Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF

Model Type Base Model Quantization License Language

πŸ›‘οΈ Model Overview

Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF represents a paradigmatic shift in the application of large language models to the cybersecurity domain. This model, architected upon the Qwen3-32B foundation and optimized through Q8_0 quantization in GGUF format, embodies a sophisticated approach to AI-driven security operations. The model's development reflects a comprehensive understanding of the intricate requirements of modern cybersecurity practices, integrating advanced natural language processing capabilities with domain-specific expertise.

Key Characteristics

  • Architecture: Qwen3-32B base model with specialized cybersecurity fine-tuning utilizing advanced transformer architectures
  • Quantization: Q8_0 GGUF format implementing optimal performance-to-precision trade-offs
  • Training Infrastructure: 3Γ—NVIDIA H200 GPUs with distributed training paradigms
  • Training Duration: ~100 hours (approximately 2 months of iterative training with continuous evaluation)
  • Non-commercial: This model operates under strict non-profit principles
  • Safety-first Design: Incorporates multi-layered safety mechanisms to prevent malicious exploitation

πŸ“Š Technical Specifications

Model Architecture Details

Base Model: Qwen3-32B
Parameters: 32,762,762,240 (32.76B)
Quantization: Q8_0 (8-bit symmetric quantization)
Format: GGUF (GPT-Generated Unified Format) v3
Context Length: 32,768 tokens (with RoPE scaling capability up to 131,072)
Embedding Dimension: 5,120
Hidden Dimension: 13,696
Number of Layers: 64
Attention Heads: 40 (GQA with 8 KV heads)
Vocabulary Size: 151,936
Activation Function: SwiGLU
Position Encoding: Rotary Position Embeddings (RoPE)
Normalization: RMSNorm (Ξ΅=1e-6)

Advanced Training Configuration

from dataclasses import dataclass
from typing import Dict, List, Optional, Union
import torch
from transformers import TrainingArguments

@dataclass
class CybersecurityTrainingConfig:
    """Advanced configuration for cybersecurity-focused LLM training"""
    
    # Hardware Configuration
    hardware_config: Dict[str, Union[str, int]] = {
        "gpus": "3Γ—NVIDIA H200 (80GB HBM3e)",
        "total_vram": 240,  # GB
        "interconnect": "NVLink 4.0",
        "cpu": "AMD EPYC 9654 96-Core",
        "ram": 1024,  # GB
        "storage": "NVMe RAID-0 8TB"
    }
    
    # Training Hyperparameters
    training_args: TrainingArguments = TrainingArguments(
        output_dir="./cybersec-llm-checkpoints",
        num_train_epochs=3,
        per_device_train_batch_size=4,
        per_device_eval_batch_size=2,
        gradient_accumulation_steps=8,
        gradient_checkpointing=True,
        warmup_steps=1000,
        weight_decay=0.01,
        logging_steps=10,
        save_steps=500,
        eval_steps=100,
        evaluation_strategy="steps",
        save_strategy="steps",
        load_best_model_at_end=True,
        metric_for_best_model="cybersec_composite_score",
        greater_is_better=True,
        fp16=False,
        bf16=True,
        tf32=True,
        dataloader_num_workers=8,
        remove_unused_columns=False,
        push_to_hub=True,
        report_to=["tensorboard", "wandb"],
        logging_first_step=True,
        deepspeed="configs/deepspeed_stage3.json"
    )
    
    # Advanced Optimization Parameters
    optimization_config: Dict[str, any] = {
        "optimizer": "AdamW",
        "adam_beta1": 0.9,
        "adam_beta2": 0.999,
        "adam_epsilon": 1e-8,
        "max_grad_norm": 1.0,
        "learning_rate": 2e-5,
        "lr_scheduler_type": "cosine_with_restarts",
        "num_cycles": 3,
        "gradient_penalty": 0.1,
        "label_smoothing": 0.1
    }
    
    # Domain-Specific Training Configuration
    cybersec_config: Dict[str, any] = {
        "vulnerability_weight": 2.5,
        "exploit_weight": 1.8,
        "defense_weight": 3.0,
        "ethical_weight": 5.0,
        "adversarial_training": True,
        "robust_optimization": True,
        "safety_threshold": 0.95
    }
    
    # Dataset Configuration
    dataset_config: Dict[str, Union[str, float]] = {
        "total_size": "~500GB",
        "vulnerability_databases": 0.25,
        "security_advisories": 0.20,
        "research_papers": 0.15,
        "incident_reports": 0.15,
        "malware_samples": 0.10,
        "security_tools": 0.10,
        "best_practices": 0.05,
        "augmentation_ratio": 0.3,
        "synthetic_data_ratio": 0.2
    }

🎯 Specialized Cybersecurity Domains

The model demonstrates exceptional proficiency across six critical cybersecurity verticals, each representing a distinct operational paradigm within the security ecosystem:

1. Incident Response (IR)

Advanced capabilities in orchestrating comprehensive incident response workflows:

class IncidentResponseOrchestrator:
    """Sophisticated incident response automation framework"""
    
    def __init__(self, model, config):
        self.model = model
        self.config = config
        self.incident_db = IncidentDatabase()
        self.threat_intel = ThreatIntelligenceAPI()
        
    async def analyze_incident(self, incident_data: Dict) -> IncidentReport:
        """
        Comprehensive incident analysis with multi-stage processing
        """
        # Stage 1: Initial Classification
        classification = await self._classify_incident(incident_data)
        
        # Stage 2: Threat Intelligence Correlation
        threat_context = await self.threat_intel.correlate(
            indicators=incident_data.get('iocs', []),
            ttps=classification.get('ttps', [])
        )
        
        # Stage 3: Impact Assessment
        impact_analysis = await self._assess_impact(
            incident_data, 
            classification, 
            threat_context
        )
        
        # Stage 4: Response Strategy Generation
        response_plan = await self._generate_response_plan(
            classification=classification,
            impact=impact_analysis,
            resources=self.config.available_resources
        )
        
        # Stage 5: Automated Containment Actions
        containment_results = await self._execute_containment(
            response_plan.immediate_actions
        )
        
        return IncidentReport(
            classification=classification,
            threat_context=threat_context,
            impact_analysis=impact_analysis,
            response_plan=response_plan,
            containment_results=containment_results,
            recommendations=await self._generate_recommendations()
        )
    
    async def _classify_incident(self, data: Dict) -> Dict:
        prompt = self._build_classification_prompt(data)
        response = await self.model.generate_async(
            prompt, 
            temperature=0.3,
            max_tokens=2048,
            stop_sequences=["<|im_end|>"]
        )
        return self._parse_classification(response)

2. Threat Hunting

Proactive threat detection utilizing advanced behavioral analytics:

class AdvancedThreatHunter:
    """Sophisticated threat hunting framework with ML-enhanced detection"""
    
    def __init__(self, model, detection_engines):
        self.model = model
        self.detection_engines = detection_engines
        self.behavioral_baseline = BehavioralBaseline()
        self.anomaly_detector = AnomalyDetectionEngine()
        
    async def hunt_threats(self, 
                          environment_data: EnvironmentSnapshot,
                          hunt_hypothesis: Optional[str] = None) -> ThreatHuntingReport:
        """
        Execute comprehensive threat hunting operation
        """
        # Initialize hunting context
        context = HuntingContext(
            environment=environment_data,
            hypothesis=hunt_hypothesis or self._generate_hypothesis(environment_data)
        )
        
        # Phase 1: Behavioral Analysis
        behavioral_anomalies = await self._analyze_behaviors(context)
        
        # Phase 2: Pattern Recognition
        threat_patterns = await self._identify_threat_patterns(
            behavioral_anomalies,
            context
        )
        
        # Phase 3: Advanced Correlation
        correlated_threats = await self._correlate_threats(
            patterns=threat_patterns,
            timeline=context.timeline,
            assets=context.critical_assets
        )
        
        # Phase 4: Threat Validation
        validated_threats = await self._validate_threats(correlated_threats)
        
        # Phase 5: Attribution Analysis
        attribution = await self._perform_attribution(validated_threats)
        
        return ThreatHuntingReport(
            hypothesis=context.hypothesis,
            discovered_threats=validated_threats,
            attribution=attribution,
            recommendations=await self._generate_hunt_recommendations(),
            future_hunt_suggestions=self._suggest_future_hunts(validated_threats)
        )

3. Code Analysis

Multi-paradigm code security assessment framework:

class CodeSecurityAnalyzer:
    """Comprehensive code analysis engine with deep vulnerability detection"""
    
    def __init__(self, model, ruleset_engine):
        self.model = model
        self.ruleset_engine = ruleset_engine
        self.ast_analyzer = ASTSecurityAnalyzer()
        self.taint_analyzer = TaintAnalysisEngine()
        self.symbolic_executor = SymbolicExecutionEngine()
        
    async def analyze_code(self, 
                          code: str, 
                          language: str,
                          context: CodeContext) -> SecurityAnalysisReport:
        """
        Perform deep security analysis on provided code
        """
        # Parse and build AST
        ast = self.ast_analyzer.parse(code, language)
        
        # Static Analysis Phase
        static_vulnerabilities = await self._perform_static_analysis(
            ast=ast,
            code=code,
            language=language
        )
        
        # Taint Analysis
        taint_results = await self.taint_analyzer.analyze(
            ast=ast,
            entry_points=context.entry_points,
            sensitive_sinks=context.sensitive_sinks
        )
        
        # Symbolic Execution
        symbolic_paths = await self.symbolic_executor.explore(
            ast=ast,
            constraints=context.constraints,
            max_depth=context.max_analysis_depth
        )
        
        # AI-Enhanced Pattern Recognition
        ai_detected_issues = await self._ai_pattern_analysis(
            code=code,
            static_results=static_vulnerabilities,
            taint_results=taint_results
        )
        
        # Generate Remediation Suggestions
        remediation = await self._generate_remediation(
            vulnerabilities=static_vulnerabilities + ai_detected_issues,
            code_context=context
        )
        
        return SecurityAnalysisReport(
            vulnerabilities=self._merge_findings(
                static_vulnerabilities,
                taint_results.vulnerabilities,
                symbolic_paths.vulnerabilities,
                ai_detected_issues
            ),
            risk_score=self._calculate_risk_score(all_findings),
            remediation_suggestions=remediation,
            secure_code_alternatives=await self._generate_secure_alternatives(code)
        )

4. Exploit Development

Ethical exploit engineering for security validation:

class EthicalExploitDeveloper:
    """Advanced exploit development framework for authorized testing"""
    
    def __init__(self, model, safety_validator):
        self.model = model
        self.safety_validator = safety_validator
        self.exploit_db = ExploitDatabase()
        self.payload_generator = PayloadGenerator()
        
    async def develop_exploit(self,
                            vulnerability: VulnerabilityDetails,
                            target_config: TargetConfiguration,
                            ethical_context: EthicalContext) -> ExploitPackage:
        """
        Develop exploitation proof-of-concept with safety controls
        """
        # Validate ethical context
        if not await self.safety_validator.validate_context(ethical_context):
            raise EthicalViolationError("Unauthorized exploitation attempt")
        
        # Analyze vulnerability characteristics
        vuln_analysis = await self._analyze_vulnerability(vulnerability)
        
        # Generate exploitation primitives
        primitives = await self._generate_primitives(
            vuln_type=vuln_analysis.classification,
            target_arch=target_config.architecture,
            protections=target_config.security_features
        )
        
        # Develop exploit chain
        exploit_chain = await self._build_exploit_chain(
            primitives=primitives,
            constraints=target_config.constraints,
            reliability_target=0.95
        )
        
        # Generate payloads
        payloads = await self.payload_generator.generate(
            exploit_chain=exploit_chain,
            objectives=ethical_context.test_objectives,
            avoid_damage=True
        )
        
        # Validate exploit safety
        safety_report = await self._validate_exploit_safety(
            exploit_chain=exploit_chain,
            payloads=payloads
        )
        
        return ExploitPackage(
            exploit_chain=exploit_chain,
            payloads=payloads,
            safety_report=safety_report,
            deployment_guide=await self._generate_deployment_guide(),
            mitigation_recommendations=await self._generate_mitigations()
        )

5. Reverse Engineering

Advanced binary and protocol analysis capabilities:

class ReverseEngineeringFramework:
    """Comprehensive reverse engineering assistant with deep analysis capabilities"""
    
    def __init__(self, model, analysis_plugins):
        self.model = model
        self.plugins = analysis_plugins
        self.disassembler = AdvancedDisassembler()
        self.decompiler = HybridDecompiler()
        self.protocol_analyzer = ProtocolReverser()
        
    async def analyze_binary(self,
                           binary_path: str,
                           analysis_goals: List[str]) -> ReverseEngineeringReport:
        """
        Perform comprehensive binary analysis and reverse engineering
        """
        # Load and parse binary
        binary = await self._load_binary(binary_path)
        
        # Initial reconnaissance
        recon_data = await self._perform_reconnaissance(binary)
        
        # Disassembly and initial analysis
        disassembly = await self.disassembler.disassemble(
            binary=binary,
            architecture=recon_data.architecture,
            advanced_features=True
        )
        
        # Control flow reconstruction
        cfg = await self._reconstruct_control_flow(disassembly)
        
        # Decompilation attempts
        decompiled = await self.decompiler.decompile(
            disassembly=disassembly,
            cfg=cfg,
            optimization_level=3
        )
        
        # Identify interesting functions
        poi_functions = await self._identify_points_of_interest(
            cfg=cfg,
            decompiled=decompiled,
            goals=analysis_goals
        )
        
        # Deep semantic analysis
        semantic_analysis = await self._perform_semantic_analysis(
            functions=poi_functions,
            context=recon_data
        )
        
        # Protocol/format identification
        protocols = await self.protocol_analyzer.identify_protocols(
            binary=binary,
            network_traces=recon_data.network_activity
        )
        
        return ReverseEngineeringReport(
            binary_info=recon_data,
            control_flow=cfg,
            decompiled_code=decompiled,
            semantic_insights=semantic_analysis,
            identified_protocols=protocols,
            security_findings=await self._extract_security_findings(),
            recommendations=await self._generate_re_recommendations()
        )

6. Malware Analysis

Sophisticated malware examination and classification system:

class AdvancedMalwareAnalyzer:
    """State-of-the-art malware analysis framework"""
    
    def __init__(self, model, sandbox_cluster):
        self.model = model
        self.sandbox_cluster = sandbox_cluster
        self.static_analyzer = StaticMalwareAnalyzer()
        self.behavioral_analyzer = BehavioralAnalyzer()
        self.ml_classifier = MalwareMLClassifier()
        
    async def analyze_malware(self,
                            sample: MalwareSample,
                            analysis_depth: str = "comprehensive") -> MalwareAnalysisReport:
        """
        Execute multi-stage malware analysis pipeline
        """
        # Stage 1: Static Analysis
        static_features = await self.static_analyzer.extract_features(
            sample=sample,
            extract_strings=True,
            analyze_resources=True,
            identify_packers=True
        )
        
        # Stage 2: Dynamic Analysis Setup
        sandbox_config = self._configure_sandbox(
            sample_type=static_features.file_type,
            evasion_potential=static_features.evasion_score
        )
        
        # Stage 3: Behavioral Analysis
        behavioral_data = await self.sandbox_cluster.execute(
            sample=sample,
            config=sandbox_config,
            duration=300,  # 5 minutes
            collect_all=True
        )
        
        # Stage 4: Advanced Behavioral Processing
        processed_behavior = await self.behavioral_analyzer.process(
            raw_data=behavioral_data,
            identify_evasion=True,
            extract_c2=True,
            map_techniques=True
        )
        
        # Stage 5: ML-based Classification
        ml_classification = await self.ml_classifier.classify(
            static_features=static_features,
            behavioral_features=processed_behavior.features
        )
        
        # Stage 6: AI-Enhanced Analysis
        ai_insights = await self._generate_ai_insights(
            static=static_features,
            dynamic=processed_behavior,
            classification=ml_classification
        )
        
        # Stage 7: Attribution and Threat Intelligence
        attribution = await self._perform_attribution_analysis(
            sample_features=static_features,
            behavior=processed_behavior,
            ml_results=ml_classification
        )
        
        return MalwareAnalysisReport(
            sample_info=sample.metadata,
            static_analysis=static_features,
            behavioral_analysis=processed_behavior,
            classification=ml_classification,
            ai_insights=ai_insights,
            attribution=attribution,
            iocs=self._extract_iocs(static_features, processed_behavior),
            mitigation_strategies=await self._generate_mitigation_strategies(),
            yara_rules=await self._generate_yara_rules(static_features, processed_behavior)
        )
    
    async def _generate_ai_insights(self, static, dynamic, classification):
        """Generate advanced AI-driven insights"""
        prompt = f"""
        <|im_start|>system
        You are an expert malware analyst. Provide deep insights based on the analysis data.
        <|im_end|>
        <|im_start|>user
        Static Analysis:
        - File Type: {static.file_type}
        - Entropy: {static.entropy}
        - Suspicious Imports: {static.suspicious_imports}
        
        Dynamic Analysis:
        - Network Activity: {dynamic.network_summary}
        - File Operations: {dynamic.file_operations_summary}
        - Process Behavior: {dynamic.process_behavior}
        
        ML Classification: {classification.family} (confidence: {classification.confidence})
        
        Provide comprehensive insights including:
        1. Malware objectives and capabilities
        2. Evasion techniques employed
        3. Potential impact and risk assessment
        4. Links to known threat actors or campaigns
        <|im_end|>
        <|im_start|>assistant"""
        
        response = await self.model.generate_async(
            prompt,
            temperature=0.3,
            max_tokens=3072
        )
        
        return self._parse_ai_insights(response)

πŸ› οΈ Advanced Model Deployment Architecture

Distributed Inference Infrastructure

class DistributedInferenceCluster:
    """Enterprise-grade distributed inference system for cybersecurity operations"""
    
    def __init__(self, config: ClusterConfig):
        self.config = config
        self.load_balancer = AdaptiveLoadBalancer()
        self.model_shards = self._initialize_model_shards()
        self.cache_manager = DistributedCacheManager()
        self.monitoring = MonitoringSystem()
        
    async def initialize_cluster(self):
        """Initialize distributed inference cluster with fault tolerance"""
        # Setup model sharding across nodes
        for node_id, node_config in enumerate(self.config.nodes):
            shard = await self._setup_model_shard(
                node_id=node_id,
                node_config=node_config,
                model_path=self.config.model_path
            )
            self.model_shards[node_id] = shard
            
        # Initialize inter-node communication
        await self._setup_communication_mesh()
        
        # Setup distributed caching
        await self.cache_manager.initialize(
            nodes=self.config.nodes,
            cache_size=self.config.cache_size_gb * 1024  # MB
        )
        
        # Start monitoring
        await self.monitoring.start(
            metrics_endpoint=self.config.metrics_endpoint,
            alert_thresholds=self.config.alert_thresholds
        )
    
    async def inference(self, 
                       request: InferenceRequest,
                       priority: str = "normal") -> InferenceResponse:
        """Execute inference with intelligent routing and caching"""
        # Check cache first
        cache_key = self._generate_cache_key(request)
        cached_response = await self.cache_manager.get(cache_key)
        if cached_response and not request.force_regenerate:
            return cached_response
            
        # Route to appropriate shard
        target_shard = await self.load_balancer.select_shard(
            request=request,
            shards=self.model_shards,
            priority=priority
        )
        
        # Execute inference with retry logic
        max_retries = 3
        for attempt in range(max_retries):
            try:
                response = await target_shard.generate(
                    prompt=request.prompt,
                    **request.generation_params
                )
                
                # Cache successful response
                await self.cache_manager.set(
                    key=cache_key,
                    value=response,
                    ttl=self._calculate_ttl(request)
                )
                
                return response
                
            except Exception as e:
                if attempt == max_retries - 1:
                    raise
                await self._handle_inference_failure(e, target_shard, attempt)

Performance Optimization Framework

class PerformanceOptimizer:
    """Advanced performance optimization for cybersecurity LLM deployment"""
    
    def __init__(self, model_config: ModelConfig):
        self.config = model_config
        self.profiler = InferenceProfiler()
        self.optimizer = DynamicOptimizer()
        
    async def optimize_deployment(self, 
                                 workload_profile: WorkloadProfile) -> OptimizedConfig:
        """Generate optimized deployment configuration based on workload analysis"""
        
        # Analyze workload characteristics
        workload_analysis = await self._analyze_workload(workload_profile)
        
        # Determine optimal quantization strategy
        quantization_config = self._optimize_quantization(
            precision_requirements=workload_analysis.precision_needs,
            latency_requirements=workload_analysis.latency_sla,
            memory_constraints=self.config.memory_limit
        )
        
        # Configure dynamic batching
        batching_config = self._optimize_batching(
            request_patterns=workload_analysis.request_patterns,
            latency_targets=workload_analysis.latency_percentiles
        )
        
        # Setup KV cache optimization
        kv_cache_config = self._optimize_kv_cache(
            context_lengths=workload_analysis.context_distribution,
            memory_budget=self.config.kv_cache_memory
        )
        
        # Configure tensor parallelism
        parallelism_config = self._optimize_parallelism(
            model_size=self.config.model_size,
            available_gpus=self.config.gpu_count,
            interconnect_bandwidth=self.config.interconnect_bandwidth
        )
        
        return OptimizedConfig(
            quantization=quantization_config,
            batching=batching_config,
            kv_cache=kv_cache_config,
            parallelism=parallelism_config,
            estimated_throughput=self._estimate_throughput(all_configs),
            estimated_latency=self._estimate_latency(all_configs)
        )

πŸ” Security and Ethical Framework

Multi-Layer Safety Architecture

class SafetyFramework:
    """Comprehensive safety and ethical compliance system"""
    
    def __init__(self):
        self.content_filter = AdvancedContentFilter()
        self.intent_classifier = IntentClassificationEngine()
        self.ethical_validator = EthicalComplianceValidator()
        self.audit_logger = SecurityAuditLogger()
        
    async def validate_request(self, 
                             request: InferenceRequest,
                             context: SecurityContext) -> ValidationResult:
        """Multi-stage request validation with comprehensive safety checks"""
        
        # Stage 1: Content Filtering
        content_check = await self.content_filter.analyze(
            content=request.prompt,
            sensitivity_level="high"
        )
        
        if content_check.risk_score > 0.7:
            await self.audit_logger.log_blocked_request(
                request=request,
                reason=content_check.reasons,
                context=context
            )
            return ValidationResult(
                allowed=False,
                reason="Content violates safety guidelines",
                suggestions=self._generate_safe_alternatives(request)
            )
        
        # Stage 2: Intent Classification
        intent = await self.intent_classifier.classify(
            prompt=request.prompt,
            context=context.user_history
        )
        
        # Stage 3: Ethical Validation
        ethical_check = await self.ethical_validator.validate(
            intent=intent,
            requested_capabilities=request.required_capabilities,
            user_authorization=context.user_auth_level
        )
        
        if not ethical_check.compliant:
            return ValidationResult(
                allowed=False,
                reason=ethical_check.violation_reason,
                required_authorization=ethical_check.required_auth_level
            )
        
        # Stage 4: Capability Matching
        if not self._validate_capabilities(request, context):
            return ValidationResult(
                allowed=False,
                reason="Insufficient authorization for requested capabilities"
            )
        
        # Passed all checks
        await self.audit_logger.log_allowed_request(
            request=request,
            validation_scores={
                "content": content_check.risk_score,
                "intent": intent.confidence,
                "ethical": ethical_check.compliance_score
            }
        )
        
        return ValidationResult(
            allowed=True,
            safety_adjustments=self._calculate_safety_adjustments(
                content_check, intent, ethical_check
            )
        )

Responsible Disclosure Framework

class ResponsibleDisclosureManager:
    """Manages responsible disclosure workflows for discovered vulnerabilities"""
    
    def __init__(self, disclosure_config: DisclosureConfig):
        self.config = disclosure_config
        self.vulnerability_db = VulnerabilityDatabase()
        self.vendor_contacts = VendorContactManager()
        self.disclosure_tracker = DisclosureTracker()
        
    async def handle_vulnerability_discovery(self,
                                           vulnerability: DiscoveredVulnerability,
                                           discovery_context: DiscoveryContext) -> DisclosureWorkflow:
        """Orchestrate responsible disclosure process"""
        
        # Validate vulnerability
        validation = await self._validate_vulnerability(vulnerability)
        if not validation.confirmed:
            return DisclosureWorkflow(status="invalid", reason=validation.reason)
        
        # Check for duplicate
        existing = await self.vulnerability_db.check_duplicate(vulnerability)
        if existing:
            return DisclosureWorkflow(
                status="duplicate",
                existing_id=existing.id,
                existing_status=existing.disclosure_status
            )
        
        # Create disclosure record
        disclosure = await self.disclosure_tracker.create_disclosure(
            vulnerability=vulnerability,
            severity=validation.severity,
            affected_vendors=validation.affected_vendors
        )
        
        # Initiate vendor contact
        for vendor in validation.affected_vendors:
            contact_result = await self.vendor_contacts.initiate_contact(
                vendor=vendor,
                vulnerability=vulnerability,
                disclosure_id=disclosure.id
            )
            
            if contact_result.successful:
                await self.disclosure_tracker.update_status(
                    disclosure_id=disclosure.id,
                    vendor=vendor,
                    status="vendor_notified",
                    response_deadline=self._calculate_deadline(validation.severity)
                )
        
        # Setup monitoring
        await self._setup_disclosure_monitoring(disclosure)
        
        return DisclosureWorkflow(
            status="initiated",
            disclosure_id=disclosure.id,
            timeline=self._generate_disclosure_timeline(validation.severity),
            next_steps=self._determine_next_steps(disclosure)
        )

πŸ“š Advanced Training Methodology

Curriculum Learning Pipeline

class CurriculumLearningOrchestrator:
    """Sophisticated curriculum learning system for cybersecurity domain adaptation"""
    
    def __init__(self, base_model, training_config):
        self.base_model = base_model
        self.config = training_config
        self.curriculum_scheduler = AdaptiveCurriculumScheduler()
        self.difficulty_estimator = DifficultyEstimator()
        self.performance_tracker = PerformanceTracker()
        
    async def execute_curriculum_training(self, 
                                        dataset: CybersecurityDataset) -> TrainedModel:
        """Execute multi-phase curriculum learning pipeline"""
        
        # Phase 1: Fundamental Concepts
        fundamentals_curriculum = await self._create_fundamentals_curriculum(dataset)
        model_v1 = await self._train_phase(
            model=self.base_model,
            curriculum=fundamentals_curriculum,
            phase_name="fundamentals",
            epochs=10
        )
        
        # Phase 2: Domain Specialization
        specialization_curriculum = await self._create_specialization_curriculum(
            dataset=dataset,
            model_performance=await self.performance_tracker.evaluate(model_v1)
        )
        model_v2 = await self._train_phase(
            model=model_v1,
            curriculum=specialization_curriculum,
            phase_name="specialization",
            epochs=15
        )
        
        # Phase 3: Advanced Techniques
        advanced_curriculum = await self._create_advanced_curriculum(
            dataset=dataset,
            focus_areas=self._identify_weak_areas(model_v2)
        )
        model_v3 = await self._train_phase(
            model=model_v2,
            curriculum=advanced_curriculum,
            phase_name="advanced",
            epochs=20
        )
        
        # Phase 4: Adversarial Hardening
        adversarial_curriculum = await self._create_adversarial_curriculum()
        model_v4 = await self._train_adversarial(
            model=model_v3,
            curriculum=adversarial_curriculum,
            epochs=10
        )
        
        # Phase 5: Safety Alignment
        safety_curriculum = await self._create_safety_curriculum()
        final_model = await self._train_safety_alignment(
            model=model_v4,
            curriculum=safety_curriculum,
            epochs=5
        )
        
        return final_model

Data Augmentation Pipeline

class CybersecurityDataAugmenter:
    """Advanced data augmentation for cybersecurity training data"""
    
    def __init__(self, augmentation_config):
        self.config = augmentation_config
        self.code_mutator = CodeMutationEngine()
        self.vulnerability_synthesizer = VulnerabilitySynthesizer()
        self.attack_generator = AttackScenarioGenerator()
        
    async def augment_dataset(self, 
                            original_dataset: Dataset,
                            augmentation_factor: float = 2.0) -> AugmentedDataset:
        """Generate augmented cybersecurity training data"""
        
        augmented_samples = []
        
        for sample in original_dataset:
            # Original sample
            augmented_samples.append(sample)
            
            # Type-specific augmentation
            if sample.type == "vulnerable_code":
                mutations = await self.code_mutator.generate_mutations(
                    code=sample.content,
                    language=sample.language,
                    preserve_vulnerability=True,
                    num_mutations=int(augmentation_factor)
                )
                augmented_samples.extend(mutations)
                
            elif sample.type == "exploit":
                variations = await self._generate_exploit_variations(
                    exploit=sample.content,
                    target_diversity=augmentation_factor
                )
                augmented_samples.extend(variations)
                
            elif sample.type == "malware":
                variants = await self._generate_malware_variants(
                    malware=sample.content,
                    behavioral_preservation=0.8
                )
                augmented_samples.extend(variants)
                
            elif sample.type == "incident_report":
                scenarios = await self.attack_generator.generate_scenarios(
                    base_incident=sample.content,
                    complexity_levels=["low", "medium", "high"],
                    num_scenarios=int(augmentation_factor)
                )
                augmented_samples.extend(scenarios)
        
        # Synthetic data generation
        synthetic_samples = await self._generate_synthetic_samples(
            num_samples=int(len(original_dataset) * 0.3),
            sample_distribution=self._analyze_distribution(original_dataset)
        )
        augmented_samples.extend(synthetic_samples)
        
        return AugmentedDataset(
            samples=augmented_samples,
            augmentation_metadata=self._generate_metadata(
                original_size=len(original_dataset),
                augmented_size=len(augmented_samples)
            )
        )

🀝 Community Contribution Guidelines

Contributing to Trendyol Cybersecurity LLM

We welcome contributions from the global cybersecurity community. Our contribution framework ensures high-quality, security-focused enhancements:

class ContributionValidator:
    """Automated contribution validation system"""
    
    def __init__(self):
        self.security_scanner = SecurityScanner()
        self.quality_analyzer = QualityAnalyzer()
        self.compliance_checker = ComplianceChecker()
        
    async def validate_contribution(self, 
                                  contribution: Contribution) -> ValidationReport:
        """Comprehensive contribution validation pipeline"""
        
        # Security scanning
        security_results = await self.security_scanner.scan(
            code=contribution.code_changes,
            configs=contribution.config_changes,
            deep_scan=True
        )
        
        # Quality analysis
        quality_results = await self.quality_analyzer.analyze(
            contribution=contribution,
            metrics=["complexity", "maintainability", "test_coverage"]
        )
        
        # Compliance checking
        compliance_results = await self.compliance_checker.check(
            contribution=contribution,
            policies=["security_policy", "code_standards", "documentation"]
        )
        
        return ValidationReport(
            security=security_results,
            quality=quality_results,
            compliance=compliance_results,
            overall_status=self._determine_status(all_results),
            recommendations=self._generate_recommendations(all_results)
        )

Research Collaboration Framework

For academic and research collaborations, please refer to our research guidelines and dataset access protocols. We maintain partnerships with leading cybersecurity research institutions and welcome new collaborative opportunities.

πŸ“„ License and Citation

This model is released under the Apache 2.0 License with additional ethical use provisions specific to cybersecurity applications.


---

<div align="center">
  <h3>πŸ›‘οΈ Developed with Passion by Trendyol Security Team πŸ›‘οΈ</h3>
  <p><em>Empowering the cybersecurity community with advanced AI capabilities</em></p>
  <p><strong>Together, we build a more secure digital future</strong></p>
</div>
Downloads last month
4
GGUF
Model size
32.8B params
Architecture
qwen3
Hardware compatibility
Log In to view the estimation

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Trendyol/Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF

Base model

Qwen/Qwen3-32B
Quantized
(93)
this model