SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. The main goal of thius fine-tuned model is to assignb memes into 3 different clusters:
- Conspiracy
- Cluster Educational Science Humor
- Wordplay & Nerd Humor
Try the model here!
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = 'PietroSaveri/meme-cluster-classifier'
fine_tuned_model = SentenceTransformer(model)
# 3) Compute centroids just once
seed_centroids = {}
for cat, texts in seed_texts.items():
embs = embedding_model.encode(texts, convert_to_numpy=True)
seed_centroids[cat] = embs.mean(axis=0)
# 4) Define a tiny helper for cosine
def cosine_sim(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
# 5) Wrap it all up in a function
def predict(text: str):
vec = fine_tuned_model.encode(text, convert_to_numpy=True)
sims = { cat: cosine_sim(vec, centroid) for cat, centroid in seed_centroids.items()}
# sort by descending similarity
assigned = max(sims, key=sims.get)
return sims, assigned
# --- USAGE ---
text = "Why did the biologist go broke? Because his cells were division!"
scores, ranking = predict(text)
print("Raw scores:")
for cat, score in scores.items():
print(f" {cat:25s}: {score:.3f}")Raw scores:
# Conspiracy : 0.700
# Wordplay & Nerd Humor : 0.907
# Educational Science Humor: 0.903
Evaluation
Metrics
Binary Classification
- Dataset:
meme-dev-binary
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
cosine_accuracy_threshold | 0.7175 |
cosine_f1 | 1.0 |
cosine_f1_threshold | 0.7175 |
cosine_precision | 1.0 |
cosine_recall | 1.0 |
cosine_ap | 1.0 |
cosine_mcc | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,066 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 11 tokens
- mean: 24.61 tokens
- max: 68 tokens
- min: 11 tokens
- mean: 24.17 tokens
- max: 68 tokens
- min: 0.0
- mean: 0.46
- max: 1.0
- Samples:
sentence_0 sentence_1 label The cure for AIDS was discovered decades ago but suppressed to reduce world population.
Einstein’s theory of general relativity describes gravity not as a force, but as the curvature of spacetime caused by mass and energy.
0.0
5G towers are designed to activate nanoparticles from vaccines for population control.
The Mandela Effect proves we've shifted into an alternate reality.
1.0
The Georgia Guidestones were a NWO manifesto, destroyed to hide the plans.
Elvis Presley faked his death and is still alive, living in secret.
1.0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | meme-dev-binary_cosine_ap |
---|---|---|---|
0.5 | 190 | - | 0.9999 |
1.0 | 380 | - | 1.0000 |
1.3158 | 500 | 0.3125 | - |
1.5 | 570 | - | 1.0000 |
2.0 | 760 | - | 0.9999 |
2.5 | 950 | - | 1.0000 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for PietroSaveri/meme-cluster-classifier-02
Base model
sentence-transformers/all-mpnet-base-v2Space using PietroSaveri/meme-cluster-classifier-02 1
Evaluation results
- Cosine Accuracy on meme dev binaryself-reported1.000
- Cosine Accuracy Threshold on meme dev binaryself-reported0.717
- Cosine F1 on meme dev binaryself-reported1.000
- Cosine F1 Threshold on meme dev binaryself-reported0.717
- Cosine Precision on meme dev binaryself-reported1.000
- Cosine Recall on meme dev binaryself-reported1.000
- Cosine Ap on meme dev binaryself-reported1.000
- Cosine Mcc on meme dev binaryself-reported1.000