See axolotl config
axolotl version: 0.4.1
base_model: NeverSleep/Lumimaid-v0.2-70B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: llama3
rl: dpo
datasets:
- path: theIndividual/dpo_pairs_ina_markdown_expanded
type: chat_template.default
chat_template: llama3
field_messages: conversation
field_chosen: chosen
field_rejected: rejected
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
adapter: qlora
lora_model_dir:
output_dir: llama3-markdown-dpo
sequence_len: 3096
sample_packing: false
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: llama3-markdown-dpo
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 5
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_cpu_ram_efficient_loading: true
fsdp_forward_prefetch: true
fsdp_offload_params: true
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: false
special_tokens:
pad_token: <|end_of_text|>
llama3-markdown-dpo
This model is a fine-tuned version of NeverSleep/Lumimaid-v0.2-70B on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 413
Training results
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for QuixiAI/Ina-v11.1-AWQ
Base model
NeverSleep/Lumimaid-v0.2-70B