Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF
π‘οΈ Model Overview
Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF represents a paradigmatic shift in the application of large language models to the cybersecurity domain. This model, architected upon the Qwen3-32B foundation and optimized through Q8_0 quantization in GGUF format, embodies a sophisticated approach to AI-driven security operations. The model's development reflects a comprehensive understanding of the intricate requirements of modern cybersecurity practices, integrating advanced natural language processing capabilities with domain-specific expertise.
Key Characteristics
- Architecture: Qwen3-32B base model with specialized cybersecurity fine-tuning utilizing advanced transformer architectures
- Quantization: Q8_0 GGUF format implementing optimal performance-to-precision trade-offs
- Training Infrastructure: 3ΓNVIDIA H200 GPUs with distributed training paradigms
- Training Duration: ~100 hours (approximately 2 months of iterative training with continuous evaluation)
- Non-commercial: This model operates under strict non-profit principles
- Safety-first Design: Incorporates multi-layered safety mechanisms to prevent malicious exploitation
π Technical Specifications
Model Architecture Details
Base Model: Qwen3-32B
Parameters: 32,762,762,240 (32.76B)
Quantization: Q8_0 (8-bit symmetric quantization)
Format: GGUF (GPT-Generated Unified Format) v3
Context Length: 32,768 tokens (with RoPE scaling capability up to 131,072)
Embedding Dimension: 5,120
Hidden Dimension: 13,696
Number of Layers: 64
Attention Heads: 40 (GQA with 8 KV heads)
Vocabulary Size: 151,936
Activation Function: SwiGLU
Position Encoding: Rotary Position Embeddings (RoPE)
Normalization: RMSNorm (Ξ΅=1e-6)
Advanced Training Configuration
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
import torch
from transformers import TrainingArguments
@dataclass
class CybersecurityTrainingConfig:
"""Advanced configuration for cybersecurity-focused LLM training"""
# Hardware Configuration
hardware_config: Dict[str, Union[str, int]] = {
"gpus": "3ΓNVIDIA H200 (80GB HBM3e)",
"total_vram": 240, # GB
"interconnect": "NVLink 4.0",
"cpu": "AMD EPYC 9654 96-Core",
"ram": 1024, # GB
"storage": "NVMe RAID-0 8TB"
}
# Training Hyperparameters
training_args: TrainingArguments = TrainingArguments(
output_dir="./cybersec-llm-checkpoints",
num_train_epochs=3,
per_device_train_batch_size=4,
per_device_eval_batch_size=2,
gradient_accumulation_steps=8,
gradient_checkpointing=True,
warmup_steps=1000,
weight_decay=0.01,
logging_steps=10,
save_steps=500,
eval_steps=100,
evaluation_strategy="steps",
save_strategy="steps",
load_best_model_at_end=True,
metric_for_best_model="cybersec_composite_score",
greater_is_better=True,
fp16=False,
bf16=True,
tf32=True,
dataloader_num_workers=8,
remove_unused_columns=False,
push_to_hub=True,
report_to=["tensorboard", "wandb"],
logging_first_step=True,
deepspeed="configs/deepspeed_stage3.json"
)
# Advanced Optimization Parameters
optimization_config: Dict[str, any] = {
"optimizer": "AdamW",
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"adam_epsilon": 1e-8,
"max_grad_norm": 1.0,
"learning_rate": 2e-5,
"lr_scheduler_type": "cosine_with_restarts",
"num_cycles": 3,
"gradient_penalty": 0.1,
"label_smoothing": 0.1
}
# Domain-Specific Training Configuration
cybersec_config: Dict[str, any] = {
"vulnerability_weight": 2.5,
"exploit_weight": 1.8,
"defense_weight": 3.0,
"ethical_weight": 5.0,
"adversarial_training": True,
"robust_optimization": True,
"safety_threshold": 0.95
}
# Dataset Configuration
dataset_config: Dict[str, Union[str, float]] = {
"total_size": "~500GB",
"vulnerability_databases": 0.25,
"security_advisories": 0.20,
"research_papers": 0.15,
"incident_reports": 0.15,
"malware_samples": 0.10,
"security_tools": 0.10,
"best_practices": 0.05,
"augmentation_ratio": 0.3,
"synthetic_data_ratio": 0.2
}
π― Specialized Cybersecurity Domains
The model demonstrates exceptional proficiency across six critical cybersecurity verticals, each representing a distinct operational paradigm within the security ecosystem:
1. Incident Response (IR)
Advanced capabilities in orchestrating comprehensive incident response workflows:
class IncidentResponseOrchestrator:
"""Sophisticated incident response automation framework"""
def __init__(self, model, config):
self.model = model
self.config = config
self.incident_db = IncidentDatabase()
self.threat_intel = ThreatIntelligenceAPI()
async def analyze_incident(self, incident_data: Dict) -> IncidentReport:
"""
Comprehensive incident analysis with multi-stage processing
"""
# Stage 1: Initial Classification
classification = await self._classify_incident(incident_data)
# Stage 2: Threat Intelligence Correlation
threat_context = await self.threat_intel.correlate(
indicators=incident_data.get('iocs', []),
ttps=classification.get('ttps', [])
)
# Stage 3: Impact Assessment
impact_analysis = await self._assess_impact(
incident_data,
classification,
threat_context
)
# Stage 4: Response Strategy Generation
response_plan = await self._generate_response_plan(
classification=classification,
impact=impact_analysis,
resources=self.config.available_resources
)
# Stage 5: Automated Containment Actions
containment_results = await self._execute_containment(
response_plan.immediate_actions
)
return IncidentReport(
classification=classification,
threat_context=threat_context,
impact_analysis=impact_analysis,
response_plan=response_plan,
containment_results=containment_results,
recommendations=await self._generate_recommendations()
)
async def _classify_incident(self, data: Dict) -> Dict:
prompt = self._build_classification_prompt(data)
response = await self.model.generate_async(
prompt,
temperature=0.3,
max_tokens=2048,
stop_sequences=["<|im_end|>"]
)
return self._parse_classification(response)
2. Threat Hunting
Proactive threat detection utilizing advanced behavioral analytics:
class AdvancedThreatHunter:
"""Sophisticated threat hunting framework with ML-enhanced detection"""
def __init__(self, model, detection_engines):
self.model = model
self.detection_engines = detection_engines
self.behavioral_baseline = BehavioralBaseline()
self.anomaly_detector = AnomalyDetectionEngine()
async def hunt_threats(self,
environment_data: EnvironmentSnapshot,
hunt_hypothesis: Optional[str] = None) -> ThreatHuntingReport:
"""
Execute comprehensive threat hunting operation
"""
# Initialize hunting context
context = HuntingContext(
environment=environment_data,
hypothesis=hunt_hypothesis or self._generate_hypothesis(environment_data)
)
# Phase 1: Behavioral Analysis
behavioral_anomalies = await self._analyze_behaviors(context)
# Phase 2: Pattern Recognition
threat_patterns = await self._identify_threat_patterns(
behavioral_anomalies,
context
)
# Phase 3: Advanced Correlation
correlated_threats = await self._correlate_threats(
patterns=threat_patterns,
timeline=context.timeline,
assets=context.critical_assets
)
# Phase 4: Threat Validation
validated_threats = await self._validate_threats(correlated_threats)
# Phase 5: Attribution Analysis
attribution = await self._perform_attribution(validated_threats)
return ThreatHuntingReport(
hypothesis=context.hypothesis,
discovered_threats=validated_threats,
attribution=attribution,
recommendations=await self._generate_hunt_recommendations(),
future_hunt_suggestions=self._suggest_future_hunts(validated_threats)
)
3. Code Analysis
Multi-paradigm code security assessment framework:
class CodeSecurityAnalyzer:
"""Comprehensive code analysis engine with deep vulnerability detection"""
def __init__(self, model, ruleset_engine):
self.model = model
self.ruleset_engine = ruleset_engine
self.ast_analyzer = ASTSecurityAnalyzer()
self.taint_analyzer = TaintAnalysisEngine()
self.symbolic_executor = SymbolicExecutionEngine()
async def analyze_code(self,
code: str,
language: str,
context: CodeContext) -> SecurityAnalysisReport:
"""
Perform deep security analysis on provided code
"""
# Parse and build AST
ast = self.ast_analyzer.parse(code, language)
# Static Analysis Phase
static_vulnerabilities = await self._perform_static_analysis(
ast=ast,
code=code,
language=language
)
# Taint Analysis
taint_results = await self.taint_analyzer.analyze(
ast=ast,
entry_points=context.entry_points,
sensitive_sinks=context.sensitive_sinks
)
# Symbolic Execution
symbolic_paths = await self.symbolic_executor.explore(
ast=ast,
constraints=context.constraints,
max_depth=context.max_analysis_depth
)
# AI-Enhanced Pattern Recognition
ai_detected_issues = await self._ai_pattern_analysis(
code=code,
static_results=static_vulnerabilities,
taint_results=taint_results
)
# Generate Remediation Suggestions
remediation = await self._generate_remediation(
vulnerabilities=static_vulnerabilities + ai_detected_issues,
code_context=context
)
return SecurityAnalysisReport(
vulnerabilities=self._merge_findings(
static_vulnerabilities,
taint_results.vulnerabilities,
symbolic_paths.vulnerabilities,
ai_detected_issues
),
risk_score=self._calculate_risk_score(all_findings),
remediation_suggestions=remediation,
secure_code_alternatives=await self._generate_secure_alternatives(code)
)
4. Exploit Development
Ethical exploit engineering for security validation:
class EthicalExploitDeveloper:
"""Advanced exploit development framework for authorized testing"""
def __init__(self, model, safety_validator):
self.model = model
self.safety_validator = safety_validator
self.exploit_db = ExploitDatabase()
self.payload_generator = PayloadGenerator()
async def develop_exploit(self,
vulnerability: VulnerabilityDetails,
target_config: TargetConfiguration,
ethical_context: EthicalContext) -> ExploitPackage:
"""
Develop exploitation proof-of-concept with safety controls
"""
# Validate ethical context
if not await self.safety_validator.validate_context(ethical_context):
raise EthicalViolationError("Unauthorized exploitation attempt")
# Analyze vulnerability characteristics
vuln_analysis = await self._analyze_vulnerability(vulnerability)
# Generate exploitation primitives
primitives = await self._generate_primitives(
vuln_type=vuln_analysis.classification,
target_arch=target_config.architecture,
protections=target_config.security_features
)
# Develop exploit chain
exploit_chain = await self._build_exploit_chain(
primitives=primitives,
constraints=target_config.constraints,
reliability_target=0.95
)
# Generate payloads
payloads = await self.payload_generator.generate(
exploit_chain=exploit_chain,
objectives=ethical_context.test_objectives,
avoid_damage=True
)
# Validate exploit safety
safety_report = await self._validate_exploit_safety(
exploit_chain=exploit_chain,
payloads=payloads
)
return ExploitPackage(
exploit_chain=exploit_chain,
payloads=payloads,
safety_report=safety_report,
deployment_guide=await self._generate_deployment_guide(),
mitigation_recommendations=await self._generate_mitigations()
)
5. Reverse Engineering
Advanced binary and protocol analysis capabilities:
class ReverseEngineeringFramework:
"""Comprehensive reverse engineering assistant with deep analysis capabilities"""
def __init__(self, model, analysis_plugins):
self.model = model
self.plugins = analysis_plugins
self.disassembler = AdvancedDisassembler()
self.decompiler = HybridDecompiler()
self.protocol_analyzer = ProtocolReverser()
async def analyze_binary(self,
binary_path: str,
analysis_goals: List[str]) -> ReverseEngineeringReport:
"""
Perform comprehensive binary analysis and reverse engineering
"""
# Load and parse binary
binary = await self._load_binary(binary_path)
# Initial reconnaissance
recon_data = await self._perform_reconnaissance(binary)
# Disassembly and initial analysis
disassembly = await self.disassembler.disassemble(
binary=binary,
architecture=recon_data.architecture,
advanced_features=True
)
# Control flow reconstruction
cfg = await self._reconstruct_control_flow(disassembly)
# Decompilation attempts
decompiled = await self.decompiler.decompile(
disassembly=disassembly,
cfg=cfg,
optimization_level=3
)
# Identify interesting functions
poi_functions = await self._identify_points_of_interest(
cfg=cfg,
decompiled=decompiled,
goals=analysis_goals
)
# Deep semantic analysis
semantic_analysis = await self._perform_semantic_analysis(
functions=poi_functions,
context=recon_data
)
# Protocol/format identification
protocols = await self.protocol_analyzer.identify_protocols(
binary=binary,
network_traces=recon_data.network_activity
)
return ReverseEngineeringReport(
binary_info=recon_data,
control_flow=cfg,
decompiled_code=decompiled,
semantic_insights=semantic_analysis,
identified_protocols=protocols,
security_findings=await self._extract_security_findings(),
recommendations=await self._generate_re_recommendations()
)
6. Malware Analysis
Sophisticated malware examination and classification system:
class AdvancedMalwareAnalyzer:
"""State-of-the-art malware analysis framework"""
def __init__(self, model, sandbox_cluster):
self.model = model
self.sandbox_cluster = sandbox_cluster
self.static_analyzer = StaticMalwareAnalyzer()
self.behavioral_analyzer = BehavioralAnalyzer()
self.ml_classifier = MalwareMLClassifier()
async def analyze_malware(self,
sample: MalwareSample,
analysis_depth: str = "comprehensive") -> MalwareAnalysisReport:
"""
Execute multi-stage malware analysis pipeline
"""
# Stage 1: Static Analysis
static_features = await self.static_analyzer.extract_features(
sample=sample,
extract_strings=True,
analyze_resources=True,
identify_packers=True
)
# Stage 2: Dynamic Analysis Setup
sandbox_config = self._configure_sandbox(
sample_type=static_features.file_type,
evasion_potential=static_features.evasion_score
)
# Stage 3: Behavioral Analysis
behavioral_data = await self.sandbox_cluster.execute(
sample=sample,
config=sandbox_config,
duration=300, # 5 minutes
collect_all=True
)
# Stage 4: Advanced Behavioral Processing
processed_behavior = await self.behavioral_analyzer.process(
raw_data=behavioral_data,
identify_evasion=True,
extract_c2=True,
map_techniques=True
)
# Stage 5: ML-based Classification
ml_classification = await self.ml_classifier.classify(
static_features=static_features,
behavioral_features=processed_behavior.features
)
# Stage 6: AI-Enhanced Analysis
ai_insights = await self._generate_ai_insights(
static=static_features,
dynamic=processed_behavior,
classification=ml_classification
)
# Stage 7: Attribution and Threat Intelligence
attribution = await self._perform_attribution_analysis(
sample_features=static_features,
behavior=processed_behavior,
ml_results=ml_classification
)
return MalwareAnalysisReport(
sample_info=sample.metadata,
static_analysis=static_features,
behavioral_analysis=processed_behavior,
classification=ml_classification,
ai_insights=ai_insights,
attribution=attribution,
iocs=self._extract_iocs(static_features, processed_behavior),
mitigation_strategies=await self._generate_mitigation_strategies(),
yara_rules=await self._generate_yara_rules(static_features, processed_behavior)
)
async def _generate_ai_insights(self, static, dynamic, classification):
"""Generate advanced AI-driven insights"""
prompt = f"""
<|im_start|>system
You are an expert malware analyst. Provide deep insights based on the analysis data.
<|im_end|>
<|im_start|>user
Static Analysis:
- File Type: {static.file_type}
- Entropy: {static.entropy}
- Suspicious Imports: {static.suspicious_imports}
Dynamic Analysis:
- Network Activity: {dynamic.network_summary}
- File Operations: {dynamic.file_operations_summary}
- Process Behavior: {dynamic.process_behavior}
ML Classification: {classification.family} (confidence: {classification.confidence})
Provide comprehensive insights including:
1. Malware objectives and capabilities
2. Evasion techniques employed
3. Potential impact and risk assessment
4. Links to known threat actors or campaigns
<|im_end|>
<|im_start|>assistant"""
response = await self.model.generate_async(
prompt,
temperature=0.3,
max_tokens=3072
)
return self._parse_ai_insights(response)
π οΈ Advanced Model Deployment Architecture
Distributed Inference Infrastructure
class DistributedInferenceCluster:
"""Enterprise-grade distributed inference system for cybersecurity operations"""
def __init__(self, config: ClusterConfig):
self.config = config
self.load_balancer = AdaptiveLoadBalancer()
self.model_shards = self._initialize_model_shards()
self.cache_manager = DistributedCacheManager()
self.monitoring = MonitoringSystem()
async def initialize_cluster(self):
"""Initialize distributed inference cluster with fault tolerance"""
# Setup model sharding across nodes
for node_id, node_config in enumerate(self.config.nodes):
shard = await self._setup_model_shard(
node_id=node_id,
node_config=node_config,
model_path=self.config.model_path
)
self.model_shards[node_id] = shard
# Initialize inter-node communication
await self._setup_communication_mesh()
# Setup distributed caching
await self.cache_manager.initialize(
nodes=self.config.nodes,
cache_size=self.config.cache_size_gb * 1024 # MB
)
# Start monitoring
await self.monitoring.start(
metrics_endpoint=self.config.metrics_endpoint,
alert_thresholds=self.config.alert_thresholds
)
async def inference(self,
request: InferenceRequest,
priority: str = "normal") -> InferenceResponse:
"""Execute inference with intelligent routing and caching"""
# Check cache first
cache_key = self._generate_cache_key(request)
cached_response = await self.cache_manager.get(cache_key)
if cached_response and not request.force_regenerate:
return cached_response
# Route to appropriate shard
target_shard = await self.load_balancer.select_shard(
request=request,
shards=self.model_shards,
priority=priority
)
# Execute inference with retry logic
max_retries = 3
for attempt in range(max_retries):
try:
response = await target_shard.generate(
prompt=request.prompt,
**request.generation_params
)
# Cache successful response
await self.cache_manager.set(
key=cache_key,
value=response,
ttl=self._calculate_ttl(request)
)
return response
except Exception as e:
if attempt == max_retries - 1:
raise
await self._handle_inference_failure(e, target_shard, attempt)
Performance Optimization Framework
class PerformanceOptimizer:
"""Advanced performance optimization for cybersecurity LLM deployment"""
def __init__(self, model_config: ModelConfig):
self.config = model_config
self.profiler = InferenceProfiler()
self.optimizer = DynamicOptimizer()
async def optimize_deployment(self,
workload_profile: WorkloadProfile) -> OptimizedConfig:
"""Generate optimized deployment configuration based on workload analysis"""
# Analyze workload characteristics
workload_analysis = await self._analyze_workload(workload_profile)
# Determine optimal quantization strategy
quantization_config = self._optimize_quantization(
precision_requirements=workload_analysis.precision_needs,
latency_requirements=workload_analysis.latency_sla,
memory_constraints=self.config.memory_limit
)
# Configure dynamic batching
batching_config = self._optimize_batching(
request_patterns=workload_analysis.request_patterns,
latency_targets=workload_analysis.latency_percentiles
)
# Setup KV cache optimization
kv_cache_config = self._optimize_kv_cache(
context_lengths=workload_analysis.context_distribution,
memory_budget=self.config.kv_cache_memory
)
# Configure tensor parallelism
parallelism_config = self._optimize_parallelism(
model_size=self.config.model_size,
available_gpus=self.config.gpu_count,
interconnect_bandwidth=self.config.interconnect_bandwidth
)
return OptimizedConfig(
quantization=quantization_config,
batching=batching_config,
kv_cache=kv_cache_config,
parallelism=parallelism_config,
estimated_throughput=self._estimate_throughput(all_configs),
estimated_latency=self._estimate_latency(all_configs)
)
π Security and Ethical Framework
Multi-Layer Safety Architecture
class SafetyFramework:
"""Comprehensive safety and ethical compliance system"""
def __init__(self):
self.content_filter = AdvancedContentFilter()
self.intent_classifier = IntentClassificationEngine()
self.ethical_validator = EthicalComplianceValidator()
self.audit_logger = SecurityAuditLogger()
async def validate_request(self,
request: InferenceRequest,
context: SecurityContext) -> ValidationResult:
"""Multi-stage request validation with comprehensive safety checks"""
# Stage 1: Content Filtering
content_check = await self.content_filter.analyze(
content=request.prompt,
sensitivity_level="high"
)
if content_check.risk_score > 0.7:
await self.audit_logger.log_blocked_request(
request=request,
reason=content_check.reasons,
context=context
)
return ValidationResult(
allowed=False,
reason="Content violates safety guidelines",
suggestions=self._generate_safe_alternatives(request)
)
# Stage 2: Intent Classification
intent = await self.intent_classifier.classify(
prompt=request.prompt,
context=context.user_history
)
# Stage 3: Ethical Validation
ethical_check = await self.ethical_validator.validate(
intent=intent,
requested_capabilities=request.required_capabilities,
user_authorization=context.user_auth_level
)
if not ethical_check.compliant:
return ValidationResult(
allowed=False,
reason=ethical_check.violation_reason,
required_authorization=ethical_check.required_auth_level
)
# Stage 4: Capability Matching
if not self._validate_capabilities(request, context):
return ValidationResult(
allowed=False,
reason="Insufficient authorization for requested capabilities"
)
# Passed all checks
await self.audit_logger.log_allowed_request(
request=request,
validation_scores={
"content": content_check.risk_score,
"intent": intent.confidence,
"ethical": ethical_check.compliance_score
}
)
return ValidationResult(
allowed=True,
safety_adjustments=self._calculate_safety_adjustments(
content_check, intent, ethical_check
)
)
Responsible Disclosure Framework
class ResponsibleDisclosureManager:
"""Manages responsible disclosure workflows for discovered vulnerabilities"""
def __init__(self, disclosure_config: DisclosureConfig):
self.config = disclosure_config
self.vulnerability_db = VulnerabilityDatabase()
self.vendor_contacts = VendorContactManager()
self.disclosure_tracker = DisclosureTracker()
async def handle_vulnerability_discovery(self,
vulnerability: DiscoveredVulnerability,
discovery_context: DiscoveryContext) -> DisclosureWorkflow:
"""Orchestrate responsible disclosure process"""
# Validate vulnerability
validation = await self._validate_vulnerability(vulnerability)
if not validation.confirmed:
return DisclosureWorkflow(status="invalid", reason=validation.reason)
# Check for duplicate
existing = await self.vulnerability_db.check_duplicate(vulnerability)
if existing:
return DisclosureWorkflow(
status="duplicate",
existing_id=existing.id,
existing_status=existing.disclosure_status
)
# Create disclosure record
disclosure = await self.disclosure_tracker.create_disclosure(
vulnerability=vulnerability,
severity=validation.severity,
affected_vendors=validation.affected_vendors
)
# Initiate vendor contact
for vendor in validation.affected_vendors:
contact_result = await self.vendor_contacts.initiate_contact(
vendor=vendor,
vulnerability=vulnerability,
disclosure_id=disclosure.id
)
if contact_result.successful:
await self.disclosure_tracker.update_status(
disclosure_id=disclosure.id,
vendor=vendor,
status="vendor_notified",
response_deadline=self._calculate_deadline(validation.severity)
)
# Setup monitoring
await self._setup_disclosure_monitoring(disclosure)
return DisclosureWorkflow(
status="initiated",
disclosure_id=disclosure.id,
timeline=self._generate_disclosure_timeline(validation.severity),
next_steps=self._determine_next_steps(disclosure)
)
π Advanced Training Methodology
Curriculum Learning Pipeline
class CurriculumLearningOrchestrator:
"""Sophisticated curriculum learning system for cybersecurity domain adaptation"""
def __init__(self, base_model, training_config):
self.base_model = base_model
self.config = training_config
self.curriculum_scheduler = AdaptiveCurriculumScheduler()
self.difficulty_estimator = DifficultyEstimator()
self.performance_tracker = PerformanceTracker()
async def execute_curriculum_training(self,
dataset: CybersecurityDataset) -> TrainedModel:
"""Execute multi-phase curriculum learning pipeline"""
# Phase 1: Fundamental Concepts
fundamentals_curriculum = await self._create_fundamentals_curriculum(dataset)
model_v1 = await self._train_phase(
model=self.base_model,
curriculum=fundamentals_curriculum,
phase_name="fundamentals",
epochs=10
)
# Phase 2: Domain Specialization
specialization_curriculum = await self._create_specialization_curriculum(
dataset=dataset,
model_performance=await self.performance_tracker.evaluate(model_v1)
)
model_v2 = await self._train_phase(
model=model_v1,
curriculum=specialization_curriculum,
phase_name="specialization",
epochs=15
)
# Phase 3: Advanced Techniques
advanced_curriculum = await self._create_advanced_curriculum(
dataset=dataset,
focus_areas=self._identify_weak_areas(model_v2)
)
model_v3 = await self._train_phase(
model=model_v2,
curriculum=advanced_curriculum,
phase_name="advanced",
epochs=20
)
# Phase 4: Adversarial Hardening
adversarial_curriculum = await self._create_adversarial_curriculum()
model_v4 = await self._train_adversarial(
model=model_v3,
curriculum=adversarial_curriculum,
epochs=10
)
# Phase 5: Safety Alignment
safety_curriculum = await self._create_safety_curriculum()
final_model = await self._train_safety_alignment(
model=model_v4,
curriculum=safety_curriculum,
epochs=5
)
return final_model
Data Augmentation Pipeline
class CybersecurityDataAugmenter:
"""Advanced data augmentation for cybersecurity training data"""
def __init__(self, augmentation_config):
self.config = augmentation_config
self.code_mutator = CodeMutationEngine()
self.vulnerability_synthesizer = VulnerabilitySynthesizer()
self.attack_generator = AttackScenarioGenerator()
async def augment_dataset(self,
original_dataset: Dataset,
augmentation_factor: float = 2.0) -> AugmentedDataset:
"""Generate augmented cybersecurity training data"""
augmented_samples = []
for sample in original_dataset:
# Original sample
augmented_samples.append(sample)
# Type-specific augmentation
if sample.type == "vulnerable_code":
mutations = await self.code_mutator.generate_mutations(
code=sample.content,
language=sample.language,
preserve_vulnerability=True,
num_mutations=int(augmentation_factor)
)
augmented_samples.extend(mutations)
elif sample.type == "exploit":
variations = await self._generate_exploit_variations(
exploit=sample.content,
target_diversity=augmentation_factor
)
augmented_samples.extend(variations)
elif sample.type == "malware":
variants = await self._generate_malware_variants(
malware=sample.content,
behavioral_preservation=0.8
)
augmented_samples.extend(variants)
elif sample.type == "incident_report":
scenarios = await self.attack_generator.generate_scenarios(
base_incident=sample.content,
complexity_levels=["low", "medium", "high"],
num_scenarios=int(augmentation_factor)
)
augmented_samples.extend(scenarios)
# Synthetic data generation
synthetic_samples = await self._generate_synthetic_samples(
num_samples=int(len(original_dataset) * 0.3),
sample_distribution=self._analyze_distribution(original_dataset)
)
augmented_samples.extend(synthetic_samples)
return AugmentedDataset(
samples=augmented_samples,
augmentation_metadata=self._generate_metadata(
original_size=len(original_dataset),
augmented_size=len(augmented_samples)
)
)
π€ Community Contribution Guidelines
Contributing to Trendyol Cybersecurity LLM
We welcome contributions from the global cybersecurity community. Our contribution framework ensures high-quality, security-focused enhancements:
class ContributionValidator:
"""Automated contribution validation system"""
def __init__(self):
self.security_scanner = SecurityScanner()
self.quality_analyzer = QualityAnalyzer()
self.compliance_checker = ComplianceChecker()
async def validate_contribution(self,
contribution: Contribution) -> ValidationReport:
"""Comprehensive contribution validation pipeline"""
# Security scanning
security_results = await self.security_scanner.scan(
code=contribution.code_changes,
configs=contribution.config_changes,
deep_scan=True
)
# Quality analysis
quality_results = await self.quality_analyzer.analyze(
contribution=contribution,
metrics=["complexity", "maintainability", "test_coverage"]
)
# Compliance checking
compliance_results = await self.compliance_checker.check(
contribution=contribution,
policies=["security_policy", "code_standards", "documentation"]
)
return ValidationReport(
security=security_results,
quality=quality_results,
compliance=compliance_results,
overall_status=self._determine_status(all_results),
recommendations=self._generate_recommendations(all_results)
)
Research Collaboration Framework
For academic and research collaborations, please refer to our research guidelines and dataset access protocols. We maintain partnerships with leading cybersecurity research institutions and welcome new collaborative opportunities.
π License and Citation
This model is released under the Apache 2.0 License with additional ethical use provisions specific to cybersecurity applications.
---
<div align="center">
<h3>π‘οΈ Developed with Passion by Trendyol Security Team π‘οΈ</h3>
<p><em>Empowering the cybersecurity community with advanced AI capabilities</em></p>
<p><strong>Together, we build a more secure digital future</strong></p>
</div>
- Downloads last month
- 4
8-bit
Model tree for Trendyol/Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF
Base model
Qwen/Qwen3-32B