Behemoth-ReduX-123B-v1 — Quantized (compressed-tensors for vLLM)
This repository provides quantized runtime packages of
TheDrummer/Behemoth-ReduX-123B-v1, packaged for vLLM using the compressed-tensors format.
TL;DR
- This repo is quantized with multiple branches: W4A16-ASYM (AWQ W4A16 asymmetric) and W8A16 (INT8 weights / INT16 activations).
- Load with vLLM using
--quantization compressed-tensors.- Typical W4A16 recipe: group_size=128, keep
lm_headin higher precision; uses the parent finetune’s chat template.
Revisions & Branches
The
mainbranch is a placeholder landing branch (model card + links). All runnable artifacts live under per-revision branches.
- main — placeholder / landing page
- W4A16 — SYMMETRICAL - AWQ 4‑bit weights / 16‑bit activations builds and related assets (Will use Marlin Kernel in VLLM)
- W4A16-ASYM — AWQ 4‑bit weights / 16‑bit activations builds and related assets
- W8A16 — 8‑bit weights / 16‑bit activations builds
Quick links:
- 🔗
main - 🔗
W4A16 - 🔗
W4A16-ASYM - 🔗
W8A16
What’s in this repo (per revision)
- Sharded quantized weights in
.safetensorswith an index (model.safetensors.index.json) config.jsonincluding compressed-tensors metadata (e.g.,weight_format,quantization,quantization_config)- Tokenizer artifacts (
tokenizer.json,tokenizer.model, etc.) - Optional:
chat_template.jinja(inherits the parent finetune’s chat format)
Exact files can differ by branch; see the Files and versions tab for each revision.
Quickstart — vLLM
Install vLLM (recent version recommended):
pip install vllm
Serve (adjust to your hardware):
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 vllm serve TheHouseOfTheDude/Behemoth-ReduX-123B-v1_Compressed-Tensors --quantization compressed-tensors --tensor-parallel-size 8 --max-model-len 32768 --gpu-memory-utilization 0.70 --dtype bfloat16
Query via Chat Completions:
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "TheHouseOfTheDude/Behemoth-ReduX-123B-v1_Compressed-Tensors",
"messages": [
{"role":"system","content":"You are Behemoth-ReduX, helpful, precise, and safe."},
{"role":"user","content":"Outline a retrieval pipeline for scientific PDFs."}
],
"max_tokens": 512,
"temperature": 0.7,
"top_p": 0.95
}'
Note:
compressed-tensorsis a vLLM runtime format. Loading this artifact directly in vanilla 🤗 Transformers is not supported; use vLLM for inference. If you need Transformers inference, use a different export (e.g., GPTQ/AWQ compatible with Transformers) or full-precision weights.
Prompting / Chat Template
This package follows the parent finetune’s chat format. If a chat_template.jinja is present in the branch, apply_chat_template will use it automatically.
Lineage
- Finetuned parent: TheDrummer/Behemoth-ReduX-123B-v1
- This repo: Quantized child of the finetune (compressed-tensors for vLLM)
Hardware & Tips (rule‑of‑thumb)
- 123B‑class models strongly prefer multi‑GPU deployments (e.g., 8× high‑VRAM).
- Long contexts are KV‑cache heavy—tune
--max-model-lenand batch size. - Prefer BF16 on GPUs with native support; otherwise FP16.
- Consider CUDA Graphs if stable in your stack.
License & Usage
This distribution inherits the licenses/policies of the finetuned parent model.
Use of the model constitutes acceptance of the upstream terms.
Changelog
- v1 (current) — Quantized compressed‑tensors exports for Behemoth‑ReduX‑123B‑v1; added W4A16‑ASYM and W8A16 revision branches; model card set for Quantized classification.
Model tree for TheHouseOfTheDude/Behemoth-ReduX-123B-v1_Compressed-Tensors
Base model
mistralai/Mistral-Large-Instruct-2407