wh-ft-lre4-adm-ga1ba16-st15k-pat3
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1800
- Wer: 0.5459
- Cer: 0.4128
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 750
- training_steps: 15000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.7117 | 0.1994 | 1000 | 1.8245 | 2.2154 | 1.7040 |
1.4651 | 0.3989 | 2000 | 1.7432 | 1.9903 | 1.8929 |
1.5113 | 0.5983 | 3000 | 1.6188 | 1.0851 | 0.8643 |
1.2538 | 0.7978 | 4000 | 1.5483 | 1.3806 | 1.1527 |
1.2508 | 0.9972 | 5000 | 1.4236 | 1.2864 | 1.0345 |
0.9083 | 1.1966 | 6000 | 1.4354 | 1.5115 | 1.2498 |
0.9828 | 1.3961 | 7000 | 1.3658 | 0.9501 | 0.7283 |
0.8083 | 1.5955 | 8000 | 1.3190 | 0.9102 | 0.7358 |
0.8031 | 1.7950 | 9000 | 1.2867 | 1.2175 | 0.9841 |
0.8002 | 1.9944 | 10000 | 1.2368 | 1.0241 | 0.8324 |
0.4293 | 2.1939 | 11000 | 1.2690 | 0.7188 | 0.5591 |
0.3809 | 2.3933 | 12000 | 1.2431 | 0.6259 | 0.4710 |
0.3762 | 2.5927 | 13000 | 1.2194 | 0.5935 | 0.4456 |
0.4077 | 2.7922 | 14000 | 1.1852 | 0.5891 | 0.4419 |
0.3022 | 2.9916 | 15000 | 1.1800 | 0.5459 | 0.4128 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.7.0+cu118
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for HouraMor/wh-ft-lre4-adm-ga1ba16-st15k-pat3
Base model
openai/whisper-large-v3