Text Generation
Transformers
Safetensors
MLX
English
qwen3
shining-valiant
shining-valiant-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-8b
8b
reasoning
code
code-reasoning
science
science-reasoning
physics
biology
chemistry
earth-science
astronomy
machine-learning
artificial-intelligence
compsci
computer-science
information-theory
ML-Ops
math
cuda
deep-learning
agentic
LLM
neuromorphic
self-improvement
complex-systems
cognition
linguistics
philosophy
logic
epistemology
simulation
game-theory
knowledge-management
creativity
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
mlx-my-repo
text-generation-inference
4-bit precision
arogister/Qwen3-8B-ShiningValiant3-mlx-4Bit
The Model arogister/Qwen3-8B-ShiningValiant3-mlx-4Bit was converted to MLX format from ValiantLabs/Qwen3-8B-ShiningValiant3 using mlx-lm version 0.26.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("arogister/Qwen3-8B-ShiningValiant3-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 37
Model tree for arogister/Qwen3-8B-ShiningValiant3-mlx-4Bit
Base model
Qwen/Qwen3-8B-Base
Finetuned
Qwen/Qwen3-8B
Finetuned
ValiantLabs/Qwen3-8B-ShiningValiant3