en_PP-OCRv3_mobile_rec
Introduction
en_PP-OCRv3_mobile_rec is a text line recognition model within the PP-OCRv3_rec series, developed by the PaddleOCR team. The en_PP-OCRv3_mobile_rec model is an English-specific model trained based on PP-OCRv3_mobile_rec, and it supports English recognition. The key accuracy metrics are as follow:
Model | Recognition Avg Accuracy(%) | GPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
CPU Inference Time (ms) [Normal Mode / High-Performance Mode] |
Model Storage Size (M) | Introduction |
---|---|---|---|---|---|
en_PP-OCRv3_mobile_rec | 70.69 | 5.44 / 0.75 | 8.65 / 5.57 | 7.8 M | An ultra-lightweight English recognition model trained based on the PP-OCRv3 recognition model, supporting English and numeric character recognition. |
Note: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
Quick Start
Installation
- PaddlePaddle
Please refer to the following commands to install PaddlePaddle using pip:
# for CUDA11.8
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
# for CUDA12.6
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
# for CPU
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
For details about PaddlePaddle installation, please refer to the PaddlePaddle official website.
- PaddleOCR
Install the latest version of the PaddleOCR inference package from PyPI:
python -m pip install paddleocr
Model Usage
You can quickly experience the functionality with a single command:
paddleocr text_recognition \
--model_name en_PP-OCRv3_mobile_rec \
-i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/QmaPtftqwOgCtx0AIvU2z.png
You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
from paddleocr import TextRecognition
model = TextRecognition(model_name="en_PP-OCRv3_mobile_rec")
output = model.predict(input="QmaPtftqwOgCtx0AIvU2z.png", batch_size=1)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/res.json")
After running, the obtained result is as follows:
{'res': {'input_path': '/root/.paddlex/predict_input/QmaPtftqwOgCtx0AIvU2z.png', 'page_index': None, 'rec_text': 'the number of model parameters and FLOPs get larger, it', 'rec_score': 0.990352988243103}}
The visualized image is as follows:
For details about usage command and descriptions of parameters, please refer to the Document.
Pipeline Usage
The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
PP-OCRv3
The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
- Document Image Orientation Classification Module (Optional)
- Text Image Unwarping Module (Optional)
- Text Line Orientation Classification Module (Optional)
- Text Detection Module
- Text Recognition Module
Run a single command to quickly experience the OCR pipeline:
paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/c3hSldnYVQXp48T5V0Ze4.png \
--text_recognition_model_name en_PP-OCRv3_mobile_rec \
--use_doc_orientation_classify False \
--use_doc_unwarping False \
--use_textline_orientation True \
--save_path ./output \
--device gpu:0
Results are printed to the terminal:
{'res': {'input_path': '/root/.paddlex/predict_input/c3hSldnYVQXp48T5V0Ze4.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[252, 172],
...,
[254, 241]],
...,
[[665, 566],
...,
[663, 601]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([0, ..., 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['The moon tells the sky', 'The sky tells the sea', 'The sea tells the tide', 'And the tide tells me', 'Lemn Sissay'], 'rec_scores': array([0.99890286, ..., 0.99840254]), 'rec_polys': array([[[252, 172],
...,
[254, 241]],
...,
[[665, 566],
...,
[663, 601]]], dtype=int16), 'rec_boxes': array([[252, ..., 241],
...,
[663, ..., 612]], dtype=int16)}}
If save_path is specified, the visualization results will be saved under save_path
. The visualization output is shown below:
The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
from paddleocr import PaddleOCR
ocr = PaddleOCR(
text_recognition_model_name="en_PP-OCRv3_mobile_rec",
use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
device="gpu:0", # Use device to specify GPU for model inference
)
result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/c3hSldnYVQXp48T5V0Ze4.png")
for res in result:
res.print()
res.save_to_img("output")
res.save_to_json("output")
The default model used in pipeline is PP-OCRv5_server_rec
, so it is needed that specifing to en_PP-OCRv3_mobile_rec
by argument text_recognition_model_name
. And you can also use the local model file by argument text_recognition_model_dir
. For details about usage command and descriptions of parameters, please refer to the Document.
Links
- Downloads last month
- 253