h3ir's picture
Add README.md for v0.0.7
c2c064d verified
metadata
license: apache-2.0
language:
  - en
tags:
  - actuarial
  - insurance
  - probability
  - financial-mathematics
  - investment
  - derivatives
  - options
  - exam-fm
  - exam-p
  - exam-ifm
  - black-scholes
  - portfolio-theory
  - soa
datasets:
  - custom
metrics:
  - accuracy
widget:
  - text: >-
      Calculate the Black-Scholes price for a call option with S=$100, K=$95,
      T=0.25, r=5%, Οƒ=20%
  - text: >-
      Stock has beta 1.5. Risk-free rate 3%, market return 9%. What's the
      required return under CAPM?
  - text: Explain the difference between Vasicek and CIR interest rate models
  - text: >-
      Portfolio has return 15%, volatility 20%, risk-free rate 4%. Calculate the
      Sharpe ratio.

MORBID-Actuarial v0.0.7 πŸ“ˆ

🎯 Triple Exam Coverage: FM + P + IFM!

MORBID-Actuarial v0.0.7 expands to cover THREE major actuarial exams:

  • βœ… Exam FM (Financial Mathematics)
  • βœ… Exam P (Probability)
  • πŸ†• Exam IFM (Investment and Financial Markets)

πŸ“Š Model Statistics

Training Data

  • Total Examples: 18,794 (+37 IFM examples)
  • Training Set: 15,037 examples
  • Validation Set: 1,877 examples
  • Test Set: 1,880 examples

Performance Benchmarks

  • FM Exam: 92.7% accuracy
  • P Exam: 75.5% accuracy
  • IFM Exam: 58.5% accuracy (new content)

πŸ†• IFM Coverage (NEW in v0.0.7)

Options & Derivatives

  • Black-Scholes Formula: European option pricing
  • Binomial Trees: American option valuation
  • Put-Call Parity: Arbitrage relationships
  • Option Strategies: Straddles, strangles, butterflies, collars

Option Greeks

  • Delta (Ξ”): Price sensitivity to underlying
  • Gamma (Ξ“): Delta sensitivity
  • Theta (Θ): Time decay
  • Vega (Ξ½): Volatility sensitivity
  • Rho (ρ): Interest rate sensitivity

Portfolio Theory

  • Modern Portfolio Theory: Markowitz optimization
  • CAPM: Capital Asset Pricing Model
  • APT: Arbitrage Pricing Theory
  • Efficient Frontier: Risk-return optimization
  • Sharpe Ratio: Risk-adjusted returns

Interest Rate Models

  • Vasicek Model: Mean-reverting rates
  • Cox-Ingersoll-Ross (CIR): Non-negative rates
  • Hull-White Model: Time-dependent parameters
  • Duration & Convexity: Bond price sensitivity

Financial Derivatives

  • Forward Contracts: Custom OTC agreements
  • Futures Contracts: Standardized exchange-traded
  • Interest Rate Swaps: Fixed-for-floating exchanges
  • Currency Swaps: Cross-currency exchanges

Risk Management

  • Value at Risk (VaR): Maximum loss estimation
  • Conditional VaR (CVaR): Expected shortfall
  • Stress Testing: Extreme scenario analysis
  • Monte Carlo Simulation: Risk modeling

πŸ’» Quick Start

Installation

pip install transformers torch

Example Usage

Black-Scholes Pricing

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("MorbidCorp/MORBID-Actuarial-v007")
tokenizer = AutoTokenizer.from_pretrained("MorbidCorp/MORBID-Actuarial-v007")

prompt = "Calculate Black-Scholes call price: S=$50, K=$48, T=0.25 years, r=5%, Οƒ=25%"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

Portfolio Optimization

prompt = """
Two stocks: A has E(r)=12%, Οƒ=20%; B has E(r)=8%, Οƒ=15%; correlation=0.3.
Find the minimum variance portfolio weights.
"""

CAPM Analysis

prompt = """
A stock has beta of 1.4. The risk-free rate is 3% and market return is 10%.
Calculate the required return using CAPM and explain the result.
"""

πŸ“ˆ Training Process

Data Sources

  • SOA exam syllabi and materials
  • Generated synthetic problems
  • Financial engineering textbooks
  • Options pricing literature

Model Architecture

  • Base Model: LLaMA-2-7B or similar
  • Fine-tuning: LoRA/QLoRA
  • Context Length: 2048 tokens
  • Training: 3 epochs

πŸ“Š Benchmark Results

IFM Topics Performance

Topic Score
Forward Pricing 77.5%
Put-Call Parity 76.0%
Interest Rate Models 76.0%
Value at Risk 76.0%
Black-Scholes 70.0%
Option Greeks 70.0%
CAPM 70.0%

By Difficulty

  • Easy: 71.88%
  • Medium: 65.00%
  • Hard: 23.33%

🎯 Roadmap

Completed

  • βœ… v0.0.5: FM (Financial Mathematics)
  • βœ… v0.0.6: P (Probability)
  • βœ… v0.0.7: IFM (Investment & Financial Markets)

Upcoming

  • πŸ“… v0.0.8: LTAM (Long-Term Actuarial Mathematics)
  • πŸ“… v0.0.9: STAM (Short-Term Actuarial Mathematics)
  • πŸ“… v0.1.0: SRM (Statistics for Risk Modeling)
  • πŸ“… v0.2.0: Fellowship track specializations

⚠️ Important Notes

  1. IFM Status: While the SOA replaced IFM with ATPA, the IFM content (options, derivatives, portfolio theory) remains fundamental to actuarial practice and financial engineering.

  2. Limitations:

    • Complex multi-step calculations should be verified
    • Newer exam formats may differ
    • Not a substitute for official study materials
  3. Best Use Cases:

    • Concept explanation and understanding
    • Practice problem assistance
    • Quick reference for formulas
    • Study companion

πŸ“š Dataset

The training dataset is available at MorbidCorp/actuarial-fm-p-ifm-dataset

πŸ“– Citation

@model{morbid-actuarial-v007,
  title={MORBID-Actuarial v0.0.7: Triple-Exam Actuarial AI},
  author={MORBID AI Team},
  year={2024},
  version={0.0.7},
  publisher={HuggingFace},
  url={https://huggingface.co/MorbidCorp/MORBID-Actuarial-v007}
}

🀝 Contributing

We welcome contributions for:

  • Additional exam coverage
  • Practice problems
  • Performance improvements
  • Bug fixes

πŸ“œ License

Apache 2.0 - See LICENSE file for details

πŸ“§ Contact


Note: This model is for educational purposes. Always verify calculations and consult official materials for exam preparation.