See axolotl config
axolotl version: 0.12.2
base_model: "google/gemma-3-1b-it"
load_in_4bit: true
# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: true
chat_template: gemma3
eot_tokens:
- <end_of_turn>
resume_from_checkpoint: outputs/out/checkpoint-3000
datasets:
- path: dataset_train_val_split/train_parts
type: alpaca
data_files:
- dataset_train_val_split/train_parts/train_part_01.jsonl
- dataset_train_val_split/train_parts/train_part_02.jsonl
- dataset_train_val_split/train_parts/train_part_03.jsonl
- dataset_train_val_split/train_parts/train_part_04.jsonl
- dataset_train_val_split/train_parts/train_part_05.jsonl
- dataset_train_val_split/train_parts/train_part_06.jsonl
- dataset_train_val_split/train_parts/train_part_07.jsonl
- dataset_train_val_split/train_parts/train_part_08.jsonl
- dataset_train_val_split/train_parts/train_part_09.jsonl
- dataset_train_val_split/train_parts/train_part_10.jsonl
test_datasets:
- path: dataset_train_val_split/validation.jsonl
type: alpaca
split: train
dataset_prepared_path: last_run_prepared
output_dir: ./outputs/out
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- up_proj
- down_proj
- gate_proj
- q_proj
- k_proj
- v_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 6
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0004
# Training on full dataset: 265,590 samples
# Total steps per epoch: 265,590 / (micro_batch_size * gradient_accumulation_steps)
# = 265,590 / (2 * 4) = ~33,199 steps per epoch
# Ensure we use the full dataset
max_steps: # Leave empty to use all data
eval_strategy: epoch
saves_per_epoch: 1
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention:
eager_attention: true
warmup_ratio: 0.1
weight_decay: 0.0
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
gradio_max_new_tokens: 512
gradio_temperature: 0.7
outputs/out
This model is a fine-tuned version of google/gemma-3-1b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0417
- Memory/max Mem Active(gib): 7.72
- Memory/max Mem Allocated(gib): 7.72
- Memory/device Mem Reserved(gib): 8.93
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 6
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1946
- training_steps: 19461
Training results
| Training Loss | Epoch | Step | Validation Loss | Mem Reserved(gib) | Mem Active(gib) | Mem Allocated(gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 3.9506 | 12.01 | 11.72 | 11.72 |
| 1.2302 | 0.1035 | 500 | 1.2162 | 14.29 | 14.2 | 14.2 |
| 0.898 | 0.2071 | 1000 | 0.8612 | 14.29 | 14.2 | 14.2 |
| 0.4979 | 0.3106 | 1500 | 0.5640 | 14.29 | 14.2 | 14.2 |
| 0.2908 | 0.4142 | 2000 | 0.3491 | 14.3 | 14.2 | 14.2 |
| 0.271 | 0.5177 | 2500 | 0.2368 | 14.3 | 14.2 | 14.2 |
| 0.2208 | 0.6213 | 3000 | 0.1751 | 14.3 | 14.2 | 14.2 |
| 0.2208 | 0.6213 | 3000 | 4.7060 | 6.46 | 6.46 | 6.68 |
| 0.0918 | 0.9999 | 6486 | 0.1107 | 7.72 | 7.72 | 8.91 |
| 0.0163 | 2.0 | 12973 | 0.0470 | 7.72 | 7.72 | 8.93 |
| 0.0332 | 3.0 | 19460 | 0.0417 | 7.72 | 7.72 | 8.93 |
Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- -