π Llama-3
					Collection
				
My experiments with Llama-3 models
					β’ 
				61 items
				β’ 
				Updated
					
				β’
					
					22
 
This model is a fine-tune (DPO) of meta-llama/Meta-Llama-3-70B-Instruct model.
PS: This fine-tuned model was previously known as MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.2. It was renamed to avoid any confusion with the original model.
All GGUF models are available here: MaziyarPanahi/calme-2.2-llama3-70b-GGUF
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 37.98 | 
| IFEval (0-Shot) | 82.08 | 
| BBH (3-Shot) | 48.57 | 
| MATH Lvl 5 (4-Shot) | 22.96 | 
| GPQA (0-shot) | 12.19 | 
| MuSR (0-shot) | 15.30 | 
| MMLU-PRO (5-shot) | 46.74 | 
| Metric | Value | 
|---|---|
| Avg. | 78.96 | 
| AI2 Reasoning Challenge (25-Shot) | 72.53 | 
| HellaSwag (10-Shot) | 86.22 | 
| MMLU (5-Shot) | 80.41 | 
| TruthfulQA (0-shot) | 63.57 | 
| Winogrande (5-shot) | 82.79 | 
| GSM8k (5-shot) | 88.25 | 
Top 10 models on the Leaderboard

This model uses ChatML prompt template:
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
You can use this model by using MaziyarPanahi/calme-2.2-llama3-70b as the model name in Hugging Face's
transformers library.
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch
model_id = "MaziyarPanahi/calme-2.2-llama3-70b"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
    # attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    model_kwargs={"torch_dtype": torch.bfloat16},
    streamer=streamer
)
# Then you can use the pipeline to generate text.
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|im_end|>"),
    tokenizer.convert_tokens_to_ids("<|eot_id|>") # safer to have this too
]
outputs = pipeline(
    prompt,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])