UPSC Question Generator (Granite 350M, merged 4-bit)
Fine-tuned model for generating UPSC Civil Services Mains-style questions (GS1–GS4).
Quick Start
from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Hardman/upsc-question-generator") tokenizer = AutoTokenizer.from_pretrained("Hardman/upsc-question-generator") prompt = "<|user|> Generate 3 UPSC questions on Indian Economy <|assistant|>" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, do_sample=True) print(tokenizer.decode(outputs, skip_special_tokens=True))
text
Inference API
import requests API_URL = "https://router.huggingface.co/hf-inference/models/{HF_USERNAME}/upsc-question-generator" headers = {"Authorization": "Bearer YOUR_HF_TOKEN"} resp = requests.post( API_URL, headers=headers, json={ "inputs": "<|user|> Generate UPSC questions on Science & Technology <|assistant|>", "parameters": {"max_new_tokens": 512, "temperature": 0.7, "top_p": 0.9, "do_sample": True} } ) print(resp.json())
text
Training Notes
- Base: IBM Granite 3.0 350M Instruct
- Method: LoRA → merged into 4-bit base
- Data: 1000+ UPSC Mains questions (GS1–GS4)
- Hardware: Colab T4
- Steps: ~200
License
Apache 2.0
- Downloads last month
- 17