Liquid AI
Try LFM β€’ Documentation β€’ LEAP β€’ WebGPU demo

LFM2.5‑VL-1.6B

LFM2.5‑VL-1.6B is Liquid AI's refreshed version of the first vision-language model, LFM2-VL-1.6B, built on an updated backbone LFM2.5-1.2B-Base and tuned for stronger real-world performance. Find more about LFM2.5 family of models in our blog post.

  • Enhanced instruction following on vision and language tasks.
  • Improved multilingual vision understanding in Arabic, Chinese, French, German, Japanese, Korean, and Spanish.
  • Robust understanding of visual content with improved results on multi-image inputs, high-resolution images, and OCR.

πŸŽ₯⚑️ You can try LFM2.5-VL-1.6B running locally in your browser with our real-time video stream captioning WebGPU demo πŸŽ₯⚑️

Alternatively, try the API model on the Playground.

πŸ“„ Model details

LFM2.5-VL-1.6B is a general-purpose vision-language model with the following features:

  • LM Backbone: LFM2.5-1.2B-Base
  • Vision encoder: SigLIP2 NaFlex shape‑optimized 400M
  • Context length: 32,768 tokens
  • Vocabulary size: 65,536
  • Languages: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish
  • Native resolution processing: handles images up to 512*512 pixels without upscaling and preserves non-standard aspect ratios without distortion
  • Tiling strategy: splits large images into non-overlapping 512Γ—512 patches and includes thumbnail encoding for global context
  • Inference-time flexibility: user-tunable maximum image tokens and tile count for speed/quality tradeoff without retraining
  • Generation parameters:
    • text: temperature=0.1, min_p=0.15, repetition_penalty=1.05
    • vision: min_image_tokens=64 max_image_tokens=256, do_image_splitting=True

We recommend using it for general vision-language workloads, OCR or document comprehension. It’s not well-suited for knowledge-intensive tasks.

Chat Template

LFM2.5-VL uses a ChatML-like format. See the Chat Template documentation for details.

<|startoftext|><|im_start|>system
You are a helpful multimodal assistant by Liquid AI.<|im_end|>
<|im_start|>user
<image>Describe this image.<|im_end|>
<|im_start|>assistant
This image shows a Caenorhabditis elegans (C. elegans) nematode.<|im_end|>

You can use processor.apply_chat_template() to format your messages automatically.

πŸƒ Inference

You can run LFM2.5-VL-1.6B with Hugging Face transformers:

pip install git+https://github.com/huggingface/transformers.git@3c2517727ce28a30f5044e01663ee204deb1cdbe pillow
from transformers import AutoProcessor, AutoModelForImageTextToText
from transformers.image_utils import load_image

# Load model and processor
model_id = "LiquidAI/LFM2.5-VL-1.6B"
model = AutoModelForImageTextToText.from_pretrained(
    model_id,
    device_map="auto",
    dtype="bfloat16"
)
processor = AutoProcessor.from_pretrained(model_id)

# Load image and create conversation
url = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
image = load_image(url)
conversation = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": "What is in this image?"},
        ],
    },
]

# Generate Answer
inputs = processor.apply_chat_template(
    conversation,
    add_generation_prompt=True,
    return_tensors="pt",
    return_dict=True,
    tokenize=True,
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=64)
processor.batch_decode(outputs, skip_special_tokens=True)[0]

# This image showcases the iconic Statue of Liberty standing majestically on Liberty Island in New York Harbor. The statue is positioned on a small island surrounded by calm blue waters, with the New York City skyline visible in the background.

Tool Use

LFM2.5 supports function calling for text only input by applying the chat template with the tokenizer. See the Tool Use documentation for the full guide.

tools = [{
    "name": "get_weather",
    "description": "Get current weather for a location",
    "parameters": {
        "type": "object",
        "properties": {"location": {"type": "string"}},
        "required": ["location"]
    }
}]

messages = [{"role": "user", "content": "What's the weather in Paris?"}]

# Apply chat template with tools
inputs = processor.tokenizer.apply_chat_template(
    messages,
    tools=tools,
    add_generation_prompt=True,
    return_tensors="pt",
    return_dict=True,
)
input_ids = inputs["input_ids"].to(model.device)
outputs = model.generate(input_ids, max_new_tokens=256)
response = processor.tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=False)

# <|tool_call_start|>[get_weather(location="Paris")]<|tool_call_end|>I am retrieving the current weather for Paris.<|im_end|>
Name Description Docs Notebook
Transformers Simple inference with direct access to model internals. Link Colab link
vLLM High-throughput production deployments with GPU. coming soon coming soon
llama.cpp Cross-platform inference with CPU offloading. Link Colab link

πŸ”§ Fine-tuning

We recommend fine-tuning LFM2.5-VL-1.6B model on your use cases to maximize performance.

Notebook Description Link
SFT (TRL) Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using TRL. Colab link

πŸ“Š Performance

Model MMStar MM-IFEval BLINK InfoVQA (Val) OCRBench (v2) RealWorldQA MMMU (Val) MMMB (avg) Multilingual MMBench (avg)
LFM2.5-VL-1.6B 50.67 52.29 48.82 62.71 41.44 64.84 40.56 76.96 65.90
LFM2-VL-1.6B 49.87 46.35 44.50 58.35 35.11 65.75 39.67 72.13 60.57
InternVL3.5-1B 50.27 36.17 44.19 60.99 33.53 57.12 41.89 68.93 58.32
FastVLM-1.5B 53.13 24.99 43.29 23.92 26.61 61.56 38.78 64.84 50.89

All vision benchmark scores are obtained using VLMEvalKit. Multilingual scores are based on the average of benchmarks translated by GPT-4.1-mini from English to Arabic, Chinese, French, German, Japanese, Korean, and Spanish.

πŸ“¬ Contact

If you are interested in custom solutions with edge deployment, please contact our sales team.

Citation

@article{liquidai2025lfm2,
 title={LFM2 Technical Report},
 author={Liquid AI},
 journal={arXiv preprint arXiv:2511.23404},
 year={2025}
}
Downloads last month
1,233
Safetensors
Model size
2B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for LiquidAI/LFM2.5-VL-1.6B

Finetuned
(5)
this model
Quantizations
2 models

Space using LiquidAI/LFM2.5-VL-1.6B 1

Collection including LiquidAI/LFM2.5-VL-1.6B

Paper for LiquidAI/LFM2.5-VL-1.6B