multi_omics_transcript_expression / multi_omics_transcript_expression.py
bernardo-de-almeida's picture
Update multi_omics_transcript_expression.py (#6)
330ab17 verified
import gzip
import logging
import os
import re
import shutil
import ssl
import urllib
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List
import datasets
import pandas as pd
from datasets import DatasetInfo
from pyfaidx import Fasta
from tqdm import tqdm
ssl._create_default_https_context = ssl._create_unverified_context
"""
--------------------------------------------------------------------------------------------
Reference Genome URLS:
-------------------------------------------------------------------------------------------
"""
H38_REFERENCE_GENOME_URL = (
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
)
"""
--------------------------------------------------------------------------------------------
Task Specific Handlers:
-------------------------------------------------------------------------------------------
"""
logger = logging.getLogger("multi_omics_transcript_expression")
logger.setLevel("INFO")
LABELS_V1 = [
"Adipose Tissue",
"Adrenal Gland",
"Bladder",
"Blood",
"Blood Vessel",
"Brain",
"Breast",
"Cervix Uteri",
"Colon",
"Esophagus",
"Fallopian Tube",
"Heart",
"Kidney",
"Liver",
"Lung",
"Muscle",
"Nerve",
"Ovary",
"Pancreas",
"Pituitary",
"Prostate",
"Salivary Gland",
"Skin",
"Small Intestine",
"Spleen",
"Stomach",
"Testis",
"Thyroid",
"Uterus",
"Vagina",
]
LABELS_V2 = [
"Adipose_Subcutaneous",
"Adipose_Visceral (Omentum)",
"Adrenal Gland",
"Artery_Aorta",
"Artery_Coronary",
"Artery_Tibial",
"Bladder",
"Brain_Amygdala",
"Brain_Anterior cingulate cortex (BA24)",
"Brain_Caudate (basal ganglia)",
"Brain_Cerebellar Hemisphere",
"Brain_Cerebellum",
"Brain_Cortex",
"Brain_Frontal Cortex (BA9)",
"Brain_Hippocampus",
"Brain_Hypothalamus",
"Brain_Nucleus accumbens (basal ganglia)",
"Brain_Putamen (basal ganglia)",
"Brain_Spinal cord (cervical c-1)",
"Brain_Substantia nigra",
"Breast_Mammary Tissue",
"Cells_Cultured fibroblasts",
"Cells_EBV-transformed lymphocytes",
"Cervix_Ectocervix",
"Cervix_Endocervix",
"Colon_Sigmoid",
"Colon_Transverse",
"Esophagus_Gastroesophageal Junction",
"Esophagus_Mucosa",
"Esophagus_Muscularis",
"Fallopian Tube",
"Heart_Atrial Appendage",
"Heart_Left Ventricle",
"Kidney_Cortex",
"Kidney_Medulla",
"Liver",
"Lung",
"Minor Salivary Gland",
"Muscle_Skeletal",
"Nerve_Tibial",
"Ovary",
"Pancreas",
"Pituitary",
"Prostate",
"Skin_Not Sun Exposed (Suprapubic)",
"Skin_Sun Exposed (Lower leg)",
"Small Intestine_Terminal Ileum",
"Spleen",
"Stomach",
"Testis",
"Thyroid",
"Uterus",
"Vagina",
"Whole Blood",
]
# Add after LABELS_V2 definition
LABELS_LIGHT = [
"Adipose Tissue",
"Brain",
"Heart",
"Liver",
"Lung",
"Muscle",
"Pancreas",
"Skin",
]
class GenomicLRATaskHandler(ABC):
"""
Abstract method for the Genomic LRA task handlers. Each handler
"""
@abstractmethod
def __init__(self, **kwargs):
pass
@abstractmethod
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the task
"""
pass
def split_generators(
self, dl_manager, cache_dir_root
) -> List[datasets.SplitGenerator]:
"""
Downloads required files using dl_manager and separates them by split.
"""
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"handler": self, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"handler": self, "split": "test"},
),
]
@abstractmethod
def generate_examples(self, split):
"""
A generator that yields examples for the specified split.
"""
pass
@staticmethod
def hook(t):
last_b = [0]
def inner(b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks just transferred [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
t.total = tsize
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return inner
def download_and_extract_gz(self, file_url, cache_dir_root):
"""
Downloads and extracts a gz file into the given cache directory. Returns the full file path
of the extracted gz file.
Args:
file_url: url of the gz file to be downloaded and extracted.
cache_dir_root: Directory to extract file into.
"""
file_fname = Path(file_url).stem
file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname)
if not os.path.exists(file_complete_path):
if not os.path.exists(file_complete_path + ".gz"):
os.makedirs(os.path.dirname(file_complete_path), exist_ok=True)
with tqdm(
unit="B",
unit_scale=True,
unit_divisor=1024,
miniters=1,
desc=file_url.split("/")[-1],
) as t:
urllib.request.urlretrieve(
file_url, file_complete_path + ".gz", reporthook=self.hook(t)
)
with gzip.open(file_complete_path + ".gz", "rb") as file_in:
with open(file_complete_path, "wb") as file_out:
shutil.copyfileobj(file_in, file_out)
return file_complete_path
class TranscriptExpressionHandler(GenomicLRATaskHandler):
"""
Handler for the Transcript Expression task.
"""
DEFAULT_LENGTH = 200_000
DEFAULT_FILTER_OUT_LENGTH = 196_608
def __init__(
self,
sequence_length: int = DEFAULT_LENGTH,
filter_out_sequence_length: int = DEFAULT_FILTER_OUT_LENGTH,
expression_method: str = "read_counts_old",
light_version: bool = False,
**kwargs,
):
"""
Creates a new handler for the Transcript Expression Prediction Task.
Args:
sequence_length: Length of the sequence around the TSS_CAGE start site
light_version: If True, uses a smaller subset of tissues and fewer samples
"""
self.reference_genome = None
self.coordinate_csv_file = None
self.labels_csv_file = None
self.light_version = light_version
self.sequence_length = sequence_length
self.filter_out_sequence_length = filter_out_sequence_length
if self.filter_out_sequence_length is not None:
assert isinstance(self.filter_out_sequence_length, int)
assert (
self.sequence_length <= self.filter_out_sequence_length
), f"{self.sequence_length=} > {self.filter_out_sequence_length=}"
assert isinstance(self.sequence_length, int)
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfor for the Transcript Expression dataset. Each example
includes a genomic sequence and a list of label values.
"""
features = datasets.Features(
{
# DNA sequence
"DNA": datasets.Value("string"),
# list of expression values in each tissue
"labels": datasets.Sequence(datasets.Value("float32")),
"m_t": datasets.Sequence(datasets.Value("float32")),
"sigma_t": datasets.Sequence(datasets.Value("float32")),
"m_g": datasets.Sequence(datasets.Value("float32")),
"sigma_g": datasets.Sequence(datasets.Value("float32")),
"labels_name": datasets.Sequence(datasets.Value("string")),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
"RNA": datasets.Value("string"),
"five_prime_utr": datasets.Value("string"),
"coding_sequence": datasets.Value("string"),
"three_prime_utr": datasets.Value("string"),
"Protein": datasets.Value("string"),
"transcript_id": datasets.Value("string"),
"gene_id": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The Transcript Expression dataset requires the reference hg19 genome, coordinate
csv file,and label csv file to be saved.
"""
# Manually download the reference genome since there are difficulties when streaming
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.df_csv_file = dl_manager.download_and_extract(
"transcript_expression/GTEx_final.csv"
)
self.normalization_values_csv_file = dl_manager.download_and_extract(
"transcript_expression/normalization_values.csv"
)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding labels. The sequences are padded to the correct sequence
length and standardized before returning.
"""
df = pd.read_csv(self.df_csv_file)
df = df.loc[df["chr"] != "chrMT"]
# Use light version labels if specified
labels_name = LABELS_LIGHT if self.light_version else LABELS_V1
split_df = df.loc[df["split"] == split]
# For light version, take only a subset of the data
if self.light_version:
split_df = split_df.sample(n=min(1000, len(split_df)), random_state=42)
norm_values_df = pd.read_csv(self.normalization_values_csv_file)
# Select appropriate columns based on version
label_columns = [f"m_t_{tissue}" for tissue in labels_name]
m_t = norm_values_df[label_columns].to_numpy().reshape(-1)
label_columns = [f"sigma_t_{tissue}" for tissue in labels_name]
sigma_t = norm_values_df[label_columns].to_numpy().reshape(-1)
label_columns = [f"m_g_{tissue}" for tissue in labels_name]
m_g = norm_values_df[label_columns].to_numpy().reshape(-1)
label_columns = [f"sigma_g_{tissue}" for tissue in labels_name]
sigma_g = norm_values_df[label_columns].to_numpy().reshape(-1)
key = 0
for idx, coordinates_row in split_df.iterrows():
negative_strand = coordinates_row["strand"] == "-"
if negative_strand:
start = coordinates_row["end"] - 1
else:
start = coordinates_row["start"] - 1 # -1 since vcf coords are 1-based
chromosome = coordinates_row["chr"]
labels_row = coordinates_row[labels_name]
padded_sequence = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
negative_strand=negative_strand,
filter_out_sequence_length=self.filter_out_sequence_length,
)
if padded_sequence:
yield key, {
"transcript_id": coordinates_row["transcript_id_gtex"],
"gene_id": coordinates_row["gene_id_gtex"],
"labels_name": labels_name,
"labels": labels_row.to_numpy(),
"m_t": m_t,
"sigma_t": sigma_t,
"m_g": m_g,
"sigma_g": sigma_g,
"DNA": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"RNA": coordinates_row["RNA"],
"five_prime_utr": coordinates_row["5UTR"],
"coding_sequence": coordinates_row["CDS"],
"three_prime_utr": coordinates_row["3UTR"],
"Protein": coordinates_row["Protein"],
}
key += 1
logger.info(f"filtering out {len(split_df)-key} " f"elements from the dataset")
"""
--------------------------------------------------------------------------------------------
Dataset loader:
-------------------------------------------------------------------------------------------
"""
_DESCRIPTION = """
Dataset for benchmark of genomic deep learning models.
"""
# define dataset configs
class GenomicsLRAConfig(datasets.BuilderConfig):
"""
BuilderConfig.
"""
def __init__(self, *args, **kwargs): # type: ignore
"""BuilderConfig for the location tasks dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__()
self.handler = TranscriptExpressionHandler(**kwargs)
# DatasetBuilder
class GenomicsLRATasks(datasets.GeneratorBasedBuilder):
"""
Tasks to annotate human genome.
"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = GenomicsLRAConfig
def _info(self) -> DatasetInfo:
return self.config.handler.get_info(description=_DESCRIPTION)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""
Downloads data files and organizes it into train/test/val splits
"""
return self.config.handler.split_generators(dl_manager, self._cache_dir_root)
def _generate_examples(self, handler, split):
"""
Read data files and create examples(yield)
Args:
handler: The handler for the current task
split: A string in ['train', 'test', 'valid']
"""
yield from handler.generate_examples(split)
"""
--------------------------------------------------------------------------------------------
Global Utils:
-------------------------------------------------------------------------------------------
"""
def standardize_sequence(sequence: str):
"""
Standardizes the sequence by replacing all unknown characters with N and
converting to all uppercase.
Args:
sequence: genomic sequence to standardize
"""
pattern = "[^ATCG]"
# all characters to upper case
sequence = sequence.upper()
# replace all characters that are not A,T,C,G with N
sequence = re.sub(pattern, "N", sequence)
return sequence
def pad_sequence(
chromosome,
start,
sequence_length,
negative_strand=False,
filter_out_sequence_length=None,
):
"""
Extends a given sequence to length sequence_length. If
padding to the given length is outside the gene, returns
None.
Args:
chromosome: Chromosome from pyfaidx extracted Fasta.
start: Start index of original sequence.
sequence_length: Desired sequence length. If sequence length is odd, the
remainder is added to the end of the sequence.
end: End index of original sequence. If no end is specified, it creates a
centered sequence around the start index.
negative_strand: If negative_strand, returns the reverse compliment of the sequence
"""
pad = sequence_length // 2
end = start + pad + (sequence_length % 2)
start = start - pad
if filter_out_sequence_length is not None:
filter_out_pad = filter_out_sequence_length // 2
filter_out_end = start + filter_out_pad + (filter_out_sequence_length % 2)
filter_out_start = start - filter_out_pad
if filter_out_start < 0 or filter_out_end >= len(chromosome):
return
if start < 0 or end >= len(chromosome):
return
if negative_strand:
return chromosome[start:end].reverse.complement.seq
return chromosome[start:end].seq