CVEParrot π¦
CVEParrot is a Google T5 model fine-tuned on CVE (Common Vulnerabilities and Exposures) database to understand and generate security vulnerability information.
Model Description
- Developed by: Subhay Roy Chowdhury(findthehead)
- Base Model: Google T5 Small
Use Cases
- Generate CVE descriptions
- Analyze vulnerability information
- Security research and analysis
- Automated vulnerability documentation
- CVE information extraction and summarization
Inference Code
import warnings
import os
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
warnings.filterwarnings("ignore")
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
model_name = "Prachir-AI/cveparrot"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = T5ForConditionalGeneration.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
prompt = "Provide detailed information about CVE-2021-3184."
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
output_ids = model.generate(
**inputs,
max_new_tokens=128,
temperature=1.0,
do_sample=True,
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(response)
Option 2: Using GGUF Model with Ollama (Local Inference)
The model is available in GGUF format for efficient local inference using Ollama.
Note: T5 architecture support in Ollama may be experimental. If you encounter issues, please use the Hugging Face Transformers method (Option 1) or try alternative GGUF inference tools like
llama.cpp.
Step 1: Install Ollama
# Linux
curl -fsSL https://ollama.com/install.sh | sh
# macOS
brew install ollama
# Or download from https://ollama.com
Step 2: Download the GGUF Model
Download cveparrot.gguf from the Files section of this repository.
Step 3: Create a Modelfile
Create a file named Modelfile in the same directory as the downloaded GGUF:
FROM ./cveparrot.gguf
TEMPLATE """{{ .Prompt }}"""
PARAMETER temperature 0.7
PARAMETER top_p 0.9
PARAMETER top_k 40
PARAMETER num_ctx 2048
Step 4: Create and Run the Model
# Create the model in Ollama
ollama create cveparrot -f Modelfile
# Interactive mode
ollama run cveparrot
# Single query
ollama run cveparrot "Describe CVE-2024-1234"
Using Ollama API (Python):
pip install ollama
import ollama
# Generate response
response = ollama.generate(
model='cveparrot', # Use the local model name you created
prompt='Describe the security vulnerability CVE-2024-1234',
)
print(response['response'])
Using Ollama API (curl):
curl http://localhost:11434/api/generate -d '{
"model": "cveparrot",
"prompt": "Describe CVE-2024-1234",
"stream": false
}'
Model Files
model.safetensors: PyTorch model weights in Safetensors formatcveparrot.gguf: Quantized GGUF model for efficient inferencetokenizer_config.json: Tokenizer configurationconfig.json: Model configurationspiece.model: SentencePiece tokenizer model
Training Details
This model was fine-tuned on CVE database entries to understand and generate security vulnerability information. The training focused on:
- CVE descriptions and technical details
- Vulnerability severity and impact analysis
- Security patches and mitigation strategies
- Affected software and version information
- Downloads last month
- 145
Model tree for Prachir-AI/cveparrot
Base model
google-t5/t5-small