Korean Secondhand Market Classifier

Model Overview

AI model for automatic categorization of Korean secondhand market product images. 70.61% accuracy achieved with 7-model ensemble system.

Supported Categories

  1. 가ꡬ (Furniture) - beds, sofas, desks, chairs
  2. μƒν™œμš©ν’ˆ (Household items) - kitchenware, cleaning supplies, storage
  3. μ „μžκΈ°κΈ°_λ„μ„œ (Electronics/Books) - smartphones, laptops, books, e-books
  4. μ·¨λ―Έ_κ²Œμž„ (Hobbies/Games) - game consoles, board games, sports equipment
  5. νŒ¨μ…˜_λ·°ν‹° (Fashion/Beauty) - clothing, shoes, cosmetics, accessories

Performance

  • Ensemble Accuracy: 70.61%
  • Individual Models: 7 models (EfficientNet, ResNet50V2, DenseNet, etc.)
  • Input Size: 224x224 RGB images

Usage

# Install dependencies
pip install fastapi uvicorn tensorflow pillow huggingface_hub

# Download and run
from huggingface_hub import snapshot_download
repo_path = snapshot_download("bihan3876/my_model")

# Run API server
import subprocess
subprocess.run(["python", f"{repo_path}/api_server.py"])

File Structure

models/
β”œβ”€β”€ ensemble/              # Ensemble models (349MB)
β”‚   β”œβ”€β”€ EfficientNetB0_best.keras
β”‚   β”œβ”€β”€ ResNet50V2_best.keras
β”‚   └── ... (7 models)
└── serving/               # Serving models
    β”œβ”€β”€ model_optimized.tflite  # 24MB
    └── TensorFlowLiteInferenceService.java

License

MIT License

Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for bihan3876/my_model

Finetuned
(79)
this model