lllliuxiao23's picture
Update README.md
0147d38 verified
---
license: cc-by-nc-sa-4.0
language:
- en
- zh
size_categories:
- n>1T
tags:
- robotics
- real-world
- dual-arm
- whole body control
- manipulation
extra_gated_prompt: >-
### GALAXEA COMMUNITY LICENSE AGREEMENT: All the data and code
within this repo are under [CC BY-NC-SA
4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/).
extra_gated_fields:
First Name: text
Last Name: text
Email: text
Country: country
Affiliation: text
Phone: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Reporter
- Other
geo: ip_location
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Galaxea Privacy Policy: checkbox
extra_gated_description: >-
The information you provide will be collected, stored, processed and shared in
accordance with the Galaxea Privacy Policy.
extra_gated_button_content: Submit
---
# πŸš€ Galaxea Open-World Dataset
[![Project Page](https://img.shields.io/badge/Project%20Page-000000?style=for-the-badge&logo=github)](https://opengalaxea.github.io/G0/)
[![Paper](https://img.shields.io/badge/Paper-8A2BE2?style=for-the-badge&logo=arxiv)](https://arxiv.org/abs/2509.00576)
[![Videos](https://img.shields.io/badge/Videos-FF0000?style=for-the-badge&logo=youtube)](https://opengalaxea.github.io/G0/)
[![Visualizer](https://img.shields.io/badge/Visualizer-FF8C00?style=for-the-badge&logo=airplayvideo)](https://opengalaxea.github.io/G0/visualizer/index.html)
[![Modelscope](https://img.shields.io/badge/Modelscope-1890FF?style=for-the-badge&logo=alibabacloud)](https://www.modelscope.cn/organization/Galaxea)
[![Twitter](https://img.shields.io/badge/Twitter-FF6B35?style=for-the-badge&logo=x)](https://x.com/Galaxea_x)
[![Linkedin](https://img.shields.io/badge/Linkedin-5865F2?style=for-the-badge&logo=linkedin)](https://www.linkedin.com/company/galaxeadynamics/posts/?feedView=all&viewAsMember=true)
[![Discord](https://img.shields.io/badge/Discord-1890FF?style=for-the-badge&logo=discord)](https://discord.gg/hB6BuUWZZA)
## Key features
- **500+ hours** of real-world mobile manipulation data.
- All data collected using **one uniform robotic embodiment** for consistency.
- Fine-grained **subtask language annotations**.
- Covers **residential**, **kitchen**, **retail**, and **office** settings.
- Dataset in **RLDS** and **LeRobot** format.
## Dataset Structure
**For convenience, we divided the 500 hours of data into four equal parts by time. We also provide a small sample dataset for quick start.**
```
rlds
β”œβ”€β”€ part1_r1_lite
β”‚ β”œβ”€β”€ 1.0.0
β”‚ β”‚ β”œβ”€β”€ dataset_info.json
β”‚ β”‚ β”œβ”€β”€ features.json
β”‚ β”‚ β”œβ”€β”€ merge_dataset_large_r1_lite-train.tfrecord-00000-of-02048
β”‚ β”‚ β”œβ”€β”€ ...
β”‚ β”‚ β”œβ”€β”€ merge_dataset_large_r1_lite-train.tfrecord-02047-of-02048
β”œβ”€β”€ part2_r1_lite
β”œβ”€β”€ part3_r1_lite
β”œβ”€β”€ part4_r1_lite
β”œβ”€β”€ sample
β”‚ β”œβ”€β”€ 1.0.0
β”‚ β”‚ β”œβ”€β”€ merge_dataset_large_r1_lite-train.tfrecord-00000-of-01024
β”‚ β”‚ β”œβ”€β”€ ...
β”‚ β”‚ β”œβ”€β”€ merge_dataset_large_r1_lite-train.tfrecord-01023-of-01024
```
## RLDS Dataset Schema
```
OpenGalaxeaDataset = {
"episode_metadata": {
"file_path": tf.Text, # path to the original data file
},
"steps": {
"is_first": tf.Scalar(dtype=bool), # true on first step of the episode
"is_last": tf.Scalar(dtype=bool), # true on last step of the episode
"language_instruction": tf.Text, # language instruction, format: "high level"@"low level chinese"@"low level english"
"observation": {
"base_velocity": tf.Tensor(3, dtype=float32), # robot base velocity
"gripper_state_left": tf.Tensor(1, dtype=float32), # left gripper state, 0-close and 100-open
"gripper_state_right": tf.Tensor(1, dtype=float32), # right gripper state, 0-close and 100-open
"depth_camera_wrist_left": tf.Tensor(224, 224, 1, dtype=uint16), # wrist camera depth left viewpoint, unit: mm
"depth_camera_wrist_right": tf.Tensor(224, 224, 1, dtype=uint16), # wrist camera depth right viewpoint, unit: mm
"image_camera_head": tf.Tensor(224, 224, 3, dtype=uint8), # head camera RGB viewpoint
"image_camera_wrist_left": tf.Tensor(224, 224, 3, dtype=uint8), # wrist camera RGB left viewpoint
"image_camera_wrist_right": tf.Tensor(224, 224, 3, dtype=uint8), # wrist camera RGB right viewpoint
"joint_position_arm_left": tf.Tensor(6, dtype=float32), # joint positions of the left arm
"joint_position_arm_right": tf.Tensor(6, dtype=float32), # joint positions of the right arm
"joint_position_torso": tf.Tensor(4, dtype=float32), # joint positions of the torso
"joint_velocity_arm_left": tf.Tensor(6, dtype=float32), # joint velocities of the left arm
"joint_velocity_arm_right": tf.Tensor(6, dtype=float32), # joint velocities of the right arm
"last_action": tf.Tensor(26, dtype=float32), # history of the last action
},
# action dimensions:
# 26 = 6 (left arm) + 1 (left gripper) + 6 (right arm) + 1 (right gripper) + 6 (torso) + 6 (base)
"action": tf.Tensor(26, dtype=float32),
"segment_idx": tf.Scalar(dtype=int32), # index of the segment in the episode
"variant_idx": tf.Scalar(dtype=int32),
},
}
```
#### Lerobot Dataset Schema
A detailed lerobot format Galaxea Open-World Dataset schema can be seen at [lerobot_info.json](https://huggingface.co/datasets/OpenGalaxea/Galaxea-Open-World-Dataset/blob/main/lerobot_info.json).
## RLDS Example
We provide an example script to load our RLDS dataset and transform some episodes into mp4 video format (head camera).
```python
import tensorflow_datasets as tfds
import tyro
import os
import imageio
from tqdm import tqdm
def main(
dataset_name: str,
data_dir: str,
output_dir: str = "extracted_videos",
num_trajs: int = 10
):
ds = tfds.load(dataset_name, split='train', data_dir=data_dir)
print(f"Successfully loaded dataset: {dataset_name}")
os.makedirs(output_dir, exist_ok=True)
print(f"Videos will be saved to: {output_dir}")
for i, episode in enumerate(tqdm(ds.take(num_trajs), total=num_trajs, desc="Exporting videos")):
head_frames = []
for step in episode['steps']:
head_rgb_image = step['observation']['image_camera_head'].numpy()
head_frames.append(head_rgb_image)
instruction = step['language_instruction'].numpy().decode('utf-8')
video_path = os.path.join(output_dir, f"traj_{i}_head_rgb.mp4")
try:
imageio.mimsave(video_path, head_frames, fps=15)
print(f"Saved video for episode {i} to {video_path} with instruction: '{instruction}'")
except Exception as e:
print(f"Error saving video for episode {i}: {e}")
if __name__ == '__main__':
tyro.cli(main)
```
## πŸ“œ Citation
All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). If you use our dataset or models, please cite:
```bibtex
@article{galaxea2025,
title={Galaxea G0: Open-World Dataset and Dual-System VLA Model},
author={Galaxea Team},
journal={arXiv preprint arXiv:2509.00576},
year={2025}
}