wh-ft-lre4-adm-ga1ba16-st15k-pat3

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1800
  • Wer: 0.5459
  • Cer: 0.4128

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 750
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.7117 0.1994 1000 1.8245 2.2154 1.7040
1.4651 0.3989 2000 1.7432 1.9903 1.8929
1.5113 0.5983 3000 1.6188 1.0851 0.8643
1.2538 0.7978 4000 1.5483 1.3806 1.1527
1.2508 0.9972 5000 1.4236 1.2864 1.0345
0.9083 1.1966 6000 1.4354 1.5115 1.2498
0.9828 1.3961 7000 1.3658 0.9501 0.7283
0.8083 1.5955 8000 1.3190 0.9102 0.7358
0.8031 1.7950 9000 1.2867 1.2175 0.9841
0.8002 1.9944 10000 1.2368 1.0241 0.8324
0.4293 2.1939 11000 1.2690 0.7188 0.5591
0.3809 2.3933 12000 1.2431 0.6259 0.4710
0.3762 2.5927 13000 1.2194 0.5935 0.4456
0.4077 2.7922 14000 1.1852 0.5891 0.4419
0.3022 2.9916 15000 1.1800 0.5459 0.4128

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.7.0+cu118
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
1.54B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for HouraMor/wh-ft-lre4-adm-ga1ba16-st15k-pat3

Finetuned
(600)
this model