| # 🚗 Exemples d'utilisation - Car Damage Detection | |
| ## 📸 Exemple 1 : Analyse simple | |
| ```python | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from PIL import Image | |
| model = AutoModelForCausalLM.from_pretrained("Kakyoin03/car-damage-detection-llama-vision-14k") | |
| tokenizer = AutoTokenizer.from_pretrained("Kakyoin03/car-damage-detection-llama-vision-14k") | |
| image = Image.open("car_damage.jpg") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": "Décrivez les dommages sur cette voiture."}, | |
| {"type": "image", "image": image} | |
| ] | |
| } | |
| ] | |
| inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) | |
| outputs = model.generate(inputs, max_new_tokens=300) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| print(response) | |
| ``` | |
| ## 🔄 Exemple 2 : Traitement par batch | |
| ```python | |
| import torch | |
| from PIL import Image | |
| import glob | |
| def analyze_multiple_cars(image_paths): | |
| results = [] | |
| for path in image_paths: | |
| image = Image.open(path) | |
| # ... (même code que l'exemple 1) | |
| results.append({"image": path, "analysis": response}) | |
| return results | |
| # Analyser tous les JPG dans un dossier | |
| car_images = glob.glob("damage_photos/*.jpg") | |
| analyses = analyze_multiple_cars(car_images) | |
| ``` | |
| ## 🎛️ Exemple 3 : Paramètres avancés | |
| ```python | |
| # Configuration avancée pour analyses détaillées | |
| generation_config = { | |
| "max_new_tokens": 500, | |
| "temperature": 0.1, | |
| "top_p": 0.9, | |
| "do_sample": True, | |
| "repetition_penalty": 1.1 | |
| } | |
| outputs = model.generate(inputs, **generation_config) | |
| ``` | |