Datasets:
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
video editing
Multi grained Video Editing
text-to-video
Pika
video generation
Video Generative Model Evaluation
License:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-to-video
|
| 5 |
+
- video-editing
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
pretty_name: VideoGrain-dataset
|
| 9 |
+
source_datasets:
|
| 10 |
+
- original
|
| 11 |
+
tags:
|
| 12 |
+
- video editing
|
| 13 |
+
- text-to-video
|
| 14 |
+
- text-to-image
|
| 15 |
+
- Pika
|
| 16 |
+
- video generation
|
| 17 |
+
- Video Generative Model Evaluation
|
| 18 |
+
- Text-to-Video Diffusion Model Development
|
| 19 |
+
- Text-to-Video Prompt Engineering
|
| 20 |
+
- Efficient Video Generation
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
<p align="center">
|
| 26 |
+
<img src="https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/teasor.png" width="800">
|
| 27 |
+
</p>
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Summary
|
| 31 |
+
This is the dataset proposed in our paper [**VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing
|
| 32 |
+
**](https://arxiv.org/abs/2502.17258) (ICLR 2025).
|
| 33 |
+
|
| 34 |
+
VideoGrain is a zero-shot method for class-level, instance-level, and part-level video editing.
|
| 35 |
+
|
| 36 |
+
# Directory
|
| 37 |
+
```
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
# Download
|
| 41 |
+
|
| 42 |
+
### Automatical
|
| 43 |
+
Install the [datasets](https://huggingface.co/docs/datasets/v1.15.1/installation.html) library first, by:
|
| 44 |
+
```
|
| 45 |
+
pip install datasets
|
| 46 |
+
```
|
| 47 |
+
Then it can be downloaded automatically with
|
| 48 |
+
```python
|
| 49 |
+
import numpy as np
|
| 50 |
+
from datasets import load_dataset
|
| 51 |
+
|
| 52 |
+
dataset = load_dataset("XiangpengYang/VideoGrain-dataset")
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
# License
|
| 56 |
+
|
| 57 |
+
This dataset are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Citation
|
| 61 |
+
```
|
| 62 |
+
@article{yang2025videograin,
|
| 63 |
+
title={VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing},
|
| 64 |
+
author={Yang, Xiangpeng and Zhu, Linchao and Fan, Hehe and Yang, Yi},
|
| 65 |
+
journal={arXiv preprint arXiv:2502.17258},
|
| 66 |
+
year={2025}
|
| 67 |
+
}
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
# Contact
|
| 71 |
+
|
| 72 |
+
If you have any questions, feel free to contact Xiangpeng Yang (knightyxp@gmail.com).
|