|
|
--- |
|
|
datasets: |
|
|
- bigscience/xP3 |
|
|
license: bigscience-bloom-rail-1.0 |
|
|
language: |
|
|
- ak |
|
|
- ar |
|
|
- as |
|
|
- bm |
|
|
- bn |
|
|
- ca |
|
|
- code |
|
|
- en |
|
|
- es |
|
|
- eu |
|
|
- fon |
|
|
- fr |
|
|
- gu |
|
|
- hi |
|
|
- id |
|
|
- ig |
|
|
- ki |
|
|
- kn |
|
|
- lg |
|
|
- ln |
|
|
- ml |
|
|
- mr |
|
|
- ne |
|
|
- nso |
|
|
- ny |
|
|
- or |
|
|
- pa |
|
|
- pt |
|
|
- rn |
|
|
- rw |
|
|
- sn |
|
|
- st |
|
|
- sw |
|
|
- ta |
|
|
- te |
|
|
- tn |
|
|
- ts |
|
|
- tum |
|
|
- tw |
|
|
- ur |
|
|
- vi |
|
|
- wo |
|
|
- xh |
|
|
- yo |
|
|
- zh |
|
|
- zu |
|
|
programming_language: |
|
|
- C |
|
|
- C++ |
|
|
- C# |
|
|
- Go |
|
|
- Java |
|
|
- JavaScript |
|
|
- Lua |
|
|
- PHP |
|
|
- Python |
|
|
- Ruby |
|
|
- Rust |
|
|
- Scala |
|
|
- TypeScript |
|
|
pipeline_tag: text-generation |
|
|
widget: |
|
|
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous |
|
|
review as positive, neutral or negative? |
|
|
example_title: zh-en sentiment |
|
|
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? |
|
|
example_title: zh-zh sentiment |
|
|
- text: Suggest at least five related search terms to "Mạng neural nhân tạo". |
|
|
example_title: vi-en query |
|
|
- text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels». |
|
|
example_title: fr-fr query |
|
|
- text: Explain in a sentence in Telugu what is backpropagation in neural networks. |
|
|
example_title: te-en qa |
|
|
- text: Why is the sky blue? |
|
|
example_title: en-en qa |
|
|
- text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon. |
|
|
The fairy tale is a masterpiece that has achieved praise worldwide and its moral |
|
|
is "Heroes Come in All Shapes and Sizes". Story (in Spanish):' |
|
|
example_title: es-en fable |
|
|
- text: 'Write a fable about wood elves living in a forest that is suddenly invaded |
|
|
by ogres. The fable is a masterpiece that has achieved praise worldwide and its |
|
|
moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):' |
|
|
example_title: hi-en fable |
|
|
tags: |
|
|
- llama-cpp |
|
|
- gguf-my-repo |
|
|
base_model: bigscience/bloomz-1b1 |
|
|
model-index: |
|
|
- name: bloomz-1b1 |
|
|
results: |
|
|
- task: |
|
|
type: Coreference resolution |
|
|
dataset: |
|
|
name: Winogrande XL (xl) |
|
|
type: winogrande |
|
|
config: xl |
|
|
split: validation |
|
|
revision: a80f460359d1e9a67c006011c94de42a8759430c |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 52.33 |
|
|
- task: |
|
|
type: Coreference resolution |
|
|
dataset: |
|
|
name: XWinograd (en) |
|
|
type: Muennighoff/xwinograd |
|
|
config: en |
|
|
split: test |
|
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 50.49 |
|
|
- task: |
|
|
type: Coreference resolution |
|
|
dataset: |
|
|
name: XWinograd (fr) |
|
|
type: Muennighoff/xwinograd |
|
|
config: fr |
|
|
split: test |
|
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 59.04 |
|
|
- task: |
|
|
type: Coreference resolution |
|
|
dataset: |
|
|
name: XWinograd (jp) |
|
|
type: Muennighoff/xwinograd |
|
|
config: jp |
|
|
split: test |
|
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 51.82 |
|
|
- task: |
|
|
type: Coreference resolution |
|
|
dataset: |
|
|
name: XWinograd (pt) |
|
|
type: Muennighoff/xwinograd |
|
|
config: pt |
|
|
split: test |
|
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 54.75 |
|
|
- task: |
|
|
type: Coreference resolution |
|
|
dataset: |
|
|
name: XWinograd (ru) |
|
|
type: Muennighoff/xwinograd |
|
|
config: ru |
|
|
split: test |
|
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 53.97 |
|
|
- task: |
|
|
type: Coreference resolution |
|
|
dataset: |
|
|
name: XWinograd (zh) |
|
|
type: Muennighoff/xwinograd |
|
|
config: zh |
|
|
split: test |
|
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 55.16 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: ANLI (r1) |
|
|
type: anli |
|
|
config: r1 |
|
|
split: validation |
|
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 33.3 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: ANLI (r2) |
|
|
type: anli |
|
|
config: r2 |
|
|
split: validation |
|
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 33.5 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: ANLI (r3) |
|
|
type: anli |
|
|
config: r3 |
|
|
split: validation |
|
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 34.5 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: SuperGLUE (cb) |
|
|
type: super_glue |
|
|
config: cb |
|
|
split: validation |
|
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 58.93 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: SuperGLUE (rte) |
|
|
type: super_glue |
|
|
config: rte |
|
|
split: validation |
|
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 65.7 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (ar) |
|
|
type: xnli |
|
|
config: ar |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 46.59 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (bg) |
|
|
type: xnli |
|
|
config: bg |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 40.4 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (de) |
|
|
type: xnli |
|
|
config: de |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 40.12 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (el) |
|
|
type: xnli |
|
|
config: el |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 39.32 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (en) |
|
|
type: xnli |
|
|
config: en |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 47.11 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (es) |
|
|
type: xnli |
|
|
config: es |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 47.55 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (fr) |
|
|
type: xnli |
|
|
config: fr |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 48.51 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (hi) |
|
|
type: xnli |
|
|
config: hi |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 42.89 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (ru) |
|
|
type: xnli |
|
|
config: ru |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 42.81 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (sw) |
|
|
type: xnli |
|
|
config: sw |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 41.29 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (th) |
|
|
type: xnli |
|
|
config: th |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 42.93 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (tr) |
|
|
type: xnli |
|
|
config: tr |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 37.51 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (ur) |
|
|
type: xnli |
|
|
config: ur |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 41.37 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (vi) |
|
|
type: xnli |
|
|
config: vi |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 47.19 |
|
|
- task: |
|
|
type: Natural language inference |
|
|
dataset: |
|
|
name: XNLI (zh) |
|
|
type: xnli |
|
|
config: zh |
|
|
split: validation |
|
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 47.63 |
|
|
- task: |
|
|
type: Program synthesis |
|
|
dataset: |
|
|
name: HumanEval |
|
|
type: openai_humaneval |
|
|
config: None |
|
|
split: test |
|
|
revision: e8dc562f5de170c54b5481011dd9f4fa04845771 |
|
|
metrics: |
|
|
- type: Pass@1 |
|
|
value: 2.62 |
|
|
- type: Pass@10 |
|
|
value: 6.22 |
|
|
- type: Pass@100 |
|
|
value: 11.68 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: StoryCloze (2016) |
|
|
type: story_cloze |
|
|
config: '2016' |
|
|
split: validation |
|
|
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 62.75 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: SuperGLUE (copa) |
|
|
type: super_glue |
|
|
config: copa |
|
|
split: validation |
|
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 63.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (et) |
|
|
type: xcopa |
|
|
config: et |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 55.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (ht) |
|
|
type: xcopa |
|
|
config: ht |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 52.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (id) |
|
|
type: xcopa |
|
|
config: id |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 60.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (it) |
|
|
type: xcopa |
|
|
config: it |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 56.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (qu) |
|
|
type: xcopa |
|
|
config: qu |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 56.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (sw) |
|
|
type: xcopa |
|
|
config: sw |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 64.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (ta) |
|
|
type: xcopa |
|
|
config: ta |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 57.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (th) |
|
|
type: xcopa |
|
|
config: th |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 59.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (tr) |
|
|
type: xcopa |
|
|
config: tr |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 55.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (vi) |
|
|
type: xcopa |
|
|
config: vi |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 63.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XCOPA (zh) |
|
|
type: xcopa |
|
|
config: zh |
|
|
split: validation |
|
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 61.0 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (ar) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: ar |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 53.54 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (es) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: es |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 58.37 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (eu) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: eu |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 52.35 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (hi) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: hi |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 55.92 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (id) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: id |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 57.97 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (my) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: my |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 47.05 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (ru) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: ru |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 50.3 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (sw) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: sw |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 49.97 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (te) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: te |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 55.86 |
|
|
- task: |
|
|
type: Sentence completion |
|
|
dataset: |
|
|
name: XStoryCloze (zh) |
|
|
type: Muennighoff/xstory_cloze |
|
|
config: zh |
|
|
split: validation |
|
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
|
metrics: |
|
|
- type: Accuracy |
|
|
value: 58.17 |
|
|
--- |
|
|
|
|
|
# ahashan-habib-eatl/bloomz-1b1-Q4_K_M-GGUF |
|
|
This model was converted to GGUF format from [`bigscience/bloomz-1b1`](https://huggingface.co/bigscience/bloomz-1b1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
|
Refer to the [original model card](https://huggingface.co/bigscience/bloomz-1b1) for more details on the model. |
|
|
|
|
|
## Use with llama.cpp |
|
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
|
|
```bash |
|
|
brew install llama.cpp |
|
|
|
|
|
``` |
|
|
Invoke the llama.cpp server or the CLI. |
|
|
|
|
|
### CLI: |
|
|
```bash |
|
|
llama-cli --hf-repo ahashan-habib-eatl/bloomz-1b1-Q4_K_M-GGUF --hf-file bloomz-1b1-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
|
``` |
|
|
|
|
|
### Server: |
|
|
```bash |
|
|
llama-server --hf-repo ahashan-habib-eatl/bloomz-1b1-Q4_K_M-GGUF --hf-file bloomz-1b1-q4_k_m.gguf -c 2048 |
|
|
``` |
|
|
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
|
``` |
|
|
git clone https://github.com/ggerganov/llama.cpp |
|
|
``` |
|
|
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
|
``` |
|
|
cd llama.cpp && LLAMA_CURL=1 make |
|
|
``` |
|
|
|
|
|
Step 3: Run inference through the main binary. |
|
|
``` |
|
|
./llama-cli --hf-repo ahashan-habib-eatl/bloomz-1b1-Q4_K_M-GGUF --hf-file bloomz-1b1-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
|
``` |
|
|
or |
|
|
``` |
|
|
./llama-server --hf-repo ahashan-habib-eatl/bloomz-1b1-Q4_K_M-GGUF --hf-file bloomz-1b1-q4_k_m.gguf -c 2048 |
|
|
``` |
|
|
|