|
|
--- |
|
|
license: cc-by-nc-sa-4.0 |
|
|
language: |
|
|
- en |
|
|
- zh |
|
|
size_categories: |
|
|
- n>1T |
|
|
tags: |
|
|
- robotics |
|
|
- real-world |
|
|
- dual-arm |
|
|
- whole body control |
|
|
- manipulation |
|
|
|
|
|
extra_gated_prompt: >- |
|
|
### GALAXEA COMMUNITY LICENSE AGREEMENT: All the data and code |
|
|
within this repo are under [CC BY-NC-SA |
|
|
4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). |
|
|
extra_gated_fields: |
|
|
First Name: text |
|
|
Last Name: text |
|
|
Email: text |
|
|
Country: country |
|
|
Affiliation: text |
|
|
Phone: text |
|
|
Job title: |
|
|
type: select |
|
|
options: |
|
|
- Student |
|
|
- Research Graduate |
|
|
- AI researcher |
|
|
- AI developer/engineer |
|
|
- Reporter |
|
|
- Other |
|
|
geo: ip_location |
|
|
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Galaxea Privacy Policy: checkbox |
|
|
extra_gated_description: >- |
|
|
The information you provide will be collected, stored, processed and shared in |
|
|
accordance with the Galaxea Privacy Policy. |
|
|
extra_gated_button_content: Submit |
|
|
--- |
|
|
|
|
|
# π Galaxea Open-World Dataset |
|
|
[](https://opengalaxea.github.io/G0/) |
|
|
[](https://arxiv.org/abs/2509.00576) |
|
|
[](https://opengalaxea.github.io/G0/) |
|
|
[](https://opengalaxea.github.io/G0/visualizer/index.html) |
|
|
[](https://www.modelscope.cn/organization/Galaxea) |
|
|
[](https://x.com/Galaxea_x) |
|
|
[](https://www.linkedin.com/company/galaxeadynamics/posts/?feedView=all&viewAsMember=true) |
|
|
[](https://discord.gg/hB6BuUWZZA) |
|
|
|
|
|
## Key features |
|
|
- **500+ hours** of real-world mobile manipulation data. |
|
|
- All data collected using **one uniform robotic embodiment** for consistency. |
|
|
- Fine-grained **subtask language annotations**. |
|
|
- Covers **residential**, **kitchen**, **retail**, and **office** settings. |
|
|
- Dataset in **RLDS** and **LeRobot** format. |
|
|
|
|
|
## Dataset Structure |
|
|
**For convenience, we divided the 500 hours of data into four equal parts by time. We also provide a small sample dataset for quick start.** |
|
|
``` |
|
|
rlds |
|
|
βββ part1_r1_lite |
|
|
β βββ 1.0.0 |
|
|
β β βββ dataset_info.json |
|
|
β β βββ features.json |
|
|
β β βββ merge_dataset_large_r1_lite-train.tfrecord-00000-of-02048 |
|
|
β β βββ ... |
|
|
β β βββ merge_dataset_large_r1_lite-train.tfrecord-02047-of-02048 |
|
|
βββ part2_r1_lite |
|
|
βββ part3_r1_lite |
|
|
βββ part4_r1_lite |
|
|
βββ sample |
|
|
β βββ 1.0.0 |
|
|
β β βββ merge_dataset_large_r1_lite-train.tfrecord-00000-of-01024 |
|
|
β β βββ ... |
|
|
β β βββ merge_dataset_large_r1_lite-train.tfrecord-01023-of-01024 |
|
|
``` |
|
|
|
|
|
## RLDS Dataset Schema |
|
|
|
|
|
``` |
|
|
OpenGalaxeaDataset = { |
|
|
"episode_metadata": { |
|
|
"file_path": tf.Text, # path to the original data file |
|
|
}, |
|
|
"steps": { |
|
|
"is_first": tf.Scalar(dtype=bool), # true on first step of the episode |
|
|
"is_last": tf.Scalar(dtype=bool), # true on last step of the episode |
|
|
|
|
|
"language_instruction": tf.Text, # language instruction, format: "high level"@"low level chinese"@"low level english" |
|
|
"observation": { |
|
|
"base_velocity": tf.Tensor(3, dtype=float32), # robot base velocity |
|
|
"gripper_state_left": tf.Tensor(1, dtype=float32), # left gripper state, 0-close and 100-open |
|
|
"gripper_state_right": tf.Tensor(1, dtype=float32), # right gripper state, 0-close and 100-open |
|
|
"depth_camera_wrist_left": tf.Tensor(224, 224, 1, dtype=uint16), # wrist camera depth left viewpoint, unit: mm |
|
|
"depth_camera_wrist_right": tf.Tensor(224, 224, 1, dtype=uint16), # wrist camera depth right viewpoint, unit: mm |
|
|
"image_camera_head": tf.Tensor(224, 224, 3, dtype=uint8), # head camera RGB viewpoint |
|
|
"image_camera_wrist_left": tf.Tensor(224, 224, 3, dtype=uint8), # wrist camera RGB left viewpoint |
|
|
"image_camera_wrist_right": tf.Tensor(224, 224, 3, dtype=uint8), # wrist camera RGB right viewpoint |
|
|
"joint_position_arm_left": tf.Tensor(6, dtype=float32), # joint positions of the left arm |
|
|
"joint_position_arm_right": tf.Tensor(6, dtype=float32), # joint positions of the right arm |
|
|
"joint_position_torso": tf.Tensor(4, dtype=float32), # joint positions of the torso |
|
|
"joint_velocity_arm_left": tf.Tensor(6, dtype=float32), # joint velocities of the left arm |
|
|
"joint_velocity_arm_right": tf.Tensor(6, dtype=float32), # joint velocities of the right arm |
|
|
"last_action": tf.Tensor(26, dtype=float32), # history of the last action |
|
|
}, |
|
|
# action dimensions: |
|
|
# 26 = 6 (left arm) + 1 (left gripper) + 6 (right arm) + 1 (right gripper) + 6 (torso) + 6 (base) |
|
|
"action": tf.Tensor(26, dtype=float32), |
|
|
"segment_idx": tf.Scalar(dtype=int32), # index of the segment in the episode |
|
|
"variant_idx": tf.Scalar(dtype=int32), |
|
|
}, |
|
|
} |
|
|
``` |
|
|
#### Lerobot Dataset Schema |
|
|
A detailed lerobot format Galaxea Open-World Dataset schema can be seen at [lerobot_info.json](https://huggingface.co/datasets/OpenGalaxea/Galaxea-Open-World-Dataset/blob/main/lerobot_info.json). |
|
|
|
|
|
## RLDS Example |
|
|
|
|
|
We provide an example script to load our RLDS dataset and transform some episodes into mp4 video format (head camera). |
|
|
|
|
|
```python |
|
|
import tensorflow_datasets as tfds |
|
|
import tyro |
|
|
import os |
|
|
import imageio |
|
|
from tqdm import tqdm |
|
|
|
|
|
def main( |
|
|
dataset_name: str, |
|
|
data_dir: str, |
|
|
output_dir: str = "extracted_videos", |
|
|
num_trajs: int = 10 |
|
|
): |
|
|
ds = tfds.load(dataset_name, split='train', data_dir=data_dir) |
|
|
print(f"Successfully loaded dataset: {dataset_name}") |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
print(f"Videos will be saved to: {output_dir}") |
|
|
|
|
|
for i, episode in enumerate(tqdm(ds.take(num_trajs), total=num_trajs, desc="Exporting videos")): |
|
|
head_frames = [] |
|
|
|
|
|
for step in episode['steps']: |
|
|
head_rgb_image = step['observation']['image_camera_head'].numpy() |
|
|
head_frames.append(head_rgb_image) |
|
|
instruction = step['language_instruction'].numpy().decode('utf-8') |
|
|
|
|
|
video_path = os.path.join(output_dir, f"traj_{i}_head_rgb.mp4") |
|
|
try: |
|
|
imageio.mimsave(video_path, head_frames, fps=15) |
|
|
print(f"Saved video for episode {i} to {video_path} with instruction: '{instruction}'") |
|
|
except Exception as e: |
|
|
print(f"Error saving video for episode {i}: {e}") |
|
|
|
|
|
if __name__ == '__main__': |
|
|
tyro.cli(main) |
|
|
``` |
|
|
## π Citation |
|
|
|
|
|
All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). If you use our dataset or models, please cite: |
|
|
|
|
|
```bibtex |
|
|
@article{galaxea2025, |
|
|
title={Galaxea G0: Open-World Dataset and Dual-System VLA Model}, |
|
|
author={Galaxea Team}, |
|
|
journal={arXiv preprint arXiv:2509.00576}, |
|
|
year={2025} |
|
|
} |
|
|
|