame],(playerX,playerY)) time.wait(20) frame += 1 if frame>5: frame = 0 elif direction == "downLeft": screen.fill((255,255,255)) screen.blit(castSpellDownLeftSpriteList[frame],(playerX,playerY)) time.wait(20) frame += 1 if frame>5: frame = 0 display.flip() quit()
UTF-8
Python
false
false
4,162
py
29
attackSprites (old).py
24
0.586257
0.552138
0
126
32.02381
111
afcarl/ogb_lite
8,727,373,570,311
331d199aecade2cdd4e5c6974675c9eee9220e61
1bacbea76a84f1e31f41a100cfdc5ad7704437b0
/ogb_lite/utils/__init__.py
3c45b8dbeda4574e5c9885bce7c6bdaf0aa956f5
[ "MIT" ]
permissive
https://github.com/afcarl/ogb_lite
b04997b0e7d8a190512dda0610b68086b69dfa3e
e575f979c712eb572bfb34e38381a7948b33f77c
refs/heads/main
2023-04-19T13:16:36.384206
2021-04-27T21:42:55
2021-04-27T21:42:55
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding=utf-8 try: from .mol import smiles2graph except ImportError: pass
UTF-8
Python
false
false
82
py
15
__init__.py
13
0.719512
0.695122
0
5
15.6
33
hjicheng/python-pc
16,432,544,898,933
4a3b94aec938efe1412de8513608c8a0f880c954
d486ec26db4138bf9f27a00c1048ab90096af8ee
/Python爬虫/21DAY/20190331/dianying.py
78a3b91134f1ed56a55855d19ad1ca2a3b4916ff
[]
no_license
https://github.com/hjicheng/python-pc
2e7f733956db9f038b40a17cdd4d6c51badb5ac8
a968d0f8956dc2e422f17aa30df627755da3e979
refs/heads/master
2020-04-30T09:38:26.640890
2019-05-19T14:25:55
2019-05-19T14:25:55
176,754,068
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding:utf-8 -*- #!/usr/bin/python3 #_author_='HuangJiCheng'; #date: 2019/3/31 import requests from lxml import etree BASE_URL = 'https://www.dytt8.net' # 获取第一页数据 # 获取url进入详情页进行解析 HEADERS = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3608.4 Safari/537.36' } # 解析父页面,获取子页面(详情页)的url def get_detail_urls(url): response = requests.get(url, headers=HEADERS) # 获取网页乱码,使用原生的content,查看源代码的编码方式进行解析 html = etree.HTML(response.text) detail_urls = html.xpath('//table[@class="tbspan"]//a/@href') detail_urls = map(lambda url:BASE_URL+url,detail_urls) return detail_urls # 解析详情页 def parse_detail_page(url): movice = {} response = requests.get(url,headers=HEADERS) text = response.content.decode('gbk') html =etree.HTML(text) title = html.xpath('//div[@class="title_all"]//font[@color="#07519a"]/text()') movice['title'] = title zoom = html.xpath('//div[@id="Zoom"]')[0] if len(zoom.xpath('.//img/@src')) == 2: movice_cover = zoom.xpath('.//img/@src')[0] movice_screenhot = zoom.xpath('.//img/@src')[1] movice['movice_cover'] = movice_cover movice['movice_screenhot'] = movice_screenhot infos = zoom.xpath('.//text()') def parse_info(info,rule): return info.replace(rule, '').strip() for index,info in enumerate(infos): if info.startswith('◎年  代'): movice['year'] = parse_info(info,'◎年  代') elif info.startswith('◎产  地'): movice['country'] = parse_info(info,'◎产  地') elif info.startswith('◎类  别'): movice['category'] = parse_info(info,'◎类  别') elif info.startswith('◎语  言'): movice['language'] = parse_info(info,'◎语  言') elif info.startswith('◎上映日期'): movice['start_time'] = parse_info(info,'◎上映日期') elif info.startswith('◎豆瓣评分'): movice['star'] = parse_info(info,'◎豆瓣评分') elif info.startswith('◎片  长'): movice['duration'] = parse_info(info,'◎片  长') elif info.startswith('◎导  演'): movice['direct'] = parse_info(info,'◎导  演') elif info.startswith('◎主  演'): info_actor = parse_info(info, '◎主  演') actors = [info_actor] for x in range(index+1,len(infos)): actor = infos[x].strip() if actor.startswith("◎"): break actors.append(actor) movice['actors'] = actors elif info.startswith('◎标  签'): movice['tags'] = parse_info(info,'◎标  签') elif info.startswith('◎简  介 '): info_profile = parse_info(info,'◎简  介 ') profiles = [] for x in range(index+1,len(infos)): profile = infos[x].strip() profiles.append(profile) if actor.startswith("◎"): break movice['profile'] = profiles down_load = html.xpath('//td[@bgcolor="#fdfddf"]/a/@href') movice['down_load'] = down_load return movice # 获取需要爬去的网页父页面 def spider(): movices = [] base_url = 'https://www.dytt8.net/html/gndy/dyzz/list_23_{}.html' for i in range(1,8): url = base_url.format(i) # 获取所有的(子页面)详情页 movice_detail_url = get_detail_urls(url) for i in movice_detail_url: movice = parse_detail_page(i) print(movice) movices.append(movice) if __name__ == '__main__': spider()
UTF-8
Python
false
false
3,919
py
66
dianying.py
63
0.553688
0.539447
0
98
34.836735
127
JamesPino/pebl
16,681,652,987,664
8b4f1e33da3372b857b42edfdc53b958ad1b0f71
85f4b8297056117a227e83c3b901c51ab1067c66
/src/pebl/discretizer.py
215b0e719571f14c604f27db5b94670415e9d505
[ "MIT" ]
permissive
https://github.com/JamesPino/pebl
9a03a201d0e989619d3eaf2139f325272f6fb996
f3677642e342e92133af0b8ebe038c6ea35ac30b
refs/heads/master
2021-01-17T23:35:48.564297
2016-05-19T03:51:06
2016-05-19T03:51:06
59,163,795
0
0
null
true
2016-05-19T01:30:00
2016-05-19T01:29:59
2016-04-20T15:36:06
2011-11-16T01:19:34
2,127
0
0
0
null
null
null
""" Collection of data discretization algorithms.""" import numpy as N import data from util import as_list def maximum_entropy_discretize(indata, includevars=None, excludevars=[], numbins=3): """Performs a maximum-entropy discretization of data in-place. Requirements for this implementation: 1. Try to make all bins equal sized (maximize the entropy) 2. If datum x==y in the original dataset, then disc(x)==disc(y) For example, all datapoints with value 3.245 discretize to 1 even if it violates requirement 1. 3. Number of bins reflects only the non-missing data. Example: input: [3,7,4,4,4,5] output: [0,1,0,0,0,1] Note that all 4s discretize to 0, which makes bin sizes unequal. Example: input: [1,2,3,4,2,1,2,3,1,x,x,x] output: [0,1,2,2,1,0,1,2,0,0,0,0] Note that the missing data ('x') gets put in the bin with 0.0. """ # includevars can be an atom or list includevars = as_list(includevars) # determine the variables to discretize includevars = includevars or range(indata.variables.size) includevars = [v for v in includevars if v not in excludevars] for v in includevars: # "_nm" means "no missing" vdata = indata.observations[:, v] vmiss = indata.missing[:, v] vdata_nm = vdata[-vmiss] argsorted = vdata_nm.argsort() if len(vdata_nm): # Find bin edges (cutpoints) using no-missing binsize = len(vdata_nm) // numbins binedges = [vdata_nm[argsorted[binsize * b - 1]] for b in range(numbins)][1:] # Discretize full data. Missings get added to bin with 0.0. indata.observations[:, v] = N.searchsorted(binedges, vdata) oldvar = indata.variables[v] newvar = data.DiscreteVariable(oldvar.name, numbins) newvar.__dict__.update(oldvar.__dict__) # copy any other data attached to variable newvar.arity = numbins indata.variables[v] = newvar # if discretized all variables, then cast observations to int if len(includevars) == indata.variables.size: indata.observations = indata.observations.astype(int) return indata
UTF-8
Python
false
false
2,276
py
8
discretizer.py
7
0.628295
0.605888
0
67
32.970149
91
FihlaTV/opennames
3,685,081,973,936
4dd82a11603ee62fa154844a479ae88b5abe9bd7
b80abcaed517f9ae728a7813fa4180441bf5f9f7
/peplib/source.py
83904be6d12fed9be4bfa1ef820d71f7293ad9be
[ "MIT" ]
permissive
https://github.com/FihlaTV/opennames
35e03011f92941fb32d4031bbc8714226361358d
baf10a04c6f700cfb722a3f98d021754536df67d
refs/heads/master
2021-01-23T07:55:18.874363
2017-03-06T19:38:06
2017-03-06T19:38:06
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import logging import dataset import countrynames from pprint import pprint # noqa from peplib.util import clean_obj, unique_objs from peplib.config import DATABASE_URI from peplib.schema import validate log = logging.getLogger(__name__) db = dataset.connect(DATABASE_URI) class Source(object): def __init__(self, source_id): self.source_id = source_id self.log = logging.getLogger(source_id) self.entity_count = 0 self.entity_table = source_id self.identities_table = source_id + '_identities' self.other_names_table = source_id + '_other_names' self.addresses_table = source_id + '_addresses' def clear(self): if self.entity_table in db: db[self.entity_table].delete() if self.identities_table in db: db[self.identities_table].delete() if self.other_names_table in db: db[self.other_names_table].delete() if self.addresses_table in db: db[self.addresses_table].delete() def emit(self, data): data['identities'] = unique_objs(data.get('identities', [])) data['other_names'] = unique_objs(data.get('other_names', [])) data['addresses'] = unique_objs(data.get('addresses', [])) data = clean_obj(data) try: validate(data) except Exception as ex: log.exception(ex) return uid = data.get('uid') for identity in data.pop('identities', []): identity['uid'] = uid db[self.identities_table].insert(identity) for other_name in data.pop('other_names', []): other_name['uid'] = uid db[self.other_names_table].insert(other_name) for address in data.pop('addresses', []): address['uid'] = uid db[self.addresses_table].insert(address) db[self.entity_table].insert(data) self.entity_count += 1 def normalize_country(self, name): return countrynames.to_code(name) def save(self): self.log.info("Parsed %s entities", self.entity_count)
UTF-8
Python
false
false
2,110
py
24
source.py
9
0.601896
0.600948
0
67
30.492537
70
mattbasta/monacle
9,474,697,878,845
1bae5b9d457c0104f37ae798e37761b534850037
87730f381714ea6a35b5d8f0384391f1655db40c
/services/places.py
f0ec651229c8373f360eedefba556a1b4e2bcee8
[]
no_license
https://github.com/mattbasta/monacle
8a59a5d26a496ba6487381069505831b31188f2a
da9aa7f5ae3d2733df5e7b85b02688a090ed3f6b
refs/heads/master
2016-09-06T08:38:22.794935
2012-09-01T04:30:08
2012-09-01T04:30:08
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import constants import math from factual import Factual fs = constants.FACTUAL_SETTINGS f = Factual(fs["key"], fs["secret"]) places = f.table("global") geographies = f.table("world-geographies") class LatLon(object): def __init__(self, lat, lon): self.lat, self.lon = map(float, (lat, lon)) print "Lat Lon:", lat, lon def tup(self): return self.lat, self.lon def render(self): return {"lat": self.lat, "lon": self.lon} def coords(self): return self class Place(object): def __init__(self, **kwargs): self.name = kwargs.get("name", None) self.center = kwargs.get("center", None) if self.center: assert isinstance(self.center, LatLon) self.locality = kwargs.get("locality", None) self.region = kwargs.get("region", None) self.country = kwargs.get("country", None) def render(self): out = {"name": self.name, "locality": self.locality, "region": self.region, "country": self.country} if self.center: out.update({"coords": self.center.render()}) return out def coords(self): # This is really hacky, but it prevents failures and it doesn't give # weird results because this should only be used for sorting. return self.center or LatLon(0, 0) class Venue(object): def __init__(self, name, address=None, place=None, location=None, metadata=None): self.name = name self.address = address self.place = place self.location = location self.metadata = metadata def render(self): out = {"type": "place", "name": self.name, "address": self.address, "metadata": self.metadata} if self.place: out.update({"place": self.place.render()}) if self.location: out.update({"coords": self.location.render()}) return out def coords(self): return self.location or LatLon(0, 0) nauticalMilePerLat = 60.00721 nauticalMilePerLongitude = 60.10793 rad = math.pi / 180.0 milesPerNauticalMile = 1.15078 def _dist(loc1, loc2): """ Caclulate distance between two lat lons in NM """ lat1, lon1 = loc1.tup() lat2, lon2 = loc2.tup() yDistance = (lat2 - lat1) * nauticalMilePerLat xDistance = (math.cos(lat1 * rad) + math.cos(lat2 * rad)) * \ (lon2 - lon1) * (nauticalMilePerLongitude / 2) distance = math.sqrt(yDistance**2 + xDistance**2) return distance * milesPerNauticalMile def get_location(query, request, near="here", full_object=False): if isinstance(query, LatLon): if full_object: raise "Cannot return full object for structured data." return query elif isinstance(query, Venue): return query.location if not full_object else query elif isinstance(query, Place): return query.center if not full_object else query print "PLACES: Getting location for", query if query in ("here", "me", "where i am", "where i'm at", ): return LatLon(request.prop("latitude"), request.prop("longitude")) # Search for a place first. place = get_place(query, request, near=near, secondary=True) if place: return place.center if not full_object else place # If it's not a place, search for a venue. venue = get_venue(query, request, near=near) if venue: return venue.location if not full_object else venue return None PLACE_LIMIT_MIN = 10 SEC_PLACE_THRESH = 100 # Miles def get_place(query, request, near="here", limit=1, secondary=False): """ Return a place object corresponding to the given query. `near`: A place, venue, or LatLon object that describes where the place should be located near. `limit`: The maximum number of results to return. `secondary`: If this is not the object that is being returned to the user (i.e.: it is being used for an auxiliary task like a venue's `near` parameter), this should be set to True. """ print "PLACES: Getting place for", query near = get_location(near, request) query = query.strip() q = geographies.search(query).filters({"name": {"$search": query}}) q = q.limit(PLACE_LIMIT_MIN if limit <= PLACE_LIMIT_MIN else limit) placetypes = ["locality", "postcode", "colloquial"] if not secondary: placetypes += ["state", "county", "neighborhood", "timezone"] q = q.filters({"placetype": {"$in": placetypes}}) # if near: # q = q.geo({"$point": list(near.tup())}) # q = q.sort("$distance:asc") q = q.select("name,country,latitude,longitude,placetype") print "DEBUG:", q.path, q.params results = q.data() print "PLACES: %s > %s" % (query, results) if not results: return None def process(result): return Place(name=result["name"], country=result["country"], center=LatLon(result["latitude"], result["longitude"])) #return process(results[0]) if limit == 1 else map(process, results) # We have to do this until Factual starts letting us properly geo-sort. results = map(process, results) exact_results = filter(lambda x: x.name.lower() == query.lower(), results) if exact_results: results = exact_results if near: near_loc = near.coords() _dd = lambda x: _dist(near_loc, x.coords()) results = sorted(results, cmp=lambda x, y: cmp(_dd(x), _dd(y))) if secondary: results = filter(lambda r: _dd(r) <= SEC_PLACE_THRESH, results) if not results: return None return results[0] if limit == 1 else results def get_venue(query, request, near="here", limit=1): print "PLACES: Getting venue for", query near = get_location(near, request) q = places.search(query).limit(limit) if near: print "Near", near q = q.geo({"$circle": {"$center": near.tup(), "$meters": 50000}}) q = q.sort("$distance:asc") print "DEBUG:", q.path, q.params results = q.data() print "PLACES: %s > %s" % (query, results) if not results: return None def process(result): place = Place(locality=result["locality"], region=result["region"], country=result["country"]) return Venue(name=result["name"], address=result["address"], place=place, metadata=result, location=LatLon(result["latitude"], result["longitude"])) return process(results[0]) if limit == 1 else map(process, results)
UTF-8
Python
false
false
6,859
py
32
places.py
30
0.589299
0.580114
0
214
31.03271
78
spider17joker/sanji-develop
1,254,130,455,268
e699ae2a54aace792aa4f5f748d0686df09f3182
10ebacee368b089f5998ba061549eaa9d81712e7
/genian/Agent/gnagent.py
80673e4bc0e24bb48560094d419cb92d99a36a88
[ "LicenseRef-scancode-other-permissive", "Python-2.0" ]
permissive
https://github.com/spider17joker/sanji-develop
d09fa754cf16aef45be67dbdcfa6e23bce00ad36
a498f583127fffc75475c30ad873f00fed3137e1
refs/heads/master
2022-12-02T09:11:12.886654
2022-11-06T05:53:12
2022-11-06T05:53:12
85,659,009
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # 한글 주석 사용 가능하도록 encoding 추가 import sys import os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) import platform import signal import errno import json import hashlib import select import socket import struct import sqlite3 import subprocess import threading import xml.etree.ElementTree as ET from datetime import timedelta import Queue import getpass import time import datetime import shutil import logging from gnprocess import get_proc_list import gntools from gnconfigure import ( NotifyAgentDoNowFlag, notify_q, agent_notify_id_dict, NotifyIdRegisterReqFlag, ) from gnschedule import GnScheduleThread from Lib.notifyifchange import net_if_change_check from Lib.networkinfo import NetworkInfo from Lib.debug import set_logging, get_log, set_logging_parameter import Lib.encoding as encoding import Lib.platform_profile as platform_profile from include.common import ( PATH_VERIFY, PATH_VERIFY_TRUNC, AgentInstallPathInfo, plugin_name, ) import include.constants as CONST import Lib.crypto as crypto import Lib.fileversioninfo as version # namedpipe NAMEDPIPE_AGENT = 'agent_pipe' NAMEDPIPE_START = 'start_pipe' SIZE_UPDATE_MAX = 200 # Check Tool IDS_CHECK_TOOL = "command -v " IDS_DEVNULL = " >/dev/null" ID_COMMAND = 0 ID_COMMAND_OPT_1 = 1 ID_COMMAND_OPT_2 = 2 # SOAP Function ID ID_SOAP_LOGON = 0 ID_SOAP_GETMYPROFILE = 1 ID_SOAP_UPDATEINFO = 2 ID_SOAP_PROFILERESULT = 3 ID_SOAP_INSTALLINFO = 4 ID_SOAP_CUSTOMINFO = 5 # SOAP Function ID IDS_SOAP = [ "logon", "getmyprofile", "updateinfo", "profileresult", "installinfo", "custominfo", ] # System application ID ID_COMM = 0 # System application string IDS_COMM_WGET = "wget" IDS_COMM_CURL = "curl" ID_RESULT_FAIL = 0 ID_RESULT_SUCCESS = 1 ID_RESULT = 0 ID_RESULT_STR = 1 soapStub = { ID_SOAP_LOGON: [ "urn:logon", "nodeid", "mac", "macspoof", "hwstr", "name", "platform", "osid", "locale", "ipaddr" ], ID_SOAP_GETMYPROFILE: [ "urn:getmyprofile", "nodeid", "requst", "version" ], ID_SOAP_UPDATEINFO: [ "urn:update-information", "infolist" ], ID_SOAP_PROFILERESULT: [ "urn:profileresult", "nodeid", "err", "pfres" ], ID_SOAP_INSTALLINFO: [ "urn:installinfo", "nodeid", "ipaddr", "swtype", "newinstall" ], ID_SOAP_CUSTOMINFO: [ "urn:getcustominfo", "ipaddr", ], } # HTTP Header String HTTP_HEAD = """' --no-cache -H "Content-Type:text/xml;charset=UTF-8" -H "SOAPAction: """ # SOAP String SOAP_HEAD = """<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:urn="urn:ctdagt">\ <soapenv:Header/>\ <soapenv:Body>\ """ SOAP_TAIL = """</soapenv:Body>\ </soapenv:Envelope> """ AGENT_ACTION_INTERVAL = 0 # 액션수행 설정 - 수행주기 AGENT_ACTION_PLUGININFO = 1 # 액션수행 설정 - 플러그인 정보 AGENT_ACTION_PLUGINCONF = 2 # 액션수행 설정 - 플러그인 설정 PLUGIN_ACTION_INTERVALTYPE = 'action-intervaltype' # 수행주기 옵션 PLUGIN_ACTION_INTERVAL = 'action-interval' # 수행주기 PLUGIN_ACTION_TIMEGROUP = 'action-timegroup' # 수행시간대 PLUGIN_ACTION_RETRYTIME = 'action-retrytime' # 재시도시간 PLUGIN_ACTION_RETRYLIMIT = 'action-retrylimit' # 재시도회수 PLUGIN_ACTION_TIMETYPE = 'actiontime-type' PLUGIN_ACTION_TIMEDATE = 'actiontime-date' PLUGIN_ACTION_TIMEDOM = 'actiontime-dom' PLUGIN_ACTION_TIMEDOW = 'actiontime-dow' PLUGIN_ACTION_TIMEWOM = 'actiontime-wom' PLUGIN_ACTION_TIMEDOW2 = 'actiontime-dow2' PLUGIN_ACTION_TIMETIME = 'actiontime-time' PLUGIN_ACTION_INTERVALTYPE_ONTIME = '1' # 한번만 수행 PLUGIN_ACTION_INTERVALTYPE_FIXEDTIME = '2' # 지정시각 수행 PLUGIN_ACTION_INTERVALTYPE_PERIODRUN = '3' # 주기적 수행 PLUGIN_ACTION_INTERVALTYPE_ALWAYSRUN = '4' # 항상 수행 PLUGIN_ACTION_INTERVALTYPE_OSSTART = '5' # 윈도우 시작시 한번만 수행 # 에이전트 수행 결과 타입 GN_AGENT_RESULTTYPE_PMS = 0 # PMS GN_AGENT_RESULTTYPE_ACTION = 1 # 액션 GN_AGENT_RESULTTYPE_SMS = 2 # SMS (사용안함) GN_AGENT_RESULTTYPE_CONST = 3 # 제약사항 (사용안함) GN_AGENT_RESULTTYPE_PMSHISTORY = 4 # PMS 내역 # 에이전트 수행 결과 코드 GN_AGENT_RESULTCODE_SUCCESS = 10 # 성공 GN_AGENT_RESULTCODE_GENERAL = 11 # 실패 GN_AGENT_RESULTCODE_NOTSUPPORTED = 12 # 기능 지원안함 GN_AGENT_RESULTCODE_NEEDREBOOT = 13 # 리부팅 필요 # 프로파일 작업 타입 GN_PROFILE_WORKTYPE_PMS = 1 # PMS GN_PROFILE_WORKTYPE_ACTION = 2 # 액션 GN_PROFILE_WORKTYPE_CONST = 3 # 제약사항 (사용안함) GN_PROFILE_WORKTYPE_ELASTICSEARCH = 4 # 액션수행결과를 Elasticsearch 로 전송 # 프로파일 결과 GN_PROFILE_RESULT_PFTYPE = "pftype" # profileresult_t.pftype GN_PROFILE_RESULT_PFID = "pfid" # profileresult_t.pfid GN_PROFILE_RESULT_PFGROUPID = "pfgorupid" # profileresult_t.result_code GN_PROFILE_RESULT_PFGROUPOP = "groupop" # profileresult_t.result_msg GN_PROFILE_RESULT_RESULTCODE = "result-code" # profileresult_t.result_code GN_PROFILE_RESULT_RESULTMSG = "result-msg" # profileresult_t.result_msg GN_PROFILE_RESULT_ACTIVE = "active" # profileresult_t.active KEYSTR_ACTION_RESULT = 'send.action.result' KEYSTR_PLUGIN_RESULT = 'send.plugins.data' KEYSTR_NODEID = 'node.id' KEYSTR_NODE_NOUPDATE = 'node.aanoupdate' KEYSTR_PROFILE_INTERVAL = 'profile.policyinterval' # 정책 수신 주기 KEYSTR_PROFILE_AUTHSTATUS = 'profile.authstatus' KEYSTR_PROFILE_VERSION = 'profile.version' NOTIFYID_REGISTER_REQ = 11 # 재인증 NOTIFYID_PMSNOW = 36 # PMS 수행 NOTIFYID_ACTIONNOW = 37 # 액션 수행 NOTIFYID_SYSCONSTNOW = 38 # 제약사항 수행 NOTIFYID_SMSNOW = 39 # SMS 수행 NOTIFYID_AGENTDONOW = 44 # PMS/액션/제약사항/SMS/라이센스 검사(PDMC) 수행 NOTIFYID_AGENTRUNSTAT = 45 # PMS/액션/라이센스 검사(PDMC) 작업 상태 NOTIFYID_NEWNOTICE = 46 # 새로운 공지사항 존재 NOTIFYID_NEWMESSAGE = 53 # 새로운 알림 메시지 NOTIFYID_NODEAUTHCHANGED = 55 # 인증 상태 변경 NOTIFYID_SENDDEBUGFILE = 66 # 지정된 목적지로 디버그 로그 전송 NOTIFYID_SELECTACTIONNOW = 72 # 지정 액션 수행 NOTIFYID_AGENTSTART = 73 # 에이전트 서비스 시작 NOTIFYID_AGENTSTOP = 74 # 에이전트 서비스 중지 NOTIFYID_AGENTUPDATE = 75 # 에이전트 업데이트 NOTIFYID_RECOVERY = 76 # 센서 장애복구 NOTIFYID_PERMMESSAGE = 77 # 고정메시지 업데이트 NOTIFYID_NODEPOISONSTATUS = 81 # 노드차단상태 NOTIFYID_LICSWPERMMESSAGE = 85 # 라이센스 고정메시지 업데이트 LOCAL_NOTIFYID_AGENTUPDATE = 900 # 에이전트 주기적 업데이트 # timeobj TIMEOBJ_ANYTIME = 'ⓐANYTIME' # dataservice dataservice = None # threads threads = {} # stop event stop_event = None threadDelegate = None class Shell: ''' Shell ''' @staticmethod def rm(name, is_dir=False): ''' rm ''' if (is_dir == True): command = ''.join(["rm -rf " + name + "/*"]) else: command = ''.join(["rm -f " + name]) list_result = Shell.execute(command) if (list_result[ID_RESULT] == ID_RESULT_FAIL): LOG.error("rm command fail. cmd='" + command + "'") @staticmethod def execute(command): ''' execute ''' popen = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) (stdoutdata, stderrdata) = popen.communicate() if (len(stderrdata) == 0): return [ID_RESULT_SUCCESS, stdoutdata] else: return [ID_RESULT_FAIL, stderrdata] class Dataservice: '''''' conn = None def __init__(self): '''''' self.path = AgentInstallPathInfo() self.logger = logging.getLogger("crumbs") self.conn = sqlite3.connect(self.path.get_database_path(), isolation_level=None, check_same_thread=False) query = 'CREATE TABLE IF NOT EXISTS INFODATA (KEYPATH varchar(1024), VALUE Text, Primary Key(KEYPATH))' cur = self.conn.cursor() cur.execute(query) def close(self): self.conn.close() def get_data(self, keypath, default=''): '''''' data = [keypath] cur = self.conn.cursor() query = 'SELECT VALUE FROM INFODATA WHERE KEYPATH = ?' cur.execute(query, data) rows = cur.fetchall() for row in rows: if not row[0]: return default else: return row[0] return default def set_data(self, keypath, value): '''''' data = (keypath, value) cur = self.conn.cursor() query = 'INSERT OR REPLACE INTO INFODATA (KEYPATH, VALUE) VALUES (?, ?)' cur.execute(query, data) def del_data(self, keypath): '''''' data = [keypath] cur = self.conn.cursor() query = 'DELETE FROM INFODATA WHERE KEYPATH = ?' cur.execute(query, data) def delete_action_result_data(self): data = [] cur = self.conn.cursor() query = 'select * from infodata where KEYPATH like "keypath%"' cur.execute(query, data) rows = cur.fetchall() for row in rows: if not row[0]: return None else: query = 'delete from infodata where KEYPATH=' + str('\'') + str(row[0].decode('utf-8') + str('\'')) cur.execute(query, data) return None class pluginbase(Shell): """ profile_result : [0] = PFTYPE_?, [1] = result-code, [2] = result-msg """ profile_result = {} """ updateinfo result """ list_data = [] """ plugin config """ pluginconfig = None """ action 수행결과가 변경되지 않더라도 결과 전송 """ always_profileresult_send = False def __init__(self): '''''' self.create_dicts() def create_dicts(self): '''''' pass def run(self): '''''' pass def check_tool(self, toolid): return (os.system(''.join([IDS_CHECK_TOOL, toolid, IDS_DEVNULL])) == 0) def set_profileresult(self, worktype, resultcode, resultmsg): '''''' self.profile_result[GN_PROFILE_RESULT_PFTYPE] = worktype self.profile_result[GN_PROFILE_RESULT_RESULTCODE] = resultcode self.profile_result[GN_PROFILE_RESULT_RESULTMSG] = resultmsg class WaitableEvent: '''''' def __init__(self): '''''' self._read_fd, self._write_fd = os.pipe() def wait(self, timeout=None): '''''' rfds, wfds, efds = select.select([self._read_fd], [], [], timeout) return self._read_fd in rfds def isSet(self): '''''' return self.wait(0) def clear(self): '''''' if self.isSet(): os.read(self._read_fd, 1) def set(self): '''''' if not self.isSet(): os.write(self._write_fd, b'1') def fileno(self): ''' Return the FD number of the read side of the pipe, allows this object to be used with select.select(). ''' return self._read_fd def __del__(self): '''''' os.close(self._read_fd) os.close(self._write_fd) class GnThreadDelegate: ''' 별도의 parameter를 필요로하지 않는 작업들을 수행 thread함수 내에서 수행되는 것들로 thread stopwait, join 등을 사용하지 않는다. ''' def policyinterval(self, gnthread): if gnthread.name != 'policyinterval': return agentprofile() @staticmethod def policyrestart(interval): if threads == None: return thread = threads.get('policyinterval') interval = interval * 60 if thread == None: thread = GnThread('policyinterval', stop_event, interval, threadDelegate.policyinterval) thread.start() threads['policyinterval'] = thread dataservice.set_data(KEYSTR_PROFILE_INTERVAL, interval) return value = dataservice.get_data(KEYSTR_PROFILE_INTERVAL, '0') if interval != int(value): """ thread내에서 호출되는 함수이므로 시간값만 변경 (분단위) """ thread.timeout = interval dataservice.set_data(KEYSTR_PROFILE_INTERVAL, interval) class GnThread(threading.Thread): '''''' name = None stop = None # app 종료 이벤트 timeout = None # thread 시작 대기 시간 isexit = False # thread 중지 여부 isrun = False isstart = False delegate = None def __init__(self, name, stop, timeout, delegate=None): '''''' self.name = name self.timeout = timeout self.stop = stop self.event = WaitableEvent() self.event.clear() self.isrun = False self.delegate = delegate self.log = get_log() threading.Thread.__init__(self, name=self.name) def __delete(self): threading.Thread.__delete(self) self.isstart = False def start(self): if not self.isstart: threading.Thread.start(self) self.isstart = True def stopwait(self): '''''' self.isexit = True self.event.set() def work(self): '''''' pass def finish(self): '''''' self.isrun = False self.isstart = False def run(self): '''''' while not self.stop.is_set() and self.isexit == False: '''''' if (self.timeout != 0): self.event.wait(self.timeout) if not self.stop.is_set() and self.isexit == False: try: self.work() if self.delegate != None: self.delegate(self) except Exception as e: self.log.error("Thread run failed. ERROR=" + str(e) + ", name=" + str(self.name)) raise # timeout = 0 이면 한반만 수행 if (self.timeout == 0): break self.isrun = False self.isstart = False self.finish() class SoapDelegate: ''' Soap Response 패킷중 xml 부분에 대한 파싱 클래스. ''' def extract_dataset(self, attrib): ''' extract_dataset ''' tree = ET.parse(attrib) root = tree.getroot() return root[1][0] def logon(self): ''' logon ''' try: dataset = self.extract_dataset(IDS_SOAP[ID_SOAP_LOGON]) for d in dataset: '''''' if (d.tag == "nodeid"): self.dict_env["nodeid"] = d.text if (d.tag == "result"): '''''' if (d.text == "0"): LOG.info("LOGON SUCCEED, NODEID : " + self.dict_env["nodeid"]) else: LOG.error("LOGON FAIL") except Exception as msg: LOG.error("Exception MSG=" + str(msg)) def getmyprofile(self): """ SOAP_GETMYPROFILE 에 대한 리턴 값으로 아래와 같은 XML Element 객체를 리턴 받아서 파싱한다. 각 요소에 대해서 파싱하여 저장하지 않고 필요한 Element 만 파싱하여 저장한다. :return: XML Element Dictionary Objects """ dataset = self.extract_dataset(IDS_SOAP[ID_SOAP_GETMYPROFILE]) self.dict_env['aalist'] = {} self.dict_env['tolist'] = {} LOG.debug('agent profile received') for d in dataset: '''''' tag = '' text = '' if d == None: continue tag = '' if type(d.tag) != str else str(d.tag) text = '' if type(d.text) != str else str(d.text) if d.tag == "policyinterval": # 정책변경 검사주기 (시간) GnThreadDelegate.policyrestart(int(d.text)) if d.tag == "kainterval": dataservice.set_data(CONST.KEYSTR_NODE_KEEPALIVE, d.text) elif d.tag == "aalist": '''''' for x in d: '''''' if x.tag == "pfid": '''''' action_elem = {} action_plugin = {} pluginconf = {} self.dict_env['aalist'][x.text] = [ action_elem, # 수행주기 action_plugin, # plugin 정보 pluginconf] # plugin 설정 elif x.tag == "action-plugin": '''''' for y in x: action_plugin[y.tag] = y.text elif x.tag == "pluginconf": '''''' pluginkey = "" for y in x: '''''' if y.tag == "key": '''''' pluginkey = y.text elif pluginkey: pluginconf[pluginkey] = y.text pluginkey = "" else: action_elem[x.tag] = x.text elif d.tag == "tolist": '''''' for x in d: if x.tag == 'name': timeobj = {} self.dict_env['tolist'][x.text] = timeobj else: timeobj[x.tag] = x.text elif d.tag == "aa-noupdate": ''' aa-noupdate 정보값을 db에 저장. ''' self.dict_env['aa-noupdate'] = d.text dataservice.set_data(KEYSTR_NODE_NOUPDATE, self.dict_env.pop('aa-noupdate')) elif d.tag == "version": dataservice.set_data(KEYSTR_PROFILE_VERSION, d.text) def updateinfo(self): ''' updateinfo ''' pass def profileresult(self): ''' profileresult ''' pass def installinfo(self): ''' installinfo soap api를 통해서 서버에 있는 에이전트 관련 전체정보를 받아와서 리눅스 에이전트 관련 정보만 추출한다. ''' self.dict_env['installinfo'] = {} dataset = self.extract_dataset(IDS_SOAP[ID_SOAP_INSTALLINFO]) for vinfos in dataset.findall('vinfo'): if "GenianLinux" == vinfos.find('modulename').text: vinfo_list = list(vinfos) for i in vinfo_list: self.dict_env['installinfo'][i.tag] = i.text def custominfo(self): self.dict_env['custominfo'] = {} dataset = self.extract_dataset(IDS_SOAP[ID_SOAP_CUSTOMINFO]) results = [] for el in dataset: results.append((el.tag, el.text)) self.dict_env['custominfo'] = results def __init__(self): '''''' self.dict_env = { } class Soap: ''' Soap Request 생성하는 클래스.(wget명령으로 전송하기 위한 body, xml 생성) ''' def create_delegate(self): ''' create_delegate ''' self.delegate = SoapDelegate() self.delegate.dict_env = self.dict_env self.dict_soap[ID_SOAP_LOGON] = self.delegate.logon self.dict_soap[ID_SOAP_GETMYPROFILE] = self.delegate.getmyprofile self.dict_soap[ID_SOAP_UPDATEINFO] = self.delegate.updateinfo self.dict_soap[ID_SOAP_PROFILERESULT] = self.delegate.profileresult self.dict_soap[ID_SOAP_INSTALLINFO] = self.delegate.installinfo self.dict_soap[ID_SOAP_CUSTOMINFO] = self.delegate.custominfo def create_dicts(self): ''' create_dicts ''' self.dict_soap = {} self.dict_env = {} def set_url(self): ''' set_url ''' self.soap_url = "http://" + gntools.get_soap_server_ip_port() + "/agt" def create_xml(self, soap_body): ''' create_xml ''' return ''.join([SOAP_HEAD, soap_body, SOAP_TAIL]) def add_sub_element(self, parent, elem_name, elem_text=None): ''' add_sub_element ''' elem = ET.SubElement(parent, elem_name) elem.text = elem_text return elem def create_elements(self, soap_id, parent, elem, params, keyquery=""): ''' create_elements ''' if (soap_id == ID_SOAP_UPDATEINFO): '''''' if (elem == "infolist"): '''''' for paramlist in params: '''''' for param in paramlist: '''''' sub = self.add_sub_element(parent, elem) self.add_sub_element(sub, "nodeid", self.dict_env.get("nodeid")) self.add_sub_element(sub, "infoid", param[0]) self.add_sub_element(sub, "keyquery", keyquery) # 2 = ILF_HAVESYSINFO self.add_sub_element(sub, "flags", "2") list_column = param[1] for column in list_column: self.add_sub_element(sub, "columnlist", column) list_data = param[2] for list_sub_data in list_data: '''''' child = self.add_sub_element(sub, "datasetlist") for data in list_sub_data: self.add_sub_element(child, "dataset", data) self.add_sub_element(child, "flags", "0") elif soap_id == ID_SOAP_PROFILERESULT: '''''' if elem == "nodeid": self.add_sub_element(parent, elem, self.dict_env.get("nodeid")) elif elem == "err": '''''' sub = ET.SubElement(parent, elem) self.add_sub_element(sub, "type", str(GN_AGENT_RESULTTYPE_ACTION)) self.add_sub_element(sub, "errorcode", str(GN_AGENT_RESULTCODE_SUCCESS)) self.add_sub_element(sub, "errormsg", "") self.add_sub_element(sub, "nexttime", "0") elif elem == "pfres": '''''' for paramlist in params: sub = ET.SubElement(parent, elem) for p, v in paramlist.items(): '''''' self.add_sub_element(sub, p, str(v)) else: self.add_sub_element(parent, elem, params) def call(self, soap_id, params, keyquery=""): ''' call ''' delegate = self.dict_soap.get(soap_id) first = True i = 0 for elem in soapStub[soap_id]: '''''' if (first): '''''' root = ET.Element(elem) parent = root if soap_id == ID_SOAP_LOGON: parent = ET.SubElement(root, IDS_SOAP[ID_SOAP_LOGON]) first = False else: '''''' if soap_id == ID_SOAP_UPDATEINFO or soap_id == ID_SOAP_PROFILERESULT: self.create_elements(soap_id, parent, elem, params, keyquery) else: self.create_elements(soap_id, parent, elem, params[i]) i = i + 1 xml = self.create_xml(ET.tostring(root)) cmd = self.tool.dict_tool[ID_COMM] param = self.tool.dict_cmd[ID_COMM][cmd] soapfile = 'soapfile' + str(datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')) sendfile = open(soapfile, 'w') sendfile.write(xml) sendfile.close() str_list = [ param[ID_COMMAND], soapfile, HTTP_HEAD, delegate.__name__, '" ', self.soap_url, param[ID_COMMAND_OPT_1], delegate.__name__ ] request = ''.join(str_list) LOG.info("Request CMD=" + str(request)) list_result = Shell.execute(request) os.unlink(soapfile) if list_result[ID_RESULT] == ID_RESULT_SUCCESS: '''''' delegate() Shell.rm(IDS_SOAP[soap_id]) return ID_RESULT_SUCCESS return ID_RESULT_FAIL def __init__(self, tool): ''' __init__ ''' self.create_dicts() self.create_delegate() self.tool = tool self.set_url() class Tool: ''' Tool ''' def create_dicts(self): ''' create_dicts ''' self.dict_cmd = { ID_COMM: { IDS_COMM_WGET: ["wget -q --post-file='", " -O "], IDS_COMM_CURL: ["curl -s --data '", " -o "] } } self.dict_tool = { ID_COMM: None } def create_tool(self): ''' create_tool ''' for tool_id, cmds in self.dict_cmd.items(): ''' ''' for cmd in cmds: '''''' if os.system(''.join([IDS_CHECK_TOOL, cmd, IDS_DEVNULL])) != 0: continue self.dict_tool[tool_id] = cmd break result = True for tool_id, cmd in self.dict_tool.items(): '''''' if cmd == None: '''''' result = False return result def __init__(self): ''' __init__ ''' self.create_dicts() class Util: '''''' @staticmethod def weekofmonth(year, month, day): yearhigh = year / 100 yearlow = year % 100 if month <= 2: yearlow -= 1 month += 12 week = (((21*yearhigh/4) + (5*yearlow/4) + (26*(month+1)/10) + 1 - 1) % 7) return ((day-1+week)/7) if week > 3 else ((day-1+week)/7)+1 @staticmethod def lastweekofmonth(year, month): days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] leap = 0 if (2 == month) and (0 == (year % 4) and 0 != (year % 100) or 0 == (year % 400)): leap = 1 return Util.weekofmonth(year, month, days[month-1]+leap) @staticmethod def islastweekofmonth(year, month, day): wom = Util.weekofmonth(year, month, day) if wom > 0: wom = pow(2, wom - 1) if Util.lastweekofmonth(year, month) == wom: return wom | 0x00000020 return wom class Node: def __init__(self): self.net_if = {} self.obj_network_info = None self.soap_server_ip = None self.soap_server_port = None self.net_if_keys = ['ipstr', 'ip', 'name', 'mac'] self.local_ip_ntoa = None self.local_ip_aton = None self.ip_addr = None self.mac_addr = None self.nodeid = None self.hostname = None self.platform = None self.osid = None self.lang = None def create_net_info(self): local_ip_list = self.obj_network_info.get_local_ip_from_socket(self.soap_server_ip, self.soap_server_port) if local_ip_list is None: return None for idx in range(len(local_ip_list)): self.net_if[self.net_if_keys[idx]] = local_ip_list[idx] return True def create_node_info(self): if self.create_net_info(): self.ip_addr = str(self.net_if["ip"]) self.mac_addr = self.net_if["mac"] else: self.ip_addr = '0.0.0.0' self.mac_addr = 0 self.hostname = socket.gethostname() self.platform = platform.system() self.lang = encoding.get_system_lang()[0] self.osid = platform_profile.get_system_osid() LOG.info("HOST NAME={0}, PLATFORM={1}, LANG={2}, OSID={3}".format(self.hostname, self.platform, self.lang, self.osid)) def node_info_setup(self): """ 각종 설정과 외부 함수 호출에 대해서 __init__함수와 분리하여 처리한다. """ self.obj_network_info = NetworkInfo() self.soap_server_ip = gntools.get_soap_server_ip_port() self.soap_server_port = 80 ip_info = self.obj_network_info.get_local_ip_from_socket(self.soap_server_ip, self.soap_server_port) if ip_info is None: return self.local_ip_ntoa = ip_info[0] self.local_ip_aton = ip_info[1] class GnNotify(GnThread): """ GnNotify 객체의 Method Name을 agent_notify_id_dict{} 에서 사용하므로, Method Name 변경시 agent_notify_id_dict{} 에서도 함께 변경 되어야 한다. """ def __init__(self, name, stop, interval, sch_q, is_unittest=None): self.interval = interval self.jobs = notify_q self.sch = sch_q self.case_name = "" self.case = self.case_default self.noti_id = (0,) self.obj_network_info = None self.local_ip_netinfo = [] self.log = get_log() if is_unittest is None: GnThread.__init__(self, name, stop, self.interval) def work(self): while True: try: notifyId = self.jobs.get() result = self.NotifyReceive(notifyId) finally: self.jobs.task_done() def setup_network_info(self): self.obj_network_info = NetworkInfo() for el in self.obj_network_info.get_local_ip_from_route(): if el.get('gateway'): self.local_ip_netinfo = el break def AgentActionDoNow(self): """ 에이전트 액션 즉시 수행 plugin 중지 """ hplugin = threads['pluginmgr'] hplugin.del_agentaction() agentlogon() if node.nodeid == None: '''''' LOG.error("NodeID doesn't exist.") agentexit() return agentprofile() # plugin 재설정 hplugin.set_agentaction(soap.dict_env['aalist'], soap.dict_env['tolist']) hplugin.start() def AgentDoNow(self, id): ''' 노드대상작업지시 명령어중 즉시 수행 관련 명령. ''' if int(id, 16) & NotifyAgentDoNowFlag.NOTYFLAGS_ACTIONNOW: """ 에이전트 액션 즉시 수행 """ LOG.info('Agent service event (Notify) received that is Perform agent action immediately.') self.AgentActionDoNow() if int(id, 16) & NotifyAgentDoNowFlag.NOTYFLAGS_PMSNOW: """ 운영체제 업데이트 즉시 수행 """ LOG.info('Agent service event (Notify) received that is Immediately update operating system. Not implemented.') if int(id, 16) & NotifyAgentDoNowFlag.NOTYFLAGS_SMSNOW: """ 노드 자산정보 즉시전송 """ LOG.info('Agent service event (Notify) received that is Immediate transfer of node asset information.') self.sch.put(schedule_q, NotifyAgentDoNowFlag.NOTYFLAGS_PMSNOW) if int(id, 16) & NotifyAgentDoNowFlag.NOTYFLAGS_PROFILE: """ 노드정책 재적용 """ LOG.info('Agent service event (Notify) received that is Reapply the node policy.') agentprofile() def NotifyReceive(self, notify_id): """ pythonic하게 switch문 구현함. :param notifyId : <type 'tuple'>: (44, '0x400') :return: NotifyAgentDoNowFlag ID 값에 맵핑되는 함수의 주소를 리턴함. """ try: self.case_name = "".join([agent_notify_id_dict.get(notify_id[0])]) except TypeError as e: LOG.info('Agent raise exception ERRMSG=' + str(e)) self.case_name = "default" if self.case_name in ("register_req", "agent_do_now"): """ 에이전트 수행결과 관련 DB 값을 삭제함. """ dataservice.delete_action_result_data() self.case = getattr(self, self.case_name, self.case_default) self.noti_id = notify_id return self.case() def register_req(self): """ 에이전트 재등록 요청 noti_id : (event_id, event_msg) event_id : 11(gnagent.NOTIFYID_REGISTER_REQ) event_msg : 0x0 : 정책서버로부터오는 이벤트 0x100 : notifyifchange 모듈에서 인터페이스 변경시 발생. 0x101 : KeepAlive 전송하기 전에 네트워크 체크시 실패하면 발생함. """ LOG.info('GnAgent received a center reconnection request message.') netinfo = self.obj_network_info.get_local_ip_from_route() if not len(netinfo): LOG.info("Could not find network information. NOTIFY_ID=" + str(self.noti_id)) return True result = {} for el in netinfo: if el.get('gateway'): result = el if self.noti_id[1] in "0x100, 0x101": if result.get('ip') in self.local_ip_netinfo.get('ip'): LOG.info('There are no changes to the local IP. ( Local IP = %s, IF_NAME = %s)' % (self.local_ip_netinfo.get('ip'), self.local_ip_netinfo.get('iface'))) return True self.local_ip_netinfo = result agentlogon() if not len(node.nodeid): """ Center Logon 실패시 추가 작업이 필요함. - 센터 재 접속 타이머 설정 - 에이전트 failsafe 타이머 설정 """ LOG.error("NodeID doesn't exist.") return False agentprofile() def agent_update(self): """ 에이전트 업데이트 """ LOG.info('Agent service update event (Notify) received.') add_jobs(jobs_q, NOTIFYID_AGENTUPDATE) def agent_do_now(self): """ 에이전트 액션 즉시 수행 """ LOG.info('Agent service event (Notify) received that is Perform agent action immediately.') self.AgentDoNow(self.noti_id[1]) def node_auth_changed(self): """ 에이전트 인증 상태 변경 """ LOG.info('Agent service event (Notify) received that is Changing agent authentication status.') agentprofile() def case_default(self): """ 에이전트 이벤트 예외 처리를 위한 케이스 """ LOG.info('An unknown event has been received. (Notify ID = %s,Flage = %s)' % (self.noti_id, self.case_name)) class Namedpipe(GnThread): '''''' name = None interval = None hpipe = None def __init__(self, name, stop, interval, notify_q): self.path = AgentInstallPathInfo() self.name = ''.join([self.path.get_agent_path(), "/", name]) self.interval = interval self.stop_event = stop self.jobs = notify_q try: Shell.rm(self.name, False) os.mkfifo(self.name, 0o666) os.chmod(self.name, 0o666) self.hpipe = os.open(self.name, os.O_RDWR | os.O_NONBLOCK) except OSError as e: LOG.error('Failed to create event socket. (ERROR = %s)' % (str(e))) GnThread.__init__(self, name, stop_event, self.interval) def work(self): LOG.info('The event reception job has started.') while not self.stop_event.is_set() and self.isexit == False: try: rlist = [self.hpipe] wlist = [] xlist = [] rlist, wlist, xlist = select.select(rlist, wlist, xlist) if self.hpipe in rlist: try: buf = os.read(self.hpipe, 8) except OSError as e: if e.errno == errno.EAGAIN or e.errno == errno.EWOULDBLOCK: buf = None else: LOG.info('Event reception failed. (ERROR = %s)' % (str(e))) raise ''' 함수가 주기적으로 실행되지 않는다. select()함수 추가로 인하여 리턴하는 코드를 삭제한다 ''' if buf is None or len(buf) == 0: continue pipeformat = 'II' # msgtype 과 msg 내용의 길이 조회 data = struct.unpack(pipeformat, buf) if data[0] == 0: continue if data[1] > 0: buf = os.read(self.hpipe, data[1]) pipeformat = str(data[1]) + 's' flag = struct.unpack(pipeformat, buf) eventid = data[0] notifys = (eventid, flag[0]) add_jobs(self.jobs, notifys) except OSError as e: if e.errno == errno.EAGAIN or e.errno == errno.EWOULDBLOCK or e.errno == errno.EINTR: LOG.info("Select.error exception ERR=" + str(e)) else: LOG.error("Named Pipe exception ERR=" + str(e)) raise def finish(self): '''''' os.close(self.hpipe) Shell.rm(self.name, False) class PluginResultsendThread(GnThread): '''''' interval = 10 def __init__(self, stop, interval): '''''' self.interval = interval GnThread.__init__(self, 'Plugin_Result_sender', stop, self.interval) LOG.info(''.join(["Plugin Result Sender success. INTERVAL=%d" % self.interval])) def work(self): '''''' data = dataservice.get_data(KEYSTR_PLUGIN_RESULT) if len(data) == 0: return buf = json.loads(data) keyquery = '' result = soap.call(ID_SOAP_UPDATEINFO, buf, keyquery) if result != ID_RESULT_SUCCESS: '''''' LOG.debug('Update Info send failed.') return dataservice.del_data(KEYSTR_PLUGIN_RESULT) LOG.debug('Update Info send success.') # action result send data = dataservice.get_data(KEYSTR_ACTION_RESULT) if len(data) == 0: return buf = json.loads(data) keyquery = '' result = soap.call(ID_SOAP_PROFILERESULT, buf, keyquery) if result != ID_RESULT_SUCCESS: '''''' LOG.debug('Action Result send failed.') return dataservice.del_data(KEYSTR_ACTION_RESULT) LOG.debug('Action Result send success.') class PluginThread(GnThread): '''''' actionid = 0 pluginid = 0 modulename = '' pluginname = '' pluginconf = None timeobject = None stop = None module_plugin = None module_class = None config = [] def __init__(self, actionid, pluginid, pluginname, pluginconf, stop): self.actionid = actionid self.pluginid = pluginid self.modulename = None self.pluginname = pluginname self.pluginconf = pluginconf self.stop = stop for each in plugin_name: if str(self.pluginid) in each[0]: self.modulename = "Plugin" + "." + "ACT" + str(self.pluginid) + "_" + each[1] + "." + pluginname break self.module_plugin = __import__(self.modulename, fromlist=[self.pluginname]) self.module_class = getattr(self.module_plugin, self.pluginname) def pluginstart(self, config, timeobject): '''''' self.config = config self.timeobject = timeobject intervaltype = config[PLUGIN_ACTION_INTERVALTYPE] interval = 0 if intervaltype == PLUGIN_ACTION_INTERVALTYPE_PERIODRUN: # 주기적 수행은 초단위 interval = int(config[PLUGIN_ACTION_INTERVAL]) elif intervaltype == PLUGIN_ACTION_INTERVALTYPE_FIXEDTIME: # 지정시간은 분단위로 구현 interval = 60 elif intervaltype == PLUGIN_ACTION_INTERVALTYPE_ALWAYSRUN: """ 수행 주기 : 항상 실행 항상 수행으로 설정할 경우, 수행 주기는 1초로 설정함. """ interval = 1 GnThread.__init__(self, self.pluginname, self.stop, interval) LOG.info("Plugin init success. ACTIONID=" + str(self.actionid) + ", PLUGINID=" + str(self.pluginid) + ", NAME=" + self.pluginname + ", INTERVALTYPE=" + intervaltype + ", INTERVAL=" + str(interval)) def immediate(self): '''''' thimmediate = threading.Thread(target=self.work, args=()) thimmediate.start() def inschedule(self): '''''' # schedule 에서는 초단위는 계산하지 않음 # 현재 시간 nowdate = datetime.datetime.now().timetuple() intervaltype = self.config[PLUGIN_ACTION_INTERVALTYPE] try: if intervaltype == PLUGIN_ACTION_INTERVALTYPE_ONTIME: # 한번만 수행은 쓰레드가 1회 호출되고 더이상 호출되지 않음 return True elif intervaltype == PLUGIN_ACTION_INTERVALTYPE_OSSTART: # OS 시작시 수행 # 직전 수행시간 조회 후 수행시간 정보가 없으면 무조건 수행 keypath = 'keypath.' + str(self.actionid) + '.profile.rundatetime' rundate = dataservice.get_data(keypath) if not rundate: return True # 이전 수행 시간 olddate = datetime.datetime.strptime( rundate, '%Y%m%d%H%M%S').timetuple() # 부팅시간 result = Shell.execute("cat /proc/uptime | awk -F' ' '{print $1}'") boottime = (datetime.datetime.now() - timedelta(seconds=long(float(result[1].replace("\n", ''))))).timetuple() if boottime > olddate: return True elif intervaltype == PLUGIN_ACTION_INTERVALTYPE_PERIODRUN or intervaltype == PLUGIN_ACTION_INTERVALTYPE_ALWAYSRUN: # 주기적 수행은 재시도 하지 않음 timegrp = self.config[PLUGIN_ACTION_TIMEGROUP] timeobj = self.timeobject[timegrp] nowtime = nowdate.tm_hour * 60 + nowdate.tm_min if timegrp.encode('utf8') == TIMEOBJ_ANYTIME: return True # 월,화,수,목,금,토,일 wday = [2, 4, 8, 16, 32, 64, 1] if (int(timeobj['day']) & wday[nowdate.tm_wday]) == wday[nowdate.tm_wday]: if int(timeobj['fromtime']) <= nowtime and nowtime <= int(timeobj['totime']): return True return False elif intervaltype == PLUGIN_ACTION_INTERVALTYPE_FIXEDTIME: # 지정시각 수행 timetype = int(self.config[PLUGIN_ACTION_TIMETYPE]) timetime = self.config[PLUGIN_ACTION_TIMETIME].split(':') hour = int(timetime[0]) minute = int(timetime[1]) retval = False if timetype == 1: # 매일+시각 retval = True elif timetype == 2: # 지정일+시각 values = self.config[PLUGIN_ACTION_TIMEDOM].split(',') timedom = [] for val in values: vals = val.split('-') start = vals[0] end = vals[1] if len(vals) == 2 else vals[0] timedom.extend(range(int(start), int(end)+1)) for day in timedom: if nowdate.tm_day == day: retval = True break elif timetype == 3: # 날짜+시각 value = self.config[PLUGIN_ACTION_TIMEDATE] timedate = datetime.datetime.strptime(value, '%Y-%m-%d').timetuple() if nowdate.tm_year == timedate.tm_year and nowdate.tm_mon == timedate.tm_mon and nowdate.tm_mday == timedate.tm_mday: retval = True elif timetype == 4: # 요일+시각, windows 기준으로 일=0 으로 설정됨 values = self.config[PLUGIN_ACTION_TIMEDOW].split(',') timedow = [int(6) if int(num) == 0 else int(num) - 1 for num in values] for wday in timedow: if nowdate.tm_wday == wday: retval = True break elif timetype == 5: # 주요일+시각 values = self.config[PLUGIN_ACTION_TIMEWOM].split(',') wom = Util.weekofmonth( nowdate.tm_year, nowdate.tm_mon, nowdate.tm_mday) lastwom = Util.islastweekofmonth(nowdate.tm_year, nowdate.tm_mon, nowdate.tm_mday) for timewom in values: if 6 == int(timewom) and lastwom > 5: # last week retval = True break elif wom == int(timewom): retval = True break if retval == True: # 주가 일치하더라도 주중요일이 일치해야함으로 retval 을 초기화 retval = False values = self.config[PLUGIN_ACTION_TIMEDOW2].split(',') timedow = [int(6) if int(num) == 0 else int(num) - 1 for num in values] for wday in timedow: if nowdate.tm_wday == wday: retval = True break # 오늘 수행여부와 관계없이 무조건 실행하지 않음 if retval == False: return False # 직전 수행시간 조회 후 수행시간 정보가 없으면 무조건 수행 keypath = 'keypath.' + \ str(self.actionid) + '.profile.rundatetime' rundate = dataservice.get_data(keypath) if not rundate: return True # 이전 수행 시간 olddate = datetime.datetime.strptime(rundate, '%Y%m%d%H%M%S').timetuple() # 오늘 이전에 수행했으면 다시 수행 nowday = datetime.datetime(nowdate.tm_year, nowdate.tm_mon, nowdate.tm_day, 0, 0, 0) oldday = datetime.datetime(olddate.tm_year, olddate.tm_mon, olddate.tm_day, 0, 0, 0) if oldday < nowday: return True # 오늘 수행했는지 확인해서 이전 시간에 수행했으면 다시 수행 if nowdate.tm_year == olddate.tm_year and nowdate.tm_mon == olddate.tm_mon and nowdate.tm_mday == olddate.tm_mday: if (olddate.tm_hour < hour or (olddate.tm_hour == hour and olddate.tm_min < minute)): return True except Exception as e: LOG.error("Action schedule parsing error. ACTIONID=" + str(self.actionid) + ", PLUGINID=" + str(self.pluginid) + ", INTERVALTYPE=" + str(intervaltype) + ', ERROR=' + str(e)) return False return False def work(self): '''''' if self.isrun == True: # already run return # 주기적 수행 조건 검사 if self.inschedule() == False: return self.isrun = True plugin = self.module_class() plugin.pluginconfig = self.pluginconf plugin.run() """ action 수행 결과 """ plugin.profile_result[GN_PROFILE_RESULT_PFID] = self.actionid plugin.profile_result[GN_PROFILE_RESULT_PFGROUPID] = "" plugin.profile_result[GN_PROFILE_RESULT_PFGROUPOP] = 0 plugin.profile_result[GN_PROFILE_RESULT_ACTIVE] = 0 keypath = 'keypath.' + str(self.actionid) + '.profile.result' storehash = dataservice.get_data(keypath) resulthash = hashlib.sha256(str(plugin.profile_result)).hexdigest() issend = (storehash != resulthash) or (plugin.always_profileresult_send) if issend == 1: '''''' data = dataservice.get_data(KEYSTR_ACTION_RESULT) if len(data) == 0: data = '[]' buf = json.loads(data) buf.append(plugin.profile_result) dataservice.set_data(KEYSTR_ACTION_RESULT, json.dumps(buf)) dataservice.set_data(keypath, resulthash) # plugin 수행 시간 저장 keypath = 'keypath.' + str(self.actionid) + '.profile.rundatetime' dataservice.set_data(keypath, datetime.datetime.now().strftime('%Y%m%d%H%M%S')) LOG.debug("Action result. ACTIONID=" + str(self.actionid) + ", PLUGIN_NAME=" + self.pluginname + ", PLUGINID=" + str(self.pluginid) + ", ISSEND=" + str(issend) + ', HASH=' + resulthash) keypath = 'keypath.' + str(self.actionid) + '.updateinfo.result' storehash = dataservice.get_data(keypath) resulthash = hashlib.sha256(str(plugin.list_data)).hexdigest() issend = (storehash != resulthash) or (plugin.always_profileresult_send) if issend == 1: '''''' data = dataservice.get_data(KEYSTR_PLUGIN_RESULT) if len(data) == 0: data = '[]' buf = json.loads(data) buf.append(plugin.list_data) dataservice.set_data(KEYSTR_PLUGIN_RESULT, json.dumps(buf)) dataservice.set_data(keypath, resulthash) LOG.debug("Update info. ACTIONID=" + str(self.actionid) + ", PLUGIN_NAME=" + self.pluginname + ", PLUGINID=" + str(self.pluginid) + ", ISSEND=" + str(issend) + ', HASH=' + resulthash) self.isrun = False class PluginManager(GnThread): '''''' plugininfo = {} plugin_threads = [] def __init__(self, stop, timeout): GnThread.__init__(self, 'pluginmgr', stop, timeout) def add_plugin(self, pluginid, pluginname): self.plugininfo[pluginid] = pluginname def set_agentaction(self, agentaction, timeobject): # plugin별 thread 생성 후 대기 for pfid, actions in agentaction.items(): pid = int(actions[AGENT_ACTION_PLUGININFO]['key']) # plugin config pluginconf = actions[AGENT_ACTION_PLUGINCONF] # 수행주기 옵션 intervaltype = actions[AGENT_ACTION_INTERVAL][PLUGIN_ACTION_INTERVALTYPE] pluginname = self.plugininfo[pid] try: thplugin = PluginThread(pfid, pid, pluginname, pluginconf, self.stop) thplugin.pluginstart(actions[AGENT_ACTION_INTERVAL], timeobject) self.plugin_threads.append(thplugin) except Exception as e: LOG.error("Plugin not found. ACTIONID=" + str(pfid) + ", PLUGINID=" + str(pid) + ", PLUGINNM=" + str(pluginname) + ", ERROR='" + str(e) + "'") def del_agentaction(self): for t in self.plugin_threads: LOG.info('Plugin finish. PLUGINID=' + str(t.pluginid) + ', PLUGINNM=' + str(t.pluginname)) t.stopwait() t.join() del self.plugin_threads[:] def start(self): '''''' for t in self.plugin_threads: t.start() def immediate(self): for t in self.plugin_threads: if t.isrun == True: LOG.info("Plugin already run. PLUGINID=" + str(t.pluginid) + ", PLUGINNM=" + str(t.pluginname)) else: LOG.info("Plugin immediate run. PLUGINID=" + str(t.pluginid) + ", PLUGINNM=" + str(t.pluginname)) t.immediate() def work(self): '''''' LOG.info('Plugin manage. COUNT=' + str(len(self.plugin_threads))) def finish(self): self.del_agentaction() class GnUpdateRunner(GnThread): ''' 주기적으로 실행하면서 GnUpdate 인스턴스를 실행한다. interval : GnUpdate 인스턴스를 실행하는 주기(sec) ''' def __init__(self, name, stop, interval): self.interval = interval self.jobs = jobs_q self.results = results_q GnThread.__init__(self, name, stop, self.interval) def work(self): while True: try: notifyId = self.jobs.get() result = self.check_for_update(notifyId) self.results.put(result) finally: self.jobs.task_done() def check_for_update(self, notifyId): vermgr = GnUpdate() vermgr.get_server_ip_port() if vermgr.search_local_ip() is None: LOG.info("Local IP lookup failed.") return False vermgr.check_update_network() vermgr.check_update_version() vermgr.install_product_info() if notifyId is NOTIFYID_AGENTUPDATE: vermgr.agent_update_for_action(False) else: vermgr.agent_update_for_action(True) if vermgr.nCompare is 1: vermgr.installing_updates() LOG.info(" INSTALLING UPDATES SUCCESSFUL.") else: LOG.info("Linux Agent do not [update].") return True class GnUpdate(object): def __init__(self): self.server_ip = 0 self.nCompare = 0 self.netinfo = gntools.netinfo() self.path = AgentInstallPathInfo() try: self.user_info = gntools.get_account_info().split(':') except Exception as e: LOG.info("No account information was found. ERRMSG=" + str(e)) self.user_info = ['', ] def check_install_agent(self): """ GnStart의 설치 경로 확인. 미 설치시에는 리눅스 에이전트를 재설치해야 한다. GnStart가 서비스로 등록되었는지 확인함. 서비스로 미 등록시에 리눅스 에이전트를 재설치해야 한다. """ if gntools.search('/etc/init.d', 'gnstart'): LOG.info("Registered to GnStart service successfully.") else: LOG.info("Failed to register with GnStart service.") return False if gntools.installed_agent_path(self.path.get_agent_path(), self.path.p["AGENT_DIR_NAME"]): LOG.info("GnStart is installed.") else: LOG.info("GnStart is not installed.") return False return True def restart_agent(self): pass def check_run_agent(self): """ GnStart 프로세스의 실행 여부를 확인한다. """ if len(self.user_info) == 0: self.user_info = ['', ] proc_lists = get_proc_list() user_proc_list = [x for x in proc_lists if x.user == self.user_info[0]] if user_proc_list: LOG.info("GnStart service started successfully.") return True else: LOG.info("Failed to start GnStart service.") def search_local_ip(self): for el in self.netinfo: if el['gateway']: LOG.info("Local IP = " + str(el['ip'])) return el['ip'] LOG.info("Failed to retrieve local IP.") def get_server_ip_port(self): """ 정책서버 IP를 문자열로 저장 함. Agent/soapserver 파일에서 읽어옴. 저장된 문자열 형식 : 172.29.99.251 """ try: fp = open(self.path.get_policy_server_address_file_path(), 'r') line = fp.readline() fp.close() self.server_ip = line.replace("\n", "", 1) return 1 except Exception as e: LOG.error("Policy Server IP lookup failed. ERRMSG=" + str(e)) return 0 def check_update_network(self): """ 업데이트 가능한 네트워크 그룹인지 체크한다. 0 - 업데이트 가능한 네트워크그룹이 전체임. 1 - 업데이트 가능한 특정 네트워크 그룹이 있음. """ agentprofile() noupdate = dataservice.get_data(KEYSTR_NODE_NOUPDATE) return noupdate def install_product_info(self): params = [ node.ip_addr, ] try: soap.call(ID_SOAP_CUSTOMINFO, params) LOG.info('You have received agent custom information.') except Exception as e: LOG.info('Failed to receive custom information. ERR=%s' + str(e)) raise custominfo = soap.dict_env.get("custominfo") for el in custominfo: if "productname" in el: dataservice.set_data("custominfo.productname", el[1]) if "productcopyright" in el: dataservice.set_data("custominfo.productcopyright", el[1]) def check_update_version(self): """ installinfo를 통해서 서버에 있는 에이전트의 최신 버전 정보를 가져온다. """ params = [ node.nodeid, node.ip_addr, "", "" ] try: soap.call(ID_SOAP_INSTALLINFO, params) LOG.info('You have received agent installation information.') except Exception as e: LOG.info('Failed to receive installation information. ERR=%s', str(e)) raise installinfo = soap.dict_env.get("installinfo") if installinfo.get('version'): installinfo_ver = (installinfo.get('version')).split('-') dataservice.set_data("installinfo.version", installinfo_ver[0]) else: LOG.info("Agent installation information does not exist.") def agent_update_for_action(self, action): node_ver = dataservice.get_data("node.version") if len(node_ver) == 0: return v = map(int, node_ver.split('.')) installinfo_ver = dataservice.get_data("installinfo.version") if installinfo_ver is None: return if len(installinfo_ver) == 0: return i = map(int, installinfo_ver.split('.')) if action: ''' 현재 버전(node_ver)이 서버에 있는 버전(installinfo_ver)보다 낮은 경우, 업그레이드 실시함. :return: ''' LOG.info('CHECK FOR [UPGRADE].') if (v[0]) < (i[0]): self.nCompare = 1 return if (v[1]) < (i[1]): self.nCompare = 1 return if (v[2]) < (i[2]): self.nCompare = 1 return if (v[3]) < (i[3]): self.nCompare = 1 return LOG.info('Agent version is not Bigger.[INSTALL=%s < NODE=%s]' % (installinfo_ver, node_ver)) else: ''' 버전이 다른 경우, 업데이트 실시함. :return: ''' LOG.info('CHECK FOR [UPDATE].') if (v[0]) != (i[0]): self.nCompare = 1 return if (v[1]) != (i[1]): self.nCompare = 1 return if (v[2]) != (i[2]): self.nCompare = 1 return if (v[3]) != (i[3]): self.nCompare = 1 return LOG.info('Agent version is SAME.[INSTALL=%s , NODE=%s]' % (installinfo_ver, node_ver)) def installing_updates(self): """ 기 능 : 에이전트 설치 또는 업데이트 """ dict_installinfo = soap.dict_env.get("installinfo") file_name_list = (dict_installinfo.get('downloadurl')).split("/") """ rm -rf lnxagent.tar """ command = ''.join(["rm -rf " + (file_name_list[5])]) result = Shell.execute(command) """ wget https://172.29.99.93:443/Agent/GnAgent/lnxagent.sh --no-check-certificate """ command = ''.join(["wget " + (dict_installinfo.get('downloadurl')) + " --no-check-certificate"]) result = Shell.execute(command) file_size = (dict_installinfo.get('downloadsize')) file_hash = ((dict_installinfo.get('checkpath')).split('|'))[1] command = ''.join(["sha256sum " + (file_name_list[5])]) result = Shell.execute(command) downloaded_file_hash = result[1].split(" ") if downloaded_file_hash[0] != file_hash: LOG.info("do not match hash %s, %s" % (downloaded_file_hash, file_hash)) return statinfo = os.stat(file_name_list[5]) if file_size != str(statinfo.st_size): LOG.info("error size not match %s, %s" % (file_size, statinfo.st_size)) return command = ''.join(['whoami']) result = Shell.execute(command) username = result[1].replace("\n", "", 1) command = ''.join(['chown ' + username + ':' + username + ' ' + file_name_list[5]]) result = Shell.execute(command) command = ''.join(["chmod 755 " + file_name_list[5]]) LOG.info("%s" % (command)) result = Shell.execute(command) LOG.info("%s" % (result[1])) file_name = os.path.splitext(file_name_list[5]) src_file = ''.join([self.path.get_agent_path() + '/' + file_name_list[5]]) dst_file = ''.join(["/tmp" + '/' + file_name[0] + '_' + self.server_ip + file_name[1]]) shutil.copy(src_file, dst_file) """ Agent/lnxagent.sh 172.29.99.93 & Shell.execute(command) 대신 os.system(command) 명령으로 대체함. 이 유: lnxagent.sh 172.29.99.93 & 명령어를 실행 할 때 알 수없는 오류발생으로 스크립트가 중단됨. """ command = ''.join(["sudo " + dst_file + " &"]) LOG.info("command= " + str(command)) result = os.system(command) LOG.info("RESULT MSG= " + str(result[1])) sys.exit() class GnUpdateKickingThread(GnThread): """ Genian Agent의 자동 업그레이드 여부를 주기적으로 체크함. """ def __init__(self, name, stop, interval): '''''' self.jobs = jobs_q self.results = results_q GnThread.__init__(self, name, stop, interval) def work(self): ''' 에이전트에서 주기적으로 업데이트 체크 함. 주기 : 6시간. ''' add_jobs(self.jobs, LOCAL_NOTIFYID_AGENTUPDATE) process(self.jobs, self.results) class GnNotifyIFChangeThread(GnThread): '''''' def __init__(self, name, stop, interval, queue): '''''' self.jobs = queue GnThread.__init__(self, name, stop, interval) def work(self): """ 네트워크 인터페이스 상태가 변경되면 NetLink Event를 수신하는 쓰레드 함수. 체크 대상 : 장비에 있는 모든 네트워크 인터페이스 (ethx, lo, wlanx, vlanx, etc) """ net_if_change_check(self.jobs) def add_jobs(jobs_q, notifyId): ''' GnUpdate 쓰레드의 입력큐에 처리 할 태스크 추가. :param notifyId: :return: ''' jobs_q.put(notifyId) return def output(results_q): ''' GnUpdate 쓰레드의 입력큐에 있는 태스크 처리 결과를 출력함. :param results: :return: ''' done = 0 while not results_q.empty(): result = results_q.get_nowait() done += 1 return done def process(jobs_q, results_q): ''' GnUpdate 쓰레드의 입력큐에 있는 태스크를 가져와서 처리함. :return: ''' canceled = False try: jobs_q.join() except Exception as e: canceled = True LOG.error("Queue Exception. ERRMSG=%s" % (str(e))) if results_q is not None: if canceled: done = results_q.qsize() else: done = output(results_q) return def process_noti(notify_q): ''' GnNotify 쓰레드의 입력큐에 있는 태스크를 가져와서 처리함. :return: ''' try: notify_q.join() except Exception as e: LOG.error("Queue Exception. ERRMSG=%s" % (str(e))) return def verify_agent(): """ verify_agent agent 무결성 검증 Verify.enc 파일의 작성된 파일목록의 hash값을 비교하여 변경여부를 확인한다. """ p = AgentInstallPathInfo() try: file_infos = version.get_plugin_version_list_from_file() for el in file_infos: el.file_path = el.file_path.replace("%TARGET%/", p.get_agent_path() + "/") if "gnagent.py" in el.file_path: dataservice.set_data("node.version", el.file_version) try: if os.path.isfile(el.file_path): cf = open(el.file_path, 'r') cf.close() else: continue except Exception as e: LOG.error("File not found. FILE=" + el.file_path + ", ERRMSG=" + str(e)) agentexit() # file hash check command = ''.join(["openssl dgst -sha256 ", el.file_path, " | awk '{print $2}'"]) shell_result = Shell.execute(command) hashvalue = shell_result[1].replace('\n', '').upper() filehash = el.file_hash.upper() if filehash != hashvalue: LOG.error("File hash mismatch. FILE=" + el.file_path + " ORGHASH=" + filehash + " DSTHASH=" + hashvalue) agentexit() LOG.info("Agent Verify Success.") return 1 except Exception as e: LOG.error("Verify file not found. FILE=" + PATH_VERIFY + " " + str(e)) return 0 def servercheck(): ''' 정책서버 IP 확인 ''' try: path = AgentInstallPathInfo() fp = open(path.get_policy_server_address_file_path(), 'r') line = fp.readline() fp.close() global SERVER_IP, SERVER_ADDR SERVER_IP = line.replace("\n", "", 1) SERVER_ADDR = struct.unpack('>L', socket.inet_aton(SERVER_IP))[0] return 1 except Exception as e: LOG.error("soapserver isn't found. " + str(e)) return 0 def signalhandler(signum, f): '''''' LOG.fatal('signal received. SIG=' + str(signum)) stop_event.set() def agentlogon(): LOG.info("agentlogon CURRENT DIR= " + str(os.getcwd())) LOG.info("agentlogon CURRENT USER= " + str(getpass.getuser())) params = [ "", node.mac_addr, "", "", node.hostname, node.platform, node.osid, node.lang, node.ip_addr ] try: soap.call(ID_SOAP_LOGON, params) node.nodeid = soap.dict_env.get("nodeid") # db store nodeid dataservice.set_data(KEYSTR_NODEID, node.nodeid) LOG.info('agent logon success. node.nodeid=' + str(node.nodeid)) except Exception as msg: LOG.info('agent logon failed. ERRMSG=' + str(msg)) raise def agentprofile(): '''''' params = [ node.nodeid, "20", "" ] try: soap.call(ID_SOAP_GETMYPROFILE, params) LOG.info('agent profile received success.') """ 정책 서버에 접속한 결과를 저장하는 클래스 필요. bool CGnJoin::CenterJoin(bool bRejoin) - Agent/GnAgent/GnJoin.cpp 함수 참조. """ except Exception as msg: LOG.info('agent profile received failed.' + str(msg)) raise def agentexit(): ''' agentexit ''' LOG.info("Agent Stop.") sys.exit() def main(args): ''' main ''' LOG.info("Agent Start.") # signal signal.signal(signal.SIGINT, signalhandler) global dataservice dataservice = Dataservice() global threadDelegate threadDelegate = GnThreadDelegate() global stop_event stop_event = threading.Event() if verify_agent() == 0: agentexit() ret = gntools.get_soap_server_ip_port() if len(ret) is None or ret is None: LOG.info('Serverip not found. GnStart exit') sys.exit() global node node = Node() node.node_info_setup() node.create_node_info() global tool tool = Tool() if tool.create_tool() == False: agentexit() global soap soap = Soap(tool) agentlogon() while node.nodeid is None: node.node_info_setup() time.sleep(5) agentprofile() global jobs_q jobs_q = Queue.Queue() global results_q results_q = Queue.Queue() global schedule_q schedule_q = Queue.Queue() # thread start thnamepipe = Namedpipe(NAMEDPIPE_AGENT, stop_event, 0, notify_q) thnamepipe.start() thsender = PluginResultsendThread(stop_event, 10) thsender.start() thplugin = PluginManager(stop_event, 600) thplugin.add_plugin(7001, "osinfo") thplugin.add_plugin(7002, "hwinfo") thplugin.add_plugin(7003, "swinfo") thplugin.add_plugin(7004, "netinfo") thplugin.add_plugin(7005, "scriptctrl") thplugin.set_agentaction(soap.dict_env['aalist'], soap.dict_env['tolist']) thplugin.start() notifymgr = GnNotify("GnNotify Mgr", stop_event, 1, schedule_q) notifymgr.setup_network_info() notifymgr.start() versionmgr = GnUpdateRunner("gnupdate runnger", stop_event, 10) versionmgr.start() thgnupdatekicking = GnUpdateKickingThread("gnupdate-kicking", stop_event, 21600) thgnupdatekicking.start() thschedule = GnScheduleThread("gnSchedule", schedule_q, notify_q) thschedule.setDaemon(True) thschedule.start() """ 윈도우 에이전트의 NetIfChange() 쓰레드의 실행주기에 따라서 기존 1초 -> 5초로 변경함. """ thnotifyifchange = GnNotifyIFChangeThread("threadNetIf", stop_event, 5, notify_q) thnotifyifchange.start() threads['namedpipe'] = thnamepipe threads['resultsender'] = thsender threads['pluginmgr'] = thplugin threads['versionmgr'] = versionmgr threads['updatekicking'] = thgnupdatekicking threads['gnNotifyMgr'] = notifymgr threads['gnSchedule'] = thschedule threads['gnnotifyifchange'] = thnotifyifchange """ 사용자 인증 모듈을 사용하지 않음.(GUI, Console를 통한 인증 기능 구현 필요) 현재 구현 상태는 Web browser로만 가능함. """ authstatus = "0" """ authstatus == "1" : 사용자 인증이 되지 않은 상태. authstatus == "0" : 사용자 인증이 완료된 상태. """ if authstatus != "0" or len(authstatus) == 0: send_notify = (44, '0x400') add_jobs(notify_q, send_notify) signal.pause() # 모든 thread 가 종료될때까지 대기 for key in threads.keys(): t = threads[key] t.stopwait() t.join() dataservice.close() logging.shutdown() agentexit() if __name__ == '__main__': LOG = set_logging_parameter(sys.argv) if '-d' in sys.argv: path = AgentInstallPathInfo() path.set_devopt("unittest") main(sys.argv)
UTF-8
Python
false
false
73,093
py
217
gnagent.py
179
0.522476
0.514929
0
2,307
29.036411
214
gabriellaec/desoft-analise-exercicios
1,640,677,513,512
d0b5570d10812cbdf9c408a00856efde5f35c6d7
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_177/ch20_2020_10_07_14_05_25_291698.py
8fea6a9c7e340d16ed8c1c83ec5cf26f2014763b
[]
no_license
https://github.com/gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
distancia = float(input('Qual a distância da viagem em km?')) if distancia <= 200: passagem = 0.5 * distancia print ('preço por quilometro = R$0.50') else: passagem = 100 + 0.45 * (distancia - 200) print ('preço por quilometro = R$0.45') print("Preço da passagem = R${0}".format(passagem))
UTF-8
Python
false
false
309
py
35,359
ch20_2020_10_07_14_05_25_291698.py
35,352
0.64918
0.580328
0
8
37.25
61
claudeisakeeb/LoLBot
2,199,023,287,774
668a53e18571c288946ee18ba2e8b561b643fb21
1c3381e143f511b22bcc1306b43998c815853c24
/get_all_champion_skins.py
a0931a0231fa4a032bc834c0eadde54284f0e401
[]
no_license
https://github.com/claudeisakeeb/LoLBot
cf981f43824a80f4fec769f385ccabf0a8a126b1
b9972113ff7e6cefa55d83d874c2080fc6e0e4ae
refs/heads/master
2022-12-07T20:13:01.772554
2020-08-22T21:39:38
2020-08-22T21:39:38
287,159,118
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests import json #Gets all champion skins in the current version of data dragon and puts them in 'all_champion_skins.json' #The format is "key-ified skin name" --> [champion name, skin photo id, original skin name, skin ID] champion_skin_dict = {} version = requests.get("https://ddragon.leagueoflegends.com/api/versions.json").json()[0] all_champions = requests.get(f"http://ddragon.leagueoflegends.com/cdn/{version}/data/en_US/champion.json").json()["data"] for champion in all_champions: champion_skins = requests.get(f"http://ddragon.leagueoflegends.com/cdn/{version}/data/en_US/champion/{champion}.json").json()["data"][champion]["skins"] for skin in champion_skins: key = champion.lower().replace(" ", "") if skin["name"] == "default" else skin["name"].lower().replace(" ", "").replace("'", "").replace("/", "") champion_skin_dict[key] = [champion, skin["num"], f"Classic {champion}" if skin["name"] == "default" else skin["name"], skin["id"]] with open("all_champion_skins.json", "w") as f: json.dump(champion_skin_dict, f) print("Successfully generated all champion skins.")
UTF-8
Python
false
false
1,137
py
16
get_all_champion_skins.py
7
0.683377
0.682498
0
19
58.894737
156
AInitikesh/brain-waves
16,217,796,542,770
6a67c131d1cff1eb7ea7b2f5061b9136bb7eca5e
a0765ea5dc34a12839d728d837e2e0668623a4f7
/app/__init__.py
d918d760a219bc04c5f616e8486c2f1938bba32a
[]
no_license
https://github.com/AInitikesh/brain-waves
3a82d71dc331de46bd206fe82f38cd31ea6c496c
286cb48512dc86406a0e86051b3bf86741492aee
refs/heads/master
2020-04-29T07:43:50.506553
2019-03-16T22:43:53
2019-03-16T22:43:53
175,963,247
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Import flask and template operators from flask import Flask, render_template, jsonify from flask import request from app.helper.converter import insertDb import os from flask_cors import CORS import datetime # Import SQLAlchemy from flask_sqlalchemy import SQLAlchemy # Define the WSGI application object app = Flask(__name__, static_url_path='/static') cors = CORS(app) # Configurations app.config.from_object('config') db = SQLAlchemy(app) files = os.listdir('CS') client = app.config["CLIENT"] otherParty = app.config["OTHER_PARTY"] final_data = insertDb(client, otherParty) @app.route('/') def main(): return render_template('index.html') @app.route('/merge') def merge(): id = request.args.get('id') for data in final_data: if data[4] == int(id): data[3] = "MERGED" return "success" @app.route("/results") def index(): ## get the last date the webscraper was ru size = request.args.get('size') page = request.args.get('page') tradeDateFrom = request.args.get('tradeFrom') tradeDateTo = request.args.get('tradeTo') setllDateFrom = request.args.get('settlFrom') setllDateTo = request.args.get('settlTo') currency = request.args.get('currency') rate = request.args.get('rate') status = request.args.get('status') return_data = final_data if status != None and status != "": return_data=[data for data in final_data if data[3] == status or data[3] == "MERGED"] if tradeDateFrom != None and tradeDateFrom != "": dateSplit = tradeDateFrom.split('-') d1 = datetime.datetime(int(dateSplit[0]), int(dateSplit[1]), int(dateSplit[2])) temp_return = [] for data in return_data: dataDate = data[0]['30T'].split('/') if len(dataDate) == 3: d2 = datetime.datetime(int(dataDate[2]), int(dataDate[1]), int(dataDate[0])) if d1 < d2: temp_return.append(data) return_data = temp_return if tradeDateTo != None and tradeDateTo != "": dateSplit = tradeDateTo.split('-') d1 = datetime.datetime(int(dateSplit[0]), int(dateSplit[1]), int(dateSplit[2])) temp_return = [] for data in return_data: dataDate = data[0]['30T'].split('/') if len(dataDate) == 3: d2 = datetime.datetime(int(dataDate[2]), int(dataDate[1]), int(dataDate[0])) if d2 < d1: temp_return.append(data) return_data = temp_return if setllDateFrom != None and setllDateFrom != "": dateSplit = setllDateFrom.split('-') d1 = datetime.datetime(int(dateSplit[0]), int(dateSplit[1]), int(dateSplit[2])) temp_return = [] for data in return_data: dataDate = data[0]['30V'].split('/') if len(dataDate) == 3: d2 = datetime.datetime(int(dataDate[2]), int(dataDate[1]), int(dataDate[0])) if d1 < d2: temp_return.append(data) return_data = temp_return if setllDateTo != None and setllDateTo != "": dateSplit = setllDateTo.split('-') d1 = datetime.datetime(int(dateSplit[0]), int(dateSplit[1]), int(dateSplit[2])) temp_return = [] for data in return_data: dataDate = data[0]['30V'].split('/') if len(dataDate) == 3: d2 = datetime.datetime(int(dataDate[2]), int(dataDate[1]), int(dataDate[0])) if d2 < d1: temp_return.append(data) return_data = temp_return if rate != None and rate != "": return_data=[data for data in return_data if data[0]['36'] == rate or data[1]['36'] == dateSplit] if currency != None and currency != "": return_data=[data for data in return_data if data[0]['32B'][1] == currency or data[0]['33B'][1] == currency or data[1]['32B'][1] == currency or data[1]['33B'][1] == currency] if size == None: size = 10 if page == None: page = 0 size = int(size) page = int(page) return jsonify(return_data[page*size:page*size + size])
UTF-8
Python
false
false
4,148
py
6
__init__.py
4
0.585824
0.565333
0
119
33.831933
182
prmelehan/AITesting
558,345,783,962
e28b2ea932f89bed97473e2fe299ee4017f151f3
3a9ac8452e0f3b97b39f413f7da55c6d25e69354
/LSTM/finance/stocks/stock_predictor.py
bbeb0e574bf5bd879579c43df89eee570ad7e43e
[]
no_license
https://github.com/prmelehan/AITesting
b0d685b6b0e2157b361026efe46183040eda5f75
bc59114b235c1771b34e6500f5c8bb95a1698f01
refs/heads/master
2021-01-19T13:22:47.462452
2018-01-29T18:01:11
2018-01-29T18:01:11
100,838,854
0
3
null
null
null
null
null
null
null
null
null
null
null
null
null
# this will be able to take any datasheet from NASDAQ and try to predict the stock price of that company # dependencies from __future__ import print_function import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from keras.layers.core import Dense, Activation, Dropout from keras.layers.recurrent import LSTM from keras.layers import Bidirectional from keras.models import Sequential from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping, Callback from sklearn.cross_validation import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt import math import requests import pandas_datareader as web import datetime # HYPER PARAMETERS look_back = 7 #epochs = 1000 epochs = 5 batch_size = 32 # helper for logging the history class AccuracyHistory(Callback): def on_train_begin(self, logs={}): self.acc = [] def on_epoch_end(self, batch, logs={}): self.acc.append(logs.get('acc')) def get_data(stock_symbol): start = datetime.datetime(2008, 1, 1) end = datetime.datetime.now() print("Downloading historical quotes for " + str(stock_symbol) + "...") data = web.DataReader(stock_symbol, 'yahoo', start, end) print("Done") # save this data just incase data.to_csv('data/' + str(stock_symbol) + ".csv") closing = data.Close.values.astype('float32') opening = data.Open.values.astype('float32') high = data.High.values.astype('float32') low = data.Low.values.astype('float32') # reshape to column vector closing = closing.reshape(len(closing), 1) opening = opening.reshape(len(opening), 1) high = high.reshape(len(high), 1) low = low.reshape(len(low), 1) prices = np.zeros((len(data), 4)) print("Prices Shape:", prices.shape) # reassign the values to the tensor for index, val in enumerate(prices): prices[index, 0] = closing[index] prices[index, 1] = opening[index] prices[index, 2] = high[index] prices[index, 3] = low[index] return prices def training_split(data, split): trainingSize = int(len(data) * float(split)) testingSize = len(data - trainingSize) trainingSet, testingSet = data[0:trainingSize, :], data[trainingSize:len(data), :] return trainingSet, testingSet # convert an array of values into a time series dataset # in form # X Y # t-look_back+1, t-look_back+2, ..., t t+1 def create_dataset(dataset, look_back): dataX, dataY = [], [] for index in range(len(dataset)-look_back-1): a = dataset[index:(index+look_back), :] dataX.append(a) dataY.append(dataset[index + look_back, :]) return np.array(dataX), np.array(dataY) def train_reshape(trainX, testX): trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], trainX.shape[2])) testX = np.reshape(testX, (testX.shape[0], testX.shape[1], testX.shape[2])) return trainX, testX def create_model(look_back): model = Sequential() # add the first Bidirectional LSTM layer model.add(Bidirectional(LSTM(32, return_sequences=True), input_shape=(look_back, 4))) model.add(Dropout(0.2)) # add the second LSTM block model.add(Bidirectional(LSTM(64, return_sequences=True))) model.add(Dropout(0.2)) # add the final LSTM block model.add(Bidirectional(LSTM(32, return_sequences=False))) # add the dense layer to output the number from our feature representations model.add(Dense(units=4)) # compile the model with mse as the loss function and adamoptimizer as the optimizer model.compile(loss='mse', optimizer='adam') return model def plot(prices, predictions, stock_symbol, prediction_title): plt.plot(prices, label="Actual") plt.plot(predictions, label=prediction_title) plt.title(str(stock_symbol) + " Actual Price vs. Predicted Price") plt.ylabel("Price (USD)") plt.xlabel("Time") plt.legend() plt.show() def main(): symbol = str(input("Stock Symbol (e.g AAPL): ")) prices = get_data(symbol) # normalize our data normalizer = MinMaxScaler(feature_range=(0,1)) prices = normalizer.fit_transform(prices) training, testing = training_split(prices, 0.60) trainX, trainY = create_dataset(training, look_back) testX, testY = create_dataset(testing, look_back) trainX, testX = train_reshape(trainX, testX) model = create_model(look_back) checkpoint = ModelCheckpoint("model_checkpoints/" + symbol + "_checkpoint.h5", monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1) # --- debugging ------ history = AccuracyHistory() # -------------------- # train the model callbacks = [checkpoint, history] model.fit(trainX, trainY, epochs=epochs, batch_size=batch_size, callbacks=callbacks) # save the model to use later on model.save('saved_models/' + symbol + ".h5") trainPredictions = model.predict(trainX) testPredictions = model.predict(testX) trainPredictions = normalizer.inverse_transform(trainPredictions) trainY = normalizer.inverse_transform(trainY) testPredictions = normalizer.inverse_transform(testPredictions) testY = normalizer.inverse_transform(testY) trainingScore = math.sqrt(mean_squared_error(trainY[:, 0], trainPredictions[:, 0])) testingScore = math.sqrt(mean_squared_error(testY[:, 0], testPredictions[:, 0])) print("Training Score: %.5f RMSE" % (trainingScore)) print("Testing Score: %.5f RMSE" % (testingScore)) # unnormalize our prices for plotting prices = normalizer.inverse_transform(prices) trainingPlot = np.empty_like(prices) trainingPlot[:, :] = np.nan trainingPlot[look_back:len(trainPredictions)+look_back, :] = trainPredictions testingPlot = np.empty_like(prices) testingPlot[:, :] = np.nan testingPlot[len(trainPredictions)+(look_back*2)+1:len(prices)-1, :] = testPredictions plot(prices[:, 0], trainingPlot[:, 0], symbol, "Training Prediction") plot(prices[:, 0], testingPlot[:, 0], symbol, "Testing Prediction") if __name__ == '__main__': main()
UTF-8
Python
false
false
6,289
py
13
stock_predictor.py
1
0.681507
0.669423
0
183
33.36612
182
liu111xiao111/UItest
13,469,017,483,568
618fc32467d41e7a299bb24e88055074aa8e0df0
b4afb44b8f483c048716fe12d778186ce68ac846
/pages/ios/ffan/square_shopping_category_page.py
cba6db073d4631c64b78a0d126e1bcf53a18b027
[]
no_license
https://github.com/liu111xiao111/UItest
64309b2c85f6d2334d64bb0875ba9ced459ebb1e
67e2acc9a99da81022e286e8d8ec7ccb12636ff3
refs/heads/master
2021-09-01T18:30:28.044296
2017-12-28T04:36:46
2017-12-28T04:36:46
115,585,226
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from api.api import API from pages.ios.common.superPage import SuperPage from pages.ios.ffan.square_shopping_category_page_configs import SquareShoppingPageConfigs class SquareShoppingPage(SuperPage): ''' 作者 宋波 首页=>广场=>爱购物 ''' def __init__(self, testcase, driver, logger): super(SquareShoppingPage, self).__init__(testcase=testcase, driver=driver, logger=logger); ''' usage : 进入广场模块,检查是否加载出来 ''' def validSelf(self): API().assertElementByName(self.testcase, self.driver, self.logger, SquareShoppingPageConfigs.name_commodity_title_st, SquareShoppingPageConfigs.click_on_button_timeout) def clickOnSubCommodity(self): ''' usage: click on the sub-commodity button. ''' tempText = API().getTextByXpath(self.testcase, self.driver, self.logger, SquareShoppingPageConfigs.xpath_sub_commodity_st, SquareShoppingPageConfigs.get_timeout) API().clickElementByXpath(self.testcase, self.driver, self.logger, SquareShoppingPageConfigs.xpath_sub_commodity_st, SquareShoppingPageConfigs.click_on_button_timeout) return tempText if __name__ == '__main__': pass;
UTF-8
Python
false
false
1,460
py
656
square_shopping_category_page.py
648
0.597301
0.596591
0
41
33.341463
98
0hexit/zds-site
15,255,723,884,208
b743e83d4ecf4a00982ab07fa1e6523ba36b509b
58042e54f78a767a81db52378c50622e043d6a07
/zds/member/models.py
04765857286f52a61da14f28fd0c45da9b7bc91e
[]
no_license
https://github.com/0hexit/zds-site
b7a9235b68c2a2c8b4715b4c4fbf1d980f0dcc87
bcc83b852c650e70553c8eba83193da10f6332ab
refs/heads/master
2021-06-03T05:22:51.339807
2014-01-30T00:55:45
2014-01-30T00:55:45
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding: utf-8 from datetime import datetime from django.contrib.auth.models import User from django.db import models from django.db.models import Q from django.core.urlresolvers import reverse from django.shortcuts import redirect from hashlib import md5 from zds.forum.models import Post, Topic from zds.utils.models import Alert from zds.tutorial.models import Tutorial from zds.article.models import Article from django.contrib.gis.geoip import GeoIP import uuid class Profile(models.Model): '''Represents an user profile''' class Meta: verbose_name = 'Profil' verbose_name_plural = 'Profils' permissions = ( ("moderation", u"Modérer un membre"), ("show_ip", u"Afficher les IP d'un membre"), ) user = models.ForeignKey(User, unique=True, verbose_name='Utilisateur') last_ip_address = models.CharField('Adresse IP', max_length=15, blank=True, null=True) site = models.CharField('Site internet', max_length=128, blank=True) show_email = models.BooleanField('Afficher adresse mail publiquement', default=True) avatar_url = models.CharField( 'URL de l\'avatar', max_length=128, null=True, blank=True ) biography = models.TextField('Biographie', blank=True) karma = models.IntegerField('Karma', default=0) sign = models.TextField('Signature', blank=True) show_sign = models.BooleanField('Voir les signatures', default=True) hover_or_click = models.BooleanField('Survol ou click ?', default=True) can_read = models.BooleanField('Possibilité de lire', default=True) end_ban_read = models.DateTimeField('Fin d\'interdiction de lecture', null=True, blank=True) can_write = models.BooleanField('Possibilité d\'écrire', default=True) end_ban_write = models.DateTimeField('Fin d\'interdiction d\'ecrire', null=True, blank=True) def __unicode__(self): '''Textual forum of a profile''' return self.user.username def get_absolute_url(self): '''Absolute URL to the profile page''' return '/membres/voir/{0}'.format(self.user.username) def get_city(self): ''' return physical adress by geolocalisation ''' g = GeoIP() geo = g.city(self.last_ip_address) return u'{0}, {1}'.format(str(geo['city']), str(geo['country_name'])) def get_avatar_url(self): '''Avatar URL (using custom URL or Gravatar)''' if self.avatar_url: return self.avatar_url else: return 'https://secure.gravatar.com/avatar/{0}?d=identicon'.format(md5(self.user.email).hexdigest()) def get_post_count(self): '''Number of messages posted''' return Post.objects.filter(author__pk=self.user.pk).count() def get_topic_count(self): '''Number of threads created''' return Topic.objects.filter(author=self.user).count() def get_tuto_count(self): '''Number of tutos created''' return Tutorial.objects.filter(authors__in=[self.user]).count() def get_tutos(self): '''Get all tutorials of the user''' return Tutorial.objects.filter(authors__in = [self.user]).all() def get_draft_tutos(self): '''Tutorial in draft''' return Tutorial.objects.filter(authors__in=[self.user], sha_public__isnull=True, sha_draft__isnull=False).all() def get_public_tutos(self): '''Tutorial in public''' return Tutorial.objects.filter(authors__in=[self.user], sha_public__isnull=False).all() def get_validate_tutos(self): '''Tutorial in validation''' return Tutorial.objects.filter(authors__in=[self.user], sha_validation__isnull=False).all() def get_beta_tutos(self): '''Tutorial in beta''' return Tutorial.objects.filter(authors__in=[self.user], sha_beta__isnull=False).all() def get_articles(self): '''Get all articles of the user''' return Article.objects.filter(authors__in=[self.user]).all() def get_posts(self): return Post.objects.filter(author=self.user).all() def get_invisible_posts_count(self): return Post.objects.filter(is_visible=False, author=self.user).count() def get_alerts_posts_count(self): return Alert.objects.filter(author=self.user).count() def can_read_now(self): if self.end_ban_read: return self.can_read or (self.end_ban_read < datetime.now()) else: return self.can_read def can_write_now(self): if self.user.is_active: if self.end_ban_write: return self.can_write or (self.end_ban_write < datetime.now()) else: return self.can_write else: return False class TokenForgotPassword(models.Model): class Meta: verbose_name = 'Token de mot de passe oublié' verbose_name_plural = 'Tokens de mots de passe oubliés' user = models.ForeignKey(User, verbose_name='Utilisateur') token = models.CharField(max_length=100) date_end = models.DateTimeField('Date de fin') def get_absolute_url(self): '''Absolute URL to the new password page''' return reverse('zds.member.views.new_password')+'?token={0}'.format(self.token) class TokenRegister(models.Model): class Meta: verbose_name = 'Token d\'inscription' verbose_name_plural = 'Tokens d\'inscription' user = models.ForeignKey(User, verbose_name='Utilisateur') token = models.CharField(max_length=100) date_end = models.DateTimeField('Date de fin') def get_absolute_url(self): '''Absolute URL to the active account page''' return reverse('zds.member.views.active_account')+'?token={0}'.format(self.token) def __unicode__(self): '''Textual forum of a profile''' return u"{0} - {1}".format(self.user.username, self.date_end) class Ban(models.Model): class Meta: verbose_name = 'Sanction' verbose_name_plural = 'Sanctions' user = models.ForeignKey(User, verbose_name='Sanctionné') moderator = models.ForeignKey(User, verbose_name='Moderateur', related_name='bans') type = models.CharField('Type', max_length=15) text = models.TextField('Explication de la sanction') pubdate = models.DateTimeField('Date de publication', blank=True, null=True)
UTF-8
Python
false
false
6,608
py
156
models.py
60
0.628844
0.624602
0
184
34.875
119
emingure/SchoolProjects
8,710,193,691,144
aedc1456901ba1a28efb5ff9fc674f8e6aa35f5c
50cadd32262e5ac612eb8b45c05829c6522585fb
/CmpE 230 - Systems Programming/exercises/b.py
5fafb85e7cdc62bca17a5f4b2b35119b16b68ceb
[]
no_license
https://github.com/emingure/SchoolProjects
7301cfd0711f310f70880e163f98996403cd8dda
8e3c182c16453647ca4269051e2d491b37f53dc9
refs/heads/master
2020-04-17T09:23:01.845511
2019-01-18T18:37:21
2019-01-18T18:37:21
166,452,379
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import re import sys n = int(sys.argv[1]) for i in range(2,n+1): str = "1" * i found = re.search(r"^(11+?)\1+$",str) if not found: print len(str),str
UTF-8
Python
false
false
157
py
55
b.py
31
0.585987
0.541401
0
10
14.7
38
twcrane/thekla
17,025,250,379,315
32e2b8ca779635b23710910d33ee81278235ffb5
dcc73447097e0fe627d1dc9d1005b2bc60b5c310
/src/Document.py
cfb300bc25716c2fec67ec4861cdccbe66a585c0
[]
no_license
https://github.com/twcrane/thekla
746f76bd3dc5bca5a2dd4894f0f4129da1cd028e
e945d2548b3b3ced4393a2189269ca784e76b8bb
refs/heads/master
2021-01-16T22:03:59.264554
2013-10-01T07:42:30
2013-10-01T07:42:38
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import absolute_import from __future__ import unicode_literals import logging import codecs import os import scipy def repr_with_tm(fname, tm): """ Read file /fname/ and map each word to the id of the corresponding topic vector in /tm/ and save the result in a list. With the list and the topic model you can construct a word_id_list of topic vectors representing the document. """ #!Warning!: The resulting word_id_list is bound to the topic models vocabulary. #Work with the ids only if you are sure you are working with the same #tm.vocab with codecs.open(fname, 'r', 'utf-8') as doc_file: for line in doc_file: if line.isspace(): continue word_id_list = [] #stores the tm ids of the words in the document for word in line.split(): #word = word.lower() if tm.word_id_dict.has_key(word): word_id_list.append(tm.word_id_dict[word]) if not word_id_list: logging.debug('Found no known word in file {fname}'.format(fname=fname)) return word_id_list def _normalize_vector(vec): """ Normalize /vec/ (vector or matrix) to a range between 0 and 1. """ #We are dealing with log probabilities, therefore all values are negative v_min = scipy.amin(vec) v_max = scipy.amax(vec) f = lambda x: (x-v_min)/(v_max-v_min) return f(vec) class Documents: """Represent Documents using topic models""" def __init__(self, doc_source, tm, centroid_computation): self.tm = tm #load absolute file names of text files fnames = [] if isinstance(doc_source, str): doc_dir = os.path.abspath(doc_source) + os.sep fnames = [doc_dir + doc for doc in os.listdir(doc_dir) if doc.endswith('.txt')] elif isinstance(doc_source, list): raw_fnames = [] for doc in doc_source: base = os.path.basename(doc) if base.endswith('.txt'): doc_dir = os.path.abspath(doc) fnames.append(doc_dir) #represent documents with help of topics self.docs = {} for fname in fnames: doc = Document(fname, tm, centroid_computation) if doc.centroid is not None: self.docs[fname] = doc def as_centroid_matrix(self): """ Returns a matrix consisting of the document centroids and a list holding the information which document's centroid is in which line of the matrix. """ id_list = [] assert len(self.docs) > 0 doc_centroid_matrix = scipy.zeros((0,len(self.tm))) for key, doc in self.docs.iteritems(): id_list.append(key) doc_centroid_matrix = scipy.vstack( (doc_centroid_matrix, doc.centroid)) return doc_centroid_matrix, id_list def compute_cluster_centroid(self, doc_list, flavor='avg'): """ Iterates over the doc_list and returns the average of all document's centroids. """ cluster_centroid = scipy.zeros((1,len(self.tm))) for doc in doc_list: #add document centroid to the matrix try: centroid = self.docs[doc].centroid except KeyError as ke: logging.error(ke) logging.warning('centroid missing for document "{doc}"'.format(doc=doc)) continue if centroid != None: cluster_centroid += centroid cluster_centroid /= len(doc_list) return cluster_centroid class Document: """Represent a Document""" def __init__(self, fname, tm, centroid_flavor='avg'): #define which way is used to compute the centroid of the document flavors = {'avg' : self.compute_centroid_avg, 'exp' : self.compute_centroid_avg_experimental} self.fname = fname self.cluster_assignment = -1 compute_centroid = flavors[centroid_flavor] word_id_list = repr_with_tm(fname, tm) self.centroid = compute_centroid(tm, word_id_list) del(word_id_list) def __str__(self): return 'Document "{name}"'.format(name=self.fname) def set_cluster_assignment(self, k): self.cluster_assignment = k def compute_centroid_avg(self, tm, word_id_list): """ Computes the normalized average of the topic vectors of all words in this document """ try: #no centroid without a vector assert len(word_id_list) > 0 except AssertionError as ae: logging.error(ae) logging.error('document "{name}" seems to be empty!'.format(name=self.fname)) return None #create vector to sum words' topic vectors centroid = scipy.zeros(len(tm.topics)) for w_id in word_id_list: topic_vector = tm.get_topic_vector_for_id(w_id) centroid += topic_vector #compute the average of the topics centroid = centroid / float(len(word_id_list)) #normalize the vector to a range between 0 and 1 centroid = _normalize_vector(centroid) return centroid def compute_centroid_avg_experimental(self, tm, word_id_list): """ Computes the average of the *normalized* topic vectors of all words in this document """ try: #no centroid without a vector assert len(word_id_list) > 0 except AssertionError as ae: logging.error(ae) logging.error('document "{name}" seems to be empty!'.format(name=self.fname)) return None #create vector to sum words' topic vectors centroid = scipy.zeros(len(tm.topics)) #TODO if this is used regularly, the normalized topic vector could #already be precomputed in tm for w_id in word_id_list: topic_vector = tm.get_topic_vector_for_id(w_id) #normalize topic vector topic_vector = _normalize_vector(topic_vector) centroid += topic_vector #compute the average of the topics centroid = centroid / float(len(word_id_list)) return centroid
UTF-8
Python
false
false
6,366
py
2,022
Document.py
6
0.587496
0.585768
0
181
34.171271
89
amitupadhyay6/My-Python-Program
16,045,997,838,261
b92b5ac85af134680642f6cdf426e53ea7cd66f5
c3a08f9bfac42053e34d0972095b56851cb1b60a
/My Codes/Sum and Prod.py
f9772ca93beb09a46db5dabd8487a867da9a3497
[]
no_license
https://github.com/amitupadhyay6/My-Python-Program
588b90a783264d40bc19e8050ebe6607d2e23bb1
feb2f2d49ab4f863382941a8eb8caf2f9a0f4dc2
refs/heads/master
2022-09-19T23:50:26.701405
2020-05-31T11:09:53
2020-05-31T11:09:53
262,348,377
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy ar = numpy.array([ [1,2], [7,10]]) print(ar.sum()) print(numpy.sum(ar, axis=0)) print(numpy.sum(ar, axis=1)) print(numpy.sum(ar, axis=None)) print(numpy.sum(ar)) print("\n") print(ar.prod()) print(numpy.prod(ar, axis=0)) print(numpy.prod(ar, axis=1)) print(numpy.prod(ar, axis=None)) print(numpy.prod(ar))
UTF-8
Python
false
false
336
py
170
Sum and Prod.py
146
0.639881
0.613095
0
14
21.857143
34
oyjjforever/licensePlate
12,670,153,545,718
f8fa905bb5d29fc418588e14a4da877c14da1892
ba1f5f2872f58f1c867ffc5277d092adcd34f72d
/license_locate.py
58f780a3b291fce5ef5a791bafa4b8a24c400812
[]
no_license
https://github.com/oyjjforever/licensePlate
5fd3e514d321425aa42c0fc1b6319328b579718f
bdd6190e4e3bfc25ec0642d9840d753307128d9e
refs/heads/master
2020-06-24T22:29:31.017596
2019-08-02T08:42:47
2019-08-02T08:42:47
199,110,014
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import copy import datetime import math from collections import Counter import cv2 import numpy as np import matplotlib.pyplot as plt np.set_printoptions(threshold=np.inf) # 确定最小搜索窗口为180*30,后续进行细定位 from PIL import Image window_h = 20 window_w = 180 sobel_image = [] class Locate: def column_diff(self,pic): h, w = pic.shape[:2] # w = 640,h = 480 coldiff_img = np.zeros((h, w), dtype=np.uint8) for row in range(0,h): for column in range(0,w-1): coldiff_img[row][column+1] = pic[row][column] return coldiff_img # 预处理图片 def preprocess_image(self, file_name): # 加权平均法 + cv2 进行灰度化 image = cv2.imread(file_name) gray_image = self.get_gray_image_by_weight_avg(image) # 进行Sobel的垂直边缘检测 # 利用Sobel方法可以进行sobel边缘检测 # img表示源图像,即进行边缘检测的图像 # cv2.CV_64F表示64位浮点数即64float。 # 这里不使用numpy.float64,因为可能会发生溢出现象。用cv的数据则会自动 # 第三和第四个参数分别是对X和Y方向的导数(即dx,dy),对于图像来说就是差分,这里1表示对X求偏导(差分),0表示不对Y求导(差分)。其中,X还可以求2次导。 # 注意:对X求导就是检测X方向上是否有边缘。 # 第五个参数ksize是指核的大小。 x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0) #在经过处理后,别忘了用convertScaleAbs()函数将其转回原来的uint8形式。否则将无法显示图像,而只是一副灰色的窗口。 scale_abs_x = cv2.convertScaleAbs(x) # convert 转换 scale 缩放 sobel_image = scale_abs_x y = cv2.Sobel(gray_image, cv2.CV_16S, 0, 1) scale_abs_y = cv2.convertScaleAbs(y) sobel_image_y = scale_abs_y # 二值化处理和中值滤波平滑 diff = np.array((640, 480), np.uint8) gray_image = cv2.resize(gray_image, (640, 480)) sobel_image = cv2.resize(sobel_image, (640, 480)) # 调整图片尺寸,以便后期处理 sobel_image_y = cv2.resize(sobel_image_y, (640, 480)) # 调整图片尺寸,以便后期处理 diff = cv2.absdiff(self.column_diff(sobel_image), sobel_image) # 做灰度图像和经过sobel边缘检测后的图片的水平差分,以去除背景影响==》跳变点图 #diff = cv2.absdiff(gray_image, sobel_image) avg = self.get_pixel_avg(diff) print("avg:" ,avg) #跳变点图作自适应阈值化 # cv::adaptiveThreshold( # cv::InputArray src, // 输入图像 # double maxValue, // 向上最大值 # int adaptiveMethod, // 自适应方法,平均或高斯 # int thresholdType // 阈值化类型 # int blockSize, // 块大小 # double C // 常量 # ); binary = cv2.adaptiveThreshold(diff, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 5, 30#math.floor(avg / 10)#40 ) # cv2.imshow("binary", binary) # cv2.waitKey(0) return sobel_image, sobel_image_y,diff, binary def rough_locate(self, sobel_image, binary_image, diff): h, w = binary_image.shape[:2] # w = 640,h = 480 # 获取到二值化图像后,获取灰度跳变数组 image_jump_array = self.get_2d_gray_jump(binary_image) #print(image_jump_array) # 通过灰度跳变数组获取灰度跳变的积分图,用于找到灰度跳变点最多的区域 integral_array = self.get_gray_scale_jump_integral(h, w, image_jump_array) #print(integral_array) # img = np.array(integral_array) # plt.imshow(img) # 通过灰度跳变积分图,进行窗口搜索,粗定位车牌位置, # 以上得到粗定位的车牌候选区域,之后进行细定位车牌位置 candiate_list = self.rough_search_by_window(h, w, integral_array, sobel_image,binary_image) return integral_array, candiate_list def detail_locate_and_confirm(self, candiate_list, sobel_image, sobel_image_y,integral_array): # position : 粗定位的车牌左上角坐标 # 第一步扩展车牌的上下区域获得最佳上下边界 # 具体为获取扩展区域的水平投影并获取其平均值,从水平中央开始向两侧扫描,发现小于均值的则是上下边界 # 第二步扩展车牌的左右区域获得最佳左右边界 # 扩展后通过数据结构的最大子段和获取左右边界,因为在灰度图像中,白色为255,黑色为0 candiate_list_2 = [] # 用作第二轮筛选 for i in range(len(candiate_list)): flag = True # 标志表示步骤正常运行 ,标志要放在循环内,以便每次刷新 position = candiate_list[i] #print(position) h, w = sobel_image.shape[:2] # w = 640,h = 480 # print(position) step_1 = sobel_image_y[position[0] - window_h:position[0] + 2 * window_h, position[1]:position[1] + window_w] # cv2.imshow("step_1", step_1) # cv2.waitKey(0) X = position[1] Y = position[0] - window_h if position[0] - window_h < 0: step_1 = sobel_image_y[0:position[0] + 2 * window_h, position[1]:position[1] + window_w] X = position[1] Y = 0 elif position[0] + 2 * window_h > h: step_1 = sobel_image_y[position[0] - window_h:h, position[1]:position[1] + window_w] X = position[1] Y = position[0] - window_h # 获取水平投影数组 hor_list = self.get_horizontal_projection(step_1) # 通过水平投影数组获取车牌的重定位的上下边界 upper, lower = self.detail_position_the_upper_and_lower_boundaries(X,Y,hor_list,sobel_image_y,position) if upper != lower: step_1 = step_1[lower:upper, 0:w] # cv2.imshow("step_1", step_1) # cv2.waitKey(0) flag = True else: flag = False # ##########上下边界定位结束######################## # ##########下面开始进行左右边界的定位################### if flag is True: # 如果第一步上下边界正常运行 image_step_1 = step_1 h_1, w_1 = image_step_1.shape[:2] image_left = position[1] - math.floor(w_1 / 2) image_right = position[1] + window_w + math.floor(w_1 / 2) if image_left < 0: flag = False elif image_right > 640: flag = False if flag is True: image_step_2 = sobel_image[position[0] - window_h + lower: position[0] - window_h + upper, image_left:image_right] ver_list = self.get_vertical_projection(image_step_2) sum = 0 for i in range(len(ver_list)): sum += ver_list[i] avg = math.floor(sum / len(ver_list)) # 求均值后,将ver_list每个值都减去avg,然后用最大字段和来获取左右边界,在灰度图中,白色为255,黑色为0 for i in range(len(ver_list)): ver_list[i] = ver_list[i] - avg left, right = self.max_sequence(ver_list) if left == 0 and right == 0: flag = False if flag is True: h, w = image_step_2.shape[:2] image_step_2 = image_step_2[0:h, left:right] # cv2.imshow("image_step_2", image_step_2) # cv2.waitKey(0) x1 = position[0] - window_h + lower x2 = position[0] - window_h + upper y1 = image_left + left y2 = image_left + right # print("x2 - x1 = " + str(x2 - x1)) # print("y2 - y1 = " + str(y2 - y1)) # 筛选掉边缘区域 if x1 < 100 or y1 < 100 or x2 > 480 or y2 > 640: flag = False # 筛选车牌长宽比 ratio = (y2 - y1) / (x2 - x1) # print(ratio) if ratio > 12 or ratio < 5: flag = False if flag is True: area_gray_jump = int(integral_array[x2][y2]) + int( integral_array[x1][y1]) - int(integral_array[x2][y1]) - int( integral_array[x1][y2]) if area_gray_jump > math.floor(window_w * window_h / 8): # 灰度跳变数要大于搜索窗口面积的八分之一 if len(candiate_list_2) != 0: repeated_index = len(candiate_list_2) - 1 if not (abs(x1 - candiate_list_2[repeated_index][0]) <= 5 or abs(x2 - candiate_list_2[repeated_index][0]) <= 5 or abs(y1 - candiate_list_2[repeated_index][2]) <= 5 or abs(y2 - candiate_list_2[repeated_index][3]) <= 5): candiate_list_2.append((x1, x2, y1, y2)) else: candiate_list_2.append((x1, x2, y1, y2)) image_need = sobel_image[x1:x2, y1:y2] # cv2.imshow("image_need", image_need) # cv2.waitKey(0) # 融合候选区域中坐标相近的位置 # print(candiate_list_2) # print(Counter(candiate_list_2).most_common(3)) result_locate = Counter(candiate_list_2).most_common(5) max_ratio = 0 # 不能起名为关键字,会冲突 max_index = 0 max_width = 0 for i in range(len(result_locate)): x1 = result_locate[i][0][0] x2 = result_locate[i][0][1] y1 = result_locate[i][0][2] y2 = result_locate[i][0][3] w = y2 - y1 image = sobel_image[x1:x2,y1:y2] # cv2.imshow("image", image) # cv2.waitKey(0) ratio = math.floor((y2 - y1) / (x2 - x1)) print(ratio) if ratio >= max_ratio: max_ratio = ratio max_index = i max_width = x2 - x1 print(max_ratio) # print(result_locate[0][1]) 出现最多的数出现的次数 [((238, 255, 202, 362), 36)] result_x1 = result_locate[max_index][0][0] result_x2 = result_locate[max_index][0][1] result_y1 = result_locate[max_index][0][2] result_y2 = result_locate[max_index][0][3] position = (result_x1, result_x2, result_y1, result_y2) result = sobel_image[result_x1:result_x2, result_y1:result_y2] self.showLine(position[0],position[1],sobel_image_y,1,"stop") return result, position def rough_search_by_window(self, h, w, integral_array, ori_image,binary_image): max_gray_jump = 0 candiate_list = [] max_locate = (0, 0) for x in range(0, h - window_h, 5): for y in range(0, w - window_w, 5): # (x4,y4) + (x1,y1) - (x2,y2) - (x3,y3) area_jump_level = 0 if ori_image[x + math.floor(window_h / 2)][y + math.floor(window_w / 2)] > 127: area_jump_level = int(integral_array[x + window_h][y + window_w]) + int( integral_array[x][y]) - int(integral_array[x + window_h][y]) - int( integral_array[x][y + window_w]) #print(int(integral_array[x + window_h][y + window_w]) ,"+", int( # integral_array[x][y]) ,"-", int(integral_array[x + window_h][y]) ,"-", int( # integral_array[x][y + window_w])) #print("x:",x,"y:",y,"跳变点个数:", area_jump_level,"区域总数的1/8:",(window_h * window_w) / 8) if area_jump_level > (window_h * window_w) / 8.5 and 100 < x < 480 - 100 and 100 < y < 640 - 100: candiate_list.append((x, y)) #self.showLine(x, y, binary_image, 1,"stop") # print(area_jump_level) #self.showLine(x,y,binary_image,0,"stop") # print(candiate_list_1) candiate_list.reverse() return candiate_list def get_gray_image_by_weight_avg(self, ori_image): h, w = ori_image.shape[:2] gray_img = np.zeros((h, w), dtype=np.uint8) for i in range(h): for j in range(w): # Y = 0.3R + 0.59G + 0.11B # 通过cv格式打开的图片,像素格式为 BGR gray_img[i, j] = 0.3 * ori_image[i, j][2] + 0.11 * ori_image[i, j][0] + 0.59 * ori_image[i, j][1] return gray_img def get_pixel_avg(self, image): sum = 0 h, w = image.shape[:2] for x in range(h): for y in range(w): sum += image[x][y] avg = sum / (h * w) return avg def get_character_density(self, image): # 计算图片的字符密度 sum = 0 h, w = image.shape[:2] for x in range(h): for y in range(w): sum += image[x][y] avg = sum / (h * w) return sum # 获取图像灰度跳变点图 def get_2d_gray_jump(self, image): jump_list_2d = np.zeros((480, 640), np.uint8) h, w = image.shape[:2] for x in range(h): for y in range(w): if abs(int(image[x][y]) - image[x][y - 1]) > 230: # 将数值调低后,就能找到亮度较低的车牌图像的定位 jump_list_2d[x][y] = 1 else: jump_list_2d[x][y] = 0 # np.set_printoptions(threshold=1e6) # print(jump_list_2d) return jump_list_2d # 获取灰度跳变的积分图 def get_gray_scale_jump_integral(self, h, w, jump_array): h, w = jump_array.shape[:2] # 把图片2像素的行数,列数以及通道数返回给rows,cols,channels sum = np.zeros((h + 1, w + 1), dtype=np.float32) # 创建指定大小的数组,数组元素以 0 来填充: image_integral = cv2.integral(jump_array, sum, cv2.CV_32SC1) # 计算积分图,输出是sum gray_jump_integral = np.zeros((h + 1, w + 1), dtype=np.uint16) cv2.normalize(image_integral, gray_jump_integral, 0, 65535, cv2.NORM_MINMAX, cv2.CV_16UC1) # 归一化处理 np.set_printoptions(threshold=1e6) return gray_jump_integral def get_horizontal_projection(self, shadow_image): h, w = shadow_image.shape[:2] hor_list = [] for x in range(h): pixel_sum = 0 for y in range(w): pixel_sum += shadow_image[x][y] hor_list.append(pixel_sum) return hor_list def get_vertical_projection(self, shadow_image): h, w = shadow_image.shape[:2] ver_list = [] for x in range(w): pixel_sum = 0 for y in range(h): pixel_sum += shadow_image[y][x] ver_list.append(pixel_sum) return ver_list def detail_position_the_upper_and_lower_boundaries(self, X,Y,list,sobel_image_y,position): sum = 0 upper = 0 lower = 0 for i in range(len(list)): sum += list[i] avg = 9000 # math.floor(sum / len(list)) #print("[detail_position_the_upper_and_lower_boundaries] avg:",avg) # 从中间往上遍历,遇到比均值小的,则是车牌细定位的上边界,并跳出循环 flag = False for i in range(math.floor(len(list) / 2), 0, -1): self.showScanLine(position[0], position[1], Y + i, X, sobel_image_y, "row", 0) if list[i] > avg: self.showScanLine(position[0], position[1], Y + i, X, sobel_image_y, "row",1) upper = i flag = True if flag is False: continue break # 从中间往下遍历,遇到比均值小的,则是车牌细定位的下边界,并跳出循环 flag = False for i in range(math.floor(len(list) / 2), len(list)): self.showScanLine(position[0], position[1], Y + i, X, sobel_image_y, "row", 0) if list[i] > avg: self.showScanLine(position[0], position[1], Y + i, X, sobel_image_y, "row",1) lower = i flag = True if flag is False: continue break return lower, upper def max_sequence(self, array): sum = 0 max = 0 bestI = 0 bestJ = 0 i = 0 for j in range(len(array)): sum += array[j] if sum > 0: sum += array[j] else: sum = array[j] i = j if sum > max: max = sum bestI = i bestJ = j l = bestI r = bestJ return l, r def license_locate(self, filename): # 这个是获取垂直跳变点图的位置 sobel_image,sobel_image_y, diff, binary = self.preprocess_image(filename) # self.showPicture(sobel_image) # self.showPicture(diff) # self.showPicture(binary) integral_array, candiate_list = self.rough_locate(sobel_image, binary, diff) result, position = self.detail_locate_and_confirm(candiate_list, sobel_image, sobel_image_y,integral_array) return result def showPicture(self,pic): cv2.imshow("image", pic) cv2.waitKey(0) def showScanLine(self,posY,posX,Y,X,pic,type,zeroIsDeepCopy): color = 255 # 置为白点 if (zeroIsDeepCopy == 0): image = copy.deepcopy(pic) else: image = pic # for topLineElement in range(posX,posX + 180): # image[posY][topLineElement]=color # image[posY + 20][topLineElement]=color # for leftColumnElement in range(posY, posY + 20): # image[leftColumnElement][posX]=color # image[leftColumnElement][posX + 180]=color if(type == "row"): for topLineElement in range(0,640): image[Y][topLineElement]=color else: for leftColumnElement in range(0, 480): image[leftColumnElement][X]=color cv2.imshow("image", image) cv2.waitKey(10) def showLine(self,Y,X,pic,zeroIsDeepCopy,stopFlag): # image = cv2.imread(filename) # image = cv2.resize(image, (640, 480)) color = 255 # 置为白点 if(zeroIsDeepCopy==0): image = copy.deepcopy(pic) else: image = pic for topLineElement in range(X,X + 180): image[Y][topLineElement]=color image[Y + 20][topLineElement]=color for leftColumnElement in range(Y, Y + 20): image[leftColumnElement][X]=color image[leftColumnElement][X + 180]=color cv2.imshow("image", image) if(stopFlag=="stop"): cv2.waitKey(0) else: cv2.waitKey(10) if __name__ == '__main__': begin = datetime.datetime.now() instance = Locate() # for i in range(9, 58): filename = 'picture_for_train/11.jpg' #filename = filename + str(i) + ".jpg" print(filename) # ###############行扫描法 ################# # image = cv2.imread(filename) # gray_img = instance.get_gray_image_by_weight_avg(image) # out = instance.grey_scale(gray_img) # cv2.imshow("out", out) # result = instance.mark_row_area(out) # # cv2.imshow("result", result) # cv2.waitKey(0) ################################################## result = instance.license_locate(filename) #instance.showPicture(result) # # cv2.imshow(filename[-8:], result) # # cv2.waitKey(0) # h, w = result.shape[:2] # # result = cv2.resize(result, (200, 40)) # cv2.imwrite('D:/Car_Identify/picture_locate/' + str(i) + ".jpg", result) end = datetime.datetime.now() print(str((end - begin).seconds) + "s")
UTF-8
Python
false
false
20,569
py
2
license_locate.py
2
0.51484
0.483051
0
475
37.941053
246
cd-glacier/sketch_detection
8,770,323,258,938
cf0870cc205f7af7cc1b3bd569b934825c30ce1b
8b78618774baf7226eaa969784c0ffd9d551ba1c
/canny.py
807766af3de2e4bf320d35c6c0d7babe331599e1
[]
no_license
https://github.com/cd-glacier/sketch_detection
94207d4142274da44c8f4931535e5aeabd8d4380
913a3a1df95f55182d294fa3defcaf417f5a565e
refs/heads/master
2021-05-31T19:34:48.157850
2016-02-06T16:36:49
2016-02-06T16:36:49
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import cv2 import numpy as np import sys import sqlite3 import os def getFileName(): files = os.listdir('./images') #delete .DS_Store del files[0] return files ########################################################################### files_name = getFileName() for file_name in files_name: name = file_name img = cv2.imread('./images/' + name) g_img = cv2.bilateralFilter(img, 9, 75, 75) c_img = cv2.Canny(g_img, 50, 150) cv2.imwrite('./canny/' + name, c_img)
UTF-8
Python
false
false
478
py
5
canny.py
3
0.566946
0.531381
0
24
18.875
75
fege/Thesis-Project
816,043,816,783
4d44821575ea5beb048f06b374567ac7701628e9
8980f35343d346d39c01f28d5161bf0687765add
/restfs/manager/ResourceManager.py
d86987a62662cb6a713e44eb9195221df027479b
[]
no_license
https://github.com/fege/Thesis-Project
51f47961ef54d9b8dc91b13bd9ff4feda5f447cf
4d1d0e1ccb603771800e677de53fbcdb4f37b511
refs/heads/master
2021-01-21T21:48:40.178614
2012-09-26T21:04:28
2012-09-26T21:04:28
5,972,334
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import logging from tornado.options import options from restfs.objects.BucketOwner import BucketOwner def rpcmethod(func): """ Decorator to expose Node methods as remote procedure calls Apply this decorator to methods in the Node class (or a subclass) in order to make them remotely callable via the DHT's RPC mechanism. """ func.rpcmethod = True return func class ResourceManager(object): _LOGGER = logging.getLogger('RESOURCE_MANAGER') def __init__(self): #FIXME SERVICE .. resource_plugin = "restfs.resource.%s.ResourceDriver" % options.resource_driver resource_mod = __import__(resource_plugin, globals(), locals(), ['ResourceDriver']) Resource = getattr(resource_mod, 'ResourceDriver') self.resource = Resource() ########################################################################## # Bucket ########################################################################## def findBucket(self,bucket_name): self._LOGGER.debug("FIND Bucket %s" % bucket_name) return self.resource.findBucket(bucket_name) @rpcmethod def findCluster(self,bucket_name): return self.resource.findCluster(bucket_name) def getBucketListByOwner(self,idUser): self._LOGGER.debug("Get Bucket List by user %s " % idUser) return self.resource.getBucketListByOwner(idUser) def getCountBucketByOwner(self,idUser): self._LOGGER.info("GET Count Bucket By Owner") return self.resource.getCountBucketByOwner(idUser) def getRegionList(self): self._LOGGER.info("GET Region List") return self.resource.getRegionList() def addBucket(self, bucket_name, idUser): self._LOGGER.info("Add Bucket") bucket = BucketOwner(idUser,bucket_name) self.resource.addBucket(bucket) def removeBucket(self, bucket_name, context): self._LOGGER.info("Remove Bucket") self.resource.removeBucket(bucket_name) def setBucketStatus(self, bucket_name, status, context): self._LOGGER.info("SET Bucket Status") self.resource.setBucketStatus(bucket_name, status)
UTF-8
Python
false
false
2,335
py
86
ResourceManager.py
84
0.59015
0.59015
0
64
35.03125
91
staticdev/toml-validator
5,549,097,772,298
4db10dc154a74f2b590a2d1fde59cc27d8b44b42
5eb6fc7cc27926a772a5036819b8bab5bb2989c5
/src/toml_validator/use_cases/toml.py
bc82faaf1865a97ea7481974ab6dadf464103ff5
[ "MIT" ]
permissive
https://github.com/staticdev/toml-validator
80076281fdae532a7f930570225ff4624ccd0aa1
e3bc7a674c5ec1c996d7539616411784995869b1
refs/heads/master
2021-08-08T17:41:39.629182
2021-02-16T18:55:03
2021-02-16T18:55:03
243,814,155
4
1
MIT
false
2021-02-16T18:48:54
2020-02-28T17:07:00
2021-02-16T18:04:03
2021-02-16T18:48:53
689
1
1
0
Python
false
false
"""TOML Validator validations.""" import tomlkit from tomlkit.exceptions import ParseError from tomlkit.exceptions import TOMLKitError def validate_extension(filename: str) -> bool: """Validates extension in filename. Args: filename (str): name of the file. Returns: bool: if extension is valid. """ valid_extensions = [".toml"] for extension in valid_extensions: if filename.endswith(extension): return True return False def execute(filename: str) -> str: """It validates the TOML. Args: filename (str): name of the file. Returns: str: error messages. """ with open(filename) as toml: lines = toml.read() try: tomlkit.parse(lines) return "" except (TOMLKitError, ParseError) as errors: return str(errors)
UTF-8
Python
false
false
855
py
12
toml.py
8
0.624561
0.624561
0
39
20.923077
48
hbahamonde/Smote_US
1,460,288,898,188
8f1f663fa5812e65f7dd38de84f435425a17fd7b
cccabaf75f4f52a19d5ffe09843923b334652bc9
/Datos/smote_svm.py
dac6cd24d2b08296ba74e53d3cc152bfd49f25fe
[ "Apache-2.0" ]
permissive
https://github.com/hbahamonde/Smote_US
195c826bd5f6883d1c048c5c4f9df142f5660e12
7bbb2bd5182e96c034f7b3c8b6e13d7584f8d6d3
refs/heads/main
2023-04-22T08:58:41.699675
2021-04-27T20:17:39
2021-04-27T20:17:39
353,096,291
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# svm.py import numpy as np # for handling multi-dimensional array operation import pandas as pd # for reading data from csv from sklearn import svm # for classification problem from sklearn.pipeline import make_pipeline # create pipeline from sklearn.preprocessing import StandardScaler # scaling data from collections import Counter from imblearn.over_sampling import SMOTE from imblearn.pipeline import Pipeline from matplotlib import pyplot from numpy import where from numpy import mean #from sklearn.model_selection import cross_val_score #from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix from sklearn import preprocessing import random from statistics import pstdev from sklearn.naive_bayes import GaussianNB from sklearn.neural_network import MLPClassifier data = pd.read_csv('./dataMergedConjoint.csv') data = data.drop_duplicates(subset=['idnum']) X = data[['woman', 'socideo', 'partyid', 'reg', 'trustfed', 'income.n','educ.n', 'polknow']] y = data['vote.selling'] #concatenate? #Standarization xvalue = X.values min_max_scaler = preprocessing.MinMaxScaler() xscaled = min_max_scaler.fit_transform(xvalue) X = pd.DataFrame(xscaled) #training_pairs = pd.concat([X,y],axis=1) nobs = len(X) nfold = 10 lsets = int(np.ceil(nobs/nfold)) nrepeat = 3 RepeatSVMLinear = np.zeros([nrepeat,nfold]) PPVSVMLinear = np.zeros([nrepeat,nfold]) for i in range(nrepeat): indexes = list(range(nobs)) random.shuffle(indexes) dfs = np.array_split(indexes,nfold) for j in range(nfold): index_bad = X.index.isin(dfs[j]) X_test = X[index_bad] y_test = y[index_bad] X_train = X[~index_bad] y_train = y[~index_bad] #SMOTE oversample = SMOTE(k_neighbors=7) X_train,y_train = oversample.fit_resample(X_train,y_train) linear_svc = svm.SVC(kernel='rbf',random_state=0, tol=1e-5, C = 1) linear_svc.fit(X_train, y_train) y_predict = linear_svc.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test.ravel(),y_predict).ravel() RepeatSVMLinear[i,j] = tp/(tp+fn) PPVSVMLinear[i,j] = tp/(tp+fp) print('Linear') print(mean(100*RepeatSVMLinear.ravel())) print(pstdev(100*RepeatSVMLinear.ravel())) print(mean(100*PPVSVMLinear.ravel())) print(pstdev(100*PPVSVMLinear.ravel())) ## ### summarize class distribution ##counter = Counter(y) ##print(counter) ## ### Classification ##over = SMOTE(k_neighbors=7) ## ### Decision Tree Classifier ##steps = [('over', over), ('model', DecisionTreeClassifier())] ##pipeline = Pipeline(steps=steps) ##cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) ##scores = cross_val_score(pipeline, X, y, scoring='roc_auc', cv=cv, n_jobs=-1) ##print('Mean ROC AUC: %.3f' % mean(scores)) ## ### Decision Tree Classifier ##steps = [('over', over), ('model', LinearSVC())] ##pipeline = Pipeline(steps=steps) ##cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) ##scores = cross_val_score(pipeline, X, y, scoring='roc_auc', cv=cv, n_jobs=-1) ##print('Mean ROC AUC: %.3f' % mean(scores)) ## ## ## ### SVM only accepts numerical values. ### Therefore, we will transform the categories into ### values 1 and 0. ## ### at.run ##cancannot_map = {'Citizens CANNOT run for office for the next two elections':0, 'Citizens CAN run for office for the next two elections':1} ##data['at.run'] = data['at.run'].map(cancannot_map) ### at.asso ##cancannot_map = {'Citizens CANNOT associate with others and form groups':0, 'Citizens CAN associate with others and form groups':1} ##data['at.asso'] = data['at.asso'].map(cancannot_map) ### at.press ##cancannot_map = {'Media CANNOT confront the Government':0, 'Media CAN confront the Government':1} ##data['at.press'] = data['at.press'].map(cancannot_map) ### at.presaut ##cancannot_map = {'President CANNOT rule without Congress':1, 'President CAN rule without Congress':0} ##data['at.presaut'] = data['at.presaut'].map(cancannot_map) ### at.vote ##cancannot_map = {'Citizens CANNOT vote in the next two elections':0, 'Citizens CAN vote in the next two elections':1} ##data['at.vote'] = data['at.vote'].map(cancannot_map) ## ### drop last column (extra column added by pd) ### and unnecessary first column (id) ### data.drop(data.columns[[-1 0]], axis=1, inplace=True) ### put features & outputs in different DataFrames for convenience ##Y = data.loc[:, 'selected'] # all rows of 'diagnosis' ##X_c1 = data.iloc[range(0,11080,2),[5,6,7,8,9]] # all feature rows candidate 1 ##X_c2 = data.iloc[range(1,11080,2),[5,6,7,8,9]] # all feature rows candidate 1 ##X = X_c1.values-X_c2.values ##X = pd.DataFrame(X) ##Y_c1 = Y.iloc[range(0,11080,2)] # all feature rows candidate 1 ##Y_c2 = Y.iloc[range(1,11080,2)] # all feature rows candidate 1 ##Y = Y_c1.values-Y_c2.values ##Y = pd.DataFrame(Y) ##W = pd.DataFrame(data=None,columns=['k','w.at.run','w.at.asso','w.at.press','w.at.presaut','w.at.vote','selected','at.run','at.asso','at.press','at.presaut','at.vote']) ## ##print("training started...") ##for i in list(range(int(len(Y)/5))): ## print(i) ## X_train = X.iloc[5*i:5*(i+1),:] ## #X_train = [X_train.iloc[0,:],X_train.iloc[1,:],X_train.iloc[2,:],X_train.iloc[3,:],X_train.iloc[4,:]] ## y_train = Y.iloc[5*i:5*(i+1)] ## if (-1 in np.array(y_train)) and (1 in np.array(y_train)): ## #clf = make_pipeline(StandardScaler(),LinearSVC(random_state=0, tol=1e-5, fit_intercept=False)) ## clf = LinearSVC(random_state=0, tol=1e-5, fit_intercept=False, C = 10, max_iter = 2000) ## clf.fit(X_train, y_train.values.ravel()) ## #print(clf.decision_function(np.eye(5))) ## w=list(clf.decision_function(np.eye(5))) ## ## w = [i+1]+w ## w = pd.DataFrame({'k':[w[0],w[0],w[0],w[0],w[0]], ## 'w.at.run':[w[1],w[1],w[1],w[1],w[1]], ## 'w.at.asso':[w[2],w[2],w[2],w[2],w[2]], ## 'w.at.press':[w[3],w[3],w[3],w[3],w[3]], ## 'w.at.presaut':[w[4],w[4],w[4],w[4],w[4]], ## 'w.at.vote':[w[5],w[5],w[5],w[5],w[5]]}) ## #aux=pd.DataFrame(np.ones((5,1))*w) ## w['selected']=y_train.values ## w['at.run']=X_train[0].values ## w['at.asso']=X_train[1].values ## w['at.press']=X_train[2].values ## w['at.presaut']=X_train[3].values ## w['at.vote']=X_train[4].values ## W = pd.concat([W,w]) ## ##pd.DataFrame(W).to_excel(r'./File Name.xlsx', index = False) ## ##
UTF-8
Python
false
false
6,605
py
84
smote_svm.py
4
0.64436
0.619379
0
165
39.030303
170
mty0313/get_my_code_back
11,596,411,702,741
1b31a67f616b39b69ae1d6b67c22af83536bc423
c5e36b1ff4427b5e182bb3309916446aa1fe89e0
/get_accpeted_submission.py
749a43c4a14515eff8501299459076b529cd0e31
[]
no_license
https://github.com/mty0313/get_my_code_back
8fdcc3e714c09cf8ea9bd3dc08aff4d1803ece33
2c87b7e05857f73354fca4a5b6e7786aefc82086
refs/heads/master
2022-03-11T09:29:52.438050
2019-11-22T06:44:46
2019-11-22T06:44:46
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests url = "https://acm.nuist.edu.cn/v1/course/37/user/own-submission" headers = { 'authority': "acm.nuist.edu.cn", 'method': "GET", 'path': "/v1/course/37/user/own-submission?page=1&perpage=12", 'scheme': "https", 'accept': "application/json, text/plain, */*", 'accept-encoding': "gzip, deflate, br", 'accept-language': "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7", 'cookie': "lang=3; ; ssx-session-id=s%3ASvDHcXAY_5xiSP2qhG2aNy0RKyBX2rgJ.mfbNzqAR80E70jhWGYddwh9YpX28kB6D7Hkx%2Bo3tago; XSRF-TOKEN=oLxdjork-r2aHuV8eF-VqAJLJhX2Lp9Kkicw", 'if-none-match': '''W/"5dd269a0-b16"''', 'referer': "https://acm.nuist.edu.cn/course/37/submission", 'sec-fetch-mode': "cors", 'sec-fetch-site': "same-origin", 'user-agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.97 Safari/537.36", 'x-xsrf-token': "FkfSMn3e-WHHiNzAfcal9pXreBEVOvdkWN9M", 'Cache-Control': "no-cache", 'Postman-Token': "b02b558b-8604-45bb-85ad-4e754324a5ba,a09f5332-6137-4287-89f5-a9e1f5792170", 'Host': "acm.nuist.edu.cn", 'Connection': "keep-alive", 'cache-control': "no-cache" } if __name__ == "__main__": result = [] for current_page in range(1, 5): querystring = {"page": current_page, "perpage": "12"} response = requests.request("GET", url, headers=headers, params=querystring) result_list = response.json()[0] for item in result_list: if item['status'] == 0: result_dict = {} result_dict['id'] = item['id'] result_dict['problemId'] = item['problemId'] result_dict['title'] = item['title'].strip(' ') result.append(result_dict) with open('submission_info.txt', 'a+') as file: for item in result: print(item) file.write(str(item) + '\n')
UTF-8
Python
false
false
1,922
py
5
get_accpeted_submission.py
2
0.605099
0.538502
0
45
41.644444
173
Daniel-02/Exercicio3CoAP
18,537,078,889,573
893e27dc2a3f6ec7e3cf739f977f186f7a543fcf
7829830583b1bed7a2bd974774dd507dd0cd84cc
/aplicacao.py
53a05f57088e7d34ce6965e26aebe69234779934
[]
no_license
https://github.com/Daniel-02/Exercicio3CoAP
66704b122806520b21e7a24160fa5c4fd5f612d4
b1440cbf9118b4d24c465c79965957897c8070b1
refs/heads/master
2022-09-26T07:51:25.864922
2020-06-03T14:03:26
2020-06-03T14:03:26
268,911,012
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import getopt import socket import sys from coapthon.client.helperclient import HelperClient from coapthon.utils import parse_uri from coapthon import defines from threading import Thread from sense_emu import SenseHat # Autor: Daniel Arena Toledo client = None sense = SenseHat() #instancia emulado so SenseHat red = (255, 0, 0) #RGB para cor vermelha black = (0, 0, 0) #RGB para cor preta (apagado) limiar_temp = 0 #armazena o limiar de temperatura recebido limiar_pres = 0 #armazena o limiar de pressao recebido #Funcao a ser executada quando o observe detecta alteracao no recurso def callback(response): global client global limiar_temp global limiar_pres if(response.payload): limites = response.payload.split() limiar_temp = float(limites[0]) #armazena a nova temperatura recebida do servidor limiar_pres = float(limites[1]) #armazena a nova pressao recebida do servidor print ("Media dos limites atuais no servidor") print ("Temperatura: {} C".format(limiar_temp) + " ---- Pressao: {} mbar".format(limiar_pres)) else: print ("Nao ha valores armazenados") #Trata o argumento passado e separa em host e porta address = sys.argv[1] host, port = address.split(':') port = int(port) client = HelperClient(server=(host, port)) #instancia um Client resposta = client.get('sensor') #faz um get do recurso no servidor if(resposta.payload): limites = resposta.payload.split() limiar_temp = float(limites[0]) #armazena a temperatura recebida do servidor limiar_pres = float(limites[1]) #armazena a pressao recebida do servidor client.observe('sensor', callback) #observa o recurso e chama o callback quando ele e alterado while True: temp = sense.temperature #pega a temperatura atual do sensor pressure = sense.pressure #pega a pressao atual do sensor #Verifica se ambas temperatura e pressao estao acima do limiar acende_leds = True if (temp > limiar_temp and pressure > limiar_pres) else False #Se estiverem acima do limiar seta leds vermelho, senao preto pixels = [red if acende_leds else black for i in range(64)] sense.set_pixels(pixels)
UTF-8
Python
false
false
2,258
py
4
aplicacao.py
3
0.697963
0.690434
0
61
34.983607
102
vicety/LeetCode
5,703,716,595,703
a033e0aa0b224c89c0fdcce07094870306277a35
50efdd972f278f3fec22c64cd0ba038e2d035d58
/python/interview/2022-intern/netease-2022/3.py
2f5bbdc9d16b2181bdad8257c534b96c6fc5bf61
[]
no_license
https://github.com/vicety/LeetCode
470e53cb85bb421dd9ed61a672703358981aaf27
d62b95145f0ea00873ed1fe45b2c31a4794cc7e5
refs/heads/surface-aya
2023-07-21T05:53:43.132791
2023-07-11T11:36:05
2023-07-11T11:36:05
250,862,810
0
0
null
false
2023-05-09T18:51:22
2020-03-28T18:11:33
2021-10-14T04:28:45
2023-05-09T18:51:19
1,221
0
0
4
Java
false
false
n = int(input()) odd_layer_sum = 0 even_layer_sum = 0 now = 1 odd_layer = True acc = 0 while True: if acc + now > n: if odd_layer: odd_layer_sum += (n - acc) else: even_layer_sum += (n - acc) break acc += now if odd_layer: odd_layer_sum += now else: even_layer_sum += now odd_layer = not odd_layer now *= 2 ans = [] i = 0 now = 1 odd_now = 1 even_now = 2 if odd_layer_sum <= even_layer_sum: # 奇数层比偶数层节点少 use_even = True # 第一层消耗偶数 else: use_even = False while i <= n: for j in range(1, now + 1): if i + j > n: break if use_even: if even_now <= n: ans.append(even_now) even_now += 2 else: ans.append(odd_now) odd_now += 2 else: if odd_now <= n: ans.append(odd_now) odd_now += 2 else: ans.append(even_now) even_now += 2 use_even = not use_even i += now now *= 2 # print(odd_layer_sum, even_layer_sum) print(" ".join(list(map(lambda x: str(x), ans))))
UTF-8
Python
false
false
1,214
py
670
3.py
669
0.45339
0.439831
0
58
19.344828
49
jmborr/code
8,924,942,083,173
cd963c4ec2f8cba10e7f2e526ae7cc55bac38fc8
83ed1e2f176133c03a5f6dfa504b8df15ae71efb
/projects/nonhomol_pdbJul05/avTMcentr.py
9c09fbdf8b73eb2f4c41d06a4b321659988bc0ea
[]
no_license
https://github.com/jmborr/code
319db14f28e1dea27f9fc703be629f171e6bd95f
32720b57699bf01803367566cdc5fff2b6bce810
refs/heads/master
2022-03-09T16:11:07.455402
2019-10-28T15:03:01
2019-10-28T15:03:01
23,627,627
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/pyton """ for each sequence calculate average TM-score between centroids, then average for all sequences """ import sys,os from utilities.small_utilities import chomp from spicker.spickerResultsManager import spickOut from math import sqrt headers=chomp(open('/gpfs1/active/jose/projects/nonhomol_pdbJul05/small_proteins/successAplusB.list','r').readlines()) #headers=chomp(open('/gpfs1/active/jose/projects/nonhomol_pdbJul05/small_proteins/toylist','r').readlines()) root='/gpfs1/active/jose/projects/nonhomol_pdbJul05/small_proteins' avv=0 avv2=0 for header in headers: p=spickOut(dir=root+'/'+header[1]+'/'+header) av=0.0 for id1 in p.ids: for id2 in p.ids: av+=p.TMidId(id1,id2) av=(av-p.nc)/(p.nc*(p.nc-1)) avv+=av avv2+=av*av print header,av avv=avv/len(headers) dev=sqrt(avv2/len(headers) - avv*avv ) print 'average=',avv,'deviation=',dev
UTF-8
Python
false
false
911
py
693
avTMcentr.py
508
0.712404
0.688255
0
35
25.028571
118
stackpearson/cs-notes
6,219,112,683,947
2c0cb57f4e438bcc318c5b50e3de9166775c3107
3f1db3c9641a93bece8c3952dd51788298b7f313
/lambda_questions/treePaths.py
bf7a80cc2e7b69e4567ea337337c44fb7fe9e40d
[]
no_license
https://github.com/stackpearson/cs-notes
8e312aaac13da16e826e46ae059622aba5b8ebb6
8193e6b3da65ac8865ab8f6343375a4d0d7a6c84
refs/heads/master
2023-02-16T01:09:12.337041
2021-01-07T02:58:12
2021-01-07T02:58:12
314,680,781
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def treePaths(t): res = [] # base case - empty tree if t is None: return res # pre order would work best if t.left is None and t.right is None: s = f'{t.value}' res.append(s) return res string = '' recurse(t, string, res) return res # need to call over tree recursively def recurse(root, s, res): # if we just have a head append the value if root.left is None and root.right is None: res.append(s + f'{root.value}') # go over left hand side until we hit null s += f'{root.value}->' if root.left is not None: recurse(root.left, s, res) # go over right unitil we hit null if root.right is not None: recurse(root.right, s, res)
UTF-8
Python
false
false
807
py
34
treePaths.py
34
0.542751
0.542751
0
33
23.484848
48
vhnuuh/pyutil
10,488,310,142,954
a7ad7e7f948d2c913e9596cbe7f08c2b37d610d4
6ea48188896b8ffd157032441f90d20c629d76c3
/examples/thread_/signal_/custom_exit.py
2b7e4ed0e613ff2705a6dd1f5fbeb0293ef6c700
[]
no_license
https://github.com/vhnuuh/pyutil
71925838f6d620861638d8244827b2b3fb7db936
d34f44b4de6ab4eebd0fe7782ea6e20285b17f31
refs/heads/master
2019-07-14T15:54:36.643100
2019-03-19T09:33:28
2019-03-19T09:33:28
27,152,767
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# encoding:utf-8 """ inspire by openstack service """ # TODO: 未验证异常 import signal import os import time class SignalExit(SystemExit): def __init__(self, signo, exccode=1): super(SignalExit, self).__init__(exccode) print 'raise SignalExit' self.signo = signo def parent_handler(signum, frame): os.kill(pid, signal.SIGTERM) try: result = os.waitpid(pid, 0) print 'wait %s status: %s' % result except Exception as ex: print ex exit(0) def exit_handler(signum, frame): signal.signal(signal.SIGTERM, signal.SIG_DFL) raise SystemExit(1) def custom_exit_handler(signum, frame): #signal.signal(signal.SIGTERM, signal.SIG_DFL) raise SignalExit(signum) print 'Parent pid: %s' % os.getpid() print 'forking...' pid = os.fork() if pid: signal.signal(signal.SIGTERM, parent_handler) while True: time.sleep(5) print 'Parent wait terminate' else: #signal.signal(signal.SIGTERM, signal.SIG_DFL) #signal.signal(signal.SIGTERM, exit_handler) signal.signal(signal.SIGTERM, custom_exit_handler) try: while True: print 'child running' time.sleep(5) except Exception as ex: print ex
UTF-8
Python
false
false
1,248
py
392
custom_exit.py
360
0.642165
0.636511
0
55
21.509091
54
fossabot/Mi.py
3,770,981,287,041
ac281c1b8782da0261fedd1ce44e82f80d62a455
e4765d71b0d27fc05ceaea19021ad569f4b4c48a
/misskey/note.py
4d473f9adb80f7569e359156173771f31b3a98b6
[ "MIT" ]
permissive
https://github.com/fossabot/Mi.py
683d78fb190892a538d5f5f39839655b27a2379f
ec58f1f8a44c1708f235837014e993e697fe6a54
refs/heads/master
2023-07-14T13:42:53.829408
2021-08-27T13:02:43
2021-08-27T13:02:43
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json import re from misskey.user import User class Note(object): __slots__ = ( 'id', 'created_at', 'type', 'user_id', 'author', 'text', 'cw', 'visibility', 'visible_user_ids', 'renote_count', 'replies_count', 'reactions', 'emojis', 'file_ids', 'reply_id', 'renote_id', 'deleted_at', 'uri', 'ws' ) def __init__(self, data, ws=None, text=None): self.ws = ws for attr in ('id', 'createdAt', 'userId', 'user', 'text', 'cw', 'visibility', 'renoteCount', 'repliesCount', 'reactions', 'emojis', 'fileIds', 'files', 'replyId', 'renoteId' ): try: value = data[attr] except KeyError: continue else: # エラーが発生しなかった場合は変数に追加 if attr == 'user': setattr(self, attr, User(value)) else: print(f'setattr(self,{attr}, {value})') setattr(self, f'{attr}', f'{value}') def content(self, content): content = { 'visibility': f"{content.get('visibility', self.visibility)}", 'text': f"{content.get('text', '')}", 'cw': content.get('cw'), 'viaMobile': f"{content.get('viaMobile', 'false')}", 'localOnly': f"{content.get('localOnly', 'false')}", 'noExtractMentions': f"{content.get('noExtractMentions', 'false')}", 'noExtractHashtags': f"{content.get('noExtractHashtags', 'false')}", 'noExtractEmojis': f"{content.get('noExtractEmojis', 'false')}", 'replyId': f"{content.get('replyId', self.id)}", } return content def create(self): self.ws.send('') def reply(self, content: dict = {}): content = self.content(content) self.ws.send(json.dumps( { 'type': 'api', 'body': { 'id': 'f8b2894d-1b5d-60f3-c9ea-60851f8e9730', 'endpoint': 'notes/create', 'data': content } }, ensure_ascii=False))
UTF-8
Python
false
false
2,336
py
16
note.py
12
0.449956
0.440818
0
75
29.64
80
Earmada/django_test_travis
15,839,839,407,634
7adddba339d3bc2966833d8a300f1af66b3edea5
24d4802442c2384d3bdc7dab3eecf3f6aa5df680
/django_test/apps/carts/api/v1/api_urls.py
de75b55a88025b13ffb300b84952d2b0fe5e43af
[]
no_license
https://github.com/Earmada/django_test_travis
92ff885f12e7f2db09251ee3aa84f4ce30d017bf
a875a3398505c721b02bcc8cb89d102f54a49e16
refs/heads/master
2018-02-07T05:54:38.327666
2017-03-04T11:17:12
2017-03-04T11:17:12
83,034,539
1
0
null
false
2017-03-04T11:17:12
2017-02-24T11:25:00
2017-02-24T11:33:58
2017-03-04T11:17:12
1,704
0
0
0
Python
null
null
# Python imports # Core Django imports from django.conf.urls import url # Third-Party imports # Apps Imports from .api_controllers import CartsListAPIController, CartDetail from django_test.apps.products_carts.api.v1.api_controllers import ProductsCartAPIController, AddProductToCart from django_test.apps.products_carts.api.v1.api_controllers import UpdateProductInCart urlpatterns = [ url(r'^(?P<pk>[^/]+)/products/$', ProductsCartAPIController.as_view(), name='products_cart'), url(r'^(?P<pk>[^/]+)/products/(?P<product_id>[^/]+)/actions/add-to-cart/$', AddProductToCart.as_view(), name='product_add_to_cart'), url(r'^(?P<pk>[^/]+)/products/(?P<product_id>[^/]+)/actions/update-cart/$', UpdateProductInCart.as_view(), name='update_product_in_cart'), url(r'^(?P<pk>[^/]+)/$', CartDetail.as_view(), name='cart_detail'), url(r'^$', CartsListAPIController.as_view(), name='carts_list'), ]
UTF-8
Python
false
false
927
py
158
api_urls.py
143
0.691478
0.68932
0
20
45.35
110