See axolotl config
axolotl version: 0.12.2
# 基础模型配置
base_model: Qwen/Qwen3-4B-Instruct-2507
load_in_4bit: true
bnb_4bit_compute_dtype: bfloat16
bnb_4bit_quant_type: nf4
bnb_4bit_use_double_quant: true
# LoRA配置
adapter: lora
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
lora_target_linear: true
lora_fan_in_fan_out: false
# 数据集
chat_template: qwen3
datasets:
- path: /workspace/tool_data_1012_89086.json
type: chat_template
roles_to_train: ["assistant"]
field_messages: messages
message_property_mappings:
role: role
content: content
val_set_size: 0.05
output_dir: checkpoints
# 序列长度
sequence_len: 8192
pad_to_sequence_len: true
sample_packing: false
eval_sample_packing: false
group_by_length: true
# 训练参数
num_epochs: 3
micro_batch_size: 6
gradient_accumulation_steps: 4
eval_batch_size: 4
# 优化器
optimizer: adamw_bnb_8bit
lr_scheduler: cosine_with_restarts
cosine_restarts: 2
learning_rate: 1e-4
warmup_ratio: 0.05
weight_decay: 0.01
# 精度
bf16: auto
tf32: true
gradient_checkpointing: true
flash_attention: true
# ========== 关键:保存策略 ==========
save_strategy: steps
eval_strategy: steps
eval_steps: 500 # 每500步评估(约每1/6个epoch,根据数据量调整)
save_steps: 500 # 与eval_steps一致
save_total_limit: 1 # 只保留最优的1个
load_best_model_at_end: true # 训练结束加载最优
metric_for_best_model: eval_loss # 用验证集loss
greater_is_better: false # loss越小越好
logging_steps: 30
# DeepSpeed
deepspeed: zero2.json
# 其他
ddp_timeout: 3600
ddp_find_unused_parameters: false
checkpoints
This model is a fine-tuned version of Qwen/Qwen3-4B-Instruct-2507 on the /workspace/tool_data_1012_89086.json dataset. It achieves the following results on the evaluation set:
- Loss: 0.0672
- Memory/max Mem Active(gib): 95.9
- Memory/max Mem Allocated(gib): 95.9
- Memory/device Mem Reserved(gib): 124.48
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 192
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 65
- training_steps: 1310
Training results
| Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.1993 | 50.61 | 50.61 | 51.0 |
| 0.0695 | 1.1442 | 500 | 0.0686 | 95.9 | 95.9 | 124.48 |
| 0.0681 | 2.2885 | 1000 | 0.0672 | 95.9 | 95.9 | 124.48 |
Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.6.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 63
Model tree for cjkasbdkjnlakb/agent-1013
Base model
Qwen/Qwen3-4B-Instruct-2507