Redis semantic caching CrossEncoder model fine-tuned on Quora Question Pairs
This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L12-v2 on the Quora Question Pairs LangCache Train Set dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for sentence pair classification.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/ms-marco-MiniLM-L12-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- Quora Question Pairs LangCache Train Set
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("aditeyabaral-redis/langcache-crossencoder-v1-ms-marco-MiniLM-L12-v2")
# Get scores for pairs of texts
pairs = [
['How can I get a list of my Gmail accounts?', 'How can I find all my old Gmail accounts?'],
['How can I stop Quora from modifying and editing other peopleโs questions on Quora?', 'Can I prevent a Quora user from editing my question on Quora?'],
['How much does it cost to design a logo in india?', 'How much does it cost to design a logo?'],
['What is screenedrenters.com?', 'What is allmyapps.com?'],
['What are the best colleges for an MBA in Australia?', 'What are the top MBA schools in Australia?'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'How can I get a list of my Gmail accounts?',
[
'How can I find all my old Gmail accounts?',
'Can I prevent a Quora user from editing my question on Quora?',
'How much does it cost to design a logo?',
'What is allmyapps.com?',
'What are the top MBA schools in Australia?',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Classification
- Dataset:
quora-eval
- Evaluated with
CrossEncoderClassificationEvaluator
Metric | Value |
---|---|
accuracy | 0.6801 |
accuracy_threshold | 3.2522 |
f1 | 0.5699 |
f1_threshold | 2.8498 |
precision | 0.4213 |
recall | 0.8806 |
average_precision | 0.5877 |
Training Details
Training Dataset
Quora Question Pairs LangCache Train Set
- Dataset: Quora Question Pairs LangCache Train Set
- Size: 363,861 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 15 characters
- mean: 60.22 characters
- max: 229 characters
- min: 14 characters
- mean: 60.0 characters
- max: 274 characters
- 0: ~63.50%
- 1: ~36.50%
- Samples:
sentence1 sentence2 label Why do people believe in God and how can they say he/she exists?
Why do we kill each other in the name of God?
0
What are the chances of a bee sting when a bee buzzes around you?
How can I tell if my bees are agitated/likely to sting?
0
If a man from Syro Malankara church marries a Syro-Malabar girl, can they join a Syro-Malabar parish?
Is Malabar Hills of Mumbai anyhow related to Malabar of Kerala?
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Evaluation Dataset
Quora Question Pairs LangCache Validation Set
- Dataset: Quora Question Pairs LangCache Validation Set
- Size: 40,429 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 13 characters
- mean: 59.91 characters
- max: 266 characters
- min: 13 characters
- mean: 59.51 characters
- max: 293 characters
- 0: ~63.80%
- 1: ~36.20%
- Samples:
sentence1 sentence2 label How can I get a list of my Gmail accounts?
How can I find all my old Gmail accounts?
1
How can I stop Quora from modifying and editing other peopleโs questions on Quora?
Can I prevent a Quora user from editing my question on Quora?
1
How much does it cost to design a logo in india?
How much does it cost to design a logo?
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0002num_train_epochs
: 15load_best_model_at_end
: Truepush_to_hub
: Truehub_model_id
: aditeyabaral-redis/langcache-crossencoder-v1-ms-marco-MiniLM-L12-v2
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0002weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: aditeyabaral-redis/langcache-crossencoder-v1-ms-marco-MiniLM-L12-v2hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | quora-eval_average_precision |
---|---|---|---|---|
0.0879 | 500 | 0.3912 | 0.3494 | 0.5710 |
0.1759 | 1000 | 0.3467 | 0.3193 | 0.5648 |
0.2638 | 1500 | 0.3403 | 0.3179 | 0.5698 |
0.3517 | 2000 | 0.3348 | 0.3045 | 0.6115 |
0.4397 | 2500 | 0.3275 | 0.3143 | 0.6306 |
0.5276 | 3000 | 0.3153 | 0.3034 | 0.5772 |
0.6155 | 3500 | 0.3196 | 0.2990 | 0.5759 |
0.7035 | 4000 | 0.3165 | 0.2924 | 0.5700 |
0.7914 | 4500 | 0.3052 | 0.2987 | 0.6343 |
0.8794 | 5000 | 0.3131 | 0.3184 | 0.5388 |
0.9673 | 5500 | 0.3053 | 0.2936 | 0.6038 |
1.0552 | 6000 | 0.2782 | 0.3003 | 0.6315 |
1.1432 | 6500 | 0.2599 | 0.2922 | 0.6226 |
1.2311 | 7000 | 0.2661 | 0.3477 | 0.6244 |
1.3190 | 7500 | 0.2578 | 0.3150 | 0.6438 |
1.4070 | 8000 | 0.2644 | 0.2915 | 0.6168 |
1.4949 | 8500 | 0.2635 | 0.2835 | 0.6427 |
1.5828 | 9000 | 0.266 | 0.2880 | 0.6556 |
1.6708 | 9500 | 0.2618 | 0.3050 | 0.6258 |
1.7587 | 10000 | 0.2651 | 0.2815 | 0.6488 |
1.8466 | 10500 | 0.2703 | 0.2803 | 0.5877 |
1.9346 | 11000 | 0.2601 | 0.2925 | 0.5998 |
2.0225 | 11500 | 0.2527 | 0.3401 | 0.6626 |
2.1104 | 12000 | 0.2173 | 0.2813 | 0.6109 |
2.1984 | 12500 | 0.2124 | 0.3034 | 0.6207 |
2.2863 | 13000 | 0.2221 | 0.3097 | 0.6164 |
2.3743 | 13500 | 0.2231 | 0.2929 | 0.5904 |
2.4622 | 14000 | 0.2247 | 0.3355 | 0.5872 |
2.5501 | 14500 | 0.226 | 0.3286 | 0.6354 |
2.6381 | 15000 | 0.2312 | 0.3024 | 0.5988 |
2.7260 | 15500 | 0.2382 | 0.2854 | 0.5627 |
2.8139 | 16000 | 0.2347 | 0.2991 | 0.5965 |
2.9019 | 16500 | 0.2283 | 0.2949 | 0.6256 |
2.9898 | 17000 | 0.2399 | 0.2849 | 0.6317 |
3.0777 | 17500 | 0.2024 | 0.3391 | 0.5659 |
3.1657 | 18000 | 0.1963 | 0.3010 | 0.6274 |
3.2536 | 18500 | 0.1932 | 0.3469 | 0.6255 |
3.3415 | 19000 | 0.2038 | 0.3331 | 0.6052 |
3.4295 | 19500 | 0.2005 | 0.3421 | 0.5648 |
3.5174 | 20000 | 0.2078 | 0.3266 | 0.6189 |
3.6053 | 20500 | 0.2033 | 0.3398 | 0.6279 |
3.6933 | 21000 | 0.2101 | 0.3149 | 0.6106 |
3.7812 | 21500 | 0.2255 | 0.3352 | 0.6362 |
3.8692 | 22000 | 0.2107 | 0.3216 | 0.6295 |
3.9571 | 22500 | 0.2269 | 0.2968 | 0.6251 |
4.0450 | 23000 | 0.2063 | 0.3329 | 0.5968 |
4.1330 | 23500 | 0.1872 | 0.3457 | 0.5843 |
4.2209 | 24000 | 0.1902 | 0.4201 | 0.5722 |
4.3088 | 24500 | 0.2043 | 0.3506 | 0.5670 |
4.3968 | 25000 | 0.1991 | 0.3146 | 0.5807 |
4.4847 | 25500 | 0.2061 | 0.3409 | 0.3265 |
4.5726 | 26000 | 0.2104 | 0.3690 | 0.5509 |
4.6606 | 26500 | 0.2122 | 0.3400 | 0.5678 |
4.7485 | 27000 | 0.213 | 0.3283 | 0.3679 |
4.8364 | 27500 | 0.2181 | 0.3373 | 0.6225 |
4.9244 | 28000 | 0.2312 | 0.3397 | 0.5945 |
5.0123 | 28500 | 0.2227 | 0.3401 | 0.5783 |
5.1002 | 29000 | 0.1954 | 0.3705 | 0.5907 |
5.1882 | 29500 | 0.2084 | 0.3293 | 0.5770 |
5.2761 | 30000 | 0.2046 | 0.3847 | 0.5815 |
5.3641 | 30500 | 0.2093 | 0.3407 | 0.6050 |
5.4520 | 31000 | 0.2066 | 0.3582 | 0.5621 |
5.5399 | 31500 | 0.2038 | 0.3495 | 0.5632 |
5.6279 | 32000 | 0.2037 | 0.3237 | 0.5434 |
5.7158 | 32500 | 0.1993 | 0.3480 | 0.5230 |
5.8037 | 33000 | 0.1999 | 0.3315 | 0.5572 |
5.8917 | 33500 | 0.1936 | 0.3271 | 0.5538 |
5.9796 | 34000 | 0.2022 | 0.3507 | 0.5232 |
6.0675 | 34500 | 0.2014 | 0.3734 | 0.4539 |
6.1555 | 35000 | 0.1931 | 0.3790 | 0.5118 |
6.2434 | 35500 | 0.1989 | 0.3970 | 0.4461 |
6.3313 | 36000 | 0.1953 | 0.3696 | 0.4504 |
6.4193 | 36500 | 0.1977 | 0.3440 | 0.4783 |
6.5072 | 37000 | 0.1946 | 0.3790 | 0.5619 |
6.5951 | 37500 | 0.2212 | 0.3734 | 0.5811 |
6.6831 | 38000 | 0.2221 | 0.3885 | 0.4700 |
6.7710 | 38500 | 0.2048 | 0.3547 | 0.4436 |
6.8590 | 39000 | 0.1965 | 0.3643 | 0.3691 |
6.9469 | 39500 | 0.1955 | 0.3554 | 0.6121 |
7.0348 | 40000 | 0.1886 | 0.3495 | 0.5667 |
7.1228 | 40500 | 0.1796 | 0.4076 | 0.5291 |
7.2107 | 41000 | 0.1744 | 0.3378 | 0.5866 |
7.2986 | 41500 | 0.1688 | 0.3813 | 0.5942 |
7.3866 | 42000 | 0.1659 | 0.3278 | 0.5806 |
7.4745 | 42500 | 0.1646 | 0.3609 | 0.5678 |
7.5624 | 43000 | 0.1617 | 0.3852 | 0.5917 |
7.6504 | 43500 | 0.1588 | 0.3618 | 0.5789 |
7.7383 | 44000 | 0.1566 | 0.3409 | 0.5286 |
7.8262 | 44500 | 0.1614 | 0.3410 | 0.5767 |
7.9142 | 45000 | 0.1625 | 0.3402 | 0.5505 |
8.0021 | 45500 | 0.1652 | 0.3426 | 0.6049 |
8.0900 | 46000 | 0.1351 | 0.3754 | 0.5681 |
8.1780 | 46500 | 0.1363 | 0.3737 | 0.5688 |
8.2659 | 47000 | 0.1319 | 0.3651 | 0.5704 |
8.3539 | 47500 | 0.1343 | 0.3406 | 0.4727 |
8.4418 | 48000 | 0.1385 | 0.3728 | 0.5917 |
8.5297 | 48500 | 0.1335 | 0.3730 | 0.4597 |
8.6177 | 49000 | 0.1327 | 0.3436 | 0.5480 |
8.7056 | 49500 | 0.1319 | 0.3748 | 0.5610 |
8.7935 | 50000 | 0.1379 | 0.3314 | 0.6036 |
8.8815 | 50500 | 0.1386 | 0.3368 | 0.5501 |
8.9694 | 51000 | 0.1373 | 0.3441 | 0.5672 |
9.0573 | 51500 | 0.119 | 0.3909 | 0.5266 |
9.1453 | 52000 | 0.1195 | 0.4138 | 0.5029 |
9.2332 | 52500 | 0.1114 | 0.4174 | 0.5001 |
9.3211 | 53000 | 0.1154 | 0.3623 | 0.5219 |
9.4091 | 53500 | 0.1142 | 0.4175 | 0.5235 |
9.4970 | 54000 | 0.1146 | 0.3877 | 0.5652 |
9.5849 | 54500 | 0.1145 | 0.4052 | 0.3716 |
9.6729 | 55000 | 0.1159 | 0.3755 | 0.5593 |
9.7608 | 55500 | 0.1102 | 0.3821 | 0.4637 |
9.8488 | 56000 | 0.1073 | 0.3785 | 0.5502 |
9.9367 | 56500 | 0.112 | 0.3908 | 0.4852 |
10.0246 | 57000 | 0.1105 | 0.4008 | 0.5485 |
10.1126 | 57500 | 0.0919 | 0.4266 | 0.5240 |
10.2005 | 58000 | 0.0942 | 0.4328 | 0.5125 |
10.2884 | 58500 | 0.0945 | 0.4304 | 0.4780 |
10.3764 | 59000 | 0.0933 | 0.4200 | 0.5214 |
10.4643 | 59500 | 0.0976 | 0.3932 | 0.4576 |
10.5522 | 60000 | 0.0965 | 0.3963 | 0.4754 |
10.6402 | 60500 | 0.0937 | 0.4558 | 0.5249 |
10.7281 | 61000 | 0.0956 | 0.4494 | 0.5159 |
10.8160 | 61500 | 0.101 | 0.4063 | 0.5204 |
10.9040 | 62000 | 0.0956 | 0.4243 | 0.4250 |
10.9919 | 62500 | 0.0933 | 0.3847 | 0.5222 |
11.0798 | 63000 | 0.0776 | 0.4363 | 0.5281 |
11.1678 | 63500 | 0.0765 | 0.4253 | 0.5159 |
11.2557 | 64000 | 0.0767 | 0.4306 | 0.5223 |
11.3437 | 64500 | 0.0805 | 0.4185 | 0.5205 |
11.4316 | 65000 | 0.0817 | 0.4297 | 0.5152 |
11.5195 | 65500 | 0.0791 | 0.4323 | 0.5041 |
11.6075 | 66000 | 0.0771 | 0.4147 | 0.5180 |
11.6954 | 66500 | 0.081 | 0.4077 | 0.5577 |
11.7833 | 67000 | 0.0832 | 0.4268 | 0.5382 |
11.8713 | 67500 | 0.0784 | 0.4461 | 0.5259 |
11.9592 | 68000 | 0.0801 | 0.4401 | 0.3307 |
12.0471 | 68500 | 0.0749 | 0.4472 | 0.5192 |
12.1351 | 69000 | 0.0632 | 0.4932 | 0.5295 |
12.2230 | 69500 | 0.0651 | 0.4877 | 0.4111 |
12.3109 | 70000 | 0.0653 | 0.4903 | 0.3651 |
12.3989 | 70500 | 0.0641 | 0.4918 | 0.4986 |
12.4868 | 71000 | 0.0635 | 0.4564 | 0.5429 |
12.5747 | 71500 | 0.0659 | 0.4626 | 0.5470 |
12.6627 | 72000 | 0.0675 | 0.4363 | 0.5449 |
12.7506 | 72500 | 0.0664 | 0.3980 | 0.5171 |
12.8386 | 73000 | 0.0669 | 0.4566 | 0.3894 |
12.9265 | 73500 | 0.065 | 0.4781 | 0.5442 |
13.0144 | 74000 | 0.0672 | 0.4782 | 0.5255 |
13.1024 | 74500 | 0.0546 | 0.4897 | 0.5167 |
13.1903 | 75000 | 0.0535 | 0.5131 | 0.5216 |
13.2782 | 75500 | 0.0575 | 0.4811 | 0.5258 |
13.3662 | 76000 | 0.0562 | 0.4530 | 0.5227 |
13.4541 | 76500 | 0.057 | 0.4338 | 0.5115 |
13.5420 | 77000 | 0.0553 | 0.4658 | 0.5136 |
13.6300 | 77500 | 0.0519 | 0.5106 | 0.5071 |
13.7179 | 78000 | 0.0541 | 0.4508 | 0.5262 |
13.8058 | 78500 | 0.0564 | 0.4491 | 0.5368 |
13.8938 | 79000 | 0.0546 | 0.4809 | 0.5121 |
13.9817 | 79500 | 0.0506 | 0.4874 | 0.5183 |
14.0696 | 80000 | 0.0484 | 0.4755 | 0.5129 |
14.1576 | 80500 | 0.0473 | 0.4932 | 0.5104 |
14.2455 | 81000 | 0.0472 | 0.4776 | 0.5009 |
14.3335 | 81500 | 0.0446 | 0.5355 | 0.4464 |
14.4214 | 82000 | 0.0465 | 0.5294 | 0.4414 |
14.5093 | 82500 | 0.0499 | 0.5268 | 0.4909 |
14.5973 | 83000 | 0.0467 | 0.4991 | 0.5019 |
14.6852 | 83500 | 0.0438 | 0.5074 | 0.4968 |
14.7731 | 84000 | 0.0455 | 0.5112 | 0.4827 |
14.8611 | 84500 | 0.0466 | 0.4864 | 0.5007 |
14.9490 | 85000 | 0.0457 | 0.4898 | 0.5019 |
-1 | -1 | - | - | 0.5877 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 288
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for aditeyabaral-redis/langcache-crossencoder-v1-ms-marco-MiniLM-L12-v2
Base model
microsoft/MiniLM-L12-H384-uncased
Quantized
cross-encoder/ms-marco-MiniLM-L12-v2
Evaluation results
- Accuracy on quora evalself-reported0.680
- Accuracy Threshold on quora evalself-reported3.252
- F1 on quora evalself-reported0.570
- F1 Threshold on quora evalself-reported2.850
- Precision on quora evalself-reported0.421
- Recall on quora evalself-reported0.881
- Average Precision on quora evalself-reported0.588