Llama-3.1-8B-peft-p-tuning-abt-buy-2
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0652
- Accuracy: 0.9833
- Precision: 0.9336
- Recall: 0.9591
- F1: 0.9462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.4373 | 1.0 | 1253 | 0.1474 | 0.9632 | 0.8224 | 0.9682 | 0.8894 |
0.0899 | 2.0 | 2506 | 0.0657 | 0.9812 | 0.9406 | 0.9364 | 0.9385 |
0.0757 | 3.0 | 3759 | 0.1120 | 0.9736 | 0.9840 | 0.8409 | 0.9069 |
0.0589 | 4.0 | 5012 | 0.0551 | 0.9833 | 0.9375 | 0.9545 | 0.9459 |
0.0425 | 5.0 | 6265 | 0.0572 | 0.9847 | 0.9459 | 0.9545 | 0.9502 |
0.0327 | 6.0 | 7518 | 0.0808 | 0.9785 | 0.8987 | 0.9682 | 0.9322 |
0.0257 | 7.0 | 8771 | 0.0670 | 0.9847 | 0.9459 | 0.9545 | 0.9502 |
0.0248 | 8.0 | 10024 | 0.0594 | 0.9833 | 0.9298 | 0.9636 | 0.9464 |
0.0145 | 9.0 | 11277 | 0.0639 | 0.9840 | 0.9378 | 0.9591 | 0.9483 |
0.0083 | 10.0 | 12530 | 0.0652 | 0.9833 | 0.9336 | 0.9591 | 0.9462 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Kenazin/Llama-3.1-8B-peft-p-tuning-abt-buy-2
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct