Datasets:
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
video editing
Multi grained Video Editing
text-to-video
Pika
video generation
Video Generative Model Evaluation
License:
File size: 3,282 Bytes
9f89c4e 703733e 9f89c4e 5e8c65d 9f89c4e c2b7c41 ed93345 e08783c ed93345 c2b7c41 ed93345 c2b7c41 ed93345 c2b7c41 ed93345 c2b7c41 ed93345 2c9e5f5 703733e 9f89c4e 2c9e5f5 9f89c4e 2c9e5f5 9f89c4e e08783c 9f89c4e 6afed56 2c9e5f5 6afed56 2c9e5f5 6afed56 9f89c4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
license: cc-by-nc-4.0
task_categories:
- text-to-video
- text-to-image
language:
- en
pretty_name: VideoGrain-dataset
source_datasets:
- original
tags:
- video editing
- Multi grained Video Editing
- text-to-video
- Pika
- video generation
- Video Generative Model Evaluation
- Text-to-Video Diffusion Model Development
- Text-to-Video Prompt Engineering
- Efficient Video Generation
---
# VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing (ICLR 2025)
[Github](https://github.com/knightyxp/VideoGrain) (⭐ Star our GitHub )
[Project Page](https://knightyxp.github.io/VideoGrain_project_page)
[ArXiv](https://arxiv.org/abs/2502.17258)
[Youtube Video](https://www.youtube.com/watch?v=XEM4Pex7F9E)
[HuggingFace Daily Papers Top1](https://huggingface.co/papers/2502.17258)
If you think this dataset is helpful, please feel free to leave a star⭐️⭐️⭐️ and cite our paper:
<p align="center">
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6486df66373f79a52913e017/ZQnogrOMFhy1mcTuxSQ62.mp4"></video>
</p>
# Summary
This is the dataset proposed in our paper [VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing](https://arxiv.org/abs/2502.17258) (ICLR 2025).
VideoGrain is a zero-shot method for class-level, instance-level, and part-level video editing.
- **Multi-grained Video Editing**
- class-level: Editing objects within the same class (previous SOTA limited to this level)
- instance-level: Editing each individual instance to distinct object
- part-level: Adding new objects or modifying existing attributes at the part-level
- **Training-Free**
- Does not require any training/fine-tuning
- **One-Prompt Multi-region Control & Deep investigations about cross/self attn**
- modulating cross-attn for multi-regions control (visualizations available)
- modulating self-attn for feature decoupling (clustering are available)
# Directory
```
data/
├── 2_cars
│ ├── 2_cars # original videos frames
│ └── layout_masks # layout masks subfolders (e.g., bg, left, right)
├── 2_cats
│ ├── 2_cats
│ └── layout_masks
├── 2_monkeys
├── badminton
├── boxer-punching
├── car
├── cat_flower
├── man_text_message
├── run_two_man
├── soap-box
├── spin-ball
├── tennis
└── wolf
```
# Download
### Automatical
Install the [datasets](https://huggingface.co/docs/datasets/v1.15.1/installation.html) library first, by:
```
pip install datasets
```
Then it can be downloaded automatically with
```python
import numpy as np
from datasets import load_dataset
dataset = load_dataset("XiangpengYang/VideoGrain-dataset")
```
# License
This dataset are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
# Citation
```
@article{yang2025videograin,
title={VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing},
author={Yang, Xiangpeng and Zhu, Linchao and Fan, Hehe and Yang, Yi},
journal={arXiv preprint arXiv:2502.17258},
year={2025}
}
```
# Contact
If you have any questions, feel free to contact Xiangpeng Yang (knightyxp@gmail.com).
|