robgreenberg3's picture
Update README.md
3ba651e verified
---
tags:
- int4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
---
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
Meta-Llama-3.1-8B-Instruct-quantized.w4a16
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
</h1>
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
</a>
## Model Overview
- **Model Architecture:** Meta-Llama-3
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 7/26/2024
- **Version:** 1.0
- **License(s):** Llama3.1
- **Model Developers:** Neural Magic
This model is a quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation.
Meta-Llama-3.1-8B-Instruct-quantized.w4a16 achieves 93.0% recovery for the Arena-Hard evaluation, 98.9% for OpenLLM v1 (using Meta's prompting when available), 96.1% for OpenLLM v2, 99.7% for HumanEval pass@1, and 97.4% for HumanEval+ pass@1.
### Model Optimizations
This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized.
Symmetric per-group quantization is applied, in which a linear scaling per group of 128 parameters maps the INT4 and floating point representations of the quantized weights.
[AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 10% damping factor and 768 sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16"
number_gpus = 1
max_model_len = 8192
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
<details>
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
```bash
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/Meta-Llama-3.1-8B-Instruct-quantized.w4a16
```
​​See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
</details>
<details>
<summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary>
```bash
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/llama-3-1-8b-instruct-quantized-w4a16:1.5
```
```bash
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/llama-3-1-8b-instruct-quantized-w4a16
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/llama-3-1-8b-instruct-quantized-w4a16
```
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
</details>
<details>
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
```
```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: llama-3-1-8b-instruct-quantized-w4a16 # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: llama-3-1-8b-instruct-quantized-w4a16 # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-llama-3-1-8b-instruct-quantized-w4a16:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
```
```bash
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
```
```python
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "llama-3-1-8b-instruct-quantized-w4a16",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
```
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
</details>
## Creation
This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below.
Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ.
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from datasets import load_dataset
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
num_samples = 756
max_seq_len = 4064
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
examples = [tokenizer(example["text"], padding=False, max_length=max_seq_len, truncation=True) for example in ds]
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=True,
model_file_base_name="model",
damp_percent=0.1,
)
model = AutoGPTQForCausalLM.from_pretrained(
model_id,
quantize_config,
device_map="auto",
)
model.quantize(examples)
model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w4a16")
```
## Evaluation
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks.
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine.
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository.
The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4.
We report below the scores obtained in each judgement and the average.
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct).
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals) and a few fixes to OpenLLM v2 tasks.
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository.
Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals).
**Note:** Results have been updated after Meta modified the chat template.
### Accuracy
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Meta-Llama-3.1-8B-Instruct </strong>
</td>
<td><strong>Meta-Llama-3.1-8B-Instruct-quantized.w4a16 (this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td rowspan="1" ><strong>LLM as a judge</strong>
</td>
<td>Arena Hard
</td>
<td>25.8 (25.1 / 26.5)
</td>
<td>27.2 (27.6 / 26.7)
</td>
<td>105.4%
</td>
</tr>
<tr>
<td rowspan="8" ><strong>OpenLLM v1</strong>
</td>
<td>MMLU (5-shot)
</td>
<td>68.3
</td>
<td>66.9
</td>
<td>97.9%
</td>
</tr>
<tr>
<td>MMLU (CoT, 0-shot)
</td>
<td>72.8
</td>
<td>71.1
</td>
<td>97.6%
</td>
</tr>
<tr>
<td>ARC Challenge (0-shot)
</td>
<td>81.4
</td>
<td>80.2
</td>
<td>98.0%
</td>
</tr>
<tr>
<td>GSM-8K (CoT, 8-shot, strict-match)
</td>
<td>82.8
</td>
<td>82.9
</td>
<td>100.2%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>80.5
</td>
<td>79.9
</td>
<td>99.3%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>78.1
</td>
<td>78.0
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot, mc2)
</td>
<td>54.5
</td>
<td>52.8
</td>
<td>96.9%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>74.3</strong>
</td>
<td><strong>73.5</strong>
</td>
<td><strong>98.9%</strong>
</td>
</tr>
<tr>
<td rowspan="7" ><strong>OpenLLM v2</strong>
</td>
<td>MMLU-Pro (5-shot)
</td>
<td>30.8
</td>
<td>28.8
</td>
<td>93.6%
</td>
</tr>
<tr>
<td>IFEval (0-shot)
</td>
<td>77.9
</td>
<td>76.3
</td>
<td>98.0%
</td>
</tr>
<tr>
<td>BBH (3-shot)
</td>
<td>30.1
</td>
<td>28.9
</td>
<td>96.1%
</td>
</tr>
<tr>
<td>Math-lvl-5 (4-shot)
</td>
<td>15.7
</td>
<td>14.8
</td>
<td>94.4%
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>3.7
</td>
<td>4.0
</td>
<td>109.8%
</td>
</tr>
<tr>
<td>MuSR (0-shot)
</td>
<td>7.6
</td>
<td>6.3
</td>
<td>83.2%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>27.6</strong>
</td>
<td><strong>26.5</strong>
</td>
<td><strong>96.1%</strong>
</td>
</tr>
<tr>
<td rowspan="2" ><strong>Coding</strong>
</td>
<td>HumanEval pass@1
</td>
<td>67.3
</td>
<td>67.1
</td>
<td>99.7%
</td>
</tr>
<tr>
<td>HumanEval+ pass@1
</td>
<td>60.7
</td>
<td>59.1
</td>
<td>97.4%
</td>
</tr>
<tr>
<td rowspan="9" ><strong>Multilingual</strong>
</td>
<td>Portuguese MMLU (5-shot)
</td>
<td>59.96
</td>
<td>58.69
</td>
<td>97.9%
</td>
</tr>
<tr>
<td>Spanish MMLU (5-shot)
</td>
<td>60.25
</td>
<td>58.39
</td>
<td>96.9%
</td>
</tr>
<tr>
<td>Italian MMLU (5-shot)
</td>
<td>59.23
</td>
<td>57.82
</td>
<td>97.6%
</td>
</tr>
<tr>
<td>German MMLU (5-shot)
</td>
<td>58.63
</td>
<td>56.22
</td>
<td>95.9%
</td>
</tr>
<tr>
<td>French MMLU (5-shot)
</td>
<td>59.65
</td>
<td>57.58
</td>
<td>96.5%
</td>
</tr>
<tr>
<td>Hindi MMLU (5-shot)
</td>
<td>50.10
</td>
<td>47.14
</td>
<td>94.1%
</td>
</tr>
<tr>
<td>Thai MMLU (5-shot)
</td>
<td>49.12
</td>
<td>46.72
</td>
<td>95.1%
</td>
</tr>
</table>
### Reproduction
The results were obtained using the following commands:
#### MMLU
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### MMLU-CoT
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
--tasks mmlu_cot_0shot_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
```
#### ARC-Challenge
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
--tasks arc_challenge_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
```
#### GSM-8K
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
--tasks gsm8k_cot_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 8 \
--batch_size auto
```
#### Hellaswag
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks hellaswag \
--num_fewshot 10 \
--batch_size auto
```
#### Winogrande
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks winogrande \
--num_fewshot 5 \
--batch_size auto
```
#### TruthfulQA
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks truthfulqa \
--num_fewshot 0 \
--batch_size auto
```
#### OpenLLM v2
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
```
#### MMLU Portuguese
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_pt_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### MMLU Spanish
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_es_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### MMLU Italian
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_it_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### MMLU German
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_de_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### MMLU French
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_fr_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### MMLU Hindi
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_hi_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### MMLU Thai
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_th_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
```
#### HumanEval and HumanEval+
##### Generation
```
python3 codegen/generate.py \
--model neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16 \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
```
##### Sanitization
```
python3 evalplus/sanitize.py \
humaneval/neuralmagic--Meta-Llama-3.1-8B-Instruct-quantized.w4a16_vllm_temp_0.2
```
##### Evaluation
```
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic--Meta-Llama-3.1-8B-Instruct-quantized.w4a16_vllm_temp_0.2-sanitized
```