function_component
dict | function_name
stringlengths 3
35
| focal_code
stringlengths 385
27.9k
| file_path
stringlengths 28
76
| file_content
stringlengths 869
132k
| wrap_class
stringlengths 0
86.6k
| class_signature
stringlengths 0
240
| struct_class
stringlengths 0
2.87k
| package_name
stringclasses 1
value |
|---|---|---|---|---|---|---|---|---|
{
"argument_definitions": [
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}",
"pub struct Point {\n pub x: f64,\n pub y: f64,\n}"
],
"name": "points",
"type": "Vec<Point>"
}
],
"end_line": 82,
"name": "graham_scan",
"signature": "pub fn graham_scan(mut points: Vec<Point>) -> Vec<Point>",
"start_line": 15
}
|
graham_scan
|
pub fn graham_scan(mut points: Vec<Point>) -> Vec<Point> {
if points.len() <= 2 {
return vec![];
}
let min_point = points.iter().min_by(point_min).unwrap().clone();
points.retain(|p| p != &min_point);
if points.is_empty() {
// edge case where all the points are the same
return vec![];
}
let point_cmp = |a: &Point, b: &Point| -> Ordering {
// Sort points in counter-clockwise direction relative to the min point. We can this by
// checking the orientation of consecutive vectors (min_point, a) and (a, b).
let orientation = min_point.consecutive_orientation(a, b);
if orientation < 0.0 {
Ordering::Greater
} else if orientation > 0.0 {
Ordering::Less
} else {
let a_dist = min_point.euclidean_distance(a);
let b_dist = min_point.euclidean_distance(b);
// When two points have the same relative angle to the min point, we should only
// include the further point in the convex hull. We sort further points into a lower
// index, and in the algorithm, remove all consecutive points with the same relative
// angle.
b_dist.partial_cmp(&a_dist).unwrap()
}
};
points.sort_by(point_cmp);
let mut convex_hull: Vec<Point> = vec![];
// We always add the min_point, and the first two points in the sorted vec.
convex_hull.push(min_point.clone());
convex_hull.push(points[0].clone());
let mut top = 1;
for point in points.iter().skip(1) {
if min_point.consecutive_orientation(point, &convex_hull[top]) == 0.0 {
// Remove consecutive points with the same angle. We make sure include the furthest
// point in the convex hull in the sort comparator.
continue;
}
loop {
// In this loop, we remove points that we determine are no longer part of the convex
// hull.
if top <= 1 {
break;
}
// If there is a segment(i+1, i+2) turns right relative to segment(i, i+1), point(i+1)
// is not part of the convex hull.
let orientation =
convex_hull[top - 1].consecutive_orientation(&convex_hull[top], point);
if orientation <= 0.0 {
top -= 1;
convex_hull.pop();
} else {
break;
}
}
convex_hull.push(point.clone());
top += 1;
}
if convex_hull.len() <= 2 {
return vec![];
}
convex_hull
}
|
Rust-master/src/geometry/graham_scan.rs
|
use crate::geometry::Point;
use std::cmp::Ordering;
fn point_min(a: &&Point, b: &&Point) -> Ordering {
// Find the bottom-most point. In the case of a tie, find the left-most.
if a.y == b.y {
a.x.partial_cmp(&b.x).unwrap()
} else {
a.y.partial_cmp(&b.y).unwrap()
}
}
// Returns a Vec of Points that make up the convex hull of `points`. Returns an empty Vec if there
// is no convex hull.
pub fn graham_scan(mut points: Vec<Point>) -> Vec<Point> {
if points.len() <= 2 {
return vec![];
}
let min_point = points.iter().min_by(point_min).unwrap().clone();
points.retain(|p| p != &min_point);
if points.is_empty() {
// edge case where all the points are the same
return vec![];
}
let point_cmp = |a: &Point, b: &Point| -> Ordering {
// Sort points in counter-clockwise direction relative to the min point. We can this by
// checking the orientation of consecutive vectors (min_point, a) and (a, b).
let orientation = min_point.consecutive_orientation(a, b);
if orientation < 0.0 {
Ordering::Greater
} else if orientation > 0.0 {
Ordering::Less
} else {
let a_dist = min_point.euclidean_distance(a);
let b_dist = min_point.euclidean_distance(b);
// When two points have the same relative angle to the min point, we should only
// include the further point in the convex hull. We sort further points into a lower
// index, and in the algorithm, remove all consecutive points with the same relative
// angle.
b_dist.partial_cmp(&a_dist).unwrap()
}
};
points.sort_by(point_cmp);
let mut convex_hull: Vec<Point> = vec![];
// We always add the min_point, and the first two points in the sorted vec.
convex_hull.push(min_point.clone());
convex_hull.push(points[0].clone());
let mut top = 1;
for point in points.iter().skip(1) {
if min_point.consecutive_orientation(point, &convex_hull[top]) == 0.0 {
// Remove consecutive points with the same angle. We make sure include the furthest
// point in the convex hull in the sort comparator.
continue;
}
loop {
// In this loop, we remove points that we determine are no longer part of the convex
// hull.
if top <= 1 {
break;
}
// If there is a segment(i+1, i+2) turns right relative to segment(i, i+1), point(i+1)
// is not part of the convex hull.
let orientation =
convex_hull[top - 1].consecutive_orientation(&convex_hull[top], point);
if orientation <= 0.0 {
top -= 1;
convex_hull.pop();
} else {
break;
}
}
convex_hull.push(point.clone());
top += 1;
}
if convex_hull.len() <= 2 {
return vec![];
}
convex_hull
}
#[cfg(test)]
mod tests {
use super::graham_scan;
use super::Point;
fn test_graham(convex_hull: Vec<Point>, others: Vec<Point>) {
let mut points = convex_hull.clone();
points.append(&mut others.clone());
let graham = graham_scan(points);
for point in convex_hull {
assert!(graham.contains(&point));
}
for point in others {
assert!(!graham.contains(&point));
}
}
#[test]
fn too_few_points() {
test_graham(vec![], vec![]);
test_graham(vec![], vec![Point::new(0.0, 0.0)]);
}
#[test]
fn duplicate_point() {
let p = Point::new(0.0, 0.0);
test_graham(vec![], vec![p.clone(), p.clone(), p.clone(), p.clone(), p]);
}
#[test]
fn points_same_line() {
let p1 = Point::new(1.0, 0.0);
let p2 = Point::new(2.0, 0.0);
let p3 = Point::new(3.0, 0.0);
let p4 = Point::new(4.0, 0.0);
let p5 = Point::new(5.0, 0.0);
// let p6 = Point::new(1.0, 1.0);
test_graham(vec![], vec![p1, p2, p3, p4, p5]);
}
#[test]
fn triangle() {
let p1 = Point::new(1.0, 1.0);
let p2 = Point::new(2.0, 1.0);
let p3 = Point::new(1.5, 2.0);
let points = vec![p1, p2, p3];
test_graham(points, vec![]);
}
#[test]
fn rectangle() {
let p1 = Point::new(1.0, 1.0);
let p2 = Point::new(2.0, 1.0);
let p3 = Point::new(2.0, 2.0);
let p4 = Point::new(1.0, 2.0);
let points = vec![p1, p2, p3, p4];
test_graham(points, vec![]);
}
#[test]
fn triangle_with_points_in_middle() {
let p1 = Point::new(1.0, 1.0);
let p2 = Point::new(2.0, 1.0);
let p3 = Point::new(1.5, 2.0);
let p4 = Point::new(1.5, 1.5);
let p5 = Point::new(1.2, 1.3);
let p6 = Point::new(1.8, 1.2);
let p7 = Point::new(1.5, 1.9);
let hull = vec![p1, p2, p3];
let others = vec![p4, p5, p6, p7];
test_graham(hull, others);
}
#[test]
fn rectangle_with_points_in_middle() {
let p1 = Point::new(1.0, 1.0);
let p2 = Point::new(2.0, 1.0);
let p3 = Point::new(2.0, 2.0);
let p4 = Point::new(1.0, 2.0);
let p5 = Point::new(1.5, 1.5);
let p6 = Point::new(1.2, 1.3);
let p7 = Point::new(1.8, 1.2);
let p8 = Point::new(1.9, 1.7);
let p9 = Point::new(1.4, 1.9);
let hull = vec![p1, p2, p3, p4];
let others = vec![p5, p6, p7, p8, p9];
test_graham(hull, others);
}
#[test]
fn star() {
// A single stroke star shape (kind of). Only the tips(p1-5) are part of the convex hull. The
// other points would create angles >180 degrees if they were part of the polygon.
let p1 = Point::new(-5.0, 6.0);
let p2 = Point::new(-11.0, 0.0);
let p3 = Point::new(-9.0, -8.0);
let p4 = Point::new(4.0, 4.0);
let p5 = Point::new(6.0, -7.0);
let p6 = Point::new(-7.0, -2.0);
let p7 = Point::new(-2.0, -4.0);
let p8 = Point::new(0.0, 1.0);
let p9 = Point::new(1.0, 0.0);
let p10 = Point::new(-6.0, 1.0);
let hull = vec![p1, p2, p3, p4, p5];
let others = vec![p6, p7, p8, p9, p10];
test_graham(hull, others);
}
#[test]
fn rectangle_with_points_on_same_line() {
let p1 = Point::new(1.0, 1.0);
let p2 = Point::new(2.0, 1.0);
let p3 = Point::new(2.0, 2.0);
let p4 = Point::new(1.0, 2.0);
let p5 = Point::new(1.5, 1.0);
let p6 = Point::new(1.0, 1.5);
let p7 = Point::new(2.0, 1.5);
let p8 = Point::new(1.5, 2.0);
let hull = vec![p1, p2, p3, p4];
let others = vec![p5, p6, p7, p8];
test_graham(hull, others);
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Point {\n pub x: f64,\n pub y: f64,\n}"
],
"name": "points",
"type": "&[Point]"
}
],
"end_line": 27,
"name": "ramer_douglas_peucker",
"signature": "pub fn ramer_douglas_peucker(points: &[Point], epsilon: f64) -> Vec<Point>",
"start_line": 3
}
|
ramer_douglas_peucker
|
pub fn ramer_douglas_peucker(points: &[Point], epsilon: f64) -> Vec<Point> {
if points.len() < 3 {
return points.to_vec();
}
let mut dmax = 0.0;
let mut index = 0;
let end = points.len() - 1;
for i in 1..end {
let d = perpendicular_distance(&points[i], &points[0], &points[end]);
if d > dmax {
index = i;
dmax = d;
}
}
if dmax > epsilon {
let mut results = ramer_douglas_peucker(&points[..=index], epsilon);
results.pop();
results.extend(ramer_douglas_peucker(&points[index..], epsilon));
results
} else {
vec![points[0].clone(), points[end].clone()]
}
}
|
Rust-master/src/geometry/ramer_douglas_peucker.rs
|
use crate::geometry::Point;
pub fn ramer_douglas_peucker(points: &[Point], epsilon: f64) -> Vec<Point> {
if points.len() < 3 {
return points.to_vec();
}
let mut dmax = 0.0;
let mut index = 0;
let end = points.len() - 1;
for i in 1..end {
let d = perpendicular_distance(&points[i], &points[0], &points[end]);
if d > dmax {
index = i;
dmax = d;
}
}
if dmax > epsilon {
let mut results = ramer_douglas_peucker(&points[..=index], epsilon);
results.pop();
results.extend(ramer_douglas_peucker(&points[index..], epsilon));
results
} else {
vec![points[0].clone(), points[end].clone()]
}
}
fn perpendicular_distance(p: &Point, a: &Point, b: &Point) -> f64 {
let num = (b.y - a.y) * p.x - (b.x - a.x) * p.y + b.x * a.y - b.y * a.x;
let den = a.euclidean_distance(b);
num.abs() / den
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! test_perpendicular_distance {
($($name:ident: $test_case:expr,)*) => {
$(
#[test]
fn $name() {
let (p, a, b, expected) = $test_case;
assert_eq!(perpendicular_distance(&p, &a, &b), expected);
assert_eq!(perpendicular_distance(&p, &b, &a), expected);
}
)*
};
}
test_perpendicular_distance! {
basic: (Point::new(4.0, 0.0), Point::new(0.0, 0.0), Point::new(0.0, 3.0), 4.0),
basic_shifted_1: (Point::new(4.0, 1.0), Point::new(0.0, 1.0), Point::new(0.0, 4.0), 4.0),
basic_shifted_2: (Point::new(2.0, 1.0), Point::new(-2.0, 1.0), Point::new(-2.0, 4.0), 4.0),
}
#[test]
fn test_ramer_douglas_peucker_polygon() {
let a = Point::new(0.0, 0.0);
let b = Point::new(1.0, 0.0);
let c = Point::new(2.0, 0.0);
let d = Point::new(2.0, 1.0);
let e = Point::new(2.0, 2.0);
let f = Point::new(1.0, 2.0);
let g = Point::new(0.0, 2.0);
let h = Point::new(0.0, 1.0);
let polygon = vec![
a.clone(),
b,
c.clone(),
d,
e.clone(),
f,
g.clone(),
h.clone(),
];
let epsilon = 0.7;
let result = ramer_douglas_peucker(&polygon, epsilon);
assert_eq!(result, vec![a, c, e, g, h]);
}
#[test]
fn test_ramer_douglas_peucker_polygonal_chain() {
let a = Point::new(0., 0.);
let b = Point::new(2., 0.5);
let c = Point::new(3., 3.);
let d = Point::new(6., 3.);
let e = Point::new(8., 4.);
let points = vec![a.clone(), b, c, d, e.clone()];
let epsilon = 3.; // The epsilon is quite large, so the result will be a single line
let result = ramer_douglas_peucker(&points, epsilon);
assert_eq!(result, vec![a, e]);
}
#[test]
fn test_less_than_three_points() {
let a = Point::new(0., 0.);
let b = Point::new(1., 1.);
let epsilon = 0.1;
assert_eq!(ramer_douglas_peucker(&[], epsilon), vec![]);
assert_eq!(
ramer_douglas_peucker(&[a.clone()], epsilon),
vec![a.clone()]
);
assert_eq!(
ramer_douglas_peucker(&[a.clone(), b.clone()], epsilon),
vec![a, b]
);
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}"
],
"name": "data_points",
"type": "Vec<(f64, f64"
}
],
"end_line": 70,
"name": "k_means",
"signature": "pub fn k_means(data_points: Vec<(f64, f64)>, n_clusters: usize, max_iter: i32) -> Option<Vec<u32>>",
"start_line": 25
}
|
k_means
|
pub fn k_means(data_points: Vec<(f64, f64)>, n_clusters: usize, max_iter: i32) -> Option<Vec<u32>> {
if data_points.len() < n_clusters {
return None;
}
let mut centroids: Vec<(f64, f64)> = Vec::new();
let mut labels: Vec<u32> = vec![0; data_points.len()];
for _ in 0..n_clusters {
let x: f64 = random::<f64>();
let y: f64 = random::<f64>();
centroids.push((x, y));
}
let mut count_iter: i32 = 0;
while count_iter < max_iter {
let mut new_centroids_position: Vec<(f64, f64)> = vec![(0.0, 0.0); n_clusters];
let mut new_centroids_num: Vec<u32> = vec![0; n_clusters];
for (i, d) in data_points.iter().enumerate() {
let nearest_cluster = find_nearest(d, ¢roids);
labels[i] = nearest_cluster;
new_centroids_position[nearest_cluster as usize].0 += d.0;
new_centroids_position[nearest_cluster as usize].1 += d.1;
new_centroids_num[nearest_cluster as usize] += 1;
}
for i in 0..centroids.len() {
if new_centroids_num[i] == 0 {
continue;
}
let new_x: f64 = new_centroids_position[i].0 / new_centroids_num[i] as f64;
let new_y: f64 = new_centroids_position[i].1 / new_centroids_num[i] as f64;
centroids[i] = (new_x, new_y);
}
count_iter += 1;
}
Some(labels)
}
|
Rust-master/src/machine_learning/k_means.rs
|
use rand::random;
fn get_distance(p1: &(f64, f64), p2: &(f64, f64)) -> f64 {
let dx: f64 = p1.0 - p2.0;
let dy: f64 = p1.1 - p2.1;
((dx * dx) + (dy * dy)).sqrt()
}
fn find_nearest(data_point: &(f64, f64), centroids: &[(f64, f64)]) -> u32 {
let mut cluster: u32 = 0;
for (i, c) in centroids.iter().enumerate() {
let d1 = get_distance(data_point, c);
let d2 = get_distance(data_point, ¢roids[cluster as usize]);
if d1 < d2 {
cluster = i as u32;
}
}
cluster
}
pub fn k_means(data_points: Vec<(f64, f64)>, n_clusters: usize, max_iter: i32) -> Option<Vec<u32>> {
if data_points.len() < n_clusters {
return None;
}
let mut centroids: Vec<(f64, f64)> = Vec::new();
let mut labels: Vec<u32> = vec![0; data_points.len()];
for _ in 0..n_clusters {
let x: f64 = random::<f64>();
let y: f64 = random::<f64>();
centroids.push((x, y));
}
let mut count_iter: i32 = 0;
while count_iter < max_iter {
let mut new_centroids_position: Vec<(f64, f64)> = vec![(0.0, 0.0); n_clusters];
let mut new_centroids_num: Vec<u32> = vec![0; n_clusters];
for (i, d) in data_points.iter().enumerate() {
let nearest_cluster = find_nearest(d, ¢roids);
labels[i] = nearest_cluster;
new_centroids_position[nearest_cluster as usize].0 += d.0;
new_centroids_position[nearest_cluster as usize].1 += d.1;
new_centroids_num[nearest_cluster as usize] += 1;
}
for i in 0..centroids.len() {
if new_centroids_num[i] == 0 {
continue;
}
let new_x: f64 = new_centroids_position[i].0 / new_centroids_num[i] as f64;
let new_y: f64 = new_centroids_position[i].1 / new_centroids_num[i] as f64;
centroids[i] = (new_x, new_y);
}
count_iter += 1;
}
Some(labels)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_k_means() {
let mut data_points: Vec<(f64, f64)> = vec![];
let n_points: usize = 1000;
for _ in 0..n_points {
let x: f64 = random::<f64>() * 100.0;
let y: f64 = random::<f64>() * 100.0;
data_points.push((x, y));
}
println!("{:?}", k_means(data_points, 10, 100).unwrap_or_default());
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}"
],
"name": "mat",
"type": "Vec<f64>"
}
],
"end_line": 31,
"name": "cholesky",
"signature": "pub fn cholesky(mat: Vec<f64>, n: usize) -> Vec<f64>",
"start_line": 1
}
|
cholesky
|
pub fn cholesky(mat: Vec<f64>, n: usize) -> Vec<f64> {
if (mat.is_empty()) || (n == 0) {
return vec![];
}
let mut res = vec![0.0; mat.len()];
for i in 0..n {
for j in 0..=i {
let mut s = 0.0;
for k in 0..j {
s += res[i * n + k] * res[j * n + k];
}
let value = if i == j {
let diag_value = mat[i * n + i] - s;
if diag_value.is_nan() {
0.0
} else {
diag_value.sqrt()
}
} else {
let off_diag_value = 1.0 / res[j * n + j] * (mat[i * n + j] - s);
if off_diag_value.is_nan() {
0.0
} else {
off_diag_value
}
};
res[i * n + j] = value;
}
}
res
}
|
Rust-master/src/machine_learning/cholesky.rs
|
pub fn cholesky(mat: Vec<f64>, n: usize) -> Vec<f64> {
if (mat.is_empty()) || (n == 0) {
return vec![];
}
let mut res = vec![0.0; mat.len()];
for i in 0..n {
for j in 0..=i {
let mut s = 0.0;
for k in 0..j {
s += res[i * n + k] * res[j * n + k];
}
let value = if i == j {
let diag_value = mat[i * n + i] - s;
if diag_value.is_nan() {
0.0
} else {
diag_value.sqrt()
}
} else {
let off_diag_value = 1.0 / res[j * n + j] * (mat[i * n + j] - s);
if off_diag_value.is_nan() {
0.0
} else {
off_diag_value
}
};
res[i * n + j] = value;
}
}
res
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_cholesky() {
// Test case 1
let mat1 = vec![25.0, 15.0, -5.0, 15.0, 18.0, 0.0, -5.0, 0.0, 11.0];
let res1 = cholesky(mat1, 3);
// The expected Cholesky decomposition values
#[allow(clippy::useless_vec)]
let expected1 = vec![5.0, 0.0, 0.0, 3.0, 3.0, 0.0, -1.0, 1.0, 3.0];
assert!(res1
.iter()
.zip(expected1.iter())
.all(|(a, b)| (a - b).abs() < 1e-6));
}
fn transpose_matrix(mat: &[f64], n: usize) -> Vec<f64> {
(0..n)
.flat_map(|i| (0..n).map(move |j| mat[j * n + i]))
.collect()
}
fn matrix_multiply(mat1: &[f64], mat2: &[f64], n: usize) -> Vec<f64> {
(0..n)
.flat_map(|i| {
(0..n).map(move |j| {
(0..n).fold(0.0, |acc, k| acc + mat1[i * n + k] * mat2[k * n + j])
})
})
.collect()
}
#[test]
fn test_matrix_operations() {
// Test case 1: Transposition
let mat1 = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
let transposed_mat1 = transpose_matrix(&mat1, 3);
let expected_transposed_mat1 = vec![1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0];
assert_eq!(transposed_mat1, expected_transposed_mat1);
// Test case 2: Matrix multiplication
let mat2 = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
let mat3 = vec![9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0];
let multiplied_mat = matrix_multiply(&mat2, &mat3, 3);
let expected_multiplied_mat = vec![30.0, 24.0, 18.0, 84.0, 69.0, 54.0, 138.0, 114.0, 90.0];
assert_eq!(multiplied_mat, expected_multiplied_mat);
}
#[test]
fn empty_matrix() {
let mat = vec![];
let res = cholesky(mat, 0);
assert_eq!(res, vec![]);
}
#[test]
fn matrix_with_all_zeros() {
let mat3 = vec![0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
let res3 = cholesky(mat3, 3);
let expected3 = vec![0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
assert_eq!(res3, expected3);
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}",
"pub struct Item {\n weight: usize,\n value: usize,\n}"
],
"name": "items",
"type": "Vec<Item>"
}
],
"end_line": 64,
"name": "knapsack",
"signature": "pub fn knapsack(capacity: usize, items: Vec<Item>) -> KnapsackSolution",
"start_line": 45
}
|
knapsack
|
pub fn knapsack(capacity: usize, items: Vec<Item>) -> KnapsackSolution {
let num_items = items.len();
let item_weights: Vec<usize> = items.iter().map(|item| item.weight).collect();
let item_values: Vec<usize> = items.iter().map(|item| item.value).collect();
let knapsack_matrix = generate_knapsack_matrix(capacity, &item_weights, &item_values);
let items_included =
retrieve_knapsack_items(&item_weights, &knapsack_matrix, num_items, capacity);
let total_weight = items_included
.iter()
.map(|&index| item_weights[index - 1])
.sum();
KnapsackSolution {
optimal_profit: knapsack_matrix[num_items][capacity],
total_weight,
item_indices: items_included,
}
}
|
Rust-master/src/dynamic_programming/knapsack.rs
|
//! This module provides functionality to solve the knapsack problem using dynamic programming.
//! It includes structures for items and solutions, and functions to compute the optimal solution.
use std::cmp::Ordering;
/// Represents an item with a weight and a value.
#[derive(Debug, PartialEq, Eq)]
pub struct Item {
weight: usize,
value: usize,
}
/// Represents the solution to the knapsack problem.
#[derive(Debug, PartialEq, Eq)]
pub struct KnapsackSolution {
/// The optimal profit obtained.
optimal_profit: usize,
/// The total weight of items included in the solution.
total_weight: usize,
/// The indices of items included in the solution. Indices might not be unique.
item_indices: Vec<usize>,
}
/// Solves the knapsack problem and returns the optimal profit, total weight, and indices of items included.
///
/// # Arguments:
/// * `capacity` - The maximum weight capacity of the knapsack.
/// * `items` - A vector of `Item` structs, each representing an item with weight and value.
///
/// # Returns:
/// A `KnapsackSolution` struct containing:
/// - `optimal_profit` - The maximum profit achievable with the given capacity and items.
/// - `total_weight` - The total weight of items included in the solution.
/// - `item_indices` - Indices of items included in the solution. Indices might not be unique.
///
/// # Note:
/// The indices of items in the solution might not be unique.
/// This function assumes that `items` is non-empty.
///
/// # Complexity:
/// - Time complexity: O(num_items * capacity)
/// - Space complexity: O(num_items * capacity)
///
/// where `num_items` is the number of items and `capacity` is the knapsack capacity.
pub fn knapsack(capacity: usize, items: Vec<Item>) -> KnapsackSolution {
let num_items = items.len();
let item_weights: Vec<usize> = items.iter().map(|item| item.weight).collect();
let item_values: Vec<usize> = items.iter().map(|item| item.value).collect();
let knapsack_matrix = generate_knapsack_matrix(capacity, &item_weights, &item_values);
let items_included =
retrieve_knapsack_items(&item_weights, &knapsack_matrix, num_items, capacity);
let total_weight = items_included
.iter()
.map(|&index| item_weights[index - 1])
.sum();
KnapsackSolution {
optimal_profit: knapsack_matrix[num_items][capacity],
total_weight,
item_indices: items_included,
}
}
/// Generates the knapsack matrix (`num_items`, `capacity`) with maximum values.
///
/// # Arguments:
/// * `capacity` - knapsack capacity
/// * `item_weights` - weights of each item
/// * `item_values` - values of each item
fn generate_knapsack_matrix(
capacity: usize,
item_weights: &[usize],
item_values: &[usize],
) -> Vec<Vec<usize>> {
let num_items = item_weights.len();
(0..=num_items).fold(
vec![vec![0; capacity + 1]; num_items + 1],
|mut matrix, item_index| {
(0..=capacity).for_each(|current_capacity| {
matrix[item_index][current_capacity] = if item_index == 0 || current_capacity == 0 {
0
} else if item_weights[item_index - 1] <= current_capacity {
usize::max(
item_values[item_index - 1]
+ matrix[item_index - 1]
[current_capacity - item_weights[item_index - 1]],
matrix[item_index - 1][current_capacity],
)
} else {
matrix[item_index - 1][current_capacity]
};
});
matrix
},
)
}
/// Retrieves the indices of items included in the optimal knapsack solution.
///
/// # Arguments:
/// * `item_weights` - weights of each item
/// * `knapsack_matrix` - knapsack matrix with maximum values
/// * `item_index` - number of items to consider (initially the total number of items)
/// * `remaining_capacity` - remaining capacity of the knapsack
///
/// # Returns
/// A vector of item indices included in the optimal solution. The indices might not be unique.
fn retrieve_knapsack_items(
item_weights: &[usize],
knapsack_matrix: &[Vec<usize>],
item_index: usize,
remaining_capacity: usize,
) -> Vec<usize> {
match item_index {
0 => vec![],
_ => {
let current_value = knapsack_matrix[item_index][remaining_capacity];
let previous_value = knapsack_matrix[item_index - 1][remaining_capacity];
match current_value.cmp(&previous_value) {
Ordering::Greater => {
let mut knap = retrieve_knapsack_items(
item_weights,
knapsack_matrix,
item_index - 1,
remaining_capacity - item_weights[item_index - 1],
);
knap.push(item_index);
knap
}
Ordering::Equal | Ordering::Less => retrieve_knapsack_items(
item_weights,
knapsack_matrix,
item_index - 1,
remaining_capacity,
),
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! knapsack_tests {
($($name:ident: $test_case:expr,)*) => {
$(
#[test]
fn $name() {
let (capacity, items, expected) = $test_case;
assert_eq!(expected, knapsack(capacity, items));
}
)*
}
}
knapsack_tests! {
test_basic_knapsack_small: (
165,
vec![
Item { weight: 23, value: 92 },
Item { weight: 31, value: 57 },
Item { weight: 29, value: 49 },
Item { weight: 44, value: 68 },
Item { weight: 53, value: 60 },
Item { weight: 38, value: 43 },
Item { weight: 63, value: 67 },
Item { weight: 85, value: 84 },
Item { weight: 89, value: 87 },
Item { weight: 82, value: 72 }
],
KnapsackSolution {
optimal_profit: 309,
total_weight: 165,
item_indices: vec![1, 2, 3, 4, 6]
}
),
test_basic_knapsack_tiny: (
26,
vec![
Item { weight: 12, value: 24 },
Item { weight: 7, value: 13 },
Item { weight: 11, value: 23 },
Item { weight: 8, value: 15 },
Item { weight: 9, value: 16 }
],
KnapsackSolution {
optimal_profit: 51,
total_weight: 26,
item_indices: vec![2, 3, 4]
}
),
test_basic_knapsack_medium: (
190,
vec![
Item { weight: 56, value: 50 },
Item { weight: 59, value: 50 },
Item { weight: 80, value: 64 },
Item { weight: 64, value: 46 },
Item { weight: 75, value: 50 },
Item { weight: 17, value: 5 }
],
KnapsackSolution {
optimal_profit: 150,
total_weight: 190,
item_indices: vec![1, 2, 5]
}
),
test_diverse_weights_values_small: (
50,
vec![
Item { weight: 31, value: 70 },
Item { weight: 10, value: 20 },
Item { weight: 20, value: 39 },
Item { weight: 19, value: 37 },
Item { weight: 4, value: 7 },
Item { weight: 3, value: 5 },
Item { weight: 6, value: 10 }
],
KnapsackSolution {
optimal_profit: 107,
total_weight: 50,
item_indices: vec![1, 4]
}
),
test_diverse_weights_values_medium: (
104,
vec![
Item { weight: 25, value: 350 },
Item { weight: 35, value: 400 },
Item { weight: 45, value: 450 },
Item { weight: 5, value: 20 },
Item { weight: 25, value: 70 },
Item { weight: 3, value: 8 },
Item { weight: 2, value: 5 },
Item { weight: 2, value: 5 }
],
KnapsackSolution {
optimal_profit: 900,
total_weight: 104,
item_indices: vec![1, 3, 4, 5, 7, 8]
}
),
test_high_value_items: (
170,
vec![
Item { weight: 41, value: 442 },
Item { weight: 50, value: 525 },
Item { weight: 49, value: 511 },
Item { weight: 59, value: 593 },
Item { weight: 55, value: 546 },
Item { weight: 57, value: 564 },
Item { weight: 60, value: 617 }
],
KnapsackSolution {
optimal_profit: 1735,
total_weight: 169,
item_indices: vec![2, 4, 7]
}
),
test_large_knapsack: (
750,
vec![
Item { weight: 70, value: 135 },
Item { weight: 73, value: 139 },
Item { weight: 77, value: 149 },
Item { weight: 80, value: 150 },
Item { weight: 82, value: 156 },
Item { weight: 87, value: 163 },
Item { weight: 90, value: 173 },
Item { weight: 94, value: 184 },
Item { weight: 98, value: 192 },
Item { weight: 106, value: 201 },
Item { weight: 110, value: 210 },
Item { weight: 113, value: 214 },
Item { weight: 115, value: 221 },
Item { weight: 118, value: 229 },
Item { weight: 120, value: 240 }
],
KnapsackSolution {
optimal_profit: 1458,
total_weight: 749,
item_indices: vec![1, 3, 5, 7, 8, 9, 14, 15]
}
),
test_zero_capacity: (
0,
vec![
Item { weight: 1, value: 1 },
Item { weight: 2, value: 2 },
Item { weight: 3, value: 3 }
],
KnapsackSolution {
optimal_profit: 0,
total_weight: 0,
item_indices: vec![]
}
),
test_very_small_capacity: (
1,
vec![
Item { weight: 10, value: 1 },
Item { weight: 20, value: 2 },
Item { weight: 30, value: 3 }
],
KnapsackSolution {
optimal_profit: 0,
total_weight: 0,
item_indices: vec![]
}
),
test_no_items: (
1,
vec![],
KnapsackSolution {
optimal_profit: 0,
total_weight: 0,
item_indices: vec![]
}
),
test_item_too_heavy: (
1,
vec![
Item { weight: 2, value: 100 }
],
KnapsackSolution {
optimal_profit: 0,
total_weight: 0,
item_indices: vec![]
}
),
test_greedy_algorithm_does_not_work: (
10,
vec![
Item { weight: 10, value: 15 },
Item { weight: 6, value: 7 },
Item { weight: 4, value: 9 }
],
KnapsackSolution {
optimal_profit: 16,
total_weight: 10,
item_indices: vec![2, 3]
}
),
test_greedy_algorithm_does_not_work_weight_smaller_than_capacity: (
10,
vec![
Item { weight: 10, value: 15 },
Item { weight: 1, value: 9 },
Item { weight: 2, value: 7 }
],
KnapsackSolution {
optimal_profit: 16,
total_weight: 3,
item_indices: vec![2, 3]
}
),
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}",
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}"
],
"name": "matrix",
"type": "Vec<Vec<usize>>"
}
],
"end_line": 65,
"name": "minimum_cost_path",
"signature": "pub fn minimum_cost_path(matrix: Vec<Vec<usize>>) -> Result<usize, MatrixError>",
"start_line": 32
}
|
minimum_cost_path
|
pub fn minimum_cost_path(matrix: Vec<Vec<usize>>) -> Result<usize, MatrixError> {
// Check if the matrix is rectangular
if !matrix.iter().all(|row| row.len() == matrix[0].len()) {
return Err(MatrixError::NonRectangularMatrix);
}
// Check if the matrix is empty or contains empty rows
if matrix.is_empty() || matrix.iter().all(|row| row.is_empty()) {
return Err(MatrixError::EmptyMatrix);
}
// Initialize the first row of the cost vector
let mut cost = matrix[0]
.iter()
.scan(0, |acc, &val| {
*acc += val;
Some(*acc)
})
.collect::<Vec<_>>();
// Process each row from the second to the last
for row in matrix.iter().skip(1) {
// Update the first element of cost for this row
cost[0] += row[0];
// Update the rest of the elements in the current row of cost
for col in 1..matrix[0].len() {
cost[col] = row[col] + min(cost[col - 1], cost[col]);
}
}
// The last element in cost contains the minimum path cost to the bottom-right corner
Ok(cost[matrix[0].len() - 1])
}
|
Rust-master/src/dynamic_programming/minimum_cost_path.rs
|
use std::cmp::min;
/// Represents possible errors that can occur when calculating the minimum cost path in a matrix.
#[derive(Debug, PartialEq, Eq)]
pub enum MatrixError {
/// Error indicating that the matrix is empty or has empty rows.
EmptyMatrix,
/// Error indicating that the matrix is not rectangular in shape.
NonRectangularMatrix,
}
/// Computes the minimum cost path from the top-left to the bottom-right
/// corner of a matrix, where movement is restricted to right and down directions.
///
/// # Arguments
///
/// * `matrix` - A 2D vector of positive integers, where each element represents
/// the cost to step on that cell.
///
/// # Returns
///
/// * `Ok(usize)` - The minimum path cost to reach the bottom-right corner from
/// the top-left corner of the matrix.
/// * `Err(MatrixError)` - An error if the matrix is empty or improperly formatted.
///
/// # Complexity
///
/// * Time complexity: `O(m * n)`, where `m` is the number of rows
/// and `n` is the number of columns in the input matrix.
/// * Space complexity: `O(n)`, as only a single row of cumulative costs
/// is stored at any time.
pub fn minimum_cost_path(matrix: Vec<Vec<usize>>) -> Result<usize, MatrixError> {
// Check if the matrix is rectangular
if !matrix.iter().all(|row| row.len() == matrix[0].len()) {
return Err(MatrixError::NonRectangularMatrix);
}
// Check if the matrix is empty or contains empty rows
if matrix.is_empty() || matrix.iter().all(|row| row.is_empty()) {
return Err(MatrixError::EmptyMatrix);
}
// Initialize the first row of the cost vector
let mut cost = matrix[0]
.iter()
.scan(0, |acc, &val| {
*acc += val;
Some(*acc)
})
.collect::<Vec<_>>();
// Process each row from the second to the last
for row in matrix.iter().skip(1) {
// Update the first element of cost for this row
cost[0] += row[0];
// Update the rest of the elements in the current row of cost
for col in 1..matrix[0].len() {
cost[col] = row[col] + min(cost[col - 1], cost[col]);
}
}
// The last element in cost contains the minimum path cost to the bottom-right corner
Ok(cost[matrix[0].len() - 1])
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! minimum_cost_path_tests {
($($name:ident: $test_case:expr,)*) => {
$(
#[test]
fn $name() {
let (matrix, expected) = $test_case;
assert_eq!(minimum_cost_path(matrix), expected);
}
)*
};
}
minimum_cost_path_tests! {
basic: (
vec![
vec![2, 1, 4],
vec![2, 1, 3],
vec![3, 2, 1]
],
Ok(7)
),
single_element: (
vec![
vec![5]
],
Ok(5)
),
single_row: (
vec![
vec![1, 3, 2, 1, 5]
],
Ok(12)
),
single_column: (
vec![
vec![1],
vec![3],
vec![2],
vec![1],
vec![5]
],
Ok(12)
),
large_matrix: (
vec![
vec![1, 3, 1, 5],
vec![2, 1, 4, 2],
vec![3, 2, 1, 3],
vec![4, 3, 2, 1]
],
Ok(10)
),
uniform_matrix: (
vec![
vec![1, 1, 1],
vec![1, 1, 1],
vec![1, 1, 1]
],
Ok(5)
),
increasing_values: (
vec![
vec![1, 2, 3],
vec![4, 5, 6],
vec![7, 8, 9]
],
Ok(21)
),
high_cost_path: (
vec![
vec![1, 100, 1],
vec![1, 100, 1],
vec![1, 1, 1]
],
Ok(5)
),
complex_matrix: (
vec![
vec![5, 9, 6, 8],
vec![1, 4, 7, 3],
vec![2, 1, 8, 2],
vec![3, 6, 9, 4]
],
Ok(23)
),
empty_matrix: (
vec![],
Err(MatrixError::EmptyMatrix)
),
empty_row: (
vec![
vec![],
vec![],
vec![]
],
Err(MatrixError::EmptyMatrix)
),
non_rectangular: (
vec![
vec![1, 2, 3],
vec![4, 5],
vec![6, 7, 8]
],
Err(MatrixError::NonRectangularMatrix)
),
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}"
],
"name": "weights",
"type": "Vec<f64>"
},
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}"
],
"name": "values",
"type": "Vec<f64>"
}
],
"end_line": 32,
"name": "fractional_knapsack",
"signature": "pub fn fractional_knapsack(mut capacity: f64, weights: Vec<f64>, values: Vec<f64>) -> f64",
"start_line": 1
}
|
fractional_knapsack
|
pub fn fractional_knapsack(mut capacity: f64, weights: Vec<f64>, values: Vec<f64>) -> f64 {
// vector of tuple of weights and their value/weight ratio
let mut weights: Vec<(f64, f64)> = weights
.iter()
.zip(values.iter())
.map(|(&w, &v)| (w, v / w))
.collect();
// sort in decreasing order by value/weight ratio
weights.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).expect("Encountered NaN"));
dbg!(&weights);
// value to compute
let mut knapsack_value: f64 = 0.0;
// iterate through our vector.
for w in weights {
// w.0 is weight and w.1 value/weight ratio
if w.0 < capacity {
capacity -= w.0; // our sack is filling
knapsack_value += w.0 * w.1;
dbg!(&w.0, &knapsack_value);
} else {
// Multiply with capacity and not w.0
dbg!(&w.0, &knapsack_value);
knapsack_value += capacity * w.1;
break;
}
}
knapsack_value
}
|
Rust-master/src/dynamic_programming/fractional_knapsack.rs
|
pub fn fractional_knapsack(mut capacity: f64, weights: Vec<f64>, values: Vec<f64>) -> f64 {
// vector of tuple of weights and their value/weight ratio
let mut weights: Vec<(f64, f64)> = weights
.iter()
.zip(values.iter())
.map(|(&w, &v)| (w, v / w))
.collect();
// sort in decreasing order by value/weight ratio
weights.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).expect("Encountered NaN"));
dbg!(&weights);
// value to compute
let mut knapsack_value: f64 = 0.0;
// iterate through our vector.
for w in weights {
// w.0 is weight and w.1 value/weight ratio
if w.0 < capacity {
capacity -= w.0; // our sack is filling
knapsack_value += w.0 * w.1;
dbg!(&w.0, &knapsack_value);
} else {
// Multiply with capacity and not w.0
dbg!(&w.0, &knapsack_value);
knapsack_value += capacity * w.1;
break;
}
}
knapsack_value
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test() {
let capacity = 50.0;
let values = vec![60.0, 100.0, 120.0];
let weights = vec![10.0, 20.0, 30.0];
assert_eq!(fractional_knapsack(capacity, weights, values), 240.0);
}
#[test]
fn test2() {
let capacity = 60.0;
let values = vec![280.0, 100.0, 120.0, 120.0];
let weights = vec![40.0, 10.0, 20.0, 24.0];
assert_eq!(fractional_knapsack(capacity, weights, values), 440.0);
}
#[test]
fn test3() {
let capacity = 50.0;
let values = vec![60.0, 100.0, 120.0];
let weights = vec![20.0, 50.0, 30.0];
assert_eq!(fractional_knapsack(capacity, weights, values), 180.0);
}
#[test]
fn test4() {
let capacity = 60.0;
let values = vec![30.0, 40.0, 45.0, 77.0, 90.0];
let weights = vec![5.0, 10.0, 15.0, 22.0, 25.0];
assert_eq!(fractional_knapsack(capacity, weights, values), 230.0);
}
#[test]
fn test5() {
let capacity = 10.0;
let values = vec![500.0];
let weights = vec![30.0];
assert_eq!(
format!("{:.2}", fractional_knapsack(capacity, weights, values)),
String::from("166.67")
);
}
#[test]
fn test6() {
let capacity = 36.0;
let values = vec![25.0, 25.0, 25.0, 6.0, 2.0];
let weights = vec![10.0, 10.0, 10.0, 4.0, 2.0];
assert_eq!(fractional_knapsack(capacity, weights, values), 83.0);
}
#[test]
#[should_panic]
fn test_nan() {
let capacity = 36.0;
// 2nd element is NaN
let values = vec![25.0, f64::NAN, 25.0, 6.0, 2.0];
let weights = vec![10.0, 10.0, 10.0, 4.0, 2.0];
assert_eq!(fractional_knapsack(capacity, weights, values), 83.0);
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}",
"pub enum Colors {\n Red, // \\\n White, // | Define the three colors of the Dutch Flag: π³π±\n Blue, // /\n}"
],
"name": "sequence",
"type": "Vec<Colors>"
}
],
"end_line": 43,
"name": "dutch_national_flag_sort",
"signature": "pub fn dutch_national_flag_sort(mut sequence: Vec<Colors>) -> Vec<Colors>",
"start_line": 17
}
|
dutch_national_flag_sort
|
pub fn dutch_national_flag_sort(mut sequence: Vec<Colors>) -> Vec<Colors> {
// We take ownership of `sequence` because the original `sequence` will be modified and then returned
let length = sequence.len();
if length <= 1 {
return sequence; // Arrays of length 0 or 1 are automatically sorted
}
let mut low = 0;
let mut mid = 0;
let mut high = length - 1;
while mid <= high {
match sequence[mid] {
Red => {
sequence.swap(low, mid);
low += 1;
mid += 1;
}
White => {
mid += 1;
}
Blue => {
sequence.swap(mid, high);
high -= 1;
}
}
}
sequence
}
|
Rust-master/src/sorting/dutch_national_flag_sort.rs
|
/*
A Rust implementation of the Dutch National Flag sorting algorithm.
Reference implementation: https://github.com/TheAlgorithms/Python/blob/master/sorts/dutch_national_flag_sort.py
More info: https://en.wikipedia.org/wiki/Dutch_national_flag_problem
*/
#[derive(PartialOrd, PartialEq, Eq)]
pub enum Colors {
Red, // \
White, // | Define the three colors of the Dutch Flag: π³π±
Blue, // /
}
use Colors::*;
// Algorithm implementation
pub fn dutch_national_flag_sort(mut sequence: Vec<Colors>) -> Vec<Colors> {
// We take ownership of `sequence` because the original `sequence` will be modified and then returned
let length = sequence.len();
if length <= 1 {
return sequence; // Arrays of length 0 or 1 are automatically sorted
}
let mut low = 0;
let mut mid = 0;
let mut high = length - 1;
while mid <= high {
match sequence[mid] {
Red => {
sequence.swap(low, mid);
low += 1;
mid += 1;
}
White => {
mid += 1;
}
Blue => {
sequence.swap(mid, high);
high -= 1;
}
}
}
sequence
}
#[cfg(test)]
mod tests {
use super::super::is_sorted;
use super::*;
#[test]
fn random_array() {
let arr = vec![
Red, Blue, White, White, Blue, Blue, Red, Red, White, Blue, White, Red, White, Blue,
];
let arr = dutch_national_flag_sort(arr);
assert!(is_sorted(&arr))
}
#[test]
fn sorted_array() {
let arr = vec![
Red, Red, Red, Red, Red, White, White, White, White, White, Blue, Blue, Blue, Blue,
];
let arr = dutch_national_flag_sort(arr);
assert!(is_sorted(&arr))
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
") -> BTreeMap<V, Option<(V, E)>> {\n let mut ans = BTreeMap::new();\n let mut prio = BTreeSet::new();\n\n // start is the special case that doesn't have a predecessor\n ans.insert(start, None);\n\n for (new, weight) in &graph[&start] {\n ans.insert(*new, Some((start, *weight)));\n prio.insert((*weight, *new));\n }\n\n while let Some((path_weight, vertex)) = prio.pop_first() {\n for (next, weight) in &graph[&vertex] {\n let new_weight = path_weight + *weight;\n match ans.get(next) {\n // if ans[next] is a lower dist than the alternative one, we do nothing\n Some(Some((_, dist_next))) if new_weight >= *dist_next => {}\n // if ans[next] is None then next is start and so the distance won't be changed, it won't be added again in prio\n Some(None) => {}\n // the new path is shorter, either new was not in ans or it was farther\n _ => {\n if let Some(Some((_, prev_weight))) =\n ans.insert(*next, Some((vertex, new_weight)))\n {\n prio.remove(&(prev_weight, *next));\n }\n prio.insert((new_weight, *next));\n }\n }\n }\n }\n\n ans\n}"
],
"name": "graph",
"type": "&Graph<V, E>"
}
],
"end_line": 52,
"name": "dijkstra",
"signature": "pub fn dijkstra(\n graph: &Graph<V, E>,\n start: V,\n) -> BTreeMap<V, Option<(V, E)>>",
"start_line": 15
}
|
dijkstra
|
pub fn dijkstra(
graph: &Graph<V, E>,
start: V,
) -> BTreeMap<V, Option<(V, E)>> {
let mut ans = BTreeMap::new();
let mut prio = BTreeSet::new();
// start is the special case that doesn't have a predecessor
ans.insert(start, None);
for (new, weight) in &graph[&start] {
ans.insert(*new, Some((start, *weight)));
prio.insert((*weight, *new));
}
while let Some((path_weight, vertex)) = prio.pop_first() {
for (next, weight) in &graph[&vertex] {
let new_weight = path_weight + *weight;
match ans.get(next) {
// if ans[next] is a lower dist than the alternative one, we do nothing
Some(Some((_, dist_next))) if new_weight >= *dist_next => {}
// if ans[next] is None then next is start and so the distance won't be changed, it won't be added again in prio
Some(None) => {}
// the new path is shorter, either new was not in ans or it was farther
_ => {
if let Some(Some((_, prev_weight))) =
ans.insert(*next, Some((vertex, new_weight)))
{
prio.remove(&(prev_weight, *next));
}
prio.insert((new_weight, *next));
}
}
}
}
ans
}
|
Rust-master/src/graph/dijkstra.rs
|
use std::collections::{BTreeMap, BTreeSet};
use std::ops::Add;
type Graph<V, E> = BTreeMap<V, BTreeMap<V, E>>;
// performs Dijsktra's algorithm on the given graph from the given start
// the graph is a positively-weighted directed graph
//
// returns a map that for each reachable vertex associates the distance and the predecessor
// since the start has no predecessor but is reachable, map[start] will be None
//
// Time: O(E * logV). For each vertex, we traverse each edge, resulting in O(E). For each edge, we
// insert a new shortest path for a vertex into the tree, resulting in O(E * logV).
// Space: O(V). The tree holds up to V vertices.
pub fn dijkstra<V: Ord + Copy, E: Ord + Copy + Add<Output = E>>(
graph: &Graph<V, E>,
start: V,
) -> BTreeMap<V, Option<(V, E)>> {
let mut ans = BTreeMap::new();
let mut prio = BTreeSet::new();
// start is the special case that doesn't have a predecessor
ans.insert(start, None);
for (new, weight) in &graph[&start] {
ans.insert(*new, Some((start, *weight)));
prio.insert((*weight, *new));
}
while let Some((path_weight, vertex)) = prio.pop_first() {
for (next, weight) in &graph[&vertex] {
let new_weight = path_weight + *weight;
match ans.get(next) {
// if ans[next] is a lower dist than the alternative one, we do nothing
Some(Some((_, dist_next))) if new_weight >= *dist_next => {}
// if ans[next] is None then next is start and so the distance won't be changed, it won't be added again in prio
Some(None) => {}
// the new path is shorter, either new was not in ans or it was farther
_ => {
if let Some(Some((_, prev_weight))) =
ans.insert(*next, Some((vertex, new_weight)))
{
prio.remove(&(prev_weight, *next));
}
prio.insert((new_weight, *next));
}
}
}
}
ans
}
#[cfg(test)]
mod tests {
use super::{dijkstra, Graph};
use std::collections::BTreeMap;
fn add_edge<V: Ord + Copy, E: Ord>(graph: &mut Graph<V, E>, v1: V, v2: V, c: E) {
graph.entry(v1).or_default().insert(v2, c);
graph.entry(v2).or_default();
}
#[test]
fn single_vertex() {
let mut graph: Graph<usize, usize> = BTreeMap::new();
graph.insert(0, BTreeMap::new());
let mut dists = BTreeMap::new();
dists.insert(0, None);
assert_eq!(dijkstra(&graph, 0), dists);
}
#[test]
fn single_edge() {
let mut graph = BTreeMap::new();
add_edge(&mut graph, 0, 1, 2);
let mut dists_0 = BTreeMap::new();
dists_0.insert(0, None);
dists_0.insert(1, Some((0, 2)));
assert_eq!(dijkstra(&graph, 0), dists_0);
let mut dists_1 = BTreeMap::new();
dists_1.insert(1, None);
assert_eq!(dijkstra(&graph, 1), dists_1);
}
#[test]
fn tree_1() {
let mut graph = BTreeMap::new();
let mut dists = BTreeMap::new();
dists.insert(1, None);
for i in 1..100 {
add_edge(&mut graph, i, i * 2, i * 2);
add_edge(&mut graph, i, i * 2 + 1, i * 2 + 1);
match dists[&i] {
Some((_, d)) => {
dists.insert(i * 2, Some((i, d + i * 2)));
dists.insert(i * 2 + 1, Some((i, d + i * 2 + 1)));
}
None => {
dists.insert(i * 2, Some((i, i * 2)));
dists.insert(i * 2 + 1, Some((i, i * 2 + 1)));
}
}
}
assert_eq!(dijkstra(&graph, 1), dists);
}
#[test]
fn graph_1() {
let mut graph = BTreeMap::new();
add_edge(&mut graph, 'a', 'c', 12);
add_edge(&mut graph, 'a', 'd', 60);
add_edge(&mut graph, 'b', 'a', 10);
add_edge(&mut graph, 'c', 'b', 20);
add_edge(&mut graph, 'c', 'd', 32);
add_edge(&mut graph, 'e', 'a', 7);
let mut dists_a = BTreeMap::new();
dists_a.insert('a', None);
dists_a.insert('c', Some(('a', 12)));
dists_a.insert('d', Some(('c', 44)));
dists_a.insert('b', Some(('c', 32)));
assert_eq!(dijkstra(&graph, 'a'), dists_a);
let mut dists_b = BTreeMap::new();
dists_b.insert('b', None);
dists_b.insert('a', Some(('b', 10)));
dists_b.insert('c', Some(('a', 22)));
dists_b.insert('d', Some(('c', 54)));
assert_eq!(dijkstra(&graph, 'b'), dists_b);
let mut dists_c = BTreeMap::new();
dists_c.insert('c', None);
dists_c.insert('b', Some(('c', 20)));
dists_c.insert('d', Some(('c', 32)));
dists_c.insert('a', Some(('b', 30)));
assert_eq!(dijkstra(&graph, 'c'), dists_c);
let mut dists_d = BTreeMap::new();
dists_d.insert('d', None);
assert_eq!(dijkstra(&graph, 'd'), dists_d);
let mut dists_e = BTreeMap::new();
dists_e.insert('e', None);
dists_e.insert('a', Some(('e', 7)));
dists_e.insert('c', Some(('a', 19)));
dists_e.insert('d', Some(('c', 51)));
dists_e.insert('b', Some(('c', 39)));
assert_eq!(dijkstra(&graph, 'e'), dists_e);
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"struct Candidate<V, E> {\n estimated_weight: E,\n real_weight: E,\n state: V,\n}"
],
"name": "graph",
"type": "&Graph<V, E>"
}
],
"end_line": 99,
"name": "astar",
"signature": "pub fn astar(\n graph: &Graph<V, E>,\n start: V,\n target: V,\n heuristic: impl Fn(V) -> E,\n) -> Option<(E, Vec<V>)>",
"start_line": 33
}
|
astar
|
pub fn astar(
graph: &Graph<V, E>,
start: V,
target: V,
heuristic: impl Fn(V) -> E,
) -> Option<(E, Vec<V>)> {
// traversal front
let mut queue = BinaryHeap::new();
// maps each node to its predecessor in the final path
let mut previous = BTreeMap::new();
// weights[v] is the accumulated weight from start to v
let mut weights = BTreeMap::new();
// initialize traversal
weights.insert(start, E::zero());
queue.push(Candidate {
estimated_weight: heuristic(start),
real_weight: E::zero(),
state: start,
});
while let Some(Candidate {
real_weight,
state: current,
..
}) = queue.pop()
{
if current == target {
break;
}
for (&next, &weight) in &graph[¤t] {
let real_weight = real_weight + weight;
if weights
.get(&next)
.is_none_or(|&weight| real_weight < weight)
{
// current allows us to reach next with lower weight (or at all)
// add next to the front
let estimated_weight = real_weight + heuristic(next);
weights.insert(next, real_weight);
queue.push(Candidate {
estimated_weight,
real_weight,
state: next,
});
previous.insert(next, current);
}
}
}
let weight = if let Some(&weight) = weights.get(&target) {
weight
} else {
// we did not reach target from start
return None;
};
// build path in reverse
let mut current = target;
let mut path = vec![current];
while current != start {
let prev = previous
.get(¤t)
.copied()
.expect("We reached the target, but are unable to reconsistute the path");
current = prev;
path.push(current);
}
path.reverse();
Some((weight, path))
}
|
Rust-master/src/graph/astar.rs
|
use std::{
collections::{BTreeMap, BinaryHeap},
ops::Add,
};
use num_traits::Zero;
type Graph<V, E> = BTreeMap<V, BTreeMap<V, E>>;
#[derive(Clone, Debug, Eq, PartialEq)]
struct Candidate<V, E> {
estimated_weight: E,
real_weight: E,
state: V,
}
impl<V: Ord + Copy, E: Ord + Copy> PartialOrd for Candidate<V, E> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
// Note the inverted order; we want nodes with lesser weight to have
// higher priority
Some(self.cmp(other))
}
}
impl<V: Ord + Copy, E: Ord + Copy> Ord for Candidate<V, E> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
// Note the inverted order; we want nodes with lesser weight to have
// higher priority
other.estimated_weight.cmp(&self.estimated_weight)
}
}
pub fn astar<V: Ord + Copy, E: Ord + Copy + Add<Output = E> + Zero>(
graph: &Graph<V, E>,
start: V,
target: V,
heuristic: impl Fn(V) -> E,
) -> Option<(E, Vec<V>)> {
// traversal front
let mut queue = BinaryHeap::new();
// maps each node to its predecessor in the final path
let mut previous = BTreeMap::new();
// weights[v] is the accumulated weight from start to v
let mut weights = BTreeMap::new();
// initialize traversal
weights.insert(start, E::zero());
queue.push(Candidate {
estimated_weight: heuristic(start),
real_weight: E::zero(),
state: start,
});
while let Some(Candidate {
real_weight,
state: current,
..
}) = queue.pop()
{
if current == target {
break;
}
for (&next, &weight) in &graph[¤t] {
let real_weight = real_weight + weight;
if weights
.get(&next)
.is_none_or(|&weight| real_weight < weight)
{
// current allows us to reach next with lower weight (or at all)
// add next to the front
let estimated_weight = real_weight + heuristic(next);
weights.insert(next, real_weight);
queue.push(Candidate {
estimated_weight,
real_weight,
state: next,
});
previous.insert(next, current);
}
}
}
let weight = if let Some(&weight) = weights.get(&target) {
weight
} else {
// we did not reach target from start
return None;
};
// build path in reverse
let mut current = target;
let mut path = vec![current];
while current != start {
let prev = previous
.get(¤t)
.copied()
.expect("We reached the target, but are unable to reconsistute the path");
current = prev;
path.push(current);
}
path.reverse();
Some((weight, path))
}
#[cfg(test)]
mod tests {
use super::{astar, Graph};
use num_traits::Zero;
use std::collections::BTreeMap;
// the null heuristic make A* equivalent to Dijkstra
fn null_heuristic<V, E: Zero>(_v: V) -> E {
E::zero()
}
fn add_edge<V: Ord + Copy, E: Ord>(graph: &mut Graph<V, E>, v1: V, v2: V, c: E) {
graph.entry(v1).or_default().insert(v2, c);
graph.entry(v2).or_default();
}
#[test]
fn single_vertex() {
let mut graph: Graph<usize, usize> = BTreeMap::new();
graph.insert(0, BTreeMap::new());
assert_eq!(astar(&graph, 0, 0, null_heuristic), Some((0, vec![0])));
assert_eq!(astar(&graph, 0, 1, null_heuristic), None);
}
#[test]
fn single_edge() {
let mut graph = BTreeMap::new();
add_edge(&mut graph, 0, 1, 2);
assert_eq!(astar(&graph, 0, 1, null_heuristic), Some((2, vec![0, 1])));
assert_eq!(astar(&graph, 1, 0, null_heuristic), None);
}
#[test]
fn graph_1() {
let mut graph = BTreeMap::new();
add_edge(&mut graph, 'a', 'c', 12);
add_edge(&mut graph, 'a', 'd', 60);
add_edge(&mut graph, 'b', 'a', 10);
add_edge(&mut graph, 'c', 'b', 20);
add_edge(&mut graph, 'c', 'd', 32);
add_edge(&mut graph, 'e', 'a', 7);
// from a
assert_eq!(
astar(&graph, 'a', 'a', null_heuristic),
Some((0, vec!['a']))
);
assert_eq!(
astar(&graph, 'a', 'b', null_heuristic),
Some((32, vec!['a', 'c', 'b']))
);
assert_eq!(
astar(&graph, 'a', 'c', null_heuristic),
Some((12, vec!['a', 'c']))
);
assert_eq!(
astar(&graph, 'a', 'd', null_heuristic),
Some((12 + 32, vec!['a', 'c', 'd']))
);
assert_eq!(astar(&graph, 'a', 'e', null_heuristic), None);
// from b
assert_eq!(
astar(&graph, 'b', 'a', null_heuristic),
Some((10, vec!['b', 'a']))
);
assert_eq!(
astar(&graph, 'b', 'b', null_heuristic),
Some((0, vec!['b']))
);
assert_eq!(
astar(&graph, 'b', 'c', null_heuristic),
Some((10 + 12, vec!['b', 'a', 'c']))
);
assert_eq!(
astar(&graph, 'b', 'd', null_heuristic),
Some((10 + 12 + 32, vec!['b', 'a', 'c', 'd']))
);
assert_eq!(astar(&graph, 'b', 'e', null_heuristic), None);
// from c
assert_eq!(
astar(&graph, 'c', 'a', null_heuristic),
Some((20 + 10, vec!['c', 'b', 'a']))
);
assert_eq!(
astar(&graph, 'c', 'b', null_heuristic),
Some((20, vec!['c', 'b']))
);
assert_eq!(
astar(&graph, 'c', 'c', null_heuristic),
Some((0, vec!['c']))
);
assert_eq!(
astar(&graph, 'c', 'd', null_heuristic),
Some((32, vec!['c', 'd']))
);
assert_eq!(astar(&graph, 'c', 'e', null_heuristic), None);
// from d
assert_eq!(astar(&graph, 'd', 'a', null_heuristic), None);
assert_eq!(astar(&graph, 'd', 'b', null_heuristic), None);
assert_eq!(astar(&graph, 'd', 'c', null_heuristic), None);
assert_eq!(
astar(&graph, 'd', 'd', null_heuristic),
Some((0, vec!['d']))
);
assert_eq!(astar(&graph, 'd', 'e', null_heuristic), None);
// from e
assert_eq!(
astar(&graph, 'e', 'a', null_heuristic),
Some((7, vec!['e', 'a']))
);
assert_eq!(
astar(&graph, 'e', 'b', null_heuristic),
Some((7 + 12 + 20, vec!['e', 'a', 'c', 'b']))
);
assert_eq!(
astar(&graph, 'e', 'c', null_heuristic),
Some((7 + 12, vec!['e', 'a', 'c']))
);
assert_eq!(
astar(&graph, 'e', 'd', null_heuristic),
Some((7 + 12 + 32, vec!['e', 'a', 'c', 'd']))
);
assert_eq!(
astar(&graph, 'e', 'e', null_heuristic),
Some((0, vec!['e']))
);
}
#[test]
fn test_heuristic() {
// make a grid
let mut graph = BTreeMap::new();
let rows = 100;
let cols = 100;
for row in 0..rows {
for col in 0..cols {
add_edge(&mut graph, (row, col), (row + 1, col), 1);
add_edge(&mut graph, (row, col), (row, col + 1), 1);
add_edge(&mut graph, (row, col), (row + 1, col + 1), 1);
add_edge(&mut graph, (row + 1, col), (row, col), 1);
add_edge(&mut graph, (row + 1, col + 1), (row, col), 1);
}
}
// Dijkstra would explore most of the 101 Γ 101 nodes
// the heuristic should allow exploring only about 200 nodes
let now = std::time::Instant::now();
let res = astar(&graph, (0, 0), (100, 90), |(i, j)| 100 - i + 90 - j);
assert!(now.elapsed() < std::time::Duration::from_millis(10));
let (weight, path) = res.unwrap();
assert_eq!(weight, 100);
assert_eq!(path.len(), 101);
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Vec<T, #[unstable(feature = \"allocator_api\", issue = \"32838\")] A: Allocator = Global> {\n buf: RawVec<T, A>,\n len: usize,\n}"
],
"name": "graph",
"type": "&[Vec<usize>]"
}
],
"end_line": 140,
"name": "ford_fulkerson",
"signature": "pub fn ford_fulkerson(\n graph: &[Vec<usize>],\n source: usize,\n sink: usize,\n) -> Result<usize, FordFulkersonError>",
"start_line": 107
}
|
ford_fulkerson
|
pub fn ford_fulkerson(
graph: &[Vec<usize>],
source: usize,
sink: usize,
) -> Result<usize, FordFulkersonError> {
validate_ford_fulkerson_input(graph, source, sink)?;
let mut residual_graph = graph.to_owned();
let mut parent = vec![usize::MAX; graph.len()];
let mut max_flow = 0;
while bfs(&residual_graph, source, sink, &mut parent) {
let mut path_flow = usize::MAX;
let mut previous_vertex = sink;
while previous_vertex != source {
let current_vertex = parent[previous_vertex];
path_flow = path_flow.min(residual_graph[current_vertex][previous_vertex]);
previous_vertex = current_vertex;
}
previous_vertex = sink;
while previous_vertex != source {
let current_vertex = parent[previous_vertex];
residual_graph[current_vertex][previous_vertex] -= path_flow;
residual_graph[previous_vertex][current_vertex] += path_flow;
previous_vertex = current_vertex;
}
max_flow += path_flow;
}
Ok(max_flow)
}
|
Rust-master/src/graph/ford_fulkerson.rs
|
//! The Ford-Fulkerson algorithm is a widely used algorithm to solve the maximum flow problem in a flow network.
//!
//! The maximum flow problem involves determining the maximum amount of flow that can be sent from a source vertex to a sink vertex
//! in a directed weighted graph, subject to capacity constraints on the edges.
use std::collections::VecDeque;
/// Enum representing the possible errors that can occur when running the Ford-Fulkerson algorithm.
#[derive(Debug, PartialEq)]
pub enum FordFulkersonError {
EmptyGraph,
ImproperGraph,
SourceOutOfBounds,
SinkOutOfBounds,
}
/// Performs a Breadth-First Search (BFS) on the residual graph to find an augmenting path
/// from the source vertex `source` to the sink vertex `sink`.
///
/// # Arguments
///
/// * `graph` - A reference to the residual graph represented as an adjacency matrix.
/// * `source` - The source vertex.
/// * `sink` - The sink vertex.
/// * `parent` - A mutable reference to the parent array used to store the augmenting path.
///
/// # Returns
///
/// Returns `true` if an augmenting path is found from `source` to `sink`, `false` otherwise.
fn bfs(graph: &[Vec<usize>], source: usize, sink: usize, parent: &mut [usize]) -> bool {
let mut visited = vec![false; graph.len()];
visited[source] = true;
parent[source] = usize::MAX;
let mut queue = VecDeque::new();
queue.push_back(source);
while let Some(current_vertex) = queue.pop_front() {
for (previous_vertex, &capacity) in graph[current_vertex].iter().enumerate() {
if !visited[previous_vertex] && capacity > 0 {
visited[previous_vertex] = true;
parent[previous_vertex] = current_vertex;
if previous_vertex == sink {
return true;
}
queue.push_back(previous_vertex);
}
}
}
false
}
/// Validates the input parameters for the Ford-Fulkerson algorithm.
///
/// This function checks if the provided graph, source vertex, and sink vertex
/// meet the requirements for the Ford-Fulkerson algorithm. It ensures the graph
/// is non-empty, square (each row has the same length as the number of rows), and
/// that the source and sink vertices are within the valid range of vertex indices.
///
/// # Arguments
///
/// * `graph` - A reference to the flow network represented as an adjacency matrix.
/// * `source` - The source vertex.
/// * `sink` - The sink vertex.
///
/// # Returns
///
/// Returns `Ok(())` if the input parameters are valid, otherwise returns an appropriate
/// `FordFulkersonError`.
fn validate_ford_fulkerson_input(
graph: &[Vec<usize>],
source: usize,
sink: usize,
) -> Result<(), FordFulkersonError> {
if graph.is_empty() {
return Err(FordFulkersonError::EmptyGraph);
}
if graph.iter().any(|row| row.len() != graph.len()) {
return Err(FordFulkersonError::ImproperGraph);
}
if source >= graph.len() {
return Err(FordFulkersonError::SourceOutOfBounds);
}
if sink >= graph.len() {
return Err(FordFulkersonError::SinkOutOfBounds);
}
Ok(())
}
/// Applies the Ford-Fulkerson algorithm to find the maximum flow in a flow network
/// represented by a weighted directed graph.
///
/// # Arguments
///
/// * `graph` - A mutable reference to the flow network represented as an adjacency matrix.
/// * `source` - The source vertex.
/// * `sink` - The sink vertex.
///
/// # Returns
///
/// Returns the maximum flow and the residual graph
pub fn ford_fulkerson(
graph: &[Vec<usize>],
source: usize,
sink: usize,
) -> Result<usize, FordFulkersonError> {
validate_ford_fulkerson_input(graph, source, sink)?;
let mut residual_graph = graph.to_owned();
let mut parent = vec![usize::MAX; graph.len()];
let mut max_flow = 0;
while bfs(&residual_graph, source, sink, &mut parent) {
let mut path_flow = usize::MAX;
let mut previous_vertex = sink;
while previous_vertex != source {
let current_vertex = parent[previous_vertex];
path_flow = path_flow.min(residual_graph[current_vertex][previous_vertex]);
previous_vertex = current_vertex;
}
previous_vertex = sink;
while previous_vertex != source {
let current_vertex = parent[previous_vertex];
residual_graph[current_vertex][previous_vertex] -= path_flow;
residual_graph[previous_vertex][current_vertex] += path_flow;
previous_vertex = current_vertex;
}
max_flow += path_flow;
}
Ok(max_flow)
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! test_max_flow {
($($name:ident: $tc:expr,)* ) => {
$(
#[test]
fn $name() {
let (graph, source, sink, expected_result) = $tc;
assert_eq!(ford_fulkerson(&graph, source, sink), expected_result);
}
)*
};
}
test_max_flow! {
test_empty_graph: (
vec![],
0,
0,
Err(FordFulkersonError::EmptyGraph),
),
test_source_out_of_bound: (
vec![
vec![0, 8, 0, 0, 3, 0],
vec![0, 0, 9, 0, 0, 0],
vec![0, 0, 0, 0, 7, 2],
vec![0, 0, 0, 0, 0, 5],
vec![0, 0, 7, 4, 0, 0],
vec![0, 0, 0, 0, 0, 0],
],
6,
5,
Err(FordFulkersonError::SourceOutOfBounds),
),
test_sink_out_of_bound: (
vec![
vec![0, 8, 0, 0, 3, 0],
vec![0, 0, 9, 0, 0, 0],
vec![0, 0, 0, 0, 7, 2],
vec![0, 0, 0, 0, 0, 5],
vec![0, 0, 7, 4, 0, 0],
vec![0, 0, 0, 0, 0, 0],
],
0,
6,
Err(FordFulkersonError::SinkOutOfBounds),
),
test_improper_graph: (
vec![
vec![0, 8],
vec![0],
],
0,
1,
Err(FordFulkersonError::ImproperGraph),
),
test_graph_with_small_flow: (
vec![
vec![0, 8, 0, 0, 3, 0],
vec![0, 0, 9, 0, 0, 0],
vec![0, 0, 0, 0, 7, 2],
vec![0, 0, 0, 0, 0, 5],
vec![0, 0, 7, 4, 0, 0],
vec![0, 0, 0, 0, 0, 0],
],
0,
5,
Ok(6),
),
test_graph_with_medium_flow: (
vec![
vec![0, 10, 0, 10, 0, 0],
vec![0, 0, 4, 2, 8, 0],
vec![0, 0, 0, 0, 0, 10],
vec![0, 0, 0, 0, 9, 0],
vec![0, 0, 6, 0, 0, 10],
vec![0, 0, 0, 0, 0, 0],
],
0,
5,
Ok(19),
),
test_graph_with_large_flow: (
vec![
vec![0, 12, 0, 13, 0, 0],
vec![0, 0, 10, 0, 0, 0],
vec![0, 0, 0, 13, 3, 15],
vec![0, 0, 7, 0, 15, 0],
vec![0, 0, 6, 0, 0, 17],
vec![0, 0, 0, 0, 0, 0],
],
0,
5,
Ok(23),
),
test_complex_graph: (
vec![
vec![0, 16, 13, 0, 0, 0],
vec![0, 0, 10, 12, 0, 0],
vec![0, 4, 0, 0, 14, 0],
vec![0, 0, 9, 0, 0, 20],
vec![0, 0, 0, 7, 0, 4],
vec![0, 0, 0, 0, 0, 0],
],
0,
5,
Ok(23),
),
test_disconnected_graph: (
vec![
vec![0, 0, 0, 0],
vec![0, 0, 0, 1],
vec![0, 0, 0, 1],
vec![0, 0, 0, 0],
],
0,
3,
Ok(0),
),
test_unconnected_sink: (
vec![
vec![0, 4, 0, 3, 0, 0],
vec![0, 0, 4, 0, 8, 0],
vec![0, 0, 0, 3, 0, 2],
vec![0, 0, 0, 0, 6, 0],
vec![0, 0, 6, 0, 0, 6],
vec![0, 0, 0, 0, 0, 0],
],
0,
5,
Ok(7),
),
test_no_edges: (
vec![
vec![0, 0, 0],
vec![0, 0, 0],
vec![0, 0, 0],
],
0,
2,
Ok(0),
),
test_single_vertex: (
vec![
vec![0],
],
0,
0,
Ok(0),
),
test_self_loop: (
vec![
vec![10, 0],
vec![0, 0],
],
0,
1,
Ok(0),
),
test_same_source_sink: (
vec![
vec![0, 10, 10],
vec![0, 0, 10],
vec![0, 0, 0],
],
0,
0,
Ok(0),
),
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Graph {\n #[allow(dead_code)]\n nodes: Vec<Node>,\n edges: Vec<Edge>,\n}"
],
"name": "graph",
"type": "&Graph"
},
{
"definitions": [
"pub struct Graph {\n #[allow(dead_code)]\n nodes: Vec<Node>,\n edges: Vec<Edge>,\n}"
],
"name": "root",
"type": "Node"
},
{
"definitions": [
"pub struct Graph {\n #[allow(dead_code)]\n nodes: Vec<Node>,\n edges: Vec<Edge>,\n}"
],
"name": "target",
"type": "Node"
}
],
"end_line": 45,
"name": "breadth_first_search",
"signature": "pub fn breadth_first_search(graph: &Graph, root: Node, target: Node) -> Option<Vec<u32>>",
"start_line": 20
}
|
breadth_first_search
|
pub fn breadth_first_search(graph: &Graph, root: Node, target: Node) -> Option<Vec<u32>> {
let mut visited: HashSet<Node> = HashSet::new();
let mut history: Vec<u32> = Vec::new();
let mut queue = VecDeque::new();
visited.insert(root);
queue.push_back(root);
while let Some(currentnode) = queue.pop_front() {
history.push(currentnode.value());
// If we reach the goal, return our travel history.
if currentnode == target {
return Some(history);
}
// Check the neighboring nodes for any that we've not visited yet.
for neighbor in currentnode.neighbors(graph) {
if visited.insert(neighbor) {
queue.push_back(neighbor);
}
}
}
// All nodes were visited, yet the target was not found.
None
}
|
Rust-master/src/graph/breadth_first_search.rs
|
use std::collections::HashSet;
use std::collections::VecDeque;
/// Perform a breadth-first search on Graph `graph`.
///
/// # Parameters
///
/// - `graph`: The graph to search.
/// - `root`: The starting node of the graph from which to begin searching.
/// - `target`: The target node for the search.
///
/// # Returns
///
/// If the target is found, an Optional vector is returned with the history
/// of nodes visited as its contents.
///
/// If the target is not found or there is no path from the root,
/// `None` is returned.
///
pub fn breadth_first_search(graph: &Graph, root: Node, target: Node) -> Option<Vec<u32>> {
let mut visited: HashSet<Node> = HashSet::new();
let mut history: Vec<u32> = Vec::new();
let mut queue = VecDeque::new();
visited.insert(root);
queue.push_back(root);
while let Some(currentnode) = queue.pop_front() {
history.push(currentnode.value());
// If we reach the goal, return our travel history.
if currentnode == target {
return Some(history);
}
// Check the neighboring nodes for any that we've not visited yet.
for neighbor in currentnode.neighbors(graph) {
if visited.insert(neighbor) {
queue.push_back(neighbor);
}
}
}
// All nodes were visited, yet the target was not found.
None
}
// Data Structures
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Node(u32);
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Edge(u32, u32);
#[derive(Clone)]
pub struct Graph {
#[allow(dead_code)]
nodes: Vec<Node>,
edges: Vec<Edge>,
}
impl Graph {
pub fn new(nodes: Vec<Node>, edges: Vec<Edge>) -> Self {
Graph { nodes, edges }
}
}
impl From<u32> for Node {
fn from(item: u32) -> Self {
Node(item)
}
}
impl Node {
pub fn value(&self) -> u32 {
self.0
}
pub fn neighbors(&self, graph: &Graph) -> Vec<Node> {
graph
.edges
.iter()
.filter(|e| e.0 == self.0)
.map(|e| e.1.into())
.collect()
}
}
impl From<(u32, u32)> for Edge {
fn from(item: (u32, u32)) -> Self {
Edge(item.0, item.1)
}
}
#[cfg(test)]
mod tests {
use super::*;
/* Example graph #1:
*
* (1) <--- Root
* / \
* (2) (3)
* / | | \
* (4) (5) (6) (7)
* |
* (8)
*/
fn graph1() -> Graph {
let nodes = vec![1, 2, 3, 4, 5, 6, 7];
let edges = vec![(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (5, 8)];
Graph::new(
nodes.into_iter().map(|v| v.into()).collect(),
edges.into_iter().map(|e| e.into()).collect(),
)
}
#[test]
fn breadth_first_search_graph1_when_node_not_found_returns_none() {
let graph = graph1();
let root = 1;
let target = 10;
assert_eq!(
breadth_first_search(&graph, root.into(), target.into()),
None
);
}
#[test]
fn breadth_first_search_graph1_when_target_8_should_evaluate_all_nodes_first() {
let graph = graph1();
let root = 1;
let target = 8;
let expected_path = vec![1, 2, 3, 4, 5, 6, 7, 8];
assert_eq!(
breadth_first_search(&graph, root.into(), target.into()),
Some(expected_path)
);
}
/* Example graph #2:
*
* (1) --- (2) (3) --- (4)
* / | / /
* / | / /
* / | / /
* (5) (6) --- (7) (8)
*/
fn graph2() -> Graph {
let nodes = vec![1, 2, 3, 4, 5, 6, 7, 8];
let undirected_edges = vec![
(1, 2),
(2, 1),
(2, 5),
(5, 2),
(2, 6),
(6, 2),
(3, 4),
(4, 3),
(3, 6),
(6, 3),
(4, 7),
(7, 4),
(6, 7),
(7, 6),
];
Graph::new(
nodes.into_iter().map(|v| v.into()).collect(),
undirected_edges.into_iter().map(|e| e.into()).collect(),
)
}
#[test]
fn breadth_first_search_graph2_when_no_path_to_node_returns_none() {
let graph = graph2();
let root = 8;
let target = 4;
assert_eq!(
breadth_first_search(&graph, root.into(), target.into()),
None
);
}
#[test]
fn breadth_first_search_graph2_should_find_path_from_4_to_1() {
let graph = graph2();
let root = 4;
let target = 1;
let expected_path = vec![4, 3, 7, 6, 2, 1];
assert_eq!(
breadth_first_search(&graph, root.into(), target.into()),
Some(expected_path)
);
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct Graph {\n #[allow(dead_code)]\n vertices: Vec<Vertex>,\n edges: Vec<Edge>,\n}"
],
"name": "graph",
"type": "&Graph"
},
{
"definitions": [
"pub struct Graph {\n #[allow(dead_code)]\n vertices: Vec<Vertex>,\n edges: Vec<Edge>,\n}"
],
"name": "root",
"type": "Vertex"
},
{
"definitions": [
"pub struct Graph {\n #[allow(dead_code)]\n vertices: Vec<Vertex>,\n edges: Vec<Edge>,\n}"
],
"name": "objective",
"type": "Vertex"
}
],
"end_line": 39,
"name": "depth_first_search",
"signature": "pub fn depth_first_search(graph: &Graph, root: Vertex, objective: Vertex) -> Option<Vec<u32>>",
"start_line": 8
}
|
depth_first_search
|
pub fn depth_first_search(graph: &Graph, root: Vertex, objective: Vertex) -> Option<Vec<u32>> {
let mut visited: HashSet<Vertex> = HashSet::new();
let mut history: Vec<u32> = Vec::new();
let mut queue = VecDeque::new();
queue.push_back(root);
// While there is an element in the queue
// get the first element of the vertex queue
while let Some(current_vertex) = queue.pop_front() {
// Added current vertex in the history of visiteds vertex
history.push(current_vertex.value());
// Verify if this vertex is the objective
if current_vertex == objective {
// Return the Optional with the history of visiteds vertex
return Some(history);
}
// For each over the neighbors of current vertex
for neighbor in current_vertex.neighbors(graph).into_iter().rev() {
// Insert in the HashSet of visiteds if this value not exist yet
if visited.insert(neighbor) {
// Add the neighbor on front of queue
queue.push_front(neighbor);
}
}
}
// If all vertex is visited and the objective is not found
// return a Optional with None value
None
}
|
Rust-master/src/graph/depth_first_search.rs
|
use std::collections::HashSet;
use std::collections::VecDeque;
// Perform a Depth First Search Algorithm to find a element in a graph
//
// Return a Optional with a vector with history of vertex visiteds
// or a None if the element not exists on the graph
pub fn depth_first_search(graph: &Graph, root: Vertex, objective: Vertex) -> Option<Vec<u32>> {
let mut visited: HashSet<Vertex> = HashSet::new();
let mut history: Vec<u32> = Vec::new();
let mut queue = VecDeque::new();
queue.push_back(root);
// While there is an element in the queue
// get the first element of the vertex queue
while let Some(current_vertex) = queue.pop_front() {
// Added current vertex in the history of visiteds vertex
history.push(current_vertex.value());
// Verify if this vertex is the objective
if current_vertex == objective {
// Return the Optional with the history of visiteds vertex
return Some(history);
}
// For each over the neighbors of current vertex
for neighbor in current_vertex.neighbors(graph).into_iter().rev() {
// Insert in the HashSet of visiteds if this value not exist yet
if visited.insert(neighbor) {
// Add the neighbor on front of queue
queue.push_front(neighbor);
}
}
}
// If all vertex is visited and the objective is not found
// return a Optional with None value
None
}
// Data Structures
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Vertex(u32);
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Edge(u32, u32);
#[derive(Clone)]
pub struct Graph {
#[allow(dead_code)]
vertices: Vec<Vertex>,
edges: Vec<Edge>,
}
impl Graph {
pub fn new(vertices: Vec<Vertex>, edges: Vec<Edge>) -> Self {
Graph { vertices, edges }
}
}
impl From<u32> for Vertex {
fn from(item: u32) -> Self {
Vertex(item)
}
}
impl Vertex {
pub fn value(&self) -> u32 {
self.0
}
pub fn neighbors(&self, graph: &Graph) -> VecDeque<Vertex> {
graph
.edges
.iter()
.filter(|e| e.0 == self.0)
.map(|e| e.1.into())
.collect()
}
}
impl From<(u32, u32)> for Edge {
fn from(item: (u32, u32)) -> Self {
Edge(item.0, item.1)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn find_1_fail() {
let vertices = vec![1, 2, 3, 4, 5, 6, 7];
let edges = vec![(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7)];
let root = 1;
let objective = 99;
let graph = Graph::new(
vertices.into_iter().map(|v| v.into()).collect(),
edges.into_iter().map(|e| e.into()).collect(),
);
assert_eq!(
depth_first_search(&graph, root.into(), objective.into()),
None
);
}
#[test]
fn find_1_sucess() {
let vertices = vec![1, 2, 3, 4, 5, 6, 7];
let edges = vec![(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7)];
let root = 1;
let objective = 7;
let correct_path = vec![1, 2, 4, 5, 3, 6, 7];
let graph = Graph::new(
vertices.into_iter().map(|v| v.into()).collect(),
edges.into_iter().map(|e| e.into()).collect(),
);
assert_eq!(
depth_first_search(&graph, root.into(), objective.into()),
Some(correct_path)
);
}
#[test]
fn find_2_sucess() {
let vertices = vec![0, 1, 2, 3, 4, 5, 6, 7];
let edges = vec![
(0, 1),
(1, 3),
(3, 2),
(2, 1),
(3, 4),
(4, 5),
(5, 7),
(7, 6),
(6, 4),
];
let root = 0;
let objective = 6;
let correct_path = vec![0, 1, 3, 2, 4, 5, 7, 6];
let graph = Graph::new(
vertices.into_iter().map(|v| v.into()).collect(),
edges.into_iter().map(|e| e.into()).collect(),
);
assert_eq!(
depth_first_search(&graph, root.into(), objective.into()),
Some(correct_path)
);
}
#[test]
fn find_3_sucess() {
let vertices = vec![0, 1, 2, 3, 4, 5, 6, 7];
let edges = vec![
(0, 1),
(1, 3),
(3, 2),
(2, 1),
(3, 4),
(4, 5),
(5, 7),
(7, 6),
(6, 4),
];
let root = 0;
let objective = 4;
let correct_path = vec![0, 1, 3, 2, 4];
let graph = Graph::new(
vertices.into_iter().map(|v| v.into()).collect(),
edges.into_iter().map(|e| e.into()).collect(),
);
assert_eq!(
depth_first_search(&graph, root.into(), objective.into()),
Some(correct_path)
);
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub struct String {\n vec: Vec<u8>,\n}"
],
"name": "s",
"type": "String"
}
],
"end_line": 76,
"name": "manacher",
"signature": "pub fn manacher(s: String) -> String",
"start_line": 1
}
|
manacher
|
pub fn manacher(s: String) -> String {
let l = s.len();
if l <= 1 {
return s;
}
// MEMO: We need to detect odd palindrome as well,
// therefore, inserting dummy string so that
// we can find a pair with dummy center character.
let mut chars: Vec<char> = Vec::with_capacity(s.len() * 2 + 1);
for c in s.chars() {
chars.push('#');
chars.push(c);
}
chars.push('#');
// List: storing the length of palindrome at each index of string
let mut length_of_palindrome = vec![1usize; chars.len()];
// Integer: Current checking palindrome's center index
let mut current_center: usize = 0;
// Integer: Right edge index existing the radius away from current center
let mut right_from_current_center: usize = 0;
for i in 0..chars.len() {
// 1: Check if we are looking at right side of palindrome.
if right_from_current_center > i && i > current_center {
// 1-1: If so copy from the left side of palindrome.
// If the value + index exceeds the right edge index, we should cut and check palindrome later #3.
length_of_palindrome[i] = std::cmp::min(
right_from_current_center - i,
length_of_palindrome[2 * current_center - i],
);
// 1-2: Move the checking palindrome to new index if it exceeds the right edge.
if length_of_palindrome[i] + i >= right_from_current_center {
current_center = i;
right_from_current_center = length_of_palindrome[i] + i;
// 1-3: If radius exceeds the end of list, it means checking is over.
// You will never get the larger value because the string will get only shorter.
if right_from_current_center >= chars.len() - 1 {
break;
}
} else {
// 1-4: If the checking index doesn't exceeds the right edge,
// it means the length is just as same as the left side.
// You don't need to check anymore.
continue;
}
}
// Integer: Current radius from checking index
// If it's copied from left side and more than 1,
// it means it's ensured so you don't need to check inside radius.
let mut radius: usize = (length_of_palindrome[i] - 1) / 2;
radius += 1;
// 2: Checking palindrome.
// Need to care about overflow usize.
while i >= radius && i + radius <= chars.len() - 1 && chars[i - radius] == chars[i + radius]
{
length_of_palindrome[i] += 2;
radius += 1;
}
}
// 3: Find the maximum length and generate answer.
let center_of_max = length_of_palindrome
.iter()
.enumerate()
.max_by_key(|(_, &value)| value)
.map(|(idx, _)| idx)
.unwrap();
let radius_of_max = (length_of_palindrome[center_of_max] - 1) / 2;
let answer = &chars[(center_of_max - radius_of_max)..=(center_of_max + radius_of_max)]
.iter()
.collect::<String>();
answer.replace('#', "")
}
|
Rust-master/src/string/manacher.rs
|
pub fn manacher(s: String) -> String {
let l = s.len();
if l <= 1 {
return s;
}
// MEMO: We need to detect odd palindrome as well,
// therefore, inserting dummy string so that
// we can find a pair with dummy center character.
let mut chars: Vec<char> = Vec::with_capacity(s.len() * 2 + 1);
for c in s.chars() {
chars.push('#');
chars.push(c);
}
chars.push('#');
// List: storing the length of palindrome at each index of string
let mut length_of_palindrome = vec![1usize; chars.len()];
// Integer: Current checking palindrome's center index
let mut current_center: usize = 0;
// Integer: Right edge index existing the radius away from current center
let mut right_from_current_center: usize = 0;
for i in 0..chars.len() {
// 1: Check if we are looking at right side of palindrome.
if right_from_current_center > i && i > current_center {
// 1-1: If so copy from the left side of palindrome.
// If the value + index exceeds the right edge index, we should cut and check palindrome later #3.
length_of_palindrome[i] = std::cmp::min(
right_from_current_center - i,
length_of_palindrome[2 * current_center - i],
);
// 1-2: Move the checking palindrome to new index if it exceeds the right edge.
if length_of_palindrome[i] + i >= right_from_current_center {
current_center = i;
right_from_current_center = length_of_palindrome[i] + i;
// 1-3: If radius exceeds the end of list, it means checking is over.
// You will never get the larger value because the string will get only shorter.
if right_from_current_center >= chars.len() - 1 {
break;
}
} else {
// 1-4: If the checking index doesn't exceeds the right edge,
// it means the length is just as same as the left side.
// You don't need to check anymore.
continue;
}
}
// Integer: Current radius from checking index
// If it's copied from left side and more than 1,
// it means it's ensured so you don't need to check inside radius.
let mut radius: usize = (length_of_palindrome[i] - 1) / 2;
radius += 1;
// 2: Checking palindrome.
// Need to care about overflow usize.
while i >= radius && i + radius <= chars.len() - 1 && chars[i - radius] == chars[i + radius]
{
length_of_palindrome[i] += 2;
radius += 1;
}
}
// 3: Find the maximum length and generate answer.
let center_of_max = length_of_palindrome
.iter()
.enumerate()
.max_by_key(|(_, &value)| value)
.map(|(idx, _)| idx)
.unwrap();
let radius_of_max = (length_of_palindrome[center_of_max] - 1) / 2;
let answer = &chars[(center_of_max - radius_of_max)..=(center_of_max + radius_of_max)]
.iter()
.collect::<String>();
answer.replace('#', "")
}
#[cfg(test)]
mod tests {
use super::manacher;
#[test]
fn get_longest_palindrome_by_manacher() {
assert_eq!(manacher("babad".to_string()), "aba".to_string());
assert_eq!(manacher("cbbd".to_string()), "bb".to_string());
assert_eq!(manacher("a".to_string()), "a".to_string());
let ac_ans = manacher("ac".to_string());
assert!(ac_ans == *"a" || ac_ans == *"c");
}
}
| ||||
{
"argument_definitions": [],
"end_line": 52,
"name": "kth_smallest_heap",
"signature": "pub fn kth_smallest_heap(input: &[T], k: usize) -> Option<T>",
"start_line": 13
}
|
kth_smallest_heap
|
pub fn kth_smallest_heap(input: &[T], k: usize) -> Option<T> {
if input.len() < k {
return None;
}
// heap will maintain the kth smallest elements
// seen so far, when new elements, E_new arrives,
// it is compared with the largest element of the
// current Heap E_large, which is the current kth
// smallest elements.
// if E_new > E_large, then E_new cannot be the kth
// smallest because there are already k elements smaller
// than it
// otherwise, E_large cannot be the kth smallest, and should
// be removed from the heap and E_new should be added
let mut heap = Heap::new_max();
// first k elements goes to the heap as the baseline
for &val in input.iter().take(k) {
heap.add(val);
}
for &val in input.iter().skip(k) {
// compare new value to the current kth smallest value
let cur_big = heap.pop().unwrap(); // heap.pop() can't be None
match val.cmp(&cur_big) {
Ordering::Greater => {
heap.add(cur_big);
}
_ => {
heap.add(val);
}
}
}
heap.pop()
}
|
Rust-master/src/searching/kth_smallest_heap.rs
|
use crate::data_structures::Heap;
use std::cmp::{Ord, Ordering};
/// Returns k-th smallest element of an array.
/// Time complexity is stably O(nlog(k)) in all cases
/// Extra space is required to maintain the heap, and it doesn't
/// mutate the input list.
///
/// It is preferrable to the partition-based algorithm in cases when
/// we want to maintain the kth smallest element dynamically against
/// a stream of elements. In that case, once the heap is built, further
/// operation's complexity is O(log(k)).
pub fn kth_smallest_heap<T>(input: &[T], k: usize) -> Option<T>
where
T: Ord + Copy,
{
if input.len() < k {
return None;
}
// heap will maintain the kth smallest elements
// seen so far, when new elements, E_new arrives,
// it is compared with the largest element of the
// current Heap E_large, which is the current kth
// smallest elements.
// if E_new > E_large, then E_new cannot be the kth
// smallest because there are already k elements smaller
// than it
// otherwise, E_large cannot be the kth smallest, and should
// be removed from the heap and E_new should be added
let mut heap = Heap::new_max();
// first k elements goes to the heap as the baseline
for &val in input.iter().take(k) {
heap.add(val);
}
for &val in input.iter().skip(k) {
// compare new value to the current kth smallest value
let cur_big = heap.pop().unwrap(); // heap.pop() can't be None
match val.cmp(&cur_big) {
Ordering::Greater => {
heap.add(cur_big);
}
_ => {
heap.add(val);
}
}
}
heap.pop()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn empty() {
let zero: [u8; 0] = [];
let first = kth_smallest_heap(&zero, 1);
assert_eq!(None, first);
}
#[test]
fn one_element() {
let one = [1];
let first = kth_smallest_heap(&one, 1);
assert_eq!(1, first.unwrap());
}
#[test]
fn many_elements() {
// 0 1 3 4 5 7 8 9 9 10 12 13 16 17
let many = [9, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0];
let first = kth_smallest_heap(&many, 1);
let third = kth_smallest_heap(&many, 3);
let sixth = kth_smallest_heap(&many, 6);
let fourteenth = kth_smallest_heap(&many, 14);
assert_eq!(0, first.unwrap());
assert_eq!(3, third.unwrap());
assert_eq!(7, sixth.unwrap());
assert_eq!(17, fourteenth.unwrap());
}
}
| ||||
{
"argument_definitions": [],
"end_line": 37,
"name": "compute_totient",
"signature": "pub fn compute_totient(n: i32) -> vec::Vec<i32>",
"start_line": 11
}
|
compute_totient
|
pub fn compute_totient(n: i32) -> vec::Vec<i32> {
let mut phi: Vec<i32> = Vec::new();
// initialize phi[i] = i
for i in 0..=n {
phi.push(i);
}
// Compute other Phi values
for p in 2..=n {
// If phi[p] is not computed already,
// then number p is prime
if phi[(p) as usize] == p {
// Phi of a prime number p is
// always equal to p-1.
phi[(p) as usize] = p - 1;
// Update phi values of all
// multiples of p
for i in ((2 * p)..=n).step_by(p as usize) {
phi[(i) as usize] = (phi[i as usize] / p) * (p - 1);
}
}
}
phi[1..].to_vec()
}
|
Rust-master/src/number_theory/compute_totient.rs
|
// Totient function for
// all numbers smaller than
// or equal to n.
// Computes and prints
// totient of all numbers
// smaller than or equal to n
use std::vec;
pub fn compute_totient(n: i32) -> vec::Vec<i32> {
let mut phi: Vec<i32> = Vec::new();
// initialize phi[i] = i
for i in 0..=n {
phi.push(i);
}
// Compute other Phi values
for p in 2..=n {
// If phi[p] is not computed already,
// then number p is prime
if phi[(p) as usize] == p {
// Phi of a prime number p is
// always equal to p-1.
phi[(p) as usize] = p - 1;
// Update phi values of all
// multiples of p
for i in ((2 * p)..=n).step_by(p as usize) {
phi[(i) as usize] = (phi[i as usize] / p) * (p - 1);
}
}
}
phi[1..].to_vec()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_1() {
assert_eq!(
compute_totient(12),
vec![1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
);
}
#[test]
fn test_2() {
assert_eq!(compute_totient(7), vec![1, 1, 2, 2, 4, 2, 6]);
}
#[test]
fn test_3() {
assert_eq!(compute_totient(4), vec![1, 1, 2, 2]);
}
}
| ||||
{
"argument_definitions": [],
"end_line": 60,
"name": "fast_factorial",
"signature": "pub fn fast_factorial(n: usize) -> BigUint",
"start_line": 25
}
|
fast_factorial
|
pub fn fast_factorial(n: usize) -> BigUint {
if n < 2 {
return BigUint::one();
}
// get list of primes that will be factors of n!
let primes = sieve_of_eratosthenes(n);
// Map the primes with their index
let p_indices = primes
.into_iter()
.map(|p| (p, index(p, n)))
.collect::<BTreeMap<_, _>>();
let max_bits = p_indices[&2].next_power_of_two().ilog2() + 1;
// Create a Vec of 1's
let mut a = vec![BigUint::one(); max_bits as usize];
// For every prime p, multiply a[i] by p if the ith bit of p's index is 1
for (p, i) in p_indices {
let mut bit = 1usize;
while bit.ilog2() < max_bits {
if (bit & i) > 0 {
a[bit.ilog2() as usize] *= p;
}
bit <<= 1;
}
}
a.into_iter()
.enumerate()
.map(|(i, a_i)| a_i.pow(2u32.pow(i as u32))) // raise every a[i] to the 2^ith power
.product() // we get our answer by multiplying the result
}
|
Rust-master/src/big_integer/fast_factorial.rs
|
// Algorithm created by Peter Borwein in 1985
// https://doi.org/10.1016/0196-6774(85)90006-9
use crate::math::sieve_of_eratosthenes;
use num_bigint::BigUint;
use num_traits::One;
use std::collections::BTreeMap;
/// Calculate the sum of n / p^i with integer division for all values of i
fn index(p: usize, n: usize) -> usize {
let mut index = 0;
let mut i = 1;
let mut quot = n / p;
while quot > 0 {
index += quot;
i += 1;
quot = n / p.pow(i);
}
index
}
/// Calculate the factorial with time complexity O(log(log(n)) * M(n * log(n))) where M(n) is the time complexity of multiplying two n-digit numbers together.
pub fn fast_factorial(n: usize) -> BigUint {
if n < 2 {
return BigUint::one();
}
// get list of primes that will be factors of n!
let primes = sieve_of_eratosthenes(n);
// Map the primes with their index
let p_indices = primes
.into_iter()
.map(|p| (p, index(p, n)))
.collect::<BTreeMap<_, _>>();
let max_bits = p_indices[&2].next_power_of_two().ilog2() + 1;
// Create a Vec of 1's
let mut a = vec![BigUint::one(); max_bits as usize];
// For every prime p, multiply a[i] by p if the ith bit of p's index is 1
for (p, i) in p_indices {
let mut bit = 1usize;
while bit.ilog2() < max_bits {
if (bit & i) > 0 {
a[bit.ilog2() as usize] *= p;
}
bit <<= 1;
}
}
a.into_iter()
.enumerate()
.map(|(i, a_i)| a_i.pow(2u32.pow(i as u32))) // raise every a[i] to the 2^ith power
.product() // we get our answer by multiplying the result
}
#[cfg(test)]
mod tests {
use super::*;
use crate::math::factorial::factorial_bigmath;
#[test]
fn fact() {
assert_eq!(fast_factorial(0), BigUint::one());
assert_eq!(fast_factorial(1), BigUint::one());
assert_eq!(fast_factorial(2), factorial_bigmath(2));
assert_eq!(fast_factorial(3), factorial_bigmath(3));
assert_eq!(fast_factorial(6), factorial_bigmath(6));
assert_eq!(fast_factorial(7), factorial_bigmath(7));
assert_eq!(fast_factorial(10), factorial_bigmath(10));
assert_eq!(fast_factorial(11), factorial_bigmath(11));
assert_eq!(fast_factorial(18), factorial_bigmath(18));
assert_eq!(fast_factorial(19), factorial_bigmath(19));
assert_eq!(fast_factorial(30), factorial_bigmath(30));
assert_eq!(fast_factorial(34), factorial_bigmath(34));
assert_eq!(fast_factorial(35), factorial_bigmath(35));
assert_eq!(fast_factorial(52), factorial_bigmath(52));
assert_eq!(fast_factorial(100), factorial_bigmath(100));
assert_eq!(fast_factorial(1000), factorial_bigmath(1000));
assert_eq!(fast_factorial(5000), factorial_bigmath(5000));
}
}
| ||||
{
"argument_definitions": [],
"end_line": 59,
"name": "transposition",
"signature": "pub fn transposition(decrypt_mode: bool, msg: &str, key: &str) -> String",
"start_line": 12
}
|
transposition
|
pub fn transposition(decrypt_mode: bool, msg: &str, key: &str) -> String {
let key_uppercase = key.to_uppercase();
let mut cipher_msg: String = msg.to_string();
let keys: Vec<&str> = if decrypt_mode {
key_uppercase.split_whitespace().rev().collect()
} else {
key_uppercase.split_whitespace().collect()
};
for cipher_key in keys.iter() {
let mut key_order: Vec<usize> = Vec::new();
// Removes any non-alphabet characters from 'msg'
cipher_msg = cipher_msg
.to_uppercase()
.chars()
.filter(|&c| c.is_ascii_alphabetic())
.collect();
// Determines the sequence of the columns, as dictated by the
// alphabetical order of the keyword's letters
let mut key_ascii: Vec<(usize, u8)> =
cipher_key.bytes().enumerate().collect::<Vec<(usize, u8)>>();
key_ascii.sort_by_key(|&(_, key)| key);
for (counter, (_, key)) in key_ascii.iter_mut().enumerate() {
*key = counter as u8;
}
key_ascii.sort_by_key(|&(index, _)| index);
key_ascii
.into_iter()
.for_each(|(_, key)| key_order.push(key.into()));
// Determines whether to encrypt or decrypt the message,
// and returns the result
cipher_msg = if decrypt_mode {
decrypt(cipher_msg, key_order)
} else {
encrypt(cipher_msg, key_order)
};
}
cipher_msg
}
|
Rust-master/src/ciphers/transposition.rs
|
//! Transposition Cipher
//!
//! The Transposition Cipher is a method of encryption by which a message is shifted
//! according to a regular system, so that the ciphertext is a rearrangement of the
//! original message. The most commonly referred to Transposition Cipher is the
//! COLUMNAR TRANSPOSITION cipher, which is demonstrated below.
use std::ops::RangeInclusive;
/// Encrypts or decrypts a message, using multiple keys. The
/// encryption is based on the columnar transposition method.
pub fn transposition(decrypt_mode: bool, msg: &str, key: &str) -> String {
let key_uppercase = key.to_uppercase();
let mut cipher_msg: String = msg.to_string();
let keys: Vec<&str> = if decrypt_mode {
key_uppercase.split_whitespace().rev().collect()
} else {
key_uppercase.split_whitespace().collect()
};
for cipher_key in keys.iter() {
let mut key_order: Vec<usize> = Vec::new();
// Removes any non-alphabet characters from 'msg'
cipher_msg = cipher_msg
.to_uppercase()
.chars()
.filter(|&c| c.is_ascii_alphabetic())
.collect();
// Determines the sequence of the columns, as dictated by the
// alphabetical order of the keyword's letters
let mut key_ascii: Vec<(usize, u8)> =
cipher_key.bytes().enumerate().collect::<Vec<(usize, u8)>>();
key_ascii.sort_by_key(|&(_, key)| key);
for (counter, (_, key)) in key_ascii.iter_mut().enumerate() {
*key = counter as u8;
}
key_ascii.sort_by_key(|&(index, _)| index);
key_ascii
.into_iter()
.for_each(|(_, key)| key_order.push(key.into()));
// Determines whether to encrypt or decrypt the message,
// and returns the result
cipher_msg = if decrypt_mode {
decrypt(cipher_msg, key_order)
} else {
encrypt(cipher_msg, key_order)
};
}
cipher_msg
}
/// Performs the columnar transposition encryption
fn encrypt(mut msg: String, key_order: Vec<usize>) -> String {
let mut encrypted_msg: String = String::from("");
let mut encrypted_vec: Vec<String> = Vec::new();
let msg_len = msg.len();
let key_len: usize = key_order.len();
let mut msg_index: usize = msg_len;
let mut key_index: usize = key_len;
// Loop each column, pushing it to a Vec<T>
while !msg.is_empty() {
let mut chars: String = String::from("");
let mut index: usize = 0;
key_index -= 1;
// Loop every nth character, determined by key length, to create a column
while index < msg_index {
let ch = msg.remove(index);
chars.push(ch);
index += key_index;
msg_index -= 1;
}
encrypted_vec.push(chars);
}
// Concatenate the columns into a string, determined by the
// alphabetical order of the keyword's characters
let mut indexed_vec: Vec<(usize, &String)> = Vec::new();
let mut indexed_msg: String = String::from("");
for (counter, key_index) in key_order.into_iter().enumerate() {
indexed_vec.push((key_index, &encrypted_vec[counter]));
}
indexed_vec.sort();
for (_, column) in indexed_vec {
indexed_msg.push_str(column);
}
// Split the message by a space every nth character, determined by
// 'message length divided by keyword length' to the next highest integer.
let msg_div: usize = (msg_len as f32 / key_len as f32).ceil() as usize;
let mut counter: usize = 0;
indexed_msg.chars().for_each(|c| {
encrypted_msg.push(c);
counter += 1;
if counter == msg_div {
encrypted_msg.push(' ');
counter = 0;
}
});
encrypted_msg.trim_end().to_string()
}
/// Performs the columnar transposition decryption
fn decrypt(mut msg: String, key_order: Vec<usize>) -> String {
let mut decrypted_msg: String = String::from("");
let mut decrypted_vec: Vec<String> = Vec::new();
let mut indexed_vec: Vec<(usize, String)> = Vec::new();
let msg_len = msg.len();
let key_len: usize = key_order.len();
// Split the message into columns, determined by 'message length divided by keyword length'.
// Some columns are larger by '+1', where the prior calculation leaves a remainder.
let split_size: usize = (msg_len as f64 / key_len as f64) as usize;
let msg_mod: usize = msg_len % key_len;
let mut counter: usize = msg_mod;
let mut key_split: Vec<usize> = key_order.clone();
let (split_large, split_small) = key_split.split_at_mut(msg_mod);
split_large.sort_unstable();
split_small.sort_unstable();
split_large.iter_mut().rev().for_each(|key_index| {
counter -= 1;
let range: RangeInclusive<usize> =
((*key_index * split_size) + counter)..=(((*key_index + 1) * split_size) + counter);
let slice: String = msg[range.clone()].to_string();
indexed_vec.push((*key_index, slice));
msg.replace_range(range, "");
});
for key_index in split_small.iter_mut() {
let (slice, rest_of_msg) = msg.split_at(split_size);
indexed_vec.push((*key_index, (slice.to_string())));
msg = rest_of_msg.to_string();
}
indexed_vec.sort();
for key in key_order {
if let Some((_, column)) = indexed_vec.iter().find(|(key_index, _)| key_index == &key) {
decrypted_vec.push(column.to_string());
}
}
// Concatenate the columns into a string, determined by the
// alphabetical order of the keyword's characters
for _ in 0..split_size {
decrypted_vec.iter_mut().for_each(|column| {
decrypted_msg.push(column.remove(0));
})
}
if !decrypted_vec.is_empty() {
decrypted_vec.into_iter().for_each(|chars| {
decrypted_msg.push_str(&chars);
})
}
decrypted_msg
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn encryption() {
assert_eq!(
transposition(
false,
"The quick brown fox jumps over the lazy dog",
"Archive",
),
"TKOOL ERJEZ CFSEG QOURY UWMTD HBXVA INPHO"
);
assert_eq!(
transposition(
false,
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.,/;'[]{}:|_+=-`~() ",
"Tenacious"
),
"DMVENW ENWFOX BKTCLU FOXGPY CLUDMV GPYHQZ IRAJSA JSBKTH QZIR"
);
assert_eq!(
transposition(false, "WE ARE DISCOVERED. FLEE AT ONCE.", "ZEBRAS"),
"EVLNA CDTES EAROF ODEEC WIREE"
);
}
#[test]
fn decryption() {
assert_eq!(
transposition(true, "TKOOL ERJEZ CFSEG QOURY UWMTD HBXVA INPHO", "Archive"),
"THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG"
);
assert_eq!(
transposition(
true,
"DMVENW ENWFOX BKTCLU FOXGPY CLUDMV GPYHQZ IRAJSA JSBKTH QZIR",
"Tenacious"
),
"ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ"
);
assert_eq!(
transposition(true, "EVLNA CDTES EAROF ODEEC WIREE", "ZEBRAS"),
"WEAREDISCOVEREDFLEEATONCE"
);
}
#[test]
fn double_encryption() {
assert_eq!(
transposition(
false,
"The quick brown fox jumps over the lazy dog",
"Archive Snow"
),
"KEZEUWHAH ORCGRMBIO TLESOUDVP OJFQYTXN"
);
assert_eq!(
transposition(
false,
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.,/;'[]{}:|_+=-`~() ",
"Tenacious Drink"
),
"DWOCXLGZSKI VNBUPDYRJHN FTOCVQJBZEW KFYMHASQMEX LGUPIATR"
);
assert_eq!(
transposition(false, "WE ARE DISCOVERED. FLEE AT ONCE.", "ZEBRAS STRIPE"),
"CAEEN SOIAE DRLEF WEDRE EVTOC"
);
}
#[test]
fn double_decryption() {
assert_eq!(
transposition(
true,
"KEZEUWHAH ORCGRMBIO TLESOUDVP OJFQYTXN",
"Archive Snow"
),
"THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG"
);
assert_eq!(
transposition(
true,
"DWOCXLGZSKI VNBUPDYRJHN FTOCVQJBZEW KFYMHASQMEX LGUPIATR",
"Tenacious Drink",
),
"ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ"
);
assert_eq!(
transposition(true, "CAEEN SOIAE DRLEF WEDRE EVTOC", "ZEBRAS STRIPE"),
"WEAREDISCOVEREDFLEEATONCE"
);
}
}
| ||||
{
"argument_definitions": [],
"end_line": 206,
"name": "blake2b",
"signature": "pub fn blake2b(m: &[u8], k: &[u8], nn: u8) -> Vec<u8>",
"start_line": 179
}
|
blake2b
|
pub fn blake2b(m: &[u8], k: &[u8], nn: u8) -> Vec<u8> {
let kk = min(k.len(), KK_MAX);
let nn = min(nn, NN_MAX);
// Prevent user from giving a key that is too long
let k = &k[..kk];
let dd = max(ceil(kk, BB) + ceil(m.len(), BB), 1);
let mut blocks: Vec<Block> = vec![blank_block(); dd];
// Copy key into blocks
for (w, c) in blocks[0].iter_mut().zip(k.chunks(U64BYTES)) {
*w = bytes_to_word(c);
}
let first_index = (kk > 0) as usize;
// Copy bytes from message into blocks
for (i, c) in m.chunks(U64BYTES).enumerate() {
let block_index = first_index + (i / (BB / U64BYTES));
let word_in_block = i % (BB / U64BYTES);
blocks[block_index][word_in_block] = bytes_to_word(c);
}
blake2(blocks, m.len() as u128, kk as u64, nn as Word)
}
|
Rust-master/src/ciphers/blake2b.rs
|
// For specification go to https://www.rfc-editor.org/rfc/rfc7693
use std::cmp::{max, min};
use std::convert::{TryFrom, TryInto};
type Word = u64;
const BB: usize = 128;
const U64BYTES: usize = (u64::BITS as usize) / 8;
type Block = [Word; BB / U64BYTES];
const KK_MAX: usize = 64;
const NN_MAX: u8 = 64;
// Array of round constants used in mixing function G
const RC: [u32; 4] = [32, 24, 16, 63];
// IV[i] = floor(2**64 * frac(sqrt(prime(i+1)))) where prime(i) is the ith prime number
const IV: [Word; 8] = [
0x6A09E667F3BCC908,
0xBB67AE8584CAA73B,
0x3C6EF372FE94F82B,
0xA54FF53A5F1D36F1,
0x510E527FADE682D1,
0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B,
0x5BE0CD19137E2179,
];
const SIGMA: [[usize; 16]; 10] = [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3],
[11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4],
[7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8],
[9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13],
[2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9],
[12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11],
[13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10],
[6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5],
[10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0],
];
#[inline]
const fn blank_block() -> Block {
[0u64; BB / U64BYTES]
}
// Overflowing addition
#[inline]
fn add(a: &mut Word, b: Word) {
*a = a.overflowing_add(b).0;
}
#[inline]
const fn ceil(dividend: usize, divisor: usize) -> usize {
(dividend / divisor) + ((dividend % divisor != 0) as usize)
}
fn g(v: &mut [Word; 16], a: usize, b: usize, c: usize, d: usize, x: Word, y: Word) {
for (m, r) in [x, y].into_iter().zip(RC.chunks(2)) {
let v_b = v[b];
add(&mut v[a], v_b);
add(&mut v[a], m);
v[d] = (v[d] ^ v[a]).rotate_right(r[0]);
let v_d = v[d];
add(&mut v[c], v_d);
v[b] = (v[b] ^ v[c]).rotate_right(r[1]);
}
}
fn f(h: &mut [Word; 8], m: Block, t: u128, flag: bool) {
let mut v: [Word; 16] = [0; 16];
for (i, (h_i, iv_i)) in h.iter().zip(IV.iter()).enumerate() {
v[i] = *h_i;
v[i + 8] = *iv_i;
}
v[12] ^= (t % (u64::MAX as u128)) as u64;
v[13] ^= (t >> 64) as u64;
if flag {
v[14] = !v[14];
}
for i in 0..12 {
let s = SIGMA[i % 10];
let mut s_index = 0;
for j in 0..4 {
g(
&mut v,
j,
j + 4,
j + 8,
j + 12,
m[s[s_index]],
m[s[s_index + 1]],
);
s_index += 2;
}
let i1d = |col, row| {
let col = col % 4;
let row = row % 4;
(row * 4) + col
};
for j in 0..4 {
// Produces indeces for diagonals of a 4x4 matrix starting at 0,j
let idx: Vec<usize> = (0..4).map(|n| i1d(j + n, n) as usize).collect();
g(
&mut v,
idx[0],
idx[1],
idx[2],
idx[3],
m[s[s_index]],
m[s[s_index + 1]],
);
s_index += 2;
}
}
for (i, n) in h.iter_mut().enumerate() {
*n ^= v[i] ^ v[i + 8];
}
}
fn blake2(d: Vec<Block>, ll: u128, kk: Word, nn: Word) -> Vec<u8> {
let mut h: [Word; 8] = IV
.iter()
.take(8)
.copied()
.collect::<Vec<Word>>()
.try_into()
.unwrap();
h[0] ^= 0x01010000u64 ^ (kk << 8) ^ nn;
if d.len() > 1 {
for (i, w) in d.iter().enumerate().take(d.len() - 1) {
f(&mut h, *w, (i as u128 + 1) * BB as u128, false);
}
}
let ll = if kk > 0 { ll + BB as u128 } else { ll };
f(&mut h, d[d.len() - 1], ll, true);
h.iter()
.flat_map(|n| n.to_le_bytes())
.take(nn as usize)
.collect()
}
// Take arbitrarily long slice of u8's and turn up to 8 bytes into u64
fn bytes_to_word(bytes: &[u8]) -> Word {
if let Ok(arr) = <[u8; U64BYTES]>::try_from(bytes) {
Word::from_le_bytes(arr)
} else {
let mut arr = [0u8; 8];
for (a_i, b_i) in arr.iter_mut().zip(bytes) {
*a_i = *b_i;
}
Word::from_le_bytes(arr)
}
}
pub fn blake2b(m: &[u8], k: &[u8], nn: u8) -> Vec<u8> {
let kk = min(k.len(), KK_MAX);
let nn = min(nn, NN_MAX);
// Prevent user from giving a key that is too long
let k = &k[..kk];
let dd = max(ceil(kk, BB) + ceil(m.len(), BB), 1);
let mut blocks: Vec<Block> = vec![blank_block(); dd];
// Copy key into blocks
for (w, c) in blocks[0].iter_mut().zip(k.chunks(U64BYTES)) {
*w = bytes_to_word(c);
}
let first_index = (kk > 0) as usize;
// Copy bytes from message into blocks
for (i, c) in m.chunks(U64BYTES).enumerate() {
let block_index = first_index + (i / (BB / U64BYTES));
let word_in_block = i % (BB / U64BYTES);
blocks[block_index][word_in_block] = bytes_to_word(c);
}
blake2(blocks, m.len() as u128, kk as u64, nn as Word)
}
#[cfg(test)]
mod test {
use super::*;
macro_rules! digest_test {
($fname:ident, $message:expr, $key:expr, $nn:literal, $expected:expr) => {
#[test]
fn $fname() {
let digest = blake2b($message, $key, $nn);
let expected = Vec::from($expected);
assert_eq!(digest, expected);
}
};
}
digest_test!(
blake2b_from_rfc,
&[0x61, 0x62, 0x63],
&[0; 0],
64,
[
0xBA, 0x80, 0xA5, 0x3F, 0x98, 0x1C, 0x4D, 0x0D, 0x6A, 0x27, 0x97, 0xB6, 0x9F, 0x12,
0xF6, 0xE9, 0x4C, 0x21, 0x2F, 0x14, 0x68, 0x5A, 0xC4, 0xB7, 0x4B, 0x12, 0xBB, 0x6F,
0xDB, 0xFF, 0xA2, 0xD1, 0x7D, 0x87, 0xC5, 0x39, 0x2A, 0xAB, 0x79, 0x2D, 0xC2, 0x52,
0xD5, 0xDE, 0x45, 0x33, 0xCC, 0x95, 0x18, 0xD3, 0x8A, 0xA8, 0xDB, 0xF1, 0x92, 0x5A,
0xB9, 0x23, 0x86, 0xED, 0xD4, 0x00, 0x99, 0x23
]
);
digest_test!(
blake2b_empty,
&[0; 0],
&[0; 0],
64,
[
0x78, 0x6a, 0x02, 0xf7, 0x42, 0x01, 0x59, 0x03, 0xc6, 0xc6, 0xfd, 0x85, 0x25, 0x52,
0xd2, 0x72, 0x91, 0x2f, 0x47, 0x40, 0xe1, 0x58, 0x47, 0x61, 0x8a, 0x86, 0xe2, 0x17,
0xf7, 0x1f, 0x54, 0x19, 0xd2, 0x5e, 0x10, 0x31, 0xaf, 0xee, 0x58, 0x53, 0x13, 0x89,
0x64, 0x44, 0x93, 0x4e, 0xb0, 0x4b, 0x90, 0x3a, 0x68, 0x5b, 0x14, 0x48, 0xb7, 0x55,
0xd5, 0x6f, 0x70, 0x1a, 0xfe, 0x9b, 0xe2, 0xce
]
);
digest_test!(
blake2b_empty_with_key,
&[0; 0],
&[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,
0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f
],
64,
[
0x10, 0xeb, 0xb6, 0x77, 0x00, 0xb1, 0x86, 0x8e, 0xfb, 0x44, 0x17, 0x98, 0x7a, 0xcf,
0x46, 0x90, 0xae, 0x9d, 0x97, 0x2f, 0xb7, 0xa5, 0x90, 0xc2, 0xf0, 0x28, 0x71, 0x79,
0x9a, 0xaa, 0x47, 0x86, 0xb5, 0xe9, 0x96, 0xe8, 0xf0, 0xf4, 0xeb, 0x98, 0x1f, 0xc2,
0x14, 0xb0, 0x05, 0xf4, 0x2d, 0x2f, 0xf4, 0x23, 0x34, 0x99, 0x39, 0x16, 0x53, 0xdf,
0x7a, 0xef, 0xcb, 0xc1, 0x3f, 0xc5, 0x15, 0x68
]
);
digest_test!(
blake2b_key_shortin,
&[0],
&[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,
0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f
],
64,
[
0x96, 0x1f, 0x6d, 0xd1, 0xe4, 0xdd, 0x30, 0xf6, 0x39, 0x01, 0x69, 0x0c, 0x51, 0x2e,
0x78, 0xe4, 0xb4, 0x5e, 0x47, 0x42, 0xed, 0x19, 0x7c, 0x3c, 0x5e, 0x45, 0xc5, 0x49,
0xfd, 0x25, 0xf2, 0xe4, 0x18, 0x7b, 0x0b, 0xc9, 0xfe, 0x30, 0x49, 0x2b, 0x16, 0xb0,
0xd0, 0xbc, 0x4e, 0xf9, 0xb0, 0xf3, 0x4c, 0x70, 0x03, 0xfa, 0xc0, 0x9a, 0x5e, 0xf1,
0x53, 0x2e, 0x69, 0x43, 0x02, 0x34, 0xce, 0xbd
]
);
digest_test!(
blake2b_keyed_filled,
&[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,
0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f
],
&[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d,
0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f
],
64,
[
0x65, 0x67, 0x6d, 0x80, 0x06, 0x17, 0x97, 0x2f, 0xbd, 0x87, 0xe4, 0xb9, 0x51, 0x4e,
0x1c, 0x67, 0x40, 0x2b, 0x7a, 0x33, 0x10, 0x96, 0xd3, 0xbf, 0xac, 0x22, 0xf1, 0xab,
0xb9, 0x53, 0x74, 0xab, 0xc9, 0x42, 0xf1, 0x6e, 0x9a, 0xb0, 0xea, 0xd3, 0x3b, 0x87,
0xc9, 0x19, 0x68, 0xa6, 0xe5, 0x09, 0xe1, 0x19, 0xff, 0x07, 0x78, 0x7b, 0x3e, 0xf4,
0x83, 0xe1, 0xdc, 0xdc, 0xcf, 0x6e, 0x30, 0x22
]
);
}
| ||||
{
"argument_definitions": [],
"end_line": 21,
"name": "decimal_to_hexadecimal",
"signature": "pub fn decimal_to_hexadecimal(base_num: u64) -> String",
"start_line": 1
}
|
decimal_to_hexadecimal
|
pub fn decimal_to_hexadecimal(base_num: u64) -> String {
let mut num = base_num;
let mut hexadecimal_num = String::new();
loop {
let remainder = num % 16;
let hex_char = if remainder < 10 {
(remainder as u8 + b'0') as char
} else {
(remainder as u8 - 10 + b'A') as char
};
hexadecimal_num.insert(0, hex_char);
num /= 16;
if num == 0 {
break;
}
}
hexadecimal_num
}
|
Rust-master/src/conversions/decimal_to_hexadecimal.rs
|
pub fn decimal_to_hexadecimal(base_num: u64) -> String {
let mut num = base_num;
let mut hexadecimal_num = String::new();
loop {
let remainder = num % 16;
let hex_char = if remainder < 10 {
(remainder as u8 + b'0') as char
} else {
(remainder as u8 - 10 + b'A') as char
};
hexadecimal_num.insert(0, hex_char);
num /= 16;
if num == 0 {
break;
}
}
hexadecimal_num
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_zero() {
assert_eq!(decimal_to_hexadecimal(0), "0");
}
#[test]
fn test_single_digit_decimal() {
assert_eq!(decimal_to_hexadecimal(9), "9");
}
#[test]
fn test_single_digit_hexadecimal() {
assert_eq!(decimal_to_hexadecimal(12), "C");
}
#[test]
fn test_multiple_digit_hexadecimal() {
assert_eq!(decimal_to_hexadecimal(255), "FF");
}
#[test]
fn test_big() {
assert_eq!(decimal_to_hexadecimal(u64::MAX), "FFFFFFFFFFFFFFFF");
}
#[test]
fn test_random() {
assert_eq!(decimal_to_hexadecimal(123456), "1E240");
}
}
| ||||
{
"argument_definitions": [
{
"definitions": [
"pub fn area_under_curve(start: f64, end: f64, func: fn(f64) -> f64, step_count: usize) -> f64 {\n assert!(step_count > 0);\n\n let (start, end) = if start > end {\n (end, start)\n } else {\n (start, end)\n }; //swap if bounds reversed\n\n let step_length: f64 = (end - start) / step_count as f64;\n let mut area = 0f64;\n let mut fx1 = func(start);\n let mut fx2: f64;\n\n for eval_point in (1..=step_count).map(|x| (x as f64 * step_length) + start) {\n fx2 = func(eval_point);\n area += (fx2 + fx1).abs() * step_length * 0.5;\n fx1 = fx2;\n }\n\n area\n}"
],
"name": "func",
"type": "fn(f64"
}
],
"end_line": 22,
"name": "area_under_curve",
"signature": "pub fn area_under_curve(start: f64, end: f64, func: fn(f64) -> f64, step_count: usize) -> f64",
"start_line": 1
}
|
area_under_curve
|
pub fn area_under_curve(start: f64, end: f64, func: fn(f64) -> f64, step_count: usize) -> f64 {
assert!(step_count > 0);
let (start, end) = if start > end {
(end, start)
} else {
(start, end)
}; //swap if bounds reversed
let step_length: f64 = (end - start) / step_count as f64;
let mut area = 0f64;
let mut fx1 = func(start);
let mut fx2: f64;
for eval_point in (1..=step_count).map(|x| (x as f64 * step_length) + start) {
fx2 = func(eval_point);
area += (fx2 + fx1).abs() * step_length * 0.5;
fx1 = fx2;
}
area
}
|
Rust-master/src/math/area_under_curve.rs
|
pub fn area_under_curve(start: f64, end: f64, func: fn(f64) -> f64, step_count: usize) -> f64 {
assert!(step_count > 0);
let (start, end) = if start > end {
(end, start)
} else {
(start, end)
}; //swap if bounds reversed
let step_length: f64 = (end - start) / step_count as f64;
let mut area = 0f64;
let mut fx1 = func(start);
let mut fx2: f64;
for eval_point in (1..=step_count).map(|x| (x as f64 * step_length) + start) {
fx2 = func(eval_point);
area += (fx2 + fx1).abs() * step_length * 0.5;
fx1 = fx2;
}
area
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_linear_func() {
assert_eq!(area_under_curve(1f64, 2f64, |x| x, 10), 1.5000000000000002);
}
#[test]
fn test_quadratic_func() {
assert_eq!(
area_under_curve(1f64, 2f64, |x| x * x, 1000),
2.333333500000005
);
}
#[test]
fn test_zero_length() {
assert_eq!(area_under_curve(0f64, 0f64, |x| x * x, 1000), 0.0);
}
#[test]
fn test_reverse() {
assert_eq!(
area_under_curve(1f64, 2f64, |x| x, 10),
area_under_curve(2f64, 1f64, |x| x, 10)
);
}
}
| ||||
{
"argument_definitions": [],
"end_line": 65,
"name": "miller_rabin",
"signature": "pub fn miller_rabin(number: u64, bases: &[u64]) -> u64",
"start_line": 38
}
|
miller_rabin
|
pub fn miller_rabin(number: u64, bases: &[u64]) -> u64 {
// returns zero on a probable prime, and a witness if number is not prime
// A base set for deterministic performance on 64 bit numbers is:
// [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
// another one for 32 bits:
// [2, 3, 5, 7], with smallest number to fail 3'215'031'751 = 151 * 751 * 28351
// note that all bases should be prime
if number <= 4 {
match number {
0 => {
panic!("0 is invalid input for Miller-Rabin. 0 is not prime by definition, but has no witness");
}
2 | 3 => return 0,
_ => return number,
}
}
if bases.contains(&number) {
return 0;
}
let two_power: u64 = (number - 1).trailing_zeros() as u64;
let odd_power = (number - 1) >> two_power;
for base in bases {
if !check_prime_base(number, *base, two_power, odd_power) {
return *base;
}
}
0
}
|
Rust-master/src/math/miller_rabin.rs
|
use num_bigint::BigUint;
use num_traits::{One, ToPrimitive, Zero};
use std::cmp::Ordering;
fn modulo_power(mut base: u64, mut power: u64, modulo: u64) -> u64 {
base %= modulo;
if base == 0 {
return 0; // return zero if base is divisible by modulo
}
let mut ans: u128 = 1;
let mut bbase: u128 = base as u128;
while power > 0 {
if (power % 2) == 1 {
ans = (ans * bbase) % (modulo as u128);
}
bbase = (bbase * bbase) % (modulo as u128);
power /= 2;
}
ans as u64
}
fn check_prime_base(number: u64, base: u64, two_power: u64, odd_power: u64) -> bool {
// returns false if base is a witness
let mut x: u128 = modulo_power(base, odd_power, number) as u128;
let bnumber: u128 = number as u128;
if x == 1 || x == (bnumber - 1) {
return true;
}
for _ in 1..two_power {
x = (x * x) % bnumber;
if x == (bnumber - 1) {
return true;
}
}
false
}
pub fn miller_rabin(number: u64, bases: &[u64]) -> u64 {
// returns zero on a probable prime, and a witness if number is not prime
// A base set for deterministic performance on 64 bit numbers is:
// [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
// another one for 32 bits:
// [2, 3, 5, 7], with smallest number to fail 3'215'031'751 = 151 * 751 * 28351
// note that all bases should be prime
if number <= 4 {
match number {
0 => {
panic!("0 is invalid input for Miller-Rabin. 0 is not prime by definition, but has no witness");
}
2 | 3 => return 0,
_ => return number,
}
}
if bases.contains(&number) {
return 0;
}
let two_power: u64 = (number - 1).trailing_zeros() as u64;
let odd_power = (number - 1) >> two_power;
for base in bases {
if !check_prime_base(number, *base, two_power, odd_power) {
return *base;
}
}
0
}
pub fn big_miller_rabin(number_ref: &BigUint, bases: &[u64]) -> u64 {
let number = number_ref.clone();
if BigUint::from(5u32).cmp(&number) == Ordering::Greater {
if number.eq(&BigUint::zero()) {
panic!("0 is invalid input for Miller-Rabin. 0 is not prime by definition, but has no witness");
} else if number.eq(&BigUint::from(2u32)) || number.eq(&BigUint::from(3u32)) {
return 0;
} else {
return number.to_u64().unwrap();
}
}
if let Some(num) = number.to_u64() {
if bases.contains(&num) {
return 0;
}
}
let num_minus_one = &number - BigUint::one();
let two_power: u64 = num_minus_one.trailing_zeros().unwrap();
let odd_power: BigUint = &num_minus_one >> two_power;
for base in bases {
let mut x = BigUint::from(*base).modpow(&odd_power, &number);
if x.eq(&BigUint::one()) || x.eq(&num_minus_one) {
continue;
}
let mut not_a_witness = false;
for _ in 1..two_power {
x = (&x * &x) % &number;
if x.eq(&num_minus_one) {
not_a_witness = true;
break;
}
}
if not_a_witness {
continue;
}
return *base;
}
0
}
#[cfg(test)]
mod tests {
use super::*;
static DEFAULT_BASES: [u64; 12] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37];
#[test]
fn basic() {
// these bases make miller rabin deterministic for any number < 2 ^ 64
// can use smaller number of bases for deterministic performance for numbers < 2 ^ 32
assert_eq!(miller_rabin(3, &DEFAULT_BASES), 0);
assert_eq!(miller_rabin(7, &DEFAULT_BASES), 0);
assert_eq!(miller_rabin(11, &DEFAULT_BASES), 0);
assert_eq!(miller_rabin(2003, &DEFAULT_BASES), 0);
assert_ne!(miller_rabin(1, &DEFAULT_BASES), 0);
assert_ne!(miller_rabin(4, &DEFAULT_BASES), 0);
assert_ne!(miller_rabin(6, &DEFAULT_BASES), 0);
assert_ne!(miller_rabin(21, &DEFAULT_BASES), 0);
assert_ne!(miller_rabin(2004, &DEFAULT_BASES), 0);
// bigger test cases.
// primes are generated using openssl
// non primes are randomly picked and checked using openssl
// primes:
assert_eq!(miller_rabin(3629611793, &DEFAULT_BASES), 0);
assert_eq!(miller_rabin(871594686869, &DEFAULT_BASES), 0);
assert_eq!(miller_rabin(968236663804121, &DEFAULT_BASES), 0);
assert_eq!(miller_rabin(6920153791723773023, &DEFAULT_BASES), 0);
// random non primes:
assert_ne!(miller_rabin(4546167556336341257, &DEFAULT_BASES), 0);
assert_ne!(miller_rabin(4363186415423517377, &DEFAULT_BASES), 0);
assert_ne!(miller_rabin(815479701131020226, &DEFAULT_BASES), 0);
// these two are made of two 31 bit prime factors:
// 1950202127 * 2058609037 = 4014703722618821699
assert_ne!(miller_rabin(4014703722618821699, &DEFAULT_BASES), 0);
// 1679076769 * 2076341633 = 3486337000477823777
assert_ne!(miller_rabin(3486337000477823777, &DEFAULT_BASES), 0);
}
#[test]
fn big_basic() {
assert_eq!(big_miller_rabin(&BigUint::from(3u32), &DEFAULT_BASES), 0);
assert_eq!(big_miller_rabin(&BigUint::from(7u32), &DEFAULT_BASES), 0);
assert_eq!(big_miller_rabin(&BigUint::from(11u32), &DEFAULT_BASES), 0);
assert_eq!(big_miller_rabin(&BigUint::from(2003u32), &DEFAULT_BASES), 0);
assert_ne!(big_miller_rabin(&BigUint::from(1u32), &DEFAULT_BASES), 0);
assert_ne!(big_miller_rabin(&BigUint::from(4u32), &DEFAULT_BASES), 0);
assert_ne!(big_miller_rabin(&BigUint::from(6u32), &DEFAULT_BASES), 0);
assert_ne!(big_miller_rabin(&BigUint::from(21u32), &DEFAULT_BASES), 0);
assert_ne!(big_miller_rabin(&BigUint::from(2004u32), &DEFAULT_BASES), 0);
assert_eq!(
big_miller_rabin(&BigUint::from(3629611793u64), &DEFAULT_BASES),
0
);
assert_eq!(
big_miller_rabin(&BigUint::from(871594686869u64), &DEFAULT_BASES),
0
);
assert_eq!(
big_miller_rabin(&BigUint::from(968236663804121u64), &DEFAULT_BASES),
0
);
assert_eq!(
big_miller_rabin(&BigUint::from(6920153791723773023u64), &DEFAULT_BASES),
0
);
assert_ne!(
big_miller_rabin(&BigUint::from(4546167556336341257u64), &DEFAULT_BASES),
0
);
assert_ne!(
big_miller_rabin(&BigUint::from(4363186415423517377u64), &DEFAULT_BASES),
0
);
assert_ne!(
big_miller_rabin(&BigUint::from(815479701131020226u64), &DEFAULT_BASES),
0
);
assert_ne!(
big_miller_rabin(&BigUint::from(4014703722618821699u64), &DEFAULT_BASES),
0
);
assert_ne!(
big_miller_rabin(&BigUint::from(3486337000477823777u64), &DEFAULT_BASES),
0
);
}
#[test]
#[ignore]
fn big_primes() {
let p1 =
BigUint::parse_bytes(b"4764862697132131451620315518348229845593592794669", 10).unwrap();
assert_eq!(big_miller_rabin(&p1, &DEFAULT_BASES), 0);
let p2 = BigUint::parse_bytes(
b"12550757946601963214089118080443488976766669415957018428703",
10,
)
.unwrap();
assert_eq!(big_miller_rabin(&p2, &DEFAULT_BASES), 0);
// An RSA-worthy prime
let p3 = BigUint::parse_bytes(b"157d6l5zkv45ve4azfw7nyyjt6rzir2gcjoytjev5iacnkaii8hlkyk3op7bx9qfqiie23vj9iw4qbp7zupydfq9ut6mq6m36etya6cshtqi1yi9q5xyiws92el79dqt8qk7l2pqmxaa0sxhmd2vpaibo9dkfd029j1rvkwlw4724ctgaqs5jzy0bqi5pqdjc2xerhn", 36).unwrap();
assert_eq!(big_miller_rabin(&p3, &DEFAULT_BASES), 0);
let n1 = BigUint::parse_bytes(b"coy6tkiaqswmce1r03ycdif3t796wzjwneewbe3cmncaplm85jxzcpdmvy0moic3lql70a81t5qdn2apac0dndhohewkspuk1wyndxsgxs3ux4a7730unru7dfmygh", 36).unwrap();
assert_ne!(big_miller_rabin(&n1, &DEFAULT_BASES), 0);
// RSA-2048
let n2 = BigUint::parse_bytes(b"4l91lq4a2sgekpv8ukx1gxsk7mfeks46haggorlkazm0oufxwijid6q6v44u5me3kz3ne6yczp4fcvo62oej72oe7pjjtyxgid5b8xdz1e8daafspbzcy1hd8i4urjh9hm0tyylsgqsss3jn372d6fmykpw4bb9cr1ngxnncsbod3kg49o7owzqnsci5pwqt8bch0t60gq0st2gyx7ii3mzhb1pp1yvjyor35hwvok1sxj3ih46rpd27li8y5yli3mgdttcn65k3szfa6rbcnbgkojqjjq72gar6raslnh6sjd2fy7yj3bwo43obvbg3ws8y28kpol3okb5b3fld03sq1kgrj2fugiaxgplva6x5ssilqq4g0b21xy2kiou3sqsgonmqx55v", 36).unwrap();
assert_ne!(big_miller_rabin(&n2, &DEFAULT_BASES), 0);
}
}
| ||||
{
"argument_definitions": [],
"end_line": 101,
"name": "bell_number",
"signature": "pub fn bell_number(n: u32) -> BigUint",
"start_line": 69
}
|
bell_number
|
pub fn bell_number(n: u32) -> BigUint {
let needs_resize;
// Check if number is already in lookup table
{
let lookup_table = LOOKUP_TABLE_LOCK.read().unwrap();
if let Some(entry) = lookup_table.get(n as usize) {
return entry;
}
needs_resize = (n + 1) as usize > lookup_table.capacity();
}
// Resize table before recursion so that if more values need to be added during recursion the table isn't
// reallocated every single time
if needs_resize {
let mut lookup_table = LOOKUP_TABLE_LOCK.write().unwrap();
lookup_table.resize((n + 1) as usize);
}
let new_bell_number: BigUint = (0..n).map(|x| bell_number(x) * n_choose_r(n - 1, x)).sum();
// Add new number to lookup table
{
let mut lookup_table = LOOKUP_TABLE_LOCK.write().unwrap();
lookup_table.set(n as usize, new_bell_number.clone());
}
new_bell_number
}
|
Rust-master/src/math/bell_numbers.rs
|
use num_bigint::BigUint;
use num_traits::{One, Zero};
use std::sync::RwLock;
/// Returns the number of ways you can select r items given n options
fn n_choose_r(n: u32, r: u32) -> BigUint {
if r == n || r == 0 {
return One::one();
}
if r > n {
return Zero::zero();
}
// Any combination will only need to be computed once, thus giving no need to
// memoize this function
let product: BigUint = (0..r).fold(BigUint::one(), |acc, x| {
(acc * BigUint::from(n - x)) / BigUint::from(x + 1)
});
product
}
/// A memoization table for storing previous results
struct MemTable {
buffer: Vec<BigUint>,
}
impl MemTable {
const fn new() -> Self {
MemTable { buffer: Vec::new() }
}
fn get(&self, n: usize) -> Option<BigUint> {
if n == 0 || n == 1 {
Some(BigUint::one())
} else if let Some(entry) = self.buffer.get(n) {
if *entry == BigUint::zero() {
None
} else {
Some(entry.clone())
}
} else {
None
}
}
fn set(&mut self, n: usize, b: BigUint) {
self.buffer[n] = b;
}
#[inline]
fn capacity(&self) -> usize {
self.buffer.capacity()
}
#[inline]
fn resize(&mut self, new_size: usize) {
if new_size > self.buffer.len() {
self.buffer.resize(new_size, Zero::zero());
}
}
}
// Implemented with RwLock so it is accessible across threads
static LOOKUP_TABLE_LOCK: RwLock<MemTable> = RwLock::new(MemTable::new());
pub fn bell_number(n: u32) -> BigUint {
let needs_resize;
// Check if number is already in lookup table
{
let lookup_table = LOOKUP_TABLE_LOCK.read().unwrap();
if let Some(entry) = lookup_table.get(n as usize) {
return entry;
}
needs_resize = (n + 1) as usize > lookup_table.capacity();
}
// Resize table before recursion so that if more values need to be added during recursion the table isn't
// reallocated every single time
if needs_resize {
let mut lookup_table = LOOKUP_TABLE_LOCK.write().unwrap();
lookup_table.resize((n + 1) as usize);
}
let new_bell_number: BigUint = (0..n).map(|x| bell_number(x) * n_choose_r(n - 1, x)).sum();
// Add new number to lookup table
{
let mut lookup_table = LOOKUP_TABLE_LOCK.write().unwrap();
lookup_table.set(n as usize, new_bell_number.clone());
}
new_bell_number
}
#[cfg(test)]
pub mod tests {
use super::*;
use std::str::FromStr;
#[test]
fn test_choose_zero() {
for i in 1..100 {
assert_eq!(n_choose_r(i, 0), One::one());
}
}
#[test]
fn test_combination() {
let five_choose_1 = BigUint::from(5u32);
assert_eq!(n_choose_r(5, 1), five_choose_1);
assert_eq!(n_choose_r(5, 4), five_choose_1);
let ten_choose_3 = BigUint::from(120u32);
assert_eq!(n_choose_r(10, 3), ten_choose_3);
assert_eq!(n_choose_r(10, 7), ten_choose_3);
let fourty_two_choose_thirty = BigUint::from_str("11058116888").unwrap();
assert_eq!(n_choose_r(42, 30), fourty_two_choose_thirty);
assert_eq!(n_choose_r(42, 12), fourty_two_choose_thirty);
}
#[test]
fn test_bell_numbers() {
let bell_one = BigUint::from(1u32);
assert_eq!(bell_number(1), bell_one);
let bell_three = BigUint::from(5u32);
assert_eq!(bell_number(3), bell_three);
let bell_eight = BigUint::from(4140u32);
assert_eq!(bell_number(8), bell_eight);
let bell_six = BigUint::from(203u32);
assert_eq!(bell_number(6), bell_six);
let bell_twenty_six = BigUint::from_str("49631246523618756274").unwrap();
assert_eq!(bell_number(26), bell_twenty_six);
}
}
| ||||
{
"argument_definitions": [],
"end_line": 56,
"name": "least_square_approx",
"signature": "pub fn least_square_approx(\n points: &[(T, U)],\n degree: i32,\n) -> Option<Vec<f64>>",
"start_line": 12
}
|
least_square_approx
|
pub fn least_square_approx(
points: &[(T, U)],
degree: i32,
) -> Option<Vec<f64>> {
use nalgebra::{DMatrix, DVector};
/* Used for rounding floating numbers */
fn round_to_decimals(value: f64, decimals: i32) -> f64 {
let multiplier = 10f64.powi(decimals);
(value * multiplier).round() / multiplier
}
/* Casting the data parsed to this function to f64 (as some points can have decimals) */
let vals: Vec<(f64, f64)> = points
.iter()
.map(|(x, y)| ((*x).into(), (*y).into()))
.collect();
/* Because of collect we need the Copy Trait for T and U */
/* Computes the sums in the system of equations */
let mut sums = Vec::<f64>::new();
for i in 1..=(2 * degree + 1) {
sums.push(vals.iter().map(|(x, _)| x.powi(i - 1)).sum());
}
/* Compute the free terms column vector */
let mut free_col = Vec::<f64>::new();
for i in 1..=(degree + 1) {
free_col.push(vals.iter().map(|(x, y)| y * (x.powi(i - 1))).sum());
}
let b = DVector::from_row_slice(&free_col);
/* Create and fill the system's matrix */
let size = (degree + 1) as usize;
let a = DMatrix::from_fn(size, size, |i, j| sums[degree as usize + i - j]);
/* Solve the system of equations: A * x = b */
match a.qr().solve(&b) {
Some(x) => {
let rez: Vec<f64> = x.iter().map(|x| round_to_decimals(*x, 5)).collect();
Some(rez)
}
None => None, //<-- The system cannot be solved (badly conditioned system's matrix)
}
}
|
Rust-master/src/math/least_square_approx.rs
|
/// Least Square Approximation <p>
/// Function that returns a polynomial which very closely passes through the given points (in 2D)
///
/// The result is made of coeficients, in descending order (from x^degree to free term)
///
/// Parameters:
///
/// points -> coordinates of given points
///
/// degree -> degree of the polynomial
///
pub fn least_square_approx<T: Into<f64> + Copy, U: Into<f64> + Copy>(
points: &[(T, U)],
degree: i32,
) -> Option<Vec<f64>> {
use nalgebra::{DMatrix, DVector};
/* Used for rounding floating numbers */
fn round_to_decimals(value: f64, decimals: i32) -> f64 {
let multiplier = 10f64.powi(decimals);
(value * multiplier).round() / multiplier
}
/* Casting the data parsed to this function to f64 (as some points can have decimals) */
let vals: Vec<(f64, f64)> = points
.iter()
.map(|(x, y)| ((*x).into(), (*y).into()))
.collect();
/* Because of collect we need the Copy Trait for T and U */
/* Computes the sums in the system of equations */
let mut sums = Vec::<f64>::new();
for i in 1..=(2 * degree + 1) {
sums.push(vals.iter().map(|(x, _)| x.powi(i - 1)).sum());
}
/* Compute the free terms column vector */
let mut free_col = Vec::<f64>::new();
for i in 1..=(degree + 1) {
free_col.push(vals.iter().map(|(x, y)| y * (x.powi(i - 1))).sum());
}
let b = DVector::from_row_slice(&free_col);
/* Create and fill the system's matrix */
let size = (degree + 1) as usize;
let a = DMatrix::from_fn(size, size, |i, j| sums[degree as usize + i - j]);
/* Solve the system of equations: A * x = b */
match a.qr().solve(&b) {
Some(x) => {
let rez: Vec<f64> = x.iter().map(|x| round_to_decimals(*x, 5)).collect();
Some(rez)
}
None => None, //<-- The system cannot be solved (badly conditioned system's matrix)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn ten_points_1st_degree() {
let points = vec![
(5.3, 7.8),
(4.9, 8.1),
(6.1, 6.9),
(4.7, 8.3),
(6.5, 7.7),
(5.6, 7.0),
(5.8, 8.2),
(4.5, 8.0),
(6.3, 7.2),
(5.1, 8.4),
];
assert_eq!(
least_square_approx(&points, 1),
Some(vec![-0.49069, 10.44898])
);
}
#[test]
fn eight_points_5th_degree() {
let points = vec![
(4f64, 8f64),
(8f64, 2f64),
(1f64, 7f64),
(10f64, 3f64),
(11.0, 0.0),
(7.0, 3.0),
(10.0, 1.0),
(13.0, 13.0),
];
assert_eq!(
least_square_approx(&points, 5),
Some(vec![
0.00603, -0.21304, 2.79929, -16.53468, 40.29473, -19.35771
])
);
}
#[test]
fn four_points_2nd_degree() {
let points = vec![
(2.312, 8.345344),
(-2.312, 8.345344),
(-0.7051, 3.49716601),
(0.7051, 3.49716601),
];
assert_eq!(least_square_approx(&points, 2), Some(vec![1.0, 0.0, 3.0]));
}
}
| ||||
{
"argument_definitions": [],
"end_line": 84,
"name": "modular_exponential",
"signature": "pub fn modular_exponential(base: i64, mut power: i64, modulus: i64) -> i64",
"start_line": 60
}
|
modular_exponential
|
pub fn modular_exponential(base: i64, mut power: i64, modulus: i64) -> i64 {
if modulus == 1 {
return 0; // Base case: any number modulo 1 is 0
}
// Adjust if the exponent is negative by finding the modular inverse
let mut base = if power < 0 {
mod_inverse(base, modulus)
} else {
base % modulus
};
let mut result = 1; // Initialize result
power = power.abs(); // Work with the absolute value of the exponent
// Perform the exponentiation
while power > 0 {
if power & 1 == 1 {
result = (result * base) % modulus;
}
power >>= 1; // Divide the power by 2
base = (base * base) % modulus; // Square the base
}
result
}
|
Rust-master/src/math/modular_exponential.rs
|
/// Calculate the greatest common divisor (GCD) of two numbers and the
/// coefficients of BΓ©zout's identity using the Extended Euclidean Algorithm.
///
/// # Arguments
///
/// * `a` - One of the numbers to find the GCD of
/// * `m` - The other number to find the GCD of
///
/// # Returns
///
/// A tuple (gcd, x1, x2) such that:
/// gcd - the greatest common divisor of a and m.
/// x1, x2 - the coefficients such that `a * x1 + m * x2` is equivalent to `gcd` modulo `m`.
pub fn gcd_extended(a: i64, m: i64) -> (i64, i64, i64) {
if a == 0 {
(m, 0, 1)
} else {
let (gcd, x1, x2) = gcd_extended(m % a, a);
let x = x2 - (m / a) * x1;
(gcd, x, x1)
}
}
/// Find the modular multiplicative inverse of a number modulo `m`.
///
/// # Arguments
///
/// * `b` - The number to find the modular inverse of
/// * `m` - The modulus
///
/// # Returns
///
/// The modular inverse of `b` modulo `m`.
///
/// # Panics
///
/// Panics if the inverse does not exist (i.e., `b` and `m` are not coprime).
pub fn mod_inverse(b: i64, m: i64) -> i64 {
let (gcd, x, _) = gcd_extended(b, m);
if gcd != 1 {
panic!("Inverse does not exist");
} else {
// Ensure the modular inverse is positive
(x % m + m) % m
}
}
/// Perform modular exponentiation of a number raised to a power modulo `m`.
/// This function handles both positive and negative exponents.
///
/// # Arguments
///
/// * `base` - The base number to be raised to the `power`
/// * `power` - The exponent to raise the `base` to
/// * `modulus` - The modulus to perform the operation under
///
/// # Returns
///
/// The result of `base` raised to `power` modulo `modulus`.
pub fn modular_exponential(base: i64, mut power: i64, modulus: i64) -> i64 {
if modulus == 1 {
return 0; // Base case: any number modulo 1 is 0
}
// Adjust if the exponent is negative by finding the modular inverse
let mut base = if power < 0 {
mod_inverse(base, modulus)
} else {
base % modulus
};
let mut result = 1; // Initialize result
power = power.abs(); // Work with the absolute value of the exponent
// Perform the exponentiation
while power > 0 {
if power & 1 == 1 {
result = (result * base) % modulus;
}
power >>= 1; // Divide the power by 2
base = (base * base) % modulus; // Square the base
}
result
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_modular_exponential_positive() {
assert_eq!(modular_exponential(2, 3, 5), 3); // 2^3 % 5 = 8 % 5 = 3
assert_eq!(modular_exponential(7, 2, 13), 10); // 7^2 % 13 = 49 % 13 = 10
assert_eq!(modular_exponential(5, 5, 31), 25); // 5^5 % 31 = 3125 % 31 = 25
assert_eq!(modular_exponential(10, 8, 11), 1); // 10^8 % 11 = 100000000 % 11 = 1
assert_eq!(modular_exponential(123, 45, 67), 62); // 123^45 % 67
}
#[test]
fn test_modular_inverse() {
assert_eq!(mod_inverse(7, 13), 2); // Inverse of 7 mod 13 is 2
assert_eq!(mod_inverse(5, 31), 25); // Inverse of 5 mod 31 is 25
assert_eq!(mod_inverse(10, 11), 10); // Inverse of 10 mod 1 is 10
assert_eq!(mod_inverse(123, 67), 6); // Inverse of 123 mod 67 is 6
assert_eq!(mod_inverse(9, 17), 2); // Inverse of 9 mod 17 is 2
}
#[test]
fn test_modular_exponential_negative() {
assert_eq!(
modular_exponential(7, -2, 13),
mod_inverse(7, 13).pow(2) % 13
); // Inverse of 7 mod 13 is 2, 2^2 % 13 = 4 % 13 = 4
assert_eq!(
modular_exponential(5, -5, 31),
mod_inverse(5, 31).pow(5) % 31
); // Inverse of 5 mod 31 is 25, 25^5 % 31 = 25
assert_eq!(
modular_exponential(10, -8, 11),
mod_inverse(10, 11).pow(8) % 11
); // Inverse of 10 mod 11 is 10, 10^8 % 11 = 10
assert_eq!(
modular_exponential(123, -5, 67),
mod_inverse(123, 67).pow(5) % 67
); // Inverse of 123 mod 67 is calculated via the function
}
#[test]
fn test_modular_exponential_edge_cases() {
assert_eq!(modular_exponential(0, 0, 1), 0); // 0^0 % 1 should be 0 as the modulus is 1
assert_eq!(modular_exponential(0, 10, 1), 0); // 0^n % 1 should be 0 for any n
assert_eq!(modular_exponential(10, 0, 1), 0); // n^0 % 1 should be 0 for any n
assert_eq!(modular_exponential(1, 1, 1), 0); // 1^1 % 1 should be 0
assert_eq!(modular_exponential(-1, 2, 1), 0); // (-1)^2 % 1 should be 0
}
}
| ||||
{
"argument_definitions": [],
"end_line": 22,
"name": "prime_factors",
"signature": "pub fn prime_factors(n: u64) -> Vec<u64>",
"start_line": 3
}
|
prime_factors
|
pub fn prime_factors(n: u64) -> Vec<u64> {
let mut i = 2;
let mut n = n;
let mut factors = Vec::new();
while i * i <= n {
if n % i != 0 {
if i != 2 {
i += 1;
}
i += 1;
} else {
n /= i;
factors.push(i);
}
}
if n > 1 {
factors.push(n);
}
factors
}
|
Rust-master/src/math/prime_factors.rs
|
// Finds the prime factors of a number in increasing order, with repetition.
pub fn prime_factors(n: u64) -> Vec<u64> {
let mut i = 2;
let mut n = n;
let mut factors = Vec::new();
while i * i <= n {
if n % i != 0 {
if i != 2 {
i += 1;
}
i += 1;
} else {
n /= i;
factors.push(i);
}
}
if n > 1 {
factors.push(n);
}
factors
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
assert_eq!(prime_factors(0), vec![]);
assert_eq!(prime_factors(1), vec![]);
assert_eq!(prime_factors(11), vec![11]);
assert_eq!(prime_factors(25), vec![5, 5]);
assert_eq!(prime_factors(33), vec![3, 11]);
assert_eq!(prime_factors(2560), vec![2, 2, 2, 2, 2, 2, 2, 2, 2, 5]);
}
}
| ||||
{
"argument_definitions": [],
"end_line": 35,
"name": "baby_step_giant_step",
"signature": "pub fn baby_step_giant_step(a: usize, b: usize, n: usize) -> Option<usize>",
"start_line": 13
}
|
baby_step_giant_step
|
pub fn baby_step_giant_step(a: usize, b: usize, n: usize) -> Option<usize> {
if greatest_common_divisor::greatest_common_divisor_stein(a as u64, n as u64) != 1 {
return None;
}
let mut h_map = HashMap::new();
let m = (n as f64).sqrt().ceil() as usize;
// baby step
let mut step = 1;
for i in 0..m {
h_map.insert((step * b) % n, i);
step = (step * a) % n;
}
// Now step = a^m (mod n), giant step
let giant_step = step;
for i in (m..=n).step_by(m) {
if let Some(v) = h_map.get(&step) {
return Some(i - v);
}
step = (step * giant_step) % n;
}
None
}
|
Rust-master/src/math/baby_step_giant_step.rs
|
use crate::math::greatest_common_divisor;
/// Baby-step Giant-step algorithm
///
/// Solving discrete logarithm problem:
/// a^x = b (mod n) , with respect to gcd(a, n) == 1
/// with O(sqrt(n)) time complexity.
///
/// Wikipedia reference: https://en.wikipedia.org/wiki/Baby-step_giant-step
/// When a is the primitive root modulo n, the answer is unique.
/// Otherwise it will return the smallest positive solution
use std::collections::HashMap;
pub fn baby_step_giant_step(a: usize, b: usize, n: usize) -> Option<usize> {
if greatest_common_divisor::greatest_common_divisor_stein(a as u64, n as u64) != 1 {
return None;
}
let mut h_map = HashMap::new();
let m = (n as f64).sqrt().ceil() as usize;
// baby step
let mut step = 1;
for i in 0..m {
h_map.insert((step * b) % n, i);
step = (step * a) % n;
}
// Now step = a^m (mod n), giant step
let giant_step = step;
for i in (m..=n).step_by(m) {
if let Some(v) = h_map.get(&step) {
return Some(i - v);
}
step = (step * giant_step) % n;
}
None
}
#[cfg(test)]
mod tests {
use super::baby_step_giant_step;
#[test]
fn small_numbers() {
assert_eq!(baby_step_giant_step(5, 3, 11), Some(2));
assert_eq!(baby_step_giant_step(3, 83, 100), Some(9));
assert_eq!(baby_step_giant_step(9, 1, 61), Some(5));
assert_eq!(baby_step_giant_step(5, 1, 67), Some(22));
assert_eq!(baby_step_giant_step(7, 1, 45), Some(12));
}
#[test]
fn primitive_root_tests() {
assert_eq!(
baby_step_giant_step(3, 311401496, 998244353),
Some(178105253)
);
assert_eq!(
baby_step_giant_step(5, 324637211, 1000000007),
Some(976653449)
);
}
#[test]
fn random_numbers() {
assert_eq!(baby_step_giant_step(174857, 48604, 150991), Some(177));
assert_eq!(baby_step_giant_step(912103, 53821, 75401), Some(2644));
assert_eq!(baby_step_giant_step(448447, 365819, 671851), Some(23242));
assert_eq!(
baby_step_giant_step(220757103, 92430653, 434948279),
Some(862704)
);
assert_eq!(
baby_step_giant_step(176908456, 23538399, 142357679),
Some(14215560)
);
}
#[test]
fn no_solution() {
assert!(baby_step_giant_step(7, 6, 45).is_none());
assert!(baby_step_giant_step(23, 15, 85).is_none());
assert!(baby_step_giant_step(2, 1, 84).is_none());
}
}
| ||||
{
"argument_definitions": [],
"end_line": 41,
"name": "trial_division",
"signature": "pub fn trial_division(mut num: i128) -> Vec<i128>",
"start_line": 10
}
|
trial_division
|
pub fn trial_division(mut num: i128) -> Vec<i128> {
if num < 0 {
return trial_division(-num);
}
let mut result: Vec<i128> = vec![];
if num == 0 {
return result;
}
while num % 2 == 0 {
result.push(2);
num /= 2;
num = double_to_int(floor(num as f64, 0))
}
let mut f: i128 = 3;
while f.pow(2) <= num {
if num % f == 0 {
result.push(f);
num /= f;
num = double_to_int(floor(num as f64, 0))
} else {
f += 2
}
}
if num != 1 {
result.push(num)
}
result
}
|
Rust-master/src/math/trial_division.rs
|
fn floor(value: f64, scale: u8) -> f64 {
let multiplier = 10i64.pow(scale as u32) as f64;
(value * multiplier).floor()
}
fn double_to_int(amount: f64) -> i128 {
amount.round() as i128
}
pub fn trial_division(mut num: i128) -> Vec<i128> {
if num < 0 {
return trial_division(-num);
}
let mut result: Vec<i128> = vec![];
if num == 0 {
return result;
}
while num % 2 == 0 {
result.push(2);
num /= 2;
num = double_to_int(floor(num as f64, 0))
}
let mut f: i128 = 3;
while f.pow(2) <= num {
if num % f == 0 {
result.push(f);
num /= f;
num = double_to_int(floor(num as f64, 0))
} else {
f += 2
}
}
if num != 1 {
result.push(num)
}
result
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn basic() {
assert_eq!(trial_division(0), vec![]);
assert_eq!(trial_division(1), vec![]);
assert_eq!(trial_division(9), vec!(3, 3));
assert_eq!(trial_division(-9), vec!(3, 3));
assert_eq!(trial_division(10), vec!(2, 5));
assert_eq!(trial_division(11), vec!(11));
assert_eq!(trial_division(33), vec!(3, 11));
assert_eq!(trial_division(2003), vec!(2003));
assert_eq!(trial_division(100001), vec!(11, 9091));
}
}
| ||||
{
"argument_definitions": [],
"end_line": 27,
"name": "zellers_congruence_algorithm",
"signature": "pub fn zellers_congruence_algorithm(date: i32, month: i32, year: i32, as_string: bool) -> String",
"start_line": 3
}
|
zellers_congruence_algorithm
|
pub fn zellers_congruence_algorithm(date: i32, month: i32, year: i32, as_string: bool) -> String {
let q = date;
let (m, y) = if month < 3 {
(month + 12, year - 1)
} else {
(month, year)
};
let day: i32 =
(q + (26 * (m + 1) / 10) + (y % 100) + ((y % 100) / 4) + ((y / 100) / 4) + (5 * (y / 100)))
% 7;
if as_string {
number_to_day(day)
} else {
day.to_string()
}
/* Note that the day follows the following guidelines:
0 = Saturday
1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
*/
}
|
Rust-master/src/math/zellers_congruence_algorithm.rs
|
// returns the day of the week from the Gregorian Date
pub fn zellers_congruence_algorithm(date: i32, month: i32, year: i32, as_string: bool) -> String {
let q = date;
let (m, y) = if month < 3 {
(month + 12, year - 1)
} else {
(month, year)
};
let day: i32 =
(q + (26 * (m + 1) / 10) + (y % 100) + ((y % 100) / 4) + ((y / 100) / 4) + (5 * (y / 100)))
% 7;
if as_string {
number_to_day(day)
} else {
day.to_string()
}
/* Note that the day follows the following guidelines:
0 = Saturday
1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
*/
}
fn number_to_day(number: i32) -> String {
let days = [
"Saturday",
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
];
String::from(days[number as usize])
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
assert_eq!(zellers_congruence_algorithm(25, 1, 2013, false), "6");
assert_eq!(zellers_congruence_algorithm(25, 1, 2013, true), "Friday");
assert_eq!(zellers_congruence_algorithm(16, 4, 2022, false), "0");
assert_eq!(zellers_congruence_algorithm(16, 4, 2022, true), "Saturday");
assert_eq!(zellers_congruence_algorithm(14, 12, 1978, false), "5");
assert_eq!(zellers_congruence_algorithm(15, 6, 2021, false), "3");
}
}
| ||||
{
"argument_definitions": [],
"end_line": 23,
"name": "prime_numbers",
"signature": "pub fn prime_numbers(max: usize) -> Vec<usize>",
"start_line": 1
}
|
prime_numbers
|
pub fn prime_numbers(max: usize) -> Vec<usize> {
let mut result: Vec<usize> = Vec::new();
if max >= 2 {
result.push(2)
}
for i in (3..=max).step_by(2) {
let stop: usize = (i as f64).sqrt() as usize + 1;
let mut status = true;
for j in (3..stop).step_by(2) {
if i % j == 0 {
status = false;
break;
}
}
if status {
result.push(i)
}
}
result
}
|
Rust-master/src/math/prime_numbers.rs
|
pub fn prime_numbers(max: usize) -> Vec<usize> {
let mut result: Vec<usize> = Vec::new();
if max >= 2 {
result.push(2)
}
for i in (3..=max).step_by(2) {
let stop: usize = (i as f64).sqrt() as usize + 1;
let mut status = true;
for j in (3..stop).step_by(2) {
if i % j == 0 {
status = false;
break;
}
}
if status {
result.push(i)
}
}
result
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn basic() {
assert_eq!(prime_numbers(0), vec![]);
assert_eq!(prime_numbers(11), vec![2, 3, 5, 7, 11]);
assert_eq!(prime_numbers(25), vec![2, 3, 5, 7, 11, 13, 17, 19, 23]);
assert_eq!(
prime_numbers(33),
vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
);
}
}
|
End of preview. Expand
in Data Studio
π Tessera: Exposing the Challenges of LLM-based Test Generation for Low-Resource Programming Languages
Tessera is a validation benchmark designed to measure how well models can generate unit tests for Low-Resource Programming Languages (LRPLs) β specifically Rust, Go, and Julia.
π Purpose
Evaluate how well a model can generate test code, given a focal function's source code and additional context.
π Dataset Structure
Each sample contains:
- function_name: Name of the focal function.
- focal_code: Raw source code of the focal function (used for context).
- function_component: Detail information about the function like function signature,arguments definition,line range,...
- file_content: Content of file have the focal function.
- file_path: Relative path to the file in the repository.
Additional fields like
package_name,wrap_class,class_signature, orstruct_classmay depending on the programming language. If the language does not use these concepts, the values will beNoneor empty.
Dataset Size
The dataset contains ~372β412 samples per language, depending on the source repository.
Usage
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("solis-soict/Tessera")
# Load individual language splits
rust_dataset = load_dataset("solis-soict/Tessera", split="rust")
go_dataset = load_dataset("solis-soict/Tessera", split="go")
julia_dataset = load_dataset("solis-soict/Tessera", split="julia")
Additional Information
Other Resources:
- Github:
- Paper:
Licence Information
MIT License
Citation Information
- Downloads last month
- 95