Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'Unnamed: 0.1'})

This happened while the csv dataset builder was generating data using

hf://datasets/ITMO-NSS/MADD_Benchmark_and_results/Datasets_for_generative_models_train/data_Drug_resist.csv (at revision 5383d8ed58ea482b77cd3ecb03a3044246c27dc2)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              Unnamed: 0.1: int64
              canonical_smiles: string
              QED: double
              Synthetic Accessibility: double
              PAINS: int64
              SureChEMBL: int64
              Glaxo: int64
              Brenk: int64
              IC50: int64
              docking_score: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1557
              to
              {'Unnamed: 0': Value('int64'), 'docking_score': Value('float64'), 'canonical_smiles': Value('string'), 'QED': Value('float64'), 'Synthetic Accessibility': Value('float64'), 'PAINS': Value('int64'), 'SureChEMBL': Value('int64'), 'Glaxo': Value('int64'), 'Brenk': Value('int64'), 'IC50': Value('int64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'Unnamed: 0.1'})
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/ITMO-NSS/MADD_Benchmark_and_results/Datasets_for_generative_models_train/data_Drug_resist.csv (at revision 5383d8ed58ea482b77cd3ecb03a3044246c27dc2)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
docking_score
float64
canonical_smiles
string
QED
float64
Synthetic Accessibility
float64
PAINS
int64
SureChEMBL
int64
Glaxo
int64
Brenk
int64
IC50
int64
0
-8.3
Fc1cc(F)c2ccc(Oc3cncc4nnc(-c5ccc(OC(F)F)cc5)n34)cc2c1
0.332331
2.838249
0
0
0
0
0
1
-4.5
CN1/C(=C\C=N\NC(=O)c2ccccc2Br)C(C)(C)c2ccccc21
0.612385
2.464846
0
0
1
1
0
2
21.5
O=C(c1ccc2cc(-c3cccc(OCc4ccccc4)c3)ccc2c1)N1CCCC(CO)C1
0.395257
2.541906
0
0
0
0
0
3
-6.1
Sc1nnc(-c2cccnc2)n1/N=C/c1cccs1
0.594794
2.70783
0
0
1
1
0
4
-4.7
Cc1c(Br)c(C(N)=O)nn1C
0.749235
2.560828
0
0
0
0
0
5
-5.7
O=C(N/N=C/c1ccoc1)c1ccccc1O
0.622669
2.25096
0
0
1
1
0
6
-6
CCCCNS(=O)(=O)c1cccc(NC(=O)[C@@H]2O[C@H](CO)[C@@H](O)[C@H]2O)c1
0.366039
3.331851
0
0
0
1
1
7
-7
CCN1CCN(C)C/C1=N\c1ccc([N+](=O)[O-])cc1C(=O)Nc1ccccc1
0.634569
2.614031
0
0
0
1
1
8
-6.7
CCNC(=O)C1(C)CCCN(C(=O)c2ccc(OC)c(F)c2)C1
0.924487
2.69066
0
0
0
0
0
9
-6.5
Cc1cc(OC(=O)c2cccc(Cl)c2)c([N+](=O)[O-])c(O)n1
0.531049
2.418675
0
0
0
1
0
10
3.1
COCCNC(=O)c1cc2c(c(-c3cccc(C#CCN(C)C)c3)n1)[C@@H](CCO)N([S+]([O-])C(C)(C)C)C2
0.294384
4.322519
0
1
1
1
0
11
-5.3
Cc1cc(C)c(COc2ccc(/C=N/n3c(C)nnc3S)cc2)c(C)c1
0.542099
2.548605
0
0
1
1
0
12
-7.7
O=C(CCNC(=O)c1ccc(Cl)cc1)N[C@@H]1CCCc2ccccc21
0.858611
2.303891
0
0
0
0
0
13
-6.8
CC(=O)/C(=N\Nc1ccccc1)Oc1ccc(Br)cc1
0.525357
2.290745
0
0
0
1
0
14
-5.8
COc1ccc2cc(Br)c(=O)oc2c1
0.734908
2.09481
0
0
0
1
0
15
-4.2
C=CC(=O)NCOCCCC
0.35551
2.567159
0
1
0
1
1
16
-5.6
COCc1n[nH]c(O)c1/C=N/N1CCOCC1
0.719638
3.279529
0
0
0
1
0
17
-3.2
CC(C)OCCO
0.561387
2.15407
0
0
0
0
1
18
-4.3
CC(C)=CC(C)(C)C
0.422475
2.801898
0
0
0
1
1
19
-2.4
COc1cc(C(=O)OCCN2CCN(CCOC(=O)c3cc(OC)c(OC)c(OC)c3)CC2)cc(OC)c1OC
0.314997
2.349014
0
0
0
0
1
20
17.3
CNC(=O)C[C@H]1CC[C@@H]2[C@H](COc3ccc(NC(=O)Nc4ccc(C)cc4)cc3C(=O)N2C)O1
0.64147
3.456144
0
0
0
0
0
21
-2.7
COc1cc(/C=N/NC(=O)Cn2ccc(C(F)(F)F)n2)cc(OC)c1OC
0.581634
2.443773
0
0
1
1
0
22
-5.6
O=C(O)c1cccc(Cn2c(Cl)c(/C=N/NC(=O)c3ccccc3)sc2=O)c1
0.476857
2.336283
0
0
1
1
1
23
-6.9
CCO/C(O)=C\C1=Nc2cc(C)c(C)cc2NC(=O)C1
0.831632
3.139555
0
0
0
1
0
24
-4.6
CCCNC(=O)C[C@@H]1CC[C@@H]2[C@H](COC[C@H](O)CN2C(=O)c2cc(Cl)cc(Cl)c2)O1
0.70724
3.767329
0
0
0
0
0
25
-6.3
C/C(=N/NC(=O)c1ccccn1)c1ccco1
0.6445
2.182052
0
1
1
1
0
26
-6.5
Oc1ccc(/C=N/Nc2nc(-c3ccccc3F)nc3ccccc23)c(O)c1
0.366093
2.367037
1
0
0
1
0
27
-7.8
COc1ccc2c(c1)[nH]c1cccc(CNCc3ccccc3)c12
0.563548
2.01234
0
0
0
0
1
28
1.5
COc1ccc(C(=O)N/N=C/c2ccc(OC(=O)c3cccs3)cc2)cc1
0.305857
2.021595
0
1
1
1
1
29
-3.1
NCCNCCO
0.381452
2.341807
0
0
0
1
0
30
-7.4
COc1ccccc1/C=N/Nc1cc(C)nc2ccc(C)cc12
0.57701
2.114106
0
0
0
1
0
31
-6.2
CCOC(=O)c1cc2c(=O)n3cccc(C)c3nc2n(CC(C)C)/c1=N/C(=O)c1ccco1
0.34286
2.840301
1
0
0
1
0
32
-6.9
Oc1ccc(CCN2CCc3ccccc3C2)cc1O
0.842008
1.978217
1
0
0
1
0
33
-4.5
CCCCCCCCCCCC(=O)OCC
0.385043
1.648422
0
0
1
1
1
34
-7.1
Cc1cccc(C)c1NC(=O)C1(C)CN(S(C)(=O)=O)CC(=O)N1CC(F)(F)F
0.801371
3.242294
0
0
0
0
1
35
-7.1
COc1cc(/C=N\NC(=O)CNC(=O)c2cccc([N+](=O)[O-])c2)ccc1O
0.378329
2.13945
0
0
1
1
1
36
-2.5
COc1ccccc1C(=O)Nc1cc(NC(=O)c2ccccc2C(C)C)ccc1F
0.570995
1.931077
0
0
0
0
0
37
-4.5
CC(=O)CC(=O)OC(C)(C)C
0.449197
2.084303
0
0
0
1
1
38
-7.4
COc1ccc([C@H]2CC(=O)C[C@@H](CCn3cc(-c4cccnc4)nn3)O2)cc1
0.655214
3.344153
0
0
0
0
0
39
-7.3
CC(/C=C(\O)c1ccc(Br)cc1)=N/NC(=O)c1ccccc1
0.489371
2.188528
0
1
1
1
0
40
-5.5
O=C(CNC(=O)c1cccnc1)N/N=C/c1ccc(O)cc1O
0.468808
2.248289
1
0
1
1
0
41
-3.7
O=C(N/N=C/c1ccccn1)c1cc(-c2ccccc2Cl)n[nH]1
0.571228
2.323239
0
0
1
1
0
42
-6.9
CC(/C=C/c1ccccc1)=N/NC(=O)Cn1nnc(N)n1
0.612108
2.640609
0
1
1
1
0
43
-5.9
Cn1cnc2c(F)c(Nc3ccc(Br)cc3F)c(C(=O)NOCCO)cc21
0.40457
2.828737
0
1
0
1
0
44
-5.9
COc1ccc(/C=N/Nc2nc3ccccc3[nH]2)c(OC)c1OC
0.537417
2.295033
0
0
0
1
0
45
1.4
Cc1ccc(-c2cc(C(=O)Nc3ccc(C(F)(F)F)cc3)c3ccccc3n2)cc1C
0.396476
1.994419
0
0
0
0
0
46
-5.7
Cc1ccc(-n2nc3cc(C)c(NC(=O)COc4ccccc4)cc3n2)cc1
0.573665
2.055252
0
0
0
0
0
47
24.6
COc1ccc2c(c1)C1CC1(C(=O)N1C3CC1CN(C)C3)Cn1c-2c(C2CCCCC2)c2ccc(C(=O)NS(=O)(=O)N(C)C)cc21
0.428985
5.088599
0
0
0
0
0
48
-5.4
Nc1cc(C(=O)N/N=C/c2cccc([N+](=O)[O-])c2)nnc1O
0.419644
2.683682
0
0
1
1
0
49
-4
Nc1nc(=S)[nH][nH]1
0.419282
3.885726
0
0
0
1
0
50
-6.8
CC(Sc1ccccc1)C(=O)N/N=C/c1cccnc1
0.521884
2.522078
0
0
1
1
0
51
-6.3
O=C1C=CC(=O)N1c1ccc(Br)cc1[N+](=O)[O-]
0.473238
2.458082
0
0
0
1
0
52
40
CN(C)/C=N/C(=O)c1ccc(N2CCN(c3ncc(C(F)(F)F)cc3Cl)CC2)cc1
0.535362
2.603829
0
0
0
1
0
53
-4.8
FC(F)(F)c1ccc(N(c2cccnc2)C2CCN(C(c3ccccc3)C(F)(F)F)CC2)cc1
0.367281
3.148517
0
0
0
0
0
54
-5.9
C=C(C)c1cccc(C(=C)C)c1
0.614511
2.217661
0
1
0
0
1
55
5.3
O=C(NCc1cccnc1)c1ccc2[nH]c([C@@H]3O[C@H](CO)[C@H](O)[C@H](O)[C@H]3O)nc2c1
0.322678
3.68735
0
0
0
0
0
56
-6.1
CN1CCN(c2ccc([N+](=O)[O-])cc2/C=N/NC(=O)c2ccc(F)cc2)CC1
0.48428
2.218187
0
0
1
1
0
57
-7.4
CC1(c2nc3ccccc3[nH]2)CCC(=O)N1Cc1ccc(F)cc1
0.798039
2.880973
0
0
0
0
0
58
1.7
N#Cc1ccc(N2CCC(C(=O)N(CC3CC3)c3ccc(Cl)cc3)CC2)nc1
0.759459
2.398313
0
0
0
0
0
59
-7.3
CCc1noc(C)c1C(=O)N(CC)CC(=O)Nc1ccccc1C(F)(F)F
0.826002
2.393786
0
0
0
0
0
60
-6.6
CC1CCCN(C/C(O)=C(\C#N)c2nc3ccccc3[nH]2)C1
0.673855
3.183444
0
0
0
1
0
61
-2.9
Cc1nn(-c2ccccc2)c(S)c1/C=N/c1ccc([N+](=O)[O-])cc1
0.336353
2.58651
0
0
1
1
0
62
-5.1
O=P(Cl)(Cl)c1ccccc1
0.62908
2.503516
0
1
1
1
1
63
-6.3
Cc1cnc(-c2ccccc2C(C)C)nc1NCC1CN(c2cccnc2)C1
0.688447
2.559203
0
0
0
0
0
64
9.6
O=C(O)CCCCc1nc2cc(C3=NOC(CO)(c4ccccc4)C3)ccc2c(=O)n1-c1ccc(F)cc1
0.320836
3.263674
0
0
0
1
0
65
-6.6
C[C@H](CCC(=O)Nc1ccc(S(N)(=O)=O)cc1F)[C@H]1CC[C@H]2[C@@H]3CC[C@@H]4C[C@H](O)CC[C@]4(C)[C@H]3C[C@H](O)[C@]12C
0.393745
4.509356
0
0
0
0
1
66
1.6
COCCn1cnc2c(c1=O)c1nc3ccccc3nc1n2/N=C/c1ccc(OC)c(OC)c1
0.345377
2.648502
0
0
0
1
0
67
-2
O=C(N/N=C/c1c(Cl)cccc1Cl)c1ccc(-n2cnnn2)cc1
0.572036
2.257269
0
0
1
1
0
68
3.1
C[C@@H]1O[C@@H](OC2CC(O)C3(CO)C4C(CCC3(O)C2)C2(O)CCC(C3=CC(=O)OC3)C2(C)C[C@H]4O)[C@H](O)[C@H](O)[C@H]1O
0.140164
5.582648
0
0
1
1
0
69
-5.3
CCCCCC/C(=N/O)c1ccccn1
0.335953
2.272774
0
1
0
1
1
70
18.9
CO[C@H]1CN(C)C(=O)c2cc(NC(=O)Nc3cc(Cl)cc(Cl)c3)ccc2OC[C@H](C)NC[C@@H]1C
0.556683
4.058741
0
0
0
0
0
71
-2.7
CCc1nc2ccc(C(=O)Nc3cccc(NS(C)(=O)=O)c3)cn2c1N(C)C(=O)Cc1ccccc1
0.378958
2.589029
0
0
0
0
0
72
-6
Cc1ccc(N(SC(F)(Cl)Cl)S(=O)(=O)N(C)C)cc1
0.606096
2.961179
0
1
0
1
1
73
-5.9
OCCCNc1ncnc2c1ncn2[C@H]1CN(Cc2ccc(Cl)cc2)C[C@@H](CO)O1
0.461106
3.401718
0
0
0
1
0
74
-7.5
O=C(O)c1ccccc1N/N=C/C1=C(N2CCOCC2)/C(=C\c2ccccc2)CC1
0.557283
2.591519
1
0
0
1
0
75
-6.3
CCN(C(=O)CSc1nnnn1-c1ccccc1OC)C1CCS(=O)(=O)C1
0.615889
2.929613
0
0
0
0
0
76
-4.1
CC(C)CNCC(C)C
0.610919
1.917866
0
0
0
0
1
77
-5.8
C=CC/N=C1/S/C(=C/c2ccc([N+](=O)[O-])cc2)C(=O)N1CC=C
0.347377
2.750266
0
1
0
1
1
78
-8.7
c1ccc(CNc2nc(N3CCOc4ccccc43)nc3c2CCCC3)cc1
0.730791
2.378227
0
0
0
0
0
79
-4.6
C[C@@H]1O[C@H](C[N+](C)(C)C)C[C@@H]1O
0.607294
4.217565
0
0
0
1
0
80
-6.8
CC(=N)/C(C#N)=C(/O)CSc1nnnn1-c1ccc(C)cc1C
0.377645
2.915362
0
1
0
1
0
81
-5.9
FC(F)(F)c1ccc(Cl)cc1Cl
0.612663
1.840423
0
0
0
0
1
82
-5.8
CCCCCCCC[S+]([O-])C(C)Cc1ccc2c(c1)OCO2
0.471296
3.584511
0
1
1
1
1
83
-8.8
C[C@]12CCC(=O)C[C@@H]1CC[C@@H]1[C@@H]2C(=O)C[C@]2(C)C(=O)CC[C@@H]12
0.689294
4.155878
0
0
0
0
1
84
-5.2
Cc1cc(Cl)c(C)cc1Cl
0.564451
1.740004
0
0
0
0
1
85
-7.6
Cc1cccc(C)c1C(O)c1nc(-c2ccccc2Cl)c[nH]1
0.751392
3.055234
0
0
0
0
0
86
-6.6
CCOC(=O)C1(C)CCCN(C(=O)c2ccc3c(c2)OCO3)C1
0.799379
2.759635
0
0
0
0
0
87
-8.1
FC(F)(F)c1ccccc1-c1nc2c(c(NCc3ccc(-c4cccnc4)cc3)n1)CCC2
0.389498
2.429785
0
0
0
0
0
88
-1.9
Cc1cc(C)c([N+](=O)[O-])cc1-c1ccc(/C=N/NC(=O)c2nonc2N)o1
0.391956
2.756859
0
0
1
1
0
89
-6
COc1ccc2c(c1)CCC/C2=N\Nc1nc(C(=O)NN)cs1
0.451148
2.581352
0
1
1
1
0
90
-3.1
N#CNC(=N)N
0.151385
3.821112
0
1
0
1
1
91
-6.8
CC(=O)NC1CCCN(O)C(=O)/C=C(\C)CCOC(=O)C(NC(C)=O)CCCN(O)C(=O)/C=C(\C)CCOC(=O)C(NC(C)=O)CCCN(O)C(=O)/C=C(\C)CCOC1=O
0.131936
5.320891
0
0
0
1
0
92
-7
CN1CCN(c2ccccc2/C=N/NC(=O)c2cccnc2)CC1
0.68568
2.147364
0
0
1
1
0
93
-6.3
Cc1ccc(Sc2ncccc2/C=N/O)cc1
0.511372
2.401398
0
1
0
1
1
94
-7.4
O=C(NCC1CCCO1)c1cccc(S(=O)(=O)Nc2ccccc2Cl)c1
0.788161
2.405954
0
0
0
0
1
95
-8.2
O=C1C(Nc2cccc(Cl)c2)=C(N2CCCCC2)C(=O)c2ccccc21
0.866654
2.224895
1
0
1
0
0
96
-7
CN(C)c1ccc(/C=N/CC2COc3ccccc3O2)cc1
0.813387
2.847118
0
0
0
1
0
97
-2.7
N#CCNCC#N
0.375504
3.445527
0
1
1
1
1
98
-6
COc1cc(/C=N/N2CCCCC2)cc([N+](=O)[O-])c1O
0.517888
2.474875
0
0
0
1
1
99
-2.9
C=CC[C@H]1C2CC[C@H]3[C@@H]4CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]4(C)CC[C@@H]3[C@@]2(C)CC[C@H]1O
0.361387
4.707102
0
1
0
1
1
End of preview.

Dataset Card for Dataset Name

This dataset card aims to be a base template for new datasets. It has been generated using this raw template.

Dataset Details

Dataset Description

  • Curated by: [More Information Needed]
  • Funded by [optional]: Ministry of Economic Development of the Russian Federation (IGK 000000C313925P4C0002), agreement No139-15- 2025-010
  • Shared by [optional]: [More Information Needed]
  • Language(s) (NLP): English
  • License: [More Information Needed]

Dataset Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Dataset Structure

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Data Collection and Processing

[More Information Needed]

Who are the source data producers?

[More Information Needed]

Annotations [optional]

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation [optional]

arxiv.org/abs/2511.08217

BibTeX:

[More Information Needed]

APA:

arxiv.org/abs/2511.08217

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Dataset Card Authors [optional]

[More Information Needed]

Dataset Card Contact

[More Information Needed]

Downloads last month
42